Science.gov

Sample records for regimen multiphase flow

  1. Multiphase flow calculation software

    DOEpatents

    Fincke, James R.

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  2. Multiphase Flow Analysis in Hydra-TH

    SciTech Connect

    Christon, Mark A.; Bakosi, Jozsef; Francois, Marianne M.; Lowrie, Robert B.; Nourgaliev, Robert

    2012-06-20

    This talk presents an overview of the multiphase flow efforts with Hydra-TH. The presentation begins with a definition of the requirements and design principles for multiphase flow relevant to CASL-centric problems. A brief survey of existing codes and their solution algorithms is presented before turning the model formulation selected for Hydra-TH. The issues of hyperbolicity and wellposedness are outlined, and a three candidate solution algorithms are discussed. The development status of Hydra-TH for multiphase flow is then presented with a brief summary and discussion of future directions for this work.

  3. Reactive multiphase flow simulation workshop summary

    SciTech Connect

    VanderHeyden, W.B.

    1995-09-01

    A workshop on computer simulation of reactive multiphase flow was held on May 18 and 19, 1995 in the Computational Testbed for Industry at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. Approximately 35 to 40 people attended the workshop. This included 21 participants from 12 companies representing the petroleum, chemical, environmental and consumer products industries, two representatives from the DOE Office of Industrial Technologies and several from Los Alamos. The dialog at the meeting suggested that reactive multiphase flow simulation represents an excellent candidate for government/industry/academia collaborative research. A white paper on a potential consortium for reactive multiphase flow with input from workshop participants will be issued separately.

  4. Simulation of multiphase flow in hydrocyclone

    NASA Astrophysics Data System (ADS)

    Rudolf, P.

    2013-04-01

    Multiphase gas-liquid-solid swirling flow within hydrocyclone is simulated. Geometry and boundary conditions are based on Hsieh's 75 mm hydrocyclone. Extensive simulations point that standard mixture model with careful selection of interphase drag law is suitable for correct prediction of particle classification in case of dilute suspensions. However this approach fails for higher mass loading. It is also confirmed that Reynolds stress model is the best choice for multiphase modeling of the swirling flow on relatively coarse grids.

  5. Multiphase flow in wells and pipelines

    SciTech Connect

    Sharma, M.P. ); Rohatgi, U.S. )

    1992-01-01

    This conference focuses primarily on multi-phase flow modeling and calculation methods for oil and gas although two papers focus more on the fluid mechanics of fluidized beds. Papers include theoretical, numerical modeling, experimental investigation, and state-of-the-art review aspects of multiphase flow. The theme of the symposium being general, the papers reflect generality of gas-liquid, liquid-solid, and gas solid flows. One paper deals with nuclear reactor safety as it relates to fluid flow through the reactor.

  6. Ultrasonic rate measurement of multiphase flow

    NASA Astrophysics Data System (ADS)

    Dannert, David A.; Horne, Roland N.

    1993-01-01

    One of the most important tools in production logging and well testing is the downhole flowmeter. Unfortunately, existing tools are inaccurate outside of an idealized single phase flow regime. Spinner tools are inaccurate at extremely high or low flow rates and when the flow rate is variable. Radioactive tracer tools have similar inaccuracies and are extremely sensitive to the flow regime. Both tools completely fail in the presence of multiphase flow, whether for gas/oil, gas/water, or fluid/solid. Downhole flowmetering is important for locating producing zones and thief zones and monitoring production and injection rates. The effects of stimulation can also be determined. The goal of this project is the investigation of accurate downhole flowmetering techniques for all single phase flow regimes and multiphase flows. The measurement method investigated in this report is the use of ultrasound. There are two ways to use ultrasound for fluid velocity measurement. The first method, examined in Chapter 2, is the contrapropagation, or transit-time, method which compares travel times with and against fluid flow. Chapter 3 details the second method which measures the Doppler frequency shift of a reflected sound wave in the moving fluid. Both of these technologies need to be incorporated in order to build a true multiphase flowmeter. Chapter 4 describes the proposed downhole multiphase flowmeter.

  7. Ultrasonic rate measurement of multiphase flow

    SciTech Connect

    Dannert, D.A.; Horne, R.N.

    1993-01-01

    On of the most important tools in production logging and well testing is the downhole flowmeter. Unfortunately, existing tools are inaccurate outside of an idealized single phase flow, regime. Spinner tools are inaccurate at extremely high or low, flow rates and when the flow rate is variable. Radioactive tracer tools have similar inaccuracies and are extremely sensitive to the flow regime. Both tools completely fail in the presence of multiphase flow, whether gas/ oil, gas/water or fluid/solid. Downhole flowmetering is important for locating producing zones and thief zones and monitoring production and injection rates. The effects of stimulation can also be determined. This goal of this project is the investigation of accurate downhole flowmetering techniques for all single phase flow regimes and multiphase flows. The measurement method investigated in this report is the use of ultrasound. There are two ways to use ultrasound for fluid velocity measurement. The first method, examined in Chapter 2, is the contrapropagation, or transit-time, method which compares travel times with and against fluid flow. Chapter 3 details the second method which measures the Doppler frequency shift of a reflected sound wave in the moving fluid. Both of these technologies need to be incorporated in order to build a true multiphase flowmeter. Chapter 4 describes the proposed downhole multiphase flowmeter. It has many advantages besides the ones previously mentioned and is in full in that chapter.

  8. EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji; Murai, Yuichi

    2009-11-01

    Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.

  9. Turbulent Mixing of Multiphase Flow

    NASA Technical Reports Server (NTRS)

    Young, Y.-N.; Ferziger, J.; Ham, F. E.; Herrmann, M.

    2003-01-01

    Thus we conduct numerical simulations of multiphase fluids stirred by two-dimensional turbulence to assess the possibility of self-similar drop size distribution in turbulence. In our turbulence simulations, we also explore the non-diffusive limit, where molecular mobility for the interface is vanishing. Special care is needed to transport the non-diffusive interface. Numerically, we use the particle level set method to evolve the interface. Instead of using the usual methods to calculate the surface tension force from the level set function, we reconstruct the interface based on phase- field modeling, and calculate the continuum surface tension forcing from the reconstructed interface.

  10. Multiphase flow and transport in porous media

    NASA Astrophysics Data System (ADS)

    Parker, J. C.

    1989-08-01

    Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. In petroleum reservoir engineering, efficient recovery of energy reserves is the principal goal. Unfortunately, some of these hydrocarbons and other organic chemicals often find their way unwanted into the soils and groundwater supplies. Removal in the latter case is predicated on ensuring the public health and safety. In this paper, principles of modeling fluid flow in systems containing up to three fluid phases (namely, water, air, and organic liquid) are described. Solution of the governing equations for multiphase flow requires knowledge of functional relationships between fluid pressures, saturations, and permeabilities which may be formulated on the basis of conceptual models of fluid-porous media interactions. Mechanisms of transport in multicomponent multiphase systems in which species may partition between phases are also described, and the governing equations are presented for the case in which local phase equilibrium may be assumed. A number of hypothetical numerical problems are presented to illustrate the physical behavior of systems in which multiphase flow and transport arise.

  11. NMR studies of multiphase flows II

    SciTech Connect

    Altobelli, S.A.; Caprihan, A.; Fukushima, E.

    1995-12-31

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  12. Tomographic segmentation in multiphase flow measurement

    NASA Astrophysics Data System (ADS)

    Sætre, Camilla; Tjugum, Stein-Arild; Anton Johansen, Geir

    2014-02-01

    Measurement of multiphase pipe flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain. These are related to reducing measurement uncertainties arising from variations in the flow regime and the fluid properties, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. In this work the pipe flow is split into temporal segments using multiple gamma-ray measurements. One 241Am source with principal emission at 59.5 keV was used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as use of compact detectors. One detector is placed diametrically opposite the source whereas the second and eventually the third are positioned to the sides so that these beams are close to the pipe wall. The principle is then straight forward, that is to compare the measured intensities of these detectors, and through those identify the instantaneous cross sectional gas-liquid distribution, i.e. the instantaneous flow pattern. By counting the intensity in short time slots of <100 ms, experiments verify that rapid variations exist. The water salinity is one of the fluid properties which challenge most multiphase flow meters because its variations affects component volume fraction calculations based on gamma-ray, electrical conductance and other measurements methods. At the University of Bergen a dual modality method has been developed using simultaneous measurements of transmitted and scattered gamma-rays from a 241Am source. This allows the gas volume fraction to be determined independent of changes in the water salinity, provided that the fluid is fairly homogeneously mixed. Tomographic flow segmentation allows selection of low gas fraction segments where the salinity, in combination with running averaging methods, can be calculated with higher accuracy.

  13. Using turbine flowmeters to measure multiphase flow

    SciTech Connect

    Cole, J.H.; Fincke, J.R.

    1997-07-01

    Numerous ways of measuring multiphase flow are under research investigation. However, the concept of using turbine flowmeters has been largely overlooked. Testing of drag turbine mass flowmeter prototypes demonstrated that fluid flow past a turbine rotor produces a drag force that is proportional to momentum flux. Simultaneous measurements of momentum flux and velocity allow the extraction of density. Use of this type of meter to measure homogenized two-phase flow with void fractions below 90% appears feasible. Further mass turbine flowmeter research is encouraged. Drag turbine test data strongly suggests that a turbine flowmeter can be developed into a mass flowmeter by installing pressure taps across the rotor and using the differential pressure measurement to infer momentum flux. Also, using diamond film force sensing would allow the fabrication of a more compact, rugged, and faster-responding drag turbine mass flowmeter than is possible with alternative force sensing methods.

  14. Quantitative tomographic measurements of opaque multiphase flows

    SciTech Connect

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O'HERN,TIMOTHY J.; CECCIO,STEVEN L.

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.

  15. Multiphase groundwater flow near cooling plutons

    USGS Publications Warehouse

    Hayba, D.O.; Ingebritsen, S.E.

    1997-01-01

    We investigate groundwater flow near cooling plutons with a computer program that can model multiphase flow, temperatures up to 1200??C, thermal pressurization, and temperature-dependent rock properties. A series of experiments examines the effects of host-rock permeability, size and depth of pluton emplacement, single versus multiple intrusions, the influence of a caprock, and the impact of topographically driven groundwater flow. We also reproduce and evaluate some of the pioneering numerical experiments on flow around plutons. Host-rock permeability is the principal factor influencing fluid circulation and heat transfer in hydrothermal systems. The hottest and most steam-rich systems develop where permeability is of the order of 10-15 m2. Temperatures and life spans of systems decrease with increasing permeability. Conduction-dominated systems, in which permeabilities are ???10-16m2, persist longer but exhibit relatively modest increases in near-surface temperatures relative to ambient conditions. Pluton size, emplacement depth, and initial thermal conditions have less influence on hydrothermal circulation patterns but affect the extent of boiling and duration of hydrothermal systems. Topographically driven groundwater flow can significantly alter hydrothermal circulation; however, a low-permeability caprock effectively decouples the topographically and density-driven systems and stabilizes the mixing interface between them thereby defining a likely ore-forming environment.

  16. Multiphase Flow Measurement System of Oil Well

    NASA Astrophysics Data System (ADS)

    Huang, Zhiyao; He, Chaohong; Liang, Qilin

    2007-06-01

    A new multiphase flow measurement system of oil well was developed. This measurement system was based on the combination of a separator, two level meters and three commercial flowmeters. The separator separated the crude oil into three components: gas, water and oil-water mixture. By means of the automatic control of two interface levels (the oil-water interface level and the oil-gas interface level), three components were measured by the corresponding commercial flowmeters. The developed measurement system had been tested at Shengli Oilfield in China. The test results show that the developed measurement system is effective. It is suitable for the flowrate measurement of Chinese oil well with high water fraction and its accuracy is also satisfactory.

  17. Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shu, C.; Huang, H. B.; Teo, C. J.

    2015-01-01

    A multiphase lattice Boltzmann flux solver (MLBFS) is proposed in this paper for incompressible multiphase flows with low- and large-density-ratios. In the solver, the flow variables at cell centers are given from the solution of macroscopic governing differential equations (Navier-Stokes equations recovered by multiphase lattice Boltzmann (LB) model) by the finite volume method. At each cell interface, the viscous and inviscid fluxes are evaluated simultaneously by local reconstruction of solution for the standard lattice Boltzmann equation (LBE). The forcing terms in the governing equations are directly treated by the finite volume discretization. The phase interfaces are captured by solving the phase-field Cahn-Hilliard equation with a fifth order upwind scheme. Unlike the conventional multiphase LB models, which restrict their applications on uniform grids with fixed time step, the MLBFS has the capability and advantage to simulate multiphase flows on non-uniform grids. The proposed solver is validated by several benchmark problems, such as two-phase co-current flow, Taylor-Couette flow in an annulus, Rayleigh-Taylor instability, and droplet splashing on a thin film at density ratio of 1000 with Reynolds numbers ranging from 20 to 1000. Numerical results show the reliability of the proposed solver for multiphase flows with high density ratio and high Reynolds number.

  18. Dan Joseph's contributions to disperse multiphase flow

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2012-11-01

    During his distinguished career, Dan Joseph worked on a vast array of problems. One of these, which occupied him off and on over the last two decades of his life, was that of flows with suspended finite-size particles at finite Reynolds numbers. He realized early on that progress in this field had to rely on the insight gained from numerical simulation, an area in which he was a pioneer. On the basis of the early numerical results he recognized the now famous ``drafting, kissing and tumbling'' mechanism of particle-particle interaction, the possibility of fluidization by lift and many others. With a number of colleagues and a series of gifted students he produced a significant body of work summarized in his on-line book Interrogations of Direct Numerical Simulation of Solid-Liquid Flows available from http://www.efluids.com/efluids/books/joseph.htm. This presentation will describe Joseph's contribution to the understanding of disperse multiphase flow and conclude with some examples from the author's recent work in this area. Supported by NSF.

  19. Workshop on Scientific Issues in Multiphase Flow

    SciTech Connect

    Hanratty, Thomas J.

    2003-01-02

    This report outlines scientific issues whose resolution will help advance and define the field of multiphase flow. It presents the findings of four study groups and of a workshop sponsored by the Program on Engineering Physics of the Department of Energy. The reason why multiphase flows are much more difficult to analyze than single phase flows is that the phases assume a large number of complicated configurations. Therefore, it should not be surprising that the understanding of why the phases configure in a certain way is the principal scientific issue. Research is needed which identifies the microphysics controlling the organization of the phases, which develops physical models for the resultant multi-scale interactions and which tests their validity in integrative experiments/theories that look at the behavior of a system. New experimental techniques and recently developed direct numerical simulations will play important roles in this endeavor. In gas-liquid flows a top priority is to develop an understanding of why the liquid phase in quasi fully-developed pipe flow changes from one configuration to another. Mixing flows offer a more complicated situation in which several patterns can exist at the same time. They introduce new physical challenges. A second priority is to provide a quantitative description of the phase distribution for selected fully-developed flows and for simple mixing flows (that could include heat transfer and phase change). Microphysical problems of interest are identified – including the coupling of molecular and macroscopic behavior that can be observed in many situations and the formation/destruction of interfaces in the coalescence/breakup of drops and bubbles. Solid-fluid flows offer a simpler system in that interfaces are not changing. However, a variety of patterns exist, that depend on the properties of the particles, their concentration and the Reynolds number characterizing the relative velocity. A top priority is the

  20. FOREWORD: International Symposium of Cavitation and Multiphase Flow (ISCM 2014)

    NASA Astrophysics Data System (ADS)

    Wu, Yulin

    2015-01-01

    The International Symposium on Cavitation and Multiphase Flow (ISCM 2014) was held in Beijing, China during 18th-21st October, 2014, which was jointly organized by Tsinghua University, Beijing, China and Jiangsu University, Zhenjiang, China. The co-organizer was the State Key Laboratory of Hydroscience and Engineering, Beijing, China. Cavitation and multiphase flow is one of paramount topics of fluid mechanics with many engineering applications covering a broad range of topics, e.g. hydraulic machinery, biomedical engineering, chemical and process industry. In order to improve the performances of engineering facilities (e.g. hydraulic turbines) and to accelerate the development of techniques for medical treatment of serious diseases (e.g. tumors), it is essential to improve our understanding of cavitation and Multiphase Flow. For example, the present development towards the advanced hydrodynamic systems (e.g. space engine, propeller, hydraulic machinery system) often requires that the systems run under cavitating conditions and the risk of cavitation erosion needs to be controlled. The purpose of the ISCM 2014 was to discuss the state-of-the-art cavitation and multiphase flow research and their up-to-date applications, and to foster discussion and exchange of knowledge, and to provide an opportunity for the researchers, engineers and graduate students to report their latest outputs in these fields. Furthermore, the participants were also encouraged to present their work in progress with short lead time and discuss the encountered problems. ISCM 2014 covers all aspects of cavitation and Multiphase Flow, e.g. both fundamental and applied research with a focus on physical insights, numerical modelling and applications in engineering. Some specific topics are: Cavitating and Multiphase Flow in hydroturbines, pumps, propellers etc. Numerical simulation techniques Cavitation and multiphase flow erosion and anti-erosion techniques Measurement techniques for cavitation and

  1. A model for multiphase flows through poroelastic media

    SciTech Connect

    Ahmadi, Goodarz; Mazaheri, Ali Reza; Smith, D.H

    2003-01-01

    A continuum model for multiphase fluid mixture flows through poroelastic media is presented. The basic conservation laws developed via a volume averaging technique are considered. Effects of phasic equilibrated forces are included in the model. Based on the thermodynamics of the multiphase mixture flows, appropriate constitutive equations are formulated. The entropy inequality is exploited, and the method of Lagrangian multiplier is used along with the phasic conservation laws to derive the constitutive equations for the phasic stress tensors, equilibrated stress vectors, and the interactions terms. The special cases of wave propagation in poroelastic media saturated with multiphase fluids, and multiphase flows through porous media, are studied. It is shown that the present theory leads to the extended Darcy’s law and contains, as a special case, Biot’s theory of saturated poroelastic media.

  2. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    SciTech Connect

    Cem Sarica; Holden Zhang

    2006-05-31

    The developments of oil and gas fields in deep waters (5000 ft and more) will become more common in the future. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas, oil and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of hydrocarbon recovery from design to operation. Recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications, including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is crucial for any multiphase separation technique, either at topside, seabed or bottom-hole, to know inlet conditions such as flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. Therefore, the development of a new generation of multiphase flow predictive tools is needed. The overall objective of the proposed study is to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). In the current multiphase modeling approach, flow pattern and flow behavior (pressure gradient and phase fractions) prediction modeling are separated. Thus, different models based on different physics are employed, causing inaccuracies and discontinuities. Moreover, oil and water are treated as a pseudo single phase, ignoring the distinct characteristics of both oil and water, and often resulting in inaccurate design that leads to operational problems. In this study, a new model is being developed through a theoretical and experimental study employing a revolutionary approach. The

  3. Viscous and gravitational fingering in multiphase compositional and compressible flow

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim

    2016-03-01

    Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for (1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and (2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, which can either enhance or mitigate viscous and gravitational instabilities. This work presents a detailed study of fingering behavior in compositional multiphase flow in two and three dimensions and considers the effects of (1) Fickian diffusion, (2) mechanical dispersion, (3) flow rates, (4) domain size and geometry, (5) formation heterogeneities, (6) gravity, and (7) relative permeabilities. Results show that fingering in compositional multiphase flow is profoundly different from miscible conditions and upscaling techniques used for the latter case are unlikely to be generalizable to the former.

  4. On-line subsea multiphase flow measurement

    SciTech Connect

    High, G.; Frantzen, K.H.; Marshall, M.

    1995-12-31

    This paper describes the final detailed design, engineering, and installation phase of a Joint Industry Program to qualify a robust subsea multiphase flowmeter module for long-term installation on a North Sea manifold tie-in. Multiphase subsea production has become a common method of hydrocarbon recovery in all areas of offshore E and P. In the North Sea, many developments are subsea satellites with multiphase well-fluids being comingled prior to processing. The system described meets this challenge by offering a cost effective solution to real-time well monitoring as an alternative to the conventional test separator, removing the need for test lines and shutting in wells for testing. The multiphase instrument allows on-line well fluid analysis, and is also an important tool for reservoir management and field analysis, and provides a means of implementing field allocation metering thereby simplifying small marginal field developments. This project is one of the first subsea multiphase flowmeter installations engineered for long-term subsea service, and designed as an integrated component of the subsea production control system.

  5. Multiphase pumps and flow meters -- Status of field testing

    SciTech Connect

    Skiftesvik, P.K.; Svaeren, J.A.

    1995-12-31

    With the development and qualification of multiphase pumps and multiphase flow meters, two new tools have been made available to the oil and gas industry for enhanced production from existing installations or new field developments. This paper presents an overview of the major achievements gained from various test installations carried out the last years using equipment qualified by Framo Engineering AS. The experience from the extensive Field Verification Programmes as described shows that multiphase pumps and meters can operate in various and often harsh well environments providing significant well stream pressure boost or acceptable phase accuracy measurements of oil, water and gas.

  6. System for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2003-01-01

    An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

  7. Multiphase flow parameter estimation based on laser scattering

    NASA Astrophysics Data System (ADS)

    Vendruscolo, Tiago P.; Fischer, Robert; Martelli, Cicero; Rodrigues, Rômulo L. P.; Morales, Rigoberto E. M.; da Silva, Marco J.

    2015-07-01

    The flow of multiple constituents inside a pipe or vessel, known as multiphase flow, is commonly found in many industry branches. The measurement of the individual flow rates in such flow is still a challenge, which usually requires a combination of several sensor types. However, in many applications, especially in industrial process control, it is not necessary to know the absolute flow rate of the respective phases, but rather to continuously monitor flow conditions in order to quickly detect deviations from the desired parameters. Here we show how a simple and low-cost sensor design can achieve this, by using machine-learning techniques to distinguishing the characteristic patterns of oblique laser light scattered at the phase interfaces. The sensor is capable of estimating individual phase fluxes (as well as their changes) in multiphase flows and may be applied to safety applications due to its quick response time.

  8. Numerical Methods and Simulations of Complex Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Brady, Peter

    Multiphase flows are an important part of many natural and technological phenomena such as ocean-air coupling (which is important for climate modeling) and the atomization of liquid fuel jets in combustion engines. The unique challenges of multiphase flow often make analytical solutions to the governing equations impossible and experimental investigations very difficult. Thus, high-fidelity numerical simulations can play a pivotal role in understanding these systems. This dissertation describes numerical methods developed for complex multiphase flows and the simulations performed using these methods. First, the issue of multiphase code verification is addressed. Code verification answers the question "Is this code solving the equations correctly?" The method of manufactured solutions (MMS) is a procedure for generating exact benchmark solutions which can test the most general capabilities of a code. The chief obstacle to applying MMS to multiphase flow lies in the discontinuous nature of the material properties at the interface. An extension of the MMS procedure to multiphase flow is presented, using an adaptive marching tetrahedron style algorithm to compute the source terms near the interface. Guidelines for the use of the MMS to help locate coding mistakes are also detailed. Three multiphase systems are then investigated: (1) the thermocapillary motion of three-dimensional and axisymmetric drops in a confined apparatus, (2) the flow of two immiscible fluids completely filling an enclosed cylinder and driven by the rotation of the bottom endwall, and (3) the atomization of a single drop subjected to a high shear turbulent flow. The systems are simulated numerically by solving the full multiphase Navier-Stokes equations coupled to the various equations of state and a level set interface tracking scheme based on the refined level set grid method. The codes have been parallelized using MPI in order to take advantage of today's very large parallel computational

  9. The effect of drag reducing agent in multiphase flow pipelines

    SciTech Connect

    Kang, C.; Vancho, R.M. Jr.; Jepson, W.P.; Green, A.S.; Kerr, H.

    1998-12-31

    The effect of drag reducing agents (DRA) on pressure gradient and flow regime has been studied in horizontal and 2 degree inclination. Experiments were conducted for full pipe, stratified, slug, and annular flow in a 10 cm inside diameter, 18 m long plexiglass section and inclinable flow loops from horizontal to vertical. Superficial liquid velocity between 0.06 and 1.5 m/s and superficial gas velocity between 1 and 14 m/s were studied. The DRA effectiveness was examined for DRA concentrations between 0 and 75 ppm. The results indicate that DRA was effective in reducing the pressure gradients in single and multiphase flow. The DRA was more effective for lower superficial liquid velocities and gas velocities for both single phase and multiphase flow. The DRA was effective to reduce pressure gradients up to 42% for full pipe flow, 91% for stratified flow and up to 35% for annular flow in horizontal pipes. Kang, Wilkens and Jepson (1996) showed that the stratified flow disappears entirely and slug flow dominates the flow regime map in inclined upward flow. In 2 degree inclination, the pressure gradient reduction for slug flow with a concentration of 50 ppm DRA is 28% and 38% at superficial gas velocities of 2 and 6 m/s respectively. Flow regimes maps with DRA were determined in horizontal pipes. The transition to the slug flow with DRA was observed to occur at a higher superficial liquid due to higher liquid flow rates. There is a conspicuous absence of drag reduction work for multiphase (oil-water-gas) flow in horizontal and inclined pipes.

  10. Wettability control on multiphase flow in patterned microfluidics.

    PubMed

    Zhao, Benzhong; MacMinn, Christopher W; Juanes, Ruben

    2016-09-13

    Multiphase flow in porous media is important in many natural and industrial processes, including geologic CO2 sequestration, enhanced oil recovery, and water infiltration into soil. Although it is well known that the wetting properties of porous media can vary drastically depending on the type of media and pore fluids, the effect of wettability on multiphase flow continues to challenge our microscopic and macroscopic descriptions. Here, we study the impact of wettability on viscously unfavorable fluid-fluid displacement in disordered media by means of high-resolution imaging in microfluidic flow cells patterned with vertical posts. By systematically varying the wettability of the flow cell over a wide range of contact angles, we find that increasing the substrate's affinity to the invading fluid results in more efficient displacement of the defending fluid up to a critical wetting transition, beyond which the trend is reversed. We identify the pore-scale mechanisms-cooperative pore filling (increasing displacement efficiency) and corner flow (decreasing displacement efficiency)-responsible for this macroscale behavior, and show that they rely on the inherent 3D nature of interfacial flows, even in quasi-2D media. Our results demonstrate the powerful control of wettability on multiphase flow in porous media, and show that the markedly different invasion protocols that emerge-from pore filling to postbridging-are determined by physical mechanisms that are missing from current pore-scale and continuum-scale descriptions. PMID:27559089

  11. The study of multiphase flow control during odor reproduction

    NASA Astrophysics Data System (ADS)

    Luo, Dehan; Yu, Hao; Fan, Danjun; He, Meiqiu

    2014-04-01

    Odor reproduction, is the use of the chemical composition of the basic components of odor recipe, according to a certain proportion, to control the flow of the various components, which make them sufficiently blended to achieve reproduction. In this paper, reproducing method is to find the corresponding liquid flavor, and then based on chemical flavor recipes, using flowmeters to control the chemical composition of the liquid flavor ratio. In the proportional control, the liquid chemical composition is very likely to be volatile, so that the proportional control is multiphase flow control. Measurement of the flow control will directly affect the odor reproducible results. Using electronic nose to obtain reproducible odor data, and then use pattern recognition algorithm to determine reproducible results. The experimental results can be achieved on the process of odor components multiphase flow proportional control parameter adjustment.

  12. Applying uncertainty quantification to multiphase flow computational fluid dynamics

    SciTech Connect

    Gel, A; Garg, R; Tong, C; Shahnam, M; Guenther, C

    2013-07-01

    Multiphase computational fluid dynamics plays a major role in design and optimization of fossil fuel based reactors. There is a growing interest in accounting for the influence of uncertainties associated with physical systems to increase the reliability of computational simulation based engineering analysis. The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has recently undertaken an initiative to characterize uncertainties associated with computer simulation of reacting multiphase flows encountered in energy producing systems such as a coal gasifier. The current work presents the preliminary results in applying non-intrusive parametric uncertainty quantification and propagation techniques with NETL's open-source multiphase computational fluid dynamics software MFIX. For this purpose an open-source uncertainty quantification toolkit, PSUADE developed at the Lawrence Livermore National Laboratory (LLNL) has been interfaced with MFIX software. In this study, the sources of uncertainty associated with numerical approximation and model form have been neglected, and only the model input parametric uncertainty with forward propagation has been investigated by constructing a surrogate model based on data-fitted response surface for a multiphase flow demonstration problem. Monte Carlo simulation was employed for forward propagation of the aleatory type input uncertainties. Several insights gained based on the outcome of these simulations are presented such as how inadequate characterization of uncertainties can affect the reliability of the prediction results. Also a global sensitivity study using Sobol' indices was performed to better understand the contribution of input parameters to the variability observed in response variable.

  13. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    SciTech Connect

    Tulsa Fluid Flow

    2008-08-31

    The developments of fields in deep waters (5000 ft and more) is a common occurrence. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas-oil-and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of the hydrocarbon recovery from design to operation. The recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is very crucial to any multiphase separation technique that is employed either at topside, seabed or bottom-hole to know inlet conditions such as the flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. The overall objective was to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict the flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). The project was conducted in two periods. In Period 1 (four years), gas-oil-water flow in pipes were investigated to understand the fundamental physical mechanisms describing the interaction between the gas-oil-water phases under flowing conditions, and a unified model was developed utilizing a novel modeling approach. A gas-oil-water pipe flow database including field and laboratory data was formed in Period 2 (one year). The database was utilized in model performance demonstration. Period 1 primarily consisted of the development of a unified model and software to predict the gas-oil-water flow, and experimental studies of the gas-oil-water project, including flow behavior description and

  14. Multiphase flow of miscible liquids: jets and drops

    NASA Astrophysics Data System (ADS)

    Walker, Travis W.; Logia, Alison N.; Fuller, Gerald G.

    2015-05-01

    Drops and jets of liquids that are miscible with the surrounding bulk liquid are present in many processes from cleaning surfaces with the aid of liquid soaps to the creation of biocompatible implants for drug delivery. Although the interactions of immiscible drops and jets show similarities to miscible systems, the small, transient interfacial tension associated with miscible systems create distinct outcomes such as intricate droplet shapes and breakup resistant jets. Experiments have been conducted to understand several basic multiphase flow problems involving miscible liquids. Using high-speed imaging of the morphological evolution of the flows, we have been able to show that these processes are controlled by interfacial tensions. Further multiphase flows include investigating miscible jets, which allow the creation of fibers from inelastic materials that are otherwise difficult to process due to capillary breakup. This work shows that stabilization from the diminishing interfacial tensions of the miscible jets allows various elongated morphologies to be formed.

  15. Multiphase flow in geometrically simple fracture intersections

    USGS Publications Warehouse

    Basagaoglu, H.; Meakin, P.; Green, C.T.; Mathew, M.; ,

    2006-01-01

    A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-film flow on smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.

  16. Multiphase Flow: The Gravity of the Situation

    NASA Technical Reports Server (NTRS)

    Hewitt, Geoffrey F.

    1996-01-01

    A brief survey is presented of flow patterns in two-phase, gas-liquid flows at normal and microgravity, the differences between them being explored. It seems that the flow patterns in zero gravity are in general much simpler than those in normal gravity with only three main regimes (namely bubbly, slug and annular flows) being observed. Each of these three regimes is then reviewed, with particular reference to identification of areas of study where investigation of flows at microgravity might not only be interesting in themselves, but also throw light on mechanisms at normal earth gravity. In bubbly flow, the main area of interest seems to be that of bubble coalescence. In slug flow, the extension of simple displacement experiments to the zero gravity case would appear to be a useful option, supplemented by computational fluid dynamics (CFD) studies. For annular flow, the most interesting area appears to be the study of the mechanisms of disturbance waves; it should be possible to extend the region of investigation of the onset and behavior of these waves to much low gas velocities where measurements are clearly much easier.

  17. Multiphase Flow Modeling of Biofuel Production Processes

    SciTech Connect

    D. Gaston; D. P. Guillen; J. Tester

    2011-06-01

    As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant

  18. Multiphase Flow and Cavern Abandonment in Salt

    SciTech Connect

    Ehgartner, Brian; Tidwell, Vince

    2001-02-13

    This report will explore the hypothesis that an underground cavity in gassy salt will eventually be gas filled as is observed on a small scale in some naturally occurring salt inclusions. First, a summary is presented on what is known about gas occurrences, flow mechanisms, and cavern behavior after abandonment. Then, background information is synthesized into theory on how gas can fill a cavern and simultaneously displace cavern fluids into the surrounding salt. Lastly, two-phase (gas and brine) flow visualization experiments are presented that demonstrate some of the associated flow mechanisms and support the theory and hypothesis that a cavity in salt can become gas filled after plugging and abandonment

  19. Multiphase flow in fractured porous media

    SciTech Connect

    Firoozabadi, A.

    1995-02-01

    The major goal of this research project was to improve the understanding of the gas-oil two-phase flow in fractured porous media. In addition, miscible displacement was studied to evaluate its promise for enhanced recovery.

  20. Uncertainty analysis of flow rate measurement for multiphase flow using CFD

    NASA Astrophysics Data System (ADS)

    Kim, Joon-Hyung; Jung, Uk-Hee; Kim, Sung; Yoon, Joon-Yong; Choi, Young-Seok

    2015-10-01

    The venturi meter has an advantage in its use, because it can measure flow without being much affected by the type of the measured fluid or flow conditions. Hence, it has excellent versatility and is being widely applied in many industries. The flow of a liquid containing air is a representative example of a multiphase flow and exhibits complex flow characteristics. In particular, the greater the gas volume fraction (GVF), the more inhomogeneous the flow becomes. As a result, using a venturi meter to measure the rate of a flow that has a high GVF generates an error. In this study, the cause of the error occurred in measuring the flow rate for the multiphase flow when using the venturi meter for analysis by CFD. To ensure the reliability of this study, the accuracy of the multiphase flow models for numerical analysis was verified through comparison between the calculated results of numerical analysis and the experimental data. As a result, the Grace model, which is a multiphase flow model established by an experiment with water and air, was confirmed to have the highest reliability. Finally, the characteristics of the internal flow field about the multiphase flow analysis result generated by applying the Grace model were analyzed to find the cause of the uncertainty occurring when measuring the flow rate of the multiphase flow using the venturi meter. A phase separation phenomenon occurred due to a density difference of water and air inside the venturi, and flow inhomogeneity happened according to the flow velocity difference of each phase. It was confirmed that this flow inhomogeneity increased as the GVF increased due to the uncertainty of the flow measurement.

  1. APPROXIMATE MULTIPHASE FLOW MODELING BY CHARACTERISTIC METHODS

    EPA Science Inventory

    The flow of petroleum hydrocarbons, organic solvents and other liquids that are immiscible with water presents the nation with some of the most difficult subsurface remediation problems. One aspect of contaminant transport associated releases of such liquids is the transport as a...

  2. Impact of normal stress on multiphase flow through rough fractures

    NASA Astrophysics Data System (ADS)

    Alves da Silva Junior, J.; Kang, P. K.; Yang, Z.; Cueto-Felgueroso, L.; Juanes, R.

    2015-12-01

    Fluid flow and transport through geologic fractures plays a key role in several areas such as groundwater hydrology, geothermal energy, oil and gas production, CO2 sequestration and nuclear waste disposal. High-permeability zones associated with fracture corridors often serve as fast fluid conduits for both single and multiphase flow in otherwise low-permeability media. When multiphase flow occurs, the presence of one phase interferes with the flow of the other phase, resulting in complex displacement patterns through the fracture, and macroscopic descriptors (such as fracture-scale capillary pressure and relative permeability) that depend on the phase concentration of both phases. Here, we investigate the impact of normal stress on single and multiphase flow through rough-walled fractures: (1) we generate synthetic aperture fields that honor the fractal roughness structure observed in real fractures; (2) we model the effect of normal stress on the fracture aperture geometry by solving the contact problem between fracture walls; and (3) we use invasion percolation with trapping to model immiscible fluid displacement and then compute relative permeability numerically for each stress scenario. Our results indicate that normal stress increases the amount of contact area in the fracture wall, which results in an increase of the tortuosity of the available path for fluid displacement. Increasing normal stress results in low relative permeability for the wetting phase due to a decrease of the available path for fluid flow, and therefore a small amount of non-wetting fluid has a large impact on the flow of the wetting fluid. We find that the relative permeability of the non-wetting fluid shows less variation with stress than the wetting fluid, and that both fluids exhibit strong phase interference at intermediate saturations. Finally, we show early results from our experimental work currently underway to validate the modeling results.

  3. Multiphase Flow with Interphase eXchanges

    1995-03-01

    MFIX is a general-purpose hydrodynamic model that describes chemical reactions and heat transfer in dense or dilute fluid-solids flows, flows typically occurring in energy conversion and chemical processing reactors. With such information, the engineer can visualize the conditions in the reactor, conduct parametric studies and what-if experiments, and, thereby, assist in the design process. MFIX has the following modeling capabilities: mass and momentum balance equations for gas and multiple solids phases; a gas phase andmore » two solids phase energy equation; an arbitrary number of species balance equations for each of the phases; granular stress equations based on kinetic theory and frictional flow theory; a user-defined chemistry subroutine; three-dimensional Cartesin or cylindrical coordinate systems; nonuniform mesh size; impermeable and semi-permeable internal surfaces; user-friendly input data file; multiple, single-precision, binary direct-access output files that minimize disk storage and accelerate data retrieval; extensive error reporting; post-processors for creating animations and for extracting and manipulating output data.« less

  4. Phase segregation in multiphase turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Bianco, Federico; Soldati, Alfredo

    2014-11-01

    The phase segregation of a rapidly quenched mixture (namely spinodal decomposition) is numerically investigated. A phase field approach is considered. Direct numerical simulation of the coupled Navier-Stokes and Cahn-Hilliard equations is performed with spectral accuracy and focus has been put on domain growth scaling laws, in a wide range of regimes. The numerical method has been first validated against well known results of literature, then spinodal decomposition in a turbulent bounded flow (channel flow) has been considered. As for homogeneous isotropic case, turbulent fluctuations suppress the segregation process when surface tension at the interfaces is relatively low (namely low Weber number regimes). For these regimes, segregated domains size reaches a statistically steady state due to mixing and break-up phenomena. In contrast with homogenous and isotropic turbulence, the presence of mean shear, leads to a typical domain size that show a wall-distance dependence. Finally, preliminary results on the effects to the drag forces at the wall, due to phase segregation, have been discussed. Regione FVG, program PAR-FSC.

  5. Investigation on Online Multiphase Flow Meter in oilfield Based on Open Channel Flow

    NASA Astrophysics Data System (ADS)

    Meng, L. Y.; Wang, W. C.; Li, Y. X.; Zhang, J.; Dong, S. P.

    2010-03-01

    Flow metering of multiphase pipeline is an urgently problem needed to be solved in oilfield producing in China. Based on the principle of multiphase oil and gas flow in the open channel, four liquid metering models(Falling Model I, Falling Model II, Open Channel Model and Element Resistance Model) and one gas model were obtained to calculate the gas and liquid flow rate, in which the water cut was measured by the differential pressure. And then a new type of multiphase meter system was developed based on these models and neural networks were developed to improve the estimating results of gas and liquid flow rate with the new metering system. At last a lot of experiments of multiphase metering were finished in lab and field. According to the experiments, the results of the metering system show that the liquid flow rate error was no more than 10%, and gas flow rate error was no more than 15%, which can meet the demand of the field flow rate measurement. Furthermore the relationship between liquid and gas flow rate and characteristic signals was found out through the experiments so as to deepening the study on multiphase flow metering technology.

  6. Experimental research of multiphase flow with cavitation in the nozzle

    NASA Astrophysics Data System (ADS)

    Kozubkova, Milada; Bojko, Marian; Jablonska, Jana; Homa, Dorota; Tůma, Jiří

    2016-03-01

    The paper deals with the problems of cavitation in water flow in the nozzle. The area of research is divided into two directions (experimental and numerical research). During the experimental research the equipment with the nozzle is under the measurement and basic physical quantities such as pressure and volume flow rate are recorded. In the following phase measuring of noise which is generated during flow through the nozzle in the area of cavitation is measured at various operating conditions of the pump. In the second part the appropriate multiphase mathematical model including the consideration of cavitation is defined. Boundary conditions for numerical simulation are defined on the basis of experimental measurements. Undissolved air in the flow is taken into account to obtain pressure distribution in accordance to measured one. Results of the numerical simulation are presented by means of basic current quantities such as pressure, velocity and volume fractions of each phase. The conclusions obtained from experimental research of cavitation were applied to modify the multiphase mathematical model.

  7. Interface effects on multiphase flows in porous media

    SciTech Connect

    Zhang, Duan Z

    2008-01-01

    Most models for multiphase flows in a porous medium are based on the straightforward extension of Darcy's law, in which each fluid phase is driven by its own pressure gradient. The pressure difference between the phases is thought to be an effect of surface tension and is called capillary pressure. Independent of Darcy's law, for liquid imbibition processes in a porous material, diffusion models are sometime used. In this paper, an ensemble phase averaging technique for continuous multi phase flows is applied to derive averaged equations and to examine the validity of the commonly used models. The closure for the averaged equations is quite complicated for general multiphase flows in a porous material. For flows with a small ratio of the characteristic length of the phase interfaces to the macroscopic length, the closure relations can be simplified significantly by an approximation with a second order error in the length ratio. The approximation reveals the information of the length scale separation obscured during the ensemble averaging process, and leads to an equation system similar to Darcy's law, but with additional terms. Based on interactions on phase interfaces, relations among closure quantities are studied.

  8. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

    SciTech Connect

    Edited by Guenther, Chris; Garg, Rahul

    2013-08-19

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.

  9. Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes.

    PubMed

    Misztal, Marek K; Erleben, Kenny; Bargteil, Adam; Fursund, Jens; Christensen, Brian Bunch; Bærentzen, J Andreas; Bridson, Robert

    2013-07-01

    In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization operations improve element quality and avoid element inversion. In the context of multiphase flow, we guarantee that every element is occupied by a single fluid and, consequently, the interface between fluids is represented by a set of faces in the simplicial complex. This approach ensures that the underlying discretization matches the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted by a majority of fluid simulation techniques that use tetrahedral meshes. We characterize fluid simulation as an optimization problem allowing for full coupling of the pressure and velocity fields and the incorporation of a second-order surface energy. We introduce a preconditioner based on the diagonal Schur complement and solve our optimization on the GPU. We provide the results of parameter studies as well as a performance analysis of our method, together with suggestions for performance optimization. PMID:23836703

  10. Multiphase flow of immiscible fluids on unstructured moving meshes.

    PubMed

    Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam; Fursund, Jens; Christensen, Brian Bunch; Bærentzen, Jakob Andreas; Bridson, Robert

    2014-01-01

    In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization operations improve element quality and avoid element inversion. In the context of multiphase flow, we guarantee that every element is occupied by a single fluid and, consequently, the interface between fluids is represented by a set of faces in the simplicial complex. This approach ensures that the underlying discretization matches the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted by a majority of fluid simulation techniques that use tetrahedral meshes. We characterize fluid simulation as an optimization problem allowing for full coupling of the pressure and velocity fields and the incorporation of a second-order surface energy. We introduce a preconditioner based on the diagonal Schur complement and solve our optimization on the GPU. We provide the results of parameter studies as well as a performance analysis of our method, together with suggestions for performance optimization. PMID:24201322

  11. Equations and simulations for multiphase compressible gas-dust flows

    NASA Astrophysics Data System (ADS)

    Oran, Elaine; Houim, Ryan

    2014-11-01

    Dust-gas multiphase flows are important in physical scenarios such as dust explosions in coal mines, asteroid impact disturbing lunar regolith, and soft aircraft landings dispersing desert or beach sand. In these cases, the gas flow regime can range from highly subsonic and nearly incompressible to supersonic and shock-laden flow, the grain packing can range from fully packed to completely dispersed, and both the gas and the dust can range from chemically inert to highly exothermic. To cover the necessary parameter range in a single model, we solve coupled sets of Navier-Stokes equations describing the background gas and the dust. As an example, a reactive-dust explosion that results in a type of shock-flame complex is described and discussed. Sponsored by the University of Maryland through Minta Martin Endowment Funds in the Department of Aerospace Engineering, and through the Glenn L. Martin Institute Chaired Professorship at the A. James Clark School of Engineering.

  12. Modeling oceanic multiphase flow by using Lagrangian particle tracking

    NASA Astrophysics Data System (ADS)

    Matsumura, Y.

    2014-12-01

    While the density of seawater is basically determined by its temperature, salinity and pressure, the effective density becomes higher when the water mass contains suspended sediment. On the other hands, effective density declines when water mass contains fine scale materials of lower density such as bubbles and ice crystals. Such density anomaly induced by small scale materials suspended in water masses sometimes plays important roles in the sub-mesoscale ocean physics. To simulate these small scale oceanic multiphase flow, a new modeling framework using an online Lagrangian particle tracking method is developed. A Lagrangian particle tracking method has substantial advantages such as an explicit treatment of buoyancy force acting on each individual particle, no numerical diffusion and dissipation, high dynamic range and an ability to track the history and each individual particle. However, its numerical cost causes difficulty when we try to simulate a large number of particles. In the present study we implement a numerically efficient particle tracking scheme using linked-list data structure, which is coupled with a nonhydrostatic dynamical core. This newly developed model successfully reproduces characteristics of some interesting small scale multiphase processes, for example hyperpycnal flow (a sediment-rich river water plume trapped at ocean floor) and grease ice cover (a slurry mixture of frazil ice crystals and seawater).

  13. Advanced tomographic flow diagnostics for opaque multiphase fluids

    SciTech Connect

    Torczynski, J.R.; O`Hern, T.J.; Adkins, D.R.; Jackson, N.B.; Shollenberger, K.A.

    1997-05-01

    This report documents the work performed for the ``Advanced Tomographic Flow Diagnostics for Opaque Multiphase Fluids`` LDRD (Laboratory-Directed Research and Development) project and is presented as the fulfillment of the LDRD reporting requirement. Dispersed multiphase flows, particularly gas-liquid flows, are industrially important to the chemical and applied-energy industries, where bubble-column reactors are employed for chemical synthesis and waste treatment. Due to the large range of length scales (10{sup {minus}6}-10{sup 1}m) inherent in real systems, direct numerical simulation is not possible at present, so computational simulations are forced to use models of subgrid-scale processes, the accuracy of which strongly impacts simulation fidelity. The development and validation of such subgrid-scale models requires data sets at representative conditions. The ideal measurement techniques would provide spatially and temporally resolved full-field measurements of the distributions of all phases, their velocity fields, and additional associated quantities such as pressure and temperature. No technique or set of techniques is known that satisfies this requirement. In this study, efforts are focused on characterizing the spatial distribution of the phases in two-phase gas-liquid flow and in three-phase gas-liquid-solid flow. Due to its industrial importance, the bubble-column geometry is selected for diagnostics development and assessment. Two bubble-column testbeds are utilized: one at laboratory scale and one close to industrial scale. Several techniques for measuring the phase distributions at conditions of industrial interest are examined: level-rise measurements, differential-pressure measurements, bulk electrical impedance measurements, electrical bubble probes, x-ray tomography, gamma-densitometry tomography, and electrical impedance tomography.

  14. Multiphase flow-enhanced corrosion mechanisms in horizontal pipelines

    SciTech Connect

    Jiang, L.; Gopal, M.

    1998-12-31

    Previous work has demonstrated the mechanism of enhanced corrosion in slug flow due to entrained pulses of bubbles. Corrosion rate measurements have been made at pressures up to 0.79 MPa, and temperatures up to 90 C and it has been shown that the effect of these pulses of bubbles increases with pressure and Froude number. This paper describes mass transfer measurements under multiphase slug and annular flows using the limiting current density technique. The experiments are carried out in a 10 cm diameter pipe using a 0.1 M potassium ferro-ferricyanide solution in 1.3 N sodium hydroxide for the liquid phase and nitrogen in the gas phase. Froude numbers of 4, 6 and 9 in slug flow have been studied, while gas velocities up to 10 m/s are investigated in annular flows. The results show instantaneous peaks in the mass transfer rates corresponding to the pulses of bubbles in slug flow. Instantaneous increases of 10--100 times the average values in single phase flow are seen. Peaks are also seen in instantaneous mass transfer rates in some annular flows.

  15. Multiple light scattering methods for multiphase flow diagnostics

    NASA Astrophysics Data System (ADS)

    Estevadeordal, Jordi

    2015-11-01

    Multiphase flows of gases and liquids containing droplets, bubbles, or particulates present light scattering imaging challenges due to the interference from each phase, such as secondary reflections, extinctions, absorptions, and refractions. These factors often prevent the unambiguous detection of each phase and also produce undesired beam steering. The effects can be especially complex in presence of dense phases, multispecies flows, and high pressure environments. This investigation reports new methods for overcoming these effects for quantitative measurements of velocity, density, and temperature fields. The methods are based on light scattering techniques combining Mie and filtered Rayleigh scattering and light extinction analyses and measurements. The optical layout is designed to perform multiple property measurements with improved signal from each phase via laser spectral and polarization characterization, etalon decontamination, and use of multiple wavelengths and imaging detectors.

  16. A new look at measurement uncertainty of multiphase flow meters

    SciTech Connect

    Kouba, G.E.

    1998-12-31

    At present no standard of presenting multiphase flow meter (MPFM) uncertainties has been accepted by industry. Consequently, vendors specifications may only indicate velocity and component fraction uncertainties, while customers will typically need to know the overall uncertainty of the hydrocarbon (gas or oil) flow rate. Moreover, comparisons between different meters, meter locations, and metering strategies are difficult without the combined uncertainties of the hydrocarbon measurement. A simple uncertainty analysis (UA) is presented as a means of combining individual measurement uncertainties to determine an overall uncertainty for a single component, e.g., oil rate. The results are displayed as contour lines of constant oil rate uncertainty on plots of gas fraction versus water cut. Examples illustrate how the uncertainty of oil rate measurement might be reduced by operating the meter at higher pressure, or employing partial separation strategies, and limitations of such strategies.

  17. Mixing and Demixing Processes in Multiphase Flows With Application to Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Decker, Rand (Editor); Schafer, Charles F. (Editor)

    1988-01-01

    A workshop on transport processes in multiphase flow was held at the Marshall Space Flight Center on February 25 and 26, 1988. The program, abstracts and text of the presentations at this workshop are presented. The objective of the workshop was to enhance our understanding of mass, momentum, and energy transport processes in laminar and turbulent multiphase shear flows in combustion and propulsion environments.

  18. Online recognition of the multiphase flow regime and study of slug flow in pipeline

    NASA Astrophysics Data System (ADS)

    Liejin, Guo; Bofeng, Bai; Liang, Zhao; Xin, Wang; Hanyang, Gu

    2009-02-01

    Multiphase flow is the phenomenon existing widely in nature, daily life, as well as petroleum and chemical engineering industrial fields. The interface structure among multiphase and their movement are complicated, which distribute random and heterogeneously in the spatial and temporal scales and have multivalue of the flow structure and state[1]. Flow regime is defined as the macro feature about the multiphase interface structure and its distribution, which is an important feature to describe multiphase flow. The energy and mass transport mechanism differ much for each flow regimes. It is necessary to solve the flow regime recognition to get a clear understanding of the physical phenomena and their mechanism of multiphase flow. And the flow regime is one of the main factors affecting the online measurement accuracy of phase fraction, flow rate and other phase parameters. Therefore, it is of great scientific and technological importance to develop new principles and methods of multiphase flow regime online recognition, and of great industrial background. In this paper, the key reasons that the present method cannot be used to solve the industrial multiphase flow pattern recognition are clarified firstly. Then the prerequisite to realize the online recognition of multiphase flow regime is analyzed, and the recognition rules for partial flow pattern are obtained based on the massive experimental data. The standard templates for every flow regime feature are calculated with self-organization cluster algorithm. The multi-sensor data fusion method is proposed to realize the online recognition of multiphase flow regime with the pressure and differential pressure signals, which overcomes the severe influence of fluid flow velocity and the oil fraction on the recognition. The online recognition method is tested in the practice, which has less than 10 percent measurement error. The method takes advantages of high confidence, good fault tolerance and less requirement of

  19. Multi-phase multi-component reactive flow in Geodynamics

    NASA Astrophysics Data System (ADS)

    Oliveira, Beñat; Afonso, Juan Carlos; Zlotnik, Sergio

    2016-04-01

    Multi-phase multi-component reactive flow (MPMCRF) controls a number of important complex geodynamic/geochemical problems, such as melt generation and percolation, metasomatism, rheological weakening, magmatic differentiation, ore emplacement, and fractionation of chemical elements, to name a few. These interacting processes occur over very different spatial and temporal scales and under very different physico-chemical conditions. Therefore, there is a strong motivation in geodynamics for investigating the equations governing MPMCRF, their mathematical structure and properties, and the numerical techniques necessary to obtain reliable and accurate results. In this contribution we present results from a novel numerical framework to solve multiscale MPMCRF problems in geodynamic contexts. Our approach is based on the effective tracking of the most basic building blocks: internal energy and chemical composition. This is achieved through the combination of rigorous solutions to the conservation equations (mass, energy and momentum) for each dynamic phase (instead of the more common "mixture-type" approach) and the transport equation for the chemical species, within the context of classical irreversible thermodynamics. Interfacial processes such as phase changes, chemical diffusion+reaction, and surface tension effects are explicitly incorporated in the context of ensemble averaging. Phase assemblages, mineral and melt compositions, and all other physical parameters of multi-phase systems are obtained through dynamic free-energy minimization procedures.

  20. Multicomponent, multiphase flow in porous media with temperature variation

    SciTech Connect

    Wingard, J.S.; Orr, F.M. Jr.

    1990-10-01

    Recovery of hydrocarbons from porous media is an ongoing concern. Advanced techniques augment conventional recovery methods by injecting fluids that favorably interact with the oil. These fluids interact with the oil by energy transfer, in the case of steam injection, or by mass transfer, as in a miscible gas flood. Often both thermal and compositional considerations are important. An understanding of these injection methods requires knowledge of how temperature variations, phase equilibrium and multiphase flow in porous media interact. The material balance for each component and energy balance are cast as a system of non-strictly hyperbolic partial differential equations. This system of equations is solved using the method of characteristics. The model takes into account the phase behavior by using the Peng-Robinson equation of state to partition the individual components into different phases. Temperature effects are accounted for by the energy balance. Flow effects are modelled by using fractional flow curves and a Stone's three phase relative permeability model. Three problems are discussed. The first problem eliminates the phase behavior aspect of the problem by studying the flow of a single component as it undergoes an isothermal phase change. The second couples the effects of temperature and flow behavior by including a second component that is immiscible with the original component. Phase behavior is added by using a set of three partially miscible components that partition into two or three separate phases. 66 refs., 54 figs., 14 tabs.

  1. Thermodynamic framework for discrete optimal control in multiphase flow systems

    NASA Astrophysics Data System (ADS)

    Sieniutycz, Stanislaw

    1999-08-01

    Bellman's method of dynamic programming is used to synthesize diverse optimization approaches to active (work producing) and inactive (entropy generating) multiphase flow systems. Thermal machines, optimally controlled unit operations, nonlinear heat conduction, spontaneous relaxation processes, and self-propagating wave fronts are all shown to satisfy a discrete Hamilton-Jacobi-Bellman equation and a corresponding discrete optimization algorithm of Pontryagin's type, with the maximum principle for a Hamiltonian. The extremal structures are always canonical. A common unifying criterion is set for all considered systems, which is the criterion of a minimum generated entropy. It is shown that constraints can modify the entropy functionals in a different way for each group of the processes considered; thus the resulting structures of these functionals may differ significantly. Practical conclusions are formulated regarding the energy savings and energy policy in optimally controlled systems.

  2. PArallel Reacting Multiphase FLOw Computational Fluid Dynamic Analysis

    2002-06-01

    PARMFLO is a parallel multiphase reacting flow computational fluid dynamics (CFD) code. It can perform steady or unsteady simulations in three space dimensions. It is intended for use in engineering CFD analysis of industrial flow system components. Its parallel processing capabilities allow it to be applied to problems that use at least an order of magnitude more computational cells than the number that can be used on a typical single processor workstation (about 106 cellsmore » in parallel processing mode versus about io cells in serial processing mode). Alternately, by spreading the work of a CFD problem that could be run on a single workstation over a group of computers on a network, it can bring the runtime down by an order of magnitude or more (typically from many days to less than one day). The software was implemented using the industry standard Message-Passing Interface (MPI) and domain decomposition in one spatial direction. The phases of a flow problem may include an ideal gas mixture with an arbitrary number of chemical species, and dispersed droplet and particle phases. Regions of porous media may also be included within the domain. The porous media may be packed beds, foams, or monolith catalyst supports. With these features, the code is especially suited to analysis of mixing of reactants in the inlet chamber of catalytic reactors coupled to computation of product yields that result from the flow of the mixture through the catalyst coaled support structure.« less

  3. Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Sankovic, John; Lekan, Jack

    2006-01-01

    The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.

  4. Towards a Modern Theory of Multiphase Filtration Flow

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W. (Technical Monitor)

    1994-01-01

    An alternative theoretical model of joint filtration flow of immiscible incompressible fluids is presented. The model takes into account relaxation processes due to the interchange of the fluids between pores of difference sizes which is driven by capillary forces. The fluids occupy connected regions in a four-dimensional space formed by three coordinates and the pore length scale. When the fluid exchange between pores of given sizes is effected by way of successive flow through pores of all the intermediate sizes, the pressure within each region is governed by a hyperbolic equation, the role of time being played by the pore linear scale. Pressure jumps across hypersurfaces separating the regions equal corresponding values of the capillary pressure. A supplementary condition at any such hypersurface requires the speed of its displacement in the four-dimensional space to coincide with the normal velocity components of both the adjoining fluids. As a result, a principally new statement of multiphase filtration flow problems is gained with allowance for capillary relaxation in the porous space.

  5. Multiphase ferrofluid flows for micro-particle focusing and separation.

    PubMed

    Zhou, Ran; Wang, Cheng

    2016-05-01

    Ferrofluids have demonstrated great potential for a variety of manipulations of diamagnetic (or non-magnetic) micro-particles/cells in microfluidics, including sorting, focusing, and enriching. By utilizing size dependent magnetophoresis velocity, most of the existing techniques employ single phase ferrofluids to push the particles towards the channel walls. In this work, we demonstrate a novel strategy for focusing and separating diamagnetic micro-particles by using the laminar fluid interface of two co-flowing fluids-a ferrofluid and a non-magnetic fluid. Next to the microfluidic channel, microscale magnets are fabricated to generate strong localized magnetic field gradients and forces. Due to the magnetic force, diamagnetic particles suspended in the ferrofluid phase migrate across the ferrofluid stream at the size-dependent velocities. Because of the low Reynolds number and high Péclet number associated with the flow, the fluid interface is sharp and stable. When the micro-particles migrate to the interface, they are accumulated near the interface, resulting in effective focusing and separation of particles. We investigated several factors that affect the focusing and separation efficiency, including susceptibility of the ferrofluid, distance between the microfluidic channel and microscale magnet, and width of the microfluidic channel. This concept can be extended to multiple fluid interfaces. For example, a complete separation of micro-particles was demonstrated by using a three-stream multiphase flow configuration. PMID:27190567

  6. Rheological flow laws for multiphase magmas: An empirical approach

    NASA Astrophysics Data System (ADS)

    Pistone, Mattia; Cordonnier, Benoît; Ulmer, Peter; Caricchi, Luca

    2016-07-01

    The physical properties of magmas play a fundamental role in controlling the eruptive dynamics of volcanoes. Magmas are multiphase mixtures of crystals and gas bubbles suspended in a silicate melt and, to date, no flow laws describe their rheological behaviour. In this study we present a set of equations quantifying the flow of high-viscosity (> 105 Pa·s) silica-rich multiphase magmas, containing both crystals (24-65 vol.%) and gas bubbles (9-12 vol.%). Flow laws were obtained using deformation experiments performed at high temperature (673-1023 K) and pressure (200-250 MPa) over a range of strain-rates (5 · 10- 6 s- 1 to 4 · 10- 3 s- 1), conditions that are relevant for volcanic conduit processes of silica-rich systems ranging from crystal-rich lava domes to crystal-poor obsidian flows. We propose flow laws in which stress exponent, activation energy, and pre-exponential factor depend on a parameter that includes the volume fraction of weak phases (i.e. melt and gas bubbles) present in the magma. The bubble volume fraction has opposing effects depending on the relative crystal volume fraction: at low crystallinity bubble deformation generates gas connectivity and permeability pathways, whereas at high crystallinity bubbles do not connect and act as "lubricant" objects during strain localisation within shear bands. We show that such difference in the evolution of texture is mainly controlled by the strain-rate (i.e. the local stress within shear bands) at which the experiments are performed, and affect the empirical parameters used for the flow laws. At low crystallinity (< 44 vol.%) we observe an increase of viscosity with increasing strain-rate, while at high crystallinity (> 44 vol.%) the viscosity decreases with increasing strain-rate. Because these behaviours are also associated with modifications of sample textures during the experiment and, thus, are not purely the result of different deformation rates, we refer to "apparent shear-thickening" and

  7. Laser velocimeter measurements of multiphase flow of solids

    SciTech Connect

    Kadambi, J.R.; Chen, R.C.; Bhunia, S.

    1989-01-01

    A unique refractive index matched facility for studying solid-liquid multiphase flow has been developed. The refractive index matching of the solid and the liquid allows the use of non-intrusive Laser Doppler Velocimetry (LDV) to measure the solid and the liquid velocities. These measurements will be useful in developing a better understanding of solid-liquid flows, especially solid-liquid and solid-solid interactions. Silica gel and 50% sodium iodide solution in water (refractive index {approx}1.443) are used as the refractive index matched solid and liquid respectively. A two color back scatter mode LDV is used for making velocity measurements. Tests were conducted in solid-liquid slurries with volumetric solid concentration levels of 5% and 15% in the Reynolds number (Re) range of 400 to 9200. Silica gel particles of mean diameter 40 microns were used. Measurements included mapping of the solid and liquid velocities and obtaining the pressure drop data. Signal processing technique utilizing histogram of velocity measurements made at a point and signal amplitude discrimination was successfully used for differentiating between solid and liquid velocities. 34 refs., 61 figs., 5 tabs.

  8. Finite-Element Analysis of Multiphase Immiscible Flow Through Soils

    NASA Astrophysics Data System (ADS)

    Kuppusamy, T.; Sheng, J.; Parker, J. C.; Lenhard, R. J.

    1987-04-01

    A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equations governing flow in a three-fluid phase porous medium system with constant air phase pressure. Constitutive relationships for fluid conductivities and saturations as functions of fluid pressures, which are derived in a companion paper by J. C. Parker et al. (this issue) and which may be calibrated from two-phase laboratory measurements, are employed in the finite-element program. The solution procedure uses backward time integration with iteration by a modified Picard method to handle the nonlinear properties. Laboratory experiments involving water displacement from soil columns by p cymene (a benzene-derivative hydrocarbon) under constant pressure were simulated by the finite-element program to validate the numerical model and formulation for constitutive properties. Transient water outflow predicted using independently measured saturation-capillary head data agreed with observed outflow data within the limits of precision of the predictions as estimated by a first-order Taylor series approximation considering parameter uncertainty due to experimental reproducability and constitutive model accuracy. Two-dimensional simulations are presented for a hypothetical field case involving introduction of NAPL near the soil surface due to leakage from an underground storage tank. Subsequent transport of NAPL in the variably saturated vadose and groundwater zones is analyzed.

  9. Investigation of hydrate formation and transportability in multiphase flow systems

    NASA Astrophysics Data System (ADS)

    Grasso, Giovanny A.

    The oil and gas industry is moving towards offshore developments in more challenging environments, where evaluating hydrate plugging risks to avoid operational/safety hazards becomes more difficult (Sloan, 2005). Even though mechanistic models for hydrate plug formation have been developed, components for a full comprehensive model are still missing. Prior to this work, research efforts were focused on flowing hydrate particles with relatively little research on hydrate accumulation, leaving hydrate deposition in multiphase flow an unexplored subject. The focus of this thesis was to better understand hydrate deposition as a form of accumu- lation in pipelines. To incorporate the multiphase flow effect, hydrate formation experiments were carried out at varying water cut (WC) from 15 to 100 vol.%, liquid loading (LL) from 50 to 85 vol.%, mixture velocity (vmix) from 0.75 to 3 m/s, for three fluids systems (100 % WC, water in Conroe crude oil emulsions and King Ranch condensate + water) on the ExxonMobil flowloop (4 in. nominal size and 314 ft. long) at Friendswood, TX. For the 100 % WC flowloop tests, hydrate particle distribution transitions beyond a critical hydrate volume concentration, observed values were between 8.2 to 29.4 vol.%, causing a sudden increase in pressure drop (DP). A revised correlation of the transition as a function of Reynolds number and liquid loading was developed. For Conroe emulsions, DP starts increasing at higher hydrate concentrations than King Ranch condensate, many times at 10 vol.%. Experiments with King Ranch show higher relative DP (10 to 25) than Conroe (2 to 10) performed at the same vmix and LL. Cohesive force measurements between cyclopentane hydrate particles were reduced from a value of 3.32 mN/m to 1.26 mN/m when 6 wt.% Conroe was used and to 0.41 mN/m when 5 wt.% Caratinga crude oil was used; similar values were obtained when extracted asphaltenes were used. King Ranch condensate (11 wt.%) did not significantly change the

  10. Investigation of hydrate formation and transportability in multiphase flow systems

    NASA Astrophysics Data System (ADS)

    Grasso, Giovanny A.

