Science.gov

Sample records for regional heat sources

  1. Heat sources for tertiary metamorphism and anatexis in the Annapurna-Manaslu region, central Nepal

    NASA Technical Reports Server (NTRS)

    England, Philip; Le Fort, Patrick; Molnar, Peter; Pecher, Arnaud

    1992-01-01

    The metamorphic evolution of the rocks near the Main Central Thrust in the Annapurna-Manaslu region of central Nepal is examined. In this region, all three types of metamorphic features can be observed: regional metamorphism, anatectic granitoids, and inverted metamorphic isograds. In this work, each phase of metamorphism is treated separately to estimate the heat sources required for each process. This approach makes it possible to identify the important parameters for each process, to draw preliminary conclusions about the heat sources required for each of these phases, and to determine which parameters need to be measured more precisely in order to constrain these heat sources.

  2. New geophysical models related to heat sources in the geysers-clear lake region, California

    USGS Publications Warehouse

    Stanley, W.D.; Blakely, R.J.; ,

    1993-01-01

    We present an updated view of the geological and geophysical complexities of the upper crust in The Geysers-Clear Lake region in order to provide additional information regarding local structures and possible heat sources. New models and ideal-body analysis of the gravity data, new electromagnetic sounding models, and arguments made from other geophysical data sets suggest that many of the geophysical anomalies may be significantly affected by rock-property and physical-state variations in the upper 7 km, and not just to 'magma' at greater depths. We developed the new geophysical models in order to better understand constraints on the location of magma bodies.

  3. Dual source heat pump

    DOEpatents

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  4. Multiple source heat pump

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  5. Radioisotopic heat source

    DOEpatents

    Sayell, E.H.

    1973-10-23

    A radioisotopic heat source is described which includes a core of heat productive, radioisotopic material, an impact resistant layer of graphite surrounding said core, and a shell of iridium metal intermediate the core and the impact layer. The source may also include a compliant mat of iridium between the core and the iridium shell, as well as an outer covering of iridium metal about the entire heat source. (Official Gazette)

  6. Thulium-170 heat source

    DOEpatents

    Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  7. Radioisotopic heat source

    DOEpatents

    Jones, G.J.; Selle, J.E.; Teaney, P.E.

    1975-09-30

    Disclosed is a radioisotopic heat source and method for a long life electrical generator. The source includes plutonium dioxide shards and yttrium or hafnium in a container of tantalum-tungsten-hafnium alloy, all being in a nickel alloy outer container, and subjected to heat treatment of from about 1570$sup 0$F to about 1720$sup 0$F for about one h. (auth)

  8. On the altitude of the ELF/VLF source region generated during “beat-wave” HF heating experiments

    NASA Astrophysics Data System (ADS)

    Moore, R. C.; Fujimaru, S.; Cohen, M.; Gołkowski, M.; McCarrick, M. J.

    2012-09-01

    Modulated high frequency (HF, 3-10 MHz) heating of the ionosphere in the presence of the auroral electrojet currents is an effective method for generating extremely low frequency (ELF, 3-3000 Hz) and very low frequency (VLF, 3-30 kHz) radio waves. The amplitudes of ELF/VLF waves generated in this manner depend sensitively on the auroral electrojet current strength, which varies with time. In an effort to improve the reliability of ELF/VLF wave generation by ionospheric heating, recent experiments at the High-frequency Active Auroral Research Program (HAARP) facility in Gakona, Alaska, have focused on methods that are independent of the strength of the auroral electrojet currents. One such potential method is so-called “beat-wave” ELF/VLF generation. Recent experimental observations have been presented to suggest that in the absence of a significant D-region ionosphere (˜60-100 km altitude), an ELF/VLF source region can be created within the F-region ionosphere (˜150-250 km altitude). In this paper, we use a time-of-arrival analysis technique to provide direct experimental evidence that the beat-wave source region is located in the D-region ionosphere, and possibly the lower E-region ionosphere (˜100-120 km altitude), even when ionospheric diagnostics indicate a very weak D-layer. These results have a tremendous impact on the interpretation of recent experimental observations.

  9. A Model for coupled heat and moisture transfer in permafrost regions of three rivers source areas, Qinghai, China

    NASA Astrophysics Data System (ADS)

    Wu, X. L.; Xiang, X. H.; Wang, C. H.; Shao, Q. Q.

    2012-04-01

    Soil freezing occurs in winter in many parts of the world. The transfer of heat and moisture in freezing and thawing soil is interrelated, and this heat and moisture transport plays an important role in hydrological activity of seasonal frozen region especially for three rivers sources area of China. Soil freezing depth and ice content in frozen zone will significantly influence runoff and groundwater recharge. The purpose of this research is to develop a numerical model to simulate water and heat movement in the soil under freezing and thawing conditions. The basic elements of the model are the heat and water flow equations, which are heat conduction equation and unsaturated soil fluid mass conservation equation. A full-implicit finite volume scheme is used to solve the coupled equations in space. The model is calibrated and verified against the observed moisture and temperature of soil during freezing and thawing period from 2005 to 2007. Different characters of heat and moisture transfer are testified, such as frozen depth, temperature field of 40 cm depth and topsoil moisture content, et al. The model is calibrated and verified against observed value, which indicate that the new model can be used successfully to simulate numerically the coupled heat and mass transfer process in permafrost regions. By simulating the runoff generation process and the driven factors of seasonal changes, the agreement illustrates that the coupled model can be used to describe the local phonemes of hydrologic activities and provide a support to the local Ecosystem services. This research was supported by the National Natural Science Foundation of China (No. 51009045; 40930635; 41001011; 41101018; 51079038), the National Key Program for Developing Basic Science (No. 2009CB421105), the Fundamental Research Funds for the Central Universities (No. 2009B06614; 2010B00414), the National Non Profit Research Program of China (No. 200905013-8; 201101024; 20101224).

  10. Regional Heat Sources and the Active and Break Phases of Boreal Summer Intraseasonal Variability

    SciTech Connect

    Annamalai, H; Sperber, K R

    2003-12-15

    The boreal summer intraseasonal variability (BSISV) associated with the 30-50 day mode is represented by the co-existence of three components, poleward propagation of convection over the Indian and tropical west Pacific longitudes and eastward propagation along the equator. The hypothesis that the three components influence each other has been investigated using observed OLR, NCEP-NCAR reanalysis, and solutions from an idealized linear model. The null hypothesis is that the three components are mutually independent. Cyclostationary EOF (CsEOF) analysis is applied on filtered OLR to extract the life-cycle of the BSISV. The dominant mode of CsEOF is significantly tied to observed rainfall over the Indian subcontinent. The components of the heating patterns from CsEOF analysis serve as prescribed forcings for the linear model. This allows us to ascertain which heat sources and sinks are instrumental in driving the large-scale monsoon circulation during the BSISV life-cycle. We identify three new findings: (1) the circulation anomalies that develop as a Rossby wave response to suppressed convection over the equatorial Indian Ocean associated with the previous break phase of the BSISV precondition the ocean-atmosphere system in the western Indian Ocean and trigger the next active phase of the BSISV, (2) the development of convection over the tropical west Pacific forces descent anomalies to the west. This, in conjunction with the weakened cross-equatorial flow due to suppressed convective anomalies over the equatorial Indian Ocean reduce the tropospheric moisture over the Arabian Sea, and promote westerly wind anomalies that do not recurve over India. As a result the low-level cyclonic vorticity shifts from India to southeast Asia and break conditions are initiated over India, and (3) the circulation anomalies forced by equatorial Indian Ocean convective anomalies significantly influence the active/break phases over the tropical west Pacific. Our model solutions support

  11. Milliwatt generator heat source

    NASA Astrophysics Data System (ADS)

    Mershad, E. A.

    1984-03-01

    All LANL hardware requirements were met during the reporting period as scheduled. Lot 12 of T-111 alloy sheet and Lot 8 of yttrium platelets were procured to meet future WR production needs. The GEND IP schedule requirements for 49 fueled MC2893 heat sources were met. Pressure burst surveillance activities continued to be conducted in accordance with SNLA document BB328965. Final results of evaluations of two pressure-burst capsules were normal, suggesting that the corresponding heat sources should be in good condition. The hardware production period ended with an overall hardware process yield of 98.4%.

  12. Low cost uniform heat source

    NASA Technical Reports Server (NTRS)

    Smith, R. B.; Prok, G. M.

    1973-01-01

    Electrically powered heat source was developed for ground simulation of isotope heat-source assembly in Brayton power system. Heat source, which operates on ordinary 110 vac power, consists of tungsten filament heating element wound onto a spirally grooved boron nitride core and inserted in a hollowed-out graphite hexahedron.

  13. Optimization design and compare of different solar-ground source heat pump system of office building in cold regions

    NASA Astrophysics Data System (ADS)

    Xie, H.; He, S.; Fu, Y.

    2016-08-01

    This paper presents two different operation modes of Solar-Ground Source Heat Pump System (SGSHP(S)). With the simulation tool TRNSYS, two different SGSHP system models were built to taking simulation. After making analysis and compare of different simulation results, series operation mode was believed to be better than parallel in the target building.

  14. Today's ground source heat pumps

    SciTech Connect

    Bose, J.E.

    1993-01-01

    Ground source heat pumps are one of the nation's fastest growing businesses in terms of increased sales of equipment as reported by water source heat pump manufacturers. The success can be attributed in part to these heat pump's reputation as a cost saving system and more recently as an environmentally sound concept. Engineers having an interest in ground source technology come from a large and diverse audience consisting of those who have heard about ground source systems and are contemplating entering the business and those who are experienced and looking to broaden their application base. This article discusses the water source heat pump and its benefits, the commercial Water Loop Heat Pump (WLHP), the ground source heat pump, the commercial Closed Loop/Ground Coupled WLHP, designing a ground heat exchanger, information available for design, and successful systems.

  15. Sudurnes Regional Heating Corp.

    SciTech Connect

    Lienau, P.J.

    1996-11-01

    The Svartsengi geothermal area is close to the town of Grindavik on the Rekjanes peninsula and is part of an active fissure swarm, lined with crater-rows and open fissures and faults. The high-temperature area has an area of 2 sq. km and shows only limited signs of geothermal activity at the surface. The reservoir, however, contains lots of energy and at least 8 wells supply the Svartsengi Power Plant with steam. The steam is not useable for domestic heating purposes so that heat exchangers are used to heat cold groundwater with the steam. Some steam is also used for producing 16.4 MW{sub e} of electrical power. The article shows the distribution system piping hot water to nine towns and the Keflavik International Airport. The effluent brine from the Svartsengi Plant is disposed of into a surface pond, called the Blue Lagoon, popular to tourists and people suffering from psoriasis and other forms of eczema seeking therapeutic effects from the silica rich brine. This combined power plant and regional district heating system (cogeneration) is an interesting and unique design for the application of geothermal energy.

  16. Regional Heat Sources and the Active and Break Phases of Boreal Summer Intraseasonal (30-50 Day) Variability(.

    NASA Astrophysics Data System (ADS)

    Annamalai, H.; Sperber, K. R.

    2005-08-01

    The boreal summer intraseasonal variability (BSISV) associated with the 30-50-day mode is represented by the coexistence of three components: poleward propagation of convection over the Indian and tropical west Pacific longitudes and eastward propagation along the equator. The hypothesis that the three components influence each other has been investigated using observed outgoing longwave radiation (OLR), NCEP-NCAR reanalysis, and solutions from an idealized linear model. The null hypothesis is that the three components are mutually independent. Cyclostationary EOF (CsEOF) analysis is applied on filtered OLR to extract the life cycle of the BSISV. The dominant CsEOF mode is significantly tied to the observed spatial rainfall pattern associated with the active/break phases over the Indian subcontinent. The components of the heating patterns from CsEOF analysis serve as prescribed forcings for the dry version of the linear model. This allows one to investigate the possible roles that the regional heat sources and sinks play in driving the large-scale monsoon circulation at various stages of the BSISV life cycle. To understand the interactive nature between convection and circulation, the moist version of the model is forced with intraseasonal SST anomalies.The linear models reproduce the major features of the BSISV seen in the reanalysis. The linear model suggests three new findings: (i) The circulation anomalies that develop as a Rossby wave response to suppressed convection over the equatorial Indian Ocean associated with the previous break phase of the BSISV results in low-level convergence and tropospheric moisture enhancement over the equatorial western Indian Ocean and helps trigger the next active phase of the BSISV. (ii) The development of convection over the tropical west Pacific forces descent anomalies to the west. This, in conjunction with the weakened cross-equatorial flow due to suppressed convective anomalies over the equatorial Indian Ocean, reduces

  17. General Purpose Heat Source Simulator

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2008-01-01

    The General Purpose Heat Source (GPHS) project seeks to combine the development of an electrically heated, single GPHS module simulator with the evaluation of potential nuclear surface power systems. The simulator is designed to match the form, fit, and function of actual GPHS modules which normally generate heat through the radioactive decay of Pu238. The use of electrically heated modules rather than modules containing Pu238 facilitates the testing of the subsystems and systems without sacrificing the quantity and quality of the test data gathered. Current GPHS activities are centered on developing robust heater designs with sizes and weights which closely match those of actual Pu238 fueled GPHS blocks. Designs are being pursued which will allow operation up to 1100 C.

  18. General Purpose Heat Source Simulator

    NASA Technical Reports Server (NTRS)

    Emrich, Bill

    2008-01-01

    The General Purpose Heat Source (GPHS) simulator project is designed to replicate through the use of electrical heaters, the form, fit, and function of actual GPHS modules which generate heat through the radioactive decay of Pu238. The use of electrically heated modules rather than modules containing Pu238 facilitates the testing of spacecraft subsystems and systems without sacrificing the quantity and quality of the test data gathered. Previous GPHS activities are centered around developing robust heater designs with sizes and weights that closely matched those of actual Pu238 fueled GPHS blocks. These efforts were successful, although their maximum temperature capabilities were limited to around 850 C. New designs are being pursued which also replicate the sizes and weights of actual Pu238 fueled GPHS blocks but will allow operation up to 1100 C.

  19. Reull Vallis Source Region

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] (Released 1 July 2002) The jumbled, chaotic terrain in this THEMIS image may represent a source region for the Reull Vallis, one of the larger channel systems in the southern hemisphere of Mars. Such regions of chaos are thought to form by the catastrophic release of groundwater. If this was the case, then the water would have flowed down gradient to the south and may have contributed to the formation of the Reull Vallis. The top of the image shows two short segments of channels that are interrupted by the chaos, demonstrating that there was a channel system in place before the ground foundered to produce the chaos. One of the more intriguing features seen among the jumbled blocks are narrow ledges that vaguely resemble bath tub rings in the way they conform to the topography. Two good examples are seen running roughly left-right across the image about a fourth of the way down. At first they appear to be layers protruding from the cliff faces, but upon closer inspection a more ledge-like character is evident. Note how they appear different between the south-facing and north facing cliffs. The occurrence of one of these features on the south-facing interior rim of the largest crater in the image but nowhere else around the rim argues against the idea that the ledges are due to a layer of rock cropping out throughout the landscape. Instead, they appear more like the edges of a layer of sediment that drapes the topography. It is possible that the sediment is mixed with ice and is best preserved in the shadowed portions of the terrain. There is no easy explanation for these unusual features. They represent one more Martian enigma.

  20. Heat sources for mantle plumes

    NASA Astrophysics Data System (ADS)

    Beier, C.; Rushmer, T.; Turner, S. P.

    2008-06-01

    Melting anomalies in the Earth's upper mantle have often been attributed to the presence of mantle plumes that may originate in the lower mantle, possibly from the core-mantle boundary. Globally, mantle plumes exhibit a large range in buoyancy flux that is proportional to their temperature and volume. Plumes with higher buoyancy fluxes should have higher temperatures and experience higher degrees of partial melting. This excess heat in mantle plumes could reflect either (1) an enrichment of the heat-producing elements (HPE: U, Th, K) in their mantle source leading to an increase of heat production by radioactive decay, (2) material transport from core to mantle (either advective or diffusive), or (3) conductive heat transport across the core-mantle boundary. The advective/diffusive transport of heat may result in a physical contribution of material from the core to the lower mantle. If core material is incorporated into the lower mantle, mantle plumes with a higher buoyancy flux should have higher core tracers, e.g., increased 186Os, 187Os, and Fe concentrations. Geophysical and dynamic modeling indicate that at least Afar, Easter, Hawaii, Louisville, and Samoa may all originate at the core-mantle boundary. These plumes encompass the whole range of known buoyancy fluxes from 0.9 Mg s-1 (Afar) to 8.7 Mg s-1 (Hawaii), providing evidence that the buoyancy flux is largely independent of other geophysical parameters. In an effort to explore whether the heat-producing elements are the cause of excess heat we looked for correlations between fractionation-corrected concentrations of the HPE and buoyancy flux. Our results suggest that there is no correlation between HPE concentrations and buoyancy flux (with and without an additional correction for variable degrees of partial melting). As anticipated, K, Th, and U are positively correlated with each other (e.g., Hawaii, Iceland, and Galapagos have significantly lower concentrations than, e.g., Tristan da Cunha, the Canary

  1. Ion plating with an induction heating source

    NASA Technical Reports Server (NTRS)

    Spalvins, T.; Brainard, W. A.

    1976-01-01

    Induction heating is introduced as an evaporation heat source in ion plating. A bare induction coil without shielding can be directly used in the glow discharge region with no arcing. The only requirement is to utilize an rf inductive generator with low operating frequency of 75 kHz. Mechanical simplicity of the ion plating apparatus and ease of operation is a great asset for industrial applications; practically any metal such as nickel, iron, and the high temperature refractories can be evaporated and ion plated.

  2. Multiple source ground heat storage

    NASA Astrophysics Data System (ADS)

    Belzile, P.; Lamarche, L.; Rousse, D. R.

    2016-09-01

    Sharing geothermal borefields is usually done with each borehole having the same inlet conditions (flow rate, temperature and fluid). The objective of this research is to improve the energy efficiency of shared and hybrid geothermal borefields by segregating heat transfer sources. Two models are briefly presented: The first model allows the segregation of the inlet conditions for each borefields; the second model allows circuits to be defined independently for each leg of double U-tubes in a borehole. An application couples residential heat pumps and arrays of solar collectors. Independent circuits configuration gave the best energy savings in a symmetric configuration, the largest shank spacing and with solar collectors functioning all year long. The boreholes have been shortened from 300 m to 150 m in this configuration.

  3. 30 CFR 57.4500 - Heat sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Heat sources. 57.4500 Section 57.4500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Installation/construction/maintenance § 57.4500 Heat sources. Heat sources capable of producing...

  4. 30 CFR 56.4500 - Heat sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Heat sources. 56.4500 Section 56.4500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Installation/construction/maintenance § 56.4500 Heat sources. Heat sources capable of producing...

  5. 30 CFR 57.4500 - Heat sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Installation/construction/maintenance § 57.4500 Heat sources. Heat sources capable of producing combustion... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Heat sources. 57.4500 Section 57.4500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY...

  6. 30 CFR 56.4500 - Heat sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Installation/construction/maintenance § 56.4500 Heat sources. Heat sources capable of producing combustion... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Heat sources. 56.4500 Section 56.4500 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY...

  7. Carbothermic reduction with parallel heat sources

    DOEpatents

    Troup, Robert L.; Stevenson, David T.

    1984-12-04

    Disclosed are apparatus and method of carbothermic direct reduction for producing an aluminum alloy from a raw material mix including aluminum oxide, silicon oxide, and carbon wherein parallel heat sources are provided by a combustion heat source and by an electrical heat source at essentially the same position in the reactor, e.g., such as at the same horizontal level in the path of a gravity-fed moving bed in a vertical reactor. The present invention includes providing at least 79% of the heat energy required in the process by the electrical heat source.

  8. Thulium heat sources for space power applications

    SciTech Connect

    Alderman, C.J.

    1992-05-01

    Reliable power supplies for use in transportation and remote systems will be an important part of space exploration terrestrial activities. A potential power source is available in the rare earth metal, thulium. Fuel sources can be produced by activating Tm-169 targets in the space station reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications located at remote sites such as weather stations. As the heat source in a dynamic Sterling or Brayton cycle system, the heat source can provide a lightweight power source for rovers or other terrestrial transportation systems.

  9. Thulium heat sources for space power application

    NASA Astrophysics Data System (ADS)

    Alderman, C. J.

    1992-10-01

    Reliable electrical power supplies for use in transportation and remote systems will be an important part of space exploration activities on planet surfaces. A potential power source is available through the use of thulium, a rare earth metal. Heat sources can be produced by neutron activation of naturally occurring thulium (Tm-169) targets in the base station nuclear power reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications systems located at remote sites. Combined with a dynamic Sterling or Brayton cycle conversion system, the heat source can power a lightweight electrical source for rovers or other surface transportation systems.

  10. Heat source reentry vehicle design study

    NASA Technical Reports Server (NTRS)

    Ryan, R. L.

    1971-01-01

    The design details are presented of a flight-type heat source reentry vehicle and heat exchanger compatible with the isotope Brayton power conversion system. The reference reentry vehicle and heat exchanger were modified, orbital and superorbital capability was assessed, and a complete set of detail design layout drawings were provided.

  11. Mini-Brayton heat source assembly development

    NASA Technical Reports Server (NTRS)

    Wein, D.; Zimmerman, W. F.

    1978-01-01

    The work accomplished on the Mini-Brayton Heat Source Assembly program is summarized. Required technologies to design, fabricate and assemble components for a high temperature Heat Source Assembly (HSA) which would generate and transfer the thermal energy for a spaceborne Brayton Isotope Power System (BIPS) were developed.

  12. The heat treating source book

    SciTech Connect

    Gupton, P.S.

    1986-01-01

    The first section of this book reviews current trends and is followed by an article describing how to design for lower cost and high-quality heat treatment. Two separate sections deal with ferrous materials and non-ferrous metals. Coverage includes stress-relief heat treating, normalizing and cold treating of steel; ultrahigh-strength steels; tool steels; maraging steels; austenitic stainless steels and cast irons, as well as aluminum alloys, titanium and its alloys, nickel-base superalloys, special purpose alloys and lead and its alloys. Other topics discussed are carburizing, carbonitriding and nitriding; vacuum methods; salt bath processing; methods of measuring case depth; and atmosphere control and nitrogen as all-purpose atmosphere. Also, information is provided on energy-efficient operations, production systems, selecting and handling quenching fluids, furnace control instrumentation, and guidelines for heat treating powdered metal parts.

  13. Pacific Regional Solar Heating Handbook. Second Edition.

    ERIC Educational Resources Information Center

    Writers' Development Trust, Toronto (Ontario).

    This handbook is intended as a guide for engineers, architects, and individuals familiar with heating and ventilating applications who wish to design a solar heating system for a residential or small commercial building in the Pacific Coast Region. The climate of the region is discussed by selected cities in terms of the effect of climate on solar…

  14. Source Contributions at Regional Distances

    DTIC Science & Technology

    1991-05-14

    turbidity, and source excitation can in some instances be recovered. High frequency RSTN data with bandwidths as high as 7 Hz are analyzed. The coda Q values...observations used in this study are seismograms from Nevada Test Site (NTS) nuclear explosions and earthquakes in the California/Gulf of California region. The...Yield estimates of Nevada Test Site explosions obtained from seismic Lg waves, J.Geophys.Res., 91, 2137-2151 Nuttli, O.W. (1988): Lg magnitudes and yield

  15. 21 CFR 872.6475 - Heat source for bleaching teeth.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Heat source for bleaching teeth. 872.6475 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6475 Heat source for bleaching teeth. (a) Identification. A heat source for bleaching teeth is an AC-powered device that consists of...

  16. 21 CFR 872.6475 - Heat source for bleaching teeth.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Heat source for bleaching teeth. 872.6475 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6475 Heat source for bleaching teeth. (a) Identification. A heat source for bleaching teeth is an AC-powered device that consists of...

  17. 21 CFR 872.6475 - Heat source for bleaching teeth.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6475 Heat source for bleaching teeth. (a) Identification. A heat source for bleaching teeth is an AC-powered device that consists of a... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Heat source for bleaching teeth. 872.6475...

  18. 21 CFR 872.6475 - Heat source for bleaching teeth.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6475 Heat source for bleaching teeth. (a) Identification. A heat source for bleaching teeth is an AC-powered device that consists of a... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Heat source for bleaching teeth. 872.6475...

  19. 21 CFR 872.6475 - Heat source for bleaching teeth.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6475 Heat source for bleaching teeth. (a) Identification. A heat source for bleaching teeth is an AC-powered device that consists of a... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Heat source for bleaching teeth. 872.6475...

  20. Reprint of : Thermoelectricity without absorbing energy from the heat sources

    NASA Astrophysics Data System (ADS)

    Whitney, Robert S.; Sánchez, Rafael; Haupt, Federica; Splettstoesser, Janine

    2016-08-01

    We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs - one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an "exotic" power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency.

  1. Optimal Ground Source Heat Pump System Design

    SciTech Connect

    Ozbek, Metin; Yavuzturk, Cy; Pinder, George

    2015-04-01

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  2. Source Region Identification Using Kernel Smoothing

    EPA Science Inventory

    As described in this paper, Nonparametric Wind Regression is a source-to-receptor source apportionment model that can be used to identify and quantify the impact of possible source regions of pollutants as defined by wind direction sectors. It is described in detail with an exam...

  3. Electron cyclotron resonance heating by magnetic filter field in a negative hydrogen ion source

    SciTech Connect

    Kim, June Young Cho, Won-Hwi; Dang, Jeong-Jeung; Chung, Kyoung-Jae Hwang, Y. S.

    2016-02-15

    The influence of magnetic filter field on plasma properties in the heating region has been investigated in a planar-type inductively coupled radio-frequency (RF) H{sup −} ion source. Besides filtering high energy electrons near the extraction region, the magnetic filter field is clearly observed to increase the electron temperature in the heating region at low pressure discharge. With increasing the operating pressure, enhancement of electron temperature in the heating region is reduced. The possibility of electron cyclotron resonance (ECR) heating in the heating region due to stray magnetic field generated by a filter magnet located at the extraction region is examined. It is found that ECR heating by RF wave field in the discharge region, where the strength of an axial magnetic field is approximately ∼4.8 G, can effectively heat low energy electrons. Depletion of low energy electrons in the electron energy distribution function measured at the heating region supports the occurrence of ECR heating. The present study suggests that addition of axial magnetic field as small as several G by an external electromagnet or permanent magnets can greatly increase the generation of highly ro-vibrationally excited hydrogen molecules in the heating region, thus improving the performance of H{sup −} ion generation in volume-produced negative hydrogen ion sources.

  4. Alternative Radioisotopes for Heat and Power Sources

    NASA Astrophysics Data System (ADS)

    Tinsley, T.; Sarsfield, M.; Rice, T.

    Production of 238Pu requires considerable facilities including a nuclear reactor and reprocessing plants that are very expensive to build and operate. Thus, a more economical alternative is very attractive to the industry. There are many alternative radioisotopes that exist but few that satisfy the criteria of performance, availability and cost to produce. Any alternative to 238Pu must exist in a chemical form that is compatible with the materials required to safely encapsulate the heat source at the high temperatures of operation and potential launch failure scenarios. The chemical form must also have suitable thermal properties to ensure maximum energy conversion efficiencies when integrated into radioisotope thermoelectric generators over the required mission durations. In addition, the radiation dose must be low enough for operators during production and not so prohibitive that excessive shielding mass is required on the space craft. This paper will focus on the preferred European alternative of 241Am, and the issues that will need to be addressed.

  5. Desalination using low grade heat sources

    NASA Astrophysics Data System (ADS)

    Gude, Veera Gnaneswar

    A new, low temperature, energy-efficient and sustainable desalination system has been developed in this research. This system operates under near-vacuum conditions created by exploiting natural means of gravity and barometric pressure head. The system can be driven by low grade heat sources such as solar energy or waste heat streams. Both theoretical and experimental studies were conducted under this research to evaluate and demonstrate the feasibility of the proposed process. Theoretical studies included thermodynamic analysis and process modeling to evaluate the performance of the process using the following alternate energy sources for driving the process: solar thermal energy, solar photovoltaic/thermal energy, geothermal energy, and process waste heat emissions. Experimental studies included prototype scale demonstration of the process using grid power as well as solar photovoltaic/thermal sources. Finally, the feasibility of the process in reclaiming potable-quality water from the effluent of the city wastewater treatment plant was studied. The following results have been obtained from theoretical analysis and modeling: (1) The proposed process can produce up to 8 L/d of freshwater for 1 m2 area of solar collector and evaporation chamber respectively with a specific energy requirement of 3122 kJ for 1 kg of freshwater production. (2) Photovoltaic/thermal (PV/T) energy can produce up to 200 L/d of freshwater with a 25 m2 PV/T module which meets the electricity needs of 21 kWh/d of a typical household as well. This configuration requires a specific energy of 3122 kJ for 1 kg of freshwater production. (3) 100 kg/hr of geothermal water at 60°C as heat source can produce up to 60 L/d of freshwater with a specific energy requirement of 3078 kJ for 1 kg of freshwater production. (4) Waste heat released from an air conditioning system rated at 3.25 kW cooling, can produce up to 125 L/d of freshwater. This configuration requires an additional energy of 208 kJ/kg of

  6. The heat source of the foehn revisited

    NASA Astrophysics Data System (ADS)

    Ólafsson, H.; Petersen, G. N.

    2012-04-01

    A large observational data set from Iceland is used to explore the connection between the heat surplus on the downstream side of mountains, upstream precipitation and elements of the atmospheric flow. A typical foehn case is also simulated and used to explore the role of precipitation and latent heat in heating the downstream flow. Some of the key findings are that latent heating appears not to be an important factor for heating the foehn in Iceland and that there is no clear relationship between upstream precipitation and downstream heating. The heating on the downstream side is attributed to descent of potentially warm air and insolation. The case study suggests that the latent heating may have an impact, however not through heating aloft, but through cooling at low levels and enhanced upstream blocking effect.

  7. Irregular spacing of heat sources for treating hydrocarbon containing formations

    DOEpatents

    Miller, David Scott [Katy, TX; Uwechue, Uzo Philip [Houston, TX

    2012-06-12

    A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

  8. Source region of low-speed wind

    NASA Technical Reports Server (NTRS)

    Watanabe, H.; Kojima, M.; Misawa, H.; Yamauchi, Y.

    1995-01-01

    We have been carrying out the interplanetary scintillation observations at a frequency of 327 MHz. The IPS measurements at this frequency can probe the distance range of 0.1-1 AU. We will report on source regions of the low-speed winds which were observed within 0.3 AU by the IPS method. The source regions of low-speed winds have been studied. In 1991, two spacecraft of Sakigake and IMP observed two low-speed streams in one solar rotation, which originated from a magnetic neutral line on the source surface. However speeds are slightly different from each other: one is 300 km/s while the other one is 400 km/s. Similar speed difference was also observed by the IPS method. We examined differences of these source regions in the soft X-ray images observed by the Yohkoh satellite. At the source region of the lower speed wind, sun spots were found under the neutral line, while nothing except the neutral line was found for the higher speed wind. We made a synoptic chart of the solar wind speeds which were observed within 0.3 AU. In this chart, compact regions of very low speed can be found clearly, and the amplitude of a low-speed belt is smaller than that of a magnetic neutral line. Distribution of the low-speed belt is rather suited above active regions than on a neutral line calculated by the potential field model.

  9. Thulium heat source: IR D project 91-031

    SciTech Connect

    Walter, C.E.; Kammeraad, J.E.; Newman, J.G.; Van Konynenburg, R.; VanSant, J.H.

    1991-04-10

    The goal of the Thulium Heat Source study is to determine the performance capability and evaluate the safety and environmental aspects of a thulium-170 heat source. Our approach is to study parametrically the performance of thulium-170 heat source designs in the power range of 5--50 kW{sub th}. At least three heat source designs will be characterized in this power range and integrated with various power conversion subsystems to assess their performance, mass, and volume. We will determine shielding requirements, and consider the safety and environmental aspects of their use.

  10. Air Source Cold Climate Heat Pump

    DTIC Science & Technology

    2013-08-01

    The buildings were modified so that one zone used the cold climate heat pump and the other zone used its original modern central HVAC system . Both...been updated with insulation, a sheet metal roof, and a modern central HVAC system . Both buildings had two zones for heating and cooling, which...climate heat pump and the other zone used its original modern central HVAC system . Both zones were instrumented so that energy consumption and

  11. Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    The LHP operating temperature is governed by the saturation temperature of its reservoir. Controlling the reservoir saturation temperature is commonly accomplished by cold biasing the reservoir and using electrical heaters to provide the required control power. Using this method, the loop operating temperature can be controlled within +/- 0.5K. However, because of the thermal resistance that exists between the heat source and the LHP evaporator, the heat source temperature will vary with its heat output even if LHP operating temperature is kept constant. Since maintaining a constant heat source temperature is of most interest, a question often raised is whether the heat source temperature can be used for LHP set point temperature control. A test program with a miniature LHP has been carried out to investigate the effects on the LHP operation when the control temperature sensor is placed on the heat source instead of the reservoir. In these tests, the LHP reservoir is cold-biased and is heated by a control heater. Tests results show that it is feasible to use the heat source temperature for feedback control of the LHP operation. Using this method, the heat source temperature can be maintained within a tight range for moderate and high powers. At low powers, however, temperature oscillations may occur due to interactions among the reservoir control heater power, the heat source mass, and the heat output from the heat source. In addition, the heat source temperature could temporarily deviate from its set point during fast thermal transients. The implication is that more sophisticated feedback control algorithms need to be implemented for LHP transient operation when the heat source temperature is used for feedback control.

  12. Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    Loop heat pipes (LHPs) have been used for thermal control of several NASA and commercial orbiting spacecraft. The LHP operating temperature is governed by the saturation temperature of its compensation chamber (CC). Most LHPs use the CC temperature for feedback control of its operating temperature. There exists a thermal resistance between the heat source to be cooled by the LHP and the LHP's CC. Even if the CC set point temperature is controlled precisely, the heat source temperature will still vary with its heat output. For most applications, controlling the heat source temperature is of most interest. A logical question to ask is: "Can the heat source temperature be used for feedback control of the LHP operation?" A test program has been implemented to answer the above question. Objective is to investigate the LHP performance using the CC temperature and the heat source temperature for feedback control

  13. Heat-source specification 500 watt(e) RTG

    SciTech Connect

    Not Available

    1983-02-01

    This specification establishes the requirements for a /sup 90/SrF/sub 2/ heat source and its fuel capsule for application in a 500 W(e) thermoelectric generator. The specification covers: fuel composition and quantity; the Hastelloy S fuel capsule material and fabrication; and the quality assurance requirements for the assembled heat source. (LCL)

  14. Effects of a Ground Source Heat Pump in Discontinuous Permafrost

    NASA Astrophysics Data System (ADS)

    Peterson, R.; Garber-Slaght, R.; Daanen, R. P.

    2015-12-01

    A ground source heat pump (GSHP) was installed in a discontinuous permafrost region of Fairbanks Alaska in 2013 with the primary aim of determining the effect of different ground cover options on the long-term subterranean temperature regime. Three different surface treatments were applied to separate loops of the GSHP; grass, sand, and gravel, and temperature monitoring was established at several depths above and below the heat sink loops. The GSHP has been actively utilized to supplement the heat in a hydronic heating system of a neighboring 5000 ft2 research facility. The ground immediately surrounding the GSHP was not permafrost when initially installed. Numerical modeling simulations were used to predict the long-term ground temperature regime surrounding the GSHP loops, and results indicate that permafrost would begin to form after the first year. A pseudo-steady state temperature regime would establish in approximately 8 years with a yearly fluctuation of -14°C to -2°C. Simulations also indicate that permafrost could be prevented with a 15 W/m recharge during the summer, such as from a solar thermal system. The ground surface treatments have negligible effect on the ground temperature below 1 meter and therefore have no long-term effect on the active region the GSHP. Data collected from thermistors in the two years since installation indicate that permafrost has not yet been established, although the ground is now becoming seasonally frozen due to the GSHP energy removal. Yearly average temperatures are declining, and extrapolation indicates that permafrost will establish in future years. The GSHP coefficient of performance (COP) was initially 3.6 and is declining with the decreasing ground temperatures. Economic modeling indicates that the system may become uneconomical in future years, although volatile energy costs have a substantial effect of the prediction.

  15. Io: Volcanic thermal sources and global heat flow

    NASA Astrophysics Data System (ADS)

    Veeder, Glenn J.; Davies, Ashley Gerard; Matson, Dennis L.; Johnson, Torrence V.; Williams, David A.; Radebaugh, Jani

    2012-06-01

    We have examined thermal emission from 240 active or recently-active volcanic features on Io and quantified the magnitude and distribution of their volcanic heat flow during the Galileo epoch. We use spacecraft data and a geological map of Io to derive an estimate of the maximum possible contribution from small dark areas not detected as thermally active but which nevertheless appear to be sites of recent volcanic activity. We utilize a trend analysis to extrapolate from the smallest detectable volcanic heat sources to these smallest mapped dark areas. Including the additional heat from estimates for "outburst" eruptions and for a multitude of very small ("myriad") hot spots, we account for ˜62 × 1012 W (˜59 ± 7% of Io's total thermal emission). Loki Patera contributes, on average, 9.6 × 1012 W (˜9.1 ± 1%). All dark paterae contribute 45.3 × 1012 W (˜43 ± 5%). Although dark flow fields cover a much larger area than dark paterae, they contribute only 5.6 × 1012 W (˜5.3 ± 0.6%). Bright paterae contribute ˜2.6 × 1012 W (˜2.5 ± 0.3%). Outburst eruption phases and very small hot spots contribute no more than ˜4% of Io's total thermal emission: this is probably a maximum value. About 50% of Io's volcanic heat flow emanates from only 1.2% of Io's surface. Of Io's heat flow, 41 ± 7.0% remains unaccounted for in terms of identified sources. Globally, volcanic heat flow is not uniformly distributed. Power output per unit surface area is slightly biased towards mid-latitudes, although there is a stronger bias toward the northern hemisphere when Loki Patera is included. There is a slight favoring of the northern hemisphere for outbursts where locations were well constrained. Globally, we find peaks in thermal emission at ˜315°W and ˜105°W (using 30° bins). There is a minimum in thermal emission at around 200°W (almost at the anti-jovian longitude) which is a significant regional difference. These peaks and troughs suggest a shift to the east from

  16. Natural Convection Above A Horizontal Heat Source

    DTIC Science & Technology

    1993-03-01

    surface was a thermochromic liquid crystal (TLC) sheet. Used to ensure a smooth flat surface, the sheet also provided a visualization of the temperature...a flat horizontal heated surface surrounded by an unheated area. This can contribute significantly to studies in liquid immersion cooling...Gebhart, B., "The Transition of Plane Plumes," Int. J. Heat Mass Transfer, v.18., pp. 513-526, 1975. 13. Gaiser, A.O., "Natural Convection Liquid

  17. An analysis of the vapor flow and the heat conduction through the liquid-wick and pipe wall in a heat pipe with single or multiple heat sources

    NASA Technical Reports Server (NTRS)

    Chen, Ming-Ming; Faghri, Amir

    1990-01-01

    A numerical analysis is presented for the overall performance of heat pipes with single or multiple heat sources. The analysis includes the heat conduction in the wall and liquid-wick regions as well as the compressibility effect of the vapor inside the heat pipe. The two-dimensional elliptic governing equations in conjunction with the thermodynamic equilibrium relation and appropriate boundary conditions are solved numerically. The solutions are in agreement with existing experimental data for the vapor and wall temperatures at both low and high operating temperatures.

  18. Heating the sun's lower transition region with fine-scale electric currents

    NASA Technical Reports Server (NTRS)

    Rabin, D.; Moore, R.

    1984-01-01

    Analytical and observational data are presented to show that the lower transition zone, a 100 km thick region at 10,000-200,000 K between the solar chromosphere and corona, is heated by local electric currents. The study was spurred by correlations between the enhanced atmospheric heating and magnetospheric flux in the chromospheric network and active regions. Field aligned current heated flux loops are asserted to mainly reside in and make up most of the transition region. It is shown that thermal conduction from the sides of hot gas columns generated by the current dissipation is the source of the observed temperature distribution in the transition regions.

  19. Monitoring and evaluating ground-source heat pump. Final report

    SciTech Connect

    Stoltz, S.V.; Cade, D.; Mason, G.

    1996-05-01

    This report presents the measured performance of four advanced residential ground-source heat pump (GSHP) systems. The GSHP systems were developed by WaterFurnace International to minimize the need for electric resistance backup heating and featured multiple speed compressors, supplemental water heating, and at most sites, multiple-speed fans. Detailed data collected for a complete year starting in June 1994 shows that the advanced design is capable of maintaining comfort without the use of electric resistance backup heating. In comparison with a conventional air-source heat pump, the advanced-design GSHP reduced peak heating demand by more than 12 kilowatts (kW) per residence and provided energy savings. The report describes the cooling and heating season operation of the systems, including estimated seasonal efficiency, hours of operation, and load profiles for average days and peak days. The electrical energy input, cooling output, and efficiency are presented as a function of return air temperature and ground loop temperature.

  20. Ground Source Heat Pump Computational Results

    DOE Data Explorer

    James Menart

    2013-07-31

    This data submission includes simulation results for ground loop heat pump systems located in 6 different cities across the United States. The cities are Boston, MA, Dayton, OH, Omaha, NE, Orlando, FL, Sacramento, CA, and St. Paul, MN. These results were obtained from the two-dimensional geothermal computer code called GEO2D. GEO2D was written as part of this DOE funded grant. The results included in this submission for each of the 6 cities listed above are: 1) specific information on the building being heated or cooled by the ground loop geothermal system, 2) some extreme values for the building heating and cooling loads during the year, 3) the inputs required to carry out the simulation, 4) a plot of the hourly building heating and cooling loads throughout the year, 5) a plot of the fluid temperature exiting the ground loop for a 20 year period, 6) a plot of the heat exchange between the ground loop and the ground for a 20 year period, and 7) ground and ground loop temperature contour plots at different times of the year for the 20 year period.

  1. DUAL HEATED ION SOURCE STRUCTURE HAVING ARC SHIFTING MEANS

    DOEpatents

    Lawrence, E.O.

    1959-04-14

    An ion source is presented for calutrons, particularly an electrode arrangement for the ion generator of a calutron ion source. The ion source arc chamber is heated and an exit opening with thermally conductive plates defines the margins of the opening. These plates are electrically insulated from the body of the ion source and are connected to a suitable source of voltage to serve as electrodes for shaping the ion beam egressing from the arc chamber.

  2. Studies of heat source driven natural convection

    NASA Technical Reports Server (NTRS)

    Kulacki, F. A.; Nagle, M. E.; Cassen, P.