    The oil and gas industry is moving towards offshore developments in more challenging environments, where evaluating hydrate plugging risks to avoid operational/safety hazards becomes more difficult (Sloan, 2005). Even though mechanistic models for hydrate plug formation have been developed, components for a full comprehensive model are still missing. Prior to this work, research efforts were focused on flowing hydrate particles with relatively little research on hydrate accumulation, leaving hydrate deposition in multiphase flow an unexplored subject. The focus of this thesis was to better understand hydrate deposition as a form of accumu- lation in pipelines. To incorporate the multiphase flow effect, hydrate formation experiments were carried out at varying water cut (WC) from 15 to 100 vol.%, liquid loading (LL) from 50 to 85 vol.%, mixture velocity (vmix) from 0.75 to 3 m/s, for three fluids systems (100 % WC, water in Conroe crude oil emulsions and King Ranch condensate + water) on the ExxonMobil flowloop (4 in. nominal size and 314 ft. long) at Friendswood, TX. For the 100 % WC flowloop tests, hydrate particle distribution transitions beyond a critical hydrate volume concentration, observed values were between 8.2 to 29.4 vol.%, causing a sudden increase in pressure drop (DP). A revised correlation of the transition as a function of Reynolds number and liquid loading was developed. For Conroe emulsions, DP starts increasing at higher hydrate concentrations than King Ranch condensate, many times at 10 vol.%. Experiments with King Ranch show higher relative DP (10 to 25) than Conroe (2 to 10) performed at the same vmix and LL. Cohesive force measurements between cyclopentane hydrate particles were reduced from a value of 3.32 mN/m to 1.26 mN/m when 6 wt.% Conroe was used and to 0.41 mN/m when 5 wt.% Caratinga crude oil was used; similar values were obtained when extracted asphaltenes were used. King Ranch condensate (11 wt.%) did not significantly change the

  11. Computational modeling of multiphase flow and transport with Python

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Farthing, M. W.; Hines, A. M.; Howington, S. E.

    2008-12-01

    Computational flow and transport models play an important role in many hydrological investigations. Unfortunately, developing simulators that are efficient, widely applicable, and robust is a challenge. This is particularly true if the target applications include complications like multiple fluid phases with multiple components and material heterogeneity. To be specific, these problems often involve physical phenomena at multiple spatial and temporal scales. The appropriate formulation may evolve, and the systems of partial differential equations (PDEs) that arise from traditional formulations can be hard to solve efficiently at the desired resolution. Here, we discuss the development of a Python-based modeling framework for finite element approximation of systems of nonlinear PDEs with an emphasis on multiphase, multicomponent systems relevant for surface and subsurface hydrology. In addition to the overall approach and application, we consider the role of Python in managing code complexity, providing user interfaces, developing solution algorithms, and implementing numerical methods for execution on serial and parallel platforms. We evaluate trade-offs and design choices that follow from our use of Python versus other languages like C++ or Fortran and consider the impact on performance measured in terms of metrics like memory usage, execution time, and developer time.

  12. Multiphase flow modeling based on the hyperbolic thermodynamically compatible systems theory

    SciTech Connect

    Romenski, E.

    2015-03-10

    An application of the theory of thermodynamically compatible hyperbolic systems to design a multiphase compressible flow models is discussed. With the use of such approach the governing equations are derived from the first principles, formulated in a divergent form and can be transformed to a symmetric hyperbolic system in the sense of Friedrichs. A usage of the proposed approach is described for the development of multiphase compressible fluid models, including two-phase flow models.

  13. Constitutive Relationships and Models in Continuum Theories of Multiphase Flows. [conferences

    NASA Technical Reports Server (NTRS)

    Decker, Rand (Editor)

    1989-01-01

    In April, 1989, a workshop on constitutive relationships and models in continuum theories of multiphase flows was held at NASA's Marshall Space Flight Center. Topics of constitutive relationships for the partial or per phase stresses, including the concept of solid phase pressure are discussed. Models used for the exchange of mass, momentum, and energy between the phases in a multiphase flow are also discussed. The program, abstracts, and texts of the presentations from the workshop are included.

  14. Pattern recognition techniques for horizontal and vertically upward multiphase flow measurement

    NASA Astrophysics Data System (ADS)

    Arubi, Tesi I. M.; Yeung, Hoi

    2012-03-01

    The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves that has led oil companies to develop smaller and marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective solutions of on-line continuous multiphase flow measurement for well testing, production monitoring, production optimisation, process control and automation. The pattern recognition approach for clamp-on multiphase measurement employed in this study provides one means for meeting this need. High speed caesium-137 radioisotope-based densitometers were installed vertically at the top of a 50.8mm and 101.6mm riser as well as horizontally at the riser base in the Cranfield University multiphase flow test facility. A comprehensive experimental campaign comprising flow conditions typical of operating conditions found in the Petroleum Industry was conducted. The application of a single gamma densitometer unit, in conjunction with pattern recognition techniques to determine both the phase volume fractions and velocities to yield the individual phase flow rates of horizontal and vertically upward multiphase flows was investigated. The pattern recognition systems were trained to map the temporal fluctuations in the multiphase mixture density with the individual phase flow rates using statistical features extracted from the gamma counts signals as their inputs. Initial results yielded individual phase flow rate predictions to within ±5% relative error for the two phase airwater flows and ±10% for three phase air-oil-water flows data.

  15. PREFACE: The 6th International Symposium on Measurement Techniques for Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji; Murai, Yuichi

    2009-02-01

    Research on multi-phase flows is very important for industrial applications, including power stations, vehicles, engines, food processing, and so on. Also, from the environmental viewpoint, multi-phase flows need to be investigated to overcome global warming. Multi-phase flows originally have non-linear features because they are multi-phased. The interaction between the phases plays a very interesting role in the flows. The non-linear interaction causes the multi-phase flows to be very difficult to understand phenomena. The International Symposium on Measurement Techniques for Multi-phase Flows (ISMTMF) is a unique symposium. The target of the symposium is to exchange the state-of-the-art knowledge on the measurement techniques for non-linear multi-phase flows. Measurement technique is the key technology to understanding non-linear phenomena. The ISMTMF began in 1995 in Nanjing, China. The symposium has continuously been held every two or three years. The ISMTMF-2008 was held in Okinawa, Japan as the 6th symposium of ISMTMF on 15-17 December 2008. Okinawa has a long history as the Ryukyus Kingdom. China and Japan have had cultural and economic exchanges through Okinawa for more than 1000 years. Please enjoy Okinawa and experience its history to enhance our international communication. The present symposium was attended by 124 participants, the program included 107 contributions with 5 plenary lectures, 2 keynote lectures, and 100 oral regular paper presentations. The topics include, besides the ordinary measurement techniques for multiphase flows, acoustic and electric sensors, bubbles and microbubbles, computed tomography, gas-liquid interface, laser-imaging and PIV, oil/coal/drop and spray, solid and powder, spectral and multi-physics. This volume includes the presented papers at ISMTMF-2008. In addition to this volume, ten selected papers will be published in a special issue of Measurement Science and Technology. We would like to express special thanks to all

  16. Preliminary flashing multiphase flow analysis with application to letdown valves in coal-conversion processes

    SciTech Connect

    Ott, L. J.; Khan, A. A.

    1982-09-01

    As part of the Oak Ridge National Laboratory's technical support to large coal liquefaction projects, attempts have been made to (1) develop the methodology for characterizing and predicting multicomponent, multiphase, non-Newtonian flow behavior within letdown valves and devices, and (2) analyze the fluid flow in the entire letdown region of the process. An engineering model that can be used in the analysis of multicomponent, multiphase, flashing, flowing systems has been developed. A preliminary version of a user-oriented computer code for this model has been developed and is fully described.

  17. Comparison of Frameworks for Next Generation Multiphase Flow Solver, MFIX: A Group Decision-Making Exercise

    SciTech Connect

    Gel, Aytekin; Pannala, Sreekanth; Syamlal, M; O'Brien, T. J.; Gel, Esma

    2007-01-01

    Computational Fluid Dynamics (CFD) simulations have emerged as a powerful tool for understanding multiphase flows that occur in a wide range of engineering applications and natural processes. A multiphase CFD code called MFIX has been under development at the National Energy Technology Laboratory (NETL) since the 1980s for modeling multiphase flows that occur in fossil fuel reactors. CFD codes such as MFIX are equipped with a number of numerical algorithms to solve a large set of coupled partial differential equations over three-dimensional grids consisting of hundreds of thousands of cells on parallel computers. Currently, the next generation version of MFIX is under development with the goal of building a multiphase problem solving environment (PSE) that would facilitate the simple reuse of modern software components by application scientists. Several open-source frameworks were evaluated to identify the best-suited framework for the multiphase PSE. There are many requirements for the multiphase PSE, and each of these open-source frameworks offers functionalities that satisfy the requirements to varying extents. Therefore, matching the requirements and the functionalities is not a simple task and requires a systematic and quantitative decision making procedure. We present a multi-criteria decision making approach to determining a major system design decision, and demonstrate its application on the framework selection problem.

  18. Multiphase flow, deformation and wave propagation in porous media

    NASA Astrophysics Data System (ADS)

    Pazdniakou, A.; Adler, P. M.

    2010-12-01

    Our goals are to determine some of the most important macroscopic properties of porous media whether they are dry or saturated by one or two fluids such as permeabilities, solid deformations and acoustic velocities. Therefore, one needs to calculate fluid flow through the pores and the deformation of the solid matrix. Single and multiphase flows are determined by Lattice Boltzmann Models (LBM) where fluid motion is described in terms of a discretized particle distribution function which obeys a Lattice Boltzmann Equation equivalent to the Navier-Stokes equations at the macroscopic level. Complex boundary conditions can be easily treated by LBM which makes it convenient for flow simulations in porous media. Applications to the determination of the absolute permeability and of the relative permeabilities in complex media are given as well as examples of transient phenomena. Elastic deformations of the solid matrix whether they are static or time dependent can be determined by Lattice Spring Models (LSM). The solid matrix is represented by a regular cubic lattice whose points are connected by springs which are either linear (between the lattice points) or angular (between the linear springs). The spring set is selected in order to obtain an equivalent isotropic solid. The elastic properties of the medium can be calculated from the elastic energy stored in the elementary cell. A mass can be assigned to the lattice points. Applications to the determination of the macroscopic Young modulus and Poisson ratio of porous solids are given as well as direct simulations of wave propagation through dry porous solids. In order to study wave propagation in porous media containing one or two fluids, the LBM and LSM codes are coupled by using a momentum exchange algorithm which equates the velocities and the normal stresses at the solid-fluid interface. Then, two different methods can be used to study wave propagation. In the first direct method, a pressure variation is induced at a

  19. Numerical Simulation of the Multiphase Flow in the Rheinsahl-Heraeus (RH) System

    NASA Astrophysics Data System (ADS)

    Geng, Dian-Qiao; Lei, Hong; He, Ji-Cheng

    2010-02-01

    Knowledge of gas-liquid multiphase flow behavior in the Rheinsahl-Heraeus (RH) system is of great significance to clarify the circulation flow rate, decarburization, and inclusion removal with a reliable description. Thus, based on the separate model of injecting gas behavior, a novel mathematical model of multiphase flow has been developed to give the distribution of gas holdup in the RH system. The numerical results show that the predicted circulation flow rates, the predicted flow velocities, and the predicted mixing times agree with the measured results in a water model and that the predicted tracer concentration curve agrees with the results obtained in an actual RH system. With a lower lifting gas flow rate, the rising gas bubbles are concentrated near the wall; with a higher lifting gas flow rate, gas bubbles can reach the center of the up-snorkel. A critical lifting gas flow rate is used to obtain the maximum circulation flow rate.

  20. Simulations of Multiphase Flow in a T-junction and Distributor Header

    NASA Astrophysics Data System (ADS)

    Horwitz, Jeremy; Kumar, Purushotam; Vanka, Pratap

    2012-11-01

    Multiphase flow is widely encountered in industrial applications including air conditioning and refrigeration systems. In this study, we simulate multiphase flow in complex micro-channels using two approaches: a multiphase Lattice Boltzmann Method (LBM) and a finite volume Volume of Fluid (VOF) method. In LBM, fluids are represented on a mesoscopic scale by particle distribution functions which evolve via a discretized Boltzmann equation. Macroscopic flow variables such as density and velocity are related to the moments of the distribution functions. In contrast, VOF calculates flow variables via three coupled equations: the continuity equation, the Navier-Stokes equation, and the volume-fraction transport equation which tracks the interface between disparate phases. An emphasis is placed on comparison of these schemes to determine their respective advantages in calculation of multiphase flow for these geometries. The principle geometries are a T-junction and multi-branch distributor header. We study bubble-laden flow and immiscible liquid-liquid flow and explore the effect of Reynolds number, buoyancy, and density ratio on the flow physics. Simulation results are compared with experiments. Air Conditioning and Refrigeration Center, The University of Illinois at Urbana-Champaign.

  1. Using a multiphase flow code to model the coupled effects of repository consolidation and multiphase brine and gas flow at the Waste Isolation Pilot Plant

    SciTech Connect

    Freeze, G.A.; Larson, K.W.; Davies, P.B.; Webb, S.W.

    1995-10-01

    Long-term repository assessment must consider the processes of (1) gas generation, (2) room closure and expansions due to salt creep, and (3) multiphase (brine and gas) fluid flow, as well as the complex coupling between these three processes. The mechanical creep closure code SANCHO was used to simulate the closure of a single, perfectly sealed disposal room filled with water and backfill. SANCHO uses constitutive models to describe salt creep, waste consolidation, and backfill consolidation, Five different gas-generation rate histories were simulated, differentiated by a rate multiplier, f, which ranged from 0.0 (no gas generation) to 1.0 (expected gas generation under brine-dominated conditions). The results of the SANCHO f-series simulations provide a relationship between gas generation, room closure, and room pressure for a perfectly sealed room. Several methods for coupling this relationship with multiphase fluid flow into and out of a room were examined. Two of the methods are described.

  2. Progress in the Development of Compressible, Multiphase Flow Modeling Capability for Nuclear Reactor Flow Applications

    SciTech Connect

    R. A. Berry; R. Saurel; F. Petitpas; E. Daniel; O. Le Metayer; S. Gavrilyuk; N. Dovetta

    2008-10-01

    In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. Within the context of multiphase flows, two bubble-dynamic phenomena – boiling (heterogeneous) and flashing or cavitation (homogeneous boiling), with bubble collapse, are technologically very important to nuclear reactor systems. The main difference between boiling and flashing is that bubble growth (and collapse) in boiling is inhibited by limitations on the heat transfer at the interface, whereas bubble growth (and collapse) in flashing is limited primarily by inertial effects in the surrounding liquid. The flashing process tends to be far more explosive (and implosive), and is more violent and damaging (at least in the near term) than the bubble dynamics of boiling. However, other problematic phenomena, such as crud deposition, appear to be intimately connecting with the boiling process. In reality, these two processes share many details.

  3. Local volume-time averaged equations of motion for dispersed, turbulent, multiphase flows

    SciTech Connect

    Sha, W.T.; Slattery, J.C.

    1980-11-01

    In most flows of liquids and their vapors, the phases are dispersed randomly in both space and time. These dispersed flows can be described only statistically or in terms of averages. Local volume-time averaging is used here to derive a self-consistent set of equations governing momentum and energy transfer in dispersed, turbulent, multiphase flows. The empiricisms required for use with these equations are the subject of current research.

  4. Characterization of non-Darcy multiphase flow in petroleum bearing formations. Annual status report, May 14, 1991--May 13, 1992

    SciTech Connect

    Evans, R.D.; Civan, F.

    1992-12-31

    The objectives of this research are: Develop a proper theoretical model for characterizing non-Darcy multi-phase flow in petroleum bearing formations. Develop an experimental technique for measuring non-Darcy flow coefficients under multiphase flow at insitu reservoir conditions. Develop dimensional consistent correlations to express the non-Darcy flow coefficient as a function of rock and fluid properties for consolidated and unconsolidated porous media. The research accomplished during the period May 1991--May 1992 focused upon theoretical and experimental studies of multiphase non-Darcy flow in porous media.

  5. An Approach for Modeling Rock Discontinuous Mechanical Behavior Under Multiphase Fluid Flow Conditions

    NASA Astrophysics Data System (ADS)

    Pan, Peng-Zhi; Rutqvist, Jonny; Feng, Xia-Ting; Yan, Fei

    2014-03-01

    In this paper, the two computer codes TOUGH2 and RDCA (for "rock discontinuous cellular automaton") are integrated for coupled hydromechanical analysis of multiphase fluid flow and discontinuous mechanical behavior in heterogeneous rock. TOUGH2 is a well-established code for geohydrological analysis involving multiphase, multicomponent fluid flow and heat transport; RDCA is a numerical model developed for simulating the nonlinear and discontinuous geomechanical behavior of rock. The RDCA incorporates the discontinuity of a fracture independently of the mesh, such that the fracture can be arbitrarily located within an element, while the fluid pressure calculated by TOUGH2 can be conveniently applied to fracture surfaces. We verify and demonstrate the coupled TOUGH-RDCA simulator by modeling a number of simulation examples related to coupled multiphase flow and geomechanical processes associated with the deep geological storage of carbon dioxide—including modeling of ground surface uplift, stress-dependent permeability, and the coupled multiphase flow and geomechanical behavior of fractures intersecting the caprock.

  6. Multiphase flow and phase change in microgravity: Fundamental research and strategic research for exploration of space

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    2003-01-01

    NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel

  7. Some Specific CASL Requirements for Advanced Multiphase Flow Simulation of Light Water Reactors

    SciTech Connect

    R. A. Berry

    2010-11-01

    Because of the diversity of physical phenomena occuring in boiling, flashing, and bubble collapse, and of the length and time scales of LWR systems, it is imperative that the models have the following features: • Both vapor and liquid phases (and noncondensible phases, if present) must be treated as compressible. • Models must be mathematically and numerically well-posed. • The models methodology must be multi-scale. A fundamental derivation of the multiphase governing equation system, that should be used as a basis for advanced multiphase modeling in LWR coolant systems, is given in the Appendix using the ensemble averaging method. The remainder of this work focuses specifically on the compressible, well-posed, and multi-scale requirements of advanced simulation methods for these LWR coolant systems, because without these are the most fundamental aspects, without which widespread advancement cannot be claimed. Because of the expense of developing multiple special-purpose codes and the inherent inability to couple information from the multiple, separate length- and time-scales, efforts within CASL should be focused toward development of a multi-scale approaches to solve those multiphase flow problems relevant to LWR design and safety analysis. Efforts should be aimed at developing well-designed unified physical/mathematical and high-resolution numerical models for compressible, all-speed multiphase flows spanning: (1) Well-posed general mixture level (true multiphase) models for fast transient situations and safety analysis, (2) DNS (Direct Numerical Simulation)-like models to resolve interface level phenmena like flashing and boiling flows, and critical heat flux determination (necessarily including conjugate heat transfer), and (3) Multi-scale methods to resolve both (1) and (2) automatically, depending upon specified mesh resolution, and to couple different flow models (single-phase, multiphase with several velocities and pressures, multiphase with single

  8. Modelling of fluid-structure interaction with multiphase viscous flows using an immersed-body method

    NASA Astrophysics Data System (ADS)

    Yang, P.; Xiang, J.; Fang, F.; Pavlidis, D.; Latham, J.-P.; Pain, C. C.

    2016-09-01

    An immersed-body method is developed here to model fluid-structure interaction for multiphase viscous flows. It does this by coupling a finite element multiphase fluid model and a combined finite-discrete element solid model. A coupling term containing the fluid stresses is introduced within a thin shell mesh surrounding the solid surface. The thin shell mesh acts as a numerical delta function in order to help apply the solid-fluid boundary conditions. When used with an advanced interface capturing method, the immersed-body method has the capability to solve problems with fluid-solid interfaces in the presence of multiphase fluid-fluid interfaces. Importantly, the solid-fluid coupling terms are treated implicitly to enable larger time steps to be used. This two-way coupling method has been validated by three numerical test cases: a free falling cylinder in a fluid at rest, elastic membrane and a collapsing column of water moving an initially stationary solid square. A fourth simulation example is of a water-air interface with a floating solid square being moved around by complex hydrodynamic flows including wave breaking. The results show that the immersed-body method is an effective approach for two-way solid-fluid coupling in multiphase viscous flows.

  9. Experimental and computational analysis of pressure response in a multiphase flow loop

    NASA Astrophysics Data System (ADS)

    Morshed, Munzarin; Amin, Al; Rahman, Mohammad Azizur; Imtiaz, Syed

    2016-07-01

    The characteristics of multiphase fluid flow in pipes are useful to understand fluid mechanics encountered in the oil and gas industries. In the present day oil and gas exploration is successively inducing subsea operation in the deep sea and arctic condition. During the transport of petroleum products, understanding the fluid dynamics inside the pipe network is important for flow assurance. In this case the information regarding static and dynamic pressure response, pressure loss, optimum flow rate, pipe diameter etc. are the important parameter for flow assurance. The principal aim of this research is to represents computational analysis and experimental analysis of multi-phase (L/G) in a pipe network. This computational study considers a two-phase fluid flow through a horizontal flow loop with at different Reynolds number in order to determine the pressure distribution, frictional pressure loss profiles by volume of fluid (VOF) method. However, numerical simulations are validated with the experimental data. The experiment is conducted in 76.20 mm ID transparent circular pipe using water and air in the flow loop. Static pressure transducers are used to measure local pressure response in multiphase pipeline.

  10. Unsteady immiscible multiphase flow validation of a multiple-relaxation-time lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Leclaire, S.; Pellerin, N.; Reggio, M.; Trépanier, J.-Y.

    2014-03-01

    The lattice Boltzmann modeling of immiscible multiphase flows needs to be further validated, especially when density variation occurs between the different flow phases. From this perspective, the goal of this research is to introduce the multiple-relaxation-time operator into a lattice Boltzmann model in order to improve its numerical stability in the presence of large density and viscosity ratios. Essentially, this research shows that the introduction of this operator greatly improves the numerical stability of the approach compared to the original single-relaxation-time collision operator. In many lattice Boltzmann research studies, multiphase lattice Boltzmann methods are validated using a reduced number of test cases, and unsteady flow test cases are frequently omitted before much more complex flow configurations are simulated. In this context, several test cases are proposed to evaluate the behavior of a lattice Boltzmann method for simulating immiscible multiphase flows with high density and viscosity ratios. These are: (1) two-phase Couette flow; (2) three-phase Laplace law; (3) three-phase Zalesak disk; (4) two-phase flow between oscillating plates; (5) two-phase capillary wave; and (6) the two-phase oscillating cylindrical bubble. The first two involve a steady regime, and the remaining four an unsteady regime.

  11. Optical diagnostics for turbulent and multiphase flows: Particle image velocimetry and photorefractive optics

    SciTech Connect

    O`Hern, T.J.; Torczynski, J.R.; Shagam, R.N.; Blanchat, T.K.; Chu, T.Y.; Tassin-Leger, A.L.; Henderson, J.A.

    1997-01-01

    This report summarizes the work performed under the Sandia Laboratory Directed Research and Development (LDRD) project ``Optical Diagnostics for Turbulent and Multiphase Flows.`` Advanced optical diagnostics have been investigated and developed for flow field measurements, including capabilities for measurement in turbulent, multiphase, and heated flows. Particle Image Velocimetry (PIV) includes several techniques for measurement of instantaneous flow field velocities and associated turbulence quantities. Nonlinear photorefractive optical materials have been investigated for the possibility of measuring turbulence quantities (turbulent spectrum) more directly. The two-dimensional PIV techniques developed under this LDRD were shown to work well, and were compared with more traditional laser Doppler velocimetry (LDV). Three-dimensional PIV techniques were developed and tested, but due to several experimental difficulties were not as successful. The photorefractive techniques were tested, and both potential capabilities and possible problem areas were elucidated.

  12. Preface: Recent Advances in Modeling Multiphase Flow and Transportwith the TOUGH Family of Codes

    SciTech Connect

    Liu, Hui-Hai; Illangasekare, Tissa H.

    2007-11-15

    A symposium on research carried out using the TOUGH family of numerical codes was held from May 15 to 17, 2006, at the Lawrence Berkeley National Laboratory. This special issue of the 'Vadose Zone Journal' contains revised and expanded versions of a selected set of papers presented at this symposium (TOUGH Symposium 2006; http://esd.lbl.gov/TOUGHsymposium), all of which focus on multiphase flow, including flow in the vadose zone.

  13. Comparison of ECN and EIS measurement for corrosion monitoring under multiphase flow conditions

    SciTech Connect

    Chen, Y.; Gopal, M.; Jepson, W.P.

    1997-12-01

    Electrochemical Noise (ECN) and Electrochemical Impedance Spectroscope (EIS) measurements were made simultaneously in a 75 mm I.D., 10 m long acrylic pipeline using salt-water/carbon dioxide mixtures. Full pipe flow was studied for liquid velocities of 0.5, 0.75, 1.1, 1.5 m/s and slug flow for Froude numbers 4, 6 and 9. Experiments were carried out at a constant pressure of 136 kPa and temperature of 40 C. ECN data were measured with a fast auto zero resistance ammeter. The ECN technique is able to detect changes in flow regime, showing distinct differences between full pipe flow and slug flow. The choice of sampling rate when using ECN is very important. For slug flows, sampling rates as high as 100 Hz are necessary to include most of the transients in the flow. Distinct differences can be seen in the Fast Fourier Transforms where dominant frequencies exist which correspond to possible bubble action in the slug body. EIS can be used to measure corrosion rate in multiphase flows. It does show an increase in the corrosion rate with liquid flow rates for full pipe flow and Froude numbers for stationary slug flow. A simple statistical analysis of ECN response gives a correlation with corrosion rate. These show ECN could be a very powerful tool for determining corrosion rate and corrosion mechanism in multiphase flow.

  14. An SPH model for multiphase flows with complex interfaces and large density differences

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Zong, Z.; Liu, M. B.; Zou, L.; Li, H. T.; Shu, C.

    2015-02-01

    In this paper, an improved SPH model for multiphase flows with complex interfaces and large density differences is developed. The multiphase SPH model is based on the assumption of pressure continuity over the interfaces and avoids directly using the information of neighboring particles' densities or masses in solving governing equations. In order to improve computational accuracy and to obtain smooth pressure fields, a corrected density re-initialization is applied. A coupled dynamic solid boundary treatment (SBT) is implemented both to reduce numerical oscillations and to prevent unphysical particle penetration in the boundary area. The density correction and coupled dynamics SBT algorithms are modified to adapt to the density discontinuity on fluid interfaces in multiphase simulation. A cut-off value of the particle density is set to avoid negative pressure, which can lead to severe numerical difficulties and may even terminate the simulations. Three representative numerical examples, including a Rayleigh-Taylor instability test, a non-Boussinesq problem and a dam breaking simulation, are presented and compared with analytical results or experimental data. It is demonstrated that the present SPH model is capable of modeling complex multiphase flows with large interfacial deformations and density ratios.

  15. Pattern formation in multiphase flow through porous media: continuum models and phase diagrams

    NASA Astrophysics Data System (ADS)

    Cueto-Felgueroso, L.; Juanes, R.

    2009-12-01

    Carbon capture and geologic storage, dissociation of methane hydrates in permafrost, infiltration of water in soil, and enhanced oil recovery, are some relevant examples of multiphase flow in porous media. While flow instabilities and pattern formation play a central role in these processes, our ability to describe them using mathematical models has been hampered by the lack of a macroscopic theory that explains the patterns observed in experimental and field conditions. We propose a new approach —phase-field modeling— to advance our fundamental understanding of multiphase porous media flow. The basic tenet, with origins in the mathematical description of solidification processes, is that the energy of the system is a function of the inhomogeneous distribution of fluid phases in the pore space, and should account for the presence of macroscopic interfaces. We present numerical simulations and compare our predictions with experimental observations. Numerical simulation of viscous fingering in a Hele-Shaw cell using the proposed phase-field modeling approach

  16. Lagrangian-based investigation of multiphase flows by finite-time Lyapunov exponents

    NASA Astrophysics Data System (ADS)

    Tang, Jia-Ning; Tseng, Chien-Chou; Wang, Ning-Fei

    2012-06-01

    Multiphase flows are ubiquitous in our daily life and engineering applications. It is important to investigate the flow structures to predict their dynamical behaviors effectively. Lagrangian coherent structures (LCS) defined by the ridges of the finite-time Lyapunov exponent (FTLE) is utilized in this study to elucidate the multiphase interactions in gaseous jets injected into water and time-dependent turbulent cavitation under the framework of Navier-Stokes flow computations. For the gaseous jets injected into water, the highlighted phenomena of the jet transportation can be observed by the LCS method, including expansion, bulge, necking/breaking, and back-attack. Besides, the observation of the LCS reveals that the back-attack phenomenon arises from the fact that the injected gas has difficulties to move toward downstream region after the necking/breaking. For the turbulent cavitating flow, the ridge of the FTLE field can form a LCS to capture the front and boundary of the re-entraint jet when the adverse pressure gradient is strong enough. It represents a barrier between particles trapped inside the circulation region and those moving downstream. The results indicate that the FTLE field has the potential to identify the structures of multiphase flows, and the LCS can capture the interface/barrier or the vortex/circulation region.

  17. A method for incorporating equilibrium chemical reactions into multiphase flow models for CO2 storage

    NASA Astrophysics Data System (ADS)

    Saaltink, Maarten W.; Vilarrasa, Victor; De Gaspari, Francesca; Silva, Orlando; Carrera, Jesús; Rötting, Tobias S.

    2013-12-01

    CO2 injection and storage in deep saline aquifers involves many coupled processes, including multiphase flow, heat and mass transport, rock deformation and mineral precipitation and dissolution. Coupling is especially critical in carbonate aquifers, where minerals will tend to dissolve in response to the dissolution of CO2 into the brine. The resulting neutralization will drive further dissolution of both CO2 and calcite. This suggests that large cavities may be formed and that proper simulation may require full coupling of reactive transport and multiphase flow. We show that solving the latter may suffice whenever two requirements are met: (1) all reactions can be assumed to occur in equilibrium and (2) the chemical system can be calculated as a function of the state variables of the multiphase flow model (i.e., liquid and gas pressure, and temperature). We redefine the components of multiphase flow codes (traditionally, water and CO2), so that they are conservative for all reactions of the chemical system. This requires modifying the traditional constitutive relationships of the multiphase flow codes, but yields the concentrations of all species and all reaction rates by simply performing speciation and mass balance calculations at the end of each time step. We applied this method to the H2O-CO2-Na-Cl-CaCO3 system, so as to model CO2 injection into a carbonate aquifer containing brine. Results were very similar to those obtained with traditional formulations, which implies that full coupling of reactive transport and multi-phase flow is not really needed for this kind of systems, but the resulting simplifications may make it advisable even for cases where the above requirements are not met. Regarding the behavior of carbonate rocks, we find that porosity development near the injection well is small because of the low solubility of calcite. Moreover, dissolution concentrates at the front of the advancing CO2 plume because the brine below the plume tends to reach

  18. Benchmark initiative on coupled multiphase flow and geomechanical processes during CO2 injection

    NASA Astrophysics Data System (ADS)

    Benisch, K.; Annewandter, R.; Olden, P.; Mackay, E.; Bauer, S.; Geiger, S.

    2012-12-01

    CO2 injection into deep saline aquifers involves multiple strongly interacting processes such as multiphase flow and geomechanical deformation, which threat to the seal integrity of CO2 repositories. Coupled simulation codes are required to establish realistic prognoses of the coupled process during CO2 injection operations. International benchmark initiatives help to evaluate, to compare and to validate coupled simulation results. However, there is no published code comparison study so far focusing on the impact of coupled multiphase flow and geomechanics on the long-term integrity of repositories, which is required to obtain confidence in the predictive capabilities of reservoir simulators. We address this gap by proposing a benchmark study. A wide participation from academic and industrial institutions is sought, as the aim of building confidence in coupled simulators become more plausible with many participants. Most published benchmark studies on coupled multiphase flow and geomechanical processes have been performed within the field of nuclear waste disposal (e.g. the DECOVALEX project), using single-phase formulation only. As regards CO2 injection scenarios, international benchmark studies have been published comparing isothermal and non-isothermal multiphase flow processes such as the code intercomparison by LBNL, the Stuttgart Benchmark study, the CLEAN benchmark approach and other initiatives. Recently, several codes have been developed or extended to simulate the coupling of hydraulic and geomechanical processes (OpenGeoSys, ELIPSE-Visage, GEM, DuMuX and others), which now enables a comprehensive code comparison. We propose four benchmark tests of increasing complexity, addressing the coupling between multiphase flow and geomechanical processes during CO2 injection. In the first case, a horizontal non-faulted 2D model consisting of one reservoir and one cap rock is considered, focusing on stress and strain regime changes in the storage formation and the

  19. The application of single particle hydrodynamics in continuum models of multiphase flow

    NASA Technical Reports Server (NTRS)

    Decker, Rand

    1988-01-01

    A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.

  20. Advanced Multi-Phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis

    NASA Technical Reports Server (NTRS)

    Liaw, Paul; Chen, Y. S.; Shang, H. M.; Doran, Denise

    1993-01-01

    It is known that the simulations of solid rocket motor internal flow field with AL-based propellants require complex multi-phase turbulent flow model. The objective of this study is to develop an advanced particulate multi-phase flow model which includes the effects of particle dynamics, chemical reaction and hot gas flow turbulence. The inclusion of particle agglomeration, particle/gas reaction and mass transfer, particle collision, coalescence and breakup mechanisms in modeling the particle dynamics will allow the proposed model to realistically simulate the flowfield inside a solid rocket motor. The Finite Difference Navier-Stokes numerical code FDNS is used to simulate the steady-state multi-phase particulate flow field for a 3-zone 2-D axisymmetric ASRM model and a 6-zone 3-D ASRM model at launch conditions. The 2-D model includes aft-end cavity and submerged nozzle. The 3-D model represents the whole ASRM geometry, including additional grain port area in the gas cavity and two inhibitors. FDNS is a pressure based finite difference Navier-Stokes flow solver with time-accurate adaptive second-order upwind schemes, standard and extended k-epsilon models with compressibility corrections, multi zone body-fitted formulations, and turbulence particle interaction model. Eulerian/Lagrangian multi-phase solution method is applied for multi-zone mesh. To simulate the chemical reaction, penalty function corrected efficient finite-rate chemistry integration method is used in FDNS. For the AL particle combustion rate, the Hermsen correlation is employed. To simulate the turbulent dispersion of particles, the Gaussian probability distribution with standard deviation equal to (2k/3)(exp 1/2) is used for the random turbulent velocity components. The computational results reveal that the flow field near the juncture of aft-end cavity and the submerged nozzle is very complex. The effects of the turbulent particles affect the flow field significantly and provide better

  1. Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry

    DOEpatents

    Sinha, Dipen N.

    2007-06-12

    An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.

  2. Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry

    DOEpatents

    Sinha, Dipen N.

    2003-11-11

    An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.

  3. Noninvasive Characterization Of A Flowing Multiphase Fluid Using Ultrasonic Interferometry

    DOEpatents

    Sinha, Dipen N.

    2005-05-10

    An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.

  4. Laboratory setup and results of experiments on two-dimensional multiphase flow in porous media

    SciTech Connect

    McBride, J.F. ); Graham, D.N.; Schiegg, H.O. )

    1990-10-01

    In the event of an accidental release into earth's subsurface of an immiscible organic liquid, such as a petroleum hydrocarbon or chlorinated organic solvent, the spatial and temporal distribution of the organic liquid is of great interest when considering efforts to prevent groundwater contamination or restore contaminated groundwater. An accurate prediction of immiscible organic liquid migration requires the incorporation of relevant physical principles in models of multiphase flow in porous media; these physical principles must be determined from physical experiments. This report presents a series of such experiments performed during the 1970s at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland. The experiments were designed to study the transient, two-dimensional displacement of three immiscible fluids in a porous medium. This experimental study appears to be the most detailed published to date. The data obtained from these experiments are suitable for the validation and test calibration of multiphase flow codes. 73 refs., 140 figs.

  5. Experimental and Numerical Study of Pore-Scale Multi-Phase Flow Dynamics

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A. M.; Ling, B.; Oostrom, M.; Bao, J.; Kim, K.; Trask, N.; Battiato, I.

    2015-12-01

    Understanding multiphase fluid flow is critical for many applications, including CO2 sequestration, bioremediation, and oil recovery. Micro-fluidic experiments and pore-scale simulations become important tools in studying multiphase flow in porous media. At the same time, many pore-scale numerical models lack rigorous validation and verification, and micro-fluidic experiments are hard to reproduce due to physical instabilities and challenges in precisely controlling the experiments. We performed a set of microcell experiments and determined conditions necessary to obtain reproducible pore-scale evolution of the fluid-fluid interfaces during both infiltration and drainage phases. Next, we modeled the experiments using Finite Volume and Smoothed Particle Hydrodynamics codes. The point-by-point comparison of the experimental results and numerical simulations revealed advantages and disadvantages of these two methods in capturing the overall behavior and pore-scale phenomena, including residual saturations, formation of thin films, fluid bridges and various fluid trapping mechanisms.

  6. Modelling of multiphase flow in ironmaking blast furnace

    SciTech Connect

    Dong, X.F.; Yu, A.B.; Burgess, J.M.; Pinson, D.; Chew, S.; Zulli, P.

    2009-01-15

    A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.

  7. Considerations for developing models of multiphase flow in deformable porous media.

    SciTech Connect

    Martinez, Mario J.; Stone, Charles Michael

    2008-09-01

    This document summarizes research and planning for the development of a numerical simulation capability for nonisothermal multiphase, multicomponent transport in heterogeneous deformable porous materials. Particular attention is given to describing a mathematical formulation for flow in deformable media and for numerical techniques for dealing with phase transitions. A development plan is formulated to provide a computational capability motivated by current and future needs in geosystems management for energy security.

  8. Sampling device for withdrawing a representative sample from single and multi-phase flows

    DOEpatents

    Apley, Walter J.; Cliff, William C.; Creer, James M.

    1984-01-01

    A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.

  9. Method and system for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2001-01-01

    An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.

  10. Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications

    SciTech Connect

    Lee, Taehun

    2015-10-20

    The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations, better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.

  11. A lattice Boltzmann model for multiphase flows interacting with deformable bodies

    NASA Astrophysics Data System (ADS)

    De Rosis, Alessandro

    2014-11-01

    In this paper, a numerical model to simulate a multiphase flow interacting with deformable solid bodies is proposed. The fluid domain is modeled through the lattice Boltzmann method and the Shan-Chen model is adopted to handle the multiphase feature. The interaction of the flow with immersed solid bodies is accounted for by using the Immersed Boundary method. Corotational beam finite elements are used to model the deformable bodies and non-linear structure dynamics is predicted through the Time Discontinuous Galerkin method. A numerical campaign is carried out in order to assess the effectiveness and accuracy of the proposed modeling by involving different scenarios. In particular, the model is validated by performing the bubble test and by comparing present results with the ones from a numerical commercial software. Moreover, the properties in terms of convergence are discussed. In addition, the effectiveness of the proposed methodology is evaluated by computing the error in terms of the energy that is artificially introduced in the system at the fluid-solid interface. Present findings show that the proposed approach is robust, accurate and suitable of being applied to a lot of practical applications involving the interaction between multiphase flows and deformable solid bodies.

  12. Simulation of Inviscid Compressible Multi-Phase Flow with Condensation

    NASA Technical Reports Server (NTRS)

    Kelleners, Philip

    2003-01-01

    Condensation of vapours in rapid expansions of compressible gases is investigated. In the case of high temperature gradients the condensation will start at conditions well away from thermodynamic equilibrium of the fluid. In those cases homogeneous condensation is dominant over heterogeneous condensation. The present work is concerned with development of a simulation tool for computation of high speed compressible flows with homogeneous condensation. The resulting ow solver should preferably be accurate and robust to be used for simulation of industrial flows in general geometries.

  13. A Three-Dimensional Vortex Sheet Method for Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Stock, Mark; Dahm, Werner; Tryggvason, Gretar

    2002-11-01

    Previous work on a three-dimensional vortex-in-cell method is extended to include baroclinic vorticity generation in flows with large density ratios. A vortex sheet discretization is used both to maintain the boundary between different fluids or fluid phases, and to provide for a divergence-free vorticity field at all times. Automatic insertion and deletion of triangular elements allow the vortex sheet to maintain its connectivity and resolution during the simulation, despite extensive stretching of the material surface. The VIC grid provides regularization, and the simulation is inviscid at resolved scales. Computational results for flows with weak and strong density variations are presented.

  14. A spectrally refined interface approach for simulating multiphase flows

    SciTech Connect

    Desjardins, Olivier Pitsch, Heinz

    2009-03-20

    This paper presents a novel approach to phase-interface transport based on pseudo-spectral sub-grid refinement of a level set function. In each flow solver grid cell, a set of quadrature points is introduced on which the value of the level set function is known. This methodology allows to define a polynomial reconstruction of the level set function in each cell. The transport is performed using a semi-Lagrangian technique, removing all constraints on the time step size. Such an approach provides sub-cell resolution of the phase-interface and leads to excellent accuracy in the transport, while a reasonable cost is obtained by pre-computing some of the metrics associated with the polynomials. To couple this approach with a flow solver, an converging curvature computation is introduced. First, a second order explicit distance to the sub-grid interface is reconstructed on the flow solver mesh. Then, a least squares approach is employed to extract the curvature from this distance function. This technique is found to combine the high accuracy and good conservation found in the particle level set method with the converging curvature usually obtained with classical high order PDE transport of the level set function. Tests are presented for both transport as well as two-phase flows, that suggest that this technique is capable of retaining the thin liquid structures that are expected in turbulent atomization of liquids.

  15. Modification of Fracture Apertures by Reactive Multiphase Flow

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Sheets, J.; Li, Q.; Kneafsey, T. J.; Cole, D. R.; Jun, Y. S.; Pyrak-Nolte, L. J.

    2015-12-01

    Geochemical interactions during the withdrawal/injection of fluids into the subsurface can modify fracture apertures through dissolution and/or precipitation of minerals. Modification of fracture apertures during reactive flow is strongly affected by non-reactive, non-wetting fluids that limit the fracture surface area and void volume that can be affected by reactive phases. We present results on the effect of a non-reactive, non-wetting phase during reactive flow on the distribution of precipitates and channelization caused by dissolution in fractures. Transparent acrylic casts of a fracture in Austin chalk were used to image mineral precipitation during reactive flow. Initially, the fracture was saturated with a solution of 0.6mol/L NaHCO3 and 0.00085mol/L NaCl. Then, both the aqueous NaHCO3 - NaCl and a solution containing 3mol/L CaCl2 were pumped into the sample (0.5 ml/min) for 2 hrs. When the two solutions mix inside the fracture, CaCO3 precipitates form and CO2 bubbles are generated. CO2 bubbles affect the amount of precipitation. X-ray CT data show that precipitate thickness varies within the fracture, occurs on both fracture surfaces and also bridges the surfaces. In the test, where a CO2 bubble filled a void, precipitation did not occur. If the CO2 bubble was smaller than the pore, thin films of precipitates occurred on the fracture surfaces above and below the bubble. While fracture apertures controlled the mixing of the fluids, CO2 bubbles affected the thickness and distribution of the precipitates. From our numerical study, channelization in a fracture is affected by the presence of a non-wetting non-reactive phase (e.g. gas) during dissolution. A modified Navier-Stokes approach was used to calculate fluxes through spatially correlated aperture distributions as a function of gas saturation. Dissolution was taken to be proportional to flux. For gas saturations < 15%, channelization occurred along the dominant flow path. However, for gas saturations >25

  16. Frictional Fluid Dynamics and Plug Formation in Multiphase Millifluidic Flow.

    PubMed

    Dumazer, Guillaume; Sandnes, Bjørnar; Ayaz, Monem; Måløy, Knut Jørgen; Flekkøy, Eirik Grude

    2016-07-01

    We study experimentally the flow and patterning of a granular suspension displaced by air inside a narrow tube. The invading air-liquid interface accumulates a plug of granular material that clogs the tube due to friction with the confining walls. The gas percolates through the static plug once the gas pressure exceeds the pore capillary entry pressure of the packed grains, and a moving accumulation front is reestablished at the far side of the plug. The process repeats, such that the advancing interface leaves a trail of plugs in its wake. Further, we show that the system undergoes a fluidization transition-and complete evacuation of the granular suspension-when the liquid withdrawal rate increases beyond a critical value. An analytical model of the stability condition for the granular accumulation predicts the flow regime. PMID:27447527

  17. Are upwind techniques in multi-phase flow models necessary?

    SciTech Connect

    Park, C.-H.; Boettcher, N.; Wang, W.; Kolditz, O.

    2011-09-10

    Two alternatives of primary variables are compared for two-phase flow in heterogeneous media by solving fully established benchmarks. The first combination utilizes pressure of the wetting fluid and saturation of the non-wetting fluid as primary variables, while the second employs capillary pressure of the wetting fluid and pressure of the non-wetting fluid. While the standard Galerkin finite element method (SGFEM) is known to fail in the physical reproduction of two-phase flow in heterogeneous media (unless employing a fully upwind correction), the second scheme with capillary pressure as a primary variable without applying an upwind technique produces correct physical fluid behaviour in heterogeneous media, as observed from experiments.

  18. Multiphase ferrofluid flows for micro-particle sorting

    NASA Astrophysics Data System (ADS)

    Zhou, Ran; Wang, Cheng

    2015-11-01

    Utilizing negative magnetophoresis, ferrofluids have demonstrated great potential for sorting nonmagnetic micro-particles by size. Most of the existing techniques use single phase ferrofluids by pushing micro-particles to channel walls; the sorting speed is thus hindered. We demonstrate a novel sorting strategy by co-flowing a ferrofluid and a non-magnetic fluid in microchannels. Due to the magnetic force, the particles migrate across the ferrofluid stream at size-dependent velocities as they travel downstream. The laminar interface between the two fluids functions as a virtual boundary to accumulate particles, resulting in effective separation of particles. A stable and sharp interface is important to the success of this sorting technique. We investigate several factors that affect sorting efficiency, including magnetic field, susceptibility difference of the fluids, flow velocity, and channel geometry.

  19. Frictional Fluid Dynamics and Plug Formation in Multiphase Millifluidic Flow

    NASA Astrophysics Data System (ADS)

    Dumazer, Guillaume; Sandnes, Bjørnar; Ayaz, Monem; Mâløy, Knut Jørgen; Flekkøy, Eirik Grude

    2016-07-01

    We study experimentally the flow and patterning of a granular suspension displaced by air inside a narrow tube. The invading air-liquid interface accumulates a plug of granular material that clogs the tube due to friction with the confining walls. The gas percolates through the static plug once the gas pressure exceeds the pore capillary entry pressure of the packed grains, and a moving accumulation front is reestablished at the far side of the plug. The process repeats, such that the advancing interface leaves a trail of plugs in its wake. Further, we show that the system undergoes a fluidization transition—and complete evacuation of the granular suspension—when the liquid withdrawal rate increases beyond a critical value. An analytical model of the stability condition for the granular accumulation predicts the flow regime.

  20. Stochastic Rotation Dynamics simulations of wetting multi-phase flows

    NASA Astrophysics Data System (ADS)

    Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin

    2016-06-01

    Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.

  1. Droplet tracer characterization in shock-driven multiphase flow

    NASA Astrophysics Data System (ADS)

    Vigil, Francisco; Trujillo, Miquela; Vorobieff, Peter; Truman, C. Randall

    2014-11-01

    Small glycol droplets have long been introduced into shock-accelerated gas as a tracer, to track the evolution of Richtmyer-Meshkov instability (RMI). However, it was observed that droplets are not passive tracers when shock-accelerated - to the extent that their introduction itself can lead to vortex formation. Because of the complex interplay between the droplets and surrounding gas, it is imperative to know the droplet size and population density. The absence of this knowledge has led to differences between results from numerical models, Planar Laser-Induced Fluorescence (PLIF) measurements, and Mie scattering observations. To gain a better understanding of the droplet velocity and inertial flow fields, a more involved study of droplet sizing is required. A Malvern laser diagnostic system is used to determine the sizes of the glycol droplets seeded into the flow. A series of tests are performed to analyze differences in glycol droplet size and population distribution that result from changing gaseous mediums in the test section. These measurements facilitate better quantification of the velocity fields in shock accelerated flow and improve interpretation of results from Mie scattering. This research is supported by the US DOE National Nuclear Security Administration (NNSA) Grant DE-NA0002220.

  2. Grayscale lattice Boltzmann model for multiphase heterogeneous flow through porous media

    NASA Astrophysics Data System (ADS)

    Pereira, Gerald G.

    2016-06-01

    The grayscale lattice Boltzmann (LB) model has been recently developed to model single-phase fluid flow through heterogeneous porous media. Flow is allowed in each voxel but the degree of flow depends on that voxel's resistivity to fluid motion. Here we extend the grayscale LB model to multiphase, immiscible flow. The new model is outlined and then applied to a number of test cases, which show good agreement with theory. This method is subsequently used to model the important case where each voxel may have a different resistance to each particular fluid that is passing through it. Finally, the method is applied to model fluid flow through real porous media to demonstrate its capability. Both the capillary and viscous flow regimes are recovered in these simulations.

  3. Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Baker, Nathan A.; Wu, Lei; Schenter, Gregory K.; Mundy, Christopher J.; Tartakovsky, Alexandre M.

    2016-08-01

    Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a multiphase smoothed dissipative particle dynamics (SDPD) model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension, we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semianalytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models dynamic processes, such as bubble coalescence and capillary spectra across the interface.

  4. Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations.

    PubMed

    Lei, Huan; Baker, Nathan A; Wu, Lei; Schenter, Gregory K; Mundy, Christopher J; Tartakovsky, Alexandre M

    2016-08-01

    Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a multiphase smoothed dissipative particle dynamics (SDPD) model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension, we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semianalytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models dynamic processes, such as bubble coalescence and capillary spectra across the interface. PMID:27627409

  5. Multiphase flow measurement using multiple energy gamma ray absorption (MEGRA) composition measurement

    SciTech Connect

    Scheers, A.M.; Slijkerman, W.F.J.

    1996-12-31

    Some multiphase flowmeters use the principle of Dual Energy Gamma Ray Absorption (DEGRA) composition measurement to determine the individual water, oil and gas fractions. Under homogeneous flow conditions the ultimate uncertainty in phase fractions achievable with this technique depends strongly on the choice of hardware. The meter presented in this paper uses unique components that have been optimized for the water, oil and gas fraction measurement with theoretical uncertainties of 2% in the fractions over a 1 second measurement period. Generally, composition meters are sensitive to a change in production water salinity and this will cause significant systematic effort in the fraction and watercut measurements. A new measurement concept is presented that is not sensitive to salinity variations and based on Multiple Energy Gamma Ray Absorption (MEGRA) composition measurement. A multiphase flowmeter equipped with the MEGRA concept does not require field-calibration, a decisive advantage in subsea or marginal field developments.

  6. Model for sweet corrosion in horizontal multiphase slug flow

    SciTech Connect

    Jepson, W.P.; Stitzel, S.; Kang, C.; Gopal, M.

    1997-08-01

    A model has been developed that can predict the corrosion rate in horizontal slug flows. The effect of the slug frequency and oil type on corrosion rate have been included. The model has been compared to experimental data, and, to the model and field data of Gunaltun (1996). For all conditions, the corrosion rate increased with increase in slug frequency until a maximum in corrosion rate is reached at approximately 35 slugs/minute. At 60 C, the model compares well with that of Gunaltun (1996) if a slug frequency of 10 to 12 is used. For 80 C, the Gunaltun model is in good agreement if a frequency of 1 slug/minute is used. His model does not include a term that predicts a maximum in the corrosion rate between 60 and 80 C. This has not been noticed in this laboratory for slug flows. For horizontal pipelines, field data suggests that, the slug frequency is usually in the range of 1 to 20 slugs/minute, depending on the liquid velocity. When the pipe is inclined, the slug frequency can increase to values much greater than these and this may lead to higher levels of corrosion. The oil type is accounted for using the suggestion of Efird (1989) based on the product of oil acid number and % nitrogen. When this relation is used, the results compare very well with those of Efird for the oils he studied.

  7. Consistent and conservative framework for incompressible multiphase flow simulations

    NASA Astrophysics Data System (ADS)

    Owkes, Mark; Desjardins, Olivier

    2015-11-01

    We present a computational methodology for convection that handles discontinuities with second order accuracy and maintains conservation to machine precision. We use this method in the context of an incompressible gas-liquid flow to transport the phase interface, momentum, and scalars. Using the same methodology for all the variables ensures discretely consistent transport, which is necessary for robust and accurate simulations of turbulent atomizing flows with high-density ratios. The method achieves conservative transport by computing consistent fluxes on a refined mesh, which ensures all conserved quantities are fluxed with the same discretization. Additionally, the method seamlessly couples semi-Lagrangian fluxes used near the interface with finite difference fluxes used away from the interface. The semi-Lagrangian fluxes are three-dimensional, un-split, and conservatively handle discontinuities. Careful construction of the fluxes ensures they are divergence-free and no gaps or overlaps form between neighbors. We have tested and used the scheme for many cases and demonstrate a simulation of an atomizing liquid jet.

  8. Model coupling for multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Helmig, Rainer; Flemisch, Bernd; Wolff, Markus; Ebigbo, Anozie; Class, Holger

    2013-01-01

    Numerical models for flow and transport in porous media are valid for a particular set of processes, scales, levels of simplification and abstraction, grids etc. The coupling of two or more specialised models is a method of increasing the overall range of validity while keeping the computational costs relatively low. Several coupling concepts are reviewed in this article with a focus on the authors’ work in this field. The concepts are divided into temporal and spatial coupling concepts, of which the latter is subdivided into multi-process, multi-scale, multi-dimensional, and multi-compartment coupling strategies. Examples of applications for which these concepts can be relevant include groundwater protection and remediation, carbon dioxide storage, nuclear-waste disposal, soil dry-out and evaporation processes as well as fuel cells and technical filters.

  9. Complementary Constrains on Component based Multiphase Flow Problems, Should It Be Implemented Locally or Globally?

    NASA Astrophysics Data System (ADS)

    Shao, H.; Huang, Y.; Kolditz, O.

    2015-12-01

    Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in

  10. Modeling and Numerical Challenges in Eulerian-Lagrangian Computations of Shock-driven Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Diggs, Angela; Balachandar, Sivaramakrishnan

    2015-06-01

    The present work addresses the numerical methods required for particle-gas and particle-particle interactions in Eulerian-Lagrangian simulations of multiphase flow. Local volume fraction as seen by each particle is the quantity of foremost importance in modeling and evaluating such interactions. We consider a general multiphase flow with a distribution of particles inside a fluid flow discretized on an Eulerian grid. Particle volume fraction is needed both as a Lagrangian quantity associated with each particle and also as an Eulerian quantity associated with the flow. In Eulerian Projection (EP) methods, the volume fraction is first obtained within each cell as an Eulerian quantity and then interpolated to each particle. In Lagrangian Projection (LP) methods, the particle volume fraction is obtained at each particle and then projected onto the Eulerian grid. Traditionally, EP methods are used in multiphase flow, but sub-grid resolution can be obtained through use of LP methods. By evaluating the total error and its components we compare the performance of EP and LP methods. The standard von Neumann error analysis technique has been adapted for rigorous evaluation of rate of convergence. The methods presented can be extended to obtain accurate field representations of other Lagrangian quantities. Most importantly, we will show that such careful attention to numerical methodologies is needed in order to capture complex shock interaction with a bed of particles. Supported by U.S. Department of Defense SMART Program and the U.S. Department of Energy PSAAP-II program under Contract No. DE-NA0002378.

  11. A Stochastic Differential Equation Approach To Multiphase Flow In Porous Media

    NASA Astrophysics Data System (ADS)

    Dean, D.; Russell, T.

    2003-12-01

    The motivation for using stochastic differential equations in multiphase flow systems stems from our work in developing an upscaling methodology for single phase flow. The long term goals of this project include: I. Extending this work to a nonlinear upscaling methodology II. Developing a macro-scale stochastic theory of multiphase flow and transport that accounts for micro-scale heterogeneities and interfaces. In this talk, we present a stochastic differential equation approach to multiphase flow, a typical example of which is flow in the unsaturated domain. Specifically, a two phase problem is studied which consists of a wetting phase and a non-wetting phase. The approach given results in a nonlinear stochastic differential equation describing the position of the non-wetting phase fluid particle. Our fundamental assumption is that the flow of fluid particles is described by a stochastic process and that the positions of the fluid particles over time are governed by the law of the process. It is this law which we seek to determine. The nonlinearity in the stochastic differential equation arises because both the drift and diffusion coefficients depend on the volumetric fraction of the phase which in turn depends on the position of the fluid particles in the experimental domain. The concept of a fluid particle is central to the development of the model described in this talk. Expressions for both saturation and volumetric fraction are developed using the fluid particle concept. Darcy's law and the continuity equation are then used to derive a Fokker-Planck equation using these expressions. The Ito calculus is then applied to derive a stochastic differential equation for the non-wetting phase. This equation has both drift and diffusion terms which depend on the volumetric fraction of the non-wetting phase. Standard stochastic theories based on the Ito calculus and the Wiener process and the equivalent Fokker-Planck PDE's are typically used to model dispersion

  12. A lattice Boltzmann model for multiphase flows with large density ratio

    NASA Astrophysics Data System (ADS)

    Zheng, H. W.; Shu, C.; Chew, Y. T.

    2006-10-01

    A lattice Boltzmann model for simulating multiphase flows with large density ratios is described in this paper. The method is easily implemented. It does not require solving the Poisson equation and does not involve the complex treatments of derivative terms. The interface capturing equation is recovered without any additional terms as compared to other methods [M.R. Swift, W.R. Osborn, J.M. Yeomans, Lattice Boltzmann simulation of liquid-gas and binary fluid systems, Phys. Rev. E 54 (1996) 5041-5052; T. Inamuro, T. Ogata, S. Tajima, N. Konishi, A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys. 198 (2004) 628-644; T. Lee, C.-L. Lin, A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, J. Comput. Phys. 206 (2005) 16-47]. Besides, it requires less discrete velocities. As a result, its efficiency could be greatly improved, especially in 3D applications. It is validated by several cases: a bubble in a stationary flow and the capillary wave. The numerical surface tension obtained from the Laplace law and the interface profile agrees very well with the respective analytical solution. The method is further verified by its application to capillary wave and the bubble rising under buoyancy with comparison to other methods. All the numerical experiments show that the present approach can be used to model multiphase flows with large density ratios.

  13. Trials of a gamma-ray multiphase flow meter on oil production pipelines at Thevenard Island

    SciTech Connect

    Roach, G.J.; Watt, J.S.; Zastawny, H.W.; Hartley, P.E.; Ellis, W.K.

    1994-12-31

    CSIRO has developed a gamma-ray multiphase flow meter (MFM) for the on-line determination of the flow rates of oil, water and gas in oil production pipelines. It is based on two gamma-ray transmission gauges mounted on a pipe carrying the full flow of the multiphase fluid. In trials, two of these MFMs were mounted on a test pipeline linking the test manifold to the test separator at the oil processing facilities on Thevenard Island. One MFM was always mounted on the vertical upflow section of the pipe. The other was in turn mounted on the vertical downflow section, and on two horizontal sections with different upstream conditions. The MFM mounted on the vertical (upflow) pipeline determined the flow rates to 4.0% relative for liquids, 7.5% for oil, 4.5% for water and 7.9% for gas. Water cut was determined to 3.6% relative. The MFM mounted on the vertical downflow pipeline determined flow rates to 3.3% relative for liquids, 6.1% for oil, 4.5% for water, and 7.7% for gas. Water cut was determined to 3.7%.

  14. Numerical modeling of geophysical granular flows: 1. A comprehensive approach to granular rheologies and geophysical multiphase flows

    NASA Astrophysics Data System (ADS)

    Dartevelle, SéBastien

    2004-08-01

    Geophysical granular materials display a wide variety of behaviors and features. Typically, granular flows (1) are multiphase flows, (2) are very dissipative over many different scales, (3) display a wide range of grain concentrations, and (4), as a final result of these previous features, display complex nonlinear, nonuniform, and unsteady rheologies. Therefore the objectives of this manuscript are twofold: (1) setting up a hydrodynamic model which acknowledges the multiphase nature of granular flows and (2) defining a comprehensive rheological model which accounts for all the different forms of viscous dissipations within granular flows at any concentration. Hence three important regimes within granular flows must be acknowledged: kinetic (pure free flights of grain), kinetic-collisional, and frictional. The momentum and energy transfer will be different according to the granular regimes, i.e., strain rate dependent in the kinetic and kinetic-collisional cases and strain rate independent in the frictional case. A "universal" granular rheological model requires a comprehensive unified stress tensor able to adequately describe viscous stress within the flow for any of these regimes, and without imposing a priori what regime will dominate over the others. The kinetic-collisional viscous regime is defined from a modified Boltzmann's kinetic theory of dense gas. The frictional viscous regime is defined from the plastic potential and the critical state theories which account for compressibility of granular matter (e.g., dilatancy, consolidation, and critical state). In the companion paper [, 2004] we will introduce a multiphase computer code, (G)MFIX, which accounts for all the granular regimes and rheology and present typical simulations of diluted (e.g., plinian clouds) and concentrated geophysical granular flows (i.e., pyroclastic flows and surges).

  15. Multiphase flow experiments, mathematical modeling and numerical simulation of the water - gas - solute movement

    NASA Astrophysics Data System (ADS)

    Li, Y.; Ma, X.; Su, N.

    2013-12-01

    The movement of water and solute into and through the vadose zone is, in essence, an issue of immiscible displacement in pore-space network of a soil. Therefore, multiphase flow and transport in porous media, referring to three medium: air, water, and the solute, pose one of the largest unresolved challenges for porous medium fluid seepage. However, this phenomenon has always been largely neglected. It is expected that a reliable analysis model of the multi-phase flow in soil can truly reflect the process of natural movement about the infiltration, which is impossible to be observed directly. In such cases, geophysical applications of the nuclear magnetic resonance (NMR) provides the opportunity to measure the water movements into soils directly over a large scale from tiny pore to regional scale, accordingly enable it available both on the laboratory and on the field. In addition, the NMR provides useful information about the pore space properties. In this study, we proposed both laboratory and field experiments to measure the multi-phase flow parameters, together with optimize the model in computer programming based on the fractional partial differential equations (fPDE). In addition, we establish, for the first time, an infiltration model including solute flowing with water, which has huge influence on agriculture and soil environment pollution. Afterwards, with data collected from experiments, we simulate the model and analyze the spatial variability of parameters. Simulations are also conducted according to the model to evaluate the effects of airflow on water infiltration and other effects such as solute and absorption. It has significant meaning to oxygen irrigation aiming to higher crop yield, and shed more light into the dam slope stability. In summary, our framework is a first-time model added in solute to have a mathematic analysis with the fPDE and more instructive to agriculture activities.

  16. Direct Numerical Simulation of Boiling Multiphase Flows: State-of-the-Art, Modeling, Algorithmic and Computer Needs

    SciTech Connect

    Nourgaliev R.; Knoll D.; Mousseau V.; Berry R.

    2007-04-01

    The state-of-the-art for Direct Numerical Simulation (DNS) of boiling multiphase flows is reviewed, focussing on potential of available computational techniques, the level of current success for their applications to model several basic flow regimes (film, pool-nucleate and wall-nucleate boiling -- FB, PNB and WNB, respectively). Then, we discuss multiphysics and multiscale nature of practical boiling flows in LWR reactors, requiring high-fidelity treatment of interfacial dynamics, phase-change, hydrodynamics, compressibility, heat transfer, and non-equilibrium thermodynamics and chemistry of liquid/vapor and fluid/solid-wall interfaces. Finally, we outline the framework for the {\\sf Fervent} code, being developed at INL for DNS of reactor-relevant boiling multiphase flows, with the purpose of gaining insight into the physics of multiphase flow regimes, and generating a basis for effective-field modeling in terms of its formulation and closure laws.

  17. Numerical Simulation of Dynamic Contact Angles and Contact Lines in Multiphase Flows using Level Set Method

    NASA Astrophysics Data System (ADS)

    Pendota, Premchand

    Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the past few decades, many mathematical models were developed for predicting the contact angles of the inter-face with the wall boundary under various flow conditions. These models are used to incorporate the physics of DCA and contact line motion in numerical simulations using various interface capturing/tracking techniques. In the current thesis, a simple approach to incorporate the static and dynamic contact angle boundary conditions using the level set method is developed and implemented in multiphase CFD codes, LIT (Level set Interface Tracking) (Herrmann (2008)) and NGA (flow solver) (Desjardins et al (2008)). Various DCA models and associated boundary conditions are reviewed. In addition, numerical aspects such as the occurrence of a stress singularity at the contact lines and grid convergence of macroscopic interface shape are dealt with in the context of the level set approach.

  18. Simulation of three-component fluid flows using the multiphase lattice Boltzmann flux solver

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Tang, G. H.; Wang, Y.