    1974-01-01

    Natural convection energy transport in a horizontal layer of internally heated fluid with a zero heat flux lower boundary, and an isothermal upper boundary, has been studied. Quantitative information on the time-mean temperature distribution and the fluctuating component of temperature about the mean temperature in steady turbulent convection are obtained from a small thermocouple inserted into the layer through the upper bounding plate. Data are also presented on the development of temperature at several vertical positions when the layer is subject to both a sudden increase and to a sudden decrease in power input. For changes of power input from zero to a value corresponding to a Rayleigh number much greater than the critical linear stability theory value, a slight hysteresis in temperature profiles near the upper boundary is observed between the heat-up and cool-down modes.

  3. Heat sources in proton exchange membrane (PEM) fuel cells

    NASA Astrophysics Data System (ADS)

    Ramousse, Julien; Lottin, Olivier; Didierjean, Sophie; Maillet, Denis

    In order to model accurately heat transfer in PEM fuel cell, a particular attention had to be paid to the assessment of heat sources in the cell. Although the total amount of heat released is easily computed from its voltage, local heat sources quantification and localization are not simple. This paper is thus a discussion about heat sources/sinks distribution in a single cell, for which many bold assumptions are encountered in the literature. The heat sources or sinks under consideration are: (1) half-reactions entropy, (2) electrochemical activation, (3) water sorption/desorption at the GDL/membrane interfaces, (4) Joule effect in the membrane and (5) water phase change in the GDL. A detailed thermodynamic study leads to the conclusion that the anodic half-reaction is exothermic (Δ Sr ev a = - 226 J mo l-1 K-1) , instead of being athermic as supposed in most of the thermal studies. As a consequence, the cathodic half-reaction is endothermic (Δ Sr ev c = + 62.8 J mo l-1 K-1) , which results in a heat sink at the cathode side, proportional to the current. In the same way, depending on the water flux through the membrane, sorption can create a large heat sink at one electrode and an equivalent heat source at the other. Water phase change in the GDL - condensation/evaporation - results in heat sources/sinks that should also be taken into account. All these issues are addressed in order to properly set the basis of heat transfer modeling in the cell.

  4. Arena retrofit includes ground-source heat pump

    SciTech Connect

    Hodgson, S.F.

    1996-01-01

    The venue for Sacramento`s first professional basketball games was the {open_quotes}old Arco Arena,{close_quotes} built in 1985 just north of the downtown area and converted to offices after a large, permanent arena was constructed. In 1994, the {open_quotes}old arena{close_quotes} was acquired by a California general partnership called Del Paso Venture. To heat and cool the 3-story, 211,000-square foot structure, Del Paso has installed a ground-source heat pump system. The project is significant for the ground-source heat pump industry, because this is the first ground-source heat pump site ever designed specifically for the energy load of the building it will serve. Other projects have been calculated by rule-of-thumb. The installation and cost of the heat pump system are discussed.

  5. Solar-assisted water-source heat pump

    NASA Astrophysics Data System (ADS)

    1982-03-01

    The usefulness of a collector array is to be extended to year-round usage by using the collectors to reject heat at night during the summer. A water source heat pump is used to cool a home by rejecting heat to water which is then held in a storage tank. At night the warm water is pumped through the collectors for radiative cooling. Two complete systems are being installed to demonstrate feasibility. One part of the system has been completed and tested.

  6. Detailed Specifications for Global Heat Treatment Sourcing and Materials

    NASA Astrophysics Data System (ADS)

    Sponzilli, Jared; Sponzilli, John

    2013-07-01

    The very nature of global sourcing means that components must carry clear and detailed specifications for material, heat treatment, and test methods. Qualified global heat treat facilities can achieve good control of not only the common features such as surface and gradient hardness, but also of microstructure, core hardness, residual stress, and other critical metallurgical parameters. This paper will discuss a new concept for material specifications and more detailed heat treatment specifications for the global marketplace.

  7. Oceanic heat sources to Pine Island Bay

    NASA Astrophysics Data System (ADS)

    Mazloff, M. R.; Gilroy, A. R.; Gille, S. T.; Subramanian, A. C.

    2012-12-01

    The rapid melting of Pine Island Glacier, West Antarctica has been attributed to increased basal melting of its grounded ice-shelf. Recent work suggests that an increased ocean heat supply to Pine Island Bay (PIB) is responsible for this increased melting. There is no consensus, however, on the origin of this increased ocean heat. We use a 2008-2010 state estimate of the Southern Ocean to diagnose the heat budget on the PIB continental shelf. In times of minimal sea-ice coverage, air-sea fluxes dominate the budget. Sea-ice is present over much of the year, however, and on average advection and parameterized small-scale mixing are equally important. The average air-sea fluxes and small scale mixing both act to cool the continental shelf waters, while advection by the large-scale circulation tends to warm these waters. The warmest waters are found on the eastern PIB continental shelf where bathymetric features cause increased advective fluxes and mixing. The average circulation along the PIB continental shelf is eastward consisting of approximately 1 Sv along shelf flow augmented by 1 Sv of across shelf flow to be balanced by a 2 Sv outflow along the eastern PIB shelf. Numerical simulations of passive tracer releases reveal the advective pathways of these waters that reach the continental shelf.

  8. Thulium heat source IR D Project 91-031

    SciTech Connect

    Walter, C.E.; Kammeraad, J.E.; Newman, J.G.; Van Konynenburg, R.; VanSant, J.H.

    1991-01-01

    The goal of the Thulium Heat Source study is to determine the performance capability and evaluate the safety and environmental aspects of a thulium-170 heat source. Thulium-170 has several attractive features, including the fact that it decays to a stable, chemically innocuous isotope in a relatively short time. A longer-range goal is to attract government funding for the development, fabrication, and demonstration testing in an Autonomous Underwater Vehicle (AUV) of one or more thulium isotope power (TIP) prototype systems. The approach is to study parametrically the performance of thulium-170 heat source designs in the power range of 5-50 kW{sub th}. At least three heat source designs will be characterized in this power range to assess their performance, mass, and volume. The authors will determine shielding requirements, and consider the safety and environmental aspects of their use.

  9. DE 1 particle and wave observations in an AKR source region

    NASA Astrophysics Data System (ADS)

    Menietti, J. D.; Burch, J. L.

    Near the AKR source region wave-particle interactions appear to have modified the observed electron distributions. We compare the observations to those predicted by recently published numerical simulations. Observations of electron distributions indicate a region of perpendicular heating (T⊥/T∥>10) adjacent to and within the source region. Loss cones, trapped particles, beams, and electron conical distributions are also observed near and within the source region, which extends perpendicular to the magnetic field line for at least 20 km in a density cavity. The high altitude plasma instrument on board the DE 1 satellite was operating during a near crossing of the AKR source in the nightside auroral region.

  10. DE 1 particle and wave observations in Auroral Kilometric Radiation (AKR) source regions

    NASA Astrophysics Data System (ADS)

    Menietti, J. D.; Burch, J. L.; Winglee, R. M.; Gurnett, D. A.

    1993-04-01

    The high-altitude plasma instrument on board the DE 1 satellite was operating during several near crossings of the AKR source in the nightside auroral region. Observations of electron distributions indicate a region of perpendicular heating adjacent to, and within, the source region. Loss cones, trapped particles, beams, and electron conical distributions are also observed near and within the source region, which extends perpendicular to the magnetic field line for at least 20 km. Near the AKR source region wave-particle interactions appear to have modified the observed electron distributions. We compare the observations to those predicted by recently published numerical simulations.

  11. Study Of Heating Of The Base Region Of A Rocket

    NASA Technical Reports Server (NTRS)

    Ascoli, Edward P.; Heiba, Adel A.; Hsu, Yann-Fu; Lagnado, Ronald R.; Lynch, Edward D.; Ungewitter, Ronald J.

    1994-01-01

    Report describes theoretical study of heating in base region of proposed rocket called "NLS 1.5 stage reference vehicle." Study employed approach based on computational fluid dynamics (CFD). Involved numerical simulations of flow field in base region and in main exhaust plume of cluster of six engines with heat shields.

  12. [Sources of Methane in the Boreal Region

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In determining the global methane budget the sources of methane must be balanced with the sinks and atmospheric inventory. The approximate contribution of the different methane sources to the budget has been establish showing the major terrestrial inputs as rice, wetlands, bogs, fens, and tundra. Measurements and modeling of production in these sources suggest that temperature, water table height and saturation along with substratum composition are important in controlling methane production and emission. The isotopic budget of 13 C and D/H in methane can be used as a tool to clarify the global budget. This approach has achieved success at constraining the inputs. Studies using the isotopic approach place constraints on global methane production from different sources. Also, the relation between the two biogenic production pathways, acetate fermentation and CO2 reduction, and the effect of substratum composition can be made using isotope measurements shows the relation between the different biogenic, thermogenic and anthropogenic sources of methane as a function of the carbon and hydrogen isotope values for each source and the atmosphere, tropospheric composition. Methane emissions from ponds and fens are a significant source in the methane budget of the boreal region. An initial study in 1993 and 1994 on the isotopic composition of this methane source and the isotopic composition in relation to oxidation of methane at the sediment surface of the ponds or fen was conducted as part of our BOREAS project. The isotopic composition of methane emitted by saturated anoxic sediment is dependent on the sediment composition and geochemistry, but will be influenced by in situ oxidation, in part, a function of rooted plant activity. The influence of oxidation mediated by rooted plant activities on the isotopic composition of methane is not well known and will depend on the plant type, sediment temperature, and numerous other variables. Information on this isotopic composition

  13. Correlating equations for impingement cooling of small heat sources with multiple circular liquid jets

    NASA Astrophysics Data System (ADS)

    Womac, D. J.; Incropera, F. P.; Ramadhyani, S.

    1994-05-01

    Experiments were performed to investigate single-phase heat transfer from a 12.7 mm x 12.7 mm heat source to 2 x 2 and 3 x 3 arrays of free-surface and submerged jets. The objective was to study the efficacy of using arrays of free surface or submerged liquid jets to cool a small, chip-like heat source. The data are correlated by obtaining area-weighted combinations of separate correlations associated with impingement and wall jet region.

  14. Tests confirm gas heat as monoxide source

    SciTech Connect

    Besch, E.

    1984-03-01

    Six tests were conducted to demonstrate the potential for natural gas or oil-fired forced warm air heating equipment to produce carbon monoxide emission when the combustion process is impeded by typical causes found in households. In the case of the gas-fired units, impeded combustion produced a smell of aldehyde and various levels of carbon monoxide emission; all within the level dangerous to health. It was concluded that oil-fired warm air systems do not pose a carbon monoxide danger but that natural gas warm air systems do pose a real danger and should be so identified.

  15. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    SciTech Connect

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers.

  16. [Urban heat island effect based on urban heat island source and sink indices in Shenyang, Northeast China].

    PubMed

    Li, Li-Guang; Xu, Shen-Lai; Wang, Hong-Bo; Zhao, Zi-Qi; Cai, Fu; Wu, Jin-Wen; Chen, Peng-Shi; Zhang, Yu-Shu

    2013-12-01

    Based on the remote images in 2001 and 2010, the source and sink areas of urban heat island (UHI) in Shenyang City, Northeast China were determined by GIS technique. The effect of urban regional landscape pattern on UHI effect was assessed with land surface temperature (LST), area rate index (CI) of the source and sink areas and intensity index (LI) of heat island. The results indicated that the land use type changed significantly from 2001 to 2010, which significantly changed the source and sink areas of UHI, especially in the second and third circle regions. The source and sink areas were 94.3% and 5.7% in the first circle region, 64.0% and 36.0% in the third circle region in 2001, while they were 93.4% and 6.6%, 70.2% and 29.8% in 2010, respectively. It suggested that the land use pattern extended by a round shape in Shenyang led to the corresponding UHI pattern. The LST in the study area tended to decrease from the first circle region to the third. The UHI intensity was characterized with a single center in 2001 and with several centers in 2010, and the grade of UHI intensity was in a decreasing trend from 2001 to 2010. The absolute value of CI increased from the first circle region to the third, and the L1 was close to 1, suggesting the change in land use pattern had no significant influence on UHI in Shenyang.

  17. Air Source Heat Pumps for Cold Climate Applications: Recent U. S. R&D Results from IEA HPP Annex 41

    SciTech Connect

    Baxter, Van D; Groll, Dr. Eckhard A.; Shen, Bo

    2014-01-01

    Air source heat pumps are easily applied to buildings almost anywhere. They are widespread in milder climate regions but their use in cold regions is hampered due to low efficiency and heating capacity at cold outdoor temperatures. This article describes selected R&D activities aimed at improving their cold weather performance.

  18. Melt segregation from partially molten source regions - The importance of melt density and source region size

    NASA Technical Reports Server (NTRS)

    Stolper, E.; Hager, B. H.; Walker, D.; Hays, J. F.

    1981-01-01

    An investigation is conducted regarding the changes expected in the density contrast between basic melts and peridotites with increasing pressure using the limited data available on the compressibilities of silicate melts and data on the densities of mantle minerals. It is concluded that since compressibilities of silicate melts are about an order of magnitude greater than those of mantle minerals, the density contrast between basic melts and mantle minerals must diminish significantly with increasing pressure. An earlier analysis regarding the migration of liquid in partially molten source regions conducted by Walker et al. (1978) is extended, giving particular attention to the influence of the diminished density contrast between melt and residual crystals with increasing source region depth and to the influence of source region size. This analysis leads to several generalizations concerning the factors influencing the depths at which magmas will segregate from their source regions and the degrees of partial melting that can be achieved in these source regions before melt segregation occurs.

  19. Mini-Brayton heat source assembly design study. Volume 2: Titan 3C mission. [minimum weight modifications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Major conclusions of the space shuttle heat source assembly study are reported that project a minimum weight design for a Titan 3 C synchronous orbit mission; requirements to recover the heat source in orbit are eliminated. This concept permits location of the heat source end enclosure supports and heat source assembly support housing in a low temperature region external to the insulation enclosure and considers titanium and beryllium alloys for these support elements. A high melting insulation blanket consisting of nickel foil coated with zirconia, or of gold foil separated with glass fiber layers, is selected to provide emergency cooling in the range 2000 to 2700 F to prevent the isotope heat source from reaching unsafe temperatures. A graphic view of the baseline heat source assembly is included.

  20. Wood heating handbook. Great Lakes Regional Biomass Energy Program

    SciTech Connect

    Not Available

    1985-01-01

    After reviews of the early history of the use of wood in house heating in the US, this manual has chapters on wood combustion, wood combustion equipment, sizing of wood combustion units, sizing and choosing a chimney, chimney connectors, installation of woodstove heating systems, installation of central wood heating systems, and operation and maintenance practices. Some of this information and recommendations may be hard to find in other information sources. Considerable emphasis is given to safety and fire prevention considerations. (LTN)

  1. Ground Source Geothermal District Heating and Cooling System

    SciTech Connect

    Lowe, James William

    2016-10-21

    Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reduce worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx

  2. Single particle sources and quantum heat fluctuations

    NASA Astrophysics Data System (ADS)

    Battista, F.

    2014-10-01

    The miniaturisation of electronic devices has been a well-known trend in engineering over almost 50 years. The technological advancement in the field can now provide an astonishing control of charge transport in mesoscopic structures. Single particle pumping, namely the control in time and space of the flow of an arbitrarily small number of electrons or holes, has been realised in various kind of structure with, in some cases, very high accuracies. The first half of the manuscript provides a brief overview of different experimental realisations of single particle sources. Though these devices allow to minimise charge fluctuations in the charge current, because of Heisenberg's uncertainty principle, the emitted particles are characterised by energy fluctuations. The consequences of it are of great relevance and presented in the second part of the paper.

  3. Complex source description of focal regions.

    PubMed

    Monzon, Cesar; Forester, Donald W; Moore, Peter

    2006-04-01

    Closed-form solutions of the two-dimensional homogeneous wave equation are presented that provide focal-region descriptions corresponding to a converging bundle of rays. The solutions do have evanescent wave content and can be described as a source-sink pair or particle-antiparticle pair, collocated in complex space, with the complex location being critical in the determination of beam shape and focal region size. The wave solutions are not plagued by singularities, have a finite energy, and have a limitation on how small the focal size can get, with a penalty for limiting small spot sizes in the form of impractically high associated reactive energy. The electric-field-defined spot-size limiting value is 0.35lambda x 0.35lambda, which is about 38% of the Poynting-vector-defined minimum spot size (0.8lambda x 0.4lambda) and corresponds to a condition related to the maximum possible beam angle. A multiple set of solutions is introduced, and the elementary solutions are used to produce new solutions via superposition, resulting in fields with chiral character or with increased depth of focus. We do not claim generality, as the size of focal regions exhibited by the closed-form solutions has a lower bound and hence is not able to account for Pendry's "ideal lens" scenario.

  4. Feasibility of drying system using waste heat as the heating source

    NASA Astrophysics Data System (ADS)

    Xie, M. N.; Shi, Y. L.; Chen, L. X.

    2016-08-01

    In this study, a wastewater heat pump system was proposed and its thermal performance was analyzed. The proposed system includes two evaporators: an air-source evaporator and a water-source evaporator. The air-source evaporator absorbs heat from the moist hot air which exhaust from the drying oven. The water-source evaporator absorbs heat from the waste water, while the waste water recovers heat from the mechanical energy, which was produced by cutting and polishing in stone production. The thermodynamic model was developed to evaluate the performance of the proposed system. The energetic analysis was carried out to investigate the influences of the temperature of fresh air. The results show significantly higher energy efficiency, compact-sized and energy-saving compared with the system which uses air as the heat source. Among the seven of alternative refrigerants (R152a, R123, R1234yf, R1234ze, R600a, R22 and R600) investigated, R123 was suggested to be used in this heat pump for its high heating efficiency, inflammable, very low ODP(Ozone Depletion Potential) and GWP(Global warming potential).

  5. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect

    Ghafghazi, Saeed; Sowlati, T.; Sokhansanj, Shahabaddine; Melin, Staffan

    2011-03-01

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these

  6. Diffusion of Heat from a Line Source in Isotropic Turbulence

    NASA Technical Reports Server (NTRS)

    Uberoi, Mahinder S; Corrsin, Stanley

    1953-01-01

    An experimental and analytical study has been made of some features of the turbulent heat diffusion behind a line heated wire stretched perpendicular to a flowing isotropic turbulence. The mean temperature distributions have been measured with systematic variations in wind speed, size of turbulence-producing grid, and downstream location of heat source. The nature of the temperature fluctuation field has been studied. A comparison of Lagrangian and Eulerian analyses for diffusion in a nondecaying turbulence yields an expression for turbulent-heat-transfer coefficient in terms of turbulence velocity and a Lagrangian "scale." the ratio of Eulerian to Lagrangian microscale has been determined theoretically by generalization of a result of Heisenberg and with arbitrary constants taken from independent sources, shows rough agreement with experimental results. A convenient form has been deduced for the criterion of interchangeability of instantaneous space and time derivatives in a flowing turbulence.

  7. Assessment of dynamic energy conversion systems for radioisotope heat sources

    SciTech Connect

    Thayer, G.R.; Mangeng, C.A.

    1985-06-01

    The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745/sup 0/C, and case III with a BOL source temperature of 945/sup 0/C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of /sup 238/Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass.

  8. Performance Analysis of a Ground Source Heat Pump System Using Mine Water as Heat Sink and Source

    SciTech Connect

    Liu, Xiaobing; Malhotra, Mini; Walburger, Adam; Skinner, Jack L.; Blackketter, Donald M.

    2016-06-01

    This paper summarizes a case study of an innovative ground source heat pump (GSHP) system that uses flooded mines as a heat source and heat sink. This GSHP system provides space conditioning to a 56,000 sq ft2(5,203 m2) newly constructed research facility, in conjunction with supplementary existing steam heating and air-cooled chiller systems. Heat transfer performance and overall efficiency of the GSHP system were analysed using the available measured data from January through July 2014. The performance analysis identified some issues with using mine water for cooling and the integration of the GSHP system with the existing steam heating system. Recommendations were made to improve the control and operation of the GSHP system. These recommendations, in conjunction with the available measured data, were used to predict the annual energy use of the system. Finally, the energy and cost savings and CO2 emission reduction potential of the GSHP system were estimated by comparing with a baseline scenario. This case study provides insights into the performance of and potential issues with the mine-water source heat pump system, which is relatively under-explored compared to other GSHP system designs and configurations.

  9. Performance Analysis of a Ground Source Heat Pump System Using Mine Water as Heat Sink and Source

    DOE PAGES

    Liu, Xiaobing; Malhotra, Mini; Walburger, Adam; ...

    2016-06-01

    This paper summarizes a case study of an innovative ground source heat pump (GSHP) system that uses flooded mines as a heat source and heat sink. This GSHP system provides space conditioning to a 56,000 sq ft2(5,203 m2) newly constructed research facility, in conjunction with supplementary existing steam heating and air-cooled chiller systems. Heat transfer performance and overall efficiency of the GSHP system were analysed using the available measured data from January through July 2014. The performance analysis identified some issues with using mine water for cooling and the integration of the GSHP system with the existing steam heating system.more » Recommendations were made to improve the control and operation of the GSHP system. These recommendations, in conjunction with the available measured data, were used to predict the annual energy use of the system. Finally, the energy and cost savings and CO2 emission reduction potential of the GSHP system were estimated by comparing with a baseline scenario. This case study provides insights into the performance of and potential issues with the mine-water source heat pump system, which is relatively under-explored compared to other GSHP system designs and configurations.« less

  10. TEM Pump With External Heat Source And Sink

    NASA Technical Reports Server (NTRS)

    Nesmith, Bill J.