    2016-06-01

    In this work, we extend the multiphase lattice Boltzmann flux solver, which was proposed in [1] for simulating incompressible flows of binary fluids based on two-component Cahn-Hilliard model, to three-component fluid flows. In the present method, the multiphase lattice Boltzmann flux solver is applied to solve for the flow field and the three-component Cahn-Hilliard model is used to predict the evolution of the interfaces. The proposed method is first validated through the classical problem of simulation of partial spreading of a liquid lens between the other two components. Numerical results of interface shapes and contact angles agree well with theoretical solutions. After that, to further demonstrate the capability of the present method, several numerical examples of three-component fluid flows are presented, including a bubble rising across a fluid-fluid interface, single droplet falling through a fluid-fluid interface, the collision-coalescence of two droplets, and the non-contact collision of two droplets. It is shown that the present method can successfully handle complex interactions among three components.

  19. An open-source toolbox for multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Horgue, P.; Soulaine, C.; Franc, J.; Guibert, R.; Debenest, G.

    2015-02-01

    Multiphase flow in porous media provides a wide range of applications: from the environmental understanding (aquifer, site-pollution) to industrial process improvements (oil production, waste management). Modeling of such flows involves specific volume-averaged equations and therefore specific computational fluid dynamics (CFD) tools. In this work, we develop a toolbox for modeling multiphase flow in porous media with OpenFOAM®, an open-source platform for CFD. The underlying idea of this approach is to provide an easily adaptable tool that can be used in further studies to test new mathematical models or numerical methods. The package provides the most common effective properties models of the literature (relative permeability, capillary pressure) and specific boundary conditions related to porous media flows. To validate this package, solvers based on the IMplicit Pressure Explicit Saturation (IMPES) method are developed in the toolbox. The numerical validation is performed by comparison with analytical solutions on academic cases. Then, a satisfactory parallel efficiency of the solver is shown on a more complex configuration.

  20. Development of Benchmark Experimental Transport and Multiphase Flow Data Sets to Test and Validate Pore-scale Numerical Simulators

    NASA Astrophysics Data System (ADS)

    Oostrom, M.; Wietsma, T. W.; Hess, N. J.

    2014-12-01

    Developing predictive models of multiphase flow and reactive transport and multiphase flow at the pore scale is a challenge common to diverse science areas. Increasingly, it has become more important in subsurface flow and transport research due to its relevance to research areas such as contaminant and colloidal transport and multiphase flow. Goals of pore-scale simulations include identification of key parameters and physicochemical processes controlling macroscopic phenomena, validation of continuum descriptions, and determination of appropriate forms of the continuum formulation for approximation of the pore-scale results. Numerical modeling of pore-scale (multiphase) flow and transport is an active research area. However, with the exception of a few studies, direct comparisons between pore-scale experiments and simulations have been limited. Some of the reasons experimental data have not been used extensively so far to test pore-scale models are related to quality and reproducibility issues with available micromodels. However, rapid advances in microfabrication and imaging have led to the development of experimental procedures ensuring high quality, reproducible results. Several of these advances have been implemented in the new microfluidics laboratory at the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). In this contribution, recently obtained benchmark data sets for nonreactive transport, reactive transport, and multiphase flow are discussed. The data sets are offered to pore-scale numerical modelers for testing and validation purposes.

  1. The Impact of Mineral Dissolution on Multiphase Flow in Permeable Carbonates

    NASA Astrophysics Data System (ADS)

    Krevor, S. C.; Niu, B.

    2015-12-01

    Carbon dioxide injection into deep saline aquifers is governed by a number of physicochemical processes at a broad range of spatial scales including mineral dissolution and precipitation, fluid flow, and capillary trapping. Past efforts have mostly focused on measuring the multiphase flow properties, capillarity, relative permeability, and residual trapping. However, the impact of fluid-rock interaction on these properties is less well understood. In this work we have made a series of measurements characterizing the impact of rock mineral dissolution on multiphase flow in three carbonate rocks. We used core flooding techniques to mimic reactive conditions representative of the near the well bore and far field regions of a carbonate reservoir CO2 injection project. Tests sequentially induced mineral dissolution and characterized the impacts on multiphase flow properties. Temperature retarded acid was used to uniformly dissolve calcite in Ketton, Estaillades, and Edward Brown rock cores. A single dissolution stages removed approximately 0.5% of the mass of the rocks and measurements of relative permeability and residual trapping were made after each stage along with mercury injection capillary pressure (MICP) to quantify the variation of in the pore size distribution. Three Stages were performed on each of carbonates rocks. Imaging with x-ray micro-CT and medical CT were used to quantify the porosity variation and observe the changes in pore structure and multiphase flow properties at scales from the um to the cm. The pore size distribution of the rocks was observed to both increase and become less uniform with progressive dissolution, as shown in Figure 1. For Ketton, the micro-pores, with size range from 0.01 um to 0.1um, have less been involved in the reaction than the macro-pores (10 um to 100 um). A larger spread in capillary trapping was seen around a characteristic initial-residual curve. Relative permeability changes with progressive dissolution was not well

  2. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect

    Yortsos, Yanis C.

    2001-08-07

    This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  3. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect

    Yortsos, Y.C.

    2001-05-29

    This report is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  4. Density and Cavitating Flow Results from a Full-Scale Optical Multiphase Cryogenic Flowmeter

    NASA Technical Reports Server (NTRS)

    Korman, Valentin

    2007-01-01

    Liquid propulsion systems are hampered by poor flow measurements. The measurement of flow directly impacts safe motor operations, performance parameters as well as providing feedback from ground testing and developmental work. NASA Marshall Space Flight Center, in an effort to improve propulsion sensor technology, has developed an all optical flow meter that directly measures the density of the fluid. The full-scale sensor was tested in a transient, multiphase liquid nitrogen fluid environment. Comparison with traditional density models shows excellent agreement with fluid density with an error of approximately 0.8%. Further evaluation shows the sensor is able to detect cavitation or bubbles in the flow stream and separate out their resulting effects in fluid density.

  5. Effect of multiphase slug flow on the stability of corrosion product layer

    SciTech Connect

    Gopal, M.; Rajappa, S.

    1999-11-01

    Corrosion experiments were carried out under iron carbonate scale-forming conditions in a large diameter, multiphase flow system. Both oil/water and oil/water/gas slug flows were studied at pressures up to 0.79 MPa and temperatures of 60 C and 80 C. It was found that with increasing iron concentration, the corrosion rates were reduced to negligible values in oil/water flows. However, significant corrosion was seen in slug flow with clear evidence of damage to the corrosion product layer due to impact and possible collapse of gas bubbles and a considerable reduction in the layer thickness. Details of corrosion rates and corrosion coupon surface analysis are presented.

  6. TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows

    SciTech Connect

    Pruess, K.

    1991-06-01

    Numerical simulators for multiphase fluid and heat flows in permeable media have been under development at Lawrence Berkeley Laboratory for more than 10 yr. Real geofluids contain noncondensible gases and dissolved solids in addition to water, and the desire to model such `compositional` systems led to the development of a flexible multicomponent, multiphase simulation architecture known as MULKOM. The design of MULKOM was based on the recognition that the mass-and energy-balance equations for multiphase fluid and heat flows in multicomponent systems have the same mathematical form, regardless of the number and nature of fluid components and phases present. Application of MULKOM to different fluid mixtures, such as water and air, or water, oil, and gas, is possible by means of appropriate `equation-of-state` (EOS) modules, which provide all thermophysical and transport parameters of the fluid mixture and the permeable medium as a function of a suitable set of primary thermodynamic variables. Investigations of thermal and hydrologic effects from emplacement of heat-generating nuclear wastes into partially water-saturated formations prompted the development and release of a specialized version of MULKOM for nonisothermal flow of water and air, named TOUGH. TOUGH is an acronym for `transport of unsaturated groundwater and heat` and is also an allusion to the tuff formations at Yucca Mountain, Nevada. The TOUGH2 code is intended to supersede TOUGH. It offers all the capabilities of TOUGH and includes a considerably more general subset of MULKOM modules with added capabilities. The paper briefly describes the simulation methodology and user features.

  7. Large Eddy Simulation of a Cavitating Multiphase Flow for Liquid Injection

    NASA Astrophysics Data System (ADS)

    Cailloux, M.; Helie, J.; Reveillon, J.; Demoulin, F. X.

    2015-12-01

    This paper presents a numerical method for modelling a compressible multiphase flow that involves phase transition between liquid and vapour in the context of gasoline injection. A discontinuous compressible two fluid mixture based on the Volume of Fluid (VOF) implementation is employed to represent the phases of liquid, vapour and air. The mass transfer between phases is modelled by standard models such as Kunz or Schnerr-Sauer but including the presence of air in the gas phase. Turbulence is modelled using a Large Eddy Simulation (LES) approach to catch instationnarities and coherent structures. Eventually the modelling approach matches favourably experimental data concerning the effect of cavitation on atomisation process.

  8. Review of multiphase flow and pollutant transport models for the Hanford site

    SciTech Connect

    Kincaid, C.T.; Mitchell. P.J.

    1986-11-01

    This report provides a review of the physical processes, geochemical reactions, and microbiological kinetics that interact to determine the migration and fate of these pollutants. This review of processes and reactions provides a background from which codes for the analysis of contaminant migration and fate can be evaluated. Single codes representing classes of pollutant migration problems are cited to show how commonly employed and publicly available codes are not always applicable to the complex problems of multiphase fluid flow and pollutant migration. This review provides guidance on selecting and using codes; it also provides recommendations for development work needed to address deficiencies identified in existing models, codes, and data bases.

  9. Evaluation of multi-phase heat transfer and droplet evaporation in petroleum cracking flows

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Petrick, M.; Zhou, C.Q.

    1996-04-01

    A computer code ICRKFLO was used to simulate the multiphase reacting flow of fluidized catalytic cracking (FCC) riser reactors. The simulation provided a fundamental understanding of the hydrodynamics and heat transfer processes in an FCC riser reactor, critical to the development of a new high performance unit. The code was able to make predictions that are in good agreement with available pilot-scale test data. Computational results indicate that the heat transfer and droplet evaporation processes have a significant impact on the performance of a pilot-scale FCC unit. The impact could become even greater on scale-up units.

  10. Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal fluid flow

    USGS Publications Warehouse

    Hutnak, M.; Hurwitz, S.; Ingebritsen, S.E.; Hsieh, P.A.

    2009-01-01

    Ground surface displacement (GSD) in large calderas is often interpreted as resulting from magma intrusion at depth. Recent advances in geodetic measurements of GSD, notably interferometric synthetic aperture radar, reveal complex and multifaceted deformation patterns that often require complex source models to explain the observed GSD. Although hydrothermal fluids have been discussed as a possible deformation agent, very few quantitative studies addressing the effects of multiphase flow on crustal mechanics have been attempted. Recent increases in the power and availability of computing resources allow robust quantitative assessment of the complex time-variant thermal interplay between aqueous fluid flow and crustal deformation. We carry out numerical simulations of multiphase (liquid-gas), multicomponent (H 2O-CO2) hydrothermal fluid flow and poroelastic deformation using a range of realistic physical parameters and processes. Hydrothermal fluid injection, circulation, and gas formation can generate complex, temporally and spatially varying patterns of GSD, with deformation rates, magnitudes, and geometries (including subsidence) similar to those observed in several large calderas. The potential for both rapid and gradual deformation resulting from magma-derived fluids suggests that hydrothermal fluid circulation may help explain deformation episodes at calderas that have not culminated in magmatic eruption.

  11. A Coupled Model of Multiphase Flow, Reactive Biogeochemical Transport, Thermal Transport and Geo-Mechanics.

    NASA Astrophysics Data System (ADS)

    Tsai, C. H.; Yeh, G. T.

    2015-12-01

    In this investigation, a coupled model of multiphase flow, reactive biogeochemical transport, thermal transport and geo-mechanics in subsurface media is presented. It iteratively solves the mass conservation equation for fluid flow, thermal transport equation for temperature, reactive biogeochemical transport equations for concentration distributions, and solid momentum equation for displacement with successive linearization algorithm. With species-based equations of state, density of a phase in the system is obtained by summing up concentrations of all species. This circumvents the problem of having to use empirical functions. Moreover, reaction rates of all species are incorporated in mass conservation equation for fluid flow. Formation enthalpy of all species is included in the law of energy conservation as a source-sink term. Finite element methods are used to discretize the governing equations. Numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results demonstrate the feasibility and capability of present model in subsurface media.

  12. Algebraic dynamic multilevel (ADM) method for fully implicit simulations of multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Cusini, Matteo; van Kruijsdijk, Cor; Hajibeygi, Hadi

    2016-06-01

    This paper presents the development of an algebraic dynamic multilevel method (ADM) for fully implicit simulations of multiphase flow in homogeneous and heterogeneous porous media. Built on the fine-scale fully implicit (FIM) discrete system, ADM constructs a multilevel FIM system describing the coupled process on a dynamically defined grid of hierarchical nested topology. The multilevel adaptive resolution is determined at each time step on the basis of an error criterion. Once the grid resolution is established, ADM employs sequences of restriction and prolongation operators in order to map the FIM system across the considered resolutions. Several choices can be considered for prolongation (interpolation) operators, e.g., constant, bilinear and multiscale basis functions, all of which form partition of unity. The adaptive multilevel restriction operators, on the other hand, are constructed using a finite-volume scheme. This ensures mass conservation of the ADM solutions, and as such, the stability and accuracy of the simulations with multiphase transport. For several homogeneous and heterogeneous test cases, it is shown that ADM applies only a small fraction of the full FIM fine-scale grid cells in order to provide accurate solutions. The sensitivity of the solutions with respect to the employed fraction of grid cells (determined automatically based on the threshold value of the error criterion) is investigated for all test cases. ADM is a significant step forward in the application of dynamic local grid refinement methods, in the sense that it is algebraic, allows for systematic mapping across different scales, and applicable to heterogeneous test cases without any upscaling of fine-scale high resolution quantities. It also develops a novel multilevel multiscale method for FIM multiphase flow simulations in natural subsurface formations.

  13. DENSE MULTIPHASE FLOW SIMULATION: CONTINUUM MODEL FOR POLY-DISPERSED SYSTEMS USING KINETIC THEORY

    SciTech Connect

    Moses Bogere

    2011-08-31

    The overall objective of the project was to verify the applicability of the FCMOM approach to the kinetic equations describing the particle flow dynamics. For monodispersed systems the fundamental equation governing the particle flow dynamics is the Boltzmann equation. During the project, the FCMOM was successfully applied to several homogeneous and in-homogeneous problems in different flow regimes, demonstrating that the FCMOM has the potential to be used to solve efficiently the Boltzmann equation. However, some relevant issues still need to be resolved, i.e. the homogeneous cooling problem (inelastic particles cases) and the transition between different regimes. In this report, the results obtained in homogeneous conditions are discussed first. Then a discussion of the validation results for in-homogeneous conditions is provided. And finally, a discussion will be provided about the transition between different regimes. Alongside the work on development of FCMOM approach studies were undertaken in order to provide insights into anisotropy or particles kinetics in riser hydrodynamics. This report includes results of studies of multiphase flow with unequal granular temperatures and analysis of momentum re-distribution in risers due to particle-particle and fluid-particle interactions. The study of multiphase flow with unequal granular temperatures entailed both simulation and experimental studies of two particles sizes in a riser and, a brief discussion of what was accomplished will be provided. And finally, a discussion of the analysis done on momentum re-distribution of gas-particles flow in risers will be provided. In particular a discussion of the remaining work needed in order to improve accuracy and predictability of riser hydrodynamics based on two-fluid models and how they can be used to model segregation in risers.

  14. Application of partially-coupled hydro-mechanical schemes to multiphase flow problems

    NASA Astrophysics Data System (ADS)

    Tillner, Elena; Kempka, Thomas

    2016-04-01

    Utilization of subsurface reservoirs by fluid storage or production generally triggers pore pressure changes and volumetric strains in reservoirs and cap rocks. The assessment of hydro-mechanical effects can be undertaken using different process coupling strategies. The fully-coupled geomechanics and flow simulation, constituting a monolithic system of equations, is rarely applied for simulations involving multiphase fluid flow due to the high computational efforts required. Pseudo-coupled simulations are driven by static tabular data on porosity and permeability changes as function of pore pressure or mean stress, resulting in a rather limited flexibility when encountering complex subsurface utilization schedules and realistic geological settings. Partially-coupled hydro-mechanical simulations can be distinguished into one-way and iterative two-way coupled schemes, whereby the latter one is based on calculations of flow and geomechanics, taking into account the iterative exchange of coupling parameters between the two respective numerical simulators until convergence is achieved. In contrast, the one-way coupling scheme is determined by the provision of pore pressure changes calculated by the flow simulator to the geomechanical simulator neglecting any feedback. In the present study, partially-coupled two-way schemes are discussed in view of fully-coupled single-phase flow and geomechanics, and their applicability to multiphase flow simulations. For that purpose, we introduce a comparison study between the different coupling schemes, using selected benchmarks to identify the main requirements for the partially-coupled approach to converge with the numerical solution of the fully-coupled one.

  15. THC-MP: High performance numerical simulation of reactive transport and multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu

    2015-07-01

    The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.

  16. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery.

    PubMed

    Zhao, Chun-Xia

    2013-11-01

    Considerable effort has been directed towards developing novel drug delivery systems. Microfluidics, capable of generating monodisperse single and multiple emulsion droplets, executing precise control and operations on these droplets, is a powerful tool for fabricating complex systems (microparticles, microcapsules, microgels) with uniform size, narrow size distribution and desired properties, which have great potential in drug delivery applications. This review presents an overview of the state-of-the-art multiphase flow microfluidics for the production of single emulsions or multiple emulsions for drug delivery. The review starts with a brief introduction of the approaches for making single and multiple emulsions, followed by presentation of some potential drug delivery systems (microparticles, microcapsules and microgels) fabricated in microfluidic devices using single or multiple emulsions as templates. The design principles, manufacturing processes and properties of these drug delivery systems are also discussed and compared. Furthermore, drug encapsulation and drug release (including passive and active controlled release) are provided and compared highlighting some key findings and insights. Finally, site-targeting delivery using multiphase flow microfluidics is also briefly introduced.

  17. Energetics of the multi-phase fluid flow in a narrow kerf in laser cutting conditions

    NASA Astrophysics Data System (ADS)

    Golyshev, A. A.; Orishich, A. M.; Shulyatyev, V. B.

    2016-10-01

    The energy balance of the multi-phase medium flow is studied experimentally under the laser cutting. Experimental data are generalized due to the condition of minimal roughness of the created surface used as a quality criterion of the melt flow, and also due to the application of dimensionless parameters: Peclet number and dimensionless absorbed laser power. For the first time ever it is found that, regardless the assistant gas (oxygen or nitrogen), laser type (the fiber one with the wavelength of 1.07 µm or CO2-laser with the wavelength of 10.6 µm), the minimal roughness is provided at a certain energy input in a melt unit, about 26 J/mm3. With oxygen, 50% of this input is provided by the radiation, the other 50% - by the exothermic reaction of iron oxidation.

  18. A Second Order JFNK-based IMEX Method for Single and Multi-phase Flows

    SciTech Connect

    Samet Kadioglu; Dana Knoll; Mark Sussman; Richard Martineau

    2010-07-01

    Abstract We present a second order time accurate IMplicit/EXplicit (IMEX) method for solving single and multi-phase flow problems. The algorithm consists of a combination of an explicit and an implicit blocks. The explicit block solves the non-stiff parts of the governing system whereas the implicit block operates on the stiff terms. In our self-conisstent IMEX implementation, the explicit part is always executed inside the implicit block as part of the nonlinear functions evaluation making use of the Jacobian-freeNewton Krylov (JFNK) method [7]. This leads to an implicitly balanced algorithm in that all non-linearities due to the coupling of different time terms are consistently converged. In this paper, we present computational results when this IMEX strategy is applied to single/multi-phase incompressible flow models. Samet

  19. Adaptive mesh refinement and multilevel iteration for multiphase, multicomponent flow in porous media

    SciTech Connect

    Hornung, R.D.

    1996-12-31

    An adaptive local mesh refinement (AMR) algorithm originally developed for unsteady gas dynamics is extended to multi-phase flow in porous media. Within the AMR framework, we combine specialized numerical methods to treat the different aspects of the partial differential equations. Multi-level iteration and domain decomposition techniques are incorporated to accommodate elliptic/parabolic behavior. High-resolution shock capturing schemes are used in the time integration of the hyperbolic mass conservation equations. When combined with AMR, these numerical schemes provide high resolution locally in a more efficient manner than if they were applied on a uniformly fine computational mesh. We will discuss the interplay of physical, mathematical, and numerical concerns in the application of adaptive mesh refinement to flow in porous media problems of practical interest.

  20. Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis

    PubMed Central

    Nunes, J K; Tsai, S S H; Wan, J; Stone, H A

    2013-01-01

    Dripping and jetting regimes in microfluidic multiphase flows have been investigated extensively, and this review summarizes the main observations and physical understandings in this field to date for three common device geometries: coaxial, flow-focusing and T-junction. The format of the presentation allows for simple and direct comparison of the different conditions for drop and jet formation, as well as the relative ease and utility of forming either drops or jets among the three geometries. The emphasis is on the use of drops and jets as templates for microparticle and microfiber syntheses, and a description is given of the more common methods of solidification and strategies for achieving complex multicomponent microparticles and microfibers. PMID:23626378

  1. The Effect of Surface Treated Nanoparticles on Single and Multi-Phase Flow in Porous Media

    NASA Astrophysics Data System (ADS)

    DiCarlo, D. A.; Aminzadeh, B.; Chung, D.; Zhang, X.; Wung, R.; Huh, C.; Bryant, S. L.

    2013-12-01

    Surface treated nanoparticles have been suggested to be an additive to CO2 storage scenarios. This is because 1) the nanoparticles have been shown to freely transport through permeable media, and 2) the nanoparticles can stabilize a CO2 in water foam by adhering to the surface of CO2 bubbles/droplets preventing their coalescence. In terms of storage, The formation of CO2 foam will limit the CO2 mobility which can potentially help limit the CO2 leakage. Here, we will show how nanoparticles in porous media can have many interesting properties in single and multi-phase flow. For multi-phase CO2, we have performed experiments where high pressure liquid CO2 displaces brine and vice versa with and without nanoparticles in the brine. We measure the displacement pattern and in-situ CO2 saturation using CT scanning and measure the pressure drop using pressure transducers. We find that the flow is less preferential and the pressure drop is greater than when nanoparticles are present. This suggest the formation of in-situ foam/emulsion. We also show that on a brine chase, the residual saturation of CO2 is greater in the presence of nanoparticles. In terms of nanoparticle transport, it is observed that nanoparticles accumulate at the front of a brine/octane displacement. We hypothesize that this occurs due to the nanoparticles being size excluded from portions of the pore-space. To determine if this occurs in single phase flow, we have also performed experiments single-phase flow with the nanoparticles and tracer. We find that the nanoparticles arrive roughly 5% faster than the tracer. This also has implications for the positioning of nanoparticles in the pore space and how this can change the effective viscosity of the nanoparticle suspension.

  2. Application of a geocentrifuge and sterolithographically fabricated apertures to multiphase flow in complex fracture apertures.

    SciTech Connect

    Glenn E. McCreery; Robert D. Stedtfeld; Alan T. Stadler; Daphne L. Stoner; Paul Meakin

    2005-09-01

    A geotechnical centrifuge was used to investigate unsaturated multiphase fluid flow in synthetic fracture apertures under a variety of flow conditions. The geocentrifuge subjected the fluids to centrifugal forces allowing the Bond number to be systematically changed without adjusting the fracture aperture of the fluids. The fracture models were based on the concept that surfaces generated by the fracture of brittle geomaterials have a self-affine fractal geometry. The synthetic fracture surfaces were fabricated from a transparent epoxy photopolymer using sterolithography, and fluid flow through the transparent fracture models was monitored by an optical image acquisition system. Aperture widths were chosen to be representative of the wide range of geological fractures in the vesicular basalt that lies beneath the Idaho Nation Laboratory (INL). Transitions between different flow regimes were observed as the acceleration was changed under constant flow conditions. The experiments showed the transition between straight and meandering rivulets in smooth walled apertures (aperture width = 0.508 mm), the dependence of the rivulet width on acceleration in rough walled fracture apertures (average aperture width = 0.25 mm), unstable meandering flow in rough walled apertures at high acceleration (20g) and the narrowing of the wetted region with increasing acceleration during the penetration of water into an aperture filled with wetted particles (0.875 mm diameter glass spheres).

  3. Multiphase flow modelling of explosive volcanic eruptions using adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Jacobs, Christian T.; Collins, Gareth S.; Piggott, Matthew D.; Kramer, Stephan C.

    2014-05-01

    Explosive volcanic eruptions generate highly energetic plumes of hot gas and ash particles that produce diagnostic deposits and pose an extreme environmental hazard. The formation, dispersion and collapse of these volcanic plumes are complex multiscale processes that are extremely challenging to simulate numerically. Accurate description of particle and droplet aggregation, movement and settling requires a model capable of capturing the dynamics on a range of scales (from cm to km) and a model that can correctly describe the important multiphase interactions that take place. However, even the most advanced models of eruption dynamics to date are restricted by the fixed mesh-based approaches that they employ. The research presented herein describes the development of a compressible multiphase flow model within Fluidity, a combined finite element / control volume computational fluid dynamics (CFD) code, for the study of explosive volcanic eruptions. Fluidity adopts a state-of-the-art adaptive unstructured mesh-based approach to discretise the domain and focus numerical resolution only in areas important to the dynamics, while decreasing resolution where it is not needed as a simulation progresses. This allows the accurate but economical representation of the flow dynamics throughout time, and potentially allows large multi-scale problems to become tractable in complex 3D domains. The multiphase flow model is verified with the method of manufactured solutions, and validated by simulating published gas-solid shock tube experiments and comparing the numerical results against pressure gauge data. The application of the model considers an idealised 7 km by 7 km domain in which the violent eruption of hot gas and volcanic ash high into the atmosphere is simulated. Although the simulations do not correspond to a particular eruption case study, the key flow features observed in a typical explosive eruption event are successfully captured. These include a shock wave resulting

  4. Coupled multiphase flow and geomechanics analysis of the 2011 Lorca earthquake

    NASA Astrophysics Data System (ADS)

    Jha, B.; Hager, B. H.; Juanes, R.; Bechor, N.

    2013-12-01

    We present a new approach for modeling coupled multiphase flow and geomechanics of faulted reservoirs. We couple a flow simulator with a mechanics simulator using the unconditionally stable fixed-stress sequential solution scheme [Kim et al, 2011]. We model faults as surfaces of discontinuity using interface elements [Aagaard et al, 2008]. This allows us to model stick-slip behavior on the fault surface for dynamically evolving fault strength. We employ a rigorous formulation of nonlinear multiphase geomechanics [Coussy, 1995], which is based on the increment in mass of fluid phases instead of the traditional, and less accurate, scheme based on the change in porosity. Our nonlinear formulation is capable of handling strong capillarity and large changes in saturation in the reservoir. To account for the effect of surface stresses along fluid-fluid interfaces, we use the equivalent pore pressure in the definition of the multiphase effective stress [Coussy et al, 1998; Kim et al, 2013]. We use our simulation tool to study the 2011 Lorca earthquake [Gonzalez et al, 2012], which has received much attention because of its potential anthropogenic triggering (long-term groundwater withdrawal leading to slip along the regional Alhama de Murcia fault). Our coupled fluid flow and geomechanics approach to model fault slip allowed us to take a fresh look at this seismic event, which to date has only been analyzed using simple elastic dislocation models and point source solutions. Using a three-dimensional model of the Lorca region, we simulate the groundwater withdrawal and subsequent unloading of the basin over the period of interest (1960-2010). We find that groundwater withdrawal leads to unloading of the crust and changes in the stress across the impermeable fault plane. Our analysis suggests that the combination of these two factors played a critical role in inducing the fault slip that ultimately led to the Lorca earthquake. Aagaard, B. T., M. G. Knepley, and C. A

  5. Theoretical analysis of multiphase flow during oil-well drilling by a conservative model

    NASA Astrophysics Data System (ADS)

    Nicolas-Lopez, Ruben

    2005-11-01

    In order to decrease cost and improve drilling operations is necessary a better understood of the flow mechanisms. Therefore, it was carried out a multiphase conservative model that includes three mass equations and a momentum equation. Also, the measured geothermal gradient is utilized by state equations for estimating physical properties of the phases flowing. The mathematical model is solved by numerical conservative schemes. It is used to analyze the interaction among solid-liquid-gas phases. The circulating system consists as follow, the circulating fluid is pumped downward into the drilling pipe until the bottom of the open hole then it flows through the drill bit, and at this point formation cuttings are incorporated to the circulating fluid and carried upward to the surface. The mixture returns up to the surface by an annular flow area. The real operational conditions are fed to conservative model and the results are matched up to field measurements in several oil wells. Mainly, flow rates, drilling rate, well and tool geometries are data to estimate the profiles of pressure, mixture density, equivalent circulating density, gas fraction and solid carrying capacity. Even though the problem is very complex, the model describes, properly, the hydrodynamics of drilling techniques applied at oil fields. *Authors want to thank to Instituto Mexicano del Petroleo and Petroleos Mexicanos for supporting this research.

  6. On the Inclusion of the Interfacial Area Between Phases in the Physical and Mathematical Description of Subsurface Multiphase Flow

    SciTech Connect

    Gray, W.G.

    2001-01-25

    This project has contributed to the improved understanding and precise physical description of multiphase subsurface flow by combining theoretical derivation of equations, lattice Boltzmann modeling of hydrodynamics to identify characteristics and parameters, and simplification of field-scale equations to assess the advantages and disadvantages of the complete theory.

  7. A minimally diffusive interface function steepening approach for compressible multiphase flows

    NASA Astrophysics Data System (ADS)

    Regele, Jonathan

    2015-11-01

    Interface capturing methods for contacts and shocks are commonly used in compressible multiphase flows. Artificial diffusion is inherently necessary to stabilize jump discontinuities across shocks and contacts. Contacts suffer from diffusion more severely than shock waves because their characteristics are not convergent like shocks. Interface steepening procedures are commonly used to counteract numerical diffusion necessary to maintain a sharp interface function. In this work, a modification to the sharpening approach used in Shukla, Pantano, and Freund [J. Comp. Phys, 229, 2010] is developed that minimizes the artificial diffusion across the interface while maintaining a monotonic interface function. The method requires fewer iterations for convergence and provides a steeper interface function. Examples in one and two dimensions demonstrate the method's performance.

  8. Particle methods for simulation of subsurface multiphase fluid flow and biogeological processes

    SciTech Connect

    Paul Meakin; Alexandre Tartakovsky; Tim Scheibe; Daniel Tartakovsky; Georgr Redden; Philip E. Long; Scott C. Brooks; Zhijie Xu

    2007-06-01

    A number of particle models that are suitable for simulating multiphase fluid flow and biogeological processes have been developed during the last few decades. Here we discuss three of them: a microscopic model - molecular dynamics; a mesoscopic model - dissipative particle dynamics; and a macroscopic model - smoothed particle hydrodynamics. Particle methods are robust and versatile, and it is relatively easy to add additional physical, chemical and biological processes into particle codes. However, the computational efficiency of particle methods is low relative to continuum methods. Multiscale particle methods and hybrid (particle–particle and particle–continuum) methods are needed to improve computational efficiency and make effective use of emerging computational capabilities. These new methods are under development.

  9. The impact of interfacial tension on multiphase flow in the CO2-brine-sandstone system

    NASA Astrophysics Data System (ADS)

    Reynolds, C. A.; Blunt, M. J.; Krevor, S. C.

    2013-12-01

    Two dominant controls on continuum scale multiphase flow properties are interfacial tension (IFT) and wetting. In hydrocarbon-brine systems, relative permeability is known to increase with decreasing IFT, while residual trapping is controlled by the wetting properties of a permeable rock and the hysteresis between drainage and imbibtion (Amaefule & Handy, 1982; Bardon & Longeron, 1980; Juanes et al., 2006). Fluid properties of the CO2-brine system, such as viscosity, density and interfacial tension, are well characterised and have known dependencies on temperature, pressure and brine salinity. Interest in this particular fluid system is motivated by CO2 storage and enhanced oil recovery. Despite increased interest in CO2 storage, the response of the CO2-brine relative permeability to varying IFT has yet to be comprehensively evaluated. Additionally the wide range of thermophysical properties (density, viscosity etc.) that exist across a relatively small range of pressures and temperatures makes it an ideal system with which to investigate the physics of multiphase flow in general. This is the first systematic study to investigate the impact of IFT on drainage and imbibition relative permeability for the CO2-brine-sandstone system. The experimental design has been adapted from a traditional steady state core flood in two ways. First, while conditions may be easily selected to obtain a range of interfacial tensions, isolating the independent impact of interfacial tension on relative permeability is less simple. Thus experimental conditions are selected so as to vary interfacial tension, while minimising the variation in viscosity ratio between CO2 and brine. Second, in order to attribute the impacts of changing conditions, it is necessary to have precise results such that small shifts in observations can be identified. Multiphase flow theory is used to both design the conditions of the test and interpret the observations, leading to a much higher precision in

  10. Overestimating climate warming-induced methane gas escape from the seafloor by neglecting multiphase flow dynamics

    NASA Astrophysics Data System (ADS)

    Stranne, C.; O'Regan, M.; Jakobsson, M.

    2016-08-01

    Continental margins host large quantities of methane stored partly as hydrates in sediments. Release of methane through hydrate dissociation is implicated as a possible feedback mechanism to climate change. Large-scale estimates of future warming-induced methane release are commonly based on a hydrate stability approach that omits dynamic processes. Here we use the multiphase flow model TOUGH + hydrate (T + H) to quantitatively investigate how dynamic processes affect dissociation rates and methane release. The simulations involve shallow, 20-100 m thick hydrate deposits, forced by a bottom water temperature increase of 0.03°C yr-1 over 100 years. We show that on a centennial time scale, the hydrate stability approach can overestimate gas escape quantities by orders of magnitude. Our results indicate a time lag of > 40 years between the onset of warming and gas escape, meaning that recent climate warming may soon be manifested as widespread gas seepages along the world's continental margins.

  11. Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit

    SciTech Connect

    Sarkar, Avik; Pan, Wenxiao; Suh, Dong-Myung; Huckaby, E. D.; Sun, Xin

    2014-10-01

    To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD-based flow simulations for the regeneration device responsible for extracting CO2 from CO2-loaded sorbent particles before the particles are recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution is examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the low regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO2 desorption can be implemented.

  12. Modeling of multiphase flow and heat transfer in radiant syngas cooler of an entrained-flow coal gasification

    SciTech Connect

    Yu, G.S.; Ni, J.J.; Liang, Q.F.; Guo, Q.H.; Zhou, Z.J.

    2009-11-15

    A comprehensive model has been developed to analyze the multiphase flow and heat transfer in the radiant syngas cooler (RSC) of an industrial-scale entrained-flow coal gasification. The three-dimensional multiphase flow field and temperature field were reconstructed. The realizable {kappa}-{epsilon} turbulence model is applied to calculate the gas flow field, while the discrete random walk model is applied to trace the particles, and the interaction between the gas and the particle is considered using a two-way coupling model. The radiative properties of syngas mixture are calculated by weighted-sum-of-gray-gases model (WSGGM). The Ranz-Marshall correlation for the Nusselt number is used to account for convection heat transfer between the gas phase and the particles. The discrete ordinate model is applied to model the radiative heat transfer, and the effect of ash/slag particles on radiative heat transfer is considered. The model was successfully validated by comparison with the industrial plant measurement data, which demonstrated the ability of the model to optimize the design. The results show that a torch shape inlet jet was formed in the RSC, and its length increased with the diameter of the central channel. The recirculation zones appeared around the inlet jet, top, and bottom of the RSC. The overall temperature decreased with the heat-transfer surface area of the fins. The concentration distribution, velocity distribution, residence time distribution, and temperature distribution of particles with different diameters have been discussed. Finally, the slag/ash particles size distribution and temperature profile at the bottom of the RSC have been presented.

  13. Radiotracer method for residence time distribution study in multiphase flow system.

    PubMed

    Sugiharto, S; Su'ud, Z; Kurniadi, R; Wibisono, W; Abidin, Z

    2009-01-01

    [(131)I] isotope in different chemical compounds have been injected into 24in hydrocarbon transmission pipeline containing approximately 95% water, 3% crude oil, 2% gas and negligible solid material, respectively. The system is operated at the temperature around 70 degrees C enabling fluids flow is easier in the pipeline. The segment of measurement was chosen far from the junction point of the pipeline, therefore, it was reasonably to assume that the fluids in such multiphase system were separated distinctively. Expandable tubing of injector was used to ensure that the isotopes were injected at the proper place in the sense that [(131)I]Na isotope was injected into water layer and iodo-benzene, ([131])IC(6)H(5,) was injected into crude oil regime. The radiotracer selection was based on the compatibility of radiotracer with each of fluids under investigation. [(131)I]Na was used for measuring flow of water while iodo-benzene, ([131])IC(6)H(5,) was used for measuring flow of crude oil. Two scintillation detectors were used and they are put at the distances 80 and 100m, respectively, from injection point. The residence time distribution data were utilized for calculation water and crude oil flows. Several injections were conducted in the experiments. Although the crude oil density is lighter than the density of water, the result of measurement shows that the water flow is faster than the crude oil flow. As the system is water-dominated, water may act as carrier and the movement of crude oil is slowed due to friction between crude oil with water and crude oil with gas at top layer. Above of all, this result was able to give answer on the question why crude oil always arrives behind water as it is checked at gathering station. In addition, the flow patterns of the water in the pipeline calculated by Reynolds number and predicted by simple tank-in-series model is turbulence in character.

  14. Multiphase Modeling of Flow, Transport, and Biodegradation in a Mesoscale Landfill Bioreactor

    SciTech Connect

    Oldenburg, Curtis M.; Borglin, Sharon E.; Hazen, Terry C.

    2002-02-01

    The need to control gas and leachate production and minimize refuse volume in municipal solid waste landfills has motivated the development of landfill simulation models to predict and design optimal treatment processes. We have developed a multiphase and multicomponent nonisothermal module called T2LBM for the three-dimensional TOUGH2 flow and transport simulator. T2LBM can be used to simulate aerobic or anaerobic biodegradation of municipal solid waste and the associated flow and transport of gas and liquid through the refuse mass. Acetic acid is used as a proxy for all biodegradable substrates in the refuse. T2LBM incorporates a Monod kinetic rate law for the biodegradation of acetic acid by either aerobic or anaerobic microbes as controlled by the local oxygen concentration. We have verified the model against published data, and applied it to our own mesoscale laboratory aerobic landfill bioreactor experiments. We observe spatial variability of flow and biodegradation consistent with permeability heterogeneity and the geometry of the radial grid. The model is capable of matching results of a shut-in test where the respiration of the system is measured over time.

  15. Numerical analysis for the multi-phase flow of pulverized coal injection inside blast furnace tuyere

    SciTech Connect

    Chen, C.W.

    2005-09-01

    The pulverized coal injection (PCI) system was modified from single lance injection into double lance injection at No. 3 Blast Furnace of CSC. It is beneficial to reduce the cost of coke. However, the injected coal was found very close to the inner wall of the tuyere during the operation, such as to cause the possibility of erosion for the tuyere. In this study a three-dimensional mathematical model has been developed based on a computational fluid dynamics software PHOENICS to simulate the fluid flow phenomena inside blast furnace tuyere. The model was capable of handling steady-state, three-dimensional multi-phase flow of pulverized coal injection. The model was applied to simulate the flow patterns of the injection coal inside the tuyere with two kinds of lance design for the PCI system. The distribution of injection coal was simulated such as to estimate the possibility of erosion for the tuyere. The calculated results agreed with the operating experience of CSC plant and the optimum design of double lance was suggested. The model was also applied to simulate the oxygen concentration distribution with these different oxygen enrichments for the coal/oxygen lance system. The calculated results agreed with the experimental measurement. These test results demonstrate that the model is both reasonably reliable and efficient.

  16. Tar Production from Biomass Pyrolysis in a Fluidized Bed Reactor: A Novel Turbulent Multiphase Flow Formulation

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Lathouwers, D.

    2000-01-01

    A novel multiphase flow model is presented for describing the pyrolysis of biomass in a 'bubbling' fluidized bed reactor. The mixture of biomass and sand in a gaseous flow is conceptualized as a particulate phase composed of two classes interacting with the carrier gaseous flow. The solid biomass is composed of three initial species: cellulose, hemicellulose and lignin. From each of these initial species, two new solid species originate during pyrolysis: an 'active' species and a char, thus totaling seven solid-biomass species. The gas phase is composed of the original carrier gas (steam), tar and gas; the last two species originate from the volumetric pyrolysis reaction. The conservation equations are derived from the Boltzmann equations through ensemble averaging. Stresses in the gaseous phase are the sum of the Newtonian and Reynolds (turbulent) contributions. The particulate phase stresses are the sum of collisional and Reynolds contributions. Heat transfer between phases, and heat transfer between classes in the particulate phase is modeled, the last resulting from collisions between sand and biomass. Closure of the equations must be performed by modeling the Reynolds stresses for both phases. The results of a simplified version (first step) of the model are presented.

  17. Multiphase flow and multicomponent reactive transport model of the ventilation experiment in Opalinus clay

    SciTech Connect

    Zheng, L.; Samper, J.; Montenegro, L.; Major, J.C.

    2008-10-15

    During the construction and operational phases of a high-level radioactive waste (HLW) repository constructed in a clay formation, ventilation of underground drifts will cause desaturation and oxidation of the rock. The Ventilation Experiment (VE) was performed in a 1.3 m diameter unlined horizontal microtunnel on Opalinus clay at Mont Terri underground research laboratory in Switzerland to evaluate the impact of desaturation on rock properties. A multiphase flow and reactive transport model of VE is presented here. The model accounts for liquid, vapor and air flow, evaporation/condensation and multicomponent reactive solute transport with kinetic dissolution of pyrite and siderite and local-equilibrium dissolution/precipitation of calcite, ferrihydrite, dolomite, gypsum and quartz. Model results reproduce measured vapor flow, liquid pressure and hydrochemical data and capture the trends of measured relative humidities, although such data are slightly overestimated near the rock interface due to uncertainties in the turbulence factor. Rock desaturation allows oxygen to diffuse into the rock and triggers pyrite oxidation, dissolution of calcite and siderite, precipitation of ferrihydrite, dolomite and gypsum and cation exchange. pH in the unsaturated rock varies from 7.8 to 8 and is buffered by calcite. Computed changes in the porosity and the permeability of Opalinus clay in the unsaturated zone caused by oxidation and mineral dissolution/precipitation are smaller than 5%. Therefore, rock properties are not expected to be affected significantly by ventilation of underground drifts during construction and operational phases of a HLW repository in clay.

  18. Hybrid Modeling of Multiphase Flow in Porous Media: Coupling Darcy and Pore-Scale Description

    NASA Astrophysics Data System (ADS)

    Tomin, P.; Lunati, I.

    2012-12-01

    Flow through porous media is usually modeled employing Darcy's law to relate the macroscopic velocity (volumetric flux density) to the pressure gradient. This relationship represents the momentum balance equation and provides a reliable description under the assumptions of short relaxation times and scale separation. In case of multiphase flow, however, the interaction between the nonlinear interface dynamics and the complexity of pore structure generates a variety of flow regimes and can lead to situations, in which these assumptions are not satisfied and Darcy's law might become inadequate. In this case, multiphysics models that combine the Darcy and pore-scale description become attractive. Here, we use the Multiscale Finite Volume method (MsFV) as a framework for construction a hybrid algorithm that couples a Darcy description of the flow with a pore-scale description. The Navier-Stokes equations are solved to compute the velocity field in the pore geometry; the dynamics of the fluid-fluid interface is described by the Volume Of Fluid method (VOF) in combination with the Continuum Surface Force model (a classic diffuse-interface model for surface tension). A Darcy-like model based on conservation principles is used to construct the approximate coarse-scale problem. The results of the hybrid algorithm (Hybrid Multiscale Finite Volume method, HMsFV) are compared with full pore-scale simulations for several flow regimes to assess the robustness of the method with respect to changes in the morphology of fluid distribution. As the reconstruction of the fine-scale details can be done adaptively, the HMsFV method offers a flexible framework for hybrid modeling of different coexisting flow regimes.

  19. Multiphase flow predictions from carbonate pore space images using extracted network models

    NASA Astrophysics Data System (ADS)

    Al-Kharusi, Anwar S.; Blunt, Martin J.

    2008-06-01

    A methodology to extract networks from pore space images is used to make predictions of multiphase transport properties for subsurface carbonate samples. The extraction of the network model is based on the computation of the location and sizes of pores and throats to create a topological representation of the void space of three-dimensional (3-D) rock images, using the concept of maximal balls. In this work, we follow a multistaged workflow. We start with a 2-D thin-section image; convert it statistically into a 3-D representation of the pore space; extract a network model from this image; and finally, simulate primary drainage, waterflooding, and secondary drainage flow processes using a pore-scale simulator. We test this workflow for a reservoir carbonate rock. The network-predicted absolute permeability is similar to the core plug measured value and the value computed on the 3-D void space image using the lattice Boltzmann method. The predicted capillary pressure during primary drainage agrees well with a mercury-air experiment on a core sample, indicating that we have an adequate representation of the rock's pore structure. We adjust the contact angles in the network to match the measured waterflood and secondary drainage capillary pressures. We infer a significant degree of contact angle hysteresis. We then predict relative permeabilities for primary drainage, waterflooding, and secondary drainage that agree well with laboratory measured values. This approach can be used to predict multiphase transport properties when wettability and pore structure vary in a reservoir, where experimental data is scant or missing. There are shortfalls to this approach, however. We compare results from three networks, one of which was derived from a section of the rock containing vugs. Our method fails to predict properties reliably when an unrepresentative image is processed to construct the 3-D network model. This occurs when the image volume is not sufficient to represent the

  20. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model.

    PubMed

    Li, Q; Luo, K H; Li, X J

    2013-05-01

    Owing to its conceptual simplicity and computational efficiency, the pseudopotential multiphase lattice Boltzmann (LB) model has attracted significant attention since its emergence. In this work, we aim to extend the pseudopotential LB model to simulate multiphase flows at large density ratio and relatively high Reynolds number. First, based on our recent work [Q. Li, K. H. Luo, and X. J. Li, Phys. Rev. E 86, 016709 (2012)], an improved forcing scheme is proposed for the multiple-relaxation-time pseudopotential LB model in order to achieve thermodynamic consistency and large density ratio in the model. Next, through investigating the effects of the parameter a in the Carnahan-Starling equation of state, we find that the interface thickness is approximately proportional to 1/√a. Using a smaller a will lead to a wider interface thickness, which can reduce the spurious currents and enhance the numerical stability of the pseudopotential model at large density ratio. Furthermore, it is found that a lower liquid viscosity can be gained in the pseudopotential model by increasing the kinematic viscosity ratio between the vapor and liquid phases. The improved pseudopotential LB model is numerically validated via the simulations of stationary droplet and droplet oscillation. Using the improved model as well as the above treatments, numerical simulations of droplet splashing on a thin liquid film are conducted at a density ratio in excess of 500 with Reynolds numbers ranging from 40 to 1000. The dynamics of droplet splashing is correctly reproduced and the predicted spread radius is found to obey the power law reported in the literature. PMID:23767651

  1. Multiphase integral reacting flow computer code (ICOMFLO): User`s guide

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Petrick, M.

    1997-11-01

    A copyrighted computational fluid dynamics computer code, ICOMFLO, has been developed for the simulation of multiphase reacting flows. The code solves conservation equations for gaseous species and droplets (or solid particles) of various sizes. General conservation laws, expressed by elliptic type partial differential equations, are used in conjunction with rate equations governing the mass, momentum, enthalpy, species, turbulent kinetic energy, and turbulent dissipation. Associated phenomenological submodels of the code include integral combustion, two parameter turbulence, particle evaporation, and interfacial submodels. A newly developed integral combustion submodel replacing an Arrhenius type differential reaction submodel has been implemented to improve numerical convergence and enhance numerical stability. A two parameter turbulence submodel is modified for both gas and solid phases. An evaporation submodel treats not only droplet evaporation but size dispersion. Interfacial submodels use correlations to model interfacial momentum and energy transfer. The ICOMFLO code solves the governing equations in three steps. First, a staggered grid system is constructed in the flow domain. The staggered grid system defines gas velocity components on the surfaces of a control volume, while the other flow properties are defined at the volume center. A blocked cell technique is used to handle complex geometry. Then, the partial differential equations are integrated over each control volume and transformed into discrete difference equations. Finally, the difference equations are solved iteratively by using a modified SIMPLER algorithm. The results of the solution include gas flow properties (pressure, temperature, density, species concentration, velocity, and turbulence parameters) and particle flow properties (number density, temperature, velocity, and void fraction). The code has been used in many engineering applications, such as coal-fired combustors, air

  2. Subsecond pore-scale displacement processes and relaxation dynamics in multiphase flow

    PubMed Central

    Armstrong, Ryan T; Ott, Holger; Georgiadis, Apostolos; Rücker, Maja; Schwing, Alex; Berg, Steffen

    2014-01-01

    With recent advances at X-ray microcomputed tomography (μCT) synchrotron beam lines, it is now possible to study pore-scale flow in porous rock under dynamic flow conditions. The collection of four-dimensional data allows for the direct 3-D visualization of fluid-fluid displacement in porous rock as a function of time. However, even state-of-the-art fast-μCT scans require between one and a few seconds to complete and the much faster fluid movement occurring during that time interval is manifested as imaging artifacts in the reconstructed 3-D volume. We present an approach to analyze the 2-D radiograph data collected during fast-μCT to study the pore-scale displacement dynamics on the time scale of 40 ms which is near the intrinsic time scale of individual Haines jumps. We present a methodology to identify the time intervals at which pore-scale displacement events in the observed field of view occur and hence, how reconstruction intervals can be chosen to avoid fluid-movement-induced reconstruction artifacts. We further quantify the size, order, frequency, and location of fluid-fluid displacement at the millisecond time scale. We observe that after a displacement event, the pore-scale fluid distribution relaxes to (quasi-) equilibrium in cascades of pore-scale fluid rearrangements with an average relaxation time for the whole cascade between 0.5 and 2.0 s. These findings help to identify the flow regimes and intrinsic time and length scales relevant to fractional flow. While the focus of the work is in the context of multiphase flow, the approach could be applied to many different μCT applications where morphological changes occur at a time scale less than that required for collecting a μCT scan. PMID:25745271

  3. FINAL PROJECT REPORT DOE Early Career Principal Investigator Program Project Title: Developing New Mathematical Models for Multiphase Flows Based on a Fundamental Probability Density Function Approach

    SciTech Connect

    Shankar Subramaniam

    2009-04-01

    This final project report summarizes progress made towards the objectives described in the proposal entitled “Developing New Mathematical Models for Multiphase Flows Based on a Fundamental Probability Density Function Approach”. Substantial progress has been made in theory, modeling and numerical simulation of turbulent multiphase flows. The consistent mathematical framework based on probability density functions is described. New models are proposed for turbulent particle-laden flows and sprays.

  4. Multiphase transport: Fundamentals, reactor safety, applications Proceedings of the Multi-Phase Flow and Heat Transfer Symposium-Workshop, Miami Beach, FL, April 16-18, 1979. Vol. 1-5

    SciTech Connect

    Veziroglu, T.N.

    1980-01-01

    The symposium focused on multiphase flow and heat transfer, mathematical modeling, boiling condensation, pressure drops, instabilities, and reactor safety. Papers were presented on gas-liquid flow in pipes, investigation of liquid droplet diffusion in annular mist flow, energy and entropy equations for a dispersed-phase flow, a mathematical model for heat transfer in rocket motor nozzle walls, numerical predictions for film condensation problems using boundary layer equations, and the liquid contribution to heat transfer to dispersed flows and sprays.

  5. Thickness-based adaptive mesh refinement methods for multi-phase flow simulations with thin regions

    SciTech Connect

    Chen, Xiaodong; Yang, Vigor

    2014-07-15

    In numerical simulations of multi-scale, multi-phase flows, grid refinement is required to resolve regions with small scales. A notable example is liquid-jet atomization and subsequent droplet dynamics. It is essential to characterize the detailed flow physics with variable length scales with high fidelity, in order to elucidate the underlying mechanisms. In this paper, two thickness-based mesh refinement schemes are developed based on distance- and topology-oriented criteria for thin regions with confining wall/plane of symmetry and in any situation, respectively. Both techniques are implemented in a general framework with a volume-of-fluid formulation and an adaptive-mesh-refinement capability. The distance-oriented technique compares against a critical value, the ratio of an interfacial cell size to the distance between the mass center of the cell and a reference plane. The topology-oriented technique is developed from digital topology theories to handle more general conditions. The requirement for interfacial mesh refinement can be detected swiftly, without the need of thickness information, equation solving, variable averaging or mesh repairing. The mesh refinement level increases smoothly on demand in thin regions. The schemes have been verified and validated against several benchmark cases to demonstrate their effectiveness and robustness. These include the dynamics of colliding droplets, droplet motions in a microchannel, and atomization of liquid impinging jets. Overall, the thickness-based refinement technique provides highly adaptive meshes for problems with thin regions in an efficient and fully automatic manner.

  6. Multiphase Flow Characterization Using Simultaneous High Resolution Neutron and X-Ray Imaging

    NASA Astrophysics Data System (ADS)

    LaManna, J.; Anovitz, L. M.; Hussey, D. S.; Jacobson, D. L.

    2015-12-01

    Multiphase flow in geologic materials is an important area of research for hydrology and oil recovery. A valuable tool for determining how liquid water and/or hydrocarbons transport through soils and rocks is neutron tomography due to its high sensitivity to hydrogen. This technique allows for the 3D reconstruction of the liquid phase in the sample. In order to resolve the solid phase structure of the sample it is necessary to perform x-ray tomography which often must be conducted at a separate facility from the neutron imaging. When imaging deformable samples or stochastic flow this delay in imaging modes ruins the analysis as the sample is no longer in an identical state. To address this issue and bring a unique capability to NIST, an instrument has been commissioned for the simultaneous imaging with neutrons and x-rays. The new system orients a micro-focus 90 kV x-ray beam 90° to the neutron beam which facilitates rapid dual-mode tomography of samples. Current highest spatial resolutions are 20 μm and 10 μm for the neutron and x-ray detectors, respectively, with upcoming improvements. This presentation will focus on introducing the new system and demonstrating its ability with several cases. Examples of high resolution water uptake and high speed imaging of uptake dynamics will be given.

  7. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling

    SciTech Connect

    Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.

    2009-01-15

    A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.

  8. MODELING COUPLED PROCESSES OF MULTIPHASE FLOW AND HEAT TRANSFER IN UNSATURATED FRACTURED ROCK

    SciTech Connect

    Y. Wu; S. Mukhopadhyay; K. Zhang; G.S. Bodvarsson

    2006-02-28

    A mountain-scale, thermal-hydrologic (TH) numerical model is developed for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository at Yucca Mountain, Nevada, USA. The TH model, consisting of three-dimensional (3-D) representations of the unsaturated zone, is based on the current repository design, drift layout, and thermal loading scenario under estimated current and future climate conditions. More specifically, the TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the most updated, best-estimated input parameters. This mountain-scale TH model simulates the coupled TH processes related to mountain-scale multiphase fluid flow, and evaluates the impact of radioactive waste heat on the hydrogeological system, including thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. For a better description of the ambient geothermal condition of the unsaturated zone system, the TH model is first calibrated against measured borehole temperature data. The ambient temperature calibration provides the necessary surface and water table boundary as well as initial conditions. Then, the TH model is used to obtain scientific understanding of TH processes in the Yucca Mountain unsaturated zone under the designed schedule of repository thermal load.

  9. Modeling of multiphase flow with solidification and chemical reaction in materials processing

    NASA Astrophysics Data System (ADS)

    Wei, Jiuan

    Understanding of multiphase flow and related heat transfer and chemical reactions are the keys to increase the productivity and efficiency in industrial processes. The objective of this thesis is to utilize the computational approaches to investigate the multiphase flow and its application in the materials processes, especially in the following two areas: directional solidification, and pyrolysis and synthesis. In this thesis, numerical simulations will be performed for crystal growth of several III-V and II-VI compounds. The effects of Prandtl and Grashof numbers on the axial temperature profile, the solidification interface shape, and melt flow are investigated. For the material with high Prandtl and Grashof numbers, temperature field and growth interface will be significantly influenced by melt flow, resulting in the complicated temperature distribution and curved interface shape, so it will encounter tremendous difficulty using a traditional Bridgman growth system. A new design is proposed to reduce the melt convection. The geometric configuration of top cold and bottom hot in the melt will dramatically reduce the melt convection. The new design has been employed to simulate the melt flow and heat transfer in crystal growth with large Prandtl and Grashof numbers and the design parameters have been adjusted. Over 90% of commercial solar cells are made from silicon and directional solidification system is the one of the most important method to produce multi-crystalline silicon ingots due to its tolerance to feedstock impurities and lower manufacturing cost. A numerical model is developed to simulate the silicon ingot directional solidification process. Temperature distribution and solidification interface location are presented. Heat transfer and solidification analysis are performed to determine the energy efficiency of the silicon production furnace. Possible improvements are identified. The silicon growth process is controlled by adjusting heating power and

  10. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    SciTech Connect

    Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

  11. Multiphase flow of carbon dioxide and brine in dual porosity carbonates

    NASA Astrophysics Data System (ADS)

    Pentland, Christopher; Oedai, Sjaam; Ott, Holger

    2014-05-01

    The storage of carbon dioxide in subsurface formations presents a challenge in terms of multiphase flow characterisation. Project planning requires an understanding of multiphase flow characteristics such as the relationship between relative permeability and saturation. At present there are only a limited number of relative permeability relations for carbon dioxide-brine fluid systems, most of which are measured on sandstone rocks. In this study coreflood experiments are performed to investigate the relative permeability of carbon dioxide and brine in two dual porosity carbonate systems. Carbon dioxide is injected into the brine saturated rocks in a primary drainage process. The rock fluid system is pre-equilibrated to avoid chemical reactions and physical mass transfer between phases. The pressure drop across the samples, the amount of brine displaced and the saturation distribution within the rocks are measured. The experiments are repeated on the same rocks for the decane-brine fluid system. The experimental data is interpreted by simulating the experiments with a continuum scale Darcy solver. Selected functional representations of relative permeability are investigated, the parameters of which are chosen such that a least squares objective function is minimised (i.e. the difference between experimental observations and simulated response). The match between simulation and measurement is dependent upon the form of the functional representations. The best agreement is achieved with the Corey [Brooks and Corey, 1964] or modified Corey [Masalmeh et al., 2007] functions which best represent the relative permeability of brine at low brine saturations. The relative permeability of carbon dioxide is shown to be lower than the relative permeability of decane over the saturation ranges investigated. The relative permeability of the brine phase is comparable for the two fluid systems. These observations are consistent with the rocks being water-wet. During the experiment

  12. An application of numerical simulation of multiphase flow for the redesign of a mixer agitator in Pb refining process

    NASA Astrophysics Data System (ADS)

    Donizak, J.; Jarosz, P.; Kraszewska, A.; Sarre, P.

    2014-08-01

    The paper presents numerical simulation of multiphase turbulent flow in a mixing crucible unit. Results of simulation were used for redesign of mixer agitator to achieve better performance of the Pb refining process. The simulation is based on Euler-Lagrange description of turbulent multiphase flow with the one way coupling, due to low concentration of solid state particles and significant differences in density of coexisting phases, base metal and particles. Dispersions of solid particles are traced using stochastic-deterministic approach. The developed construction of an agitator has been tested in the industrial Pb refining factory, giving very promising results in comparison with long term statistical data. Duration of unit operations of removal copper and tin was reduced of about 40% together with even better removal efficiency and less energy and reagents consumption.

  13. Interface deformation in low reynolds number multiphase flows: Applications to selected problems in geodynamics

    SciTech Connect

    Gable, C.; Travis, B.J.; O`Connell, R.J.; Stone, H.A.

    1995-06-01

    Flow in the mantle of terrestrial planets produces stresses and topography on the planet`s surface which may allow us to infer the dynamics and evolution of the planet`s -interior. This project is directed towards understanding the relationship between dynamical processes related to buoyancy-driven flow and the observable expression (e.g. earthquakes, surface topography) of the flow. Problems considered include the ascent of mantle plumes and their interaction with compositional discontinuities, the deformation of subducted slabs, and effects of lateral viscosity variations on post-glacial rebound. We find that plumes rising from the lower mantle into a lower-viscosity upper mantle become extended vertically. As the plume spreads beneath the planet`s surface, the dynamic topography changes from a bell-shape to a plateau shape. The topography and surface stresses associated . with surface features called arachnoids, novae and coronae on Venus are consistent with the surface expression of a rising and spreading buoyant volume of fluid. Short wavelength viscosity variations, or sharp variations of lithosphere thickness, have a large effect on surface stresses. This study also considers the interaction and deformation of buoyancy-driven drops and bubbles in low Reynolds number multiphase systems. Applications include bubbles in magmas, the coalescence of liquid iron drops during core formation, and a wide range of industrial applications. Our methodology involves a combination of numerical boundary integral calculations, experiments and analytical work. For example, we find that for deformable drops the effects of deformation result in the vertical alignment of initially horizontally offset drops, thus enhancing the rate of coalescence.

  14. Investigation of Gas and Liquid Multiphase Flow in the Rheinsahl-Heraeus (RH) Reactor by Using the Euler-Euler Approach

    NASA Astrophysics Data System (ADS)

    Chen, Gujun; He, Shengping; Li, Yugang; Guo, Yintao; Wang, Qian

    2016-08-01

    In the present work, a mathematical model was developed to understand the multiphase flow behavior in a Rheinsahl-Heraeus (RH) reactor by using the Euler-Euler approach, and the effects of initial bubble diameter, nonequilibrium expansion of bubble caused by sudden thermal effect and sharp pressure drop, and various interphase forces were considered and clarified. The simulation results of mixing time, liquid circulation rate, and local liquid velocity in RH agree well with the measured results. The result indicates that the initial bubble diameter has a weak impact on the multiphase flow but that the bubble expansion has a tremendous impact on it for an actual RH. Meanwhile, the drag force and turbulent dispersion force strongly influence the multiphase flow, whereas the lift force and virtual mass force only have negligible influence on it. Furthermore, the turbulent dispersion force should be responsible for reasonable prediction of multiphase flow behavior in the RH reactor.

  15. AOI 1— COMPUTATIONAL ENERGY SCIENCES:MULTIPHASE FLOW RESEARCH High-fidelity multi-phase radiation module for modern coal combustion systems

    SciTech Connect

    Modest, Michael

    2013-11-15

    The effects of radiation in particle-laden flows were the object of the present research. The presence of particles increases optical thickness substantially, making the use of the “optically thin” approximation in most cases a very poor assumption. However, since radiation fluxes peak at intermediate optical thicknesses, overall radiative effects may not necessarily be stronger than in gas combustion. Also, the spectral behavior of particle radiation properties is much more benign, making spectral models simpler (and making the assumption of a gray radiator halfway acceptable, at least for fluidized beds when gas radiation is not large). On the other hand, particles scatter radiation, making the radiative transfer equation (RTE) much more di fficult to solve. The research carried out in this project encompassed three general areas: (i) assessment of relevant radiation properties of particle clouds encountered in fluidized bed and pulverized coal combustors, (ii) development of proper spectral models for gas–particulate mixtures for various types of two-phase combustion flows, and (iii) development of a Radiative Transfer Equation (RTE) solution module for such applications. The resulting models were validated against artificial cases since open literature experimental data were not available. The final models are in modular form tailored toward maximum portability, and were incorporated into two research codes: (i) the open-source CFD code OpenFOAM, which we have extensively used in our previous work, and (ii) the open-source multi-phase flow code MFIX, which is maintained by NETL.

  16. A Multiphase Flow in the Antroduodenal Portion of the Gastrointestinal Tract: A Mathematical Model.

    PubMed

    Trusov, P V; Zaitseva, N V; Kamaltdinov, M R

    2016-01-01

    A group of authors has developed a multilevel mathematical model that focuses on functional disorders in a human body associated with various chemical, physical, social, and other factors. At this point, the researchers have come up with structure, basic definitions and concepts of a mathematical model at the "macrolevel" that allow describing processes in a human body as a whole. Currently we are working at the "mesolevel" of organs and systems. Due to complexity of the tasks, this paper deals with only one meso-fragment of a digestive system model. It describes some aspects related to modeling multiphase flow in the antroduodenal portion of the gastrointestinal tract. Biochemical reactions, dissolution of food particles, and motor, secretory, and absorbing functions of the tract are taken into consideration. The paper outlines some results concerning influence of secretory function disorders on food dissolution rate and tract contents acidity. The effect which food density has on inflow of food masses from a stomach to a bowel is analyzed. We assume that the future development of the model will include digestive enzymes and related reactions of lipolysis, proteolysis, and carbohydrates breakdown. PMID:27413393

  17. Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows

    SciTech Connect

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2013-09-08

    Immersed cylindrical tube arrays often are used as heat exchangers in gas-particle fluidized beds. In multiphase computational fluid dynamics (CFD) simulations of large fluidized beds, explicit resolution of small cylinders is computationally infeasible. Instead, the cylinder array may be viewed as an effective porous medium in coarse-grid simulations. The cylinders' influence on the suspension as a whole, manifested as an effective drag force, and on the relative motion between gas and particles, manifested as a correction to the gas-particle drag, must be modeled via suitable sub-grid constitutive relationships. In this work, highly resolved unit-cell simulations of flow around an array of horizontal cylinders, arranged in a staggered configuration, are filtered to construct sub-grid, or `filtered', drag models, which can be implemented in coarse-grid simulations. The force on the suspension exerted by the cylinders is comprised of, as expected, a buoyancy contribution, and a kinetic component analogous to fluid drag on a single cylinder. Furthermore, the introduction of tubes also is found to enhance segregation at the scale of the cylinder size, which, in turn, leads to a reduction in the filtered gas-particle drag.