    1991-01-01

    Proposed thermoelectric/electromagnetic (TEM) pump driven by external source of heat and by two or more heat pipe radiator heat sink(s). Thermoelectrics generate electrical current to circulate liquid metal in secondary loop of two-fluid-loop system. Intended for use with space and terrestrial dual loop liquid metal nuclear reactors. Applications include spacecraft on long missions or terrestrial beacons or scientific instruments having to operate in remote areas for long times. Design modified to include multiple radiators, converters, and ducts, as dictated by particular application.

  11. Effect of distributed heat source on low frequency thermoacoustic instabilities

    NASA Astrophysics Data System (ADS)

    Li, Lei; Yang, Lijun; Sun, Xiaofeng

    2013-06-01

    The problem of thermoacoustic instabilities in the combustor of modern air-breathing engines has become a topic of concern, which occurs as a result of unstable coupling between the heat release fluctuations and acoustic perturbations. A three-dimensional thermoacoustic model including the distributed non-uniform heat source and non-uniform flow is developed based on the domain decomposition spectral method. The importance of distributed heat source on combustion instabilities of longitudinal modes is analyzed with the help of a simplified geometrical configuration of combustor. The results show that the longitudinal distribution of heat source has a crucial effect on instabilities. In addition, the effect of circumferentially non-uniform heat source and non-uniform flow on longitudinal instabilities is also investigated. It can be found that the influence of circumferential non-uniformity can become significant on the lowest frequency instabilities, in particular, the oscillation frequency and growth rate are all evidently affected by temperature non-uniformity and time delay non-uniformity.

  12. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    PubMed

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  13. Quantum heat fluctuations of single-particle sources.

    PubMed

    Battista, F; Moskalets, M; Albert, M; Samuelsson, P

    2013-03-22

    Optimal single electron sources emit regular streams of particles, displaying no low-frequency charge current noise. Because of the wave packet nature of the emitted particles, the energy is, however, fluctuating, giving rise to heat current noise. We investigate theoretically this quantum source of heat noise for an emitter coupled to an electronic probe in the hot-electron regime. The distribution of temperature and potential fluctuations induced in the probe is shown to provide direct information on the single-particle wave function properties and display strong nonclassical features.

  14. Alpha particle heating at comet-solar wind interaction regions

    NASA Technical Reports Server (NTRS)

    Sharma, A. S.; Papadopoulos, K.

    1995-01-01

    The satellite observations at comet Halley have shown strong heating of solar wind alpha particles over an extended region dominated by high-intensity, low-frequency turbulence. These waves are excited by the water group pickup ions and can energize the solar wind plasma by different heating processes. The alpha particle heating by the Landau damping of kinetic Alfven waves and the transit time damping of low-frequency hydromagnetic waves in this region of high plasma beta are studied in this paper. The Alfven wave heating was shown to be the dominant mechanism for the observed proton heating, but it is found to be insufficient to account for the observed alpha particle heating. The transit time damping due to the interaction of the ions with the electric fields associated with the magnetic field compressions of magnetohydrodynamic waves is found to heat the alpha particles preferentially over the protons. Comparison of the calculated heating times for the transit time damping with the observations from comet Halley shows good agreement. These processes contribute to the thermalization of the solar wind by the conversion of its directed energy into the thermal energy in the transition region at comet-solar wind interaction.

  15. Characterization of Pu-238 Heat Source Granule Containment

    SciTech Connect

    Richardson, Paul Dean II; Sanchez, Joey Leo; Wall, Angelique Dinorah; Chavarria, Rene

    2015-02-11

    The Milliwatt Radioisotopic Themoelectric Generator (RTG) provides power for permissive-action links. Essentially these are nuclear batteries that convert thermal energy to electrical energy using a doped silicon-germanium thermopile. The thermal energy is provided by a heat source made of 238Pu, in the form of 238PuO2 granules. The granules are contained by 3 layers of encapsulation. A thin T-111 liner surrounds the 238PuO2 granules and protects the second layer (strength member) from exposure to the fuel granules. An outer layer of Hastalloy-C protects the T-111 from oxygen embrittlement. The T-111 strength member is considered the critical component in this 238PuO2 containment system. Any compromise in the strength member seen during destructive testing required by the RTG surveillance program is characterized. The T-111 strength member is characterized through Scanning Electron Microscopy (SEM), and Metallography. SEM is used in the Secondary Electron mode to reveal possible grain boundary deformation and/or cracking in the region of the strength member weld. Deformation and cracking uncovered by SEM are further characterized by Metallography. Metallography sections are mounted and polished, observed using optical microscopy, then documented in the form of microphotographs. SEM mat further be used to examine polished Metallography mounts to characterize elements using the SEM mode of Energy Dispersive X-ray spectroscopy (EDS).

  16. Lunar heat flow: Regional prospective of the Apollo landing sites

    NASA Astrophysics Data System (ADS)

    Siegler, M. A.; Smrekar, S. E.

    2014-01-01

    reexamine the Apollo Heat Flow Experiment in light of new orbital data. Using three-dimensional thermal conduction models, we examine effects of crustal thickness, density, and radiogenic abundance on measured heat flow values at the Apollo 15 and 17 sites. These models show the importance of regional context on heat flux measurements. We find that measured heat flux can be greatly altered by deep subsurface radiogenic content and crustal density. However, total crustal thickness and the presence of a near-surface radiogenic-rich ejecta provide less leverage, representing only minor (<1.5 mW m-2) perturbations on surface heat flux. Using models of the crust implied by Gravity Recovery and Interior Laboratory results, we found that a roughly 9-13 mW m-2 mantle heat flux best approximate the observed heat flux. This equates to a total mantle heat production of 2.8-4.1 × 1011 W. These heat flow values could imply that the lunar interior is slightly less radiogenic than the Earth's mantle, perhaps implying that a considerable fraction of terrestrial mantle material was incorporated at the time of formation. These results may also imply that heat flux at the crust-mantle boundary beneath the Procellarum potassium, rare earth element, and phosphorus (KREEP) Terrane (PKT) is anomalously elevated compared to the rest of the Moon. These results also suggest that a limited KREEP-rich layer exists beneath the PKT crust. If a subcrustal KREEP-rich layer extends below the Apollo 17 landing site, required mantle heat flux can drop to roughly 7 mW m-2, underlining the need for future heat flux measurements outside of the radiogenic-rich PKT region.

  17. Multicharged iron ions produced by using induction heating vapor source.

    PubMed

    Kato, Yushi; Kubo, Takashi; Muramatsu, Masayuki; Tanaka, Kiyokatsu; Kitagawa, Atsushi; Yoshida, Yoshikazu; Asaji, Toyohisa; Sato, Fuminobu; Iida, Toshiyuki

    2008-02-01

    Multiply charged Fe ions are produced from solid pure material in an electron cyclotron resonance (ECR) ion source. We develop an evaporator by using induction heating with an induction coil which is made of bare molybdenum wire partially covered by ceramic beads in vacuum and surrounding and heating directly the pure Fe rod. Heated material has no contact with insulators, so that outgas is minimized. The evaporator is installed around the mirror end plate outside of the ECR plasma with its hole grazing the ECR zone. Helium or argon gas is usually chosen for supporting gas. The multicharged Fe ions up to Fe(13+) are extracted from the opposite side of mirror and against the evaporator, and then multicharged Fe ion beam is formed. We compare production of multicharged iron ions by using this new source with our previous methods.

  18. A reference heat source for solar collector thermal testing

    NASA Astrophysics Data System (ADS)

    Harrison, S. J.; Bernier, M. A.

    1984-12-01

    A direct-comparison reference heat source (RHS), used for testing liquid-based solar collectors, is described. A major advantage of the RHS is its capability to measure the product of mass flow and specific heat directly in the test loop. Calibration tests are performed on two reference heat sources over a range of flowrates and inlet temperatures normally encountered in flat-plate solar collector testing (10 C to 95 C). It is shown that at low flowrates (less than or equal to 0.008 kg/s), localized boiling may introduce errors if the heater power density is not reduced as well, whereas operation at flowrates greater than 0.05 kg/s reduces the temperature rise across the RHS, increasing temperature measurement uncertainty. To achieve satisfactory results with an RHS, a stable inlet temperature, good flowrate control, and regulation of the power supplied to the heater are required.

  19. Role of Internal Heat Source for Eruptive Plumes on Triton

    NASA Technical Reports Server (NTRS)

    Duxbury, N. S.; Brown, R. H.

    1996-01-01

    For the first time the role of the internal heat source, due to radioactive decay in Triton's core, is investigate with respect to geyser-like plumes...A new mechanism of energy supply to the Tritonian eruptive plumes is proposed...We present the critical values of these parameters for Triton. A possible origin of the subsurface vents on Triton is also suggested.

  20. EnergyPlus Air Source Integrated Heat Pump Model

    SciTech Connect

    Shen, Bo; Adams, Mark B.; New, Joshua Ryan

    2016-03-30

    This report summarizes the development of the EnergyPlus air-source integrated heat pump model. It introduces its physics, sub-models, working modes, and control logic. In addition, inputs and outputs of the new model are described, and input data file (IDF) examples are given.

  1. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    SciTech Connect

    Mittereder, N.; Poerschke, A.

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

  2. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    SciTech Connect

    Mittereder, Nick; Poerschke, Andrew

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season.

  3. Self-Heating Effects In Polysilicon Source Gated Transistors

    PubMed Central

    Sporea, R. A.; Burridge, T.; Silva, S. R. P.

    2015-01-01

    Source-gated transistors (SGTs) are thin-film devices which rely on a potential barrier at the source to achieve high gain, tolerance to fabrication variability, and low series voltage drop, relevant to a multitude of energy-efficient, large-area, cost effective applications. The current through the reverse-biased source barrier has a potentially high positive temperature coefficient, which may lead to undesirable thermal runaway effects and even device failure through self-heating. Using numerical simulations we show that, even in highly thermally-confined scenarios and at high current levels, self-heating is insufficient to compromise device integrity. Performance is minimally affected through a modest increase in output conductance, which may limit the maximum attainable gain. Measurements on polysilicon devices confirm the simulated results, with even smaller penalties in performance, largely due to improved heat dissipation through metal contacts. We conclude that SGTs can be reliably used for high gain, power efficient analog and digital circuits without significant performance impact due to self-heating. This further demonstrates the robustness of SGTs. PMID:26351099

  4. Numerical analysis of heat exchange processes for the ground source heat pump system

    NASA Astrophysics Data System (ADS)

    Saito, H.; Muto, H.; Moritani, S.; Kohgo, Y.; Hamamoto, S.; Takemura, T.; Ohnishi, J.; Komatsu, T.

    2012-12-01

    Ground source heat pump systems (GSHP) use ground or groundwater as a heat source. They can achieve much higher coefficient of performance (COP) than conventional air source heat pump systems because the temperature of the ground is much more stable than that of the air. Heat energy in the ground is then viewed as one of the renewable energy sources. GSHP has been receiving great interests among countries in North America and Western Europe, as well as some developed countries in Asia because it can potentially reduce energy consumption and greenhouse gas emission. While GSHP can inject heat from the buildings to the ground for cooling during the summer, it can pump heat stored in the ground for heating during the winter. As some physical, chemical, and biological properties of the ground and groundwater are temperature dependent, running GSHP can eventually affect groundwater quality. The main objective of this project was to develop a model that allows predicting not only ground and groundwater temperatures but also changes in physical, chemical, and biological properties of ground and groundwater with GSHP under operations. This particular study aims at simulating heat exchange and transfer processes in the ground for a vertical-loop closed GSHP system. In the closed GSHP system, an anti-freezing solution is circulated inside the closed-loop tube, called U-tube, that is buried in the ground. Heat is then transferred to the anti-freezing solution in the U-tube by a heat exchanger. In this study we used HYDRUS to predict temperature of the anti-freezing solution, as well as that of the ground. HYDRUS allows one to simulate variably-saturated water flow and solute and heat transport in porous media numerically in two- and three-dimensional domains with great flexibility in defining boundary conditions. At first changes in anti-freezing solution temperatures measured were predicted in response to Thermal Response Test (TRT) conducted at our study site. Then, heat

  5. Solar-assisted water-source heat pump

    NASA Astrophysics Data System (ADS)

    1983-01-01

    The construction of two solar assisted water source heat pump systems to evaluate the use of night sky radiation using standard solar collectors is reported. The design of the system's controller is described, and project efforts are summarized. The procedure involved in the determination of the feasibility of night sky radiation as the means of rejecting heat through solar collectors for a sample house is reported. Conclusions on different types of coatings that are used on solar collectors are presented. A system and its backup are designed and cooling tower and night sky radiation are compared.

  6. Enhanced heat transfer in the entrance region of microchannels

    SciTech Connect

    Gui, F.; Scaringe, R.P.

    1995-12-31

    A detailed heat transfer analysis has been performed on the data from previously-reported experiments (Rahman and Gui 1993) to investigate the characteristics of high-heat-flux (10{sup 6} W/m{sup 2}) microchannel cooling in electronic chips. The use of microchannel directly etched into a silicon wafer has shortened the cooling path and improved the performance by significantly minimizing the thickness of the heat transfer layer. Experimental convective heat transfer coefficients (up to 45 kW/m{sup 2} K) for low temperature single-phase flow was an order of magnitude higher than conventional heat transfer coefficients; and reached the level of two-phase boiling heat transfer. The flow and heat transfer modes and their transitions in the experiments were investigated. The influence of the microchannel passage geometry, fluid property variation, and the fluid flow mode on the local Nusselt number in the entrance region of the microchannel has been analyzed. The analysis indicates that the significant enhancement obtained in microchannel cooling results from four key aspects: a thinner thermal boundary layer, entry effects, the roughness of the channel, and strong pre-existing turbulence at the inlet. The preexisting turbulence delayed the formation of the thermal boundaries, thereby increasing the entry effects on heat transfer. The critical Re shifted from 2,300 to 1,400 in microchannels, possibly due to the wall roughness which does not affect the Re{sub c} otherwise in normal size tubes.

  7. Diagnostics of Coronal Heating in Active-region Loops

    NASA Astrophysics Data System (ADS)

    Fludra, A.; Hornsey, C.; Nakariakov, V. M.

    2017-01-01

    Understanding coronal heating remains a central problem in solar physics. Many mechanisms have been proposed to explain how energy is transferred to and deposited in the corona. We summarize past observational studies that attempted to identify the heating mechanism and point out the difficulties in reproducing the observations of the solar corona from the heating models. The aim of this paper is to study whether the observed extreme ultraviolet (EUV) emission in individual coronal loops in solar active regions can provide constraints on the volumetric heating function, and to develop a diagnostic for the heating function for a subset of loops that are found close to static thermal equilibrium. We reconstruct the coronal magnetic field from Solar Dynamics Observatory/HMI data using a nonlinear force-free magnetic field model. We model selected loops using a one-dimensional stationary model, with a heating rate dependent locally on the magnetic field strength along the loop, and we calculate the emission from these loops in various EUV wavelengths for different heating rates. We present a method to measure a power index β defining the dependence of the volumetric heating rate EH on the magnetic field, {E}H\\propto {B}β , and controlling also the shape of the heating function: concentrated near the loop top, uniform and concentrated near the footpoints. The diagnostic is based on the dependence of the electron density on the index β. This method is free from the assumptions of the loop filling factor but requires spectroscopic measurements of the density-sensitive lines. The range of applicability for loops of different length and heating distributions is discussed, and the steps to solving the coronal heating problem are outlined.

  8. Desiccant Humidity Control System Using Waste Heat of Water Source Heat Pump

    NASA Astrophysics Data System (ADS)

    Wada, Kazuki; Mashimo, Kouichi; Takahashi, Mikio; Tanaka, Kitoshi; Toya, Saburo; Tateyama, Ryotaro; Miyamoto, Kazuhiro; Yamaguchi, Masahiro

    The authors hope to develop an air-conditioning system that processes the latent heat load and the sensible heat load separately. This would enable the efficiency of the chilling unit to be improved because the temperature of the chilled water used for cooling would be higher than normal. However, if lukewarm water is used, there is insufficient cooling and dehumidification. Therefore, a dehumidifier such as a desiccant air-conditioning system is needed. Using the waste heat generated when the desiccant air-conditioning system is in operation increases efficiency. The authors are developing a prototype desiccant humidity control system that makes use of the waste heat generated by a water source heat pump. This paper describes the results of an experiment that was conducted for this prototype based on the assumption that it would be installed in an office building. The dehumidification performance achieved was sufficient to process the indoor latent heat load. The prototype was able to adjust the indoor relative humidity from 40% to 60% under conditions in which the indoor latent heat load varied. Humidification without the use of water was possible even in the absence of an indoor latent heat load when the outdoor absolute humidity was 3.5 g/kg' or more.

  9. Evidence for an Additional Heat Source in the Warm Ionized Medium of Galaxies

    NASA Astrophysics Data System (ADS)

    Reynolds, R. J.; Haffner, L. M.; Tufte, S. L.

    1999-11-01

    Spatial variations of the [S II]/Hα and [N II]/Hα line intensity ratios observed in the gaseous halo of the Milky Way and other galaxies are inconsistent with pure photoionization models. They appear to require a supplemental heating mechanism that increases the electron temperature at low densities, ne. This would imply that in addition to photoionization, which has a heating rate per unit volume proportional to n2e, there is another source of heat with a rate per unit volume proportional to a lower power of ne. One possible mechanism is the dissipation of interstellar plasma turbulence, which, according to Minter & Spangler, heats the ionized interstellar medium in the Milky Way at a rate of ~1×10-25ne ergs cm-3 s-1. If such a source were present, it would dominate over photoionization heating in regions where ne<~0.1 cm-3, producing the observed increases in the [S II]/Hα and [N II]/Hα intensity ratios at large distances from the galactic midplane as well as accounting for the constancy of [S II]/[N II], which is not explained by pure photoionization. Other supplemental heating sources, such as magnetic reconnection, cosmic rays, or photoelectric emission from small grains, could also account for these observations, provided they supply ~10-5 ergs s-1 per square centimeter of the Galactic disk to the warm ionized medium.

  10. The impact of municipal waste combustion in small heat sources

    NASA Astrophysics Data System (ADS)

    Vantúch, Martin; Kaduchová, Katarína; Lenhard, Richard

    2016-06-01

    At present there is a tendency to make greater use for heating houses for burning solid fuel, such as pieces of wood, coal, coke, local sources of heat to burn natural gas. This tendency is given both the high price of natural gas as well as the availability of cheaper solid fuel. In many cases, in the context saving heating costs, respectively in the context of the disposal of waste is co-incinerated with municipal solid fuels and wastes of different composition. This co entails increased production emissions such as CO (carbon monoxide), NOx (nitrogen oxides), particulate matter (particulate matter), PM10, HCl (hydrogen chloride), PCDD/F (polychlorinated dibenzodioxins and dibenzofurans), PCBs (polychlorinated biphenyls) and others. The experiment was focused on the emission factors from the combustion of fossil fuels in combination with municipal waste in conventional boilers designed to burn solid fuel.

  11. Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels

    SciTech Connect

    Ames, Forrest; Kingery, Joseph E.

    2015-06-17

    A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edge test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs

  12. Soft electrons as a possible heat source for Jupiter's thermosphere

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.; Dessler, A. J.

    1977-01-01

    The 850 K exospheric temperature inferred for Jupiter from the radio-occultation experiments on Pioneers 10 and 11 is shown to imply a heat input of 0.25-0.5 erg/sq cm/sec. One possible source of this energy is precipitation of electrons from a warm plasma (temperature corresponding to energies of the order of 30-500 eV). A mechanism is suggested wherein the presence of this plasma can be accounted for by centrifugal acceleration and adiabatic compression of ionospheric electrons and protons. Present ideas of the source strength of ionospheric plasma, however, give heating rates that are too small by one to two orders of magnitude, although inferences from direct plasma measurements suggest that the required plasma is indeed present.

  13. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    SciTech Connect

    Rice, C Keith; Uselton, Robert B.; Shen, Bo; Baxter, Van D; Shrestha, Som S

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  14. North Village Ground Source Heat Pump Demonstration Project

    SciTech Connect

    Redderson, Jeff

    2015-08-03

    This project demonstrated the feasibility of converting from a traditional direct exchange system to a ground source heat pump system on a large scale, multiple building apartment complex on a university campus. A total of ten apartment buildings were converted using vertical well fields and a ground source loop that connected the 24 apartments in each building into a common system. The system has yielded significant operational savings in both energy and maintenance and transformed the living environments of these residential buildings for our students.

  15. New Source Performance Standards in Region 7

    EPA Pesticide Factsheets

    New Source Performance Standards (NSPS) are applicable requirements under the Title V operating permit program. This is a resource for permit writers and reviewers to learn about the rules and explore other helpful tools.

  16. A vortex-source combination, a source, and a vortex with distributed heat supply

    NASA Astrophysics Data System (ADS)

    Kucherov, A. N.

    1983-04-01

    An analysis is made of the effect of distributed heat supply on the gasdynamic characteristics of a vortex-source (vortex-sink) combination, a source (sink), and a vortex. It is shown that in all the cases considered, there is a minimum radius for which the radial component of M is equal to unity. It is also shown that there is a critical intensity of heat release (for a fixed similarity parameter) separating two families of integral curves and that for this critical value a solution exists only under certain conditions.

  17. Estimation of human heat loss in five Mediterranean regions.

    PubMed

    Bilgili, M; Simsek, E; Sahin, B; Yasar, A; Ozbek, A

    2015-10-01

    This study investigates the effects of seasonal weather differences on the human body's heat losses in the Mediterranean region of Turkey. The provinces of Adana, Antakya, Osmaniye, Mersin and Antalya were chosen for the research, and monthly atmospheric temperatures, relative humidity, wind speed and atmospheric pressure data from 2007 were used. In all these provinces, radiative, convective and evaporative heat losses from the human body based on skin surface and respiration were analyzed from meteorological data by using the heat balance equation. According to the results, the rate of radiative, convective and evaporative heat losses from the human body varies considerably from season to season. In all the provinces, 90% of heat loss was caused by heat transfer from the skin, with the remaining 10% taking place through respiration. Furthermore, radiative and convective heat loss through the skin reached the highest values in the winter months at approximately between 110 and 140W/m(2), with the lowest values coming in the summer months at roughly 30-50W/m(2).

  18. Lunar Surface Stirling Power Systems Using Isotope Heat Sources

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2010-01-01

    For many years, NASA has used the decay of plutonium-238 (Pu-238) (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTGs), which have provided electrical power for many NASA missions. While RTGs have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency and the scarcity of plutonium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14.75 Earth days), isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 W with two GPHS modules at the beginning of life (BOL) (32% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a four-fold reduction in the number of GPHS modules. This study considers the use of americium-241 (Am-241) as a substitute for the Pu-238 in Stirling- convertor-based Radioisotope Power Systems (RPS) for power levels from tens of watts to 5 kWe. The Am-241 is used as a substitute for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about one-fifth while maintaining approximately the same system mass. In order to obtain the nominal 160 W of electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot

  19. Urban heat islands in the subsurface as sustainable source for geothermal energy

    NASA Astrophysics Data System (ADS)

    Menberg, Kathrin; Bayer, Peter; Blum, Philipp

    2014-05-01

    heating capacity of the thermal anomalies in the subsurface of the individual cities. The potential heat content of the individual aquifers, which accumulated in the aquifer, could cover the space heating of the studied cities for 1.6-4.5 years. The evaluation of the heat flux processes in Cologne and Karlsruhe shows, that the heat loss from basements and heat input from increased GST are the dominant heat sources, while the other processes are only of minor importance for the regional subsurface warming. However, site-specific heat sources, such as sewage leakages or reinjections of thermal waste water are found to cause pronounced local heat anomalies. The overall annual thermal energy input into the urban aquifer accounts up to 2.4 PJ for the study area in Cologne and 1.5 PJ in Karlsruhe. Thus, nearly 20% of the space heating demand in Karlsruhe could theoretically be covered sustainably by recycling the annual anthropogenic heat input into the urban aquifer.

  20. Searching for Compact Radio Sources Associated with UCHII Regions

    NASA Astrophysics Data System (ADS)

    Masqué, Josep M.; Rodríguez, Luis F.; Trinidad, Miguel A.; Kurtz, Stan; Dzib, Sergio A.; Rodríguez-Rico, Carlos A.; Loinard, Laurent

    2017-02-01

    Ultra-compact (UC)H ii regions represent a very early stage of massive star formation. The structure and evolution of these regions are not yet fully understood. Interferometric observations showed in recent years that compact sources of uncertain nature are associated with some UCH ii regions. To examine this, we carried out VLA 1.3 cm observations in the A configuration of selected UCH ii regions in order to report additional cases of compact sources embedded in UCH ii regions. With these observations, we find 13 compact sources that are associated with 9 UCH ii regions. Although we cannot establish an unambiguous nature for the newly detected sources, we assess some of their observational properties. According to the results, we can distinguish between two types of compact sources. One type corresponds to sources that are probably deeply embedded in the dense ionized gas of the UCH ii region. These sources are photoevaporated by the exciting star of the region and will last for 104–105 years. They may play a crucial role in the evolution of the UCH ii region as the photoevaporated material could replenish the expanding plasma and might provide a solution to the so-called lifetime problem of these regions. The second type of compact sources is not associated with the densest ionized gas of the region. A few of these sources appear resolved and may be photoevaporating objects such as those of the first type, but with significantly lower mass depletion rates. The remaining sources of this second type appear unresolved, and their properties are varied. We speculate on the similarity between the sources of the second type and those of the Orion population of radio sources.

  1. Investigation of Hypersonic Laminar Heating Augmentation in the Stagnation Region

    NASA Technical Reports Server (NTRS)

    Marineau, Eric C.; Lewis, Daniel R.; Smith, Michael S.; Lafferty, John F.; White, Molly E.; Amar, Adam J.

    2012-01-01

    Laminar stagnation region heating augmentation is investigated in the AEDC Tunnel 9 at Mach 10 by performing high frequency surface pressure and heat transfer measurements on the Orion CEV capsule at zero degree angle-of-attack for unit Reynolds numbers between 0.5 and 15 million per foot. Heating augmentation increases with Reynolds number, but is also model size dependent as it is absent on a 1.25-inch diameter model at Reynolds numbers where it reaches up to 15% on a 7-inch model. Heat transfer space-time correlations on the 7-inch model show that disturbances convect at the boundary layer edge velocity and that the streamwise integral scale increases with distance. Therefore, vorticity amplification due to stretching and piling-up in the stagnation region appears to be responsible for the stagnation point heating augmentation on the larger model. This assumption is reinforced by the f(exp -11/3) dependence of the surface pressure spectrum compared to the f(exp -1) dependence in the free stream. Vorticity amplification does not occur on the 1.25- inch model because the disturbances are too large. Improved free stream fluctuation measurements will be required to determine if significant vorticity is present upstream or mostly generated behind the bow shock.

  2. Observations of cold ion heating inside the magnetospheric separatrix region

    NASA Astrophysics Data System (ADS)

    Toledo Redondo, Sergio; Andre, Mats; Vaivads, Andris; Khotyaintsev, Yuri; Lavraud, Benoit; Graham, Daniel; Divin, Andrey; Aunai, Nicolas

    2016-04-01

    Several studies have shown that cold ions (energies up to tens of eV) of ionospheric origin can be found in different regions of the magnetosphere, including the dayside magnetopause. They can be very abundant, up to ~100 cc, e.g. plasmaspheric plumes, and become the dominant population of the magnetosphere. Cold ions, when present, participate in magnetic reconnection at the dayside magnetopause, mass loading the magnetospheric side and adding a new length-scale into the system owing to their smaller gyroradius. At the same time, reconnection accelerates and heats the cold ions. Based on multi-spacecraft observations, we report observations of cold ion heating inside the separatrix region when reconnection is ongoing and study the mechanisms that energize the cold ions. The heating is not always observed and our observations indicate that cold ion heating is more effective next to the X-line. We find that large electric field gradients and wave-particle interactions are consistent with the heating observed.

  3. Ground-source heat pump case studies and utility programs

    SciTech Connect

    Lienau, P.J.; Boyd, T.L.; Rogers, R.L.

    1995-04-01

    Ground-source heat pump systems are one of the promising new energy technologies that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to consumers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school and commercial building applications. In order to verify the performance, information was collected for 253 case studies from mainly utilities throughout the United States. The case studies were compiled into a database. The database was organized into general information, system information, ground system information, system performance, and additional information. Information was developed on the status of demand-side management of ground-source heat pump programs for about 60 electric utility and rural electric cooperatives on marketing, incentive programs, barriers to market penetration, number units installed in service area, and benefits.

  4. Heated birthing pools as a source of Legionnaires' disease.

    PubMed

    Collins, S L; Afshar, B; Walker, J T; Aird, H; Naik, F; Parry-Ford, F; Phin, N; Harrison, T G; Chalker, V J; Sorrell, S; Cresswell, T

    2016-03-01

    In June 2014 Public Health England confirmed a case of Legionnaires' disease (LD) in a neonate following birth at home in a hired birthing pool incorporating a heater and a recirculation pump which had been filled in advance of labour. The case triggered a public health investigation and a microbiological survey of an additional ten heated birthing pools hired or recently hired to the general public across England. The birthing pool used by the parent of the confirmed case was identified as the source of the neonate's infection following detection of Legionella pneumophila ST48 in both patient and environmental samples. Legionella species were detected by quantitative polymerase chain reaction but not culture in a further three pools together with other opportunistic pathogens identified by culture and matrix-assisted laser desorption ionization-time of flight (MALDI-ToF) mass spectrometry. A Patient Safety Alert from NHS England and Public Health England was issued stating that heated birthing pools filled in advance of labour should not be used for home births. This recommendation remains in place. This investigation in conjunction with other recent reports has highlighted a lack of awareness regarding the microbiological safety of heated birthing pools and their potential to be a source of LD and other opportunistic infections. Furthermore, the investigation raised important considerations with regards to microbiological sampling and testing in such incidents. Public health authorities and clinicians should consider LD in the differential diagnosis of severe respiratory infection in neonates within 14 days of a water birth.

  5. A multiple step random walk Monte Carlo method for heat conduction involving distributed heat sources

    NASA Astrophysics Data System (ADS)

    Naraghi, M. H. N.; Chung, B. T. F.

    1982-06-01

    A multiple step fixed random walk Monte Carlo method for solving heat conduction in solids with distributed internal heat sources is developed. In this method, the probability that a walker reaches a point a few steps away is calculated analytically and is stored in the computer. Instead of moving to the immediate neighboring point the walker is allowed to jump several steps further. The present multiple step random walk technique can be applied to both conventional Monte Carlo and the Exodus methods. Numerical results indicate that the present method compares well with finite difference solutions while the computation speed is much faster than that of single step Exodus and conventional Monte Carlo methods.

  6. Formation of the lunar crust - An electrical source of heating

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.; Colburn, D. S.; Schwartz, K.

    1975-01-01

    A model for formation of the lunar crust based on heating by electrical induction is explored, while adherence is maintained to certain constraints associated with existing models of the solar system. The heating mechanism is based on eddy current induction from disordered magnetic fields swept outwards by an intense (T Tauri-like) plasma flow from the sun. The electrical theory is an alternative to intense short-period accretion as a source of heat for the evolution of lunar maria and highlands, provided that long-lived radioactives are not swept to the surface from too large a melt volume during the initial thermal episode. This formation of the lunar highlands does not intrinsically require rapid accretion, nor on this basis is the time of formation of the planets generally restricted to a very short time. The threshold temperature for eddy current heating is attained by either a solar nebula at 300-400 C during formation of the moon or a very low energy long-period accumulation of the moon, both leading to melting in ten to the fifth to ten to the seventh power years.

  7. EVIDENCE OF IMPULSIVE HEATING IN ACTIVE REGION CORE LOOPS

    SciTech Connect

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2010-11-01

    Using a full spectral scan of an active region from the Extreme-Ultraviolet Imaging Spectrometer (EIS) we have obtained emission measure EM(T) distributions in two different moss regions within the same active region. We have compared these with theoretical transition region EMs derived for three limiting cases, namely, static equilibrium, strong condensation, and strong evaporation from Klimchuk et al. The EM distributions in both the moss regions are strikingly similar and show a monotonically increasing trend from log T[K] = 5.15-6.3. Using photospheric abundances, we obtain a consistent EM distribution for all ions. Comparing the observed and theoretical EM distributions, we find that the observed EM distribution is best explained by the strong condensation case (EM{sub con}), suggesting that a downward enthalpy flux plays an important and possibly dominant role in powering the transition region moss emission. The downflows could be due to unresolved coronal plasma that is cooling and draining after having been impulsively heated. This supports the idea that the hot loops (with temperatures of 3-5 MK) seen in the core of active regions are heated by nanoflares.

  8. Isotope heat source simulator for testing of space power systems

    NASA Technical Reports Server (NTRS)

    Prok, G. M.; Smith, R. B.

    1973-01-01

    A reliable isotope heat source simulator was designed for use in a Brayton power system. This simulator is composed of an electrically heated tungsten wire which is wound around a boron nitride core and enclosed in a graphite jacket. Simulator testing was performed at the expected operating temperature of the Brayton power system. Endurance testing for 5012 hours was followed by cycling the simulator temperature. The integrity of this simulator was maintained throughout testing. Alumina beads served as a diffusion barrier to prevent interaction between the tungsten heater and boron nitride core. The simulator was designed to maintain a surface temperature of 1311 to 1366 K (1900 to 2000 F) with a power input of approximately 400 watts. The design concept and the materials used in the simulator make possible man different geometries. This flexibility increases its potential use.

  9. Low Temperature Heat Source Utilization Current and Advanced Technology

    SciTech Connect

    Anderson, James H. Jr.; Dambly, Benjamin W.

    1992-06-01

    Once a geothermal heat source has been identified as having the potential for development, and its thermal, physical, and chemical characteristics have been determined, a method of utilization must be decided upon. This compendium will touch upon some of these concerns, and hopefully will provide the reader with a better understanding of technologies being developed that will be applicable to geothermal development in East Africa, as well as other parts of the world. The appendices contain detailed reports on Down-the-Well Turbo Pump, The Vapor-Turbine Cycle for Geothermal Power Generation, Heat Exchanger Design for Geothermal Power Plants, and a Feasibility Study of Combined Power and Water Desalting Plant Using Hot Geothermal Water. [DJE-2005

  10. The depths of the mare basalt source region

    NASA Technical Reports Server (NTRS)

    Binder, A. B.

    1985-01-01

    Chemical data for the parental magmas of the nine known VLT Array I pyroclastic glasses show statistically significant trends due to olivine (approximately Fo83) control during their formation by partial melting. The compositional scatter is largely due to compositional variations in the source regions on the + or - 1 percent level. This compositional scatter is small when one considers that the scale of the source region is up to 1000 km, but is sufficient to make positive identification of the residual phase(s) in the source regions difficult. Nevertheless, when the effects of the scatter are properly modeled, it is relatively clear that olivine is the residual phase in the source region. Hence these data and additional constraints indicate that the source regions are at shallow depths in the moon.

  11. F2-region atmospheric gravity waves due to high-power HF heating and subauroral polarization streams

    NASA Astrophysics Data System (ADS)

    Mishin, E.; Sutton, E.; Milikh, G.; Galkin, I.; Roth, C.; Förster, M.

    2012-06-01

    We report the first evidence of atmospheric gravity waves (AGWs) generated in the F2 region by high-power HF heating and subauroral polarization streams. Data come from the CHAMP and GRACE spacecraft overflying the High-frequency Active Auroral Research Program (HAARP) heating facility. These observations facilitate a new method of studying the ionosphere-thermosphere coupling in a controlled fashion by using various HF-heating regimes. They also reveal the subauroral F2 region to be a significant source of substorm AGWs, in addition to the well-known auroral E region.

  12. Anomalous electron heating effects on the E region ionosphere in TIEGCM

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Wang, Wenbin; Oppenheim, Meers; Dimant, Yakov; Wiltberger, Michael; Merkin, Slava

    2016-03-01

    We have recently implemented a new module that includes both the anomalous electron heating and the electron-neutral cooling rate correction associated with the Farley-Buneman Instability (FBI) in the thermosphere-ionosphere electrodynamics global circulation model (TIEGCM). This implementation provides, for the first time, a modeling capability to describe macroscopic effects of the FBI on the ionosphere and thermosphere in the context of a first-principle, self-consistent model. The added heating sources primarily operate between 100 and 130 km altitude, and their magnitudes often exceed auroral precipitation heating in the TIEGCM. The induced changes in E region electron temperature in the auroral oval and polar cap by the FBI are remarkable with a maximum Te approaching 2200 K. This is about 4 times larger than the TIEGCM run without FBI heating. This investigation demonstrates how researchers can add the important effects of the FBI to magnetosphere-ionosphere-thermosphere models and simulators.

  13. Source regions and water release mechanisms of Martian Valley Networks

    NASA Astrophysics Data System (ADS)

    Jaumann, R.; Reiss, D.; Sander, T.; Gwinner, K.; Roatsch, T.; Matz, K.-D.; Hauber, E.; Mertens, V.; Hoffmann, H.; Neukum, G.; HRSC Co-Investigator Team

    Martian valley networks have been cited as the best evidence that Mars maintained flow of liquid water across the surface. Although internal structures associated with a fluvial origin within valleys like inner channels, terraces, slip-off and undercut slopes are extremely rare on Mars (Carr and Malin, 2000) such features can be identified in high-resolution imagery (e.g. Malin and Edgett, 2001; Jaumann et al., 2005). However, besides internal features the source regions are an important indicator for the flow processes in Martian valleys because they define the drainage area and thus constrain the amount of available water for eroding the valley network. Furthermore, the morphology of the source regions and their topographic characteristics provide information about the origin of the water. On Mars valley networks are thought to be formed by retreating erosion where the water is supplied from the sub-surface. However, the mechanisms that are responsible for the release of ground water are poorly understood. The three dimensional highly resolved data of the High Resolution Stereo Camera (HRSC) on the Mars Express Mission (Neukum et al., 2004) allow the detailed examination of valley network source regions. A valley network in the western Lybia Montes region valley between 1.4°N to 3.5°N and 81.6°E to 82.5°E originates at a highland mountain region and drains down to Isidis Planitia over a distance of 400 km. Most of its distance the valley exhibits an interior channel that allows to constraint discharge and erosion budgets (Jaumann, et al., 2005). The valley was formed in the Noachian/Hesperian between 3.7 and 3.3 billion years. However, discharge and erosion budgets restrict the erosion time to a few million years in total, indicating single events rather than continuous flow over long periods. The source region of the valley is covered by a series of lava flows. Even the upstream part of the valley is covered by lava flows that cover the interior channel

  14. [Regional atmospheric environment risk source identification and assessment].

    PubMed

    Zhang, Xiao-Chun; Chen, Wei-Ping; Ma, Chun; Zhan, Shui-Fen; Jiao, Wen-Tao

    2012-12-01

    Identification and assessment for atmospheric environment risk source plays an important role in regional atmospheric risk assessment and regional atmospheric pollution prevention and control. The likelihood exposure and consequence assessment method (LEC method) and the Delphi method were employed to build a fast and effective method for identification and assessment of regional atmospheric environment risk sources. This method was applied to the case study of a large coal transportation port in North China. The assessment results showed that the risk characteristics and the harm degree of regional atmospheric environment risk source were in line with the actual situation. Fast and effective identification and assessment of risk source has laid an important foundation for the regional atmospheric environmental risk assessment and regional atmospheric pollution prevention and control.

  15. An Empirical Temperature Variance Source Model in Heated Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2012-01-01

    An acoustic analogy approach is implemented that models the sources of jet noise in heated jets. The equivalent sources of turbulent mixing noise are recognized as the differences between the fluctuating and Favre-averaged Reynolds stresses and enthalpy fluxes. While in a conventional acoustic analogy only Reynolds stress components are scrutinized for their noise generation properties, it is now accepted that a comprehensive source model should include the additional entropy source term. Following Goldstein s generalized acoustic analogy, the set of Euler equations are divided into two sets of equations that govern a non-radiating base flow plus its residual components. When the base flow is considered as a locally parallel mean flow, the residual equations may be rearranged to form an inhomogeneous third-order wave equation. A general solution is written subsequently using a Green s function method while all non-linear terms are treated as the equivalent sources of aerodynamic sound and are modeled accordingly. In a previous study, a specialized Reynolds-averaged Navier-Stokes (RANS) solver was implemented to compute the variance of thermal fluctuations that determine the enthalpy flux source strength. The main objective here is to present an empirical model capable of providing a reasonable estimate of the stagnation temperature variance in a jet. Such a model is parameterized as a function of the mean stagnation temperature gradient in the jet, and is evaluated using commonly available RANS solvers. The ensuing thermal source distribution is compared with measurements as well as computational result from a dedicated RANS solver that employs an enthalpy variance and dissipation rate model. Turbulent mixing noise predictions are presented for a wide range of jet temperature ratios from 1.0 to 3.20.

  16. Location of energy source for coronal heating on the photosphere

    NASA Astrophysics Data System (ADS)

    Hong, Zhen-Xiang; Yang, Xu; Wang, Ya; Ji, Kai-Fan; Ji, Hai-Sheng; Cao, Wen-Da

    2017-02-01

    It is reported that ultra-fine dynamic ejections along magnetic loops of an active region originate from intergranular lanes and they are associated with subsequent heating in the corona. As continuing work, we analyze the same set of data but focus on a quiet region and the overlying EUV/UV emission as observed by the Atmospheric Imaging Assembly (AIA) on board Solar Dynamics Observatory (SDO). We find that there appear to be dark patches scattered across the quiet region and the dark patches always stay along intergranular lanes. Over the dark patches, the average UV/EUV emission at 131, 171, 304 and 1600 Å (middle temperature) is more intense than that of other regions and EUV brightness is negatively correlated with 10830 Å intensity, though, such a trend does not exist for high temperature lines at 94, 193, 211 and 335 Å. For the same quiet region, where both TiO 7057 Å broad band images and 10830 Å filtergrams are available, contours for the darkest lane areas on TiO images and dark patches on 10830 Å filtergrams frequently differ in space. The results suggest that the dark patches do not simply reflect the areas with the darkest lanes but are associated with a kind of enhanced absorption (EA) at 10830 Å. A strict definition for EA with narrow band 10830 Å filtergrams is found to be difficult. In this paper, we define enhanced absorption patches (EAPs) of a quiet region as the areas where emission is less than ∼90% of the mean intensity of the region. The value is equivalent to the average intensity along thin dark loops connecting two moss regions of the active region. A more strict definition for EAPs, say 88%, gives even more intense UV/EUV emission over those in the middle temperature range. The results provide further observational evidence that energy for heating the upper solar atmosphere comes from the intergranular lane area where the magnetic field is constantly brought in by convection motion in granules.