  18. A Multiphase Flow in the Antroduodenal Portion of the Gastrointestinal Tract: A Mathematical Model

    PubMed Central

    Trusov, P. V.

    2016-01-01

    A group of authors has developed a multilevel mathematical model that focuses on functional disorders in a human body associated with various chemical, physical, social, and other factors. At this point, the researchers have come up with structure, basic definitions and concepts of a mathematical model at the “macrolevel” that allow describing processes in a human body as a whole. Currently we are working at the “mesolevel” of organs and systems. Due to complexity of the tasks, this paper deals with only one meso-fragment of a digestive system model. It describes some aspects related to modeling multiphase flow in the antroduodenal portion of the gastrointestinal tract. Biochemical reactions, dissolution of food particles, and motor, secretory, and absorbing functions of the tract are taken into consideration. The paper outlines some results concerning influence of secretory function disorders on food dissolution rate and tract contents acidity. The effect which food density has on inflow of food masses from a stomach to a bowel is analyzed. We assume that the future development of the model will include digestive enzymes and related reactions of lipolysis, proteolysis, and carbohydrates breakdown. PMID:27413393

  19. Numerical simulation of multiphase flows of CO2 storage in saline aquifers in Daqingzijing oilfield, China

    NASA Astrophysics Data System (ADS)

    Yang, D.

    2010-12-01

    In this paper, according to in-site geological and geophysical data archived of Daqingzijing oilfield, a 3D multiphase flow model based on hydrodynamic trapping mechanism is set up, with the phase interface mechanism proposed. A high-order CE/SE (space-time conservation element and solution element) method coupled with (HPLS) Hybrid level-set method is updated to simulate transport and accumulation of CO2 in saline aquifer formations at the short-term time scales. Results (as shown in Fig.1) illustrate that CO2 distribution is characterized as the belt-shaped zone with direction from west to east due to effects depth, height and physical properties of sand formations. Heterogeneity of the stratigraphy has a dominant control of the evolution of CO2 transport and build-up. After 20 years of injection, CO2 front penetrates 8-9 km away from injection wells. The present work provides a novel approach for simulation of hydrodynamic trapping mechanism for CO2 geological storage in saline aquifers of Songliao Basin of China, which could be a suitable location for a CO2 storage demonstration project. Caption Fig.1 Transport and accumulation of CO2 storage in saline aquifers at different time scales, (a) 1year, (b) 5 years, (c ) 10 years and (d) 20 years after the beginning of injection, respectively. Legend denotes the density (kg/m3) of CO2.

  20. Compressible flow of a multiphase fluid between two vessels. Part 1: Ideal carrier gas

    NASA Astrophysics Data System (ADS)

    Chenoweth, Donald R.; Paolucci, Samuel

    1990-06-01

    The transfer of a multiphase fluid from a high pressure vessel to one initially at lower pressure is investigated. The fluid is composed of two phases which do not undergo any change. The phases consist of an ideal gas, and solid particles (or liquid droplets) having constant density. The mixture is assumed to be stagnant and always perfectly mixed as well as at thermal equilibrium in each constant volume vessel. The fluid also remains homogeneous and at equilibrium while flowing between vessels. The transport properties of the mixture are taken to be zero. One important finding is that the expanding mixture or pseudo-fluid behaves similar to a polytropic Abel-Noble gas. The mixture thermodynamic properties, the end state in each vessel at pressure equilibrium, the critical parameters, and time dependent results are given for the adiabatic and isothermal limiting cases. The results include both initially sonic and initially subsonic transfer. No mathematical restriction is placed on the particle concentration, although some limiting results are given for small particle volume fraction. The mass transferred at adiabatic pressure equilibrium can be significantly less than that when thermal equilibrium is also reached. Furthermore, the adiabatic pressure equilibrium level may not be the same as that obtained at thermal equilibrium, even when all initial temperatures are the same. Finally, it is shown that the transfer times can be very slow compared to those of a pure gas due to the large reduction possible in the mixture sound speed.

  1. Entropic lattice Boltzmann method for multiphase flows: Fluid-solid interfaces

    NASA Astrophysics Data System (ADS)

    Mazloomi M., Ali; Chikatamarla, Shyam S.; Karlin, Iliya V.

    2015-08-01

    The recently introduced entropic lattice Boltzmann model (ELBM) for multiphase flows [A. Mazloomi M., S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. Lett. 114, 174502 (2015), 10.1103/PhysRevLett.114.174502] is extended to the simulation of dynamic fluid-solid interface problems. The thermodynamically consistent, nonlinearly stable ELBM together with a polynomial representation of the equation of state enables us to investigate the dynamics of the contact line in a wide range of applications, from capillary filling to liquid drop impact onto a flat surfaces with different wettability. The static interface behavior is tested by means of the liquid column in a channel to verify the Young-Laplace law. The numerical results of a capillary filling problem in a channel with wettability gradient show an excellent match with the existing analytical solution. Simulations of drop impact onto both wettable and nonwettable surfaces show that the ELBM reproduces the experimentally observed drop behavior in a quantitative manner. Results reported herein demonstrate that the present model is a promising alternative for studying the vapor-liquid-solid interface dynamics.

  2. Unstructured LES of Reacting Multiphase Flows in Realistic Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Ham, Frank; Apte, Sourabh; Iaccarino, Gianluca; Wu, Xiao-Hua; Herrmann, Marcus; Constantinescu, George; Mahesh, Krishnan; Moin, Parviz

    2003-01-01

    As part of the Accelerated Strategic Computing Initiative (ASCI) program, an accurate and robust simulation tool is being developed to perform high-fidelity LES studies of multiphase, multiscale turbulent reacting flows in aircraft gas turbine combustor configurations using hybrid unstructured grids. In the combustor, pressurized gas from the upstream compressor is reacted with atomized liquid fuel to produce the combustion products that drive the downstream turbine. The Large Eddy Simulation (LES) approach is used to simulate the combustor because of its demonstrated superiority over RANS in predicting turbulent mixing, which is central to combustion. This paper summarizes the accomplishments of the combustor group over the past year, concentrating mainly on the two major milestones achieved this year: 1) Large scale simulation: A major rewrite and redesign of the flagship unstructured LES code has allowed the group to perform large eddy simulations of the complete combustor geometry (all 18 injectors) with over 100 million control volumes; 2) Multi-physics simulation in complex geometry: The first multi-physics simulations including fuel spray breakup, coalescence, evaporation, and combustion are now being performed in a single periodic sector (1/18th) of an actual Pratt & Whitney combustor geometry.

  3. Computational Fluid Dynamics (CFD) Simulations on Multiphase Flow in Mechanically Agitated Seed Precipitation Tank

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-Liang; Liu, Yan; Zhang, Ting-An; Gu, Songqing; Zhang, Chao

    2014-07-01

    The large-scale mechanically agitated tank has been widely used in the decomposition process of sodium aluminate solution in the alumina industry. The mixing process in three types of seed precipitation tanks (Robin, Ekato, and improved Ekato) stirred with multiple impellers was compared by using computational fluid dynamics, respectively. The flow field, solid distribution, mixing time, and power consumption were numerically simulated by adopting a Eulerian granular multiphase model and a standard k- ɛ turbulence model. A steady multiple reference frame approach was used to represent impeller rotation. Compared with the Robin tank, the Ekato tank can generate an axial circulation loop, which is better for fluid mixing and solid suspension; meanwhile about half of the power can be saved. With future improvements in the Ekato tank, the fluid mixing and exchanging can be enhanced under the interaction of a lengthened Intermig impeller coupled with sloped baffles. With a little increase in power consumption, the maximum of the relative solid concentration difference in the whole tank can be maintained within 3%, which meets the design requirement.

  4. Subsurface Transport Over Reactive Multiphases (STORM): A general, coupled, nonisothermal multiphase flow, reactive transport, and porous medium alteration simulator, Version 2 user's guide

    SciTech Connect

    DH Bacon; MD White; BP McGrail

    2000-03-07

    The Hanford Site, in southeastern Washington State, has been used extensively to produce nuclear materials for the US strategic defense arsenal by the Department of Energy (DOE) and its predecessors, the US Atomic Energy Commission and the US Energy Research and Development Administration. A large inventory of radioactive and mixed waste has accumulated in 177 buried single- and double shell tanks. Liquid waste recovered from the tanks will be pretreated to separate the low-activity fraction from the high-level and transuranic wastes. Vitrification is the leading option for immobilization of these wastes, expected to produce approximately 550,000 metric tons of Low Activity Waste (LAW) glass. This total tonnage, based on nominal Na{sub 2}O oxide loading of 20% by weight, is destined for disposal in a near-surface facility. Before disposal of the immobilized waste can proceed, the DOE must approve a performance assessment, a document that described the impacts, if any, of the disposal facility on public health and environmental resources. Studies have shown that release rates of radionuclides from the glass waste form by reaction with water determine the impacts of the disposal action more than any other independent parameter. This report describes the latest accomplishments in the development of a computational tool, Subsurface Transport Over Reactive Multiphases (STORM), Version 2, a general, coupled non-isothermal multiphase flow and reactive transport simulator. The underlying mathematics in STORM describe the rate of change of the solute concentrations of pore water in a variably saturated, non-isothermal porous medium, and the alteration of waste forms, packaging materials, backfill, and host rocks.

  5. Coupling of geochemical and multiphase flow processes for validation of the MUFITS reservoir simulator against TOUGHREACT

    NASA Astrophysics Data System (ADS)

    De Lucia, Marco; Kempka, Thomas; Afanasyev, Andrey; Melnik, Oleg; Kühn, Michael

    2016-04-01

    Coupled reactive transport simulations, especially in heterogeneous settings considering multiphase flow, are extremely time consuming and suffer from significant numerical issues compared to purely hydrodynamic simulations. This represents a major hurdle in the assessment of geological subsurface utilization, since it constrains the practical application of reactive transport modelling to coarse spatial discretization or oversimplified geological settings. In order to overcome such limitations, De Lucia et al. [1] developed and validated a one-way coupling approach between geochemistry and hydrodynamics, which is particularly well suited for CO2 storage simulations, while being of general validity. In the present study, the models used for the validation of the one-way coupling approach introduced by De Lucia et al. (2015), and originally performed with the TOUGHREACT simulator, are transferred to and benchmarked against the multiphase reservoir simulator MUFITS [2]. The geological model is loosely inspired by an existing CO2 storage site. Its grid comprises 2,950 elements enclosed in a single layer, but reflecting a realistic three-dimensional anticline geometry. For the purpose of this comparison, homogeneous and heterogeneous scenarios in terms of porosity and permeability were investigated. In both cases, the results of the MUFITS simulator are in excellent agreement with those produced with the fully-coupled TOUGHREACT simulator, while profiting from significantly higher computational performance. This study demonstrates how a computationally efficient simulator such as MUFITS can be successfully included in a coupled process simulation framework, and also suggests ameliorations and specific strategies for the coupling of chemical processes with hydrodynamics and heat transport, aiming at tackling geoscientific problems beyond the storage of CO2. References [1] De Lucia, M., Kempka, T., and Kühn, M. A coupling alternative to reactive transport simulations

  6. Ensemble phase averaging equations for multiphase flows in porous media, part I: the bundle-of-tubes model

    SciTech Connect

    Yang, Dali; Zhang, Duan; Currier, Robert

    2008-01-01

    A bundle-of-tubes construct is used as a model system to study ensemble averaged equations for multiphase flow in a porous material. Momentum equations for the fluid phases obtained from the method are similar to Darcy's law, but with additional terms. We study properties of the additional terms, and the conditions under which the averaged equations can be approximated by the diffusion model or the extended Darcy's law as often used in models for multiphase flows in porous media. Although the bundle-of-tubes model is perhaps the simplest model for a porous material, the ensemble averaged equation technique developed in this paper assumes the very same form in more general treatments described in Part 2 of the present work (Zhang 2009). Any model equation system intended for the more general cases must be understood and tested first using simple models. The concept of ensemble phase averaging is dissected here in physical terms, without involved mathematics through its application to the idealized bundle-of-tubes model for multiphase flow in porous media.

  7. Multiphase flow modeling of a crude-oil spill site with a bimodal permeability distribution

    USGS Publications Warehouse

    Dillard, L.A.; Essaid, H.I.; Herkelrath, W.N.

    1997-01-01

    Fluid saturation, particle-size distribution, and porosity measurements were obtained from 269 core samples collected from six boreholes along a 90-m transect at a subregion of a crude-oil spill site, the north pool, near Bemidji, Minnesota. The oil saturation data, collected 11 years after the spill, showed an irregularly shaped oil body that appeared to be affected by sediment spatial variability. The particle-size distribution data were used to estimate the permeability (k) and retention curves for each sample. An additional 344 k estimates were obtained from samples previously collected at the north pool. The 613 k estimates were distributed bimodal log normally with the two population distributions corresponding to the two predominant lithologies: a coarse glacial outwash deposit and fine-grained interbedded lenses. A two-step geostatistical approach was used to generate a conditioned realization of k representing the bimodal heterogeneity. A cross-sectional multiphase flow model was used to simulate the flow of oil and water in the presence of air along the north pool transect for an 11-year period. The inclusion of a representation of the bimodal aquifer heterogeneity was crucial for reproduction of general features of the observed oil body. If the bimodal heterogeneity was characterized, hysteresis did not have to be incorporated into the model because a hysteretic effect was produced by the sediment spatial variability. By revising the relative permeability functional relation, an improved reproduction of the observed oil saturation distribution was achieved. The inclusion of water table fluctuations in the model did not significantly affect the simulated oil saturation distribution.

  8. CFD of mixing of multi-phase flow in a bioreactor using population balance model.

    PubMed

    Sarkar, Jayati; Shekhawat, Lalita Kanwar; Loomba, Varun; Rathore, Anurag S

    2016-05-01

    Mixing in bioreactors is known to be crucial for achieving efficient mass and heat transfer, both of which thereby impact not only growth of cells but also product quality. In a typical bioreactor, the rate of transport of oxygen from air is the limiting factor. While higher impeller speeds can enhance mixing, they can also cause severe cell damage. Hence, it is crucial to understand the hydrodynamics in a bioreactor to achieve optimal performance. This article presents a novel approach involving use of computational fluid dynamics (CFD) to model the hydrodynamics of an aerated stirred bioreactor for production of a monoclonal antibody therapeutic via mammalian cell culture. This is achieved by estimating the volume averaged mass transfer coefficient (kL a) under varying conditions of the process parameters. The process parameters that have been examined include the impeller rotational speed and the flow rate of the incoming gas through the sparger inlet. To undermine the two-phase flow and turbulence, an Eulerian-Eulerian multiphase model and k-ε turbulence model have been used, respectively. These have further been coupled with population balance model to incorporate the various interphase interactions that lead to coalescence and breakage of bubbles. We have successfully demonstrated the utility of CFD as a tool to predict size distribution of bubbles as a function of process parameters and an efficient approach for obtaining optimized mixing conditions in the reactor. The proposed approach is significantly time and resource efficient when compared to the hit and trial, all experimental approach that is presently used. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:613-628, 2016.

  9. CFD of mixing of multi-phase flow in a bioreactor using population balance model.

    PubMed

    Sarkar, Jayati; Shekhawat, Lalita Kanwar; Loomba, Varun; Rathore, Anurag S

    2016-05-01

    Mixing in bioreactors is known to be crucial for achieving efficient mass and heat transfer, both of which thereby impact not only growth of cells but also product quality. In a typical bioreactor, the rate of transport of oxygen from air is the limiting factor. While higher impeller speeds can enhance mixing, they can also cause severe cell damage. Hence, it is crucial to understand the hydrodynamics in a bioreactor to achieve optimal performance. This article presents a novel approach involving use of computational fluid dynamics (CFD) to model the hydrodynamics of an aerated stirred bioreactor for production of a monoclonal antibody therapeutic via mammalian cell culture. This is achieved by estimating the volume averaged mass transfer coefficient (kL a) under varying conditions of the process parameters. The process parameters that have been examined include the impeller rotational speed and the flow rate of the incoming gas through the sparger inlet. To undermine the two-phase flow and turbulence, an Eulerian-Eulerian multiphase model and k-ε turbulence model have been used, respectively. These have further been coupled with population balance model to incorporate the various interphase interactions that lead to coalescence and breakage of bubbles. We have successfully demonstrated the utility of CFD as a tool to predict size distribution of bubbles as a function of process parameters and an efficient approach for obtaining optimized mixing conditions in the reactor. The proposed approach is significantly time and resource efficient when compared to the hit and trial, all experimental approach that is presently used. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:613-628, 2016. PMID:26850863

  10. Pore-scale studies of multiphase flow and reaction involving CO2 sequestration in geologic formations

    NASA Astrophysics Data System (ADS)

    Kang, Q.; Wang, M.; Lichtner, P. C.

    2008-12-01

    In geologic CO2 sequestration, pore-scale interfacial phenomena ultimately govern the key processes of fluid mobility, chemical transport, adsorption, and reaction. However, spatial heterogeneity at the pore scale cannot be resolved at the continuum scale, where averaging occurs over length scales much larger than typical pore sizes. Natural porous media, such as sedimentary rocks and other geological media encountered in subsurface formations, are inherently heterogeneous. This pore-scale heterogeneity can produce variabilities in flow, transport, and reaction processes that take place within a porous medium, and can result in spatial variations in fluid velocity, aqueous concentrations, and reaction rates. Consequently, the unresolved spatial heterogeneity at the pore scale may be important for reactive transport modeling at the larger scale. In addition, current continuum models of surface complexation reactions ignore a fundamental property of physical systems, namely conservation of charge. Therefore, to better understand multiphase flow and reaction involving CO2 sequestration in geologic formations, it is necessary to quantitatively investigate the influence of the pore-scale heterogeneity on the emergent behavior at the field scale. We have applied the lattice Boltzmann method to simulating the injection of CO2 saturated brine or supercritical CO2 into geological formations at the pore scale. Multiple pore-scale processes, including advection, diffusion, homogeneous reactions among multiple aqueous species, heterogeneous reactions between the aqueous solution and minerals, ion exchange and surface complexation, as well as changes in solid and pore geometry are all taken into account. The rich pore scale information will provide a basis for upscaling to the continuum scale.

  11. Inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows

    NASA Astrophysics Data System (ADS)

    Ling, Y.; Balachandar, S.; Parmar, M.

    2016-03-01

    The present paper addresses important fundamental issues of inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows through scaling analysis. In typical point-particle or two-fluid approaches, the fluid motion and convective heat transfer at the particle scale are not resolved and the momentum and energy coupling between fluid and particles are provided by proper closure models. By examining the kinetic energy transfer due to the coupling forces from the macroscale to microscale fluid motion, closure models are obtained for the contributions of the coupling forces to the energy coupling. Due to the inviscid origin of the added-mass force, its contribution to the microscale kinetic energy does not contribute to dissipative transfer to fluid internal energy as was done by the quasi-steady force. Time scale analysis shows that when the particle is larger than a critical diameter, the diffusive-unsteady kernel decays at a time scale that is smaller than the Kolmogorov time scale. As a result, the computationally costly Basset-like integral form of diffusive-unsteady heat transfer can be simplified to a non-integral form. Conventionally, the fluid-to-particle volumetric heat capacity ratio is used to evaluate the relative importance of the unsteady heat transfer to the energy balance of the particles. Therefore, for gas-particle flows, where the fluid-to-particle volumetric heat capacity ratio is small, unsteady heat transfer is usually ignored. However, the present scaling analysis shows that for small fluid-to-particle volumetric heat capacity ratio, the importance of the unsteady heat transfer actually depends on the ratio between the particle size and the Kolmogorov scale. Furthermore, the particle mass loading multiplied by the heat capacity ratio is usually used to estimate the importance of the thermal two-way coupling effect. Through scaling argument, improved estimates are established for the energy coupling parameters of each

  12. Subsurface Multiphase Flow and Multicomponent Reactive Transport Modeling using High-Performance Computing

    SciTech Connect

    Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan

    2007-08-01

    Numerical modeling has become a critical tool to the Department of Energy for evaluating the environmental impact of alternative energy sources and remediation strategies for legacy waste sites. Unfortunately, the physical and chemical complexity of many sites overwhelms the capabilities of even most “state of the art” groundwater models. Of particular concern are the representation of highly-heterogeneous stratified rock/soil layers in the subsurface and the biological and geochemical interactions of chemical species within multiple fluid phases. Clearly, there is a need for higher-resolution modeling (i.e. more spatial, temporal, and chemical degrees of freedom) and increasingly mechanistic descriptions of subsurface physicochemical processes. We present research being performed in the development of PFLOTRAN, a parallel multiphase flow and multicomponent reactive transport model. Written in Fortran90, PFLOTRAN is founded upon PETSc data structures and solvers and has exhibited impressive strong scalability on up to 4000 processors on the ORNL Cray XT3. We are employing PFLOTRAN in the simulation of uranium transport at the Hanford 300 Area, a contaminated site of major concern to the Department of Energy, the State of Washington, and other government agencies where overly-simplistic historical modeling erroneously predicted decade removal times for uranium by ambient groundwater flow. By leveraging the billions of degrees of freedom available through high-performance computation using tens of thousands of processors, we can better characterize the release of uranium into groundwater and its subsequent transport to the Columbia River, and thereby better understand and evaluate the effectiveness of various proposed remediation strategies.

  13. Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale

    SciTech Connect

    Chang, Y.C.; Mani, V.; Mohanty, K.K.

    1997-08-01

    Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.

  14. On the Effective Continuum Method for Modeling MultiphaseFlow, Multicomponent Transport and Heat Transfer in FracturedRock

    SciTech Connect

    Wu, Yu-Shu

    1999-01-01

    Flow and transport through fractured porous media occurs in many subsurface systems and has received considerable attention in recent years due to the importance in the areas of underground natural resource recovery, waste storage, and environmental remediation scheme. Among the methods of handling fracture/matrix flow and transport through geological media, the effective continuum method (ECM) has been widely used, and misused in some cases, because of its simplicity in terms of data requirements and computational efficiency. This paper presents a rigorous, generalized effective continuum formulation, which has been implemented into the TOUGH2 code (Pruess, 1991) for modeling multiphase, multicomponent, non-isothermal flow and transport in fractured rocks. Also included in the paper are discussions of the conditions under which the ECM approach applies and the procedures for evaluating the effective parameters for both flow and transport simulations. Three application examples, one multiphase flow, one heat flow and one chemical transport problem, are given to demonstrate the usefulness of the ECM method.

  15. Multiphase Fluid Flow and Multicomponent Reactive Transport at the Hanford SX Tank Farm

    SciTech Connect

    Yabusaki, Steven B.

    2002-03-01

    In the next five years, critical decisions on the future disposition of wastes on the Hanford Site will be made: * barriers to control recharge at the ground surface,* procedures for retrieval and stabilization of tank waste, and* remediation of contaminated sediments.These decisions will be based, in part, on model predictions of contaminant transport in the vadose zone. Our investigation focuses on high-level radioactive waste tanks in the SX Tank Farm in the 200 West Area of the Hanford Site. The historical SX tank wastes were the hottest, highest pH, highest ionic strength, highest aluminum wastes in Hanford single-shell tanks (SST); 10 of these tanks are confirmed or suspected leakers. Over the last two years, an integrated program of scientific and engineering study has been directed at the SX tank farm, including (1) laboratory experiments on waste-sediment interactions, (2) field experiments on the migration of dense, hypersaline solutions, (3) estimates of historical tank leak source-terms, (4) characterization of hydrostratigraphic units, and (5) physical and chemical analyses of soil samples from the SX tank farm. In this presentation, we describe how these disparate data sets have been used to identify detailed process models and parameterizations that are incorporated into simulators of nonisothermal multiphase fluid flow and multicomponent reactive transport. This modeling framework provides a testbed to systematically assess the appropriateness of the identified process representations in the context of site-specific, field-scale properties, and more importantly, observed historical and contemporary behaviors (e.g., hydrology, chemistry). The ultimate goal is to provide a technically defensible basis for the prediction of long-term contaminant behavior. An important technological issue in the comprehensively detailed modeling approach is addressing the computationally intensive calculations that are required.

  16. Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media

    NASA Astrophysics Data System (ADS)

    Meakin, Paul; Tartakovsky, Alexandre M.

    2009-07-01

    In the subsurface, fluids play a critical role by transporting dissolved minerals, colloids, and contaminants (sometimes over long distances); by mediating dissolution and precipitation processes; and by enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks, and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well-developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone; water/oil, water/gas, gas/oil, and water/oil/gas in hydrocarbon reservoirs; water/air/nonaqueous phase liquids (nonaqueous phase liquids/dense nonaqueous phase liquids) in contaminated vadose zone systems; and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines and their impact on dynamic contact angles must also be taken into account and coupled with the fluid flow. Here we review the methods that are currently being used to simulate pore-scale multiphase fluid flow and reactive transport in fractured and porous media. After the introduction, the review begins with an overview of the fundamental physics of multiphase fluids flow followed by a more detailed discussion of the complex dynamic behavior of contact lines and contact angles, an important barrier to accurate pore-scale modeling and simulation. The main part of the review focuses on five different approaches: pore network models, lattice gas and lattice Boltzmann methods, Monte Carlo methods, particle methods (molecular dynamics, dissipative particle dynamics, and smoothed particle hydrodynamics), and traditional grid-based computational fluid dynamics coupled with interface tracking and a contact angle model. Finally, the review closes with a

  17. An application of miniscale experiments on Earth to refine microgravity analysis of adiabatic multiphase flow in space

    NASA Technical Reports Server (NTRS)

    Rothe, Paul H.; Martin, Christine; Downing, Julie

    1994-01-01

    Adiabatic two-phase flow is of interest to the design of multiphase fluid and thermal management systems for spacecraft. This paper presents original data and unifies existing data for capillary tubes as a step toward assessing existing multiphase flow analysis and engineering software. Comparisons of theory with these data once again confirm the broad accuracy of the theory. Due to the simplicity and low cost of the capillary tube experiments, which were performed on earth, we were able to closely examine for the first time a flow situation that had not previously been examined appreciably by aircraft tests. This is the situation of a slug flow at high quality, near transition to annular flow. Our comparison of software calculations with these data revealed overprediction of pipeline pressure drop by up to a factor of three. In turn, this finding motivated a reexamination of the existing theory, and then development of a new analytical and is in far better agreement with the data. This sequence of discovery illustrates the role of inexpensive miniscale modeling on earth to anticipate microgravity behavior in space and to complete and help define needs for aircraft tests.

  18. Computational Flow Modeling of Hydrodynamics in Multiphase Trickle-Bed Reactors

    NASA Astrophysics Data System (ADS)

    Lopes, Rodrigo J. G.; Quinta-Ferreira, Rosa M.

    2008-05-01

    This study aims to incorporate most recent multiphase models in order to investigate the hydrodynamic behavior of a TBR in terms of pressure drop and liquid holdup. Taking into account transport phenomena such as mass and heat transfer, an Eulerian k-fluid model was developed resulting from the volume averaging of the continuity and momentum equations and solved for a 3D representation of the catalytic bed. Computational fluid dynamics (CFD) model predicts hydrodynamic parameters quite well if good closures for fluid/fluid and fluid/particle interactions are incorporated in the multiphase model. Moreover, catalytic performance is investigated with the catalytic wet oxidation of a phenolic pollutant.

  19. Numerical Modeling of Multiphase Fluid Flow in Ore-Forming Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Weis, P.; Driesner, T.; Coumou, D.; Heinrich, C. A.

    2007-12-01

    Two coexisting fluid phases - a variably saline liquid and a vapor phase - are ubiquitous in ore-forming and other hydrothermal systems. Understanding the dynamics of phase separation and the distinct physical and chemical evolution of the two fluids probably plays a key role in generating different ore deposit types, e.g. porphyry type, high and low sulfidation Cu-Mo-Au deposits. To this end, processes within hydrothermal systems have been studied with a refined numerical model describing fluid flow in transient porous media (CSP~5.0). The model is formulated on a mass, energy and momentum conserving finite-element-finite-volume (FEFV) scheme and is capable of simulating multiphase flow of NaCl-H20 fluids. Fluid properties are computed from an improved equation of state (SOWAT~2.0). It covers conditions with temperatures of up to 1000 degrees~C, pressures of up to 500 MPa, and fluid salinities of 0~to 100%~NaCl. In particular, the new set-up allows for a more accurate description of fluid phase separation during boiling of hydrothermal fluids into a vapor and a brine phase. The geometric flexibility of the FEFV-meshes allows for investigations of a large variety of geological settings, ranging from ore-forming processes in magmatic hydrothermal system to the dynamics of black smokers at mid-ocean ridges. Simulations demonstrated that hydrothermal convection patterns above cooling plutons are primarily controlled by the system-scale permeability structure. In porphyry systems, high fluid pressures develop in a stock rising from the magma chamber which can lead to rock failure and, eventually, an increase in permeability due to hydrofracturing. Comparisons of the thermal evolution as inferred from modeling studies with data from fluid inclusion studies of the Pb-Zn deposits of Madan, Bulgaria are in a strikingly good agreement. This indicates that cross-comparisons of field observations, analytical data and numerical simulations will become a powerful tool towards a

  20. A novel heterogeneous algorithm to simulate multiphase flow in porous media on multicore CPU-GPU systems

    NASA Astrophysics Data System (ADS)

    McClure, J. E.; Prins, J. F.; Miller, C. T.

    2014-07-01

    Multiphase flow implementations of the lattice Boltzmann method (LBM) are widely applied to the study of porous medium systems. In this work, we construct a new variant of the popular “color” LBM for two-phase flow in which a three-dimensional, 19-velocity (D3Q19) lattice is used to compute the momentum transport solution while a three-dimensional, seven velocity (D3Q7) lattice is used to compute the mass transport solution. Based on this formulation, we implement a novel heterogeneous GPU-accelerated algorithm in which the mass transport solution is computed by multiple shared memory CPU cores programmed using OpenMP while a concurrent solution of the momentum transport is performed using a GPU. The heterogeneous solution is demonstrated to provide speedup of 2.6× as compared to multi-core CPU solution and 1.8× compared to GPU solution due to concurrent utilization of both CPU and GPU bandwidths. Furthermore, we verify that the proposed formulation provides an accurate physical representation of multiphase flow processes and demonstrate that the approach can be applied to perform heterogeneous simulations of two-phase flow in porous media using a typical GPU-accelerated workstation.

  1. Three Dimensional Simulations of Multiphase Flows Using a Lattice Boltzmann Method Suitable for High Density Ratios - 12126

    SciTech Connect

    Gokaltun, Seckin; McDaniel, Dwayne; Roelant, David

    2012-07-01

    Multiphase flows involving gas and liquid phases can be observed in engineering operations at various Department of Energy sites, such as mixing of slurries using pulsed-air mixers and hydrogen gas generation in liquid waste tanks etc. The dynamics of the gas phase in the liquid domain play an important role in the mixing effectiveness of the pulsed-air mixers or in the level of gas pressure build-up in waste tanks. To understand such effects, computational fluid dynamics methods (CFD) can be utilized by developing a three-dimensional computerized multiphase flow model that can predict accurately the behavior of gas motion inside liquid-filled tanks by solving the governing mathematical equations that represent the physics of the phenomena. In this paper, such a CFD method, lattice Boltzmann method (LBM), is presented that can model multiphase flows accurately and efficiently. LBM is favored over traditional Navier-Stokes based computational models since interfacial forces are handled more effectively in LBM. The LBM is easier to program, more efficient to solve on parallel computers, and has the ability to capture the interface between different fluid phases intrinsically. The LBM used in this paper can solve for the incompressible and viscous flow field in three dimensions, while at the same time, solve the Cahn-Hillard equation to track the position of the gas-liquid interface specifically when the density and viscosity ratios between the two fluids are high. This feature is of primary importance since the previous LBM models proposed for multiphase flows become unstable when the density ratio is larger than 10. The ability to provide stable and accurate simulations at large density ratios becomes important when the simulation case involves fluids such as air and water with a density ratio around 1000 that are common to many engineering problems. In order to demonstrate the capability of the 3D LBM method at high density ratios, a static bubble simulation is

  2. The multiphase flow system used in exploiting depleted reservoirs: water-based Micro-bubble drilling fluid

    NASA Astrophysics Data System (ADS)

    Li-hui, Zheng; Xiao-qing, He; Li-xia, Fu; Xiang-chun, Wang

    2009-02-01

    Water-based micro-bubble drilling fluid, which is used to exploit depleted reservoirs, is a complicated multiphase flow system that is composed of gas, water, oil, polymer, surfactants and solids. The gas phase is separate from bulk water by two layers and three membranes. They are "surface tension reducing membrane", "high viscosity layer", "high viscosity fixing membrane", "compatibility enhancing membrane" and "concentration transition layer of liner high polymer (LHP) & surfactants" from every gas phase centre to the bulk water. "Surface tension reducing membrane", "high viscosity layer" and "high viscosity fixing membrane" bond closely to pack air forming "air-bag", "compatibility enhancing membrane" and "concentration transition layer of LHP & surfactants" absorb outside "air-bag" to form "incompact zone". From another point of view, "air-bag" and "incompact zone" compose micro-bubble. Dynamic changes of "incompact zone" enable micro-bubble to exist lonely or aggregate together, and lead the whole fluid, which can wet both hydrophilic and hydrophobic surface, to possess very high viscosity at an extremely low shear rate but to possess good fluidity at a higher shear rate. When the water-based micro-bubble drilling fluid encounters leakage zones, it will automatically regulate the sizes and shapes of the bubbles according to the slot width of fracture, the height of cavern as well as the aperture of openings, or seal them by making use of high viscosity of the system at a very low shear rate. Measurements of the rheological parameters indicate that water-based micro-bubble drilling fluid has very high plastic viscosity, yield point, initial gel, final gel and high ratio of yield point and plastic viscosity. All of these properties make the multiphase flow system meet the requirements of petroleum drilling industry. Research on interface between gas and bulk water of this multiphase flow system can provide us with information of synthesizing effective agents to

  3. Modeling GPR data to interpret porosity and DNAPL saturations for calibration of a 3-D multiphase flow simulation

    USGS Publications Warehouse

    Sneddon, Kristen W.; Powers, Michael H.; Johnson, Raymond H.; Poeter, Eileen P.

    2002-01-01

    Dense nonaqueous phase liquids (DNAPLs) are a pervasive and persistent category of groundwater contamination. In an effort to better understand their unique subsurface behavior, a controlled and carefully monitored injection of PCE (perchloroethylene), a typical DNAPL, was performed in conjunction with the University of Waterloo at Canadian Forces Base Borden in 1991. Of the various geophysical methods used to monitor the migration of injected PCE, the U.S. Geological Survey collected 500-MHz ground penetrating radar (GPR) data. These data are used in determining calibration parameters for a multiphase flow simulation. GPR data were acquired over time on a fixed two-dimensional surficial grid as the DNAPL was injected into the subsurface. Emphasis is on the method of determining DNAPL saturation values from this time-lapse GPR data set. Interactive full-waveform GPR modeling of regularized field traces resolves relative dielectric permittivity versus depth profiles for pre-injection and later-time data. Modeled values are end members in recursive calculations of the Bruggeman-Hanai-Sen (BHS) mixing formula, yielding interpreted pre-injection porosity and post-injection DNAPL saturation values. The resulting interpreted physical properties of porosity and DNAPL saturation of the Borden test cell, defined on a grid spacing of 50 cm with 1-cm depth resolution, are used as observations for calibration of a 3-D multiphase flow simulation. Calculated values of DNAPL saturation in the subsurface at 14 and 22 hours after the start of injection, from both the GPR and the multiphase flow modeling, are interpolated volumetrically and presented for visual comparison.

  4. Insights into the use of time-lapse GPR data as observations for inverse multiphase flow simulations of DNAPL migration

    USGS Publications Warehouse

    Johnson, R.H.; Poeter, E.P.

    2007-01-01

    Perchloroethylene (PCE) saturations determined from GPR surveys were used as observations for inversion of multiphase flow simulations of a PCE injection experiment (Borden 9??m cell), allowing for the estimation of optimal bulk intrinsic permeability values. The resulting fit statistics and analysis of residuals (observed minus simulated PCE saturations) were used to improve the conceptual model. These improvements included adjustment of the elevation of a permeability contrast, use of the van Genuchten versus Brooks-Corey capillary pressure-saturation curve, and a weighting scheme to account for greater measurement error with larger saturation values. A limitation in determining PCE saturations through one-dimensional GPR modeling is non-uniqueness when multiple GPR parameters are unknown (i.e., permittivity, depth, and gain function). Site knowledge, fixing the gain function, and multiphase flow simulations assisted in evaluating non-unique conceptual models of PCE saturation, where depth and layering were reinterpreted to provide alternate conceptual models. Remaining bias in the residuals is attributed to the violation of assumptions in the one-dimensional GPR interpretation (which assumes flat, infinite, horizontal layering) resulting from multidimensional influences that were not included in the conceptual model. While the limitations and errors in using GPR data as observations for inverse multiphase flow simulations are frustrating and difficult to quantify, simulation results indicate that the error and bias in the PCE saturation values are small enough to still provide reasonable optimal permeability values. The effort to improve model fit and reduce residual bias decreases simulation error even for an inversion based on biased observations and provides insight into alternate GPR data interpretations. Thus, this effort is warranted and provides information on bias in the observation data when this bias is otherwise difficult to assess. ?? 2006 Elsevier B

  5. A sectional coupling approach for the simulation of multi-phase reacting flow in a bent reactor

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.; Petrick, M.

    1996-04-01

    Multi-phase reacting flows of a bent fluidized catalytic cracking (FCC) reactor have been simulated using the ICRKFLO code. A new sectional coupling approach has been developed to handle the complex geometry, which divides the bent reactor into two sections and computations are performed for the two sections successively. The computational results show that the ICRKFLO incorporated with the new sectional coupling approach can predict product yields very well compared with experimental data and can be used to identify critical processes and parameters which may be modified to improve the quality and quantity of the FCC products.

  6. Rugged Energy Landscapes in Multiphase Porous Media Flow: A Discrete-Domain Description

    NASA Astrophysics Data System (ADS)

    Cueto-Felgueroso, L.; Juanes, R.

    2015-12-01

    Immiscible displacements in porous media involve a complex sequence of pore-scale events, from the smooth, reversible displacement of interfaces to abrupt interfacial reconfigurations and rapid pore invasion cascades. Discontinuous changes in pressure or saturation have been referred to as Haines jumps, and they emerge as a key mechanism to understand the origin of hysteresis in porous media flow. Hysteresis persists at the many-pore scale: when multiple cycles of drainage and imbibition of a porous sample are conducted, a dense hysteresis diagram emerges. The interpretation of hysteresis as a consequence of irreversible transitions and multistability is at the heart of early hysteresis models, and in recent experiments, and points to an inherently non-equilibrium behavior. For a given volume fraction of fluids occupying the pore space, many stable configurations are possible, due to the tortuous network of nonuniform pores and throats that compose the porous medium, and to complex wetting and capillary transitions. Multistability indicates that porous media systems exhibit rugged energy landscapes, where the system may remain pinned at local energy minima for long times. We address the question of developing a zero-dimensional model that inherits the path-dependence and `'bursty'' behavior of immiscible displacements, and propose a discrete-domain model that captures the role of metastability and local equilibria in the origin of hysteresis. We describe the porous medium and fluid system as a discrete set of weakly connected, multistable compartments, charaterized by a unique free energy function. This description does not depend explicitly on past saturations, turning points, or drainage/imbibition labels. The system behaves hysteretically, and we rationalize its behavior as sweeping a complex metastability diagram, with dissipation arising from discrete switches among metastable branches. The hysteretic behavior of the pressure-saturation curve is controlled by

  7. The impact of reservoir conditions and rock heterogeneity on multiphase flow in CO2-brine-sandstone systems

    NASA Astrophysics Data System (ADS)

    Krevor, S. C.; Reynolds, C. A.; Al-Menhali, A.; Niu, B.

    2015-12-01

    Capillary strength and multiphase flow are key for modeling CO2 injection for CO2 storage. Past observations of multiphase flow in this system have raised important questions about the impact of reservoir conditions on flow through effects on wettability, interfacial tension and fluid-fluid mass transfer. In this work we report the results of an investigation aimed at resolving many of these outstanding questions for flow in sandstone rocks. The drainage capillary pressure, drainage and imbibition relative permeability, and residual trapping [1] characteristic curves have been characterized in Bentheimer and Berea sandstone rocks across a pressure range 5 - 20 MPa, temperatures 25 - 90 C and brine salinities 0-5M NaCl. Over 30 reservoir condition core flood tests were performed using techniques including the steady state relative permeability test, the semi-dynamic capillary pressure test, and a new test for the construction of the residual trapping initial-residual curve. Test conditions were designed to isolate effects of interfacial tension, viscosity ratio, density ratio, and salinity. The results of the tests show that, in the absence of rock heterogeneity, reservoir conditions have little impact on flow properties, consistent with continuum scale multiphase flow theory for water wet systems. The invariance of the properties is observed, including transitions of the CO2 from a gas to a liquid to a supercritical fluid, and in comparison with N2-brine systems. Variations in capillary pressure curves are well explained by corresponding changes in IFT although some variation may reflect small changes in wetting properties. The low viscosity of CO2at certain conditions results in sensitivity to rock heterogeneity. We show that (1) heterogeneity is the likely source of uncertainty around past relative permeability observations and (2) that appropriate scaling of the flow potential by a quantification of capillary heterogeneity allows for the selection of core flood

  8. On the inclusion of the interfacial area between phases in the physical and mathematical description of subsurface multiphase flow. 1998 annual progress report

    SciTech Connect

    Gray, W.G.; Tompson, A.; Soll, W.E.

    1998-06-01

    'Improved capabilities for modeling multiphase flow in the subsurface requires that several aspects of the system which impact the flow and transport processes be more properly accounted for. A distinguishing feature of multiphase flow in comparison to single phase flow is the existence of interfaces between fluids. At the microscopic (pore) scale, these interfaces are known to influence system behavior by supporting non-zero stresses such that the pressures in adjacent phases are not equal. In problems of interphase transport at the macroscopic (core) scale, knowledge of the total amount of interfacial area in the system provides a clue to the effectiveness of the communication between phases. Although interfacial processes are central to multiphase flow physics, their treatment in traditional porous-media theories has been implicit rather than explicit; and no attempts have been made to systematically account for the evolution of the interfacial area in dynamic systems or to include the dependence of constitutive functions, such as capillary pressure, on the interfacial area. This project implements a three-pronged approach to assessing the importance of various features of multiphase flow to its description. The research contributes to the improved understanding and precise physical description of multiphase subsurface flow by combining: (1) theoretical derivation of equations, (2) lattice Boltzmann modeling of hydrodynamics to identify characteristics and parameters, and (3) solution of the field-scale equations using a discrete numerical method to assess the advantages and disadvantages of the complete theory. This approach includes both fundamental scientific inquiry and a path for inclusion of the scientific results obtained in a technical tool that will improve assessment capabilities for multiphase flow situations that have arisen due to the introduction of organic materials in the natural environment. This report summarizes work after 1.5 years of a 3

  9. Modeling and simulation of multiphase multicomponent multiphysics porous media flows in the context of chemical enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Daripa, Prabir; Fluids Team

    2015-11-01

    One of the most important methods of chemical enhanced oil recovery (EOR) involves the use of complex flooding schemes comprising of various layers of fluids mixed with suitable amounts of polymer or surfactant or both. The fluid flow is characterized by the spontaneous formation of complex viscous fingering patterns which is considered detrimental to oil recovery. Here we numerically study the physics of such EOR processes using a modern, hybrid method based on a combination of a discontinuous, multiscale finite element formulation and the method of characteristics. We investigate the effect of different types of heterogeneity on the fingering mechanism of these complex multiphase flows and determine the impact on oil recovery. We also study the effect of surfactants on the dynamics of the flow via reduction of capillary forces and increase in relative permeabilities. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).

  10. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOEpatents

    Ortiz, Marcos German

    1998-01-01

    A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  11. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOEpatents

    Ortiz, M.G.

    1998-02-10

    A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  12. LDRD final report: Physical simulation of nonisothermal multiphase multicomponent flow in porous media

    SciTech Connect

    Martinez, M.J.; Hopkins, P.L.; Shadid, J.N.

    1997-07-01

    This document reports on the accomplishments of a laboratory-directed research and development (LDRD) project whose objective was to initiate a research program for developing a fundamental understanding of multiphase multicomponent subsurface transport in heterogeneous porous media and to develop parallel processing computational tools for numerical simulation of such problems. The main achievement of this project was the successful development of a general-purpose, unstructured grid, multiphase thermal simulator for subsurface transport in heterogeneous porous media implemented for use on massively parallel (MP) computers via message-passing and domain decomposition techniques. The numerical platform provides an excellent base for new and continuing project development in areas of current interest to SNL and the DOE complex including, subsurface nuclear waste disposal and cleanup, groundwater availability and contamination studies, fuel-spill transport for accident analysis, and DNAPL transport and remediation.

  13. Modeling and Simulation of Pore Scale Multiphase Fluid Flow and Reactive Transport in Fractured and Porous Media

    SciTech Connect

    Paul Meakin; Alexandre Tartakovsky

    2009-07-01

    In the subsurface fluids play a critical role by transporting dissolved minerals, colloids and contaminants (sometimes over long distances), by mediating dissolution and precipitation processes and enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone, water/oil, water/gas, gas/oil and water/oil/gas in oil reservoirs, water/air/non-aqueous phase liquids (NAPL) in contaminated vadose zone systems and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines, and its impact on dynamic contact angles, must also be taken into account, and coupled with the fluid flow. Pore network models and simple statistical physics based models such as the invasion percolation and diffusion-limited aggregation models have been used quite extensively. However, these models for multiphase fluid flow are based on simplified models for pore space geometries and simplified physics. Other methods such a lattice Boltzmann and lattice gas models, molecular dynamics, Monte Carlo methods, and particle methods such as dissipative particle dynamics and smoothed particle hydrodynamics are based more firmly on first principles, and they do not require simplified pore and/or fracture geometries. However, they are less (in some cases very much less) computationally efficient that pore network and statistical physics models. Recently a combination of continuum computation fluid dynamics, fluid-fluid interface tracking or capturing and simple models for the dependence of contact angles on fluid velocity

  14. Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media

    SciTech Connect

    Meakin, Paul; Tartakovsky, Alexandre M.

    2009-07-14

    In the subsurface fluids play a critical role by transporting dissolved minerals, colloids and contaminants (sometimes over long distances), by mediating dissolution and precipitation processes and enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone, water/oil, water/gas, gas/oil and water/oil/gas in oil reservoirs, water/air/non-aqueous phase liquids (NAPL) in contaminated vadose zone systems and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines, and its impact on dynamic contact angles, must also be taken into account, and coupled with the fluid flow. Pore network models and simple statistical physics based models such as the invasion percolation and diffusion-limited aggregation models have been used quite extensively. However, these models for multiphase fluid flow are based on simplified models for pore space geometries and simplified physics. Other methods such a lattice Boltzmann and lattice gas models, molecular dynamics, Monte Carlo methods, and particle methods such as dissipative particle dynamics and smoothed particle hydrodynamics are based more firmly on first principles, and they do not require simplified pore and/or fracture geometries. However, they are less (in some cases very much less) computationally efficient that pore network and statistical physics models. Recently a combination of continuum computation fluid dynamics, fluid-fluid interface tracking or capturing and simple models for the dependence of contact angles on fluid velocity

  15. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions

    NASA Astrophysics Data System (ADS)

    Xu, Tianfu; Spycher, Nicolas; Sonnenthal, Eric; Zhang, Guoxiang; Zheng, Liange; Pruess, Karsten

    2011-06-01

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media, and was developed by introducing reactive chemistry into the multiphase fluid and heat flow simulator TOUGH2 V2. The first version of TOUGHREACT was released to the public through the U.S. Department of Energy's Energy Science and Technology Software Center (ESTSC) in August 2004. It is among the most frequently requested of ESTSC's codes. The code has been widely used for studies in CO 2 geological sequestration, nuclear waste isolation, geothermal energy development, environmental remediation, and increasingly for petroleum applications. Over the past several years, many new capabilities have been developed, which were incorporated into Version 2 of TOUGHREACT. Major additions and improvements in Version 2 are discussed here, and two application examples are presented: (1) long-term fate of injected CO 2 in a storage reservoir and (2) biogeochemical cycling of metals in mining-impacted lake sediments.

  16. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions

    SciTech Connect

    Xu, T.; Spycher, N.; Sonnenthal, E.; Zhang, G.; Zheng, L.; Pruess, K.

    2010-08-01

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media, and was developed by introducing reactive chemistry into the multiphase fluid and heat flow simulator TOUGH2 V2. The first version of TOUGHREACT was released to the public through the U.S. Department of Energy's Energy Science and Technology Software Center (ESTSC) in August 2004. It is among the most frequently requested of ESTSC's codes. The code has been widely used for studies in CO{sub 2} geological sequestration, nuclear waste isolation, geothermal energy development, environmental remediation, and increasingly for petroleum applications. Over the past several years, many new capabilities have been developed, which were incorporated into Version 2 of TOUGHREACT. Major additions and improvements in Version 2 are discussed here, and two application examples are presented: (1) long-term fate of injected CO{sub 2} in a storage reservoir and (2) biogeochemical cycling of metals in mining-impacted lake sediments.

  17. New developments in the analysis of column-collapse pyroclastic density currents through numerical simulations of multiphase flows

    NASA Astrophysics Data System (ADS)

    Lepore, S.; Scarpati, C.

    2012-06-01

    A granular multiphase model has been used to evaluate the action of differently sized particles on the dynamics of fountains and associated pyroclastic density currents. The model takes into account the overall disequilibrium conditions between a gas phase and several solid phases, each characterized by its own physical properties. The dynamics of the granular flows (fountains and pyroclastic density currents) has been simulated by adopting a Reynolds-averaged Navier-Stokes model for describing the turbulence effects. Numerical simulations have been carried out by using different values for the eruptive column temperature at the vent, solid particle frictional concentration, turbulent kinetic energy, and dissipation. The results obtained provide evidence of the multiphase nature of the model and describe several disequilibrium effects. The low concentration (≤5 × 10-4) zones lie in the upper part of the granular flow, above the fountain, and above the tail and body of pyroclastic density current as thermal plumes. The high concentration zones, on the contrary, lie in the fountain and at the base of the current. Hence, pyroclastic density currents are assimilated to granular flows constituted by a low concentration suspension flowing above a high concentration basal layer (boundary layer), from the proximal regions to the distal ones. Interactions among the solid particles in the boundary layer of the granular flow are controlled by collisions between particles, whereas the dispersal of particles in the suspension is determined by the dragging of the gas phase. The simulations describe well the dynamics of a tractive boundary layer leading to the formation of stratified facies during Strombolian to Plinian eruptions.

  18. A computer code for multiphase all-speed transient flows in complex geometries. MAST version 1.0

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Jiang, Y.; Kim, Y. M.; Shang, H. M.

    1991-01-01

    The operation of the MAST code, which computes transient solutions to the multiphase flow equations applicable to all-speed flows, is described. Two-phase flows are formulated based on the Eulerian-Lagrange scheme in which the continuous phase is described by the Navier-Stokes equation (or Reynolds equations for turbulent flows). Dispersed phase is formulated by a Lagrangian tracking scheme. The numerical solution algorithms utilized for fluid flows is a newly developed pressure-implicit algorithm based on the operator-splitting technique in generalized nonorthogonal coordinates. This operator split allows separate operation on each of the variable fields to handle pressure-velocity coupling. The obtained pressure correction equation has the hyperbolic nature and is effective for Mach numbers ranging from the incompressible limit to supersonic flow regimes. The present code adopts a nonstaggered grid arrangement; thus, the velocity components and other dependent variables are collocated at the same grid. A sequence of benchmark-quality problems, including incompressible, subsonic, transonic, supersonic, gas-droplet two-phase flows, as well as spray-combustion problems, were performed to demonstrate the robustness and accuracy of the present code.

  19. Assessment of the application of acoustic emission technology for monitoring the presence of sand under multiphase flow condition

    SciTech Connect

    El-Alej, M. Mba, D. Yeung, H.

    2014-04-11

    The monitoring of multiphase flow is an established process that has spanned several decades. This paper demonstrates the use of acoustic emission (AE) technology to investigate sand transport characteristic in three-phase (air-water-sand) flow in a horizontal pipe where the superficial gas velocity (VSG) had a range of between 0.2 ms{sup −1} to 2.0 ms{sup −1} and superficial liquid velocity (VSL) had a range of between 0.2 ms{sup −1} to 1.0 ms{sup −1}. The experimental findings clearly show a correlation exists between AE energy levels, sand concentration, superficial gas velocity (VSG) and superficial liquid velocity (VSL)

  20. Lattice-Boltzmann Simulations of Multiphase Flows in Gas-Diffusion-Layer (GDL) of a PEM Fuel Cell

    SciTech Connect

    Mukherjeea, Shiladitya; Cole, J Vernon; Jainb, Kunal; Gidwania, Ashok

    2008-11-01

    Improved power density and freeze-thaw durability in automotive applications of Proton Exchange Membrane Fuel Cells (PEMFCs) requires effective water management at the membrane. This is controlled by a porous hydrophobic gas-diffusion-layer (GDL) inserted between the membrane catalyst layer and the gas reactant channels. The GDL distributes the incoming gaseous reactants on the catalyst surface and removes excess water by capillary action. There is, however, limited understanding of the multiphase, multi-component transport of liquid water, vapor and gaseous reactants within these porous materials. This is due primarily to the challenges of in-situ diagnostics for such thin (200 -“ 300 {microns}), optically opaque (graphite) materials. Transport is typically analyzed by fitting Darcy's Law type expressions for permeability, in conjunction with capillary pressure relations based on formulations derived for media such as soils. Therefore, there is significant interest in developing predictive models for transport in GDLs and related porous media. Such models could be applied to analyze and optimize systems based on the interactions between cell design, materials, and operating conditions, and could also be applied to evaluating material design concepts. Recently, the Lattice Boltzmann Method (LBM) has emerged as an effective tool in modeling multiphase flows in general, and flows through porous media in particular. This method is based on the solution of a discrete form of the well-known Boltzmann Transport Equation (BTE) for molecular distribution, tailored to recover the continuum Navier-Stokes flow. The kinetic theory basis of the method allows simple implementation of molecular forces responsible for liquid-gas phase separation and capillary effects. The solution advances by a streaming and collision type algorithm that makes it suitable to implement for domains with complex boundaries. We have developed both single and multiphase LB models and applied them to

  1. Liquid-liquid phase separation: characterisation of a novel device capable of separating particle carrying multiphase flows.

    PubMed

    Castell, Oliver K; Allender, Christopher J; Barrow, David A

    2009-02-01

    Capillary forces on the microscale are exploited to create a continuous flow liquid-liquid phase separator. Segmented flow regimes of immiscible fluids are generated and subsequently separated into their component phases through an array of high aspect ratio, laser machined, separation ducts (36 microm wide, 130 microm deep) in a planar, integrated, polytetrafluoroethylene (PTFE) microdevice. A controlled pressure differential across the phase separator architecture facilitates the selective passage of the wetting, organic, phase through the separator ducts, enabling separation of microfluidic multiphase flow streams. The reported device is demonstrated to separate water and chloroform segmented flow regimes at flow rates up to 0.4 ml min(-1). Separation efficiency is quantified over a range of flow rates and applied pressure differentials, characterising device behaviour and limits of operation. Experimental measurements and observations are supported by theoretical hydrodynamic and capillary pressure modelling. The influence of material properties and geometric design parameters on phase separation is quantified and optimisation strategies proposed. The novel ability of the membrane free device to separate an organic phase containing suspended microparticulates, from an aqueous phase, is also demonstrated.

  2. Analytic expressions for first order correction to inviscid unsteady forces due to surrounding particles in a multiphase flow

    NASA Astrophysics Data System (ADS)

    Annamalai, Subramanian; Balachandar, S.; Mehta, Yash

    2015-11-01

    The various inviscid and viscous forces experienced by an isolated spherical particle situated in a compressible fluid have been widely studied in literature and are well established. Further, these force expressions are used even in the context of particulate (multiphase) flows with appropriate empirical correction factors that depend on local particle volume fraction. Such approach can capture the mean effect of the neighboring particles, but fails to capture the effect of the precise arrangement of the neighborhood of particles. To capture this inherent dependence of force on local particle arrangement a more accurate evaluation of the drag forces proves necessary. Towards this end, we consider an acoustic wave of a given frequency to impinge on a sphere. Scattering due to this particle (reference) is computed and termed ``scattering coefficients.'' The effect of the reference particle on another particle in its vicinity, is analytically computed via the above mentioned ``scattering coefficients'' and as a function of distance between particles. In this study, we consider only the first-order scattering effect. Moreover, this theory is extended to compressible spheres and used to compute the pressure in the interior of the sphere and to shock interaction over an array of spheres. We would like to thank the center for compressible multiphase turbulence (CCMT) and acknowledge support from the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program.

  3. Multiphase flow modeling of spinodal decomposition based on the cascaded lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Leclaire, Sébastien; Pellerin, Nicolas; Reggio, Marcelo; Trépanier, Jean-Yves

    2014-07-01

    A new multiphase lattice Boltzmann model based on the cascaded collision operator is developed to study the spinodal decomposition of critical quenches in the inertial hydrodynamic regime. The proposed lattice Boltzmann model is able to investigate simulations of multiphase spinodal decomposition with a very high Reynolds number. The law governing the growth of the average domain size, i.e. L∝tα, is studied numerically in the late-time regime, when multiple immiscible fluids are considered in the spinodal decomposition. It is found numerically that the growth exponent, α, is inversely proportional to the number, N, of immiscible fluids in the system. In fact, α=6/(N+7) is a simple law that matches the numerical results very well, even up to N=20. As the number of immiscible fluids increases, the corresponding drop in the connectivity of the various fluid domains is believed to be the main factor that drives and slows down the growth rate. Various videos that accurately demonstrate spinodal decomposition with different transport mechanisms are provided (see Appendix A). The remarks and statement made in this research are based on the analysis of 5120 numerical simulations and the postprocessing of about 3.5 TB of data.

  4. Droplet fragmentation: 3D imaging of a previously unidentified pore-scale process during multiphase flow in porous media

    PubMed Central

    Pak, Tannaz; Butler, Ian B.; Geiger, Sebastian; van Dijke, Marinus I. J.; Sorbie, Ken S.

    2015-01-01

    Using X-ray computed microtomography, we have visualized and quantified the in situ structure of a trapped nonwetting phase (oil) in a highly heterogeneous carbonate rock after injecting a wetting phase (brine) at low and high capillary numbers. We imaged the process of capillary desaturation in 3D and demonstrated its impacts on the trapped nonwetting phase cluster size distribution. We have identified a previously unidentified pore-scale event during capillary desaturation. This pore-scale event, described as droplet fragmentation of the nonwetting phase, occurs in larger pores. It increases volumetric production of the nonwetting phase after capillary trapping and enlarges the fluid−fluid interface, which can enhance mass transfer between the phases. Droplet fragmentation therefore has implications for a range of multiphase flow processes in natural and engineered porous media with complex heterogeneous pore spaces. PMID:25646491

  5. A summary of methods for approximating salt creep and disposal room closure in numerical models of multiphase flow

    SciTech Connect

    Freeze, G.A.; Larson, K.W.; Davies, P.B.

    1995-10-01

    Eight alternative methods for approximating salt creep and disposal room closure in a multiphase flow model of the Waste Isolation Pilot Plant (WIPP) were implemented and evaluated: Three fixed-room geometries three porosity functions and two fluid-phase-salt methods. The pressure-time-porosity line interpolation method is the method used in current WIPP Performance Assessment calculations. The room closure approximation methods were calibrated against a series of room closure simulations performed using a creep closure code, SANCHO. The fixed-room geometries did not incorporate a direct coupling between room void volume and room pressure. The two porosity function methods that utilized moles of gas as an independent parameter for closure coupling. The capillary backstress method was unable to accurately simulate conditions of re-closure of the room. Two methods were found to be accurate enough to approximate the effects of room closure; the boundary backstress method and pressure-time-porosity line interpolation. The boundary backstress method is a more reliable indicator of system behavior due to a theoretical basis for modeling salt deformation as a viscous process. It is a complex method and a detailed calibration process is required. The pressure lines method is thought to be less reliable because the results were skewed towards SANCHO results in simulations where the sequence of gas generation was significantly different from the SANCHO gas-generation rate histories used for closure calibration. This limitation in the pressure lines method is most pronounced at higher gas-generation rates and is relatively insignificant at lower gas-generation rates. Due to its relative simplicity, the pressure lines method is easier to implement in multiphase flow codes and simulations have a shorter execution time.

  6. Direct numerical simulation of rigid bodies in multiphase flow within an Eulerian framework

    NASA Astrophysics Data System (ADS)

    Rauschenberger, P.; Weigand, B.

    2015-06-01

    A new method is presented to simulate rigid body motion in the Volume-of-Fluid based multiphase code Free Surface 3D. The specific feature of the new method is that it works within an Eulerian framework without the need for a Lagrangian representation of rigid bodies. Several test cases are shown to prove the validity of the numerical scheme. The technique is able to conserve the shape of arbitrarily shaped rigid bodies and predict terminal velocities of rigid spheres. The instability of a falling ellipsoid is captured. Multiple rigid bodies including collisions may be considered using only one Volume-of-Fluid variable which allows to simulate the drafting, kissing and tumbling phenomena of two rigid spheres. The method can easily be extended to rigid bodies undergoing phase change processes.

  7. Mixed-hybrid and vertex-discontinuous-Galerkin finite element modeling of multiphase compositional flow on 3D unstructured grids

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim; Firoozabadi, Abbas

    2016-06-01

    Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.

  8. Comprehensive Approaches to Multiphase Flows in Geophysics - Application to nonisothermal, nonhomogenous, unsteady, large-scale, turbulent dusty clouds I. Hydrodynamic and Thermodynamic RANS and LES Models

    SciTech Connect

    S. Dartevelle

    2005-09-05

    The objective of this manuscript is to fully derive a geophysical multiphase model able to ''accommodate'' different multiphase turbulence approaches; viz., the Reynolds Averaged Navier-Stokes (RANS), the Large Eddy Simulation (LES), or hybrid RANSLES. This manuscript is the first part of a larger geophysical multiphase project--lead by LANL--that aims to develop comprehensive modeling tools for large-scale, atmospheric, transient-buoyancy dusty jets and plume (e.g., plinian clouds, nuclear ''mushrooms'', ''supercell'' forest fire plumes) and for boundary-dominated geophysical multiphase gravity currents (e.g., dusty surges, diluted pyroclastic flows, dusty gravity currents in street canyons). LES is a partially deterministic approach constructed on either a spatial- or a temporal-separation between the large and small scales of the flow, whereas RANS is an entirely probabilistic approach constructed on a statistical separation between an ensemble-averaged mean and higher-order statistical moments (the so-called ''fluctuating parts''). Within this specific multiphase context, both turbulence approaches are built up upon the same phasic binary-valued ''function of presence''. This function of presence formally describes the occurrence--or not--of any phase at a given position and time and, therefore, allows to derive the same basic multiphase Navier-Stokes model for either the RANS or the LES frameworks. The only differences between these turbulence frameworks are the closures for the various ''turbulence'' terms involving the unknown variables from the fluctuating (RANS) or from the subgrid (LES) parts. Even though the hydrodynamic and thermodynamic models for RANS and LES have the same set of Partial Differential Equations, the physical interpretations of these PDEs cannot be the same, i.e., RANS models an averaged field, while LES simulates a filtered field. In this manuscript, we also demonstrate that this multiphase model fully fulfills the second law of

  9. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect

    Yorstos, Yannis C.

    2003-03-19

    The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress.

  10. Numerical Simulation of Liquid Sheet Instability in a Multiphase Flow Domain

    NASA Astrophysics Data System (ADS)

    Souvick, Chatterjee; Mahapatra, Soumik; Mukhopadhyay, Achintya; Sen, Swarnendu

    2013-11-01

    Instability of a liquid sheet leading to the formation of droplets is a classical problem finding a wide range of multi-scale applications like gas turbine engines and inkjet printers. Numerical simulation of such a phenomenon is crucial because of its cost and time effective nature. In this work, the hydrodynamics in a custom designed nozzle is analyzed using Volume of Fluid method in Ansys Fluent. This innovative nozzle design includes an annular liquid sheet sandwiched between two air streams such that the inner air channel is recessed to a certain length. Such a recession leads to interaction between the two multiphase streams inside the atomizer resulting to an increased shear layer instability which augments the disintegration process. The numerical technique employed in this work couples Navier Stokes equation with VoF surface tracking technique. A parametric study with the hydrodynamic parameters involved in the problem, as well as the recession length, is performed while monitoring the axial and tangential exit velocities along with the spray cone angle. Comparison between the full 3D model and two different equivalent 2D axisymmetric models have been shown. The two axisymmetric models vary based on conserving different physical parameters between the 2D and 3D cases.