  17. Inferences Concerning the Magnetospheric Source Region for Auroral Breakup

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1992-01-01

    It is argued that the magnetospheric source region for auroral arc breakup and substorm initiation is along boundary plasma sheet (BPS) magnetic field lines. This source region lies beyond a distinct central plasma sheet (CPS) region and sufficiently far from the Earth that energetic ion motion violates the guiding center approximation (i.e., is chaotic). The source region is not constrained to any particular range of distances from the Earth, and substorm initiation may be possible over a wide range of distances from near synchronous orbit to the distant tail. It is also argued that the layer of low-energy electrons and velocity dispersed ion beams observed at low altitudes on Aureol 3 is not a different region from the region of auroral arcs. Both comprise the BPS. The two regions occasionally appear distinct at low altitudes because of the effects of arc field-aligned potential drops on precipitating particles.

  18. Temperature Profiles Along the Root with Gutta-percha Warmed through Different Heat Sources

    PubMed Central

    Simeone, Michele; Santis, Roberto De; Ametrano, Gianluca; Prisco, Davide; Borrelli, Marino; Paduano, Sergio; Riccitiello, Francesco; Spagnuolo, Gianrico

    2014-01-01

    Objectives: To evaluate temperature profiles developing in the root during warm compaction of gutta-percha with the heat sources System B and System MB Obtura (Analityc Technology, Redmond, WA, USA). Thirty extracted human incisor teeth were used. Root canals were cleaned and shaped by means of Protaper rotary files (Dentsply-Maillefer, Belgium), and imaging was performed by micro-CT (Skyscan 1072, Aartselaar, Belgium). Methods: Teeth were instrumented with K-type thermocouples, and the roots were filled with thermoplastic gutta-percha. Vertical compaction was achieved through the heat sources System B and System MB, and temperature profiles were detect-ed by means of NI Dac Interface controlled by the LabView System. With both heat sources, higher temperature levels were recorded in the region of the root far from the apex. When the warm plugger tip was positioned at a distance of 3 mm from the root apex, temperature levels of about 180°C were used to soften gutta-percha, and no statistically significant differences were observed between peak temperatures developed by the two heating sources at the root apex. However, a temperature level higher than 40°C was maintained for a longer time with System MB. Results: Statistically significant differences were observed in peak temperature levels recorded far from the root apex. Thus, with a temperature of about 180°C and the warm plugger positioned at 3 mm from the root apex, both heating sources led to a temperature slightly higher than 40°C at the apex of the root, suggesting that the gutta-percha was properly softened. Significance: A temperature level higher than 40°C was maintained for a longer time with System MB, thus providing an ad-equate time for warm compaction of the gutta-percha. PMID:25614768

  19. Recovery Act: Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops

    SciTech Connect

    Jarrell, Mark

    2013-09-30

    Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.

  20. Physical Conditions in the Source Region of a Zebra Structure

    NASA Astrophysics Data System (ADS)

    Yasnov, L. V.; Karlický, M.; Stupishin, A. G.

    2016-08-01

    We analyze the physical conditions in the source region of a zebra structure, observed with the Ondřejov radiospectrograph during the 1 August 2010 solar flare. To determine the gyro-frequency harmonic numbers of the observed zebra lines, we compute the magnetic field strength, the electron density, and their spatial scales in the source region of the zebra structure. The region where the flare occurred is analyzed using EUV (171 Å and 335 Å) observations. To determine the conditions in the zebra source region, the magnetic field structure is reconstructed using observed photospheric magnetic field data. By computing the dependence of the magnetic field vs. height in this reconstruction and by comparing the magnetic field strength derived from the zebra structure, we determine the dependence of the electron density vs. height in the zebra source-region. We identify the loops where the zebra structure was generated at heights of about 2.5 - 3.3 Mm. Assuming the barometric law for the electron density, we determine the temperature in the zebra source-region to be T ≈ 2.0 × 104~K. Comparing the obtained values of the temperature and electron density in the zebra source-region with a model of the solar atmosphere, we find that the zebra structure was generated in the transition region, in agreement with our previous results.

  1. Plasmonic Photothermal Heating of Intraperitoneal Tumors through the Use of an Implanted Near-Infrared Source

    PubMed Central

    2013-01-01

    Plasmonic nanomaterials including gold nanorods are effective agents for inducing heating in tumors. Because near-infrared (NIR) light has traditionally been delivered using extracorporeal sources, most applications of plasmonic photothermal therapy have focused on isolated subcutaneous tumors. For more complex models of disease such as advanced ovarian cancer, one of the primary barriers to gold nanorod-based strategies is the adequate delivery of NIR light to tumors located at varying depths within the body. To address this limitation, a series of implanted NIR illumination sources are described for the specific heating of gold nanorod-containing tissues. Through computational modeling and ex vivo studies, a candidate device is identified and validated in a model of orthotopic ovarian cancer. As the therapeutic, imaging, and diagnostic applications of plasmonic nanomaterials progress, effective methods for NIR light delivery to challenging anatomical regions will complement ongoing efforts to advance plasmonic photothermal therapy toward clinical use. PMID:23961973

  2. Anomalous heating of the polar E region by unstable plasma waves. II - Theory

    NASA Technical Reports Server (NTRS)

    St.-Maurice, J. P.; Schlegel, K.; Banks, P. M.

    1981-01-01

    It is found that anomalous electron temperatures in the disturbed high-latitude E region can be quantitatively explained in terms of heating by unstable plasma waves. The electron temperatures at 110 km have been measured to be as high as 1500 K instead of the expected value of about 300 K. It is shown that by using quasi-linear theory there is an ample source of heat in the unstable waves and that the measured electron temperature profiles have a shape very similar to what is expected from plasma wave heating by the modified two-stream instability. It is found that there is even more heating going to the ion gas, but that the resulting effect on the ion temperature may be difficult to measure. The best estimate of the wave heating rates leads to the conclusion that wave heating can be as much as 50% of the Joule heating for dc electric field strengths of the order of 45 mV/m or greater.

  3. Ground Source Integrated Heat Pump (GS-IHP) Development

    SciTech Connect

    Baxter, V. D.; Rice, K.; Murphy, R.; Munk, J.; Ally, Moonis; Shen, Bo; Craddick, William; Hearn, Shawn A.

    2013-05-24

    Between October 2008 and May 2013 ORNL and ClimateMaster, Inc. (CM) engaged in a Cooperative Research and Development Agreement (CRADA) to develop a groundsource integrated heat pump (GS-IHP) system for the US residential market. A initial prototype was designed and fabricated, lab-tested, and modeled in TRNSYS (SOLAR Energy Laboratory, et al, 2010) to predict annual performance relative to 1) a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of air-source heat pump (ASHP) and resistance water heater) and 2) a state-of-the-art (SOA) two-capacity ground-source heat pump with desuperheater water heater (WH) option (GSHPwDS). Predicted total annual energy savings, while providing space conditioning and water heating for a 2600 ft{sup 2} (242 m{sup 2}) house at 5 U.S. locations, ranged from 52 to 59%, averaging 55%, relative to the minimum efficiency suite. Predicted energy use for water heating was reduced 68 to 78% relative to resistance WH. Predicted total annual savings for the GSHPwDS relative to the same baseline averaged 22.6% with water heating energy use reduced by 10 to 30% from desuperheater contributions. The 1st generation (or alpha) prototype design for the GS-IHP was finalized in 2010 and field test samples were fabricated for testing by CM and by ORNL. Two of the alpha units were installed in 3700 ft{sup 2} (345 m{sup 2}) houses at the ZEBRAlliance site in Oak Ridge and field tested during 2011. Based on the steady-state performance demonstrated by the GS-IHPs it was projected that it would achieve >52% energy savings relative to the minimum efficiency suite at this specific site. A number of operational issues with the alpha units were identified indicating design changes needed to the system before market introduction could be accomplished. These were communicated to CM throughout the field test period. Based on the alpha unit test results and the diagnostic information coming from the field test

  4. External Pressure Testing of the 60-Watt Isotopic Heat Source

    SciTech Connect

    Frazier, T. A.; Christenbury, S. T.

    1995-03-15

    The purpose of this manual is to establish the capability of the IHS generator system to contain its radioisotopic source under an accident scenario in which the generator is deposited in the ocean at great depth. This procedure is to be used on assemblies designated to demonstrate the capability of the 60-watt IHS in external pressure environments. A qualified helium leak technician (NDE) performs evaluations during post test activities. Quality Engineering (QE) is present during testing to monitor activities. Testing involves a 60-watt IHS/Heater Head Assembly with the simulant yttria in place of the isotopic fuel. The standard length 0.094 inch diameter SST dowel pin is replaced with a longer pin to facilitate disassembly. The assembly is tested to 1000 atmospheres (-15,000 psi). It is then evaluated. If it shows no evidence of collapse, an additional test is conducted for information only. The Source Document is "Safety Test Program Plan for the 60-Watt Isotopic Heat Source (IHS)", TBE-32156-IHS-008 Issue

  5. The role of heat source for spatio-temporal variations of mantle plumes

    NASA Astrophysics Data System (ADS)

    Kumagai, I.; Yamagishi, Y.; Davaille, A.

    2014-12-01

    Hot mantle plumes ascending from the core-mantle boundary experience a filtering effect by the endothermic phase change at the 660-km discontinuity. Fluid dynamics predicts that some hot mantle plumes stagnate at the phase boundary and locally heat the bottom of the upper mantle. This generates the secondary plumes in the upper mantle originating hotspots volcanic activities on the Earth's surface. Recently, seismic tomographic images around the upper-lower mantle boundary showed that the horizontal scale of the low velocity regions, which corresponds to that of the thermally buoyant heat sources, is the order of 100-1000 km. Although most of the fluid dynamic theories on the thermal plumes have been developed using an assumption that the heat source effect is negligible, the behaviors of the starting plumes in the upper mantle should depend on the size of heat source, which is generated by the hotter plume from the CMB. In order to understand the effects of heater size on the starting plume generation, we have experimentally investigated the behaviors of thermally buoyant plumes using a localized heat source (circular plate heater). The combination of quantitative visualization techniques of temperature (Thermochromic Liquid Crystals) and velocity (Particle Image Velocimetry) fields reveals the transient nature of the plume evolution: a variety of the spatio-tempotal distribution of plumes. Simple scaling laws for their ascent velocity and spacing of the plumes are experimentally determined. We also estimate the onset time of the secondary plumes in the upper mantle which depends on the local characteristics of the thermal boundary layer developing at the upper-lower mantle boundary.

  6. Hydrogen production from coal using a nuclear heat source

    NASA Technical Reports Server (NTRS)

    Quade, R. N.

    1976-01-01

    A strong candidate for hydrogen production in the intermediate time frame of 1985 to 1995 is a coal-based process using a high-temperature gas-cooled reactor (HTGR) as a heat source. Expected process efficiencies in the range of 60 to 70% are considerably higher than all other hydrogen production processes except steam reforming of a natural gas. The process involves the preparation of a coal liquid, hydrogasification of that liquid, and steam reforming of the resulting gaseous or light liquid product. A study showing process efficiency and cost of hydrogen vs nuclear reactor core outlet temperature has been completed, and shows diminishing returns at process temperatures above about 1500 F. A possible scenario combining the relatively abundant and low-cost Western coal deposits with the Gulf Coast hydrogen users is presented which provides high-energy density transportation utilizing coal liquids and uranium.

  7. Milliwatt generator heat source. Progress report, July-December 1981

    SciTech Connect

    Mershad, E.A.

    1982-04-08

    As part of the Milliwatt Generator (MWG) Program, a second series of pressure burst capsules welded offsite was tested; the resulting data indicate that the welds are very similar to those in the first series of capsules. Sufficient hardware was fabricated to meet all scheduled commitments. To provide a unit for feasibility testing, a heat source clad with Hastelloy C was reclad with Inconel 600. Forming development tests on Inconel 600 were conducted with favorable results. A QAS-3 survey was conducted and a satisfactory rating was received. Lot 11 qualification began on T-111 materials. The production period ended with an overall process yield of 99.6%, and a dollar percent defective rate of 0.60%.

  8. Emission Measure Distribution and Heating of Two Active Region Cores

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Klimchuk, James A.; Mason, Helen E.

    2011-01-01

    Using data from the Extreme-ultraviolet Imaging Spectrometer aboard Hinode, we have studied the coronal plasma in the core of two active regions. Concentrating on the area between opposite polarity moss, we found emission measure distributions having an approximate power-law form EM/T(exp 2.4) from log T = 5.55 up to a peak at log T = 6.57. The observations are explained extremely well by a simple nanoflare model. However, in the absence of additional constraints, the observations could possibly also be explained by steady heating.

  9. Tree Growth and Climate Relationship: Dynamics of Scots Pine (Pinus Sylvestris L.) Growing in the Near-Source Region of the Combined Heat and Power Plant During the Development of the Pro-Ecological Strategy in Poland.

    PubMed

    Sensuła, Barbara; Wilczyński, Sławomir; Opała, Magdalena

    Since the 1990s, the emission of pollutants was reduced in a majority of Polish and developing country factories whereas the level of energy production was similar to that prior to the 1990s. The conifer investigated in this study has grown for many years under the stress of industrial pollution. Despite this, the trees are preserved, to a large extent, sensitive to the natural climatic factors. We present a complex analysis of the climatic (sunshine, temperature, precipitation, humidity, and wind circulation) and anthropogenic factors influencing the radial increment dynamics of Scots pine (Pinus sylvestris L.) growing in the vicinity of the combined heat and power station in Łaziska (Poland). We analyzed the spatiotemporal distribution of growth reductions, the depth of reduction with respect to the distance from the emitter, the relationship between tree growth and climate during the industry development period and during proecological strategy application . Samples of carbon isotopic composition in pine needles from 2012 to 2013 were additionally determined. Pines series of 3 positions indicate that they have a similar sensitivity to most climatic elements of the previous and given year, but there is also a different rhythm between the studied populations of incremental growth of pines. The causes of diversity are due to the different types of habitat (site types) and industrial pollution. The variation in carbon stable isotopic composition in pine needles was connected with an increase of CO2.

  10. Regional Heat Flow Map and the Continental Thermal Isostasy Understanding of México

    NASA Astrophysics Data System (ADS)

    Espinoza-Ojeda, O. M.; Harris, R. N.

    2014-12-01

    The first heat flow values made in Mexico were reported by Von Herzen [Science, 1963] for the marine environment and Smith [EPSL, 1974] for the continent. Since that time the number of measurements has increased greatly but are mostly from oil and gas exploration and in and around geothermal areas. We have compiled published values of conductive heat flow for Mexico and the Gulf of California to generate a new regional heat flow map consisting of 261 values. In addition to those original values, published heat flow sources include, Lee and Henyey [JGR, 1975], Lawver and Williams [JGR, 1979] Smith et al. [JGR, 1979], Lachenbruch et al. [JGR, 1985], and Ziagos et al. [JGR, 1985]. Although the geographic distribution is uneven, heat flow data are present in each of the eight main tectonic provinces. Our new compilation indicates relatively high regional heat flow averages in the Gulf Extensional Province (n=114, 92±22 mW/m2) and Mexican Basin and Range (n=21, 82±20 mW/m2) and are consistent with geologic estimates of extension. Lower regional averages are found in the Baja California Microplate (n=91, 75±19 mW/m2), the Sierra Madre Occidental (n=9, 75±12 mW/m2), the Sierra Madre Oriental (n=4, 68±15 mW/m2) and Mesa Central (n=X 77±23 mW/m2). In contrast low and variable heat flow value characterize the forearc region of the Middle America Trench (n=6, 35±16 mW/m2). A higher mean heat flow is associated with the Trans-Mexican Volcanic Belt (n=6, 78±26 mW/m2). Continental elevation results from a combination of buoyancy (i.e. compositional and thermal) and geodynamic forces. We combine these regional heat flow values with estimates of crustal thickness and density for each tectonic province and compute the thermal and compositional buoyancy following the approach of Hasterok and Chapman [JGR, 2007a,b]. We find that within uncertainties most provinces lie near the theoretical isostatic relationship with the exception of the Mesa Central and Sierra Madre del Sur

  11. Source regional contributions to PM2.5 in a megacity in China using an advanced source regional apportionment method.

    PubMed

    Tian, Ying-Ze; Chen, Gang; Wang, Hai-Ting; Huang-Fu, Yan-Qi; Shi, Guo-Liang; Han, Bo; Feng, Yin-Chang

    2016-03-01

    To quantify contributions of individual source categories from diverse regions to PM2.5, PM2.5 samples were collected in a megacity in China and analyzed through a newly developed source regional apportionment (SRA) method. Levels, compositions and seasonal variations of speciated PM2.5 dataset were investigated. Sources were determined by Multilinear Engine 2 (ME2) model, and results showed that the PM2.5 in Tianjin was mainly influenced by secondary sulphate & secondary organic carbon SOC (percent contribution of 26.2%), coal combustion (24.6%), crustal dust & cement dust (20.3%), secondary nitrate (14.9%) and traffic emissions (14.0%). The SRA method showed that northwest region R2 was the highest regional contributor to secondary sources, with percent contributions to PM2.5 being 9.7% for secondary sulphate & SOC and 6.0% for secondary nitrates; the highest coal combustion was from local region R1 (6.2%) and northwest R2 (8.0%); the maximum contributing region to crustal & cement dust was southeast region R4 (5.0%); and contributions of traffic emissions were relatively spatial homogeneous. The seasonal variation of regional source contributions was observed: in spring, the crustal and cement dust contributed a higher percentage and the R4 was an important contributor; the secondary process attributed an increase fraction in summer; the mixed coal combustion from southwest R5 enhanced in autumn.

  12. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  13. Modeling heat generation and flow in the Advanced Neutron Source Corrosion Test Loop specimen

    SciTech Connect

    Pawel, R.E.; Yarbrough, D.W.

    1988-01-01

    A finite difference computer code HEATING5 was used to model heat generation and flow in a typical experiment envisioned for the Advanced Neutron Source Corrosion Test Loop. The electrical resistivity and thermal conductivity of the test specimen were allowed to vary with local temperature, and the corrosion layer thickness was assigned along the length of the specimen in the manner predicted by the Griess Correlation. The computer solved the two-dimensional transport problem for a given total power dissipated in the specimen and stipulated coolant temperatures and water-side heat-transfer coefficients. The computed specimen temperatures were compared with those calculated on the basis of approximate analytical equations involving the total power dissipation and the assignment of the physical properties based on temperatures at single axial points on the specimen. The comparisons indicate that when temperature variations are large along the axis of the specimen, the variation in local heat flux should not be overlooked when using approximate equations or models. The approximate equations are most accurate near the center of the specimen where the heat flux remains closest to the average value, and in that region the calculated quantities agree closely with the results of the computer code. 4 figs., 1 tab.

  14. Regionalization of surface heat fluxes and evapotranspiration over heterogeneous landscape of the Third Pole region

    NASA Astrophysics Data System (ADS)

    Ma, Yaoming

    2016-04-01

    Like Antarctica and the Arctic, the Third Pole region is drawing increased attention among the international academic community. It is centered on the Tibetan Plateau, stretching from the Pamir Plateau and Hindu-Kush on the west to the Hengduan Mountains on the east, and from the Kunlun and Qilian Mts on the north to the Himalayas on the south. Covering over 5,000,000 km2 in total and with an average elevation surpassing 4000 m. The exchange of energy and evapotranspiration (ET) between land surface and atmosphere over the Third Pole region play an important role in the Asian monsoon system, which in turn is a major component of both the energy and water cycles of the global climate system. The parameterization methods based on satellite data and Atmospheric Boundary Layer (ABL) observations have been proposed and tested for deriving regional distribution of surface reflectance, surface temperature, net radiation flux, soil heat flux, sensible heat flux, latent heat flux and ET over heterogeneous landscape. As cases study, the methods were applied to the whole Tibetan Plateau area and Nepal area. To validate the proposed methods, the ground-measured surface reflectance, surface temperature, net radiation flux, soil heat flux, sensible heat flux and latent heat flux in the Third Pole Environment Programme (TPE) Research Platform (TPEP) TPEP are compared to the derived values. The results show that the derived surface variables, land surface heat fluxes and ET over the study area are in good accordance with the land surface status. These parameters show a wide range due to the strong contrast of surface features. And the estimated land surface variables and land surface heat fluxes are in good agreement with ground measurements, and all the absolute percent difference is less than 10% in the validation sites. It is therefore concluded that the proposed methods are successful for the retrieval of land surface variables and land surface heat fluxes over heterogeneous

  15. Cogeneration technology alternatives study. Volume 4: Heat Sources, balance of plant and auxiliary systems

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Data and information established for heat sources balance of plant items, thermal energy storage, and heat pumps are presented. Design case descriptions are given along with projected performance values. Capital cost estimates for representative cogeneration plants are also presented.

  16. Loop Heat Pipe Transient Behavior Using Heat Source Temperature for Set Point Control with Thermoelectric Converter on Reservoir

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    The LHP operating temperature is governed by the saturation temperature of its reservoir. Controlling the reservoir saturation temperature is commonly done by cold biasing the reservoir and using electrical heaters to provide the required control power. With this method, the loop operating temperature can be controlled within 0.5K or better. However, because the thermal resistance that exists between the heat source and the LHP evaporator, the heat source temperature will vary with its heat output even if the LHP operating temperature is kept constant. Since maintaining a constant heat source temperature is of most interest, a question often raised is whether the heat source temperature can be used for LHP set point temperature control. A test program with a miniature LHP was carried out to investigate the effects on the LHP operation when the control temperature sensor was placed on the heat source instead of the reservoir. In these tests, the LHP reservoir was cold-biased and was heated by a control heater. Test results show that it was feasible to use the heat source temperature for feedback control of the LHP operation. In particular, when a thermoelectric converter was used as the reservoir control heater, the heat source temperature could be maintained within a tight range using a proportional-integral-derivative or on/off control algorithm. Moreover, because the TEC could provide both heating and cooling to the reservoir, temperature oscillations during fast transients such as loop startup could be eliminated or substantially reduced when compared to using an electrical heater as the control heater.