  11. Innovative Techniques of Multiphase Flow in Pipeline System for Oil-Gas Gathering and Transportation with Energy-Saving and Emission-Reduction

    NASA Astrophysics Data System (ADS)

    Bai, Bofeng; Guo, Liejin; Zhang, Shaojun; Zhang, Ximin; Gu, Hanyang

    2010-03-01

    Multiphase flow measurement, desanding, dehumidification and heat furnace are critical techniques for the oil and gas gathering and transportation, which influnce intensively the energy-saving and emission-reduction in the petroleum industry. Some innovative techniques were developed for the first time by the present research team, including an online recognation instrument of multiphase flow regime, a water fraction instrument for multuphase flow, a coiled tube desanding separator with low pressure loss and high efficiency, a supersonic swirling natural gas dehumifier, and a vacuum phase-change boiler. With an integration of the above techniques, a new oil gas gathering and transpotation system was proposed, which reduced the establishment of one metering station and several transfer stations compared with the tranditional system. The oil and gas mixture transpotation in single pipes was realized. The improved techniques were applied in the oilfields in China and promoted the productivity of the oilfields by low energy consumption, low emissions, high efficiency and great security.

  12. FT-IR Spectroscopic Imaging of Reactions in Multiphase Flow in Microfluidic Channels

    PubMed Central

    2012-01-01

    Rapid, in situ, and label-free chemical analysis in microfluidic devices is highly desirable. FT-IR spectroscopic imaging has previously been shown to be a powerful tool to visualize the distribution of different chemicals in flows in a microfluidic device at near video rate imaging speed without tracers or dyes. This paper demonstrates the possibility of using this imaging technology to capture the chemical information of all reactants and products at different points in time and space in a two-phase system. Differences in the rates of chemical reactions in laminar flow and segmented flow systems are also compared. Neutralization of benzoic acid in decanol with disodium phosphate in water has been used as the model reaction. Quantitative information, such as concentration profiles of reactant and products, can be extracted from the imaging data. The same feed flow rate was used in both the laminar flow and segmented flow systems. The laminar flow pattern was achieved using a plain wide T-junction, whereas the segmented flow was achieved by introducing a narrowed section and a nozzle at the T-junction. The results show that the reaction rate is limited by diffusion and is much slower with the laminar flow pattern, whereas the reaction is completed more quickly in the segmented flow due to better mixing. PMID:22468788

  13. Microtomographic imaging of multiphase flow in porous media: Validation of image analysis algorithms, and assessment of data representativeness and quality

    NASA Astrophysics Data System (ADS)

    Wildenschild, D.; Porter, M. L.

    2009-04-01

    Significant strides have been made in recent years in imaging fluid flow in porous media using x-ray computerized microtomography (CMT) with 1-20 micron resolution; however, difficulties remain in combining representative sample sizes with optimal image resolution and data quality; and in precise quantification of the variables of interest. Tomographic imaging was for many years focused on volume rendering and the more qualitative analyses necessary for rapid assessment of the state of a patient's health. In recent years, many highly quantitative CMT-based studies of fluid flow processes in porous media have been reported; however, many of these analyses are made difficult by the complexities in processing the resulting grey-scale data into reliable applicable information such as pore network structures, phase saturations, interfacial areas, and curvatures. Yet, relatively few rigorous tests of these analysis tools have been reported so far. The work presented here was designed to evaluate the effect of image resolution and quality, as well as the validity of segmentation and surface generation algorithms as they were applied to CMT images of (1) a high-precision glass bead pack and (2) gas-fluid configurations in a number of glass capillary tubes. Interfacial areas calculated with various algorithms were compared to actual interfacial geometries and we found very good agreement between actual and measured surface and interfacial areas. (The test images used are available for download at the website listed below). http://cbee.oregonstate.edu/research/multiphase_data/index.html

  14. A Phase-Field Method for Simulating Fluid-Structure Interactions in Multi-Phase Flow

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoning; Karniadakis, George

    2015-11-01

    We investigate two-phase flow instabilities by numerical simulations of fluid structure interactions in two-phase flow. The first case is a flexible pipe conveying two fluids, which exhibits self-sustained oscillations at high Reynolds number and tension related parameter. Well-defined two-phase flow patterns, i.e., slug flow and bubbly flow, are observed. The second case is external two-phase cross flow past a circular cylinder, which induces a Kelvin-Helmholtz instability due to density stratification. We solve the Navier-Stokes equation coupled with the Cahn-Hilliard equation and the structure equation in an arbitrary Lagrangian Eulerian (ALE) framework. For the fluid solver, a spectral/hp element method is employed for spatial discretization and backward differentiation for time discretization. For the structure solver, a Galerkin method is used in Lagrangian coordinates for spatial discretization and the Newmark- β scheme for time discretization.

  15. Advanced Multi-phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis

    NASA Technical Reports Server (NTRS)

    Liaw, Paul; Chen, Yen-Sen

    1995-01-01

    A Navier-Stokes code, finite difference Navier-Stokes (FDNS), is used to analyze the complicated internal flowfield of the SRM (solid rocket motor) to explore the impacts due to the effects of chemical reaction, particle dynamics, and slag accumulation on the solid rocket motor (SRM). The particulate multi-phase flowfield with chemical reaction, particle evaporation, combustion, breakup, and agglomeration models are included in present study to obtain a better understanding of the SRM design. Finite rate chemistry model is applied to simulate the chemical reaction effects. Hermsen correlation model is used for the combustion simulation. The evaporation model introduced by Spalding is utilized to include the heat transfer from the particulate phase to the gase phase due to the evaporation of the particles. A correlation of the minimum particle size for breakup expressed in terms of the Al/Al2O3 surface tension and shear force was employed to simulate the breakup of particles. It is assumed that the breakup occurs when the Weber number exceeds 6. A simple L agglomeration model is used to investigate the particle agglomeration. However, due to the large computer memory requirements for the agglomeration model, only 2D cases are tested with the agglomeration model. The VOF (Volume of Fluid) method is employed to simulate the slag buildup in the aft-end cavity of the redesigned solid rocket motor (RSRM). Monte Carlo method is employed to calculate the turbulent dispersion effect of the particles. The flowfield analysis obtained using the FDNS code in the present research with finite rate chemical reaction, particle evaporation, combustion, breakup, agglomeration, and VOG models will provide a design guide for the potential improvement of the SRM including the use of materials and the shape of nozzle geometry such that a better performance of the SRM can be achieved. The simulation of the slag buildup in the aft-end cavity can assist the designer to improve the design of

  16. Advanced multi-phase flow CFD model development for solid rocket motor flowfield analysis

    NASA Astrophysics Data System (ADS)

    Liaw, Paul; Chen, Yen-Sen

    1995-03-01

    A Navier-Stokes code, finite difference Navier-Stokes (FDNS), is used to analyze the complicated internal flowfield of the SRM (solid rocket motor) to explore the impacts due to the effects of chemical reaction, particle dynamics, and slag accumulation on the solid rocket motor (SRM). The particulate multi-phase flowfield with chemical reaction, particle evaporation, combustion, breakup, and agglomeration models are included in present study to obtain a better understanding of the SRM design. Finite rate chemistry model is applied to simulate the chemical reaction effects. Hermsen correlation model is used for the combustion simulation. The evaporation model introduced by Spalding is utilized to include the heat transfer from the particulate phase to the gase phase due to the evaporation of the particles. A correlation of the minimum particle size for breakup expressed in terms of the Al/Al2O3 surface tension and shear force was employed to simulate the breakup of particles. It is assumed that the breakup occurs when the Weber number exceeds 6. A simple L agglomeration model is used to investigate the particle agglomeration. However, due to the large computer memory requirements for the agglomeration model, only 2D cases are tested with the agglomeration model. The VOF (Volume of Fluid) method is employed to simulate the slag buildup in the aft-end cavity of the redesigned solid rocket motor (RSRM). Monte Carlo method is employed to calculate the turbulent dispersion effect of the particles. The flowfield analysis obtained using the FDNS code in the present research with finite rate chemical reaction, particle evaporation, combustion, breakup, agglomeration, and VOG models will provide a design guide for the potential improvement of the SRM including the use of materials and the shape of nozzle geometry such that a better performance of the SRM can be achieved. The simulation of the slag buildup in the aft-end cavity can assist the designer to improve the design of

  17. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect

    Yortsos, Yanis C.

    2002-10-08

    In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  18. Characterization of non-Darcy multiphase flow in petroleum bearing formation. Final report

    SciTech Connect

    Evans, R.D.; Civan, F.

    1994-04-01

    The productive capacity of oil and gas bearing rocks depends on various parameters characterizing the flow conditions in the reservoir. Among these, the non-Darcy flow coefficient specifically plays an important role for cases involving fluid accelerations or decelerations around the well bore and in the reservoir. However, most reservoir simulators used for reservoir management assume Darcy flow, and yield misleading results causing an incorrect analysis or projection of reservoir performance. A few attempts have been made to incorporate non-Darcy effect in reservoir models but many of these lack a reliable accuracy since they use simplified correlations which ignore the effects of the variation of the fluid and formation conditions. The present study developed an accurate non-Darcy flow model that will lead to more accurate reservoir management decisions. First, a rigorous analysis and derivation of the porous media mass and momentum equations are presented considering the non-Darcy flow behavior. Second, steady-state and unsteady-state methods for simultaneous determination of relative permeability, capillary pressure, and interfacial drag during non-Darcy flow in laboratory cores are derived. This work results in several algebraic, integral, and differential interpretation methods. Third, correlations for the non-Darcy flow coefficient are investigated and improved. The study presented in this report provides new insights and formulations in the description of non-Darcy flow in oil and gas bearing formations.

  19. The effect of drag reducing agents on corrosion in multiphase flow

    SciTech Connect

    Kang, C.; Jepson, W.P.; Gopal, M.

    1998-12-31

    The effect of drag reducing agents (DRA) on corrosion and flow regime has been studied in a 10 cm diameter, 18 m long plexiglass flow loop in 50% oil/water mixtures with carbon dioxide gas. Superficial liquid velocities between 0.1 and 1 m/s and gas velocities between 1 and 10 m/s respectively were studied. The corrosion rate was measured for stratified, slug and annular flow. The height of liquid film, slug velocity, and slug frequency were obtained from the video image using a super-VHS camera. The DRA effectiveness was examined for DRA concentrations between 0 and 75 ppm. Flow regimes maps were determined with 25 and 75 ppm DRA. These results were compared to the flow regime map with no DRA. The results indicate that the transition from stratified to slug flow is obtained at a higher superficial liquid velocities. This resulted in much lower corrosion rates due to the elimination of the highly turbulent slugs. The corrosion rate for stratified and annular flow did not generally reduce with adding DRA concentrations. For slug flow, the slug frequency decreased with the addition of 50 ppm DRA. This led to decrease of corrosion rate by almost 50%

  20. Non-Invasive Characterization Of A Flowing Multi-Phase Fluid Using Ultrasonic Interferometry

    DOEpatents

    Sinha, Dipen N.

    2005-11-01

    An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.

  1. Investigation of Multiphase Flow in a Packed Bed Reactor Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Lian, Yongsheng; Motil, Brian; Rame, Enrique

    2016-01-01

    In this paper we study the two-phase flow phenomena in a packed bed reactor using an integrated experimental and numerical method. The cylindrical bed is filled with uniformly sized spheres. In the experiment water and air are injected into the bed simultaneously. The pressure distribution along the bed will be measured. The numerical simulation is based on a two-phase flow solver which solves the Navier-Stokes equations on Cartesian grids. A novel coupled level set and moment of fluid method is used to construct the interface. A sequential method is used to position spheres in the cylinder. Preliminary experimental results showed that the tested flow rates resulted in pulse flow. The numerical simulation revealed that air bubbles could merge into larger bubbles and also could break up into smaller bubbles to pass through the pores in the bed. Preliminary results showed that flow passed through regions where the porosity is high. Comparison between the experimental and numerical results in terms of pressure distributions at different flow injection rates will be conducted. Comparison of flow phenomena under terrestrial gravity and microgravity will be made.

  2. Multiphase flow of the late Wisconsinan Cordilleran ice sheet in Western Canada

    USGS Publications Warehouse

    Stumpf, A.J.; Broster, B.E.; Levson, V.M.

    2000-01-01

    In central British Columbia, ice flow during the late Wisconsinan Fraser glaciation (ca. 25-10 ka) occurred in three phases. The ice expansion phase occurred during an extended period when glaciers flowed westward to the Pacific Ocean and east-southeastward onto the Nechako Plateau from ice centers in the Skeena, Hazelton, Coast, and Omineca Mountains. Initially, glacier flow was confined by topography along major valleys, but eventually piedmont and montane glaciers coalesced to form an integrated glacier system, the Cordilleran ice sheet. In the maximum phase, a Cordilleran ice divide developed over the Nechako Plateau to 300 km inland from the Pacific coast. At this time, the surface of the ice sheet extended well above 2500 m above sea level, and flowed westward over the Skeena, Hazelton, and Coast Mountains onto the continental shelf, and eastward across the Rocky Mountains into Alberta. In the late glacial phase, a rapid rise of the equilibrium line caused ice lobes to stagnate in valleys, and restricted accumulation centers to high mountains. Discordant directions in ice flow are attributed to fluctuations of the ice divide representing changes in the location of accumulation centers and ice thickness. Ice centers probably shifted in response to climate, irregular growth in the ice sheet, rapid calving, ice streaming, and drainage of proglacial and subglacial water bodies. Crosscutting ice-flow indicators and preservation of early (valley parallel) flow features in areas exposed to later (cross-valley) glacier erosion indicate that the ice expansion phase was the most erosive and protracted event.

  3. Multiphase imaging of gas flow in a nanoporous material usingremote detection NMR

    SciTech Connect

    Harel, Elad; Granwehr, Josef; Seeley, Juliette A.; Pines, Alex

    2005-10-03

    Pore structure and connectivity determine how microstructured materials perform in applications such as catalysis, fluid storage and transport, filtering, or as reactors. We report a model study on silica aerogel using a recently introduced time-of-flight (TOF) magnetic resonance imaging technique to characterize the flow field and elucidate the effects of heterogeneities in the pore structure on gas flow and dispersion with Xe-129 as the gas-phase sensor. The observed chemical shift allows the separate visualization of unrestricted xenon and xenon confined in the pores of the aerogel. The asymmetrical nature of the dispersion pattern alludes to the existence of a stationary and a flow regime in the aerogel. An exchange time constant is determined to characterize the gas transfer between them. As a general methodology, this technique provides new insights into the dynamics of flow in porous media where multiple phases or chemical species may be present.

  4. On Simulations of High-Density Ratio Flows Using Color-Gradient Multiphase Lattice Boltzmann Models

    NASA Astrophysics Data System (ADS)

    Huang, Haibo; Huang, Jun-Jie; Lu, Xi-Yun; Sukop, Michael C.

    2013-04-01

    Originally, the color-gradient model proposed by Rothman and Keller (R-K) was unable to simulate immiscible two-phase flows with different densities. Later, a revised version of the R-K model was proposed by Grunau et al. [D. Grunau, S. Chen and K. Eggert, Phys. Fluids A: Fluid Dyn. 5, 2557 (1993).] and claimed it was able to simulate two-phase flows with high-density contrast. Some studies investigate high-density contrast two-phase flows using this revised R-K model but they are mainly focused on the stationary spherical droplet and bubble cases. Through theoretical analysis of the model, we found that in the recovered Navier-Stokes (N-S) equations which are derived from the R-K model, there are unwanted extra terms. These terms disappear for simulations of two-phase flows with identical densities, so the correct N-S equations are fully recovered. Hence, the R-K model is able to give accurate results for flows with identical densities. However, the unwanted terms may affect the accuracy of simulations significantly when the densities of the two fluids are different. For the simulations of spherical bubbles and droplets immersed in another fluid (where the densities of the two fluids are different), the extra terms may not be important and hence, in terms of surface tension, accurate results can be obtained. However, generally speaking, the unwanted term may be significant in many flows and the R-K model is unable to obtain the correct results due to the effect of the extra terms. Through numerical simulations of parallel two-phase flows in a channel, we confirm that the R-K model is not appropriate for general two-phase flows with different densities. A scheme to eliminate the unwanted terms is also proposed and the scheme works well for cases of density ratios less than 10.

  5. A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shu, C.; Shao, J. Y.; Wu, J.; Niu, X. D.

    2015-06-01

    In this work a mass-conserved diffuse interface method is proposed for simulating incompressible flows of binary fluids with large density ratio. In the method, a mass correction term is introduced into the Cahn-Hilliard equation to compensate the mass losses or offset the mass increases caused by the numerical and modeling diffusion. Since the mass losses or increases are through the phase interfaces and at each time step, their values are very small, to keep mass conservation, mass sources or sinks are introduced and uniformly distributed in the volume of diffuse layer. With the uniform distribution, the mass correction term representing mass sources or sinks is derived analytically by applying mass conservation principle. By including the mass correction, the modified Cahn-Hilliard equation is solved by the fifth-order upwind scheme to capture the phase field of the bindery fluids. The flow field is simulated by the newly-developed multiphase lattice Boltzmann flux solver [20]. The proposed approach is validated by simulating the Laplace law, the merging of two bubbles, Rayleigh-Taylor instability and bubble rising under gravity with density ratio of 1000 and viscosity ratio of 100. Numerical results of interface shapes and flow properties agree well with both analytical solutions and benchmark data in the literature. Numerical results also show that the mass is well-conserved in all cases considered. In addition, it is demonstrated that the mass correction term at each time step is in the order of 10-4 ∼10-5, which is a small number compared with the magnitude of order parameter.

  6. Evaluation of inhomogeneous model and the LCS based investigation in multiphase flows

    NASA Astrophysics Data System (ADS)

    Y Bai, Z.; Y Wang, G.; Wu, Q.; Huang, X.; Huang, B.

    2013-12-01

    In this paper, an evaluation of inhomogeneous model for computations of gas-liquid two-phase flow is presented, and the mechanism of gas-liquid two-phase flow in a bubble column is studied based on Finite-Time Lyapunov Exponents (FTLE) and Lagrangian Coherent Structures (LCS). The simulation is conducted with the homogeneous and inhomogeneous models respectively, and the numerical results are compared with the experimental data. It is shown that the inhomogeneous model can calculate the force of the gas more accurately and simulates the details of transient flows well due to the consideration of the interaction between the two phases. With inhomogeneous model, the periodic fluctuation of the bubble hose is captured and the velocity distribution coincides exactly with the experimental data. For the gas-liquid two-phase flow in the bubble column, the process of gaseous flow injected into water can be divided into two stages: the gas rising and gas fluctuation. The Lagrangian Coherent Structures (LCS) which consist of the ridges of the FTLE field can capture the boundary of vortex and the interface between the forward and backward flows in the liquid region, and the LCS have unique value for representing the divergence extent of neighboring particles in regions with different dynamics characteristics.

  7. The role of fault zones in affecting multiphase flow at Yucca Mountain

    SciTech Connect

    Tsang, Y.W.; Pruess, K.; Wang, J.S.Y.

    1993-01-01

    Within Yucca Mountain, the potential High Level Nuclear-Waste Repository site, there are large scale fault zones, most notably the Ghost Dance Fault. The effect of such high-permeability, large scale discontinuities on the flow and transport is a question of concern in assessing the ability of the site to isolate radio-nuclides from the biosphere. In this paper, we present a numerical study to investigate the role of the fault in affecting both the liquid and gas phase flows in the natural state at Yucca Mountain prior to waste emplacement, as well as after the waste emplacement when the fluid flow is strongly heat-driven. Our study shows that if the characteristic curves of the Ghost Dance Fault obey the same relationship between saturated permeability and capillary scaling parameter, as is observed from the measured data of Yucca Mountain welded and nonwelded tuffs. Apache Leap tuffs, and Las Cruces soil, then a large saturated permeability of the Ghost Dance Fault will play little role in channeling water into the fault, or inenhancing the flow of water down the fault. However, the Fault may greatly enhance the upward gas flow after emplacement of waste. This may have implications on the transport of gaseous radio-nuclides such as C{sup 14}. The results of this study also focus attention on the need for field measurements of fluid flow in the fault zones.

  8. Modeling and Measurements of Multiphase Flow and Bubble Entrapment in Steel Continuous Casting

    NASA Astrophysics Data System (ADS)

    Jin, Kai; Thomas, Brian G.; Ruan, Xiaoming

    2016-02-01

    In steel continuous casting, argon gas is usually injected to prevent clogging, but the bubbles also affect the flow pattern, and may become entrapped to form defects in the final product. To investigate this behavior, plant measurements were conducted, and a computational model was applied to simulate turbulent flow of the molten steel and the transport and capture of argon gas bubbles into the solidifying shell in a continuous slab caster. First, the flow field was solved with an Eulerian k- ɛ model of the steel, which was two-way coupled with a Lagrangian model of the large bubbles using a discrete random walk method to simulate their turbulent dispersion. The flow predicted on the top surface agreed well with nailboard measurements and indicated strong cross flow caused by biased flow of Ar gas due to the slide-gate orientation. Then, the trajectories and capture of over two million bubbles (25 μm to 5 mm diameter range) were simulated using two different capture criteria (simple and advanced). Results with the advanced capture criterion agreed well with measurements of the number, locations, and sizes of captured bubbles, especially for larger bubbles. The relative capture fraction of 0.3 pct was close to the measured 0.4 pct for 1 mm bubbles and occurred mainly near the top surface. About 85 pct of smaller bubbles were captured, mostly deeper down in the caster. Due to the biased flow, more bubbles were captured on the inner radius, especially near the nozzle. On the outer radius, more bubbles were captured near to narrow face. The model presented here is an efficient tool to study the capture of bubbles and inclusion particles in solidification processes.

  9. Dual FIB-SEM 3D imaging and lattice boltzmann modeling of porosimetry and multiphase flow in chalk.

    SciTech Connect

    Rinehart, Alex; Petrusak, Robin; Heath, Jason E.; Dewers, Thomas A.; Yoon, Hongkyu

    2010-12-01

    Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage.

  10. Interface control volume finite element method for modelling multi-phase fluid flow in highly heterogeneous and fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Abushaikha, Ahmad S.; Blunt, Martin J.; Gosselin, Olivier R.; Pain, Christopher C.; Jackson, Matthew D.

    2015-10-01

    We present a new control volume finite element method that improves the modelling of multi-phase fluid flow in highly heterogeneous and fractured reservoirs, called the Interface Control Volume Finite Element (ICVFE) method. The method drastically decreases the smearing effects in other CVFE methods, while being mass conservative and numerically consistent. The pressure is computed at the interfaces of elements, and the control volumes are constructed around them, instead of at the elements' vertices. This assures that a control volume straddles, at most, two elements, which decreases the fluid smearing between neighbouring elements when large variations in their material properties are present. Lowest order Raviart-Thomas vectorial basis functions are used for the pressure calculation and first-order Courant basis functions are used to compute fluxes. The method is a combination of Mixed Hybrid Finite Element (MHFE) and CVFE methods. Its accuracy and convergence are tested using three dimensional tetrahedron elements to represent heterogeneous reservoirs. Our new approach is shown to be more accurate than current CVFE methods.

  11. Constrained pressure residual multiscale (CPR-MS) method for fully implicit simulation of multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Cusini, Matteo; Lukyanov, Alexander A.; Natvig, Jostein; Hajibeygi, Hadi

    2015-10-01

    We develop the first multiscale method for fully implicit (FIM) simulations of multiphase flow in porous media, namely CPR-MS method. Built on the FIM Jacobian matrix, the pressure system is obtained by employing a Constrained Pressure Residual (CPR) operator. Multiscale Finite Element (MSFE) and Finite Volume (MSFV) methods are then formulated algebraically to obtain efficient and accurate solutions of this pressure equation. The multiscale prediction stage (first-stage) is coupled with a corrector stage (second-stage) employed on the full system residual. The converged solution is enhanced through outer GMRES iterations preconditioned by these first and second stage operators. While the second-stage FIM stage is solved using a classical iterative solver, the multiscale stage is investigated in full detail. Several choices for fine-scale pre- and post-smoothing along with different choices of coarse-scale solvers are considered for a range of heterogeneous three-dimensional cases with capillarity and three-phase systems. The CPR-MS method is the first of its kind, and extends the applicability of the so-far developed multiscale methods (both MSFE and MSFV) to displacements with strong coupling terms.

  12. Multiphase fluid flow and subsequent geochemical transport invariably saturated fractured rocks: 1. Approaches

    SciTech Connect

    Xu, Tianfu; Pruess, Karsten

    2000-08-08

    Reactive fluid flow and geochemical transport in unsaturated fractured rocks has received increasing attention for studies of contaminant transport, groundwater quality, waste disposal, acid mine drainage remediation, mineral deposits, sedimentary diagenesis, and fluid-rock interactions in hydrothermal systems. This paper presents methods for modeling geochemical systems that emphasize: (1) involvement of the gas phase in addition to liquid and solid phases in fluid flow, mass transport and chemical reactions, (2) treatment of physically and chemically heterogeneous and fractured rocks, (3) the effect of heat on fluid flow and reaction properties and processes, and (4) the kinetics of fluid-rock interaction. The physical and chemical process model is embodied in a system of partial differential equations for flow and transport, coupled to algebraic equations and ordinary differential equations for chemical interactions. For numerical solution, the continuum equations are discretized in space and time. Space discretization is based on a flexible integral finite difference approach that can use irregular gridding to model geologic structure; time is discretized fully implicitly as a first-order finite difference. Heterogeneous and fractured media are treated with a general multiple interacting continua method that includes double-porosity, dual-permeability, and multi-region models as special cases. A sequential iteration approach is used to treat the coupling between fluid flow and mass transport on the one hand, chemical reactions on the other. Applications of the methods developed here to variably saturated geochemical systems are presented in a companion paper (part 2, this issue).

  13. Investigating the effect of external water on magma ascent dynamics with a new multiphase flow numerical model

    NASA Astrophysics Data System (ADS)

    De'Michieli Vitturi, M.; Neri, A.; La Spina, G.; Clarke, A. B.

    2013-12-01

    The study of deposits produced by explosive eruptions of Campi Flegrei and Vesuvio suggests that important phases of these events have been characterized by a significant interaction of magma with external water. Despite that, the influence of external water on eruption dynamics and its potential hazard have not been studied in depth. In this work we adopted a 1D non-isothermal multi-phase flow model describing the dynamics of magma ascent inside a volcanic conduit. The new model is based on the theory of thermodynamically compatible systems that allows formulation of the governing transport equations as a hyperbolic system of partial differential equations in conservative form. The model represents a significant advance with respect to previous simplified descriptions of the magma ascent dynamics in that it: 1) is capable of treating both dilute and dense flow regimes; 2) describes flow above and below the fragmentation level in a coupled and consistent way; 3) quantifies the interaction between the two phases forming the magmatic mixture (both in the bubbly-flow and gas-particle regimes) with two distinct pressures and velocities; 4) accounts for disequilibrium crystallization and degassing; 5) treats the dissolved water as a separate phase with its own equation of state and; 6) allows for instantaneous or delayed vaporization of the external water from an aquifer. Here we investigate, through a sensitivity analysis, the role of different system parameters, in particular those related to the inflow of non-magmatic volatiles, in controlling vent conditions and eruptive style for conditions representative of Plinian (e.g. Agnano Monte Spina) eruptions at Campi Flegrei. Model results show that mass flux at the vent is primarily controlled by the quantity of engulfed external water, when this inflow occurs below the fragmentation level, whereas small changes in mass flux are produced when the interaction occurs above the fragmentation level. In particular it is worth

  14. Notes on Well-Posed, Ensemble Averaged Conservation Equations for Multiphase, Multi-Component, and Multi-Material Flows

    SciTech Connect

    Ray A. Berry

    2005-07-01

    At the INL researchers and engineers routinely encounter multiphase, multi-component, and/or multi-material flows. Some examples include: Reactor coolant flows Molten corium flows Dynamic compaction of metal powders Spray forming and thermal plasma spraying Plasma quench reactor Subsurface flows, particularly in the vadose zone Internal flows within fuel cells Black liquor atomization and combustion Wheat-chaff classification in combine harvesters Generation IV pebble bed, high temperature gas reactor The complexity of these flows dictates that they be examined in an averaged sense. Typically one would begin with known (or at least postulated) microscopic flow relations that hold on the “small” scale. These include continuum level conservation of mass, balance of species mass and momentum, conservation of energy, and a statement of the second law of thermodynamics often in the form of an entropy inequality (such as the Clausius-Duhem inequality). The averaged or macroscopic conservation equations and entropy inequalities are then obtained from the microscopic equations through suitable averaging procedures. At this stage a stronger form of the second law may also be postulated for the mixture of phases or materials. To render the evolutionary material flow balance system unique, constitutive equations and phase or material interaction relations are introduced from experimental observation, or by postulation, through strict enforcement of the constraints or restrictions resulting from the averaged entropy inequalities. These averaged equations form the governing equation system for the dynamic evolution of these mixture flows. Most commonly, the averaging technique utilized is either volume or time averaging or a combination of the two. The flow restrictions required for volume and time averaging to be valid can be severe, and violations of these restrictions are often found. A more general, less restrictive (and far less commonly used) type of averaging known

  15. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOEpatents

    Ortiz, Marcos G.; Boucher, Timothy J.

    1997-01-01

    A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.

  16. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1997-06-24

    A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.

  17. Study of multi-phase flow characteristics in an MHD power train

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.; Petrick, M.

    1993-08-01

    Computer simulation was used to predict two-phase flow processes in the CDIF MHD power train system. The predictions were used to evaluate the effects of operating and design parameters on the performance of the system and a parametric evaluation provides information to enhance the performance of the system. Major components of the system under investigation are the two-stage combustor, the converging/diverging nozzle, the supersonic MHD channel, and the diffuser. Flow in each component was simulated using a computer code. Integrating the computer codes, the two-phase flow processes in the system was calculated. Recently, the computer codes were used to investigate problems of nozzle erosion and the non-uniform iron oxide coverage on the cathode wall in the channel. A limited parametric study was conducted. The results indicated that (1) among the three nozzle geometries under investigation a {number_sign}5 nozzle has the smoothest flow development in the nozzle and has the lowest droplet deposition on wall and (2) smaller particle size and lower injection velocity tend to disperse the iron oxide particles more uniformly in the nozzle.

  18. A modelling study of the multiphase leakage flow from pressurised CO2 pipeline.

    PubMed

    Zhou, Xuejin; Li, Kang; Tu, Ran; Yi, Jianxin; Xie, Qiyuan; Jiang, Xi

    2016-04-01

    The accidental leakage is one of the main risks during the pipeline transportation of high pressure CO2. The decompression process of high pressure CO2 involves complex phase transition and large variations of the pressure and temperature fields. A mathematical method based on the homogeneous equilibrium mixture assumption is presented for simulating the leakage flow through a nozzle in a pressurised CO2 pipeline. The decompression process is represented by two sub-models: the flow in the pipe is represented by the blowdown model, while the leakage flow through the nozzle is calculated with the capillary tube assumption. In the simulation, two kinds of real gas equations of state were employed in this model instead of the ideal gas equation of state. Moreover, results of the flow through the nozzle and measurement data obtained from laboratory experiments of pressurised CO2 pipeline leakage were compared for the purpose of validation. The thermodynamic processes of the fluid both in the pipeline and the nozzle were described and analysed.

  19. a Marker-Based Eulerian-Lagrangian Method for Multiphase Flow with Supersonic Combustion Applications

    NASA Astrophysics Data System (ADS)

    Fan, Xiaofeng; Wang, Jiangfeng

    2016-06-01

    The atomization of liquid fuel is a kind of intricate dynamic process from continuous phase to discrete phase. Procedures of fuel spray in supersonic flow are modeled with an Eulerian-Lagrangian computational fluid dynamics methodology. The method combines two distinct techniques and develops an integrated numerical simulation method to simulate the atomization processes. The traditional finite volume method based on stationary (Eulerian) Cartesian grid is used to resolve the flow field, and multi-component Navier-Stokes equations are adopted in present work, with accounting for the mass exchange and heat transfer occupied by vaporization process. The marker-based moving (Lagrangian) grid is utilized to depict the behavior of atomized liquid sprays injected into a gaseous environment, and discrete droplet model 13 is adopted. To verify the current approach, the proposed method is applied to simulate processes of liquid atomization in supersonic cross flow. Three classic breakup models, TAB model, wave model and K-H/R-T hybrid model, are discussed. The numerical results are compared with multiple perspectives quantitatively, including spray penetration height and droplet size distribution. In addition, the complex flow field structures induced by the presence of liquid spray are illustrated and discussed. It is validated that the maker-based Eulerian-Lagrangian method is effective and reliable.

  20. A modelling study of the multiphase leakage flow from pressurised CO2 pipeline.

    PubMed

    Zhou, Xuejin; Li, Kang; Tu, Ran; Yi, Jianxin; Xie, Qiyuan; Jiang, Xi

    2016-04-01

    The accidental leakage is one of the main risks during the pipeline transportation of high pressure CO2. The decompression process of high pressure CO2 involves complex phase transition and large variations of the pressure and temperature fields. A mathematical method based on the homogeneous equilibrium mixture assumption is presented for simulating the leakage flow through a nozzle in a pressurised CO2 pipeline. The decompression process is represented by two sub-models: the flow in the pipe is represented by the blowdown model, while the leakage flow through the nozzle is calculated with the capillary tube assumption. In the simulation, two kinds of real gas equations of state were employed in this model instead of the ideal gas equation of state. Moreover, results of the flow through the nozzle and measurement data obtained from laboratory experiments of pressurised CO2 pipeline leakage were compared for the purpose of validation. The thermodynamic processes of the fluid both in the pipeline and the nozzle were described and analysed. PMID:26774983

  1. High-resolution simulations of multi-phase flow in magmatic-hydrothermal systems with realistic fluid properties

    NASA Astrophysics Data System (ADS)

    Geiger, S.; Driesner, T.; Matthai, S.; Heinrich, C.

    2002-12-01

    Realistic modelling of multi-phase fluid flow, energy and component transport in magmatic-hydrothermal systems is very challenging because hydrological properties of fluids and rocks vary over many orders of magnitude and the geometric complexities of such systems. Furthermore, density dependent component transport and transient permeability variations due to P-T changes and fluid-rock interactions introduce additional difficulties. As a result, the governing equations for the hydrodynamics, energy and component transport, and thermodynamics in magmatic hydrothermal systems are highly non-linear and strongly coupled. Essential requirements of a numerical formulation for such a system are: (1) a treatment of the hydrodynamics that can accurately resolve complex geological structures and represent the highly variable fluid velocities herein, (2) a realistic thermodynamic representation of the fluid properties including the wide P-T-X range of liquid+vapour coexistence for the highly saline fluids, and (3) an accurate handling of the highly contrasting transport properties of the two fluids. We are combining higher order finite-element (FE) methods with total variation diminishing finite volume (TVDFV) methods to model the hydrodynamics and energy and component transport of magmatic hydrothermal systems. Combined FE and TVDFV methods are mass and shock preserving, yield great geometric flexibility in 2D and 3D [2]. Furthermore, efficient matrix solvers can be employed to model fluid flow in geologically realistic structures [5]. The governing equations are linearized by operator-splitting and solved sequentially using a Picard iteration scheme. We chose the system water-NaCl as a realistic proxy for natural fluids occurring in magmatic-hydrothermal systems. An in-depth evaluation of the available experimental and theoretical data led to a consistent and accurate set of formulations for the PVTXH relations that are valid from 0 to 800 C, 0 to 500 MPa, and 0 to 1 XNa

  2. INVESTIGATION OF MULTISCALE AND MULTIPHASE FLOW, TRANSPORT AND REACTION IN HEAVY OIL RECOVERY PROCESSES

    SciTech Connect

    Yannis C. Yortsos

    2003-02-01

    This is final report for contract DE-AC26-99BC15211. The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress. The report consists mainly of a compilation of various topical reports, technical papers and research reports published produced during the three-year project, which ended on May 6, 2002 and was no-cost extended to January 5, 2003. Advances in multiple processes and at various scales are described. In the area of internal drives, significant research accomplishments were made in the modeling of gas-phase growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in internal steam drives. In the area of vapor-liquid flows, we studied various aspects of concurrent and countercurrent flows, including stability analyses of vapor-liquid counterflow, and the development of novel methods for the pore-network modeling of the mobilization of trapped phases and liquid-vapor phase changes. In the area of combustion, we developed new methods for the modeling of these processes at the continuum and pore-network scales. These models allow us to understand a number of important aspects of in-situ combustion, including steady-state front propagation, multiple steady-states, effects of heterogeneity and modes of combustion (forward or reverse). Additional aspects of reactive transport in porous media were also studied. Finally, significant advances were made in the flow and displacement of non-Newtonian fluids with Bingham plastic rheology, which is characteristic of various heavy oil processes. Various accomplishments in generic displacements in porous media and corresponding effects of reservoir heterogeneity are also cited.

  3. Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics

    NASA Astrophysics Data System (ADS)

    Tartakovsky, Alexandre M.; Panchenko, Alexander

    2016-01-01

    We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics (PF-SPH) model and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method, and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the model's accuracy under static and dynamic conditions. Finally, we use the Pf-SPH model to simulate three phase flow in a porous medium.

  4. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect

    Yorstos, Yanis C.

    2002-03-11

    The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil with the objective to improve recovery efficiencies. For this purpose the interaction of flow transport and reaction at various scales from the pore network to the field scales were studied. Particular mechanisms to be investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam processes, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the Recovery efficiency of various heavy oil processes.

  5. Laser Doppler anemometry and fibreoptical spatial filter anemometry - A comparison for the multiphase flow measurement

    NASA Astrophysics Data System (ADS)

    Petrak, D.; Haedrich, T.

    The paper presents a comparison between the fiber-optical spatial filter anemometry (FOA) and LDA for the particle velocity measurement in a two-phase flow. An LDA two beam anemometer and a differential-type optical fiber array spatial filter were used for the velocity measurements on glass particles with a mean diameter of 116 microns in a horizontal channel air flow. Two different probe pipe constructions were investigated. In general the results show that the FOA-probe signals have a low signal-to-noise ratio in comparison with the LDA-signals and that the mean FOA-particle velocity is smaller than the mean LDA-particle velocity. A FOA-system with a probe construction like a Pitot tube is preferred for the application.

  6. Multiphase Flow Modeling of Slag Entrainment During Ladle Change-Over Operation

    NASA Astrophysics Data System (ADS)

    Morales, Rodolfo D.; Garcia-Hernandez, Saul; Barreto, Jose de Jesus; Ceballos-Huerta, Ariana; Calderon-Ramos, Ismael; Gutierrez, Enif

    2016-08-01

    Steel transfer from the ladle to a single-strand tundish using a conventional ladle shroud (CLS), and a dissipative ladle shroud (DLS) is studied during the transient period of ladle change-over operation. Fluid velocities and fluid flow turbulence statistics during this unsteady operation were recorded by an ultrasound velocimetry probe in a 1/3 scale water-oil-air analog model (to emulate steel-slag-air system). Reynolds stress model and volume of fluid model allow the tracking of water-oil, water-air, and oil-air interfaces during this operation. Velocity measurements indicate a very high turbulence with the formation of a water-air bubbles-oil emulsion. Flow turbulence and the intensity of the emulsification decrease considerably due to an efficient dissipation of the turbulent kinetic energy employing the DLS instead of the CLS. The modeling results indicate that DLS is widely recommended to substitute flow control devices to improve the fluid dynamics of liquid steel during this transient operation.

  7. Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem.

    PubMed

    Abas, Aizat; Mokhtar, N Hafizah; Ishak, M H H; Abdullah, M Z; Ho Tian, Ang

    2016-01-01

    This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221

  8. Nonlinear waves and pattern formation in multiphase flows in porous media

    NASA Astrophysics Data System (ADS)

    Elperin, T.; Kleeorin, N.; Rogachevskii, I.

    The paper analyzes pattern formation in initially homogeneous one-dimensional two-phase flows in porous medium. It is shown that generally these flows are unstable. The mechanism of the instabilities is associated with inertial effects. Such instabilities are of explosive type and are probably important in various engineering applications and natural phenomena. In small-amplitude finite approximation the evolution of patterns is governed by the Korteweg-de Vries-Burgers equation. Pattern formation occurs when the coefficient multiplying the Burgers term becomes negative. During nonlinear evolution a soliton with a tail is formed. The amplitude of the soliton increases while the tail decreases. These results can be regarded as a generalization of results by Harris and Crighton (1994) to the case of two-phase flows in porous medium. The obtained solution in form of soliton with a tail can be interpreted as initial phase of formation of the phase composition inhomogeneities in porous media. In the case of fluidized beds this pattern can be regarded as initial phase of bubble formation in a fluidized bed of granular material. The characteristic size of bubbles and time of its formation are estimated.

  9. Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem

    PubMed Central

    Abas, Aizat; Mokhtar, N. Hafizah; Ishak, M. H. H.; Abdullah, M. Z.; Ho Tian, Ang

    2016-01-01

    This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221

  10. Characterization of multiphase fluid flow during air-sparged hydrocyclone flotation by x-ray CT. Final report, 14 August 1990--13 August 1994

    SciTech Connect

    Miller, J.D.

    1994-10-18

    Air sparged hydrocyclone (ASH) flotation is a new particle separation technology that has been developed at the University of Utah. This technology combines froth flotation principles with the flow characteristics of a hydrocyclone such that the ASH system can perform flotation separations in less than a second. This feature provides the ASH with a high specific capacity, 100 to 600 times greater than the specific capacity of conventional flotation machines. In an effort to develop a more detailed understanding of ASH flotation, multiphase flow characteristics of the air sparged hydrocyclone were studied and the relationship of these characteristics with flotation performance was investigated. This investigation was divided into four phases. In the first phase, the time-averaged multiphase flow characteristics of the ASH during its steady state operation were studied using x-ray computed tomography (x-ray CT). In this regard, a model system, mono-sized quartz flotation with dodecyl amine as collector, using a 2 in. diameter ASH unit (ASH-2C), was selected for study. Various flow regimes, namely, the air core, the froth phase, and the swirl layer, were identified and their spatial extent established for different experimental conditions by x-ray CT analysis. In the second phase, a detailed parametric study of flotation response of the ASH for the same system was carried out in order to establish the effect of various operating variables on flotation response. The findings of this phase of investigation were then correlated with the multiphase flow characteristics as revealed by x-ray CT in the first phase. Thus, the impact of various operating variables on the flow regimes, and hence, on flotation response was established.

  11. Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effect

    SciTech Connect

    Xu, T.; Senger, R.; Finsterle, S.

    2008-10-15

    Corrosion of steel canisters, stored in a repository for spent fuel and high-level nuclear wastes, leads to the generation and accumulation of hydrogen gas in the backfilled emplacement tunnels, which may significantly affect long-term repository safety. Previous studies used H{sub 2} generation rates based on the volume of the waste or canister material and the stoichiometry of the corrosion reaction. However, iron corrosion and H{sub 2} generation rates vary with time, depending on factors such as amount of iron, water availability, water contact area, and aqueous and solid chemistry. To account for these factors and feedback mechanisms, we developed a chemistry model related to iron corrosion, coupled with two-phase (liquid and gas) flow phenomena that are driven by gas-pressure buildup associated with H{sub 2} generation and water consumption. Results indicate that by dynamically calculating H{sub 2} generation rates based on a simple model of corrosion chemistry, and by coupling this corrosion reaction with two-phase flow processes, the degree and extent of gas pressure buildup could be much smaller compared to a model that neglects the coupling between flow and reactive transport mechanisms. By considering the feedback of corrosion chemistry, the gas pressure increases initially at the canister, but later decreases and eventually returns to a stabilized pressure that is slightly higher than the background pressure. The current study focuses on corrosion under anaerobic conditions for which the coupled hydrogeochemical model was used to examine the role of selected physical parameters on the H{sub 2} gas generation and corresponding pressure buildup in a nuclear waste repository. The developed model can be applied to evaluate the effect of water and mineral chemistry of the buffer and host rock on the corrosion reaction for future site-specific studies.

  12. Multiphase multi-velocity discrete population balance model of fragmenting particulate flows

    NASA Astrophysics Data System (ADS)

    Panchagnula, Mahesh; Rayapati, Prasad; Peddieson, John

    2008-11-01

    Fragmenting particulate flows are studied using discrete population balance modeling. The range of particle sizes is divided into N classes with each size class being allowed to behave as an individual fluid-like phase. The particulate phases are embedded in a continuous phase with which they share a pressure field and are coupled through drag forces. The particulate material is therefore modeled as a mixture of N+1 inter-penetrating continua. The fragmentation process is modeled using the population balance approach which allows for parent size-class particles to break up into any of the smaller daughter size-classes following a pre-defined breakage phenomenology. The accompanying mass and momentum exchange between the size-classes is modeled as source terms in the conservation equations. The model is applied to a micro-centrifuge flow field. We show here that the larger particles, while being encouraged to break up are also preferentially transported towards the walls of the centrifuge, owing to the swirl induced radial pressure gradient. By experimenting with various breakage phenomenologies, we show that the classical log-normal particle size distribution can be recovered in the long time limit for all breakage phenomenologies but the short time evolution of the particle size distribution is sensitive to that choice.

  13. Dissipative Particle Dynamics and Other Particle Methods for Multiphase Fluid Flow in Fractured and Porous Media

    SciTech Connect

    Paul Meakin; Zhijie Xu

    2008-06-01

    Particle methods are much less computationally efficient than grid based numerical solution of the Navier Stokes equation, and they have been used much less extensively, particularly for engineering applications. However, they have important advantages for some applications. These advantages include rigorous mast conservation, momentum conservation and isotropy. In addition, there is no need for explicit interface tracking/capturing. Code development effort is relatively low, and it is relatively simple to simulate flows with moving boundaries. In addition, it is often quite easy to include coupling of fluid flow with other physical phenomena such a phase separation. Here we describe the application of three particle methods: molecular dynamics, dissipative particle dynamics and smoothed particle hydrodynamics. While these methods were developed to simulate fluids and other materials on three quite different scales – the molecular, meso and continuum scales, they are very closely related from a computational point of view. The mesoscale (between the molecular and continuum scales) dissipative particle dynamics method can be used to simulate systems that are too large to simulate using molecular dynamics but small enough for thermal fluctuations to play an important role. Important examples include polymer solutions, gels, small particle suspensions and membranes. In these applications inter particle and intra molecular hydrodynamic interactions are automatically included

  14. Experimental and Theoretical Investigation of Multiphase Flow in Fractured Porous media, SUPRI TR-116, Topical Report

    SciTech Connect

    Akin, Serhat; Castanier, Louis M.; German, Edgar Rene Rangel

    1999-08-09

    The fluid transfer parameters between rock matrix and fracture are not well known. Consequently, simulation of fractured reservoirs uses, in general, very crude and unproven hypotheses such as zero capillary pressure in the fracture and/or relative permeability linear with saturation. In order to improve the understanding of flow in fractured media, an experimental study was conducted and numerical simulations of the experiments were made. A laboratory flow apparatus was built to obtain data on water- air imbibition and oil-water drainage displacements in horizontal single-fractured block systems. For this purpose, two configurations have been used: a two-block system with a 1 mm spacer between the blocks, and a two-block system with no spacer. During the experiments, porosity and saturation measurements along the cores have been made utilizing an X-ray Computerized Tomography (CT) scanner. Saturation images were reconstructed in 3-D to observe matrix-fracture interactions. Differences in fluid saturations and relative permeabilities caused by changes in fracture width have also been analyzed.

  15. Multiphase Fluid Flow in Deformable Variable-Aperture Fractures - Final Report

    SciTech Connect

    Detwiler, Russell

    2014-04-30

    Fractures provide flow paths that can potentially lead to fast migration of fluids or contaminants. A number of energy-­related applications involve fluid injections that significantly perturb both the pressures and chemical composition of subsurface fluids. These perturbations can cause both mechanical deformation and chemical alteration of host rocks with potential for significant changes in permeability. In fractured rock subjected to coupled chemical and mechanical stresses, it can be difficult to predict the sign of permeability changes, let alone the magnitude. This project integrated experimental and computational studies to improve mechanistic understanding of these coupled processes and develop and test predictive models and monitoring techniques. The project involved three major components: (1) study of two-­phase flow processes involving mass transfer between phases and dissolution of minerals along fracture surfaces (Detwiler et al., 2009; Detwiler, 2010); (2) study of fracture dissolution in fractures subjected to normal stresses using experimental techniques (Ameli, et al., 2013; Elkhoury et al., 2013; Elkhoury et al., 2014) and newly developed computational models (Ameli, et al., 2014); (3) evaluation of electrical resistivity tomography (ERT) as a method to detect and quantify gas leakage through a fractured caprock (Breen et al., 2012; Lochbuhler et al., 2014). The project provided support for one PhD student (Dr. Pasha Ameli; 2009-­2013) and partially supported a post-­doctoral scholar (Dr. Jean Elkhoury; 2010-­2013). In addition, the project provided supplemental funding to support collaboration with Dr. Charles Carrigan at Lawrence Livermore National Laboratory in connection with (3) and supported one MS student (Stephen Breen; 2011-­2013). Major results from each component of the project include the following: (1) Mineral dissolution in fractures occupied by two fluid phases (e.g., oil-­water or water-­CO{sub 2}) causes changes in local

  16. Shear-slip analysis in multiphase fluid-flow reservoir engineeringap plications using TOUGH-FLAC

    SciTech Connect

    Rutqvist, Jonny; Birkholzer, Jens; Cappa, Frederic; Oldenburg,Curt; Tsang, Chin-Fu

    2006-01-15

    This paper describes and demonstrates the use of the coupledTOUGH-FLAC simulator for geomechanical shear-slip (failure) analysis inmultiphase fluid-flow reservoir-engineering applications. Two approachesfor analyzing shear-slip are described, one using continuum stress-strainanalysis and another using discrete fault analysis. The use of shear-slipanalysis in TOUGH-FLAC is demonstrated on application examples related toCO2 sequestration and geothermal energy extraction. In the case of CO2sequestration, the shear-slip analysis is used to evaluate maximumsustainable CO2-injection pressure under increasing reservoir pressure,whereas in the case of geothermal energy extraction, the shear-slipanalysis is used to study induced seismicity during steam productionunder decreasing reservoir pressure and temperature.

  17. Dual FIB-SEM 3D Imaging and Lattice Boltzmann Modeling of Porosimetry and Multiphase Flow in Chalk

    NASA Astrophysics Data System (ADS)

    Rinehart, A. J.; Yoon, H.; Dewers, T. A.; Heath, J. E.; Petrusak, R.

    2010-12-01

    Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage. This work was supported by the US Department of Energy, Office of Basic Energy Sciences as part of an Energy Frontier Research Center. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. An Experimenting Field Approach for the Numerical Solution of Multiphase Flow in Porous Media.

    PubMed

    Salama, Amgad; Sun, Shuyu; Bao, Kai

    2016-03-01

    In this work, we apply the experimenting pressure field technique to the problem of the flow of two or more immiscible phases in porous media. In this technique, a set of predefined pressure fields are introduced to the governing partial differential equations. This implies that the velocity vector field and the divergence at each cell of the solution mesh can be determined. However, since none of these fields is the true pressure field entailed by the boundary conditions and/or the source terms, the divergence at each cell will not be the correct one. Rather the residue which is the difference between the true divergence and the calculated one is obtained. These fields are designed such that these residuals are used to construct the matrix of coefficients of the pressure equation and the right-hand side. The experimenting pressure fields are generated in the solver routine and are fed to the different routines, which may be called physics routines, which return to the solver the elements of the matrix of coefficients. Therefore, this methodology separates the solver routines from the physics routines and therefore results in simpler, easy to construct, maintain, and update algorithms.

  19. A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows

    NASA Astrophysics Data System (ADS)

    Owkes, Mark; Desjardins, Olivier

    2013-09-01

    The accurate conservative level set (ACLS) method of Desjardins et al. [O. Desjardins, V. Moureau, H. Pitsch, An accurate conservative level set/ghost fluid method for simulating turbulent atomization, J. Comput. Phys. 227 (18) (2008) 8395-8416] is extended by using a discontinuous Galerkin (DG) discretization. DG allows for the scheme to have an arbitrarily high order of accuracy with the smallest possible computational stencil resulting in an accurate method with good parallel scaling. This work includes a DG implementation of the level set transport equation, which moves the level set with the flow field velocity, and a DG implementation of the reinitialization equation, which is used to maintain the shape of the level set profile to promote good mass conservation. A near second order converging interface curvature is obtained by following a height function methodology (common amongst volume of fluid schemes) in the context of the conservative level set. Various numerical experiments are conducted to test the properties of the method and show excellent results, even on coarse meshes. The tests include Zalesak’s disk, two-dimensional deformation of a circle, time evolution of a standing wave, and a study of the Kelvin-Helmholtz instability. Finally, this novel methodology is employed to simulate the break-up of a turbulent liquid jet.

  20. A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows

    SciTech Connect

    Owkes, Mark Desjardins, Olivier

    2013-09-15

    The accurate conservative level set (ACLS) method of Desjardins et al. [O. Desjardins, V. Moureau, H. Pitsch, An accurate conservative level set/ghost fluid method for simulating turbulent atomization, J. Comput. Phys. 227 (18) (2008) 8395–8416] is extended by using a discontinuous Galerkin (DG) discretization. DG allows for the scheme to have an arbitrarily high order of accuracy with the smallest possible computational stencil resulting in an accurate method with good parallel scaling. This work includes a DG implementation of the level set transport equation, which moves the level set with the flow field velocity, and a DG implementation of the reinitialization equation, which is used to maintain the shape of the level set profile to promote good mass conservation. A near second order converging interface curvature is obtained by following a height function methodology (common amongst volume of fluid schemes) in the context of the conservative level set. Various numerical experiments are conducted to test the properties of the method and show excellent results, even on coarse meshes. The tests include Zalesak’s disk, two-dimensional deformation of a circle, time evolution of a standing wave, and a study of the Kelvin–Helmholtz instability. Finally, this novel methodology is employed to simulate the break-up of a turbulent liquid jet.

  1. Computer assisted gamma and X-ray tomography: Applications to multiphase flow systems

    SciTech Connect

    Kumar, S.B.; Dudukovic, M.

    1998-01-01

    In process vessels, involving two or three phases it is often important not only to know the volume fraction (holdup) of each phase but also the spatial distribution of such holdups. This information is needed in control, trouble shooting and assessment of flow patterns and can be observed noninvasively by the application of Computed Tomography (CT). This report presents a complete overview of X-ray and gamma ray transmission tomography principles, equipment design to specific tasks and application in process industry. The fundamental principles of tomography, the algorithms for image reconstruction, the measurement method and the possible sources of error are discussed in detail. A case study highlights the methodology involved in designing a scanning system for the study of a given process unit, e.g., reactor, separations column etc. Results obtained in the authors` laboratory for the gas holdup distribution in bubble columns are also presented. Recommendations are made for the Advanced Fuels Development Unit (AFDU) in LaPorte, TX.

  2. Towards an integrated petrophysical tool for multiphase flow properties of core samples

    SciTech Connect

    Lenormand, R.

    1997-08-01

    This paper describes the first use of an Integrated Petrophysical Tool (IPT) on reservoir rock samples. The IPT simultaneously measures the following petrophysical properties: (1) Complete capillary pressure cycle: primary drainage, spontaneous and forced imbibitions, secondary drainage (the cycle leads to the wettability of the core by using the USBM index); End-points and parts of the relative permeability curves; Formation factor and resistivity index. The IPT is based on the steady-state injection of one fluid through the sample placed in a Hassler cell. The experiment leading to the whole Pc cycle on two reservoir sandstones consists of about 30 steps at various oil or water flow rates. It takes about four weeks and is operated at room conditions. Relative permeabilities are in line with standard steady-state measurements. Capillary pressures are in accordance with standard centrifuge measurements. There is no comparison for the resistivity index, but the results are in agreement with literature data. However, the accurate determination of saturation remains the main difficulty and some improvements are proposed. In conclusion, the Integrated Petrophysical Tool is as accurate as standard methods and has the advantage of providing the various parameters on the same sample and during a single experiment. The FIT is easy to use and can be automated. In addition, it can be operated in reservoir conditions.

  3. Application of micro-PIV technique to study multiphase flow of water and liquid CO2 in 2D porous media

    NASA Astrophysics Data System (ADS)

    Kazemifar, F.; Blois, G.; Kyritsis, D. C.; Christensen, K. T.

    2014-11-01

    We study the multiphase flow of water and liquid/supercritical CO2 in 2D porous micromodels, with the goal of developing a more complete understanding of pore-scale flow dynamics for the scenario of geological sequestration of carbon dioxide. Fluorescent microscopy and the micro-PIV technique are employed to simultaneously visualize both phases and obtain the velocity field in the aqueous phase. This technique provides a powerful tool for studying such flow systems and the results give valuable insight into flow processes at the pore scale. The fluid-fluid interface curvature from the images can be used to estimate the local capillary pressure. The velocity measurements illustrate active and passive flow pathways and circulation regions near the fluid-fluid interfaces induced by shear. Thin water films observed on the solid surfaces confirm the hydrophilic nature of the micromodels. The velocity of the said films is measured by particle tracking.

  4. New insights from velocity field measurements in multiphase flow of water and liquid CO2 in 2D porous micromodels for

    NASA Astrophysics Data System (ADS)

    Kazemifar, F.; Blois, G.; Kyritsis, D. C.; Christensen, K. T.

    2014-12-01

    We study the multiphase flow of water and liquid/supercritical CO2 in 2D porous micromodels, with the goal of developing a more complete understanding of pore-scale flow dynamics for the scenario of geological sequestration of carbon dioxide. Fluorescent microscopy and the microscopic particle image velocimetry (micro-PIV) technique are employed to simultaneously visualize both phases and obtain the velocity field in the aqueous phase. This technique provides a powerful tool for studying such flow systems and the results give valuable insight into flow processes at the pore scale. The fluid-fluid interface curvature from the images can be used to estimate the local capillary pressure. The velocity measurements illustrate active and passive flow pathways and circulation regions near the fluid-fluid interfaces induced by shear. Thin water films observed on the solid surfaces confirm the hydrophilic nature of the micromodels. The velocity of the said films is measured by particle tracking.

  5. Numerical Modeling of Reactive Multiphase Flow for FCC and Hot Gas Desulfurization Circulating Fluidized Beds

    SciTech Connect

    2005-07-01

    This work was carried out to understand the behavior of the solid and gas phases in a CFB riser. Only the riser is modeled as a straight pipe. A model with linear algebraic approximation to solids viscosity of the form, {musubs} = 5.34{epsisubs}, ({espisubs} is the solids volume fraction) with an appropriate boundary condition at the wall obtained by approximate momentum balance solution at the wall to acount for the solids recirculation is tested against experimental results. The work done was to predict the flow patterns in the CFB risers from available experimental data, including data from a 7.5-cm-ID CFB riser at the Illinois Institute of Technology and data from a 20.0-cm-ID CFB riser at the Particulate Solid Research, Inc., facility. This research aims at modeling the removal of hydrogen sulfide from hot coal gas using zinc oxide as the sorbent in a circulating fluidized bed and in the process indentifying the parameters that affect the performance of the sulfidation reactor. Two different gas-solid reaction models, the unreacted shrinking core (USC) and the grain model were applied to take into account chemical reaction resistances. Also two different approaches were used to affect the hydrodynamics of the process streams. The first model takes into account the effect of micro-scale particle clustering by adjusting the gas-particle drag law and the second one assumes a turbulent core with pseudo-steady state boundary condition at the wall. A comparison is made with experimental results.

  6. Advanced optical diagnostics of multiphase combustion flow field using OH planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Cho, Kevin Young-jin

    High-repetition-rate (5 kHz, 10 kHz) OH planar laser induced fluorescence (PLIF) was used to investigate the combustion of liquid, gelled, and solid propellants. For the liquid monomethyl hydrazine (MMH) droplet combustion experiment in N2O/N2 using 5 kHz OH PLIF and visible imaging system, the OH profile and the droplet diameter were measured. The N2O partial pressure was varied by 20% and 40%, and the total pressure was varied by 103, 172, 276, 414, 552 kPa. The OH location indicated that the oxidation flame front is between the visible dual flame fronts. The results showed thicker flame sheet and higher burning rate for increased N2O concentration for a given pressure. The burning rate increased with increased pressure at 20% partial pressure N2O, and the burning rate decreased with increased pressure at 40% partial pressure N2O. This work provides experimental data for validating chemical kinetics models. For the gelled droplet combustion experiment using a 5 kHz OH PLIF system, speeds and locations of fuel jets emanating from the burning gelled droplets were quantified for the first time. MMH was gelled with organic gellant HPC at 3 wt.% and 6 wt.%, and burned in air at 35, 103, 172, 276, and 414 kPa. Different types of interaction of vapor jets and flame front were distinguished for the first time. For high jet speed, local extinction of the flame was observed. By analyzing the jet speed statistics, it was concluded that pressure and jet speed had an inverse relationship and gellant concentration and jet speed had a direct relationship. This work provides more fundamental insight into the physics of gelled fuel droplet combustion. A 3D OH PLIF system was assembled and demonstrated using a 10 kHz OH PLIF system and a galvanometric scanning mirror. This is the first time that a reacting flow field was imaged with a 3D optical technique using OH PLIF. A 3D scan time of 1 ms was achieved, with ten slices generated per sweep with 1000 Hz scan rate. Alternatively

  7. Coupling of Multiphase Flow and Geomechanics in Fractured Porous Media: Application to CO2 Leakages from Natural and Stimulated Fractures

    NASA Astrophysics Data System (ADS)

    Ezzedine, S. M.

    2015-12-01

    Leakage to the atmosphere of a significant fraction of injected CO2 would constitute a failure of a geological CO2 storage project from a greenhouse gas mitigation perspective. We present a numerical model that simulates flow and transport of CO2 into heterogeneous subsurface systems. The model, StoTran, is a flexible numerical environment that uses state-of-the-art finite element and finite volume methods and unstructured adaptive mesh refinement scheme implemented using MPI and OpenMP protocols. Multiphase flow equations and the geomechanical equations are implicitly solved and either fully or sequentially coupled. StoTran can address inverse and forward problems under deterministic or stochastic conditions. For the current study, StoTran has been used to simulate several scenarios spanning from a homogeneous single layered reservoir to heterogeneous multi-layered systems, which including cap-rock with embedded fractures, have been simulated under different operations of CO2 injection and CO2 leakages conditions. Results show the impact of the injection and leakage rates on the time evolution of the spread of the CO2 plume, its interception of the fractured cap-rock and the risk associated with the contamination of the overlaying aquifer. Spatial and temporal moments have been calculated for different, deterministic of stochastic, subsurface physical and chemical properties. Spatial moments enable assessing the extent of the region of investigation under conditions of uncertainty. Furthermore, several leakage scenarios show the intermittence behavior and development of the CO2 plume in the subsurface; its first interception with the fractures located further far from the injection well then, at a second stage, its interception with the fracture within the immediate vicinity of the injection well. We will present a remedy to CO2 leakages from the reservoir in order to enhance a long term containment of the injected CO2. This work performed under the auspices of

  8. DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    SciTech Connect

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

    2010-09-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The

  9. Image analysis algorithms for estimating porous media multiphase flow variables from computed microtomography data: a validation study

    SciTech Connect

    Porter, Mark L.; Wildenschild, Dorthe

    2010-09-03

    Image analysis of three-dimensional microtomographic image data has become an integral component of pore scale investigations of multiphase flow through porous media. This study focuses on the validation of image analysis algorithms for identifying phases and estimating porosity, saturation, solid surface area, and interfacial area between fluid phases from gray-scale X-ray microtomographic image data. The data used in this study consisted of (1) a two-phase high precision bead pack from which porosity and solid surface area estimates were obtained and (2) three-phase cylindrical capillary tubes of three different radii, each containing an air-water interface, from which interfacial area was estimated. The image analysis algorithm employed here combines an anisotropic diffusion filter to remove noise from the original gray-scale image data, a k-means cluster analysis to obtain segmented data, and the construction of isosurfaces to estimate solid surface area and interfacial area. Our method was compared with laboratory measurements, as well as estimates obtained from a number of other image analysis algorithms presented in the literature. Porosity estimates for the two-phase bead pack were within 1.5% error of laboratory measurements and agreed well with estimates obtained using an indicator kriging segmentation algorithm. Additionally, our method estimated the solid surface area of the high precision beads within 10% of the laboratory measurements, whereas solid surface area estimates obtained from voxel counting and two-point correlation functions overestimated the surface area by 20--40%. Interfacial area estimates for the air-water menisci contained within the capillary tubes were obtained using our image analysis algorithm, and using other image analysis algorithms, including voxel counting, two-point correlation functions, and the porous media marching cubes. Our image analysis algorithm, and other algorithms based on marching cubes, resulted in errors

  10. Study on multiphase flow and mixing in semidry flue gas desulfurization with a multifluid alkaline spray generator using particle image velocimetry

    SciTech Connect

    Zhou, Y.G.; Wang, D.F.; Zhang, M.C.

    2009-06-15

    Particle image velocimetry (PIV) technique was used to measure the velocity fields of gas-droplet-solid multiphase flow in the experimental setup of a novel semidry flue gas desulfurization process with a multifluid alkaline spray generator. The flow structure, mixing characteristic, and interphase interaction of gas-droplet-solid multiphase flow were investigated both in the confined alkaline spray generator and in the duct bent pipe section. The results show that sorbent particles in the confined alkaline spray generator are entrained into the spray core zone by a high-speed spray jet and most of the sorbent particles can be effectively humidified by spray water fine droplets to form aqueous lime slurry droplets. Moreover, a minimum amount of air stream in the generator is necessary to achieve higher collision humidification efficiency between sorbent particles and spray water droplets and to prevent the possible deposition of fine droplets on the wall. The appropriate penetration length of the slurry droplets from the generator can make uniform mixing between the formed slurry droplets and main air stream in the duct bent pipe section, which is beneficial to improving sulfur dioxide removal efficiency and to preventing the deposition of droplets on the wall.

  11. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOEpatents

    Ortiz, Marcos German; Boucher, Timothy J.

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  12. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1998-10-27

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  13. Multiphase fluid characterization system

    DOEpatents

    Sinha, Dipen N.

    2014-09-02

    A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

  14. DEVELOPMENT OF MULTI-PHASE AND MULTI-COMPONENT FLOW MODEL WITH REACTION IN POROUS MEDIA FOR RISK ASSESSMENT ON SOIL CONTAMINATION DUE TO MINERAL OIL

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yasuhide; Nishiwaki, Junko; Hara, Junko; Kawabe, Yoshishige; Sugai, Yuichi; Komai, Takeshi

    In late years, soil contamination due to mineral oil in vacant lots of oil factory and oil field has become obvious. Measure for soil contamina tion and risk assessment are neces sary for sustainable development of industrial activity. Especially, in addition to contaminated sites, various exposure paths for human body such as well water, soil and farm crop are supposed. So it is very important to comprehend the transport phenomena of contaminated material under the environments of soil and ground water. In this study, mineral oil as c ontaminated material consisting of mu lti-component such as aliphatic and aromatic series was modeled. Then numerical mode l for transport phenomena in surface soil and aquifer was constructed. On the basis of modeling for mineral oil, our numerical model consists of three-phase (oil, water and gas) forty three-component. This numerical model becomes base program for risk assessment system on soil contamination due to mineral oil. Using this numerical model, we carried out some numerical simulation for a laboratory-scale experiment on oil-water multi-phase flow. Relative permeability that dominate flow behavior in multi-phase condition was formulated and the validity of the numerical model developed in this study was considered.

  15. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU)

    NASA Astrophysics Data System (ADS)

    Fourtakas, G.; Rogers, B. D.

    2016-06-01

    A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is applied to two-phase liquid-sediments flows. The absence of a mesh in SPH is ideal for interfacial and highly non-linear flows with changing fragmentation of the interface, mixing and resuspension. The rheology of sediment induced under rapid flows undergoes several states which are only partially described by previous research in SPH. This paper attempts to bridge the gap between the geotechnics, non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer which are needed to predict accurately the global erosion phenomena, from a hydrodynamics prospective. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou constitutive model. This is supplemented by the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. With 3-D simulations requiring a large number of particles, the code is accelerated with a graphics processing unit (GPU) in the open-source DualSPHysics code. The implementation and optimisation of the code achieved a speed up of x58 over an optimised single thread serial code. A 3-D dam break over a non-cohesive erodible bed simulation with over 4 million particles yields close agreement with experimental scour and water surface profiles.

  16. Coupled multiphase flow and closure analysis of repository response to waste-generated gas at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect

    Freeze, G.A.; Larson, K.W.; Davies, P.B.

    1995-10-01

    A long-term assessment of the Waste Isolation Pilot Plant (WIPP) repository performance must consider the impact of gas generation resulting from the corrosion and microbial degradation of the emplaced waste. A multiphase fluid flow code, TOUGH2/EOS8, was adapted to model the processes of gas generation, disposal room creep closure, and multiphase (brine and gas) fluid flow, as well as the coupling between the three processes. System response to gas generation was simulated with a single, isolated disposal room surrounded by homogeneous halite containing two anhydrite interbeds, one above and one below the room. The interbeds were assumed to have flow connections to the room through high-permeability, excavation-induced fractures. System behavior was evaluated by tracking four performance measures: (1) peak room pressure; (2) maximum brine volume in the room; (3) total mass of gas expelled from the room; and (4) the maximum gas migration distance in an interbed. Baseline simulations used current best estimates of system parameters, selected through an evaluation of available data, to predict system response to gas generation under best-estimate conditions. Sensitivity simulations quantified the effects of parameter uncertainty by evaluating the change in the performance measures in response to parameter variations. In the sensitivity simulations, a single parameter value was varied to its minimum and maximum values, representative of the extreme expected values, with all other parameters held at best-estimate values. Sensitivity simulations identified the following parameters as important to gas expulsion and migration away from a disposal room: interbed porosity; interbed permeability; gas-generation potential; halite permeability; and interbed threshold pressure. Simulations also showed that the inclusion of interbed fracturing and a disturbed rock zone had a significant impact on system performance.

  17. Numerical simulation of multiphase flow and collision humidification in the multifluid alkaline spray generator for a novel semidry flue gas desulfurization system

    SciTech Connect

    Zhou, Y.G.; Cao, W.C.; Wang, L.; Zhang, M.C.

    2008-07-15

    A hybrid Eulerian-Lagrangian model was developed to simulate gas-droplet-particle multiphase flow and the collision humidification between sorbent particles and spray droplets in the confined multifluid alkaline spray generator for a novel semidry flue gas desulfurization system. In this model, the motions of discrete phases were tracked simultaneously by using a stochastic trajectory approach, and a probability model of droplets catching particles was presented to judge whether sorbent particles were caught with direct simulation Monte Carlo method. Numerical humidification efficiency of sorbent particles is validated by the experimental one deduced from the measured desulfurization efficiency. The effects of flue gas flow rate, spray droplet diameter, sorbent particle diameter, and particle injection location on the humidification efficiency were optimized. Numerical results show that the collision humidification efficiency of sorbent particles increases significantly at the axial distance of 1.67 times the generator diameter from the nozzle tip and reaches 78.5% without recirculation flow in the alkaline spray generator when the ratio of flue gas mass flow rate to spray water mass flow rate is 6.7. Moreover, there is an optimal droplet diameter ranging from 125 to 150 {mu} m and an optimal particle injection location corresponding to the maximum humidification efficiency in this paper.

  18. Higher-order conservative interpolation between control-volume meshes: Application to advection and multiphase flow problems with dynamic mesh adaptivity

    NASA Astrophysics Data System (ADS)

    Adam, A.; Pavlidis, D.; Percival, J. R.; Salinas, P.; Xie, Z.; Fang, F.; Pain, C. C.; Muggeridge, A. H.; Jackson, M. D.

    2016-09-01

    A general, higher-order, conservative and bounded interpolation for the dynamic and adaptive meshing of control-volume fields dual to continuous and discontinuous finite element representations is presented. Existing techniques such as node-wise interpolation are not conservative and do not readily generalise to discontinuous fields, whilst conservative methods such as Grandy interpolation are often too diffusive. The new method uses control-volume Galerkin projection to interpolate between control-volume fields. Bounded solutions are ensured by using a post-interpolation diffusive correction. Example applications of the method to interface capturing during advection and also to the modelling of multiphase porous media flow are presented to demonstrate the generality and robustness of the approach.

  19. Monitoring CO 2 sequestration into deep saline aquifer and associated salt intrusion using coupled multiphase flow modeling and time lapse electrical resistivity tomography

    SciTech Connect

    Chuan Lu; CHI Zhang; Hai Hanag; Timothy C. Johnson

    2014-04-01

    Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoring the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions.

  20. Multiphase-flow numerical modeling of the 18 May 1980 lateral blast at Mount St. Helens, USA

    USGS Publications Warehouse

    Ongaro, T.E.; Widiwijayanti, C.; Clarke, A.B.; Voight, B.; Neri, A.

    2011-01-01

    Volcanic lateral blasts are among the most spectacular and devastating of natural phenomena, but their dynamics are still poorly understood. Here we investigate the best documented and most controversial blast at Mount St. Helens (Washington State, United States), on 18 May 1980. By means of three-dimensional multiphase numerical simulations we demonstrate that the blast front propagation, fi nal runout, and damage can be explained by the emplacement of an unsteady, stratifi ed pyroclastic density current, controlled by gravity and terrain morphology. Such an interpretation is quantitatively supported by large-scale observations at Mount St. Helens and will infl uence the defi nition and predictive mapping of hazards on blast-dangerous volcanoes worldwide. ?? 2011 Geological Society of America.

  1. Feasibility of aseptic processing of a low-acid multiphase food product (salsa con queso) using a continuous flow microwave system.

    PubMed

    Kumar, P; Coronel, P; Simunovic, J; Sandeep, K P

    2007-04-01

    Aseptic processing of a low-acid multiphase food product using a continuous flow microwave heating system can combine the advantages of an aseptic process along with those of microwave heating. Dielectric properties of 2 different brands of 1 such product (salsa con queso) were measured under continuous flow conditions at a temperature range of 20 to 130 degrees C. At 915 MHz, the dielectric constant ranged from 58.7 at 20 degrees C to 41.3 at 130 degrees C with dielectric loss factor ranging from 41.0 at 20 degrees C to 145.5 at 130 degrees C. The loss tangent at 915 MHz ranged from 0.61 at 20 degrees C to 3.52 at 130 degrees C. The temperature profiles at the outlet during processing of salsa con queso in a 5-kW microwave unit showed a narrow temperature distribution between the center and the wall of the tube. The study showed the feasibility of aseptic processing of salsa con queso using a continuous flow microwave system.

  2. Surge Across the Chambo: Entrainment, topographical influences, and flow transformation of pyroclastic density currents using a combined field and multiphase modeling approach

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Dufek, J.; Geist, D.; Harpp, K. S.

    2011-12-01

    simulations in concert with detailed measurements of these flows from both up flow and down flow from the transformation to document the process of dense to dilute flow transition. The field characterization includes mapping of the flows, grain size analysis, documenting flow direction indicators, comminution rounding, thermal proxies for air entrainment, and bed form documentation. We used a three-dimensional, multiphase (Eulerian-Eulerian-Lagrangian, EEL) modeling approach to describe size sorting, concentration gradients, and stresses in these evolving flows using the topography of the near Chambo River crossing (Dufek and Bergantz, 2007). The numerical models reveal extensive entrainment in the surge-generating phase of the flow, and secondary plume generation as fine ash in transported by hot gases higher into the atmosphere. Granular waves develop in the confined channels of the dense flow resulting bed shear stress perturbations. These granular instabilities and entrainment result in pulsing conditions in the surge, accounting for much of the unsteady behavior that results in fluctuations in grain size and bed form in the surge deposits.

  3. Coupled modeling of non-isothermal multiphase flow, solutetransport and reactive chemistry in porous and fractured media: 1. ModelDevelopment and Validation

    SciTech Connect

    Xu, Tianfu; Pruess, Karsten

    1998-09-01

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, mineral deposition, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. Here they present a numerical simulation model, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered. The model can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions is considered, such as aqueous complexation, gas dissolution/exsolution, cation exchange, and surface complexation. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. The coupled model employs a sequential iteration approach with reasonable computing efficiency. The development of the governing equations and numerical approach is presented along with the discussion of the model implementation and capabilities. The model is verified for a wide range of subsurface physical and chemical processes. The model is well suited for flow and reactive transport in variably saturated porous and fractured media. In the second of this two-part paper, three applications covering a variety of problems are presented to illustrate the capabilities of the model.

  4. Fundamentals and recent advances in X-ray micro computed tomography (microCT) applied on thermal-fluid dynamics and multiphase flows

    NASA Astrophysics Data System (ADS)

    Santini, Maurizio

    2015-11-01

    X-ray computed tomography (CT) is a well-known technique nowadays, since its first practical application by Sir. G. Hounsfield (Nobel price for medicine 1979) has continually benefited from optimising improvements, especially in medical applications. Indeed, also application of CT in various engineering research fields provides fundamental informations on a wide range of applications, considering that the technique is not destructive, allowing 3D visualization without perturbation of the analysed material. Nowadays, it is technologically possible to design and realize an equipment that achieve a micrometric resolution and even improve the sensibility in revealing differences in materials having very radiotransparency, allowing i.e. to distinguish between different fluids (with different density) or states of matter (like with two-phase flows). At the University of Bergamo, a prototype of an X-ray microCT system was developed since 2008, so being fully operative from 2012, with specific customizations for investigations in thermal-fluid dynamics and multiphase flow researches. A technical session held at the UIT International Conference in L'Aquila (Italy), at which this paper is referring, has presented some microCT fundamentals, to allow the audience to gain basics to follow the “fil-rouge” that links all the instrumentation developments, till the recent applications. Hereinafter are reported some applications currently developed at Bergamo University at the X-ray computed micro-tomography laboratory.

  5. Using pore-scale imaging and modeling to provide new insights in multi-phase flow, transport and reaction phenomena in porous media (Invited)

    NASA Astrophysics Data System (ADS)

    Bijeljic, B.; Andrew, M. G.; Menke, H. P.; Blunt, M. J.

    2013-12-01

    Advances in X ray imaging techniques made it possible not only to accurately describe solid and fluid(s) distributions in the pore space but also to study dynamics of multi-phase flow and reactive transport in-situ. This has opened up a range of new opportunities to better understand fundamental physics at the pore scale by experiment, and test and validate theoretical models in order to develop predictive tools at the pore scale and use it for upscaling. Firstly, we illustrate this concept by describing a new methodology for predicting non-Fickian transport in millimeter-sized three-dimensional micro-CT images of a beadpack, a sandstone, and a carbonate, representing porous media with an increasing degree of pore-scale complexity. The key strategy is to retain the full information on flow and transport signature of a porous medium by using probability distribution functions (PDFs) of voxel velocities for flow, and both PDFs of particle displacements and PDFs of particle transit times between voxels for transport. For this purpose, direct-simulation flow and transport model is used to analyse the relationship between pore structure, velocity, and the dynamics of the evolving plume. The model predictions for PDFs of particle displacements obtained by the model are in excellent agreement with those measured on similar cores in nuclear magnetic resonance experiments. A key determinant for non-Fickian transport is the spread in velocity distribution in the pore space. Further, we present micro-CT imaging of capillary trapping of scCO2 at reservoir conditions in a range of carbonates and sandstones having different pore structure and demonstrate that substantial quantities of scCO2 can be trapped in the pore space. Higher residual scCO2 saturations are found in sandstones compared to carbonates. The trapped ganglia exhibit different distribution of size, related to the inherent structure of pore space. Pore structures with large, open pores that are well connected lead

  6. Pore-scale experimental study of multiphase flow relevant to CO2 sequestration and biogeochemical reactive transport relevant to contaminant fate in the subsurface

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Oostrom, M.; Liu, C.

    2012-12-01

    Pore-scale micromodel experiments are being conducted at EMSL PNNL to gain better understanding of i) fundamental interfacial processes that control multiphase flow relevant to CO2 sequestration, and ii) biogeochemical reactive transport that affect the fate of contaminants in the subsurface. During the main drainage process, unstable capillary and viscous fingering mechanisms were observed in a nearly homogeneous micromodel and a dual-permeability micromodel that affect supercritical CO2 (scCO2, 9 MPa, 41 degree C) displacement of water from the pore space. During primary imbibition, water flooding of a micromodel partially saturated with scCO2 resulted in preferential dissolution of scCO2 (i.e., dissolution fingering). Micromodel experiments were also performed to investigate kinetics of reductive dissolution of hematite coating on grain surfaces when coupled with pore diffusion. Results showed hematite reduction rate in micropores where transport is dominated by diffusion is 1 to 2 orders of magnitude lower than macropores where transport is controlled by advection.

  7. Development of multiphase Navier-Stokes simulation capability for turbulent gas flow over laminar liquid for Cartesian grids

    NASA Astrophysics Data System (ADS)

    Miao, Sha; Hendrickson, Kelli; Liu, Yuming; Subramani, Hariprasad

    2015-11-01

    This work presents a novel and efficient Cartesian-grid based simulation capability for the study of an incompressible, turbulent gas layer over a liquid flow with disparate Reynolds numbers in two phases. This capability couples a turbulent gas-flow solver and a liquid-layer based on a second-order accurate Boundary Data Immersion Method (BDIM) at the deformable interface. The turbulent gas flow solver solves the incompressible Navier-Stokes equations via direct numerical simulation or through turbulence closure (unsteady Reynolds-Averaged Navier-Stokes Models) for Reynolds numbers O(106). In this application, a laminar liquid layer solution is obtained from depth-integrated Navier-Stokes equations utilizing shallow water wave assumptions. The immersed boundary method (BDIM) enforces the coupling at the deformable interface, the boundary conditions to turbulence closure equations and defines the domain geometry on the Cartesian grid. Validations are made for the turbulent gas channel flow over high-viscosity liquid. This simulation capability can be applied to problems in the oil and industrial sector such as channel and pipe flows with heavy oils as well as wind wave generation in shallow waters. Sponsored by the Chevron Energy Technology Company.

  8. National laboratories` capabilities summaries for the DOE Virtual Center for Multiphase Dynamics (VCMD)

    SciTech Connect

    Joyce, E.L.

    1997-03-01

    The Virtual Center For Multiphase Dynamics (VCMD) integrates and develops the resources of industry, government, academia, and professional societies to enable reliable analysis in multiphase computational fluid dynamics. The primary means of the VCMD focus will be by the creation, support, and validation of a computerized simulation capability for multiphase flow and multiphase flow applications. This paper briefly describes the capabilities of the National Laboratories in this effort.

  9. Study on the Multi-phase Flow and Fluid Saturation in 2D Fractured Media by Light Transmission Technique

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Ye, S.; Wu, J.

    2013-12-01

    Immiscible two-phase flows in fractured media are encountered in many engineering processes such as recovery of oil and gas, exploitation of geothermal energy, and groundwater contamination by immiscible chemicals. A two-dimensional rough wall parallel plate fracture model was set up and light transmission method (LTM) was applied to study two-phase flow system in fractured media. The fracture model stood with up and bottom flow and no flow on other two sides. A charge-coupled device (CCD) camera was used to monitor the migration of DNAPL and gas bubbles in the fracture model. To simulate two-phase system in fracture media, air was injected into the water saturated cell (C1) through the middle of the bottom and NAPL was injected into another water saturated cell (C2) through the middle of the top of the cell. The results show LTM was an effective way in monitoring the migration of DNAPL and gas bubbles in the fracture models. Gas moved upwards quickly to the top of C1 in the way of air bubbles generated at the injection position and formed a continuous distribution. The migration of TCE was controlled by its own weight and fracture aperture. TCE migrated to large aperture firstly when moving downwards, and intruded into smaller one with accumulation of TCE. Light Intensity-Saturation Models (LISMs) were developed to estimate the gas or NAPL saturation in two-phase system. The volume amount of infiltration of gas bubbles or NAPL could be estimated from light intensities by LISMs. There were strong correlations between the added and calculated amounts of gas or TCE. It is feasible to use the light transmission method to characterize the movement and spatial distribution of gas or NAPL in fractured media.

  10. Visualization and measurement of multiphase flow in porous media using light transmission and synchrotron x-rays.

    PubMed

    Darnault, Christophe J G; Dicarlo, David A; Bauters, Tim W J; Steenhuis, Tammo S; Parlange, J-Yves; Montemagno, Carlo D; Baveye, Philippe

    2002-10-01

    Non-aqueous phase liquids enter the vadose zone as a result of spills or leaking underground storage facilities, thus contaminating groundwater resources. Measuring the contaminant concentrations is important in assessing the risk to human health and the environment and to develop effective remediation. This research presents the development and application of the light transmission method (LTM) for three-phase flow systems, aimed at investigating unstable fingered flow in a soil-air-oil-water system. The LTM uses the hue and intensity of light transmitted through a slab chamber to measure fluid content, since total liquid content is a function of both hue and light intensity. Evaluation of the LTM is obtained by comparing experiments with LTM and synchrotron X-rays. The LTM captures the spatial resolution of the fluid contents and can provide new insights into rapidly changing, two-phase and three-phase flow systems. Application of the LTM as a visualization technique for environmental and physical phenomena is noted. Visualization by LTM of groundwater remediation by surfactants as well as visualization of model cluster growth and fractal dimensions was also explored.

  11. A Coupled Multiphase Fluid Flow And Heat And Vapor Transport Model For Air-Gap Membrane Distillation

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sumit

    2010-05-01

    Membrane distillation (MD) is emerging as a viable desalination technology because of its low energy requirements that can be provided from low-grade, waste heat and because it causes less fouling. In MD, desalination is accomplished by transporting water vapour through a porous hydrophobic membrane. The vapour transport process is governed by the vapour pressure difference between the two sides of a membrane. A variety of configurations have been tested to impose this vapour pressure gradient, however, the air-gap membrane distillation (AGMD) has been found to be the most efficient. The separation mechanism of AGMD and its overall efficiency is based on vapour-liquid equilibrium (VLE). At present, little knowledge is available about the optimal design of such a transmembrane VLE-based evaporation, and subsequent condensation processes. While design parameters for MD have evolved mostly through experimentations, a comprehensive mathematical model is yet to be developed. This is primarily because the coupling and non-linearity of the equations, the interactions between the flow, heat and mass transport regimes, and the complex geometries involved pose a challenging modelling and simulation problem. Yet a comprehensive mathematical model is needed for systematic evaluation of the processes, design parameterization, and performance prediction. This paper thus presents a coupled fluid flow, heat and mass transfer model to investigate the main processes and parameters affecting the performance of an AGMD.

  12. An Advanced Reservoir Simulator for Tracer Transport in Multicomponent Multiphase Compositional Flow and Applications to the Cranfield CO2 Sequestration Site

    NASA Astrophysics Data System (ADS)

    Moortgat, J.

    2015-12-01

    Reservoir simulators are widely used to constrain uncertainty in the petrophysical properties of subsurface formations by matching the history of injection and production data. However, such measurements may be insufficient to uniquely characterize a reservoir's properties. Monitoring of natural (isotopic) and introduced tracers is a developing technology to further interrogate the subsurface for applications such as enhanced oil recovery from conventional and unconventional resources, and CO2 sequestration. Oak Ridge National Laboratory has been piloting this tracer technology during and following CO2 injection at the Cranfield, Mississippi, CO2 sequestration test site. Two campaigns of multiple perfluorocarbon tracers were injected together with CO2 and monitored at two wells at 68 m and 112 m from the injection site. The tracer data suggest that multiple CO2 flow paths developed towards the monitoring wells, indicative of either channeling through high permeability pathways or of fingering. The results demonstrate that tracers provide an important complement to transient pressure data. Numerical modeling is essential to further explain and interpret the observations. To aid the development of tracer technology, we enhanced a compositional multiphase reservoir simulator to account for tracer transport. Our research simulator uses higher-order finite element (FE) methods that can capture the small-scale onset of fingering on the coarse grids required for field-scale modeling, and allows for unstructured grids and anisotropic heterogeneous permeability fields. Mass transfer between fluid phases and phase behavior are modeled with rigorous equation-of-state based phase-split calculations. We present our tracer simulator and preliminary results related to the Cranfield experiments. Applications to noble gas tracers in unconventional resources are presented by Darrah et al.

  13. New upscaled equations for multiphase flows in porous media based on a phase field formulation for general free energies

    NASA Astrophysics Data System (ADS)

    Schmuck, Markus; Pradas, Marc; Pavliotis, Grigorios A.; Kalliadasis, Serafim

    2014-11-01

    Based on thermodynamic and variational principles we formulate novel equations for mixtures of incompressible fluids in strongly heterogeneous domains, such as composites and porous media, using elements from the regular solution theory. Starting with equations that fully resolve the pores of a porous medium, represented as a periodic covering of a single reference pore, we rigorously derive effective macroscopic phase field equations under the assumption of periodic and strongly convective flow. Our derivation is based on the multiple scale method with drift and our recently introduced splitting strategy for Ginzburg-Landau/Cahn-Hilliard-type equations. We discover systematically diffusion-dispersion relations (including Taylor-Aris-dispersion) as in classical convection-diffusion problems. Our results represent a systematic and efficient computational strategy to macroscopically track interfaces in heterogeneous media which together with the well-known versatility of phase field models forms a promising basis for the analysis of a wide spectrum of engineering and scientific applications such as oil recovery, for instance.

  14. THE INFLUENCE OF REPOSITORY THERMAL LOAD ON MULTIPHASE FLOW AND HEAT TRANSFER IN THE UNSATURATED ZONE OF YUCCA MOUNTAIN

    SciTech Connect

    Yu-Shu Wu, Sumit Mukhopadhyay, Keni Zhang, and G. S. Bodvarsson

    2006-04-16

    This paper investigates the impact of proposed repository thermal-loading on mountain-scale flow and heat transfer in the unsaturated fractured rock of Yucca Mountain, Nevada. In this context, a model has been developed to study the coupled thermal-hydrological (TH) processes at the scale of the entire Yucca Mountain. This mountain-scale TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the latest rock thermal and hydrological properties. The TH model consists of a two-dimensional north-south vertical cross section across the entire unsaturated zone model domain and uses refined meshes near and around the proposed repository block, based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climatic conditions. The model simulations provide insights into thermally affected liquid saturation, gas- and liquid-phase fluxes, and elevated water and rock temperature, which in turn allow modelers to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts.

  15. Multiphase, multicomponent flow and transport models for Nuclear Test-Ban Treaty monitoring and nuclear waste disposal applications

    NASA Astrophysics Data System (ADS)

    Jordan, Amy

    Open challenges remain in using numerical models of subsurface flow and transport systems to make useful predictions related to nuclear waste storage and nonproliferation. The work presented here addresses the sensitivity of model results to unknown parameters, states, and processes, particularly uncertainties related to incorporating previously unrepresented processes (e.g., explosion-induced fracturing, hydrous mineral dehydration) into a subsurface flow and transport numerical simulator. The Finite Element Heat and Mass (FEHM) transfer code is used for all numerical models in this research. An experimental campaign intended to validate the predictive capability of numerical models that include the strongly coupled thermal, hydrological, and chemical processes in bedded salt is also presented. Underground nuclear explosions (UNEs) produce radionuclide gases that may seep to the surface over weeks to months. The estimated timing of gas arrival at the surface may be used to deploy personnel and equipment to the site of a suspected UNE, if allowed under the terms of the Comprehensive Nuclear Test-Ban Treaty. A model was developed using FEHM that considers barometrically pumped gas transport through a simplified fractured medium and was used to quantify the impact of uncertainties in hydrologic parameters (fracture aperture, matrix permeability, porosity, and saturation) and season of detonation on the timing of gas breakthrough. Numerical sensitivity analyses were performed for the case of a 1 kt UNE at a 400 m burial depth. Gas arrival time was found to be most affected by matrix permeability and fracture aperture. Gases having higher diffusivity were more sensitive to uncertainty in the rock properties. The effect of seasonality in the barometric pressure forcing was found to be important, with detonations in March the least likely to be detectable based on barometric data for Rainier Mesa, Nevada. Monte Carlo modeling was also used to predict the window of

  16. Multiphase, multicomponent flow and transport models for Nuclear Test-Ban Treaty monitoring and nuclear waste disposal applications

    NASA Astrophysics Data System (ADS)

    Jordan, Amy

    Open challenges remain in using numerical models of subsurface flow and transport systems to make useful predictions related to nuclear waste storage and nonproliferation. The work presented here addresses the sensitivity of model results to unknown parameters, states, and processes, particularly uncertainties related to incorporating previously unrepresented processes (e.g., explosion-induced fracturing, hydrous mineral dehydration) into a subsurface flow and transport numerical simulator. The Finite Element Heat and Mass (FEHM) transfer code is used for all numerical models in this research. An experimental campaign intended to validate the predictive capability of numerical models that include the strongly coupled thermal, hydrological, and chemical processes in bedded salt is also presented. Underground nuclear explosions (UNEs) produce radionuclide gases that may seep to the surface over weeks to months. The estimated timing of gas arrival at the surface may be used to deploy personnel and equipment to the site of a suspected UNE, if allowed under the terms of the Comprehensive Nuclear Test-Ban Treaty. A model was developed using FEHM that considers barometrically pumped gas transport through a simplified fractured medium and was used to quantify the impact of uncertainties in hydrologic parameters (fracture aperture, matrix permeability, porosity, and saturation) and season of detonation on the timing of gas breakthrough. Numerical sensitivity analyses were performed for the case of a 1 kt UNE at a 400 m burial depth. Gas arrival time was found to be most affected by matrix permeability and fracture aperture. Gases having higher diffusivity were more sensitive to uncertainty in the rock properties. The effect of seasonality in the barometric pressure forcing was found to be important, with detonations in March the least likely to be detectable based on barometric data for Rainier Mesa, Nevada. Monte Carlo modeling was also used to predict the window of

  17. Multiphase flow in porous media

    NASA Technical Reports Server (NTRS)

    Adler, Pierre M.; Brenner, Howard

    1988-01-01

    A development history and current status evaluation are presented for the theory of permeability and percolation. The microscale phenomena treated in this field have proven difficult to analyze due both to their tortuous geometry and the influence of capilarity. Capilary effects may be not only important but predominant, and are differentiated into those at the fluid-fluid interface, and those involving the existence of a contact line between the solid substrate and this interface. Percolation theory has been borrowed from physics and adapted to the two-phase engineering context.

  18. Imaging cross fault multiphase flow using time resolved high pressure-temperature synchrotron fluid tomography: implications for the geological storage of carbon dioxide within sandstone saline aquifers

    NASA Astrophysics Data System (ADS)

    Seers, Thomas; Andrew, Matthew; Bijeljic, Branko; Blunt, Martin; Dobson, Kate; Hodgetts, David; Lee, Peter; Menke, Hannah; Singh, Kamaljit; Parsons, Aaron

    2015-04-01

    Applied shear stresses within high porosity granular rocks result in characteristic deformation responses (rigid grain reorganisation, dilation, isovolumetric strain, grain fracturing and/or crushing) emanating from elevated stress concentrations at grain contacts. The strain localisation features produced by these processes are generically termed as microfaults (also shear bands), which occur as narrow tabular regions of disaggregated, rotated and/or crushed grains. Because the textural priors that favour microfault formation make their host rocks (esp. porous sandstones) conducive to the storage of geo-fluids, such structures are often abundant features within hydrocarbon reservoirs, aquifers and potential sites of CO2 storage (i.e. sandstone saline aquifers). The porosity collapse which accompanies microfault formation typically results in localised permeability reduction, often encompassing several orders of magnitude. Given that permeability is the key physical parameter that governs fluid circulation in the upper crust, this petrophysical degradation implicates microfaults as being flow impeding structures which may act as major baffles and/or barriers to fluid flow within the subsurface. Such features therefore have the potential to negatively impact upon hydrocarbon production or CO2 injection, making their petrophysical characterisation of considerable interest. Despite their significance, little is known about the pore-scale processes involved in fluid trapping and transfer within microfaults, particularly in the presence of multiphase flow analogous to oil accumulation, production and CO2 injection. With respect to the geological storage of CO2 within sandstone saline aquifers it has been proposed that even fault rocks with relatively low phyllosilicate content or minimal quartz cementation may act as major baffles or barriers to migrating CO2 plume. Alternatively, as ubiquitous intra-reservoir heterogeneities, micro-faults also have the potential to

  19. The challenge of realistic testing of multiphase flowmeters

    SciTech Connect

    Sten-Halvorsen, V.

    1995-12-31

    Multiphase flowmeters is new technology for the oil industry, and needs to be tested under realistic conditions to prove their performance. The complex nature of multiphase flow, means that test conditions in a laboratory may not necessarily represent the real flow conditions at a field installation. As a consequence, severe field testing is also required to gain experience with the meters and qualify them for field applications.

  20. T2Well/ECO2N Version 1.0: Multiphase and Non-Isothermal Model for Coupled Wellbore-Reservoir Flow of Carbon Dioxide and Variable Salinity Water

    SciTech Connect

    2011-08-24

    T2Well/ECO2N is a coupled wellbore and reservoir model for simulating the dynamics of CO2 injection and leakage through wellbores. It can be seen as an extension to standard TOUGH/ECO2N V2.0, and can be applied to situations relevant to geologic CO2 storage involving upward flow (e.g., leakage) and downward flow (injection). The new simulator integrates a wellbore-reservoir system by assigning the wellbore and reservoir to two different sub-domains in which flow is controlled by appropriate physical laws. In the reservoir, we model flow using a standard multiphase Darcy flow approach. In the wellbores, we use the Drift-Flux Model and related conservation equations for describing transient two-phase non-isothermal wellbore flow of CO2-water mixtures. The mass and thermal energy balance equations are solved numerically by a finite difference scheme with wellbore heat transmission to the surrounding rock handled either semi-analytically or numerically. The momentum balance equation for the flow in the wellbore is solved numerically with a semi-explicit scheme.

  1. T2Well/ECO2N Version 1.0: Multiphase and Non-Isothermal Model for Coupled Wellbore-Reservoir Flow of Carbon Dioxide and Variable Salinity Water

    2011-08-24

    T2Well/ECO2N is a coupled wellbore and reservoir model for simulating the dynamics of CO2 injection and leakage through wellbores. It can be seen as an extension to standard TOUGH/ECO2N V2.0, and can be applied to situations relevant to geologic CO2 storage involving upward flow (e.g., leakage) and downward flow (injection). The new simulator integrates a wellbore-reservoir system by assigning the wellbore and reservoir to two different sub-domains in which flow is controlled by appropriate physicalmore » laws. In the reservoir, we model flow using a standard multiphase Darcy flow approach. In the wellbores, we use the Drift-Flux Model and related conservation equations for describing transient two-phase non-isothermal wellbore flow of CO2-water mixtures. The mass and thermal energy balance equations are solved numerically by a finite difference scheme with wellbore heat transmission to the surrounding rock handled either semi-analytically or numerically. The momentum balance equation for the flow in the wellbore is solved numerically with a semi-explicit scheme.« less

  2. Use of multiphase pumps in heavy and extra heavy oil production

    SciTech Connect

    Gonzalez, R.; Guevara, E.M.; Colmenares, J.D.

    1995-12-31

    The main results of a technical and economical feasibility study carried out to analyze the application of multiphase flow technologies in the production of heavy and extra heavy crudes from the Arecuna Field of Corpoven, S.A. in the Orinoco Belt, Venezuela, are presented. It was found that flow stations based on multiphase technologies such as multiphase pumping and metering were the most adequate both technically and economically.

  3. Computational Modeling of Multiphase Reactors.

    PubMed

    Joshi, J B; Nandakumar, K

    2015-01-01

    Multiphase reactors are very common in chemical industry, and numerous review articles exist that are focused on types of reactors, such as bubble columns, trickle beds, fluid catalytic beds, etc. Currently, there is a high degree of empiricism in the design process of such reactors owing to the complexity of coupled flow and reaction mechanisms. Hence, we focus on synthesizing recent advances in computational and experimental techniques that will enable future designs of such reactors in a more rational manner by exploring a large design space with high-fidelity models (computational fluid dynamics and computational chemistry models) that are validated with high-fidelity measurements (tomography and other detailed spatial measurements) to provide a high degree of rigor. Understanding the spatial distributions of dispersed phases and their interaction during scale up are key challenges that were traditionally addressed through pilot scale experiments, but now can be addressed through advanced modeling.

  4. Computational Modeling of Multiphase Reactors.

    PubMed

    Joshi, J B; Nandakumar, K

    2015-01-01

    Multiphase reactors are very common in chemical industry, and numerous review articles exist that are focused on types of reactors, such as bubble columns, trickle beds, fluid catalytic beds, etc. Currently, there is a high degree of empiricism in the design process of such reactors owing to the complexity of coupled flow and reaction mechanisms. Hence, we focus on synthesizing recent advances in computational and experimental techniques that will enable future designs of such reactors in a more rational manner by exploring a large design space with high-fidelity models (computational fluid dynamics and computational chemistry models) that are validated with high-fidelity measurements (tomography and other detailed spatial measurements) to provide a high degree of rigor. Understanding the spatial distributions of dispersed phases and their interaction during scale up are key challenges that were traditionally addressed through pilot scale experiments, but now can be addressed through advanced modeling. PMID:26134737

  5. Low energy gamma ray attenuation in multiphase water

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Sprinkle, Danny R.; Eftekhari, Abe

    1990-01-01

    A gauging system is proposed to enable monitoring of slush density, solid-liquid interface, and slush level as well as its flow rate. It is based on the principle that the electromagnetic radiation mass attenuation coefficient of a multiphase chemical compound is constant for all relative phase concentrations. Results showing the essential constancy of mass attenuation coefficients for single-phase water vapor, liquid water, ice, and multiphase mixtures of water/ice are described.

  6. Multiphase Instabilities in Explosive Dispersal of Particles

    NASA Astrophysics Data System (ADS)

    Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S. ``Bala''

    2015-11-01

    Explosive dispersal of particles is a complex multiphase phenomenon that can be observed in volcanic eruptions or in engineering applications such as multiphase explosives. As the layer of particles moves outward at high speed, it undergoes complex interactions with the blast-wave structure following the reaction of the energetic material. Particularly in this work, we are interested in the multiphase flow instabilities related to Richmyer-Meshkov (RM) and Rayleigh-Taylor (RM) instabilities (in the gas phase and particulate phase), which take place as the particle layer disperses. These types of instabilities are known to depend on initial conditions for a relatively long time of their evolution. Using a Eulerian-Lagrangian approach, we study the growth of these instabilities and their dependence on initial conditions related to the particulate phase - namely, (i) particle size, (ii) initial distribution, and (iii) mass ratio (particles to explosive). Additional complexities associated with compaction of the layer of particles are avoided here by limiting the simulations to modest initial volume fraction of particles. A detailed analysis of the initial conditions and its effects on multiphase RM/RT-like instabilities in the context of an explosive dispersal of particles is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  7. Modified Invasion Percolation Models for Multiphase Processes

    SciTech Connect

    Karpyn, Zuleima

    2015-01-31

    This project extends current understanding and modeling capabilities of pore-scale multiphase flow physics in porous media. High-resolution X-ray computed tomography imaging experiments are used to investigate structural and surface properties of the medium that influence immiscible displacement. Using experimental and computational tools, we investigate the impact of wetting characteristics, as well as radial and axial loading conditions, on the development of percolation pathways, residual phase trapping and fluid-fluid interfacial areas.

  8. Multiphase-flowmeter experience

    SciTech Connect

    1998-04-01

    Multiphase-flowmeters (MPFM`s) are finding increasing acceptance offshore, where operators are becoming more comfortable with the technology after several years of familiarization. Meters are being used in well testing, well management, and allocation of production. Since the first deliveries of the Framo engineering A/S meter in 1993, significant experience has been gained in both topside and subsea applications of the devices. The paper describes purposes, technology, Framo`s meter, applications, performance verification, and operational problems.

  9. A Sub-grid Model for an Array of Immersed Cylinders in Coarse-grid Multiphase Flow Simulations of a Carbon Capture Device

    SciTech Connect

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2012-12-01

    A post-combustion carbon-capture system utilizing a bubbling fluidized bed of sorbent particles is currently being developed as a part of the Carbon Capture and Simulation Initiative (CCSI) efforts. Adsorption of carbon dioxide (CO2) by these amine based sorbent particles is exothermic and arrays of immersed cylindrical heat transfer tubes are often utilized to maintain the lower temperatures favorable for CO2 capture. In multiphase computational fluid dynamics (CFD) simulations of the full-scale devices, which can be up to 10 m in size, approximately 103 cells are required in each dimension to accurately resolve the cylindrical tubes, which are only a few centimeters in diameter. Since the tubes cannot be resolved explicitly in CFD simulations, alternate methods to account for the influence of these immersed objects need to be developed.

  10. Error handling strategies in multiphase inverse modeling

    SciTech Connect

    Finsterle, S.; Zhang, Y.

    2010-12-01

    Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.

  11. Multiphase permittivity imaging using absolute value electrical capacitance tomography data and a level set algorithm.

    PubMed

    Al Hosani, E; Soleimani, M

    2016-06-28

    Multiphase flow imaging is a very challenging and critical topic in industrial process tomography. In this article, simulation and experimental results of reconstructing the permittivity profile of multiphase material from data collected in electrical capacitance tomography (ECT) are presented. A multiphase narrowband level set algorithm is developed to reconstruct the interfaces between three- or four-phase permittivity values. The level set algorithm is capable of imaging multiphase permittivity by using one set of ECT measurement data, so-called absolute value ECT reconstruction, and this is tested with high-contrast and low-contrast multiphase data. Simulation and experimental results showed the superiority of this algorithm over classical pixel-based image reconstruction methods. The multiphase level set algorithm and absolute ECT reconstruction are presented for the first time, to the best of our knowledge, in this paper and critically evaluated. This article is part of the themed issue 'Supersensing through industrial process tomography'. PMID:27185966

  12. Multiphase permittivity imaging using absolute value electrical capacitance tomography data and a level set algorithm.

    PubMed

    Al Hosani, E; Soleimani, M

    2016-06-28

    Multiphase flow imaging is a very challenging and critical topic in industrial process tomography. In this article, simulation and experimental results of reconstructing the permittivity profile of multiphase material from data collected in electrical capacitance tomography (ECT) are presented. A multiphase narrowband level set algorithm is developed to reconstruct the interfaces between three- or four-phase permittivity values. The level set algorithm is capable of imaging multiphase permittivity by using one set of ECT measurement data, so-called absolute value ECT reconstruction, and this is tested with high-contrast and low-contrast multiphase data. Simulation and experimental results showed the superiority of this algorithm over classical pixel-based image reconstruction methods. The multiphase level set algorithm and absolute ECT reconstruction are presented for the first time, to the best of our knowledge, in this paper and critically evaluated. This article is part of the themed issue 'Supersensing through industrial process tomography'.

  13. "Student Lab"-on-a-Chip: Integrating Low-Cost Microfluidics into Undergraduate Teaching Labs to Study Multiphase Flow Phenomena in Small Vessels

    ERIC Educational Resources Information Center

    Young, Edmond W. K.; Simmons, Craig A.

    2009-01-01

    We describe a simple, low-cost laboratory session to demonstrate the Fahraeus-Lindqvist effect, a microphase flow phenomenon that occurs in small blood vessels and alters the effective rheological properties of blood. The experiments are performed by flowing cells through microchannels fabricated by soft lithography and characterization of cell…

  14. A Geohydrologic Modeling Study of Faults and Large-Scale Multiphase Flow and Heat Transport in the Los Angeles Basin, California

    NASA Astrophysics Data System (ADS)

    Jung, B.; Garven, G.; Boles, J. R.

    2009-12-01

    Large-scale faults can have profound effects on fluid migration in sedimentary basins, especially those like the petroleum-rich Los Angeles Basin, which is densely faulted and tectonically active. To explore this topic, we have constructed numerical simulations to characterize the geohydrologic history of the LA Basin for both single and two-phase fluid migration. The numerical model was developed in our lab at Tufts, and is based on a hybrid finite-element/finite-volume method and an IMPES (implicit pressure explicit saturation) numerical algorithm. This numerical approach allowed us to model large differentials in fluid saturation, caused by complex geological heterogeneities associated with changes in sedimentation and faulting. The single-phase flow models are numerically similar to those of Hayba and Bethke [1995] and Person et al. [2000], and simulate the compaction-driven flow associated with early subsidence, and later topography-driven flow during uplift of the San Gabriel Mountains. The two-phase flow models replicate the formation-scale patterns of petroleum accumulation associated with the basin margin, where deep faults resulted in stacked petroleum reservoirs over multiple sets of interbedded sandstone and shale. Our model results suggest a long history of transient and episodic flow from the basin depocenter towards the western flank of the LA Basin and the Palos Verdes Peninsula. The models also predict a strong preference for focused upward flow along the Newport-Inglewood Fault Zone, which even today hosts deep borehole-observed thermal anomalies. The peak of petroleum generation and flow was synchronous with the peak intervals of Miocene to Pliocene extension/subsidence.

  15. Nonisothermal multiphase subsurface transport on parallel computers

    SciTech Connect

    Martinez, M.J.; Hopkins, P.L.; Shadid, J.N.

    1997-10-01

    We present a numerical method for nonisothermal, multiphase subsurface transport in heterogeneous porous media. The mathematical model considers nonisothermal two-phase (liquid/gas) flow, including capillary pressure effects, binary diffusion in the gas phase, conductive, latent, and sensible heat transport. The Galerkin finite element method is used for spatial discretization, and temporal integration is accomplished via a predictor/corrector scheme. Message-passing and domain decomposition techniques are used for implementing a scalable algorithm for distributed memory parallel computers. An illustrative application is shown to demonstrate capabilities and performance.

  16. Evaluation of a coupled model for numerical simulation of a multiphase flow system in a porous medium and a surface fluid.

    PubMed

    Hibi, Yoshihiko; Tomigashi, Akira

    2015-09-01

    Numerical simulations that couple flow in a surface fluid with that in a porous medium are useful for examining problems of pollution that involve interactions among atmosphere, water, and groundwater, including saltwater intrusion along coasts. Coupled numerical simulations of such problems must consider both vertical flow between the surface fluid and the porous medium and complicated boundary conditions at their interface. In this study, a numerical simulation method coupling Navier-Stokes equations for surface fluid flow and Darcy equations for flow in a porous medium was developed. Then, the basic ability of the coupled model to reproduce (1) the drawdown of a surface fluid observed in square-pillar experiments, using pillars filled with only fluid or with fluid and a porous medium and (2) the migration of saltwater (salt concentration 0.5%) in the porous medium using the pillar filled with fluid and a porous medium was evaluated. Simulations that assumed slippery walls reproduced well the results with drawdowns of 10-30 cm when the pillars were filled with packed sand, gas, and water. Moreover, in the simulation of saltwater infiltration by the method developed in this study, velocity was precisely reproduced because the experimental salt concentration in the porous medium after saltwater infiltration was similar to that obtained in the simulation. Furthermore, conditions across the boundary between the porous medium and the surface fluid were satisfied in these numerical simulations of square-pillar experiments in which vertical flow predominated. Similarly, the velocity obtained by the simulation for a system coupling flow in surface fluid with that in a porous medium when horizontal flow predominated satisfied the conditions across the boundary. Finally, it was confirmed that the present simulation method was able to simulate a practical-scale surface fluid and porous medium system. All of these numerical simulations, however, required a great deal of

  17. KINEMATIC MODELING OF MULTIPHASE SOLUTE TRANSPORT IN THE VADOSE ZONE

    EPA Science Inventory

    The goal of this research was the development of a computationally efficient simulation model for multiphase flow of organic hazardous waste constituents in the shallow soil environment. Such a model is appropriate for investigation of fate and transport of organic chemicals intr...

  18. Development of a distributed memory parallel multiphase model for the direct numerical simulation of bottom boundary layer turbulence under combined wave-current flows

    NASA Astrophysics Data System (ADS)

    Davis, J. R.; Ozdemir, C. E.; Balachandar, S.; Hsu, T.

    2012-12-01

    Fine sediment transport and its potential to dampen turbulence under energetic waves and combined wave-current flows are critical to better understanding of the fate of terrestrial sediment particles in the river mouth and eventually, coastal morphodynamics. The unsteady nature of these oscillatory flows necessitates a computationally intense, turbulence resolving approach. Whereas a sophisticated shared memory parallel model has been successfully used to simulate these flows in the intermittently turbulent regime (Remax ~ 1000), scaling issues of shared memory computational hardware limit the applicability of the model to perform very high resolution (> 192x192x193) simulations within reasonable wall-clock times. Thus to meet the need to simulate high resolution, fully turbulent oscillatory flows, a new hybrid shared memory / distributed memory parallel model has been developed. Using OpenMP and MPI constructs, this new model implements a highly-accurate pseudo-spectral scheme in an idealized oscillatory bottom boundary layer (OBBL). Data is stored locally and transferred between computational nodes as appropriate such that FFTs used to calculate derivatives in the x and y-directions and the Chebyshev polynomials used to calculated derivatives in the z-direction are calculated completely in-processor. The model is fully configurable at compile time to support: multiple methods of operation (serial or OpenMP, MPI, OpenMP+MPI parallel), available FFT libraries (DFTI, FFTW3), high temporal resolution timing, persistent or non-persistent MPI, etc. Output is fully distributed to support both independent and shared filesystems. At run time, the model automatically selects the best performing algorithms given the computational resources and domain size. Nearly 40 Integrated test routines (derivatives, FFT transformations, eigenvalues, Poission / Helmholtz solvers, etc.) are used to validate individual components of the model. Test simulations have been performed at the

  19. Investigation on the gas pockets in a rotodynamic multiphase pump

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Li, Y. J.; Cai, S. J.; Zhu, H. W.; Zhang, Y. X.

    2016-05-01

    The appearance of gas pockets has an obvious impact on the performance of the rotodynamic multiphase pump. In order to study the formation of gas pockets in the pump and its effects on pump's performance, the unsteady numerical simulation and the visualization experiments were done to investigate gas pockets in a three-stage rotodynamic multiphase pump developed by authors. Meanwhile, the mixture of water and air was selected as the medium. According to the distributions of pressure, gas volume fraction and velocity vector in three compression cells in unsteady flow process, the process of the formation of gas pockets in the pump were analysed generally. The visualization experiments were used to verify the validity of the numerical simulation. The results will be benefit for the hydraulic design of the compression cell of rotodynamic multiphase pump.

  20. A Cell-Centered Multiphase ALE Scheme With Structural Coupling

    SciTech Connect

    Dunn, Timothy Alan

    2012-04-16

    A novel computational scheme has been developed for simulating compressible multiphase flows interacting with solid structures. The multiphase fluid is computed using a Godunov-type finite-volume method. This has been extended to allow computations on moving meshes using a direct arbitrary-Eulerian- Lagrangian (ALE) scheme. The method has been implemented within a Lagrangian hydrocode, which allows modeling the interaction with Lagrangian structural regions. Although the above scheme is general enough for use on many applications, the ultimate goal of the research is the simulation of heterogeneous energetic material, such as explosives or propellants. The method is powerful enough for application to all stages of the problem, including the initial burning of the material, the propagation of blast waves, and interaction with surrounding structures. The method has been tested on a number of canonical multiphase tests as well as fluid-structure interaction problems.

  1. A Fully-Coupled, Fully-Implicit, Finite Element Model for Solving Multiphase Fluid Flow, Heat Transport and Rock Deformation in Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Lu, C.; Deng, S.; Podgorney, R. K.; Huang, H.

    2011-12-01

    Reliable reservoir performance predictions of enhanced geothermal reservoir systems require accurate and robust modeling for the coupled thermal-hydrological-mechanical processes. Conventionally, in order to reduce computational cost, these types of problems are solved using operator splitting method, usually by sequentially coupling a subsurface flow and heat transport simulator with a solid mechanics simulator via input files. However, such operator splitting approaches are applicable only to loosely coupled problems and usually converge slowly. As in most enhanced geothermal systems (EGS), fluid flow, heat transport, and rock deformation are typically strongly nonlinearly coupled, an alternative is to solve the system of nonlinear partial differential equations that govern the system simultaneously using a fully coupled solution procedure for fluid flow, heat transport, and solid mechanics. This procedure solves for all solution variables (fluid pressure, temperature and rock displacement fields) simultaneously, which leads to one large nonlinear algebraic system that needs to be solved by a strongly convergent nonlinear solver. Development over the past 10 years in the area of physics-based conditioning, strongly convergent nonlinear solvers (such as Jacobian Free Newton methods) and efficient linear solvers (such as GMRES, AMG), makes such an approach competitive. In this presentation, we will introduce a continuum-scaled parallel physics-based, fully coupled, modeling tool for predicting the dynamics of fracture initiation and propagation, fluid flow, rock deformation, and heat transport in a single integrated code named FALCON (Fracturing And Liquid-steam CONvection). FALCON is built upon a parallel computing framework developed at Idaho National Laboratory (INL) for solving coupled systems of nonlinear equations with finite element method with unstructured and adaptively refined/coarsened grids. Currently, FALCON contains poro- and thermal- elastic models

  2. Impact of sorption phenomena on multiphase conveying processes

    NASA Astrophysics Data System (ADS)

    Hatesuer, Florian; Groth, Tillmann; Reichwage, Mark; Mewes, Dieter; Luke, Andrea

    2011-08-01

    Twin-screw multiphase pumps are employed increasingly to convey multiphase mixtures of crude oil, accompanying fluids, associated gas and solid particles. They are positive displacement pumps and suitable for handling products containing liquid accompanied by large amounts of gas. Experimental investigations on the conveying characteristic, namely measuring the delivered volume flow as a function of the pressure difference, provide results for selected mixtures. By means of the on hand work, the influence of sorption phenomena occurring due to pressure variations alongside the conveying process on the conveying characteristics of twin-screw pumps delivering mixtures of oil and gases is measured. The employed gases are air and carbon dioxide, which differ strongly in solubility in oil. All experiments are conducted in a closed loop test facility, where oil and gas volume flows are mixed before the inlet and separated after the outlet of the multiphase pump. In order to simulate the influence of the suction side pressure drop in the reservoir on the conveying characteristic, packed beds are employed as oil-filed model. Sorption processes inside of the oil-field model and within the multiphase pump affect the conveying behaviour significantly. The two-phase flow in the inlet and outlet pipe is visualised by means of a capacitance tomography system. Results show that the oil fraction of the total delivered volume flow is decreased due to desorption at the pump inlet. The gas fraction at the pump outlet is further decreased due to absorption. Experimental results are compared to calculated solubilities of the on-hand gases in oil and to the theoretically derived gas volume flow fraction expected at the multiphase pump.

  3. High-speed (20  kHz) digital in-line holography for transient particle tracking and sizing in multiphase flows.

    PubMed

    Guildenbecher, Daniel R; Cooper, Marcia A; Sojka, Paul E

    2016-04-10

    High-speed (20 kHz) digital in-line holography (DIH) is applied for 3D quantification of the size and velocity of fragments formed from the impact of a single water drop onto a thin film of water and burning aluminum particles from the combustion of a solid rocket propellant. To address the depth-of-focus problem in DIH, a regression-based multiframe tracking algorithm is employed, and out-of-plane experimental displacement accuracy is shown to be improved by an order-of-magnitude. Comparison of the results with previous DIH measurements using low-speed recording shows improved positional accuracy with the added advantage of detailed resolution of transient dynamics from single experimental realizations. The method is shown to be particularly advantageous for quantification of particle mass flow rates. For the investigated particle fields, the mass flows rates, which have been automatically measured from single experimental realizations, are found to be within 8% of the expected values.

  4. High-speed (20 kHz) digital in-line holography for transient particle tracking and sizing in multiphase flows

    DOE PAGES

    Guildenbecher, Daniel R.; Cooper, Marcia A.; Sojka, Paul E.

    2016-04-05

    High-speed (20 kHz) digital in-line holography (DIH) is applied for 3D quantification of the size and velocity of fragments formed from the impact of a single water drop onto a thin film of water and burning aluminum particles from the combustion of a solid rocket propellant. To address the depth-of-focus problem in DIH, a regression-based multiframe tracking algorithm is employed, and out-of-plane experimental displacement accuracy is shown to be improved by an order-of-magnitude. Comparison of the results with previous DIH measurements using low-speed recording shows improved positional accuracy with the added advantage of detailed resolution of transient dynamics from singlemore » experimental realizations. Furthermore, the method is shown to be particularly advantageous for quantification of particle mass flow rates. For the investigated particle fields, the mass flows rates, which have been automatically measured from single experimental realizations, are found to be within 8% of the expected values.« less

  5. Comparison of 2D and 3D Computational Multiphase Fluid Flow Models of Oxygen Lancing of Pyrometallurgical Furnace Tap-Holes

    NASA Astrophysics Data System (ADS)

    Erwee, M. W.; Reynolds, Q. G.; Zietsman, J. H.

    2016-06-01

    Furnace tap-holes vary in design depending on the type of furnace and process involved, but they share one common trait: The tap-hole must be opened and closed periodically. In general, tap-holes are plugged with refractory clay after tapping, thereby stopping the flow of molten material. Once a furnace is ready to be tapped, drilling and/or lancing with oxygen are typically used to remove tap-hole clay from the tap-hole. Lancing with oxygen is an energy-intensive, mostly manual process, which affects the performance and longevity of the tap-hole refractory material as well as the processes inside the furnace. Computational modeling offers an opportunity to gain insight into the possible effects of oxygen lancing on various aspects of furnace operation.

  6. The Influence of Proposed Repository Thermal Load on MultiphaseFlow and Heat Transfer in the Unsaturated Zone of Yucca Mountain

    SciTech Connect

    Wu, Y.-S.; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, G.S.

    2006-02-28

    This paper investigates the impact of proposed repositorythermal-loading on mountain-scale flow and heat transfer in theunsaturated fractured rock of Yucca Mountain, Nevada. In this context, amodel has been developed to study the coupled thermal-hydrological (TH)processes at the scale of the entire Yucca Mountain. This mountain-scaleTH model implements the current geological framework and hydrogeologicalconceptual models, and incorporates the latest rock thermal andhydrological properties. The TH model consists of a two-dimensionalnorth-south vertical cross section across the entire unsaturated zonemodel domain and uses refined meshes near and around the proposedrepository block, based on the current repository design, drift layout,thermal loading scenario, and estimated current and future climaticconditions. The model simulations provide insights into thermallyaffected liquid saturation, gas- and liquid-phase fluxes, and elevatedwater and rock temperature, which in turn allow modelers to predict thechanges in water flux driven by evaporation/condensation processes, anddrainage between drifts.

  7. EOS7Cm: An improved TOUGH2 module for simulating non-isothermal multiphase and multicomponent flow in CO2-H2S-CH4-brine systems with high pressure, temperature and salinity

    NASA Astrophysics Data System (ADS)

    Lei, Hongwu; Li, Jun; Li, Xiaochun; Jiang, Zhenjiao

    2016-09-01

    Understanding the non-isothermal multiphase and multicomponent flow in a CO2-H2S-CH4-brine system is of critical importance in projects such as CO2 storage in deep saline aquifers, natural gas extraction using CO2 as the displacement fluid, and heat extraction from hot dry rocks using CO2 as the working fluid. Numerical simulation is a necessary tool to evaluate the chemical evolution in these systems. However, an accurate thermodynamic model for CO2-H2S-CH4-brine systems appropriate for high pressure, temperature, and salinity is still lacking. This study establishes the mutual solubility model for CO2-H2S-CH4-brine systems based on the fugacity-activity method for phase equilibrium. The model can predict mutual solubilities for pressure up to 1000 bar for CO2 and CH4, and 200 bar for H2S, for temperature up to 200 °C, and for salinity up to 6 mol/kg water. We incorporated the new model into TOUGH2/EOS7C, forming a new improved module we call EOS7Cm. Compared to the original EOS7C, EOS7Cm considers the effects of H2S and covers a larger range of temperature and salinity. EOS7Cm is employed in five examples, including CO2 injection with and without impurities (CH4 and/or H2S) into deep aquifers, CH4 extraction from aquifers by CO2 injection, and heat extraction from hot dry rock. The results are compared to those from TOUGH2/ECO2N, EOS7C and CMG, agreement among which serves to verify EOS7Cm.

  8. Monitoring the Dissolution of a Limestone in CO2-rich Brine Using 4D Synchrotron Microtomography: Impact on Single and Multiphase Flow Parameters

    NASA Astrophysics Data System (ADS)

    Voltolini, M.; Ajo Franklin, J. B.

    2013-12-01

    Carbonates are common reservoir rocks for both CO2 EOR operations (e.g. Permian Basin, Weyburn) as well as conventional saline aquifer GCS studies (e.g. MRSP, Big Sky Kevin Dome Project). While the dissolution of carbonates in high pCO2 brines is relatively well-studied, only recently have we developed the imaging tools required to dynamically monitor dissolution-induced transformations in pore architecture an macroscopic samples. The details of such transformations are crucial in understanding the coupling between between reactive chemistry and reservoir flow, particularly in GCS where large scale variations in pH are induced during CO2 injection. A complicating factor is the range of dissolution architectures generated under varying flow rate and reaction conditions; these variations, typically understood in terms of advective Dahmkohler (Da) number, generate structures between localized wormholes and uniform dissolution. However, to date, minimal work has been done evaluating the relationship between Da, porosity, and capillary entry pressure during carbonate dissolution; this relationship is crucial when attempting to predict CO2 drainage processes in heterogeneous carbonate systems and could provide a mechanism for long term expansion of the plume footprint through lower permeability lamina. We present results from a 4D synchrotron XR microtomography experiment which monitored dissolution in a model carbonate, a small core from the well-studied Bedford limestone. Ten datasets, spanning a wide range of states in micro-architecture, were acquired over a multi-day acquisition campaign at beamline 8.3.2 (Advanced Light Source). Dissolution was induced by injection of water saturated with CO2; while the run was conducted at low pressure (~30 psi), significant dissolution occurred over the duration of the experiment. Imagery of the resulting pore-scale modifications was reconstructed, filtered, and segmented to yield a timelapse movie of the dissolution process

  9. Large-Scale Aquifer Test at the Bemidji, Minnesota, Oil-Spill Site: Implications for Modeling Multiphase Flow, Natural Attenuation, and LNAPL Remediation

    NASA Astrophysics Data System (ADS)

    Herkelrath, W. N.; Delin, G. N.

    2005-12-01

    A large-scale aquifer test was carried out at a crude oil spill site near Bemidji, Minnesota. The spill occurred in 1979 when a pipeline ruptured, spreading oil over a large area and creating three subsurface "pools" of high oil saturation near the water table. USGS scientists, in cooperation with researchers from several universities, have investigated the fate and transport of separate phase oil and hydrocarbons dissolved in ground water at this site since 1983. The primary goal of the aquifer test was to estimate parameters used in modeling processes such as subsurface flow of oil and water as well as natural attenuation of dissolved hydrocarbons in the plume. A secondary goal was to evaluate the effects of the oil on the parameters. Our aquifer test was carried out in July 2005 beneath the "north" oil pool, which occupies a 20x100 meter footprint. Prior to the test, the water table was about 6 meters below land surface, and the oil thickness in wells at the center of the pool was about 0.4 meters. A pumping well was installed near the center of the oil pool and screened 4-10 meters below the floating oil. During the test, water was pumped out at about 240 liters/min for 48 hours. Water levels were monitored in 21 wells that were screened below the water table and did not contain oil. Data loggers and pressure transducers were used to monitor 17 of these wells, and 4 wells were measured by hand using a tape. In 20 other wells that were screened at the water table and contained oil, depths to the oil-air and oil-water interfaces were monitored by hand using an oil-interface meter. Preliminary results indicate that oil thickness in wells within about 5 meters of the pumped well increased rapidly during the test to more than a meter. Oil also entered the top of the pumped well screen and filled the well bore to a thickness of about 3 meters. Preliminary analysis of water table drawdown vs. time data implies that the horizontal hydraulic conductivity is about 60 m

  10. Diet and regimen during pregnancy

    PubMed Central

    Girija, P.LT

    2008-01-01

    To rely on Ayurveda is the best way to ensure a safe and natural childbirth. Ayurveda understands all the factors, which bring about a hazard-free childbirth. By following a regulated diet and regimen, the pregnant mother is prepared for a natural delivery. By helping nature to take its course, women enjoy a risk-free childbirth. This paper provides a broad view of the diet and regimen during pregnancy PMID:22557297

  11. Heterogeneous scalable framework for multiphase flows.

    SciTech Connect

    Morris, Karla Vanessa

    2013-09-01

    Two categories of challenges confront the developer of computational spray models: those related to the computation and those related to the physics. Regarding the computation, the trend towards heterogeneous, multi- and many-core platforms will require considerable re-engineering of codes written for the current supercomputing platforms. Regarding the physics, accurate methods for transferring mass, momentum and energy from the dispersed phase onto the carrier fluid grid have so far eluded modelers. Significant challenges also lie at the intersection between these two categories. To be competitive, any physics model must be expressible in a parallel algorithm that performs well on evolving computer platforms. This work created an application based on a software architecture where the physics and software concerns are separated in a way that adds flexibility to both. The develop spray-tracking package includes an application programming interface (API) that abstracts away the platform-dependent parallelization concerns, enabling the scientific programmer to write serial code that the API resolves into parallel processes and threads of execution. The project also developed the infrastructure required to provide similar APIs to other application. The API allow object-oriented Fortran applications direct interaction with Trilinos to support memory management of distributed objects in central processing units (CPU) and graphic processing units (GPU) nodes for applications using C++.

  12. The TOUGH codes - a family of simulation tools for multiphase flowand transport processes in permeable media

    SciTech Connect

    Pruess, Karsten

    2003-08-08

    Numerical simulation has become a widely practiced andaccepted technique for studying flow and transport processes in thevadose zone and other subsurface flow systems. This article discusses asuite of codes, developed primarily at Lawrence Berkeley NationalLaboratory (LBNL), with the capability to model multiphase flows withphase change. We summarize history and goals in the development of theTOUGH codes, and present the governing equations for multiphase,multicomponent flow. Special emphasis is given to space discretization bymeans of integral finite differences (IFD). Issues of code implementationand architecture are addressed, as well as code applications,maintenance, and future developments.

  13. Multi-Phase Modeling of Rainbird Water Injection

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Moss, Nicholas; Sampson, Zoe

    2014-01-01

    This paper describes the use of a Volume of Fluid (VOF) multiphase model to simulate the water injected from a rainbird nozzle used in the sound suppression system during launch. The simulations help determine the projectile motion for different water flow rates employed at the pad, as it is critical to know if water will splash on the first-stage rocket engine during liftoff.