  17. Hydroclimate feedback induced by aerosols over the Asian monsoon regions - the elevated-heat-pump hypothesis

    NASA Astrophysics Data System (ADS)

    Lau, W.; Kim, M.; Kim, K.

    2006-05-01

    In this paper we present results of a numerical study using the NASA finite-volume GCM to elucidate a plausible mechanism for aerosol impact on the Asian summer monsoon involving interaction with physical processes over the Tibetan Plateau. During the pre-monsoon season of March-April, dusts from the deserts of western China, Afghanistan/Pakistan, and the Middle East are transported into and stacked up against the northern and southern slopes of the Tibetan Plateau. The absorption of solar radiation by dust heats up the elevated surface air over the slopes. On the southern slopes, the atmospheric heating is reinforced by black carbon from local emission. The heated air rises via dry convection, creating a positive temperature anomaly in the mid-to-upper troposphere over the Tibetan Plateau relative to the region to the south. The warm air in turn heat the land surface through turbulent heat flux. In May through early June in a manner akin to an "elevated heat pump", the rising hot air forced by the increasing heating in the upper troposphere and elevated land mass, draws in warm and moist air over the Indian subcontinent, initiating deep convection over the southern edge of the Plateau, and setting the stage for the onset of the South Asia summer monsoon. Our results suggest that increased dust loading coupled with black carbon emission from local sources in northern India during late spring may lead to an advance of the rainy periods and subsequently an intensification of the Indian summer monsoon. The enhanced rainfall over India is associated with the development of an aerosol-induced large-scale sea level pressure anomaly pattern, which causes the East Asia (Mei-yu) rain belt to shift northwestward, suppressing rainfall over East Asia and the adjacent oceanic regions.

  18. Investigation of acoustic gravity waves created by anomalous heat sources: experiments and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Pradipta, R.; Lee, M. C.

    2013-07-01

    We have been investigating high-power radio wave-induced acoustic gravity waves (AGWs) at Gakona, Alaska, using the High-frequency Active Aurora Research Program (HAARP) heating facility (i.e. HF heater) and extensive diagnostic instruments. This work was aimed at performing a controlled study of the space plasma turbulence triggered by the AGWs originating from anomalous heat sources, as observed in our earlier experiments at Arecibo, Puerto Rico (Pradipta 2007 MS Thesis MIT Press, Cambridge, MA). The HF heater operated in continuous wave (CW) O-mode can heat ionospheric plasmas effectively to yield a depleted magnetic flux tube as rising plasma bubbles (Lee et al 1998 Geophys. Res. Lett. 25 579). Two processes are responsible for the depletion of the magnetic flux tube: (i) thermal expansion and (ii) chemical reactions caused by heated ions. The depleted plasmas create large density gradients that can augment spread F processes via generalized Rayleigh-Taylor instabilities (Lee et al 1999 Geophys. Res. Lett. 26 37). It is thus expected that the temperature of neutral particles in the heated ionospheric region can be increased. Such a heat source in the neutral atmosphere may potentially generate AGWs in the form of traveling ionospheric plasma disturbances (TIPDs). We should point out that these TIPDs have features distinctively different from electric and magnetic field (ExB) drifts of HF wave-induced large-scale non-propagating plasma structures. Moreover, it was noted in our recent study of naturally occurring AGW-induced TIDs that only large-scale AGWs can propagate upward to reach higher altitudes. Thus, in our Gakona experiments we select optimum heating schemes for HF wave-induced AGWs that can be distinguished from the naturally occurring ones. The generation and propagation of AGWs are monitored by MUIR (Modular Ultra high-frequency Ionospheric Radar), Digisonde and GPS/low-earth-orbit satellites. Our theoretical and experimental studies have shown that

  19. Effect of windblown dust from local and regional sources on the air quality of the central district in Jinan, China

    NASA Astrophysics Data System (ADS)

    Chen, Li; Zhao, Hong; Wang, Wenxing; Bai, Zhipeng; Wang, Zhongliang; Sun, Fengjuan; Hou, Lujian; Liu, Guanghui; Shi, Mengshuang; Miao, Yunge

    2017-03-01

    Windblown dust is a major source of PM10 in Jinan, China. The aim of this study was to evaluate the effect of windblown dust on the air quality of the central district in Jinan, which has high population density. In this study, PM10 emissions from the suburbs of Jinan (local source) were estimated using the Wind Erosion Prediction System (WEPS) model; and the PM10 emissions from Shandong province, excluding Jinan (regional source), were estimated based on an empirical formula. In this study, the heating period includes January, February, November, and December; the non-heating period includes June, July and August; and the sand period includes March, April, May, September, and October. The WEPS-simulated annual PM10 emission was 9.90 × 104 tons (3.22 × 104 tons during the heating period, 5.53 × 104 tons during the sand period, and 1.16 × 104 tons during the non-heating period) in suburban Jinan in 2012. The PM10 emission was 9.17 × 105 tons in Shandong province, excluding Jinan, in 2012. Good correlations between the PM10 concentrations of windblown dust simulated by the chemical mass balance (CMB) model and the PM10 concentrations of windblown dust from local and regional sources were shown in this study. R2 were equal to 0.95, 0.92, 0.96 and 0.92, respectively, for the entire year, the heating, non-heating and sand period. For the entire year, the contributions of windblown dust from the local sources, regional sources, and long-range dust transport sources to PM10 were 73.0%, 12.8%, 14.2%, respectively. The windblown dust was mainly from local area. The contribution of the regional source was the greatest in the sand period, and the contribution of long-range dust transport was greatest in the heating period.

  20. Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems

    SciTech Connect

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D

    2011-01-01

    This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

  1. Dose distributions in regions containing beta sources: Uniform spherical source regions in homogeneous media

    SciTech Connect

    Werner, B.L.; Rahman, M.; Salk, W.N. ); Kwok, C.S. )

    1991-11-01

    The energy-averaged transport model for the calculation of dose rate distributions is applied to uniform, spherical source distributions in homogeneous media for radii smaller than the electron range. The model agrees well with Monte Carlo based calculations for source distributions with radii greater than half the continuous slowing down approximation range. The dose rate distributions can be written in the medical internal radiation dose (MIRD) formalism.

  2. Method of and means for passively cooling a shelter containing a heat source

    SciTech Connect

    Rambach, C.

    1981-10-06

    The passive cooling of a shelter containing a heat source is achieved by utilizing a thermal liquid in an accumulator, a first heat transfer loop for thermosiphonically transferring heat from the interior of the shelter to the liquid in the accumulator when the liquid is cooler than the interior of the shelter, and a second heat transfer loop for thermosiphonically transferring heat from the liquid in the accumulator to the environment when the latter is cooler than the liquid in the accumulator.

  3. local alternative sources for cogeneration combined heat and power system

    NASA Astrophysics Data System (ADS)

    Agll, Abdulhakim Amer

    Global demand for energy continues to grow while countries around the globe race to reduce their reliance on fossil fuels and greenhouse gas emissions by implementing policy measures and advancing technology. Sustainability has become an important issue in transportation and infrastructure development projects. While several agencies are trying to incorporate a range of sustainability measures in their goals and missions, only a few planning agencies have been able to implement these policies and they are far from perfect. The low rate of success in implementing sustainable policies is primarily due to incomplete understanding of the system and the interaction between various elements of the system. The conventional planning efforts focuses mainly on performance measures pertaining to the system and its impact on the environment but seldom on the social and economic impacts. The objective of this study is to use clean and alternative energy can be produced from many sources, and even use existing materials for energy generation. One such pathway is using wastewater, animal and organic waste, or landfills to create biogas for energy production. There are three tasks for this study. In topic one evaluated the energy saving that produced from combined hydrogen, heat, and power and mitigate greenhouse gas emissions by using local sustainable energy at the Missouri S&T campus to reduce energy consumption and fossil fuel usage. Second topic aimed to estimate energy recovery and power generation from alternative energy source by using Rankin steam cycle from municipal solid waste at Benghazi-Libya. And the last task is in progress. The results for topics one and two have been presented.

  4. Sources and sinks of carbon dioxide in the Arctic regions

    SciTech Connect

    Gosink, T. A.; Kelley, J. J.

    1982-01-01

    The data base required to adequately ascertain seasonal source and sink strengths in the arctic regions is difficult to obtain. However, there are now a reasonable quantity of data for this polar region to estimate sources and sinks within the Arctic which may contribute significantly to the annual tropospheric CO/sub 2/ concentration fluctuation. The sea-ice-air and the sea-air interfaces account for most of the contribution to the sources and sinks for carbon dioxide. Although the arctic and subarctic region is small in extent, it certainly is not impervious and ice sealed. Our estimate, based on historical data and current research, indicates that the Arctic, which is about 4% of the earth's surface, is an annual net sink for approx. 10/sup 15/ g CO/sub 2/ accounting for an equivalent of approx. 3% of the annual anthropogenic contribution of CO/sub 2/ to the troposphere.

  5. Numerical simulations of the impact of seasonal heat storage on source zone emission in a TCE contaminated aquifer

    NASA Astrophysics Data System (ADS)

    Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian

    2016-04-01

    In urban regions, with high population densities and heat demand, seasonal high temperature heat storage in the shallow subsurface represents an attractive and efficient option for a sustainable heat supply. In fact, the major fraction of energy consumed in German households is used for room heating and hot water production. Especially in urbanized areas, however, the installation of high temperature heat storage systems is currently restricted due to concerns on negative influences on groundwater quality caused e.g. by possible interactions between heat storages and subsurface contaminants, which are a common problem in the urban subsurface. Detailed studies on the overall impact of the operation of high temperature heat storages on groundwater quality are scarce. Therefore, this work investigates possible interactions between groundwater temperature changes induced by heat storage via borehole heat exchangers and subsurface contaminations by numerical scenario analysis. For the simulation of non-isothermal groundwater flow, and reactive transport processes the OpenGeoSys code is used. A 2D horizontal cross section of a shallow groundwater aquifer is assumed in the simulated scenario, consisting of a sandy sediment typical for Northern Germany. Within the aquifer a residual trichloroethene (TCE) contaminant source zone is present. Temperature changes are induced by a seasonal heat storage placed within the aquifer with scenarios of maximum temperatures of 20°C, 40°C and 60°C, respectively, during heat injection and minimum temperatures of 2°C during heat extraction. In the scenario analysis also the location of the heat storage relative to the TCE source zone and plume was modified. Simulations were performed in a homogeneous aquifer as well as in a set of heterogeneous aquifers with hydraulic conductivity as spatially correlated random fields. In both cases, results show that the temperature increase in the heat plume and the consequential reduction of water

  6. A proposal for a novel H ion source based on electron cyclotron resonance heating and surface ionization

    SciTech Connect

    Tarvainen, Ollie A; Kurennoy, Sergey

    2008-01-01

    A design for a novel H{sup -} ion source based on electron cyclotron resonance plasma heating and surface ionization is presented. The plasma chamber of the source is an rf-cavity designed for TE{sub 111} eigenmode at 2.45 GHz. The desired mode is excited with a loop antenna. The ionization process takes place on a cesiated surface of a biased converter electrode. The H{sup -} ion beam is further 'self-extracted' through the plasma region. The magnetic field of the source is optimized for plasma generation by electron cyclotron resonance heating, and beam extraction. The design features of the source are discussed in detail and the attainable H{sup -} ion current, beam emittance and duty factor of the novel source are estimated.

  7. A Proposal for a Novel H{sup -} Ion Source Based on Electron Cyclotron Resonance Plasma Heating and Surface Ionization

    SciTech Connect

    Tarvainen, O.; Kurennoy, S.

    2009-03-12

    A design for a novel H{sup -} ion source based on electron cyclotron resonance plasma heating and surface ionization is presented. The plasma chamber of the source is an rf-cavity designed for TE{sub 111} eigenmode at 2.45 GHz. The desired mode is excited with a loop antenna. The ionization process takes place on a cesiated surface of a biased converter electrode. The H{sup -} ion beam is further ''self-extracted'' through the plasma region. The magnetic field of the source is optimized for plasma generation by electron cyclotron resonance heating, and beam extraction. The design features of the source are discussed in detail and the attainable H{sup -} ion current, beam emittance and duty factor of the novel source are estimated.

  8. A catalog of moisture sources for continental climatic regions

    NASA Astrophysics Data System (ADS)

    Nieto, Raquel; Castillo, Rodrigo; Drumond, Anita; Gimeno, Luis

    2014-06-01

    This technical note describes a catalog of moisture sources for two sets of continental climatic regions: one based on regions with similar late 20th century mean climate and similar projected late 21st century precipitation changes, and the other widely used in IPCC assessment reports. By illustrating with one region by classification, the European one was selected and we identify and characterize all the major sources of moisture, and analyze their interannual variability and the role of the three dominant modes of global climate variability, including the El Niño-Southern Oscillation (ENSO) and the Northern and Southern Annular Modes (NAM, SAM). We also estimate the influence of those oceanic regions that will see the greatest increases in evaporation rate in future years.

  9. Existing climate data sources and Their Use in Heat IslandResearch

    SciTech Connect

    Akbari, Hashem; Pon, Brian; Smith, Craig Kenton; Stamper-Kurn, Dan Moses

    1998-10-01

    Existing climate data sources can be used in two general types of analysis for the detection of urban heat islands. Historical analyses use long-term data records-preferentially from several locations in and around an urban area-to trace the gradual influence of urban development on its climate. Primary sources of such data include the cooperative network, first-order National Weather Service stations, and military weather stations. Analyses of short-term data use information from a dense urban weather station network to discern the location, extent, and magnitude of urban heat islands. Such analyses may use the aforementioned national networks or regional networks such as agricultural, air quality monitoring, or utility networks. We demonstrate the use of existing data sources with a historical analysis of temperature trends in Los Angeles, California, and an analysis of short-term data of the urban temperature profile for Phoenix, Arizona. The Los Angeles climate was examined with eleven long-term data records from the cooperative network. Statistically significant trends of rising temperature were detected at Los Angeles Civic Center and other stations over some parts of the year, although timing of the increase varied from station to station. Observed increases in temperatures maybe due to long-term climate changes, microclimate influences, or local-scale heat islands. The analysis of short-term data was made for Phoenix using the PRISMS station network. Mean diurnal temperature profiles for a month were examined and compared with those for adjacent rural areas. Data fi-om stations in the center of Phoenix showed clear and significant nighttime and daytime temperature differences of 1- 2K (3 - 4"F). These temperature increases maybe attributable to a local-scale heat island.

  10. Renewable energy sources for sustainable tourism in the Carpathian region

    NASA Astrophysics Data System (ADS)

    Mandryk, O. M.; Arkhypova, L. M.; Pobigun, O. V.; Maniuk, O. R.

    2016-08-01

    The use of renewable energy in sustainable tourism development of the region is grounded in the paper. There are three stages of selecting areas for projects of renewable energy sources: selection of potentially suitable area; consideration of exclusion criteria, detailed assessment of potential sites or areas. The factors of impact on spatial constraints and opportunities for building wind, solar and small hydro power plants on the parameters of sustainable tourism development in the Carpathian region were determined.

  11. Real-Time MEG Source Localization Using Regional Clustering.

    PubMed

    Dinh, Christoph; Strohmeier, Daniel; Luessi, Martin; Güllmar, Daniel; Baumgarten, Daniel; Haueisen, Jens; Hämäläinen, Matti S

    2015-11-01

    With its millisecond temporal resolution, Magnetoencephalography (MEG) is well suited for real-time monitoring of brain activity. Real-time feedback allows the adaption of the experiment to the subject's reaction and increases time efficiency by shortening acquisition and off-line analysis. Two formidable challenges exist in real-time analysis: the low signal-to-noise ratio (SNR) and the limited time available for computations. Since the low SNR reduces the number of distinguishable sources, we propose an approach which downsizes the source space based on a cortical atlas and allows to discern the sources in the presence of noise. Each cortical region is represented by a small set of dipoles, which is obtained by a clustering algorithm. Using this approach, we adapted dynamic statistical parametric mapping for real-time source localization. In terms of point spread and crosstalk between regions the proposed clustering technique performs better than selecting spatially evenly distributed dipoles. We conducted real-time source localization on MEG data from an auditory experiment. The results demonstrate that the proposed real-time method localizes sources reliably in the superior temporal gyrus. We conclude that real-time source estimation based on MEG is a feasible, useful addition to the standard on-line processing methods, and enables feedback based on neural activity during the measurements.

  12. Real-Time MEG Source Localization using Regional Clustering

    PubMed Central

    Dinh, Christoph; Strohmeier, Daniel; Luessi, Martin; Güllmar, Daniel; Baumgarten, Daniel; Haueisen, Jens; Hämäläinen, Matti S.

    2015-01-01

    With its millisecond temporal resolution, Magnetoencephalography (MEG) is well suited for real-time monitoring of brain activity. Real-time feedback allows the adaption of the experiment to the subject’s reaction and increases time efficiency by shortening acquisition and offline analysis. Two formidable challenges exist in real-time analysis: the low signal-to-noise ratio (SNR) and the limited time available for computations. Since the low SNR reduces the number of distinguishable sources, we propose an approach which downsizes the source space based on a cortical atlas and allows to discern the sources in the presence of noise. Each cortical region is represented by a small set of dipoles, which is obtained by a clustering algorithm. Using this approach, we adapted dynamic statistical parametric mapping (dSPM) for real-time source localization. In terms of point spread and crosstalk between regions the proposed clustering technique performs better than selecting spatially evenly distributed dipoles. We conducted real-time source localization on MEG data from an auditory experiment. The results demonstrate that the proposed real-time method localizes sources reliably in the superior temporal gyrus. We conclude that real-time source estimation based on MEG is a feasible, useful addition to the standard on-line processing methods, and enables feedback based on neural activity during the measurements. PMID:25782980

  13. Performance evaluation of ground-source heat pump system and development of suitability map for its installation

    NASA Astrophysics Data System (ADS)

    Shrestha, G.; Uchida, Y.; Yoshioka, M.; Kuronuma, S.

    2015-12-01

    Ground-source heat pump (GSHP) system is an energy efficient and environment friendly technology that uses natural subsurface heat energy stored in the shallow depth for space-heating, space-cooling, snow-melting, hot water supply etc. In Japan, development of this system is gradually increasing, however the rate is still limited due to higher initial cost caused by oversized design of ground heat exchangers. An efficient system that can lower the installation cost should be developed and evaluated for its performance in order to expand the growth of GSHP system in Japan. In addition, development of suitability map to assess appropriate locations for the system installation is essential for optimum design and sustainability. In this study, GSHP system was constructed utilizing an artesian well as ground heat exchanger (GHE) and evaluated its performance. The objective of this study is to develop low cost and high efficiency system. In areas with abundant groundwater and its flow, higher heat exchange rate can be expected leading to cost reduction and energy saving. Further, suitability map was prepared in regional scale to assess the suitable locations where this type of system can be installed. The suitability map was prepared considering local hydrogeological and thermal data. Average coefficient of performance (COP) was found to be 7 during space-cooling operation and 5 during space-heating operation. These values of COP are higher than that of normal air conditioner (air-source heat pump system).

  14. Identifying meteorite source regions through near-Earth object spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, Cristina A.; Binzel, Richard P.

    2010-02-01

    By virtue of their landing on Earth, meteorites reside in near-Earth object (NEO) orbits prior to their arrival. Thus the population of observable NEOs, in principle, gives important representation of meteorite source bodies. By linking meteorites to NEOs, and linking NEOs to their most likely main-belt source locations, we seek to gain insight into the original Solar System formation locations for different meteorite classes. To forge possible links between meteorites and NEOs, we have developed a three dimensional method for quantitative comparisons between laboratory measurements of meteorites and telescopic measurements of near-Earth objects. We utilize meteorite spectra from the Reflectance Experiment Laboratory (RELAB) database and NEO data from the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). Using the Modified Gaussian Model (MGM) as a mathematical tool, we treat asteroid and meteorite spectra identically in the calculation of 1-μm and 2-μm Geometric Band Centers and their Band Area Ratios (BARs). Using these identical numerical parameters we quantitatively compare the spectral properties of S-, Sq-, Q- and V-type NEOs with the spectral properties of the meteorites in four classes: H, L, LL and HED. For each NEO spectrum, we assign a set of probabilities for it being related to each of these four meteorite classes. Our NEO-meteorite correlation probabilities are then convolved with NEO-source region probabilities to yield a final set of meteorite-source region correlations. While the ν6 resonance dominates the delivery for all four meteorite classes, an excess (significant at the 2.1-sigma level) source region signature is found for the H chondrites through the 3:1 mean motion resonance. This results suggest an H chondrite source with a higher than average delivery preference through the 3:1 resonance. A 3:1 resonance H chondrite source region is consistent with the short cosmic ray exposure ages known for H chondrites.