  14. Multiphase Dissolution Model

    1999-06-08

    This program simulates the leaching behavior of glass-ceramic monoliths or particles immersed in liquids. The monoliths or particles may be composed of up to 10 separate compounds, each with different densities and forward leach rate constants. Each compound in turn can be composed of up to 10 species (elements, oxides, etc.). A data file is used to store the physical information about the compounds, i.e., density, forward rate constant and the percentages of each speciesmore » making up each compound. Once the program has input the data file and the user has setup the experimental parameters, the program begins a calculation loop for each time interval, :{Delta}t [days]. The time interval is calculated by dividing the duration of the experiment by the number of data points desired by the user. The program can simulate static conditions as would be the case for a standard leach test or under flowing water conditions which might be found in nature. It can also account for precipitation out of solution for various compounds, if the precipitation coefficients are known. An output data file is created showing the amount of each species in solution as a function of time. An accompanying program, LDATA, is used to create and manage data files for input into the MDM program. The files contain physical data about the compounds, and species making up the material.« less

  15. Anisotropic distributions in a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Zhou, You; Xiao, Kai; Feng, Zhao; Liu, Feng; Snellings, Raimond

    2016-03-01

    With a multiphase transport (AMPT) model we investigate the relation between the magnitude, fluctuations, and correlations of the initial state spatial anisotropy ɛn and the final state anisotropic flow coefficients vn in Au+Au collisions at √{s NN}=200 GeV. It is found that the relative eccentricity fluctuations in AMPT account for the observed elliptic flow fluctuations, both are in agreement with the elliptic flow fluctuation measurements from the STAR collaboration. In addition, the studies based on two- and multiparticle correlations and event-by-event distributions of the anisotropies suggest that the elliptic-power function is a promising candidate of the underlying probability density function of the event-by-event distributions of ɛn as well as vn. Furthermore, the correlations between different order symmetry planes and harmonics in the initial coordinate space and final state momentum space are presented. Nonzero values of these correlations have been observed. The comparison between our calculations and data will, in the future, shed new insight into the nature of the fluctuations of the quark-gluon plasma produced in heavy ion collisions.

  16. Germanium multiphase equation of state

    DOE PAGES

    Crockett, Scott D.; Lorenzi-Venneri, Giulia De; Kress, Joel D.; Rudin, Sven P.

    2014-05-07

    A new SESAME multiphase germanium equation of state (EOS) has been developed using the best available experimental data and density functional theory (DFT) calculations. The equilibrium EOS includes the Ge I (diamond), the Ge II (β-Sn) and the liquid phases. The foundation of the EOS is based on density functional theory calculations which are used to determine the cold curve and the Debye temperature. Results are compared to Hugoniot data through the solid-solid and solid-liquid transitions. We propose some experiments to better understand the dynamics of this element

  17. An overview of multiphase helicoaxial pumps

    SciTech Connect

    Falcimaigne, J.

    1996-02-01

    The helicoaxial concept developed by the Inst. Francais du Petrole (IFP) is one of two types of multiphase pumps extensively tested on fields and now used commercially. Helicoaxial pumps are rotodynamic turbomachines that are, in fact, hybrids between pumps and axial compressors. Helicoaxial pumps are based on special patented hydraulics designed to limit the phase separation that occurs in two-phase flow with conventional centrifugal pumps that produce a tremendous head loss. Developers have carried out extensive research and testing on actual production sites to develop helicoaxial pumping. The favorable results obtained so far confirm the soundness and versatility of the technology over a wide range of operating conditions. Helicoaxial pumps cover a larger domain of application than anticipated some years ago. They can be used with high gas volume fraction (94 to 95%) and/or low suction pressures. The pumps` inherent low weight should make them particularly attractive for large flow rates and offshore operations. Helicoaxial pumps are reliable products, technically and commercially read for field deployment.

  18. Development of antibiotic regimens using graph based evolutionary algorithms.

    PubMed

    Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M

    2013-12-01

    This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems.

  19. Tolerability of prophylactic Lariam regimens.

    PubMed

    Boudreau, E; Schuster, B; Sanchez, J; Novakowski, W; Johnson, R; Redmond, D; Hanson, R; Dausel, L

    1993-09-01

    Three hundred and fifty-nine US Marines participated in a randomized double-blind clinical trial to assess tolerance of two prophylactic mefloquine regimens [250 mg salt weekly (n = 157) or 250 mg daily for 3 days followed by 250 mg weekly (n = 46)] compared with 300 mg weekly chloroquine (n = 156) over a 12-week period. The study participants were seen daily for four days, then weekly for 11 weeks. On each visit, the subject answered two computerized questionnaires (a review of body systems and an evaluation of mood states), participated in a physician interview, and was administered medications under supervision. A random sample of each group was assigned to either pharmacokinetic sampling or two wear a wrist watch size computerized sleep monitor (actigraph). The frequencies of intercurrent illness and other concomitant medications were tabulated. End study mefloquine plasma levels were obtained on all study participants. The results obtained showed no compromise in function due to dizziness or incoordination in the mefloquine groups. Overall, both weekly mefloquine and loading dose mefloquine were well tolerated. Sleep disturbance and increased dream activity were detected in the mefloquine groups. Depressive feelings were noted in two to three times more individuals in the mefloquine groups than in the chloroquine group early in the course of the study, and resolved in the majority of subjects as tolerance developed. Steady state mefloquine plasma levels were attained rapidly with the loading dose regimen in four days versus seven weeks with weekly mefloquine.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. PACKAGE (Plasma Analysis, Chemical Kinetics and Generator Efficiency): a computer program for the calculation of partial chemical equilibrium/partial chemical rate controlled composition of multiphased mixtures under one dimensional steady flow

    SciTech Connect

    Yousefian, V.; Weinberg, M.H.; Haimes, R.

    1980-02-01

    The NASA CEC Code was the starting point for PACKAGE, whose function is to evaluate the composition of a multiphase combustion product mixture under the following chemical conditions: (1) total equilibrium with pure condensed species; (2) total equilibrium with ideal liquid solution; (3) partial equilibrium/partial finite rate chemistry; and (4) fully finite rate chemistry. The last three conditions were developed to treat the evolution of complex mixtures such as coal combustion products. The thermodynamic variable pairs considered are either pressure (P) and enthalpy, P and entropy, at P and temperature. Minimization of Gibbs free energy is used. This report gives detailed discussions of formulation and input/output information used in the code. Sample problems are given. The code development, description, and current programming constraints are discussed. (DLC)

  1. Multiphase problems related to safety studies in the process industries

    NASA Astrophysics Data System (ADS)

    Baron, R. Grollier

    Safety risk and analysis, particularly in the petrochemical industry, are discussed. Multiphase flow problems resulting from loss of confinement are described: rupture of long pipes used for transporting liquefied gas; rupture of short pipes and branch connections in an installation; rupture of a container holding liquefied gas or another liquid at a temperature higher than its normal boiling temperature; and rupture of a container holding gas in the supercritical state. Operation of valves and rupture disks during reaction runaway; and artificial dispersion of gas layers are considered.

  2. Simulating Anomalous Dispersion and Multiphase Segregation in Porous Media with the Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Matin, Rastin; Misztal, Marek K.; Hernandez-Garcia, Anier; Mathiesen, Joachim

    2015-11-01

    Many hydrodynamic phenomena such as flows at micron scale in porous media, large Reynolds numbers flows, non-Newtonian and multiphase flows have been simulated numerically using the lattice Boltzmann method. By solving the Lattice Boltzmann Equation on three-dimensional unstructured meshes, we efficiently model single-phase fluid flow in real rock samples. We use the flow field to estimate the permeability and further investigate the anomalous dispersion of passive tracers in porous media. By extending our single-phase model with a free-energy based method, we are able to simulate binary systems with moderate density ratios in a thermodynamically consistent way. In this presentation we will present our recent results on both anomalous transport and multiphase segregation.

  3. Dual excitation multiphase electrostatic drive

    SciTech Connect

    Niino, Toshiki; Higuchi, Toshiro |; Egawa, Saku

    1995-12-31

    A novel electrostatic drive technology named Dual Excitation Multiphase Electrostatic Drive (DEMED) was presented. A basic DEMED consisted of two plastic films in which 3-phase parallel electrodes were embedded and was driven by a 3-phase ac excitation to the electrodes. Static characteristics of DEMED were calculated and tested and the results agreed very well. Three prototype motors of DEMED were fabricated using commercially available technique. The first prototype consisted of a single slider and stator and generated a linear motion with a slider`s motion range of about 5mm. It weighed 7g and generated a power of 1.6W and a thrust force of 4.4N. The second prototype consisted of 50 layer stack of linear motors, summing their outputs. It weighed 3.6kg and generated a propulsive force of 310N being powered with boosted commercial 3-phase electricity. The third prototype consisted of a rotor and a stator in which electrodes were arranged radially and generated rotational motion. The maximum power of 36mW was generated by the prototype weighing only 260mg for its rotor and stator. From the results of the numerical calculation, a practical design methodology for the motor was determined. An optimal design for a motor employing currently available material and fabrication techniques is provided as an example. Analyses predict that force generation over the interfacial area between the slider and stator of this motor would be 3,900N/m{sup 2}.

  4. All-aqueous multiphase microfluidics

    PubMed Central

    Song, Yang; Sauret, Alban; Cheung Shum, Ho

    2013-01-01

    Immiscible aqueous phases, formed by dissolving incompatible solutes in water, have been used in green chemical synthesis, molecular extraction and mimicking of cellular cytoplasm. Recently, a microfluidic approach has been introduced to generate all-aqueous emulsions and jets based on these immiscible aqueous phases; due to their biocompatibility, these all-aqueous structures have shown great promises as templates for fabricating biomaterials. The physico-chemical nature of interfaces between two immiscible aqueous phases leads to unique interfacial properties, such as an ultra-low interfacial tension. Strategies to manipulate components and direct their assembly at these interfaces needs to be explored. In this paper, we review progress on the topic over the past few years, with a focus on the fabrication and stabilization of all-aqueous structures in a multiphase microfluidic platform. We also discuss future efforts needed from the perspectives of fluidic physics, materials engineering, and biology for fulfilling potential applications ranging from materials fabrication to biomedical engineering. PMID:24454609

  5. Experimental Investigations of Multiphase Explosions

    NASA Astrophysics Data System (ADS)

    Carney, Joel R.; Lightstone, James M.; McGrath, Thomas P.

    2009-12-01

    The addition of solid fuel particles to explosive formulations generally reduces the detonation velocity, but can enhance the blast performance if prompt combustion of the particles occurs in the detonation products and surrounding air early enough to support the shock. The degree to which fuel particles burn heavily depends on their dispersal throughout the explosion field and access to oxidizers. To distinguish the factors affecting the dispersal of fuel particles from those controlling their combustion, we began by analyzing the dispersal of equivalent mock inert particles. Solid glass spheres embedded in detonating small explosive charges were tracked using high-speed digital shadowgraphy. Two different particle sizes, 3 and 30 μm, and different mass fractions in the explosive compositions were considered. Shadowgraphs and pressure measurements were compared to the predictions of a newly developed multiphase numerical model. Reactive aluminum particles in the range of 1 to 120 μm in diameter were also analyzed. During the first 50 μs of the expansion, the general trend for both reactive and inert particles is for the smaller particles to expand near or beyond the leading shock wave to a greater extent than the larger particles. Expansion beyond the initial shock from the detonation is presumed to occur when particles agglomerate. The results are consistent with the predictions of the numerical models, highlighting the role of simple factors such as particle size and density in the early time expansion and mixing of fuels for enhanced blast applications.

  6. Black hole feedback in a multiphase interstellar medium

    NASA Astrophysics Data System (ADS)

    Bourne, Martin A.; Nayakshin, Sergei; Hobbs, Alexander

    2014-07-01

    Ultrafast outflows (UFOs) from supermassive black holes (SMBHs) are thought to regulate the growth of SMBHs and host galaxies, resulting in a number of observational correlations. We present high-resolution numerical simulations of the impact of a thermalized UFO on the ambient gas in the inner part of the host galaxy. Our results depend strongly on whether the gas is homogeneous or clumpy. In the former case all of the ambient gas is driven outward rapidly as expected based on commonly used energy budget arguments, while in the latter the flows of mass and energy de-couple. Carrying most of the energy, the shocked UFO escapes from the bulge via paths of least resistance, taking with it only the low-density phase of the host. Most of the mass is however in the high-density phase, and is affected by the UFO much less strongly, and may even continue to flow inwards. We suggest that the UFO energy leakage through the pores in the multiphase interstellar medium (ISM) may explain why observed SMBHs are so massive despite their overwhelmingly large energy production rates. The multiphase ISM effects reported here are probably under-resolved in cosmological simulations but may be included in prescriptions for active galactic nuclei feedback in future simulations and in semi-analytical models.

  7. MSTS - Multiphase Subsurface Transport Simulator theory manual

    SciTech Connect

    White, M.D.; Nichols, W.E.

    1993-05-01

    The US Department of Energy, through the Yucca Mountain Site Characterization Project Office, has designated the Yucca Mountain site in Nevada for detailed study as the candidate US geologic repository for spent nuclear fuel and high-level radioactive waste. Site characterization will determine the suitability of the Yucca Mountain site for the potential waste repository. If the site is determined suitable, subsequent studies and characterization will be conducted to obtain authorization from the Nuclear Regulatory Commission to construct the potential waste repository. A principal component of the characterization and licensing processes involves numerically predicting the thermal and hydrologic response of the subsurface environment of the Yucca Mountain site to the potential repository over a 10,000-year period. The thermal and hydrologic response of the subsurface environment to the repository is anticipated to include complex processes of countercurrent vapor and liquid migration, multiple-phase heat transfer, multiple-phase transport, and geochemical reactions. Numerical simulators based on mathematical descriptions of these subsurface phenomena are required to make numerical predictions of the thermal and hydrologic response of the Yucca Mountain subsurface environment The engineering simulator called the Multiphase Subsurface Transport Simulator (MSTS) was developed at the request of the Yucca Mountain Site Characterization Project Office to produce numerical predictions of subsurface flow and transport phenomena at the potential Yucca Mountain site. This document delineates the design architecture and describes the specific computational algorithms that compose MSTS. Details for using MSTS and sample problems are given in the {open_quotes}User`s Guide and Reference{close_quotes} companion document.

  8. Effect of forward looking sites on a multi-phase lattice hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Redhu, Poonam; Gupta, Arvind Kumar

    2016-03-01

    A new multi-phase lattice hydrodynamic traffic flow model is proposed by considering the effect of multi-forward looking sites on a unidirectional highway. We examined the qualitative properties of proposed model through linear as well as nonlinear stability analysis. It is shown that the multi-anticipation effect can significantly enlarge the stability region on the phase diagram and exhibit three-phase traffic flow. It is also observed that the multi-forward looking sites have prominent influence on traffic flow when driver senses the relative flux of leading vehicles. Theoretical findings are verified using numerical simulation which confirms that the traffic jam is suppressed efficiently by considering the information of leading vehicles in unidirectional multi-phase traffic flow.

  9. Multiphase Systems for Medical Image Region Classification

    NASA Astrophysics Data System (ADS)

    Garamendi, J. F.; Malpica, N.; Schiavi, E.

    2009-05-01

    Variational methods for region classification have shown very promising results in medical image analysis. The Chan-Vese model is one of the most popular methods, but its numerical resolution is slow and it has serious drawbacks for most multiphase applications. In this work, we extend the link, stablished by Chambolle, between the two classes binary Chan-Vese model and the Rudin-Osher-Fatemi (ROF) model to a multiphase four classes minimal partition problem. We solve the ROF image restoration model and then we threshold the image by means of a genetic algorithm. This strategy allows for a more efficient algorithm due to the fact that only one well posed elliptic problem is solved instead of solving the coupled parabolic equations arising in the original multiphase Chan-Vese model.

  10. Multiphase studies in continental and marine atmospheres

    NASA Astrophysics Data System (ADS)

    Acker, K.; Wieprecht, W.; Möller, D.

    2010-07-01

    The largest uncertainty in future climate predictions is caused by aerosols and clouds and their interaction with radiation (IPCC, 2007). Aerosol particles have multiple impacts on atmospheric properties: response to climate by optical properties, providing cloud condensation nuclei, being a heterogeneous surface for multiphase chemical reactions e.g. as a source for reactive chlorine. Therefore the chlorine partitioning in marine and continental atmospheres was studied during intensive field campaigns at two European Supersites for Atmospheric Aerosol Research: Melpitz (51°32N, 12°54 E; 87 m a.s.l., near Leipzig (D), Spindler et al., 2004) and Mace Head (53°19 N, 9°54 W; ~10 m a.s.l., near Galway (IR); O`Connor et al., 2008). Hydrochloric acid (HCl), nitric acid (HNO3) and other gaseous species as well after diffusion based separation particulate matter components (e.g., Na, Cl, nitrate, sulphate and others) were determined simultaneously by a denuder-steam chamber-IC-system with a time resolution of 30 min; limit of quantification: 10 ng m-3 (air flow 10 l min-1; Acker et al., 2005). Numerous other atmospheric components (in gas and particulate phase) as well meteorological parameters were determined. Assuming Na to be only of sea-salt origin, the (mass) Na/Cl ratio found in sea water (Rsea = 0.56) is used for calculation of the degree in chlorine loss in particulate matter: Clloss=1-Rsea/Rsample. In Mace Head to a significant extent (~ 20%), sea salt already is depleted in Cl in air masses originate exclusive from the clean marine sector, mainly caused by HCl formation during heterogeneous sulphate formation. In continental influenced air masses a higher degree in Clloss (~ 46%) was found due to additional acid replacement by nitric acid. In air masses arriving Melpitz a very high loss in chlorine has been observed in the aerosol (~ 83%), not showing a significant dependency from the air mass sector and transport percentage above continent. The high

  11. Gonzalez Regimen (PDQ®)—Patient Version

    Cancer.gov

    Expert-reviewed information summary about the Gonzalez regimen as a treatment for people with cancer. Note: The information in this summary is no longer being updated and is provided for reference purposes only.

  12. Digital image analysis of stress-dependent granular compaction and its impact on multiphase fluid distributions

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Klise, K. A.; Torrealba, V.; Karpyn, Z.

    2014-12-01

    Pore-scale investigation of multiphase fluid behavior in porous media is useful for obtaining quantitative information about relationships between micro-pore structures and multiphase flow and their impact on fluid distribution under different conditions. Recent advances in imaging techniques such as X-ray computed microtomography (microCT) allows us to examine three-dimensional (3D) micro-pore structures and multiphase distribution. However, many previous experiments with microCT imaging have been largely limited to static conditions. In this work, we focus on stress-dependent granular compaction under flowing conditions and its impact on displacement mechanisms and multiphase distribution under multiple drainage and imbibition cycles. A stack of 3D images were obtained with microCT to examine pore structures and fluid distribution under each cycle. Advanced imaging processing techniques were employed to improve the quality of multiphase segmentations. Key characteristics of pore structures and fluid distribution include porosity, permeability, specific surface area, interfacial area, Euler characteristic, and phase saturation. Additional lattice-Boltzmann simulations are used to investigate how inter-granular compaction mechanisms may affect fluid displacement and residual trapping at the pore-scale. This will improve our understanding of the dynamic interaction of slow compaction and fluid flow relevant to subsurface applications such as geologic CO2 storage and enhanced oil recovery. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. GE Healthcare launches multiphase advertising effort.

    PubMed

    2006-01-01

    GE Healthcare has launched a multi-phase marketing campaign aimed at promoting the technological breakthroughs and state-of-the-art equipment that it provides hospitals and health systems to ensure that patients are given the best care possible. The campaign boasts four new commercials and an interactive Web site designed to illustrate healthy living on a global scale.

  14. Multi-Phase Driver Education Teaching Guide.

    ERIC Educational Resources Information Center

    Hurst-Euless-Bedford Independent School District, Hurst, TX.

    For use in planning and conducting functional multi-phase driver education programs, this teacher's guide consists of four phases of instruction: classroom activities, simulated application, in-car range practice, and in-car public practice. Contents are divided into three instructional sections, with the first combining the classroom activities…

  15. Numerical study of natural convection characteristics of nanofluids in an enclosure using multiphase model

    NASA Astrophysics Data System (ADS)

    Chen, Yan-Jun; Wang, Ping-Yang; Liu, Zhen-Hua

    2016-11-01

    The natural convective heat transfer and flow characteristics of nanofluids in an enclosure are numerically simulated using the multiphase-flow model and single phase model respectively. The simulated results are compared with the experimental results from the published papers to investigate the applicability of these models for nanofluids from a macro standpoint. The effects of Rayleigh number, Grashof number and volume concentration of nanoparticles on the heat transfer and flow characteristics are investigated and discussed. Comparisons of the horizontal and vertical central dimensionless velocity profiles between nanofluid and water for various Grashof numbers are studied. In addition, both streamline contours and isotherms lines for different volume concentrations of nanofluids are analyzed as well. The study results show that a great deviation exists between the simulated result of the single phase model and the experimental data on the relation of Nusselt number and Rayleigh number, which indicates that the single phase model cannot reflect the heat transfer characteristic of nanofluid. While the simulated results using the multiphase-flow model show a good agreement with the experimental data of nanofluid, which means that the multiphase-flow model is more suitable for the numerical study of nanofluid. For the natural convection, the present study holds the point that using Grashof numbers as the benchmark would be more appropriate to describe the heat transfer characteristics of nanofluid. Moreover, the simulated results demonstrate that adding nanoparticles into the base fluid can enhance both the motion of fluid and convection in the enclosure significantly.

  16. MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES

    SciTech Connect

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

    2005-06-15

    The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) quantifying the effect of confining stress on the distribution of fracture aperture, and (c) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress on the nature of the rock and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual descriptions of the process are shown in the report while detailed analysis of the behavior of the distribution of fracture aperture is in progress. Both extensional and shear fractures are being considered. The initial multi-phase flow tests were done in extensional fractures. Several rock samples with induced shear fracture are being studied, and some of the new results are presented in this report. These samples are being scanned in order to

  17. MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES

    SciTech Connect

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

    2005-06-15

    The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) quantifying the effect of confining stress on the distribution of fracture aperture, and (c) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress on the nature of the rock and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual descriptions of the process are shown in the report while detailed analysis of the behavior of the distribution of fracture aperture is in progress. Both extensional and shear fractures are being considered. The initial multi-phase flow tests were done in extensional fractures. Several rock samples with induced shear fracture are being studies, and some of the new results are presented in this report. These samples are being scanned in order to

  18. MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES

    SciTech Connect

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; H. Yasuhara; A. Alajmi; Z. Karpyn

    2002-10-28

    The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (1) developing the direct experimental measurements of fracture aperture and topology using high-resolution x-ray microtomography, (2) modeling of fracture permeability in the presence of asperities and confining stress, and (3) simulation of two-phase fluid flow in a fracture and a layered matrix. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. The distribution of fracture aperture is a difficult issue that we are studying and developing methods of quantification. The difficulties are both numerical and conceptual. Numerically, the three-dimensional data sets include millions, and sometimes, billions of points, and pose a computational challenge. The conceptual difficulties derive from the rough nature of the fracture surfaces, and the heterogeneous nature of the rock matrix. However, the high-resolution obtained by the imaging system provides us a much needed measuring environment on rock samples that are subjected to simultaneous fluid flow and confining stress. Pilot multi-phase experiments have been performed, proving the ability to detect two phases in certain large fractures. The absolute permeability of a fracture depends on the behavior of the asperities that keep it open. A model is being developed that predicts the permeability and average aperture of a fracture as a function of time under steady flow of water including the pressure solution at the asperity contact points. Several two-phase flow experiments in the presence of a fracture tip were performed in the past. At the

  19. Multiphase transport in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Gauthier, Eric D.

    Polymer electrolyte membrane fuel cells (PEMFCs) enable efficient conversion of fuels to electricity. They have enormous potential due to the high energy density of the fuels they utilize (hydrogen or alcohols). Power density is a major limitation to wide-scale introduction of PEMFCs. Power density in hydrogen fuel cells is limited by accumulation of water in what is termed fuel cell `flooding.' Flooding may occur in either the gas diffusion layer (GDL) or within the flow channels of the bipolar plate. These components comprise the electrodes of the fuel cell and balance transport of reactants/products with electrical conductivity. This thesis explores the role of electrode materials in the fuel cell and examines the fundamental connection between material properties and multiphase transport processes. Water is generated at the cathode catalyst layer. As liquid water accumulates it will utilize the largest pores in the GDL to go from the catalyst layer to the flow channels. Water collects to large pores via lateral transport at the interface between the GDL and catalyst layer. We have shown that water may be collected in these large pores from several centimeters away, suggesting that we could engineer the GDL to control flooding with careful placement and distribution of large flow-directing pores. Once liquid water is in the flow channels it forms slugs that block gas flow. The slugs are pushed along the channel by a pressure gradient that is dependent on the material wettability. The permeable nature of the GDL also plays a major role in slug growth and allowing bypass of gas between adjacent channels. Direct methanol fuel cells (DMFCs) have analogous multiphase flow issues where carbon dioxide bubbles accumulate, `blinding' regions of the fuel cell. This problem is fundamentally similar to water management in hydrogen fuel cells but with a gas/liquid phase inversion. Gas bubbles move laterally through the porous GDL and emerge to form large bubbles within the

  20. T2Well/ECO2N Version 1.0: Multiphase and Non-Isothermal Model for Coupled Wellbore-Reservoir Flow of Carbon Dioxide and Variable Salinity Water

    SciTech Connect

    Pan, L.; Oldenburg, C.M.; Wu, Y.-S.; Pruess, K.

    2011-02-14

    At its most basic level, the injection of CO{sub 2} into geologic CO{sub 2} storage sites involves a system comprising the wellbore and the target reservoir. The wellbore is the only conduit available to emplace CO{sub 2} into reservoirs for long-term storage. At the same time, wellbores in general have been identified as the most likely conduit for CO{sub 2} and brine leakage from geologic carbon sequestration (GCS) sites, especially those in sedimentary basins with historical hydrocarbon production. We have developed a coupled wellbore and reservoir model for simulating the dynamics of CO{sub 2} injection and leakage through wellbores. The model describes the following processes: (1) upward or downward wellbore flow of CO{sub 2} and variable salinity water with transition from supercritical to gaseous CO{sub 2} including Joule-Thomson cooling, (2) exsolution of CO{sub 2} from the aqueous phase as pressure drops, and (3) cross flow into or interaction with layers of surrounding rock (reservoirs). We use the Drift-Flux Model and related conservation equations for describing transient two-phase non-isothermal wellbore flow of CO{sub 2}-water mixtures under different flow regimes and interacting with surrounding rock. The mass and thermal energy balance equations are solved numerically by a finite difference scheme with wellbore heat transmission to the surrounding rock handled either semi-analytically or numerically. The momentum balance equation for the flow in the wellbore is solved numerically with a semi-explicit scheme. This manual provides instructions for compilation and use of the new model, and presents some example problems to demonstrate its use.

  1. Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems.

    PubMed

    Chen, Li; Kang, Qinjun; Robinson, Bruce A; He, Ya-Ling; Tao, Wen-Quan

    2013-04-01

    A pore-scale model based on the lattice Boltzmann (LB) method is developed for multiphase reactive transport with phase transitions and dissolution-precipitation processes. The model combines the single-component multiphase Shan-Chen LB model [X. Shan and H. Chen, Phys. Rev. E 47, 1815 (1993)], the mass transport LB model [S. P. Sullivan et al., Chem. Eng. Sci. 60, 3405 (2005)], and the dissolution-precipitation model [Q. Kang et al., J. Geophys. Res. 111, B05203 (2006)]. Care is taken to handle information on computational nodes undergoing solid-liquid or liquid-vapor phase changes to guarantee mass and momentum conservation. A general LB concentration boundary condition is proposed that can handle various concentration boundaries including reactive and moving boundaries with complex geometries. The pore-scale model can capture coupled nonlinear multiple physicochemical processes including multiphase flow with phase separations, mass transport, chemical reactions, dissolution-precipitation processes, and dynamic evolution of the pore geometries. The model is validated using several multiphase flow and reactive transport problems and then used to study the thermal migration of a brine inclusion in a salt crystal. Multiphase reactive transport phenomena with phase transitions between liquid-vapor phases and dissolution-precipitation processes of the salt in the closed inclusion are simulated and the effects of the initial inclusion size and temperature gradient on the thermal migration are investigated.

  2. Subsurface Trapping of Multiphase Plumes in Stratification: Laboratory Investigations

    NASA Astrophysics Data System (ADS)

    White, B. L.; Camassa, R.; McLaughlin, R.

    2010-12-01

    Recent observations of subsurface plumes near the Deepwater Horizon Oil Spill have raised many questions about the physics of multiphase plumes in deep ocean environments. Plume evolution and vertical distribution will be a complex function of chemical composition (oil, gas, water, and chemical dispersants), water column density structure, turbulent mixing, and horizontal currents. Here we present early laboratory experiments from the UNC Fluids Lab, demonstrating how a miscible turbulent plume, less dense than the entire ambient water column, can be trapped well below the free surface. We describe preliminary experiments in stratified flow tanks intended to model, with appropriate dynamical scaling, the Gulf plume. A simplified ODE closure model has been developed to model the plume trapping height and the percentage of subsurface and surface oil as a function of key non-dimensional parameters associated with deep water oil spills.

  3. Nonequilibrium multiphase mixture modeling of energetic material response

    SciTech Connect

    Baer, M.R.; Hertel, E.; Bell, R.

    1995-12-31

    To model the shock-induced behavior of porous or damaged energetic materials, a nonequilibrium mixture theory has been developed and incorporated into the shock physics code, CTH. Foundation for this multiphase model is based on a continuum mixture formulation given by Baer and Nunziato. In this nonequilibrium approach, multiple thermodynamic and mechanics fields are resolved including the effects of material relative motion, rate-dependent compaction, drag and heat transfer interphase effects and multiple-step combustion. Benchmark calculations are presented which simulate low-velocity piston impact on a propellant porous bed and experimentally-measured wave features are well replicated with this model. This mixture model introduces micromechanical models for the initiation and growth of reactive multicomponent flow which are key features to describe shock initiation and self-accelerated deflagration-to-detonation combustion behavior. To complement one-dimensional simulation, two dimensional numerical simulations are presented which indicate wave curvature effects due to the loss of wall confinement.

  4. A multiphase transitioning peptide hydrogel for suturing ultrasmall vessels

    NASA Astrophysics Data System (ADS)

    Smith, Daniel J.; Brat, Gabriel A.; Medina, Scott H.; Tong, Dedi; Huang, Yong; Grahammer, Johanna; Furtmüller, Georg J.; Oh, Byoung Chol; Nagy-Smith, Katelyn J.; Walczak, Piotr; Brandacher, Gerald; Schneider, Joel P.

    2016-01-01

    Many surgeries are complicated by the need to anastomose, or reconnect, micrometre-scale vessels. Although suturing remains the gold standard for anastomosing vessels, it is difficult to place sutures correctly through collapsed lumen, making the procedure prone to failure. Here, we report a multiphase transitioning peptide hydrogel that can be injected into the lumen of vessels to facilitate suturing. The peptide, which contains a photocaged glutamic acid, forms a solid-like gel in a syringe and can be shear-thin delivered to the lumen of collapsed vessels (where it distends the vessel) and the space between two vessels (where it is used to approximate the vessel ends). Suturing is performed directly through the gel. Light is used to initiate the final gel-sol phase transition that disrupts the hydrogel network, allowing the gel to be removed and blood flow to resume. This gel adds a new tool to the armamentarium for micro- and supermicrosurgical procedures.

  5. A multiphase transitioning peptide hydrogel for suturing ultrasmall vessels.

    PubMed

    Smith, Daniel J; Brat, Gabriel A; Medina, Scott H; Tong, Dedi; Huang, Yong; Grahammer, Johanna; Furtmüller, Georg J; Oh, Byoung Chol; Nagy-Smith, Katelyn J; Walczak, Piotr; Brandacher, Gerald; Schneider, Joel P

    2016-01-01

    Many surgeries are complicated by the need to anastomose, or reconnect, micrometre-scale vessels. Although suturing remains the gold standard for anastomosing vessels, it is difficult to place sutures correctly through collapsed lumen, making the procedure prone to failure. Here, we report a multiphase transitioning peptide hydrogel that can be injected into the lumen of vessels to facilitate suturing. The peptide, which contains a photocaged glutamic acid, forms a solid-like gel in a syringe and can be shear-thin delivered to the lumen of collapsed vessels (where it distends the vessel) and the space between two vessels (where it is used to approximate the vessel ends). Suturing is performed directly through the gel. Light is used to initiate the final gel-sol phase transition that disrupts the hydrogel network, allowing the gel to be removed and blood flow to resume. This gel adds a new tool to the armamentarium for micro- and supermicrosurgical procedures. PMID:26524396

  6. A New Multiphase Model for Simulating Energetically Driven Particles

    SciTech Connect

    Stevens, D E; Murphy, M J

    2010-02-02

    The proper representation of particulate phenomena is important for the simulation of many non-ideal particle loaded explosives. These explosives present severe numerical difficulties to simulate because numerical approaches for packed particle beds often behave poorly for the dilute regime and the reverse is often true for methods developed for the dilute regime. This paper presents a multiphase framework for the simulation of these non-ideal explosives that accurately accounts for the particulate behavior in both of these regimes. The capability of this framework is enhanced by the use of prescribed PDF methods for both particle size distributions and the representation of chemical processes. We have validated this framework using several experimental methods that accommodate the separation of momentum flux measurements in two-phase blast flows.

  7. Unsteady RANS and Large Eddy simulations of multiphase diesel injection

    NASA Astrophysics Data System (ADS)

    Philipp, Jenna; Green, Melissa; Akih-Kumgeh, Benjamin

    2015-11-01

    Unsteady Reynolds Averaged Navier-Stokes (URANS) and Large Eddy Simulations (LES) of two-phase flow and evaporation of high pressure diesel injection into a quiescent, high temperature environment is investigated. Unsteady RANS and LES are turbulent flow simulation approaches used to determine complex flow fields. The latter allows for more accurate predictions of complex phenomena such as turbulent mixing and physio-chemical processes associated with diesel combustion. In this work we investigate a high pressure diesel injection using the Euler-Lagrange method for multiphase flows as implemented in the Star-CCM+ CFD code. A dispersed liquid phase is represented by Lagrangian particles while the multi-component gas phase is solved using an Eulerian method. Results obtained from the two approaches are compared with respect to spray penetration depth and air entrainment. They are also compared with experimental data taken from the Sandia Engine Combustion Network for ``Spray A''. Characteristics of primary and secondary atomization are qualitatively evaluated for all simulation modes.

  8. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem.

    PubMed

    Ren, Yong; Liu, Zhou; Shum, Ho Cheung

    2015-01-01

    The breakup dynamics in non-Newtonian multiphase microsystems is associated with a variety of industrial applications such as food production and biomedical engineering. In this study, we numerically and experimentally characterize the dripping-to-jetting transition under various flow conditions in a Newtonian/shear-thinning multiphase microsystem. Our work can help to predict the formation of undesirable satellite droplets, which is one of the challenges in dispensing non-Newtonian fluids. We also demonstrate the variations in breakup dynamics between shear-thinning and Newtonian fluids under the same flow conditions. For shear-thinning fluids, the droplet size increases when the capillary number is smaller than a critical value, while it decreases when the capillary number is beyond the critical value. The variations highlight the importance of rheological effects in flows with a non-Newtonian fluid. The viscosity of shear-thinning fluids significantly affects the control over the droplet size, therefore necessitating the manipulation of the shear rate through adjusting the flow rate and the dimensions of the nozzle. Consequently, the droplet size can be tuned in a controlled manner. Our findings can guide the design of novel microdevices for generating droplets of shear-thinning fluids with a predetermined droplet size. This enhances the ability to fabricate functional particles using an emulsion-templated approach. Moreover, elastic effects are also investigated experimentally using a model shear-thinning fluid that also exhibits elastic behaviors: droplets are increasingly deformed with increasing elasticity of the continuous phase. The overall understanding in the model multiphase microsystem will facilitate the use of a droplet-based approach for non-Newtonian multiphase applications ranging from energy to biomedical sciences. PMID:25316203

  9. A Gallium multiphase equation of state

    SciTech Connect

    Crockett, Scott D; Greeff, Carl

    2009-01-01

    A new SESAME multiphase Gallium equation of state (EOS) has been developed. The equation of state includes three of the solid phases (Ga I, Ga II, Ga III) and a fluid phase (liquid/gas). The EOS includes consistent latent heat between the phases. We compare the results to the liquid Hugoniol data. We also explore the possibility of re-freezing via dynamic means such as isentropic and shock compression.

  10. Processing and Characterization of Multiphase Ceramic Composites

    NASA Astrophysics Data System (ADS)

    Men, Danju

    Multiphase ceramic composites structure design has advantages for many applications. It is not only an effective way of limiting grain growth which allows for fine-grain size superplasticity at elevated temperatures, but also a combination of various desirable properties can be obtained from different phases, which otherwise cannot be found in one single phase material. The goal of this research is to select, design and optimize multiphase ceramic systems for mainly two purposes: shape forming and inert matrix nuclear fuel. These ceramic composites feature the machinability of monazite (LaPO 4) due to weak interfacial bonding with other oxides, the superplasticity of 3 mol% tetragonal zirconia (3Y-TZP), and the high hardness and strength of Al2O3 and MgAl2O4. These materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical behavior at room temperature was characterized for the elastic modulus, hardness and fracture toughness. They were fabricated and demonstrated to have deformation rates in the superplastic range of at high temperatures and easy machinability at room temperature using conventional tools. An issue with conventional nuclear fuel, UO2, is its very low thermal conductivity that causes high central temperatures, which can lead to melting and cracking during reactor operation. The solution can be found in multiphase ceramic composites, by combining nuclear fuel particles in a heat conducting phase with high thermal conductivity and other phases that absorb fission byproducts while maintaining good radiation stability. In the current research, proposed multiphase ceramic composite materials were designed and radiation damage was characterized by scanning and transmission electron microscopy (TEM). Gold irradiation was used to represent the primary knock-on atoms damage caused by neutrons. Xenon irradiation was used to represent the fission product damage. Magnetoplumbite, was the most susceptible to

  11. Multiphase booster ups production from subsea well

    SciTech Connect

    1995-05-01

    The Rogn South subsea well has the world`s first commercial subsea multiphase boosting system. The well produces to A/S Norske Shell`s Draugen field, in the Norwegian Sea. The Smubs (Shell multiphase underwater booster station) provides additional energy to transport a mixture of gas and liquids over long distances. This reduces the back pressure on the reservoir to potentially enhance both production and recovery. In-house Shell International Petroleum Maatschappij B.V. (SIPM) has studied estimated facility costs and performance for a multiphase boosting system for a typical small (50 million bbl) field between 20--50 km from a host facility in water depths between 150--1,000 m. The studies showed that technical costs per barrel of oil produced could be cut by up to 30% compared to conventional technology. The Smubs main features are: A single retrievable cartridge that houses all active components susceptible to wear; No orientation requirements for the pump cartridge unit; No orientation requirements for the pump cartridge unit; Hydraulically set and tested seals; and Vertical installation and retrieval with a single tool, and a remotely operated vehicle (ROV) only for a monitoring.

  12. Advances in multiphasic screening and testing.

    PubMed

    Miller, C E

    1967-11-01

    The multiphasic testing center of the future will probably be used both for periodic screening tests and for referrals by practicing physicians. Recent widespread interest of several branches of the Federal Government in multiphasic screening stems from the possibility that, through its use, the enormous cost of chronic illness to the country may be reduced.Recent advances in automation and the storage, retrieval, and analysis of data by computers make it economically feasible to obtain much more information about the patient's health than ever before. New instrument developments include both screening and diagnostic analysis of electrocardiograms by computers, analysis of heart sounds by computer, and a wide variety of other physiological and biochemical instruments. To allow for the inclusion and evaluation of these new procedures, a number of multiphasic testing centers will be needed which can do both research and routine testing. Close cooperation between the medical profession, the public health services and industry will be needed to best serve both the public and the medical profession.

  13. Experimental characterization of energetic material dynamics for multiphase blast simulation.

    SciTech Connect

    Beresh, Steven Jay; Wagner, Justin L.; Kearney, Sean Patrick; Wright, Elton K.; Baer, Melvin R.; Pruett, Brian Owen Matthew

    2011-09-01

    Currently there is a substantial lack of data for interactions of shock waves with particle fields having volume fractions residing between the dilute and granular regimes, which creates one of the largest sources of uncertainty in the simulation of energetic material detonation. To close this gap, a novel Multiphase Shock Tube has been constructed to drive a planar shock wave into a dense gas-solid field of particles. A nearly spatially isotropic field of particles is generated in the test section by a gravity-fed method that results in a spanwise curtain of spherical 100-micron particles having a volume fraction of about 19%. Interactions with incident shock Mach numbers of 1.66, 1.92, and 2.02 were achieved. High-speed schlieren imaging simultaneous with high-frequency wall pressure measurements are used to reveal the complex wave structure associated with the interaction. Following incident shock impingement, transmitted and reflected shocks are observed, which lead to differences in particle drag across the streamwise dimension of the curtain. Shortly thereafter, the particle field begins to propagate downstream and spread. For all three Mach numbers tested, the energy and momentum fluxes in the induced flow far downstream are reduced about 30-40% by the presence of the particle field. X-Ray diagnostics have been developed to penetrate the opacity of the flow, revealing the concentrations throughout the particle field as it expands and spreads downstream with time. Furthermore, an X-Ray particle tracking velocimetry diagnostic has been demonstrated to be feasible for this flow, which can be used to follow the trajectory of tracer particles seeded into the curtain. Additional experiments on single spherical particles accelerated behind an incident shock wave have shown that elevated particle drag coefficients can be attributed to increased compressibility rather than flow unsteadiness, clarifying confusing results from the historical database of shock tube

  14. A Course in Transport Phenomena in Multicomponent, Multiphase, Reacting Systems.

    ERIC Educational Resources Information Center

    Carbonell, R. G.; Whitaker, S.

    1978-01-01

    This course concentrates on a rigorous development of the multicomponent transport equations, boundary conditions at phase interfaces, and volume-averaged transport equations for multiphase reacting systems. (BB)

  15. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    SciTech Connect

    Wardle, K.E.

    2013-07-01

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor are reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup.

  16. Prophylactic antibiotic regimens in tumour surgery (PARITY)

    PubMed Central

    Investigators, The PARITY

    2015-01-01

    Objective Clinical studies of patients with bone sarcomas have been challenged by insufficient numbers at individual centres to draw valid conclusions. Our objective was to assess the feasibility of conducting a definitive multi-centre randomised controlled trial (RCT) to determine whether a five-day regimen of post-operative antibiotics, in comparison to a 24-hour regimen, decreases surgical site infections in patients undergoing endoprosthetic reconstruction for lower extremity primary bone tumours. Methods We performed a pilot international multi-centre RCT. We used central randomisation to conceal treatment allocation and sham antibiotics to blind participants, surgeons, and data collectors. We determined feasibility by measuring patient enrolment, completeness of follow-up, and protocol deviations for the antibiotic regimens. Results We screened 96 patients and enrolled 60 participants (44 men and 16 women) across 21 sites from four countries over 24 months (mean 2.13 participants per site per year, standard deviation 2.14). One participant was lost to follow-up and one withdrew consent. Complete data were obtained for 98% of eligible patients at two weeks, 83% at six months, and 73% at one year (the remainder with partial data or pending queries). In total, 18 participants missed at least one dose of antibiotics or placebo post-operatively, but 93% of all post-operative doses were administered per protocol. Conclusions It is feasible to conduct a definitive multi-centre RCT of post-operative antibiotic regimens in patients with bone sarcomas, but further expansion of our collaborative network will be critical. We have demonstrated an ability to coordinate in multiple countries, enrol participants, maintain protocol adherence, and minimise losses to follow-up. Cite this article: Bone Joint Res;4:154–162 PMID:26423584

  17. MSTS Multiphase Subsurface Transport Simulator User's Guide and Reference

    SciTech Connect

    Nichols, W.E.; White, M.D.

    1993-05-01

    This User's Guide and Reference provides information and instructions on the use of the Multiphase Subsurface Transport Simulator (MSTS) code and the associated MSTS Graphical Input. The MSTS code is used to simulate water flow, air flow, heat transfer, and dilute species mass transport in variably saturated geologic media for one, two, or three dimensions using an integrated finite-difference numerical scheme. Any or all of these processes may be simulated in a fully coupled manner. MSTS is a two-phase, two-component code with secondary processes that include binary diffusion and vapor pressure lowering. The geologic media may be homogeneous or heterogeneous, isotropic or anisotropic, and unfractured or highly fractured. A problem geometry may be described by either Cartesian or cylindrical coordinates. MSTS is written in FORTRAN 77, following the American National Standards Institute (ANSI) standards, and is machine-independent with the exception of some time and date calls required for quality control (provisions are made in the code for relatively easy adoption to a number of machines for these calls).

  18. Multiphase complete exchange: A theoretical analysis

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.

    1993-01-01

    Complete Exchange requires each of N processors to send a unique message to each of the remaining N-1 processors. For a circuit switched hypercube with N = 2(sub d) processors, the Direct and Standard algorithms for Complete Exchange are optimal for very large and very small message sizes, respectively. For intermediate sizes, a hybrid Multiphase algorithm is better. This carries out Direct exchanges on a set of subcubes whose dimensions are a partition of the integer d. The best such algorithm for a given message size m could hitherto only be found by enumerating all partitions of d. The Multiphase algorithm is analyzed assuming a high performance communication network. It is proved that only algorithms corresponding to equipartitions of d (partitions in which the maximum and minimum elements differ by at most 1) can possibly be optimal. The run times of these algorithms plotted against m form a hull of optimality. It is proved that, although there is an exponential number of partitions, (1) the number of faces on this hull is Theta(square root of d), (2) the hull can be found in theta(square root of d) time, and (3) once it has been found, the optimal algorithm for any given m can be found in Theta(log d) time. These results provide a very fast technique for minimizing communication overhead in many important applications, such as matrix transpose, Fast Fourier transform, and ADI.

  19. Multiphasic Scaffolds for Periodontal Tissue Engineering

    PubMed Central

    Ivanovski, S.; Vaquette, C.; Gronthos, S.; Hutmacher, D.W.; Bartold, P.M.

    2014-01-01

    For a successful clinical outcome, periodontal regeneration requires the coordinated response of multiple soft and hard tissues (periodontal ligament, gingiva, cementum, and bone) during the wound-healing process. Tissue-engineered constructs for regeneration of the periodontium must be of a complex 3-dimensional shape and adequate size and demonstrate biomechanical stability over time. A critical requirement is the ability to promote the formation of functional periodontal attachment between regenerated alveolar bone, and newly formed cementum on the root surface. This review outlines the current advances in multiphasic scaffold fabrication and how these scaffolds can be combined with cell- and growth factor–based approaches to form tissue-engineered constructs capable of recapitulating the complex temporal and spatial wound-healing events that will lead to predictable periodontal regeneration. This can be achieved through a variety of approaches, with promising strategies characterized by the use of scaffolds that can deliver and stabilize cells capable of cementogenesis onto the root surface, provide biomechanical cues that encourage perpendicular alignment of periodontal fibers to the root surface, and provide osteogenic cues and appropriate space to facilitate bone regeneration. Progress on the development of multiphasic constructs for periodontal tissue engineering is in the early stages of development, and these constructs need to be tested in large animal models and, ultimately, human clinical trials. PMID:25139362

  20. Multiphase equation of state for iron

    SciTech Connect

    Kerley, G I

    1993-02-01

    The PANDA code is used to build a multiphase equation of state (EOS) table for iron. Separate EOS tables were first constructed for each of the individual phases. The phase diagram and multiphase EOS were then determined from the Helmholtz free energies. The model includes four solid phases ([alpha],[gamma], [delta], and [var epsilon]) and a fluid phase (including the liquid, vapor, and supercritical regions). The model gives good agreement with experimental thermophysical data, static compression data, phase boundaries, and shock-wave measurements. Contributions from thermal electronic excitation, computed from a quantum-statistical-mechanical model, were found to be very important. This EOS covers a wide range of densities (0--1000 g/cm[sup 3]) and temperatures (0--1.2[times]10[sup 7] K). It is also applicable to RHA steel. The new EOS is used in hydrocode simulations of plate impact experiments, a nylon ball impact on steel, and the shaped charge perforation of an RHA plate. The new EOS table can be accessed through the SNL-SESAME library as material number 2150.

  1. Numerical Investigation of Vertical Plunging Jet Using a Hybrid Multifluid–VOF Multiphase CFD Solver

    DOE PAGES

    Shonibare, Olabanji Y.; Wardle, Kent E.

    2015-01-01

    A novel hybrid multiphase flow solver has been used to conduct simulations of a vertical plunging liquid jet. This solver combines a multifluid methodology with selective interface sharpening to enable simulation of both the initial jet impingement and the long-time entrained bubble plume phenomena. Models are implemented for variable bubble size capturing and dynamic switching of interface sharpened regions to capture transitions between the initially fully segregated flow types into the dispersed bubbly flow regime. It was found that the solver was able to capture the salient features of the flow phenomena under study and areas for quantitative improvement havemore » been explored and identified. In particular, a population balance approach is employed and detailed calibration of the underlying models with experimental data is required to enable quantitative prediction of bubble size and distribution to capture the transition between segregated and dispersed flow types with greater fidelity.« less

  2. The supernova-regulated ISM - I. The multiphase structure

    NASA Astrophysics Data System (ADS)

    Gent, F. A.; Shukurov, A.; Fletcher, A.; Sarson, G. R.; Mantere, M. J.

    2013-06-01

    We simulate the multiphase interstellar medium (ISM) randomly heated and stirred by supernovae (SNe), with gravity, differential rotation and other parameters of the solar neighbourhood. Here we describe in detail both numerical and physical aspects of the model, including injection of thermal and kinetic energy by SN explosions, radiative cooling, photoelectric heating and various transport processes. With a three-dimensional domain extending 1 × 1 kpc2 horizontally and 2 kpc vertically (symmetric about the galactic mid-plane), the model routinely spans gas number densities 10-5-102 cm-3, temperatures 10-108 K and local velocities up to 103 km s-1 (with Mach number up to 25). The working numerical resolution of 4 pc has been selected via simulations of a single expanding SN remnant, where we closely reproduce, at this resolution, analytical solutions for the adiabatic and snowplough regimes. The feedback of the halo on the disc cannot be captured in our model where the domain only extends to the height of 1 kpc above the mid-plane. We argue that to reliably model the disc-halo connections would require extending the domain horizontally as well as vertically due to the increasing horizontal scale of the gas flows with height. The thermal structure of the modelled ISM is classified by inspection of the joint probability density of the gas number density and temperature. We confirm that most of the complexity can be captured in terms of just three phases, separated by temperature borderlines at about 103 and 5 × 105 K. The probability distribution of gas density within each phase is approximately lognormal. We clarify the connection between the fractional volume of a phase and its various proxies, and derive an exact relation between the fractional volume and the filling factors defined in terms of the volume and probabilistic averages. These results are discussed in both observational and computational contexts. The correlation scale of the random flows is

  3. Theoretical model for k-3 spectra in dispersed multiphase flows

    NASA Astrophysics Data System (ADS)

    Risso, Frédéric

    2011-01-01

    The spectrum of a signal consisting of a sum of localized random bursts can exhibit, under certain conditions, an intermediate subrange evolving as the power -3 of the wavenumber k. These bursts should have a smooth and regular pattern, their strength and size should be statistically independent, and their size should be uniformly distributed between two finite wavelengths. This is probably the explanation for the k-3 subrange that is commonly observed in the velocity spectra of bubble-induced turbulence, which results from the interaction of the localized velocity disturbances caused by the bubbles.

  4. Critical pressure and multiphase flow in Blake Ridge gas hydrates

    USGS Publications Warehouse

    Flemings, P.B.; Liu, Xiuying; Winters, W.J.

    2003-01-01

    We use core porosity, consolidation experiments, pressure core sampler data, and capillary pressure measurements to predict water pressures that are 70% of the lithostatic stress, and gas pressures that equal the lithostatic stress beneath the methane hydrate layer at Ocean Drilling Program Site 997, Blake Ridge, offshore North Carolina. A 29-m-thick interconnected free-gas column is trapped beneath the low-permeability hydrate layer. We propose that lithostatic gas pressure is dilating fractures and gas is migrating through the methane hydrate layer. Overpressured gas and water within methane hydrate reservoirs limit the amount of free gas trapped and may rapidly export methane to the seafloor.

  5. Multiphasic on/off pheromone signalling in moths as neural correlates of a search strategy.

    PubMed

    Martinez, Dominique; Chaffiol, Antoine; Voges, Nicole; Gu, Yuqiao; Anton, Sylvia; Rospars, Jean-Pierre; Lucas, Philippe

    2013-01-01

    Insects and robots searching for odour sources in turbulent plumes face the same problem: the random nature of mixing causes fluctuations and intermittency in perception. Pheromone-tracking male moths appear to deal with discontinuous flows of information by surging upwind, upon sensing a pheromone patch, and casting crosswind, upon losing the plume. Using a combination of neurophysiological recordings, computational modelling and experiments with a cyborg, we propose a neuronal mechanism that promotes a behavioural switch between surge and casting. We show how multiphasic On/Off pheromone-sensitive neurons may guide action selection based on signalling presence or loss of the pheromone. A Hodgkin-Huxley-type neuron model with a small-conductance calcium-activated potassium (SK) channel reproduces physiological On/Off responses. Using this model as a command neuron and the antennae of tethered moths as pheromone sensors, we demonstrate the efficiency of multiphasic patterning in driving a robotic searcher toward the source. Taken together, our results suggest that multiphasic On/Off responses may mediate olfactory navigation and that SK channels may account for these responses.

  6. Comparison of single pot and multiphase high shear wet granulation processes related to excipient composition.

    PubMed

    Giry, K; Viana, M; Genty, M; Louvet, F; Désiré, A; Wüthrich, P; Chulia, D

    2009-10-01

    At present time, industrial production imperatives can require the transposition of a formulation from one equipment to another. In order to evaluate the impact of such a switch on the properties of granules and tablets, investigations were undertaken on formulations manufactured both in a single pot mixer-granulator-dryer (high shear granulator with in situ double jacket vacuum drying) and in a multiphase equipment (high shear granulator/fluid bed dryer). Principal component analysis highlighted the major contribution of the binder ratio on granule size distribution, flow and packing ability whereas the relative ratio of mannitol and lactose, used as fillers, mainly impacted on compressibility and tablet cohesion. In the studied domain, the lubricant ratio did not explain the considered responses. Statistical analysis (comparison of means, analysis of variance and PCA) showed that both processes led to products with similar characteristics which demonstrated the ability of the processes to produce granules with close quality. However, Fielder/Niro granule characteristic data were found to be more dispersed, thus demonstrating a higher sensitivity of the multiphase process to formulation changes. Technological properties of granules and tablets were found to be maintained or improved therefore securing the switch from single pot to multiphase equipments. PMID:19130608

  7. Application of multiphase modelling for vortex occurrence in vertical pump intake - a review

    NASA Astrophysics Data System (ADS)

    Samsudin, M. L.; Munisamy, K. M.; Thangaraju, S. K.

    2015-09-01

    Vortex formation within pump intake is one of common problems faced for power plant cooling water system. This phenomenon, categorised as surface and sub-surface vortices, can lead to several operational problems and increased maintenance costs. Physical model study was recommended from published guidelines but proved to be time and resource consuming. Hence, the use of Computational Fluid Dynamics (CFD) is an attractive alternative in managing the problem. At the early stage, flow analysis was conducted using single phase simulation and found to find good agreement with the observation from physical model study. With the development of computers, multiphase simulation found further enhancement in obtaining accurate results for representing air entrainment and sub-surface vortices which were earlier not well predicted from the single phase simulation. The purpose of this paper is to describe the application of multiphase modelling with CFD analysis for investigating vortex formation for a vertically inverted pump intake. In applying multiphase modelling, there ought to be a balance between the acceptable usage for computational time and resources and the degree of accuracy and realism in the results as expected from the analysis.

  8. MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES

    SciTech Connect

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarad; H. Yasuhara; A. Alajmi

    2002-04-20

    The main objectives of this project are to quantify the changes in fracture porosity and multi-phase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (1) developing the direct experimental measurements of fracture aperture and topology using high-resolution x-ray micro-tomography, (2) modeling of fracture permeability in the presence of asperities and confining stress, and (3) simulation of two-phase fluid flow in a fracture and a layered matrix. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. The distribution of fracture aperture is a difficult issue that we are studying and developing methods of quantification. The difficulties are both numerical and conceptual. Numerically, the three-dimensional data sets include millions, and sometimes, billions of points, and pose a computational challenge. The conceptual difficulties derive from the rough nature of the fracture surfaces, and the heterogeneous nature of the rock matrix. However, the high-resolution obtained by the imaging system provides us a much needed measuring environment on rock samples that are subjected to simultaneous fluid flow and confining stress. The absolute permeability of a fracture depends on the behavior of the asperities that keep it open. A model is being developed that predicts the permeability and average aperture of a fracture as a function of time under steady flow of water including the pressure solution at the asperity contact points. Several two-phase flow experiments in the presence of a fracture tip were performed in the past. At the present time, we are developing an inverse process using a simulation model to understand the fluid flow patterns in

  9. Analytical verification of waterborne chemical treatment regimens in hatchery raceways

    USGS Publications Warehouse

    Rach, J.J.; Ramsay, R.T.

    2000-01-01

    Chemical therapy for control and prevention of fish diseases is a necessary and common practice in aquaculture. Many factors affect the accuracy of a chemical treatment application, such as the functioning of the chemical delivery system, calculation of chemical quantities to be delivered, water temperature, geometry of the culture unit, inlet-outlet structure, the influence of aerators, wind movement, and measurement of water volumes and flow rates. Three separate trials were conducted at the Osceola Fish Hatchery, a facility of the Wisconsin Department of Natural Resources, evaluating the accuracy of flow-through hydrogen peroxide treatments applied to 1, 3, or 9 raceways that were connected in series. Raceways were treated with 50 or 75 ??L/L of hydrogen peroxide for 30 min. Chemical concentrations were determined titrimetrically. The target treatment regimen was not realized in any of the applications. Chemical concentrations dropped and exposure times increased with each additional raceway treated in series. Single introduction of a therapeutant to more than three raceways in series is not recommended. Factors that interfered with the accuracy of the treatments were culture unit configuration, aeration, and flow rates. Several treatment modifications were identified that would result in more accurate chemical treatments.

  10. Computational study of the shock driven instability of a multiphase particle-gas system

    DOE PAGES

    None, None

    2016-02-01

    This paper considers the interaction of a shock wave with a multiphase particle-gas system which creates an instability somewhat similar to the Richtmyer-Meshkov instability but with a larger parameter space. Because this parameter space is large, we only present an introductory survey of the effects of many of these parameters. We highlight the effects of particle-gas coupling, incident shock strength, particle size, effective system density differences, and multiple particle relaxation time effects. We focus on dilute flows with mass loading up to 40% and do not attempt to cover all parametric combinations. Instead, we vary one parameter at a timemore » leaving additional parametric combinations for future work. The simulations are run with the Ares code, developed at Lawrence Livermore National Laboratory, which uses a multiphase particulate transport method to model two-way momentum and energy coupling. A brief validation of these models is presented and coupling effects are explored. It is shown that even for small particles, on the order of 1μm, multi-phase coupling effects are important and diminish the circulation deposition on the interface by up to 25%. These coupling effects are shown to create large temperature deviations from the dusty gas approximation, up to 20% greater, especially at higher shock strengths. It is also found that for a multiphase instability, the vortex sheet deposited at the interface separates into two sheets. In conclusion, depending on the particle and particle-gas Atwood numbers, the instability may be suppressed or enhanced by the interactions of these two vortex sheets.« less

  11. Computational study of the shock driven instability of a multiphase particle-gas system

    NASA Astrophysics Data System (ADS)

    McFarland, Jacob A.; Black, Wolfgang J.; Dahal, Jeevan; Morgan, Brandon E.

    2016-02-01

    This paper considers the interaction of a shock wave with a multiphase particle-gas system which creates an instability similar in some ways to the Richtmyer-Meshkov instability but with a larger parameter space. As this parameter space is large, we only present an introductory survey of the effects of many of these parameters. We highlight the effects of particle-gas coupling, incident shock strength, particle size, effective system density differences, and multiple particle relaxation time effects. We focus on dilute flows with mass loading up to 40% and do not attempt to cover all parametric combinations. Instead, we vary one parameter at a time leaving additional parametric combinations for future work. The simulations are run with the Ares code, developed at Lawrence Livermore National Laboratory, which uses a multiphase particulate transport method to model two-way momentum and energy coupling. A brief validation of these models is presented and coupling effects are explored. It is shown that even for small particles, on the order of 1 μm, multi-phase coupling effects are important and diminish the circulation deposition on the interface by up to 25%. These coupling effects are shown to create large temperature deviations from the dusty gas approximation, up to 20% greater, especially at higher shock strengths. It is also found that for a multiphase instability, the vortex sheet deposited at the interface separates into two sheets. Depending on the particle and particle-gas Atwood numbers, the instability may be suppressed or enhanced by the interactions of these two vortex sheets.

  12. Gasificaton Transport: A Multiphase CFD Approach & Measurements

    SciTech Connect

    Dimitri Gidaspow; Veeraya Jiradilok; Mayank Kashyap; Benjapon Chalermsinsuwan

    2009-02-14

    The objective of this project was to develop predictive theories for the dispersion and mass transfer coefficients and to measure them in the turbulent fluidization regime, using existing facilities. A second objective was to use our multiphase CFD tools to suggest optimized gasifier designs consistent with aims of Future Gen. We have shown that the kinetic theory based CFD codes correctly compute: (1) Dispersion coefficients; and (2) Mass transfer coefficients. Hence, the kinetic theory based CFD codes can be used for fluidized bed reactor design without any such inputs. We have also suggested a new energy efficient method of gasifying coal and producing electricity using a molten carbonate fuel cell. The principal product of this new scheme is carbon dioxide which can be converted into useful products such as marble, as is done very slowly in nature. We believe this scheme is a lot better than the canceled FutureGen, since the carbon dioxide is safely sequestered.

  13. Identifying layers in random multiphase structures

    NASA Astrophysics Data System (ADS)

    Mader, Kevin; Stampanoni, Marco

    2016-01-01

    X-Ray microscopic methods, benefiting from the large penetration depth of X-rays in many materials, enable 3D investigation of a wide variety of samples. This allows for a wide variety of physical, chemical, and biological structures to be seen and explored, in some cases even in real time. Such measurements have lead to insights into paleontology, vulcanology, genetics, and material science. The ability to see and visualize complex systems can provide otherwise unobtainable information on structure, interactions, mechanical behavior, and evolution. The field has, however, led to a massive amount of new, heterogenous, difficult to process data. We present a general, model-free approach for characterizing multiphase 3D systems and show how the method can be applied to experimental X-ray microscopy data to better understand and quantify layer structure in two typical systems: investigation of layered fibers and clay samples.

  14. Interfacial shear stress measurement using high spatial resolution multiphase PIV

    NASA Astrophysics Data System (ADS)

    André, Matthieu A.; Bardet, Philippe M.

    2015-06-01

    In multiphase flows, form drag and viscous shear stress transfer momentum between phases. For numerous environmental and man-made flows, it is of primary importance to predict this transfer at a liquid-gas interface. In its general expression, interfacial shear stress involves local velocity gradients as well as surface velocity, curvature, and surface tension gradients. It is therefore a challenging quantity to measure experimentally or compute numerically. In fact, no experimental work to date has been able to directly resolve all the terms contributing to the shear stress in the case of curved and moving surfaces. In an attempt to fully resolve the interface shear stress when surface tension gradients are negligible, high-resolution particle image velocimetry (PIV) data are acquired simultaneously on both sides of a water-air interface. The flow consists of a well-conditioned uniform and homogeneous water jet discharging in quiescent air, which exhibits two-dimensional surface waves as a result of a shear layer instability below the surface. PIV provides velocity fields in both phases, while planar laser-induced fluorescence is used to track the interface and obtain its curvature. To compute the interfacial shear stress from the data, several processing schemes are proposed and compared, using liquid and/or gas phase data. Vorticity at the surface, which relates to the shear stress through the dynamic boundary condition at the surface, is also computed and provides additional strategies for estimating the shear. The various schemes are in agreement within the experimental uncertainties, validating the methodology for experimentally resolving this demanding quantity.

  15. An origin for multiphase gas in galactic winds and haloes

    NASA Astrophysics Data System (ADS)

    Thompson, Todd A.; Quataert, Eliot; Zhang, Dong; Weinberg, David H.

    2016-01-01

    The physical origin of high-velocity cool gas seen in galactic winds remains unknown. Following work by B. Wang, we argue that radiative cooling in initially hot thermally-driven outflows can produce fast neutral atomic and photoionized cool gas. The inevitability of adiabatic cooling from the flow's initial 107-108 K temperature and the shape of the cooling function for T ≲ 107 K imply that outflows with hot gas mass-loss rate relative to star formation rate of β =dot{M}_hot/dot{M}_star ≳ 0.5 cool radiatively on scales ranging from the size of the energy injection region to tens of kpc. We highlight the β and star formation rate surface density dependence of the column density, emission measure, radiative efficiency, and velocity. At rcool, the gas produces X-ray and then UV/optical line emission with a total power bounded by ˜10-2 L⋆ if the flow is powered by steady-state star formation with luminosity L⋆. The wind is thermally unstable at rcool, potentially leading to a multiphase medium. Cooled winds decelerate significantly in the extended gravitational potential of galaxies. The cool gas precipitated from hot outflows may explain its prevalence in galactic haloes. We forward a picture of winds whereby cool clouds are initially accelerated by the ram pressure of the hot flow, but are rapidly shredded by hydrodynamical instabilities, thereby increasing β, seeding radiative and thermal instability, and cool gas rebirth. If the cooled wind shocks as it sweeps up the circumgalactic medium, its cooling time is short, thus depositing cool gas far out into the halo. Finally, conduction can dominate energy transport in low-β hot winds, leading to flatter temperature profiles than otherwise expected, potentially consistent with X-ray observations of some starbursts.

  16. Compressible, multiphase semi-implicit method with moment of fluid interface representation

    SciTech Connect

    Jemison, Matthew; Sussman, Mark; Arienti, Marco

    2014-09-16

    A unified method for simulating multiphase flows using an exactly mass, momentum, and energy conserving Cell-Integrated Semi-Lagrangian advection algorithm is presented. The deforming material boundaries are represented using the moment-of-fluid method. Our new algorithm uses a semi-implicit pressure update scheme that asymptotically preserves the standard incompressible pressure projection method in the limit of infinite sound speed. The asymptotically preserving attribute makes the new method applicable to compressible and incompressible flows including stiff materials; enabling large time steps characteristic of incompressible flow algorithms rather than the small time steps required by explicit methods. Moreover, shocks are captured and material discontinuities are tracked, without the aid of any approximate or exact Riemann solvers. As a result, wimulations of underwater explosions and fluid jetting in one, two, and three dimensions are presented which illustrate the effectiveness of the new algorithm at efficiently computing multiphase flows containing shock waves and material discontinuities with large “impedance mismatch.”

  17. Compressible, multiphase semi-implicit method with moment of fluid interface representation

    DOE PAGES

    Jemison, Matthew; Sussman, Mark; Arienti, Marco

    2014-09-16

    A unified method for simulating multiphase flows using an exactly mass, momentum, and energy conserving Cell-Integrated Semi-Lagrangian advection algorithm is presented. The deforming material boundaries are represented using the moment-of-fluid method. Our new algorithm uses a semi-implicit pressure update scheme that asymptotically preserves the standard incompressible pressure projection method in the limit of infinite sound speed. The asymptotically preserving attribute makes the new method applicable to compressible and incompressible flows including stiff materials; enabling large time steps characteristic of incompressible flow algorithms rather than the small time steps required by explicit methods. Moreover, shocks are captured and material discontinuities aremore » tracked, without the aid of any approximate or exact Riemann solvers. As a result, wimulations of underwater explosions and fluid jetting in one, two, and three dimensions are presented which illustrate the effectiveness of the new algorithm at efficiently computing multiphase flows containing shock waves and material discontinuities with large “impedance mismatch.”« less

  18. Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media

    SciTech Connect

    Tianfu Xu; Gerard, F.; Pruess, K.; Brimhall, G.

    1997-07-01

    The assessment of mineral deposits, the analysis of hydrothermal convection systems, the performance of radioactive, urban and industrial waste disposal, the study of groundwater pollution, and the understanding of natural groundwater quality patterns all require modeling tools that can consider both the transport of dissolved species as well as their interactions with solid (or other) phases in geologic media and engineered barriers. Here, a general multi-species reactive transport formulation has been developed, which is applicable to homogeneous and/or heterogeneous reactions that can proceed either subject to local equilibrium conditions or kinetic rates under non-isothermal multiphase flow conditions. Two numerical solution methods, the direct substitution approach (DSA) and sequential iteration approach (SIA) for solving the coupled complex subsurface thermo-physical-chemical processes, are described. An efficient sequential iteration approach, which solves transport of solutes and chemical reactions sequentially and iteratively, is proposed for the current reactive chemical transport computer code development. The coupled flow (water, vapor, air and heat) and solute transport equations are also solved sequentially. The existing multiphase flow code TOUGH2 and geochemical code EQ3/6 are used to implement this SIA. The flow chart of the coupled code TOUGH2-EQ3/6, required modifications of the existing codes and additional subroutines needed are presented.

  19. Design and Development of Integrated Compact Multiphase Separation System (CMSS)

    SciTech Connect

    Ram S. Mohan; Ovadia Shoham

    2006-04-30

    The petroleum industry has relied in the past mainly on conventional vessel-type separators, which are bulky, heavy and expensive, to process wellhead production of oil-water-gas flow. Economic and operational pressures continue to force the petroleum industry to seek less expensive and more efficient separation alternatives in the form of compact separators. The compact dimensions, smaller footprint and lower weight of compact separators have a potential for cost savings to the industry, especially in offshore and subsea applications. Also, compact separators reduce the inventory of hydrocarbons significantly, which is critical for environmental This report presents a brief overview of the activities and tasks accomplished during the Budget Period II (October 09, 2004-April 30, 2006) of the DOE project titled ''Design and Development of Integrated Compact Multiphase Separation System (CMSS{copyright})''. An executive summary is presented initially followed by the tasks of the current budget period. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with discussions. The findings of this investigation are summarized in the ''Conclusions'' section In this investigation, the concept of CMSS{copyright} has been developed and is proven through simulation studies and validated by experimental data. As part of the second phase of the project (Budget Period II--10/09/2004-04/30/2006) experimental investigation of the integrated CMSS{copyright} for different configurations has been conducted in order to evaluate the performance of the individual separation components, and determine how they will affect the performance of each other when integrated in the CMSS{copyright}. An intelligent control system is also developed to improve the total system efficiency of Compact Multiphase Separation System (CMSS{copyright}). In mature oil

  20. Pore-Scale Investigation on Stress-Dependent Characteristics of Granular Packs and Their Impact on Multiphase Fluid Distribution

    NASA Astrophysics Data System (ADS)

    Torrealba, V.; Karpyn, Z.; Yoon, H.; Hart, D. B.; Klise, K. A.

    2013-12-01

    The pore-scale dynamics that govern multiphase flow under variable stress conditions are not well understood. This lack of fundamental understanding limits our ability to quantitatively predict multiphase flow and fluid distributions in natural geologic systems. In this research, we focus on pore-scale, single and multiphase flow properties that impact displacement mechanisms and residual trapping of non-wetting phase under varying stress conditions. X-ray micro-tomography is used to image pore structures and distribution of wetting and non-wetting fluids in water-wet synthetic granular packs, under dynamic load. Micro-tomography images are also used to determine structural features such as medial axis, surface area, and pore body and throat distribution; while the corresponding transport properties are determined from Lattice-Boltzmann simulations performed on lattice replicas of the imaged specimens. Results are used to investigate how inter-granular deformation mechanisms affect fluid displacement and residual trapping at the pore-scale. This will improve our understanding of the dynamic interaction of mechanical deformation and fluid flow during enhanced oil recovery and geologic CO2 sequestration. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Toward a General Theory for Multiphase Turbulence Part I: Development and Gauging of the Model Equations

    SciTech Connect

    B. A. Kashiwa; W. B. VanderHeyden

    2000-12-01

    A formalism for developing multiphase turbulence models is introduced by analogy to the phenomenological method used for single-phase turbulence. A sample model developed using the formalism is given in detail. The procedure begins with ensemble averaging of the exact conservation equations, with closure accomplished by using a combination of analytical and experimental results from the literature. The resulting model is applicable to a wide range of common multiphase flows including gas-solid, liquid-solid and gas-liquid (bubbly) flows. The model is positioned for ready extension to three-phase turbulence, or for use in two-phase turbulence in which one phase is accounted for in multiple size classes, representing polydispersivity. The formalism is expected to suggest directions toward a more fundamentally based theory, similar to the way that early work in single-phase turbulence has led to the spectral theory. The approach is unique in that a portion of the total energy decay rate is ascribed to each phase, as is dictated by the exact averaged equations, and results in a transport equation for energy decay rate associated with each phase. What follows is a straightforward definition of a turbulent viscosity for each phase, and accounts for the effect of exchange of fluctuational energy among phases on the turbulent shear viscosity. The model also accounts for the effect of slip momentum transfer among the phases on the production of turbulence kinetic energy and on the tensor character of the Reynolds stress. Collisional effects, when appropriate, are included by superposition. The model reduces to a standard form in limit of a single, pure material, and is expected to do a credible job of describing multiphase turbulent flows in a wide variety of regimes using a single set of coefficients.

  2. Multi-phase intelligent decision model for reservoir real-time flood control during typhoons

    NASA Astrophysics Data System (ADS)

    Hsu, Nien-Sheng; Huang, Chien-Lin; Wei, Chih-Chiang

    2015-03-01

    This study applies an Adaptive Network-based Fuzzy Inference System (ANFIS) and a Real-Time Recurrent Learning Neural Network (RTRLNN) with an optimized reservoir release hydrograph using Mixed Integer Linear Programming (MILP) from historical typhoon events to develop a multi-phase intelligent real-time reservoir operation model for flood control. The flood control process is divided into three stages: (1) before flood (Stage I); (2) before peak flow (Stage II); and (3) after peak flow (Stage III). The models are then constructed with either three phase modules (ANFIS-3P and RTRLNN-3P) or two phase (Stage I + II and Stage III) modules (ANFIS-2P and RTRLNN-2P). The multi-phase modules are developed with consideration of the difference in operational decision mechanisms, decision information, release functions, and targets between each flood control stage to solve the problem of time-consuming computation and difficult system integration of MILP. In addition, the model inputs include the coupled short lead time and total reservoir inflow forecast information that are developed using radar- and satellite-based meteorological monitoring techniques, forecasted typhoon tracks, meteorological image similarity analysis, ANFIS and RTRLNN. This study uses the Tseng-Wen Reservoir basin as the study area, and the model results showed that RTRLNN outperformed ANFIS in the simulated outcomes from the optimized hydrographs. This study also applies the models to Typhoons Kalmaegi and Morakot to compare the simulations to historical operations. From the operation results, the RTRLNN-3P model is better than RTRLNN-2P and historical operations. Further, because the RTRLNN-3P model combines the innovative multi-phase module with monitored and forecasted decision information, the operation can simultaneously, effectively and automatically achieve the dual goals of flood detention at peak flow periods and water supply at the end of a typhoon event.

  3. Multiphase CFD-based models for chemical looping combustion process: Fuel reactor modeling

    SciTech Connect

    Jung, Jonghwun; Gamwo, I.K.

    2008-04-21

    Chemical looping combustion (CLC) is a flameless two-step fuel combustion that produces a pure CO2 stream, ready for compression and sequestration. The process is composed of two interconnected fluidized bed reactors. The air reactor which is a conventional circulating fluidized bed and the fuel reactor which is a bubbling fluidized bed. The basic principle is to avoid the direct contact of air and fuel during the combustion by introducing a highly-reactive metal particle, referred to as oxygen carrier, to transport oxygen from the air to the fuel. In the process, the products from combustion are kept separated from the rest of the flue gases namely nitrogen and excess oxygen. This process eliminates the energy intensive step to separate the CO2 from nitrogen-rich flue gas that reduce the thermal efficiency. Fundamental knowledge of multiphase reactive fluid dynamic behavior of the gas–solid flow is essential for the optimization and operation of a chemical looping combustor. Our recent thorough literature review shows that multiphase CFD-based models have not been adapted to chemical looping combustion processes in the open literature. In this study, we have developed the reaction kinetics model of the fuel reactor and implemented the kinetic model into a multiphase hydrodynamic model, MFIX, developed earlier at the National Energy Technology Laboratory. Simulated fuel reactor flows revealed high weight fraction of unburned methane fuel in the flue gas along with CO2 and H2O. This behavior implies high fuel loss at the exit of the reactor and indicates the necessity to increase the residence time, say by decreasing the fuel flow rate, or to recirculate the unburned methane after condensing and removing CO2.

  4. Recent Improvements in Micromodel Experimentation and Pore-scale Simulation of Multiphase Systems

    NASA Astrophysics Data System (ADS)

    Oostrom, M.; Tartakovsky, A. M.; Grate, J. W.

    2013-12-01

    Recent efforts in the Environmental Molecular Sciences Laboratory at PNNL have resulted in improved experimental methods to fabricate silicon micromodels with different wettability and improved numerical methods to predict multiphase fluid displacement at the pore scale. Wettability is a key parameter influencing capillary pressures, permeabilities, fingering mechanisms, and saturations in multiphase flow processes within porous media. Glass-covered silicon micromodels provide precise structures in which pore-scale displacement processes can be visualized. The wettability of silicon and glass surfaces can be modified by silanization. However, similar treatments of glass and silica surfaces using the same silane do not necessarily yield the same wettability as determined by the oil-water contact angle. Surface wettability modifications and cleaning pretreatments were investigated to determine conditions that yield oil-wet surfaces on glass with similar wettability to silica surfaces treated with the same silane. Both air-water and oil-water contact angles were determined. Displacement experiments completed in these micromodels have shown unstable and stable displacement patterns, related to capillary and viscosity ratios of the fluids. A series of high-resolution numerical experiments were conducted using the Pair-Wise Force Smoothed Particle Hydrodynamics (PF-SPH) multiphase flow model. The novel model was used to simulate experiments that showed viscous fingering, capillary fingering, and stable displacement of immiscible fluids for a wide range of capillary numbers and viscosity ratios. It was demonstrated that the steady state saturation profiles and the boundaries of viscous fingering, capillary fingering, and stable displacement regions compare favorably with micromodel experimental results. For displacing fluid with low viscosity, we observed that the displacement pattern changes from viscous fingering to stable displacement with increasing injection rate

  5. DESIGN AND DEVELOPMENT OF INTEGRATED COMPACT MULTIPHASE SEPARATION SYSTEM (CMSS)

    SciTech Connect

    Ram S. Mohan; Ovadia Shoham

    2004-12-31

    The petroleum industry has relied in the past mainly on conventional vessel-type separators, which are bulky, heavy and expensive, to process wellhead production of oil-water-gas flow. Economic and operational pressures continue to force the petroleum industry to seek less expensive and more efficient separation alternatives in the form of compact separators. The compact dimensions, smaller footprint and lower weight of compact separators have a potential for cost savings to the industry, especially in offshore and subsea applications. Also, compact separators reduce the inventory of hydrocarbons significantly, which is critical for environmental and safety considerations. This report presents a brief overview of the activities and tasks accomplished during the part July 09, 2003--October 08, 2004, related to the Budget Period I (July 09, 2003--October 08, 2004) of the DOE project titled ''Design and Development of Integrated Compact Multiphase Separation System (CMSS{copyright})''. An executive summary is presented initially followed by the tasks of the current budget period. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with discussions. The findings of this investigation are summarized in the ''Conclusions'' section followed by relevant references. The initial phase of the project (Budget Period I--07/09/2003 to 10/08/2004) focuses on the development of additional individual compact separation components, such as the horizontal pipe separator (HPS{copyright}), for obtaining clean oil stream from oil-water mixture, flow conditioning components, such as the helical pipe (HP) and slug damper (SD{copyright}), for dissipating slugs upstream of the compact separators. The project will also design and test an upstream slug generator (SG).

  6. Multiphase transport of gas and low loads of liquids in pipelines

    NASA Astrophysics Data System (ADS)

    Asante, Ben

    Multiphase flow of gas and low loads of liquids occurs frequently in natural gas gathering and transmission pipelines for both onshore and offshore operations. Literature and experimental investigations indicate that dispersed droplet and stratified flow patterns are obtained when gas and small quantities of liquids flow concurrently in a pipe. Very few correlations exist for the prediction of holdup and pressure drop for these systems and fewer still give satisfactory results. Experimental studies for air-oil and air-water systems flowing through small diameter plastic and steel horizontal pipes ranging in size from 1-inch to 3-inches were performed. The experiments were carried out at the multiphase flow laboratories of Imperial College in London and the University of Calgary in Canada. Data from actual operating gas pipeline systems transporting small amounts of hydrocarbon liquids were also evaluated. Based on the experimental results and the operating data, two approaches for modeling these systems are proposed: (1) A homogeneous approach for very low liquid loads (holdups up to 0.005), typical in gas transmission systems. A friction factor correlation based on the mixture Reynolds number and the holdup has been developed for this flow regime. (2) A mechanistic stratified two-phase approach for higher liquid loads (holdups greater than 0.005) usually found in gas gathering systems with consideration given to: (a) The reduction in the available flow area and extent of wetting of the pipe perimeter by the liquid film. The gas/liquid interface was observed to be either flat or carved. (b) The interfacial fiction factor between the liquid film and the gas. A new correlation based on the liquid and gas Reynolds numbers as well as the film thickness and hold up has been developed. This correlation has been successfully tested against both experimental and actual pipeline operating data.

  7. Circulating fluidized bed hydrodynamics experiments for the multiphase fluid dynamics research consortium (MFDRC).

    SciTech Connect

    Oelfke, John Barry; Torczynski, John Robert; O'Hern, Timothy John; Tortora, Paul Richard; Bhusarapu, Satish; Trujillo, Steven Mathew

    2006-08-01

    An experimental program was conducted to study the multiphase gas-solid flow in a pilot-scale circulating fluidized bed (CFB). This report describes the CFB experimental facility assembled for this program, the diagnostics developed and/or applied to make measurements in the riser section of the CFB, and the data acquired for several different flow conditions. Primary data acquired included pressures around the flow loop and solids loadings at selected locations in the riser. Tomographic techniques using gamma radiation and electrical capacitance were used to determine radial profiles of solids volume fraction in the riser, and axial profiles of the integrated solids volume fraction were produced. Computer Aided Radioactive Particle Tracking was used to measure solids velocities, fluxes, and residence time distributions. In addition, a series of computational fluid dynamics simulations was performed using the commercial code Arenaflow{trademark}.

  8. Grain transport mechanics in shallow flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flows. The two-phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a dispe...

  9. Grain transport mechanics in shallow overland flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flow. The two phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a disper...

  10. Slug-flow behavior clarified in large-diameter pipeline study

    SciTech Connect

    Fairhurst, C.P. )

    1988-10-03

    A detailed study of slug-flow characteristics has used field-measured slug data from Prudhoe Bay pipelines and tests by BP on its Magnus platform to help define new findings on this aspect of multiphase flow.

  11. Multi-Phase Fracture-Matrix Interactions Under Stress Changes

    SciTech Connect

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarao; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

    2005-12-07

    The main objectives of this project are to quantify the changes in fracture porosity and multi-phase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) counter-current fluid transport between the matrix and the fracture, (c) studying the effect of confining stress on the distribution of fracture aperture and two-phase flow, and (d) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress, on the nature of the rock, and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual and detailed descriptions of the process are shown in the report. Both extensional and shear fractures have been considered. A series of water imbibition tests were conducted in which water was injected into a fracture and its migration into the matrix was monitored with CT and DR x-ray techniques. The objective was to understand the impact of the

  12. Enhancing Commitment Improves Adherence to a Medical Regimen.

    ERIC Educational Resources Information Center

    Putnam, Dana E.; And Others

    1994-01-01

    Evaluated commitment-based intervention for improvement of adherence to 10-day antibiotic regimen. Subjects were 60 college students. Experimental subjects made verbal and written commitments for adherence and completed tasks designed to increase their investment in medication regimen. Controls performed similarly structured tasks unrelated to…

  13. [Potential role of rilpivirine in simplification regimens].

    PubMed

    Casado, José L; Moreno, Santiago

    2013-06-01

    Antiretroviral simplification is a useful strategy to improve adherence and quality of life and prevent or reverse adverse effects in patients with HIV infection. The availability of new drugs with high efficacy and better tolerability in once-daily formulations or in fixed-dose combinations may be a better option for prolonged treatment. Rilpivirine, a new nonnucleoside reverse transcriptase inhibitor (NNRTI), has shown high antiviral efficacy in clinical trials with treatment-naïve patients, with a lower incidence of adverse effects and good tolerability. Its use in simplification regimens has been evaluated after the switch from efavirenz, demonstrating that dose adjustment is not required. In a large randomized study in patients who were receiving protease inhibitors, virological efficacy was maintained, with a lower incidence of adverse effects and improved lipid parameters and cardiovascular risk score. Given the ease of administration and good tolerability of this drug, recent communications at congresses have shown the rapid applicability of the results of studies in daily clinical practice in this scenario.

  14. New low temperature multiphase ferroelectric films

    NASA Astrophysics Data System (ADS)

    Bescher, Eric; Xu, Yuhuan; Mackenzie, J. D.

    2001-06-01

    This article describes the low-temperature synthesis of new multiphase ferroelectrics containing an inorganic ferroelectric phase entrapped in amorphous silica or in an organically modified silicate (ormosil). Sol gel derived LiNbO3 and BaTiO3 crystals were grown in SiO2 and in RSiO1.5 glass where R contains a chromophore (TDP) insensitive to hydrolysis and condensation reactions. The LiNbO3-SiO2 and BaTiO3-SiO2 compositions as well as the TDP-LiNbO3-SiO2 and TDP-BaTiO3-SiO2 ormosils exhibit ferroelectric-like properties. This unusual characteristic is due to the presence of small, partially ordered crystallites of the ferroelectric, dispersed in the amorphous matrix. In addition to their ferroelectric properties, the ormosils also exhibit interesting optical characteristics: the TDP-BaTiO3-SiO2 materials are red, whereas the TDP-LiNbO3-SiO2 are yellow. The materials described in this article are representative of two new classes of weak ferroelectrics. In the first class, a ferroelectric is dispersed in an amorphous matrix. The second class may be called "organically-modified crystals": small ferroelectric crystals embedded in an organically modified matrix. The fabrication of such materials is possible for inorganic crystalline phases forming at temperatures below the decomposition temperature of the organic (about 250 °C). This article also contains some theoretical considerations explaining why these materials, although amorphous by x-ray diffraction, exhibit ferroelectric-like properties.

  15. Feasibility of Quantifying Arterial Cerebral Blood Volume Using Multiphase Alternate Ascending/Descending Directional Navigation (ALADDIN)

    PubMed Central

    Kim, Ki Hwan; Choi, Seung Hong; Park, Sung-Hong

    2016-01-01

    Arterial cerebral blood volume (aCBV) is associated with many physiologic and pathologic conditions. Recently, multiphase balanced steady state free precession (bSSFP) readout was introduced to measure labeled blood signals in the arterial compartment, based on the fact that signal difference between labeled and unlabeled blood decreases with the number of RF pulses that is affected by blood velocity. In this study, we evaluated the feasibility of a new 2D inter-slice bSSFP-based arterial spin labeling (ASL) technique termed, alternate ascending/descending directional navigation (ALADDIN), to quantify aCBV using multiphase acquisition in six healthy subjects. A new kinetic model considering bSSFP RF perturbations was proposed to describe the multiphase data and thus to quantify aCBV. Since the inter-slice time delay (TD) and gap affected the distribution of labeled blood spins in the arterial and tissue compartments, we performed the experiments with two TDs (0 and 500 ms) and two gaps (300% and 450% of slice thickness) to evaluate their roles in quantifying aCBV. Comparison studies using our technique and an existing method termed arterial volume using arterial spin tagging (AVAST) were also separately performed in five subjects. At 300% gap or 500-ms TD, significant tissue perfusion signals were demonstrated, while tissue perfusion signals were minimized and arterial signals were maximized at 450% gap and 0-ms TD. ALADDIN has an advantage of visualizing bi-directional flow effects (ascending/descending) in a single experiment. Labeling efficiency (α) of inter-slice blood flow effects could be measured in the superior sagittal sinus (SSS) (20.8±3.7%.) and was used for aCBV quantification. As a result of fitting to the proposed model, aCBV values in gray matter (1.4–2.3 mL/100 mL) were in good agreement with those from literature. Our technique showed high correlation with AVAST, especially when arterial signals were accentuated (i.e., when TD = 0 ms) (r = 0

  16. Feasibility of Quantifying Arterial Cerebral Blood Volume Using Multiphase Alternate Ascending/Descending Directional Navigation (ALADDIN).

    PubMed

    Kim, Ki Hwan; Choi, Seung Hong; Park, Sung-Hong

    2016-01-01

    Arterial cerebral blood volume (aCBV) is associated with many physiologic and pathologic conditions. Recently, multiphase balanced steady state free precession (bSSFP) readout was introduced to measure labeled blood signals in the arterial compartment, based on the fact that signal difference between labeled and unlabeled blood decreases with the number of RF pulses that is affected by blood velocity. In this study, we evaluated the feasibility of a new 2D inter-slice bSSFP-based arterial spin labeling (ASL) technique termed, alternate ascending/descending directional navigation (ALADDIN), to quantify aCBV using multiphase acquisition in six healthy subjects. A new kinetic model considering bSSFP RF perturbations was proposed to describe the multiphase data and thus to quantify aCBV. Since the inter-slice time delay (TD) and gap affected the distribution of labeled blood spins in the arterial and tissue compartments, we performed the experiments with two TDs (0 and 500 ms) and two gaps (300% and 450% of slice thickness) to evaluate their roles in quantifying aCBV. Comparison studies using our technique and an existing method termed arterial volume using arterial spin tagging (AVAST) were also separately performed in five subjects. At 300% gap or 500-ms TD, significant tissue perfusion signals were demonstrated, while tissue perfusion signals were minimized and arterial signals were maximized at 450% gap and 0-ms TD. ALADDIN has an advantage of visualizing bi-directional flow effects (ascending/descending) in a single experiment. Labeling efficiency (α) of inter-slice blood flow effects could be measured in the superior sagittal sinus (SSS) (20.8±3.7%.) and was used for aCBV quantification. As a result of fitting to the proposed model, aCBV values in gray matter (1.4-2.3 mL/100 mL) were in good agreement with those from literature. Our technique showed high correlation with AVAST, especially when arterial signals were accentuated (i.e., when TD = 0 ms) (r = 0

  17. Phase-field modeling of multi-phase solidification

    NASA Astrophysics Data System (ADS)

    Nestler, Britta; Wheeler, Adam A.

    2002-08-01

    A phase-field model for a general class of multi-phase metallic alloys is now proposed which describes both multi-phase solidification phenomena as well as polycrystalline grain structures. The model serves as a computational method to simulate the motion and kinetics of multiple phase boundaries and enables the visualization of the diffusion processes and of the phase transitions in multi-phase systems. Numerical simulations are presented which illustrate the capability of the phase-field model to recover a variety of complex experimental growth structures. In particular, the phase-field model can be used to simulate microstructure evolutions in eutectic, peritectic and monotectic alloys. In addition, polycrystalline grain structures with effects such as wetting, grain growth, symmetry properties of adjacent triple junctions in thin film samples and stability criteria at multiple junctions are described by phase-field simulations.

  18. Modeling of Thermal Performance of Multiphase Nuclear Fuel Cell Under Variable Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Ding, Z.; Anghaie, S.

    1996-01-01

    A unique numerical method has been developed to model the dynamic processes of bulk evaporation and condensation processes, associated with internal heat generation and natural convection under different gravity levels. The internal energy formulation, for the bulk liquid-vapor phase change problems in an encapsulated container, was employed. The equations, governing the conservation of mass, momentum and energy for both phases involved in phase change, were solved. The thermal performance of a multiphase uranium tetra-fluoride fuel element under zero gravity, micro-gravity and normal gravity conditions has been investigated. The modeling yielded results including the evolution of the bulk liquid-vapor phase change process, the evolution of the liquid-vapor interface, the formation and development of the liquid film covering the side wall surface, the temperature distribution and the convection flow field in the fuel element. The strong dependence of the thermal performance of such multiphase nuclear fuel cell on the gravity condition has been revealed. Under all three gravity conditions, 0-g, 10(exp -3)-g, and 1-g, the liquid film is formed and covers the entire side wall. The liquid film covering the side wall is more isothermalized at the wall surface, which can prevent the side wall from being over-heated. As the gravity increases, the liquid film is thinner, the temperature gradient is larger across the liquid film and smaller across the vapor phase. This investigation provides valuable information about the thermal performance of multi-phase nuclear fuel element for the potential space and ground applications.

  19. MULTI-PHASE CFD MODELING OF A SOLID SORBENT CARBON CAPTURE SYSTEM

    SciTech Connect

    Ryan, Emily M.; Xu, Wei; DeCroix, David; Saha, Kringan; Huckaby, E. D.; Darteville, Sebastien; Sun, Xin

    2012-05-01

    Post-combustion solid sorbent carbon capture systems are being studied via computational modeling as part of the U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI). The work focuses on computational modeling of device-scale multi-phase computational fluid dynamics (CFD) simulations for given carbon capture reactor configurations to predict flow properties, outlet compositions, temperature and pressure. The detailed outputs of the device-scale models provide valuable insight into the operation of new carbon capture devices and will help in the design and optimization of carbon capture systems. As a first step in this project we have focused on modeling a 1 kWe solid sorbent carbon capture system using the commercial CFD software ANSYS FLUENT®. Using the multi-phase models available in ANSYS FLUENT®, we are investigating the use of Eulerian-Eulerian and Eulerian-Lagrangian methods for modeling a fluidized bed carbon capture design. The applicability of the dense discrete phase method (DDPM) is being considered along with the more traditional Eulerian-Eulerian multi-phase model. In this paper we will discuss the design of the 1 kWe solid sorbent system and the setup of the DDPM and Eulerian-Eulerian models used to simulate the system. The results of the hydrodynamics in the system will be discussed and the predictions of the DDPM and Eulerian-Eulerian simulations will be compared. A discussion of the sensitivity of the model to boundary and initial conditions, computational meshing, granular pressure, and drag sub-models will also be presented.

  20. Multi-phase SPH modelling of violent hydrodynamics on GPUs

    NASA Astrophysics Data System (ADS)

    Mokos, Athanasios; Rogers, Benedict D.; Stansby, Peter K.; Domínguez, José M.

    2015-11-01

    This paper presents the acceleration of multi-phase smoothed particle hydrodynamics (SPH) using a graphics processing unit (GPU) enabling large numbers of particles (10-20 million) to be simulated on just a single GPU card. With novel hardware architectures such as a GPU, the optimum approach to implement a multi-phase scheme presents some new challenges. Many more particles must be included in the calculation and there are very different speeds of sound in each phase with the largest speed of sound determining the time step. This requires efficient computation. To take full advantage of the hardware acceleration provided by a single GPU for a multi-phase simulation, four different algorithms are investigated: conditional statements, binary operators, separate particle lists and an intermediate global function. Runtime results show that the optimum approach needs to employ separate cell and neighbour lists for each phase. The profiler shows that this approach leads to a reduction in both memory transactions and arithmetic operations giving significant runtime gains. The four different algorithms are compared to the efficiency of the optimised single-phase GPU code, DualSPHysics, for 2-D and 3-D simulations which indicate that the multi-phase functionality has a significant computational overhead. A comparison with an optimised CPU code shows a speed up of an order of magnitude over an OpenMP simulation with 8 threads and two orders of magnitude over a single thread simulation. A demonstration of the multi-phase SPH GPU code is provided by a 3-D dam break case impacting an obstacle. This shows better agreement with experimental results than an equivalent single-phase code. The multi-phase GPU code enables a convergence study to be undertaken on a single GPU with a large number of particles that otherwise would have required large high performance computing resources.

  1. A multiphase model for heterogeneous explosives in both the dense and dilute limits

    SciTech Connect

    Stevens, D E; Murphy, M J; Dunn, T A

    2006-06-26

    Multiphase flow phenomena are important in the characterization of many particle-loaded explosives. A numerical model of these flows must often be capable of accurately simulating both dense and dilute particle loadings and often the transition between the two limits. This presents severe numerical difficulties in that numerical approaches for packed particle beds often behave poorly for the dilute regime and the reverse is often true for methods developed for the dilute regime. This abstract compares two established numerical methods and presents improvements to them. The improved methods have enabled the development of a general purpose model that has been successfully applied to a wide range of problems including the energetic dispersal of solid particles.

  2. In silico evaluation and exploration of antibiotic tuberculosis treatment regimens

    DOE PAGES

    Pienaar, Elsje; Dartois, Véronique; Linderman, Jennifer J.; Kirschner, Denise E.

    2015-11-14

    Improvement in tuberculosis treatment regimens requires selection of antibiotics and dosing schedules from a large design space of possibilities. Incomplete knowledge of antibiotic and host immune dynamics in tuberculosis granulomas impacts clinical trial design and success, and variations among clinical trials hamper side-by-side comparison of regimens. Our objective is to systematically evaluate the efficacy of isoniazid and rifampin regimens, and identify modifications to these antibiotics that improve treatment outcomes. We pair a spatio-temporal computational model of host immunity with pharmacokinetic and pharmacodynamic data on isoniazid and rifampin. The model is calibrated to plasma pharmacokinetic and granuloma bacterial load data frommore » non-human primate models of tuberculosis and to tissue and granuloma measurements of isoniazid and rifampin in rabbit granulomas. We predict the efficacy of regimens containing different doses and frequencies of isoniazid and rifampin. We predict impacts of pharmacokinetic/pharmacodynamic modifications on antibiotic efficacy. We demonstrate that suboptimal antibiotic concentrations within granulomas lead to poor performance of intermittent regimens compared to daily regimens. Improvements from dose and frequency changes are limited by inherent antibiotic properties, and we propose that changes in intracellular accumulation ratios and antimicrobial activity would lead to the most significant improvements in treatment outcomes. Results suggest that an increased risk of drug resistance in fully intermittent as compared to daily regimens arises from higher bacterial population levels early during treatment. In conclusion, our systems pharmacology approach complements efforts to accelerate tuberculosis therapeutic development.« less

  3. Multiphasic acute disseminated encephalomyelitis associated with atypical rubella virus infection.

    PubMed

    Shinoda, Koji; Asahara, Hideaki; Uehara, Taira; Miyoshi, Katsue; Suzuki, Satoshi O; Iwaki, Toru; Kira, Jun-ichi

    2015-02-01

    We report the first case of an occurrence of multiphasic acute disseminated encephalomyelitis (ADEM) associated with atypical rubella virus infection with no rash and long-term increased titers of serum anti-rubella IgM in a 17-year-old male who had no history of rubella vaccination. He suffered from at least six clinical exacerbations with disseminated hyperintense lesions on FLAIR MR images during the course of 18 months. Repeated methylprednisolone pulse therapy and intravenous immunoglobulin therapy resolved the exacerbations. In patients with multiphasic ADEM of unknown etiology, clinicians should also consider the possibility of preceding infection with rubella virus.

  4. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    NASA Astrophysics Data System (ADS)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  5. Maintenance immunosuppression regimens: conversion, minimization, withdrawal, and avoidance.

    PubMed

    Yang, Harold

    2006-04-01

    A wide choice of drug combinations is available to clinicians for immunosuppression regimens for their kidney transplant patients. Although many protocols have minimized early graft loss, the optimal long-term regimen is unknown. Recent studies clearly showed that cardiovascular death is now the leading cause of graft loss. Strategies must be developed that address this risk while keeping immunologic events low. Transplant physicians have focused on exploring regimens that minimize or avoid the use of corticosteroids. Studies also have started to explore protocols that minimize calcineurin inhibitor therapy. PMID:16567240

  6. Multiphasic finite element framework for modeling hydrated mixtures with multiple neutral and charged solutes.

    PubMed

    Ateshian, Gerard A; Maas, Steve; Weiss, Jeffrey A

    2013-11-01

    hydrated tissue; and (3) current flow in an electrolyte. Furthermore, the code is used to generate novel theoretical predictions of known experimental findings in biological tissues: (1) current-generated stress in articular cartilage and (2) the influence of salt cation charge number on the cartilage creep response. This generalized finite element framework for multiphasic materials makes it possible to model the mechanoelectrochemical behavior of biological tissues and cells and sets the stage for the future analysis of reactive mixtures to account for growth and remodeling. PMID:23775399

  7. Multiphase continuum model to describe dynamic loading effects in nonlinear porous media

    SciTech Connect

    Swift, R.P.; Burton, D.E.; Bryan, J.B.; Glenn, H.D.

    1985-03-01

    A multiphase constitutive model that couples nonlinear deformation to porous flow has been developed for numerical analyses of dynamic behavior of geological media. The model has been incorporated into the explicit finite-difference code TENSOR and applied to examine the phenomenology associated with contained explosions and nuclear surface cratering in a coral geology. For contained explosions in nearly saturated media, the model predicts a region of liquefaction to exist adjacent to the cavity. This region is markedly enhanced for the case of total saturation and the associated pore pressure buildup indicate that the stability of the residual stress field may be threatened. Based on plausible assumptions about the geology and the constitutive relations of coral, we have shown that the multiphase constitutive model can relate subsidence to calculational parameters such as peak effective stress. Most of the observed volume of the Koa crater at the Pacific Proving Grounds can be accounted for by late time consolidation of the damaged coral. 21 refs., 10 figs.

  8. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    SciTech Connect

    Kushner, Mark Jay

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  9. Chemotherapy Regimen Extends Survival in Advanced Pancreatic Cancer Patients

    Cancer.gov

    A four-drug chemotherapy regimen has produced the longest improvement in survival ever seen in a phase III clinical trial of patients with metastatic pancreatic cancer, one of the deadliest types of cancer.

  10. Gonzalez Regimen (PDQ®)—Health Professional Version

    Cancer.gov

    Expert-reviewed information summary about the Gonzalez regimen as a treatment for people with cancer. Note: The information in this summary is no longer being updated and is provided for reference purposes only.

  11. Automated Design of Multiphase Space Missions Using Hybrid Optimal Control

    ERIC Educational Resources Information Center

    Chilan, Christian Miguel

    2009-01-01

    A modern space mission is assembled from multiple phases or events such as impulsive maneuvers, coast arcs, thrust arcs and planetary flybys. Traditionally, a mission planner would resort to intuition and experience to develop a sequence of events for the multiphase mission and to find the space trajectory that minimizes propellant use by solving…

  12. A single element multiphase compulsator powered railgun systems

    SciTech Connect

    Murthy, S.K.; Weldon, W.F. . Center for Electromechanics)

    1994-01-01

    This paper investigates multiphase railguns (electromagnetic launchers) powered by multiphase compensated pulsed alternators (compulsators). The polyphase system offers several advantages over the single phase system. The multiphase compulsator relaxes the strong dependence between the current pulse width necessary for the railgun and the design parameters of the generator (number of poles, rotor diameter and tip speed) thus allowing the compulsator to be designed for optimum power density and electromechanical energy conversion. The paper examines in particular the two phase system. The authors explore different methods of achieving high acceleration ratios (average to peak) in multiphase railgun systems. Some of the methods analyzed are ramping up the field current of the compulsator to counter the increasing impedance of the gun, using a railgun with varying inductance per unit length (L[prime]), and using an external variable inductor in series with the compulsator. Special attention is devoted to the external series inductor method which uses a rotary flux compressor (rfc). Several concepts to integrate the rfc and the compulsator into a single element device are discussed. Comparison between the state of the art single phase compulsator powered 9 MJ railgun system, currently under fabrication at CEM-UT and a two phase compulsator driven four rail railgun system is also presented.

  13. New regimens for intravenous acetylcysteine, where are we now?

    PubMed

    Bateman, D Nicholas; Dear, James W; Thomas, Simon H L

    2016-01-01

    Acetylcysteine has been used as a treatment for paracetamol overdose as a 20.25- or 21-h infusion for nearly 40 years. These regimens give 50% of the dose in the first 15 min or 1 h, and are associated with high rates of adverse reactions. A randomised controlled trial has demonstrated that a shorter (12 h) and simpler (two infusions) acetylcysteine regimen using a slower initial infusion rate produces lower rates of adverse events than the original 20.25-h regimen. However, this study was not sufficiently large to show therapeutic equivalence as a hepatoprotective therapy in paracetamol overdose. Two further studies are now reported, which also suggest lower rates of adverse reactions with lower initial rates of acetylcysteine administration. These modified regimens can now be accepted as better tolerated, but it is unlikely that a randomised study of sufficient size to demonstrate non-inferiority of any novel regimen would ever be funded. Against this background we suggest what can be done to establish the efficacy of these less toxic and potentially shorter alternative acetylcysteine regimens and to establish them into routine clinical use. PMID:26666290

  14. A nonlinear macroscopic multi-phasic model for describing interactions between solid, fluid and ionic species in biological tissue materials

    NASA Astrophysics Data System (ADS)

    Li, Long-yuan; Pinsky, Peter M.

    2011-01-01

    A nonlinear, macroscopic multi-phasic model for describing the interactions between solid, fluid, and ionic species in porous materials is presented. Governing equations are derived based on the nonlinear theories of solid mechanics, linear flow theory of Newtonian fluids, and theory of irreversible thermodynamics for the transport of ions and ionic solutions. The model shows that the transport coupling between ions and ionic solution exists only when the porous material has a membrane-like feature, which could be inside the material or on the material boundaries. Otherwise, the coupling occurs only between the solid and fluid phases and the transport of ionic species will have no effect on the macroscopic stresses, strains and displacements of the porous material. As an application of the present multi-phasic model, a numerical example of the human cornea under the shock of NaCl hypertonic solution applied to its endothelial surface is presented. This is a typical example of how ionic transport induces swelling in biological tissues. The results obtained from the present multi-phasic model demonstrate that the mechanical properties of the tissue have an important influence on the swelling of the cornea. Without taking into account this influence, the predicted swelling may be exaggerated.

  15. THE MULTIPHASE STRUCTURE AND POWER SOURCES OF GALACTIC WINDS IN MAJOR MERGERS

    SciTech Connect

    Rupke, David S. N.; Veilleux, Sylvain

    2013-05-01

    Massive, galaxy-scale outflows are known to be ubiquitous in major mergers of disk galaxies in the local universe. In this paper, we explore the multiphase structure and power sources of galactic winds in six ultraluminous infrared galaxies (ULIRGs) at z < 0.06 using deep integral field spectroscopy with the Gemini Multi-Object Spectrograph (GMOS) on Gemini North. We probe the neutral, ionized, and dusty gas phases using Na I D, strong emission lines ([O I], H{alpha}, and [N II]), and continuum colors, respectively. We separate outflow motions from those due to rotation and tidal perturbations, and find that all of the galaxies in our sample host high-velocity flows on kiloparsec scales. The properties of these outflows are consistent with multiphase (ionized, neutral, and dusty) collimated bipolar winds emerging along the minor axis of the nuclear disk to scales of 1-2 kpc. In two cases, these collimated winds take the form of bipolar superbubbles, identified by clear kinematic signatures. Less collimated (but still high-velocity) flows are also present on scales up to 5 kpc in most systems. The three galaxies in our sample with obscured QSOs host higher velocity outflows than those in the three galaxies with no evidence for an active galactic nucleus. The peak outflow velocity in each of the QSOs is in the range 1450-3350 km s{sup -1}, and the highest velocities (2000-3000 km s{sup -1}) are seen only in ionized gas. The outflow energy and momentum in the QSOs are difficult to produce from a starburst alone, but are consistent with the QSO contributing significantly to the driving of the flow. Finally, when all gas phases are accounted for, the outflows are massive enough to provide negative feedback to star formation.

  16. Multi-phase Thermohaline Convection in Porous Media

    NASA Astrophysics Data System (ADS)

    Geiger, S.; Driesner, T.; Matthai, S. K.; Heinrich, C. A.

    2003-12-01

    The simultaneous motion of heat and dissolved solutes by aqueous or magmatic fluids through porous or fractured media within the earth's crust is a key factor that drives many important geological processes, such as the formation of large ore deposits, cooling of new-formed oceanic crust along mid-ocean ridges, metamorphism, or the evolution of geothermal systems. The motion of such crustal fluids is usually dominated by convection due to density differences within the fluids that arise from pressure, temperature and compositional variations present in the fluids. Oxygen isotope data and fluid inclusion data indicate that fluids may percolate down to 15 km depth and experience temperatures exceeding 700 {o}C. Although crustal fluids commonly contain various dissolved chemical components and gases, the most abundant solute is salt, i.e. NaCl. Hence, changes in the concentration of NaCl influence the density variations of crustal fluids the most. The presence of NaCl in H2O has decisive effects on the thermodynamics and hydrodynamics of crustal fluids. NaCl-H2O fluids can boil and separate into a high-density brine and low-salinity vapor at much higher temperatures and pressures than the critical temperature and pressure for pure H2O. NaCl-H2O fluids may also become saturated with respect to NaCl such that a solid NaCl phase coexists with a liquid or vapor fluid phase. Because salt advects faster than heat but diffuses slower than heat, the resulting double-diffusive and double-convective motion of salt and heat may lead to non-linear flow instabilities such as periodic or chaotic behavior. While many studies have addressed the theory of convection driven by temperature and/or salinity gradients, they were limited to a Boussinesq approximation and neglected phase separation. In this study we have numerically examined the behavior of multi-phase thermohaline convection in a porous media heated and salted from below using a novel finite element - finite volume

  17. Multiphase control volume finite element simulations of fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Fu, Yao

    With rapid evolution of hardware and software techniques in energy sector, reservoir simulation has become a powerful tool for field development planning and reservoir management. Many of the widely used commercial simulators were originally designed for structured grids and implemented with finite difference method (FDM). In recent years, technical advances in griding, fluid modeling, linear solver, reservoir and geological modeling, etc. have created new opportunities. At the same time, new reservoir simulation technology is required for solving large-scale heterogeneous problems. A three-dimensional, three-phase black-oil reservoir simulator has been developed using the control volume finite element (CVFE) formulation. Flux-based upstream weighting is employed to ensure flux continuity. The CVFE method is embedded in a fully-implicit formulation. State-of-the-art parallel, linear solvers are used. The implementation takes the advantages of object-oriented programming capabilities of C++ to provide maximum reuse and extensibility for future students. The results from the simulator have excellent agreement with those from commercial simulators. The convergence properties of the new simulator are verified using the method of manufactured solutions. The pressure and saturation solutions are verified to be first-order convergent as expected. The efficiency of the simulators and their capability to handle real large-scale field models are improved by implementing the models in parallel. Another aspect of the work dealt with multiphase flow of fractured reservoirs was performed. The discrete-fracture model is implemented in the simulator. Fractures and faults are represented by lines and planes in two- and three-dimensional spaces, respectively. The difficult task of generating an unstructured mesh for complex domains with fractures and faults is accomplished in this study. Applications of this model for two-phase and three-phase simulations in a variety of fractured

  18. Hypofractionation Regimens for Stereotactic Radiotherapy for Large Brain Tumors

    SciTech Connect

    Yuan Jiankui; Wang, Jian Z. Lo, Simon; Grecula, John C.; Ammirati, Mario; Montebello, Joseph F.; Zhang Hualin; Gupta, Nilendu; Yuh, William T.C.; Mayr, Nina A.

    2008-10-01

    Purpose: To investigate equivalent regimens for hypofractionated stereotactic radiotherapy (HSRT) for brain tumor treatment and to provide dose-escalation guidance to maximize the tumor control within the normal brain tolerance. Methods and Materials: The linear-quadratic model, including the effect of nonuniform dose distributions, was used to evaluate the HSRT regimens. The {alpha}/{beta} ratio was estimated using the Gammaknife stereotactic radiosurgery (GKSRS) and whole-brain radiotherapy experience for large brain tumors. The HSRT regimens were derived using two methods: (1) an equivalent tumor control approach, which matches the whole-brain radiotherapy experience for many fractions and merges it with the GKSRS data for few fractions; and (2) a normal-tissue tolerance approach, which takes advantages of the dose conformity and fractionation of HSRT to approach the maximal dose tolerance of the normal brain. Results: A plausible {alpha}/{beta} ratio of 12 Gy for brain tumor and a volume parameter n of 0.23 for normal brain were derived from the GKSRS and whole-brain radiotherapy data. The HSRT prescription regimens for the isoeffect of tumor irradiation were calculated. The normal-brain equivalent uniform dose decreased as the number of fractions increased, because of the advantage of fractionation. The regimens for potential dose escalation of HSRT within the limits of normal-brain tolerance were derived. Conclusions: The designed hypofractionated regimens could be used as a preliminary guide for HSRT dose prescription for large brain tumors to mimic the GKSRS experience and for dose escalation trials. Clinical studies are necessary to further tune the model parameters and validate these regimens.

  19. Slug flow: Occurrence, consequences, and prediction

    SciTech Connect

    Hill, T.J.; Wood, D.G.

    1994-12-31

    BP Exploration currently has an interest in hundreds of kilometers of operating multiphase flowlines. Most of the company`s proposed field developments also involve multiphase flowlines. A large number of these do or will experience slug flow, either as the normal flow regime, or as a result of transient behavior. Data on flow regime and slug flow characteristics have been collected from many lines over the past 8 years. Information on slug characteristics from a number of different systems is presented in this paper, including velocity, length and holdup. Some unfavorable consequences of slug flow on both process performance and system integrity are highlighted, including plant shutdowns and mechanical damage. The need to be able to predict slug flow for the design of future systems, and to advise the operators of existing systems, remains a high priority for R and D activities, as ever longer and more complex multiphase systems are proposed. BP`s latest slug frequency method is described, followed by guidelines for pipework layout, and comments on current R and D on corrosion in multiphase flow.

  20. Strain rate behaviour of multi-phase and complex-phase steels for automotive applications

    NASA Astrophysics Data System (ADS)

    Cadoni, E.; Singh, N. K.; Singha, M. K.; Gupta, N. K.

    2012-08-01

    A combined study on the mechanical behaviour of multi-phase 800 high yield strength steel (MP800HY) and complex-phase 800 steel (CP800) is carried out under tensile loads in the strain rate range from 0.001s-1 to 750s-1. Quasi-static (0.001s-1) tests are performed on electromechanical machine, whereas, medium (5s-1 and 25s-1) and high strain rate (250s-1, 500s-1 and 750s-1) experiments are conducted on hydro-pneumatic machine (HPM) and modified Hopkinson bar (MHB) setup respectively. The thermal softening behaviors of the materials are investigated at quasi-static condition and the materials' m-parameters of the existing Johnson-Cook model are imposed in authors' previous work. Thereafter, the predicted flow stress by Johnson-Cook model has been compared with the experimental results.

  1. Preparation and quantification of radioactive particles for tracking hydrodynamic behavior in multiphase reactors.

    PubMed

    Yunos, Mohd Amirul Syafiq Mohd; Hussain, Siti Aslina; Yusoff, Hamdan Mohamed; Abdullah, Jaafar

    2014-09-01

    Radioactive particle tracking (RPT) has emerged as a promising and versatile technique that can provide rich information about a variety of multiphase flow systems. However, RPT is not an off-the-shelf technique, and thus, users must customize RPT for their applications. This paper presents a simple procedure for preparing radioactive tracer particles created via irradiation with neutrons from the TRIGA Mark II research reactor. The present study focuses on the performance evaluation of encapsulated gold and scandium particles for applications as individual radioactive tracer particles using qualitative and quantitative neutron activation analysis (NAA) and an X-ray microcomputed tomography (X-ray Micro-CT) scanner installed at the Malaysian Nuclear Agency.

  2. Preparation and quantification of radioactive particles for tracking hydrodynamic behavior in multiphase reactors.

    PubMed

    Yunos, Mohd Amirul Syafiq Mohd; Hussain, Siti Aslina; Yusoff, Hamdan Mohamed; Abdullah, Jaafar

    2014-09-01

    Radioactive particle tracking (RPT) has emerged as a promising and versatile technique that can provide rich information about a variety of multiphase flow systems. However, RPT is not an off-the-shelf technique, and thus, users must customize RPT for their applications. This paper presents a simple procedure for preparing radioactive tracer particles created via irradiation with neutrons from the TRIGA Mark II research reactor. The present study focuses on the performance evaluation of encapsulated gold and scandium particles for applications as individual radioactive tracer particles using qualitative and quantitative neutron activation analysis (NAA) and an X-ray microcomputed tomography (X-ray Micro-CT) scanner installed at the Malaysian Nuclear Agency. PMID:24907683

  3. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour

    SciTech Connect

    Hou, Xu; Hu, Yuhang; Grinthal, Alison; Khan, Mughees; Aizenberg, Joanna

    2015-03-04

    Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. In addition, the ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems1-10.But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries6,11–17, a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and fouling is nearly inevitable.Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state.Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold—the pressure needed to open the pores—can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping.These capabilities allow us to dynamically modulate gas–liquid sorting in a microfluidic flow and to separate a three-phase air water–oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.

  4. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour

    DOE PAGES

    Hou, Xu; Hu, Yuhang; Grinthal, Alison; Khan, Mughees; Aizenberg, Joanna

    2015-03-04

    Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. In addition, the ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems1-10.But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries6,11–17, a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and foulingmore » is nearly inevitable.Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state.Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold—the pressure needed to open the pores—can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping.These capabilities allow us to dynamically modulate gas–liquid sorting in a microfluidic flow and to separate a three-phase air water–oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.« less

  5. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour

    NASA Astrophysics Data System (ADS)

    Hou, Xu; Hu, Yuhang; Grinthal, Alison; Khan, Mughees; Aizenberg, Joanna

    2015-03-01

    Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. The ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems. But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries, a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and fouling is nearly inevitable. Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state. Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold--the pressure needed to open the pores--can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping. These capabilities allow us to dynamically modulate gas-liquid sorting in a microfluidic flow and to separate a three-phase air-water-oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.

  6. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour

    SciTech Connect

    Hou, X; Hu, YH; Grinthal, A; Khan, M; Aizenberg, J

    2015-03-04

    Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. The ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems(1-10). But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries(6,11-17), a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and fouling is nearly inevitable(11,12). Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state. Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold-the pressure needed to open the pores-can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping. These capabilities allow us to dynamically modulate gas-liquid sorting in a microfluidic flow and to separate a three-phase air-water-oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.

  7. Microfluidic bubbler facilitates near complete mass transfer for sustainable multiphase and microbial processing.

    PubMed

    Baker, Jordan J; Crivellari, Francesca; Gagnon, Zachary; Betenbaugh, Michael J

    2016-09-01

    A microfluidic device (channels <70 μm) was utilized to create micro-scale bubbles to significantly increase mass transfer efficiency at low flow rates. The convergence of one gas and two liquid channels at a Y-junction generates bubbles via cyclic changes in pressure. At low flow rates, the bubbles had an average diameter of 110 μm, corresponding to a volumetric mass transfer KL a of 1.43 h(-1) . Values of KL a normalized per flow rate showed that the microbubbler had a 100-fold increased transfer efficiency compared to four other commonly used bubblers. The calculated percentage of oxygen transferred was approximately 90%, which was consistent with a separate off-gas analysis. The improved mass transfer was also tested in an algae bioreactor in which the microbubbler absorbed approximately 90% of the CO2 feed compared to 2% in the culture with an alternative needle bubbling method. The microbubbler yielded a cell density 82% of the cell density for the alternative needle tip with an 800-fold lower flow rate (0.5 mL/min versus 400 mL/min) and a 700-fold higher ratio of biomass to fed carbon dioxide. The application of microfluidics may transform interfacial processing in order to increase mass transfer efficiencies, minimize gas feeding, and provide for more sustainable multiphase processes. Biotechnol. Bioeng. 2016;113: 1924-1933. © 2016 Wiley Periodicals, Inc.

  8. Method for producing nanocrystalline multicomponent and multiphase materials

    DOEpatents

    Eastman, Jeffrey A.; Rittner, Mindy N.; Youngdahl, Carl J.; Weertman, Julia R.

    1998-01-01

    A process for producing multi-component and multiphase nanophase materials is provided wherein a plurality of elements are vaporized in a controlled atmosphere, so as to facilitate thorough mixing, and then condensing and consolidating the elements. The invention also provides for a multicomponent and multiphase nanocrystalline material of specified elemental and phase composition having component grain sizes of between approximately 1 nm and 100 nm. This material is a single element in combination with a binary compound. In more specific embodiments, the single element in this material can be a transition metal element, a non-transition metal element, a semiconductor, or a semi-metal, and the binary compound in this material can be an intermetallic, an oxide, a nitride, a hydride, a chloride, or other compound.

  9. Multiphasic survival response of a radioresistant lepidopteran insect cell line

    SciTech Connect

    Koval, T.M.

    1984-06-01

    TN-368 lepidoteran insect cells display a multiphasic survival response in both air and nitrogen. In each case the survival curve is characterized by an initial small-shouldered region near the 0.1 survival level, and finally a shallow slope component. The oxygen enhancement ratio (OER) for the first portion of the curve is 1.6. The OER for the latter portion of the curve is 1.7. The D/sub 0/ values for each slope and the width of the plateau region all increase proportionally for the nitrogen curve over that of air, the OER being approximately the same for both curve components. A similar multiphasic response was observed at dose rates of 202, 49.6 and 9.1 Gy/min. Although cell cycle variations in radiosensitivity may contribute slightly to the response, an inducible or activated repair process would be consistent with the results.

  10. Occurrence of multiphasic anaphylaxis during a transcontinental air flight.

    PubMed

    Brady, W J; Bright, H L

    1999-11-01

    Anaphylaxis, a multisystem allergic reaction, represents a true medical emergency. Anaphylaxis is characterized by a combination of the following: urticaria, angioedema, distributive shock, and respiratory failure. Most often, the patient is rapidly treated with prompt resolution of the anaphylaxis in either the out-of-hospital or emergency department (ED) setting. Infrequently, recurrent, or multiphasic, anaphylaxis is encountered, involving a reappearance of allergic phenomena after complete resolution of the original reaction. Recurrence may involve nuisance-level issues such as urticaria; alternatively, multiphasic reactions may be characterized by cardiovascular collapse and/or respiratory compromise. Initially aggressive pharmacological therapy followed by prolonged observation in either the ED or the in-hospital setting is strongly recommended to monitor for potential recurrence.

  11. Fitting of a multiphase equation of state with swarm intelligence

    NASA Astrophysics Data System (ADS)

    Cox, G. A.; Christie, M. A.

    2015-10-01

    Hydrocode calculations require knowledge of the variation of pressure of a material with density and temperature, which is given by the equation of state. An accurate model needs to account for discontinuities in energy, density and properties of a material across a phase boundary. When generating a multiphase equation of state the modeller attempts to balance the agreement between the available data for compression, expansion and phase boundary location. However, this can prove difficult because minor adjustments in the equation of state for a single phase can have a large impact on the overall phase diagram. This paper describes how combining statistical-mechanics-based condensed matter physics models with a stochastic analysis technique called particle swarm optimisation, yields multiphase equations of state which give good agreement with experiment over a wide range of pressure-temperature space. Aluminium and tin are used as test cases in the proof of principle described in this paper.

  12. Multiphase Modeling of Water Injection on Flame Deflector

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Bachchan, Nili; Peroomian, Oshin; Akdag, Vedat

    2013-01-01

    This paper describes the use of an Eulerian Dispersed Phase (EDP) model to simulate the water injected from the flame deflector and its interaction with supersonic rocket exhaust from a proposed Space Launch System (SLS) vehicle. The Eulerian formulation, as part of the multi-phase framework, is described. The simulations show that water cooling is only effective over the region under the liquid engines. Likewise, the water injection provides only minor effects over the surface area under the solid engines.

  13. In-situ formation of multiphase deposited thermal barrier coatings

    DOEpatents

    Subramanian, Ramesh

    2004-01-13

    A multiphase ceramic thermal barrier coating is provided. The coating is adapted for use in high temperature applications in excess of about 1200.degree. C., for coating superalloy components of a combustion turbine engine. The coating comprises a ceramic single or two oxide base layer disposed on the substrate surface; and a ceramic oxide reaction product material disposed on the base layer, the reaction product comprising the reaction product of the base layer with a ceramic single or two oxide overlay layer.

  14. Principles for designing future regimens for multidrug-resistant tuberculosis.

    PubMed

    Brigden, Grania; Nyang'wa, Bern-Thomas; du Cros, Philipp; Varaine, Francis; Hughes, Jennifer; Rich, Michael; Horsburgh, C Robert; Mitnick, Carole D; Nuermberger, Eric; McIlleron, Helen; Phillips, Patrick P J; Balasegaram, Manica

    2014-01-01

    Fewer than 20% of patients with multidrug-resistant (MDR) tuberculosis are receiving treatment and there is an urgent need to scale up treatment programmes. One of the biggest barriers to scale-up is the treatment regimen, which is lengthy, complex, ineffective, poorly tolerated and expensive. For the first time in over 50 years, new drugs have been developed specifically to treat tuberculosis, with bedaquiline and potentially delamanid expected to be available soon for treatment of MDR cases. However, if the new drugs are merely added to the current treatment regimen, the new regimen will be at least as lengthy, cumbersome and toxic as the existing one. There is an urgent need for strategy and evidence on how to maximize the potential of the new drugs to improve outcomes and shorten treatment. We devised eight key principles for designing future treatment regimens to ensure that, once they are proven safe in clinical trials, they will be clinically effective and programmatically practicable. Regimens should contain at least one new class of drug; be broadly applicable for use against MDR and extensively drug-resistant Mycobacterium tuberculosis complex strains; contain three to five effective drugs, each from a different drug class; be delivered orally; have a simple dosing schedule; have a good side-effect profile that allows limited monitoring; last a maximum of 6 months; and have minimal interaction with antiretrovirals. Following these principles will maximize the potential of new compounds and help to overcome the clinical and programmatic disadvantages and scale-up constraints that plague the current regimen.

  15. Microstructure-based modelling of multiphase materials and complex structures

    NASA Astrophysics Data System (ADS)

    Werner, Ewald; Wesenjak, Robert; Fillafer, Alexander; Meier, Felix; Krempaszky, Christian

    2016-09-01

    Micromechanical approaches are frequently employed to monitor local and global field quantities and their evolution under varying mechanical and/or thermal loading scenarios. In this contribution, an overview on important methods is given that are currently used to gain insight into the deformational and failure behaviour of multiphase materials and complex structures. First, techniques to represent material microstructures are reviewed. It is common to either digitise images of real microstructures or generate virtual 2D or 3D microstructures using automated procedures (e.g. Voronoï tessellation) for grain generation and colouring algorithms for phase assignment. While the former method allows to capture exactly all features of the microstructure at hand with respect to its morphological and topological features, the latter method opens up the possibility for parametric studies with respect to the influence of individual microstructure features on the local and global stress and strain response. Several applications of these approaches are presented, comprising low and high strain behaviour of multiphase steels, failure and fracture behaviour of multiphase materials and the evolution of surface roughening of the aluminium top metallisation of semiconductor devices.

  16. Processing, Microstructure, and Properties of Multiphase Mo Silicide Alloys

    SciTech Connect

    Heatherly, L.; Liu, C.T.; Schneibel, J.H.

    1998-11-30

    Multiphase Mo silicide alloys containing T2 (Mo{sub 5}SiB{sub 2}), Mo{sub 3}Si and Mo phases where prepared by both melting and casting (M and C) and powder metallurgical (PM) processes. Glassy phases are observed in PM materials but not in M and C materials. Microstructural studies indicate that the primary phase is Mo-rich solid solution in alloys containing {le}(9.4Si+13.8B, at. %) and T2 in alloys with {ge}(9.8Si+14.6B). An eutectic composition is estimated to be close to Mo-9.6Si-14.2B. The mechanical properties of multiphase silicide alloys were determined by hardness, tensile and bending tests at room temperature. The multiphase alloy MSB-18 (Mo-9.4Si-13.8B) possesses a flexure strength distinctly higher than that of MoSi{sub 2} and other Mo{sub 5}Si{sub 3} silicide alloys containing no Mo particles. Also, MSB-18 is tougher than MoSi{sub 2} by a factor of 4.

  17. Multiphase fluid simulation tools for winning remediation solutions

    SciTech Connect

    Deschaine, L.M.

    1997-07-01

    Releases of petroleum product such as gasoline and diesel fuels from normal operating practices to aquifers are common. The costs to remediate these releases can run in the billions of dollars. Solutions to remediate these releases usually consist of some form of multiphase (air, water, oil) fluid movement, whether it be a multiphase high vacuum extraction system, bioslurping, groundwater pump and treat system, an air sparging system, a soil vapor extraction system, a free product recovery system, bioremediation or the like. The software being tested in Test Drive, Multiphase Organic Vacuum Enhanced Recovery Simulator (MOVER) is a computer simulation tool that will give the practitioner the ability to design high vacuum enhanced multiple phase recovery systems and bioslurping systems, which are often the low cost effective remediation approach. It will also allow for the comparison of various proposed remediation approaches and technologies so the best solution can be chosen for a site. This is a key competitive advantage to translate conceptual ideas into winning bids.

  18. Shock Initiated Reactions of Reactive Multiphase Blast Explosives

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2015-06-01

    This paper describes a new class of reactive multiphase blast explosives (RMBX) and characterization of their blast characteristics. These RMBXs are non-ideal explosive compositions of perfluoropolyether (PFPE), nano aluminum, and a micron-size high-density reactive metal - Tantalum, Zirconium, or Zinc in mass loadings of 66 to 83 percent. Unlike high explosives, these PFPE-metal compositions release energy via a fast self-oxidized combustion wave (rather than a true self-sustaining detonation) that is shock dependent, and can be overdriven to control energy release rate. The term ``reactive multiphase blast'' refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts momentum; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. The RMBX formulations were tested in two spherical core-shell geometries - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  19. Fiber-Optical Sensors: Basics and Applications in Multiphase Reactors

    PubMed Central

    Li, Xiangyang; Yang, Chao; Yang, Shifang; Li, Guozheng

    2012-01-01

    This work presents a brief introduction on the basics of fiber-optical sensors and an overview focused on the applications to measurements in multiphase reactors. The most commonly principle utilized is laser back scattering, which is also the foundation for almost all current probes used in multiphase reactors. The fiber-optical probe techniques in two-phase reactors are more developed than those in three-phase reactors. There are many studies on the measurement of gas holdup using fiber-optical probes in three-phase fluidized beds, but negative interference of particles on probe function was less studied. The interactions between solids and probe tips were less studied because glass beads etc. were always used as the solid phase. The vision probes may be the most promising for simultaneous measurements of gas dispersion and solids suspension in three-phase reactors. Thus, the following techniques of the fiber-optical probes in multiphase reactors should be developed further: (1) online measuring techniques under nearly industrial operating cond