  15. Variable Conductance Heat Pipe Cooling of Stirling Convertor and General Purpose Heat Source

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Schwendeman, Carl; Anderson, William G.; Cornell, Peggy A.; Schifer, Nicholas A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  16. Comparison of local and regional heat transport processes into the subsurface urban heat island of Karlsruhe, Germany

    NASA Astrophysics Data System (ADS)

    Benz, Susanne; Bayer, Peter; Menberg, Kathrin; Blum, Philipp

    2014-05-01

    Temperatures in shallow urban ground are typically elevated. They manifest as subsurface urban heat islands, which are observed worldwide in different metropolitan areas and which have a site-specific areal extent and intensity. As of right now the governing heat transport processes accumulating heat in the subsurface of cities are insufficiently understood. Based on a spatial assessment of groundwater temperatures, six individual heat flux processes could be identified: (1) heat flux from elevated ground surface temperatures (GST), (2) heat flux from basements of buildings, (3) reinjection of thermal waste water, (4) sewage drains, (5) sewage leakage, and (6) district heating. In this study, the contributions of these processes are quantified on local and regional scales for the city of Karlsruhe in Germany. For the regional scale, the Regionalized Monte Carlo (RMC) method is used. This method applies a single Monte Carlo (MC) simulation for the entire study area. At relatively low data demand, the RMC method provides basic insights into the heat contribution for the entire city. For the local scale, the Local Monte Carlo (LMC) method was developed and applied. This method analyzes all dominant heat fluxes spatially dependent by performing an MC simulation for each arbitrary sized pixel of the study area (here 10 x 10 m). This more intricate approach allows for a spatial representation of all heat flux processes, which is necessary for the local planning of geothermal energy use. In order to evaluate the heat transport processes on a regional scale, we compared the mean annual thermal energies that result from the individual heat flux processes. Both methods identify the heat flux from elevated GST and the heat flux from buildings as the dominant regional processes. However, reinjection of thermal wastewater is by far the most dominant local heat flux processes with an average heat flux of 16 ± 2 W/m2 in the affected areas. Although being dominant on the regional

  17. ELF/VLF wave generation from the beating of two HF ionospheric heating sources

    NASA Astrophysics Data System (ADS)

    Cohen, M. B.; Moore, R. C.; Golkowski, M.; Lehtinen, N. G.

    2012-12-01

    It is well established that Extremely Low Frequency (ELF, 0.3-3 kHz) and Very Low Frequency (VLF, 3-30 kHz) radio waves can be generated via modulated High Frequency (HF, 3-10 MHz) heating of the lower ionosphere (60-100 km). The ionospheric absorption of HF power modifies the conductivity of the lower ionosphere, which in the presence of natural currents such as the auroral electrojet, creates an `antenna in the sky.' We utilize a theoretical model of the HF to ELF/VLF conversion and the ELF/VLF propagation, and calculate the amplitudes of the generated ELF/VLF waves when two HF heating waves, separated by the ELF/VLF frequency, are transmitted from two adjacent locations. The resulting ELF/VLF radiation pattern exhibits a strong directional dependence (as much as 15 dB) that depends on the physical spacing of the two HF sources. This beat wave source can produce signals 10-20 dB stronger than those generated using amplitude modulation, particularly for frequencies greater than 5-10 kHz. We evaluate recent suggestions that beating two HF waves generates ELF/VLF waves in the F-region (>150 km), and conclude that those experimental results may have misinterpreted, and can be explained strictly by the much more well established D region mechanism.

  18. Biographical Sources: General, National, and Regional. Bibliographic Series No. 15.

    ERIC Educational Resources Information Center

    Roberts, Joan

    The sources for national, international, and regional general biographical materials held by the Arkansas University library which are listed include bibliographies, biographies, handbooks, dictionaries, and directories. The materials cited cover the United States, Canada, Latin America, Great Britain, France, Germany, Italy, Russia, Spain,…

  19. Mare basalt magma source region and mare basalt magma genesis

    SciTech Connect

    Binder, A.B.

    1982-11-15

    Given the available data, we find that the wide range of mare basaltic material characteristics can be explained by a model in which: (1) The mare basalt magma source region lies between the crust-mantle boundary and a maximum depth of 200 km and consists of a relatively uniform peridotite containing 73--80% olivine, 11--14% pyroxene, 4--8% plagioclase, 0.2--9% ilmenite and 1--1.5% chromite. (2) The source region consists of two or more density-graded rhythmic bands, whose compositions grade from that of the very low TiO/sub 2/ magma source regions (0.2% ilmenite) to that of the very high TiO/sub 2/ magma source regions (9% ilmenite). These density-graded bands are proposed to have formed as co-crystallizing olivine, pyroxene, plagioclase, ilmenite, and chromite settled out of a convecting magma (which was also parental to the crust) in which these crystals were suspended. Since the settling rates of the different minerals were governed by Stoke's law, the heavier minerals settled out more rapidly and therefore earlier than the lighter minerals. Thus the crystal assemblages deposited nearest the descending side of each convection cell were enriched in heavy ilmenite and chromite with respect to lighter olivine and pyroxene and very much lighter plagioclase. The reverse being the case for those units deposited near the ascending sides of the convection cells.

  20. Searches for point sources in the Galactic Center region

    NASA Astrophysics Data System (ADS)

    di Mauro, Mattia; Fermi-LAT Collaboration

    2017-01-01

    Several groups have demonstrated the existence of an excess in the gamma-ray emission around the Galactic Center (GC) with respect to the predictions from a variety of Galactic Interstellar Emission Models (GIEMs) and point source catalogs. The origin of this excess, peaked at a few GeV, is still under debate. A possible interpretation is that it comes from a population of unresolved Millisecond Pulsars (MSPs) in the Galactic bulge. We investigate the detection of point sources in the GC region using new tools which the Fermi-LAT Collaboration is developing in the context of searches for Dark Matter (DM) signals. These new tools perform very fast scans iteratively testing for additional point sources at each of the pixels of the region of interest. We show also how to discriminate between point sources and structural residuals from the GIEM. We apply these methods to the GC region considering different GIEMs and testing the DM and MSPs intepretations for the GC excess. Additionally, we create a list of promising MSP candidates that could represent the brightest sources of a MSP bulge population.

  1. Investigation of direct expansion in ground source heat pumps

    NASA Astrophysics Data System (ADS)

    Kalman, M. D.

    A fully instrumented subscale ground coupled heat pump system was developed, and built, and used to test and obtain data on three different earth heat exchanger configurations under heating conditions (ground cooling). Various refrigerant flow control and compressor protection devices were tested for their applicability to the direct expansion system. Undistributed Earth temperature data were acquired at various depths. The problem of oil return at low evaporator temperatures and low refrigerant velocities was addressed. An analysis was performed to theoretically determine what evaporator temperature can be expected with an isolated ground pipe configuration with given length, pipe size, soil conditions and constant heat load. Technical accomplishments to data are summarized.

  2. Transverse Dimensions of Chorus in the Source Region

    NASA Technical Reports Server (NTRS)

    Santolik, O.; Gurnett, D. A.

    2003-01-01

    We report measurement of whistler-mode chorus by the four Cluster spacecraft at close separations. We focus our analysis on the generation region close to the magnetic equatorial plane at a radial distance of 4.4 Earth's radii. We use both linear and rank correlation analysis to define perpendicular dimensions of the sources of chorus elements below one half of the electron cyclotron frequency. Correlation is significant throughout the range of separation distances of 60-260 km parallel to the field line and 7-100 km in the perpendicular plane. At these scales, the correlation coefficient is independent for parallel separations, and decreases with perpendicular separation. The observations are consistent with a statistical model of the source region assuming individual sources as gaussian peaks of radiated power with a common half-width of 35 km perpendicular to the magnetic field. This characteristic scale is comparable to the wavelength of observed waves.

  3. Steady temperature and density distributions in a gas containing heat sources

    NASA Technical Reports Server (NTRS)

    Davison, H. W.

    1971-01-01

    Computer program, STADDIG, is based on steady state, one dimensional heat transfer calculation using cylindrical coordinates. Program allows for conduction across gas and container walls. Heat is dissipated from walls by forced convection cooling with incompressible coolant. Heat sources are included in coolant, gas, and walls.

  4. Tomographic Inversion for Regional Phase Attenuation and Source Parameters

    NASA Astrophysics Data System (ADS)

    Phillips, W. S.; Mayeda, K. M.; Malagnini, L.

    2008-12-01

    Our ability to monitor seismic events that are too small to be observed at teleseismic distances depends critically on the accurate characterization of the effects of source, path and site on regional phases. Magnitude, yield and event identification procedures rely on path and site corrections, while identification schemes such as MDAC (magnitude and distance amplitude correction) additionally rely on source correction via a regionally appropriate scaling model. Independently determined Mw can drive the source correction. Here, we focus on the use of Lg amplitudes to obtain a laterally varying attenuation model with power law frequency dependence, site amplification terms, and source scaling parameters such as apparent stress, using data from the USArray deployment. We collected amplitudes from broadband vertical channels of 605 USArray stations for 986 western US PDE events through June 2008. The IRIS DMC provided waveform data and instrument response information. We measured RMS amplitudes in eleven overlapping octave width bands between 0.25 and 16 Hz, for windows defined by group velocities 3.6 to 3.0 km/s. Over 320,000 amplitudes passed a pre-phase signal-to-noise threshold of 2. Berkeley moments were used to set absolute levels. We found 1-Hz attenuation (Qo) to be high in stable regions and across batholiths, and low in areas of recent volcanism. The power law exponent (eta) varied from 0.4 to 0.9 and was generally lower in the high Q regions. We explore methods that break the tradeoff between attenuation and stress by damping mean Qo and eta to values determined by inverting for frequency dependent source terms, and by applying ground truth scaling information from relative coda studies for particular events. Tests that evaluate regionalization of apparent stress are underway, although we acknowledge that the limited bandwidth and deployment period are not ideal for this purpose.

  5. Possibilities of utilizing alternative energy sources for combined heat supply systems in the Baltic

    SciTech Connect

    Shipkovs, P.; Grislis, V.; Zebergs, V. )

    1991-01-01

    The problem of alternative energy sources is an issue of major importance for the Baltic republics because of the limited supply of conventional energy resources. One of the ways to solve this problem could be the introduction of combined heat supply systems (CHSS). The combined heat supply systems are such systems where various energy sources in different regimes are made use of to ensure the optimum temperature on residential and industrial premises. The influence of climatic conditions on the selection of heat supply systems has been studied at large. In the present paper the use of alternative energy sources (AES) in combined heat supply systems (CHSS) is described.

  6. Mobile measurements of ammonia: Sources and spatial variations in the Wallis region and Zurich (Switzerland)

    NASA Astrophysics Data System (ADS)

    Elser, Miriam; El Haddad, Imad; Bruns, Emily; Pieber, Simone; Wolf, Robert; Krishna Kumar, Nivedita; Prévôt, André; Baltensperger, Urs

    2014-05-01

    Ammonia (NH3) has negative impacts on human health, climate, ecosystems and materials. Moreover, it is also an important precursor for the formation of secondary aerosols in the form of ammonium salts (ammonium nitrate, ammonium sulfate and ammonium chloride). Previous studies have shown that the vast majority of the ammonia emissions come from the agricultural sector (mostly from livestock farming and fertilizing activities). Other sources such as road transport, waste deposit, energy use and supply can also contribute to the ammonia levels in the urban areas. High concentrations of ammonia are commonly measured at the National Air Pollution Monitoring Network (NABEL) stations in Switzerland. Mobile measurements of ammonia and other pollutants (including BC, CO2, NOx and NR-PM) were conducted in the Wallis region and in Zurich in 2013 to study the spatial distribution of ammonia in Switzerland and identify its major emission sources in these regions. A new heated inlet setup was developed to improve the response time of the ammonia measurements, so that even very local sources could be identified. For both, the Wallis region and Zurich, it was observed that the background values of ammonia have a regional origin, as other pollutants affected by regional changes show similar background trends. These regional background values varied between 5 to 10 ppb during the different days of measurements. Moreover, no big differences were observed in the background values between the city center, the surrounding areas, the highway and the rural areas. The major local source of ammonia observed during these measurements was road transport, producing increases on the NH3 levels up to 4 times the background values. Based on emission factors estimated from tunnel measurements, the traffic was estimated to contribute between 20 -30% of the measured ammonia levels on a daily average in Zurich. Other sources of ammonia that can also contribute significantly to the levels of ammonia

  7. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  8. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  9. Optimum load distribution between heat sources based on the Cournot model

    NASA Astrophysics Data System (ADS)

    Penkovskii, A. V.; Stennikov, V. A.; Khamisov, O. V.

    2015-08-01

    One of the widespread models of the heat supply of consumers, which is represented in the "Single buyer" format, is considered. The methodological base proposed for its description and investigation presents the use of principles of the theory of games, basic propositions of microeconomics, and models and methods of the theory of hydraulic circuits. The original mathematical model of the heat supply system operating under conditions of the "Single buyer" organizational structure provides the derivation of a solution satisfying the market Nash equilibrium. The distinctive feature of the developed mathematical model is that, along with problems solved traditionally within the bounds of bilateral relations of heat energy sources-heat consumer, it considers a network component with its inherent physicotechnical properties of the heat network and business factors connected with costs of the production and transportation of heat energy. This approach gives the possibility to determine optimum levels of load of heat energy sources. These levels provide the given heat energy demand of consumers subject to the maximum profit earning of heat energy sources and the fulfillment of conditions for formation of minimum heat network costs for a specified time. The practical realization of the search of market equilibrium is considered by the example of a heat supply system with two heat energy sources operating on integrated heat networks. The mathematical approach to the solution search is represented in the graphical form and illustrates computations based on the stepwise iteration procedure for optimization of levels of loading of heat energy sources (groping procedure by Cournot) with the corresponding computation of the heat energy price for consumers.

  10. Heat source reconstruction from noisy temperature fields using a gradient anisotropic diffusion filter

    NASA Astrophysics Data System (ADS)

    Beitone, C.; Balandraud, X.; Delpueyo, D.; Grédiac, M.

    2017-01-01

    This paper presents a post-processing technique for noisy temperature maps based on a gradient anisotropic diffusion (GAD) filter in the context of heat source reconstruction. The aim is to reconstruct heat source maps from temperature maps measured using infrared (IR) thermography. Synthetic temperature fields corrupted by added noise are first considered. The GAD filter, which relies on a diffusion process, is optimized to retrieve as well as possible a heat source concentration in a two-dimensional plate. The influence of the dimensions and the intensity of the heat source concentration are discussed. The results obtained are also compared with two other types of filters: averaging filter and Gaussian derivative filter. The second part of this study presents an application for experimental temperature maps measured with an IR camera. The results demonstrate the relevancy of the GAD filter in extracting heat sources from noisy temperature fields.

  11. Organization of ice flow by localized regions of elevated geothermal heat flux

    NASA Astrophysics Data System (ADS)

    Pittard, M. L.; Galton-Fenzi, B. K.; Roberts, J. L.; Watson, C. S.

    2016-04-01

    The impact of localized regions of elevated geothermal heat flux on ice sheet dynamics is largely unknown. Simulations of ice dynamics are produced using poorly resolved and low-resolution estimates of geothermal heat flux. Observations of crustal heat production within the continental crust underneath the Lambert-Amery glacial system in East Antarctica indicate that high heat flux regions of at least 120 mW m-2 exist. Here we investigate the influence of simulated but plausible, localized regions of elevated geothermal heat flux on ice dynamics using a numerical ice sheet model of the Lambert-Amery glacial system. We find that high heat flux regions have a significant effect across areas of slow-moving ice with the influence extending both upstream and downstream of the geothermal anomaly, while fast-moving ice is relatively unaffected. Our results suggest that localized regions of elevated geothermal heat flux may play an important role in the organization of ice sheet flow.

  12. Three-dimensional magnetic field topology in a region of solar coronal heating.

    PubMed

    Solanki, S K; Lagg, A; Woch, J; Krupp, N; Collados, M

    2003-10-16

    Flares and X-ray jets on the Sun arise in active regions where magnetic flux emerges from the solar interior amd interacts with the ambient magnetic field. The interactions are believed to occur in electric current sheets separating regions of opposite magnetic polarity. The current sheets located in the corona or upper chromosphere have long been thought to act as an important source of coronal heating, requiring their location in the corona or upper chromosphere. The dynamics and energetics of these sheets are governed by a complex magnetic field structure that, until now, has been difficult to measure. Here we report the determination of the full magnetic vector in an interaction region near the base of the solar corona. The observations reveal two magnetic features that characterize young active regions on the Sun: a set of rising magnetic loops and a tangential discontinuity of the magnetic field direction, the latter being the observational signature of an electric current sheet. This provides strong support for coronal heating models based on the dissipation of magnetic energy at current sheets.

  13. Acoustic intensity in the interaction region of a parametric source

    NASA Astrophysics Data System (ADS)

    Lauchle, G. C.; Gabrielson, T. B.; van Tol, D. J.; Kottke, N. F.; McConnell, J. A.

    2003-10-01

    The goal of this project was to measure acoustic intensity in the strong interaction region of a parametric source in order to obtain a clear definition of the source-generation region and to separate the local generation (the reactive field) from propagation (the real or active field). The acoustic intensity vector was mapped in the interaction region of a parametric projector at Lake Seneca. The source was driven with primary signals at 22 kHz and 27 kHz. Receiving sensors were located 8.5 meters from the projector. At that range, the secondary at 5 kHz was between 40 and 45 dB below either primary. For the primary levels used, the plane-wave shock inception distance would have been at least 14 meters. Furthermore, the Rayleigh distance for the projector was about 4 meters so the measurements at 8.5 meters were in the strong interaction region but not in saturation. Absorption was negligible over these ranges. The intensity measurements were made at fixed range but varying azimuth angle and varying depth thus developing a two-dimensional cross-section of the secondary beam. Measurements of both the active and reactive intensity vectors will be presented along with a discussion of measurement error. [Work supported by ONR Code 321SS.

  14. New Insights Into the Heat Sources of Mantle Plumes, or: Where Does all the Heat Come From, Heat Producing Elements, Advective or Conductive Heat Flow?

    NASA Astrophysics Data System (ADS)

    Rushmer, T.; Beier, C.; Turner, S.

    2007-12-01

    Melting anomalies in the Earth's upper mantle have often been attributed to the presence of mantle plumes that may originate in the lower mantle, possibly from the core-mantle boundary. Globally, mantle plumes exhibit a large range in buoyancy flux that which is proportional to their temperature and volume. Plumes with higher buoyancy fluxes should have higher temperatures and experience higher degrees of partial melting. Excess heat in mantle plumes could reflect either a) an enrichment of the heat producing elements (HPE: U, Th, K) in their mantle source leading to an increase of heat production by radioactive decay or b) advective or conductive heat transport across the core-mantle boundary. The advective transport of heat may result in a physical contribution of material from the core to the lower mantle. If core material is incorporated into the lower mantle, mantle plumes with a higher buoyancy flux should have higher core tracers, e.g. increased 186Os and Fe concentrations. Geophysical and dynamic modelling indicate that at least Afar, Easter, Hawaii, Louisville and Samoa may all originate at the core-mantle boundary. These plumes encompass the whole range of known buoyancy fluxes from 1.2 Mgs -1(Afar) to 6.5 Mgs -1 (Hawaii) providing evidence that the buoyancy flux is largely independent of other geophysical parameters. In an effort to explore whether the heat producing elements are the cause of excess heat we looked for correlations between fractionation corrected concentrations of the HPE and buoyancy flux. Our results suggest that there is no correlation between HPE concentrations and buoyancy flux (with and without an additional correction for variable degrees of partial melting). As anticipated, K, Th and U are positively correlated with each other (e.g. Hawaii, Iceland and Galapagos have significantly lower concentrations than e.g. Tristan da Cunha, the Canary Islands and the Azores). We also find no correlation between currently available Fe

  15. Search for infrared sources in the ARA region

    NASA Astrophysics Data System (ADS)

    Li, Jing; Xiao, Zhen

    1988-09-01

    Results are reported from a search for IR-excess objects in the Ara region on two UK Schmidt plates. The COSMOS machine of the Royal Observatory at Edinburgh was used to perform measurements for a 5.35-deg-square area, with an R-I index greater than 2.5 mag as the selection criterion for candidate sources; 211 of the objects selected were then identified from the IRAS point-source catalog. Histograms of R and I magnitude counts and R-I index counts are shown, and the astrometric positions and color indices of the 211 identified objects are presented in a table.

  16. Recent Research in Compression Refrigeration Cycle Air Source Heat Pumps.

    NASA Astrophysics Data System (ADS)

    Arai, Akira; Senshu, Takao

    The most important theme for heat pump air conditioners is the improvement of energy saving and comfort. Recently, cycle components, especially compressores and heat exchangers have been improved greatly in their performance and efficiency. As for compressors, large progress in their efficiencies have been made by detailed analysises such as mechanical losses and by the development of a new type compression mechanism. As for heat exchangers, various high heat transfer surfaces have been developed together with the improvement of the production technologies for them. Further, the effect of the capacity-modulated cycle is evaluated quantitatively through the improvements of static and transient cycle simulation technologies. And in order to realize this cffect, the electrically driven expansion valves heve been marketed. This review introduces the trends of these energy-saving technologies as well as comfort improvement studies.

  17. Active region emission measure distributions and implications for nanoflare heating

    SciTech Connect

    Cargill, P. J.

    2014-03-20

    The temperature dependence of the emission measure (EM) in the core of active regions coronal loops is an important diagnostic of heating processes. Observations indicate that EM(T) ∼ T{sup a} below approximately 4 MK, with 2 < a < 5. Zero-dimensional hydrodynamic simulations of nanoflare trains are used to demonstrate the dependence of a on the time between individual nanoflares (T{sub N} ) and the distribution of nanoflare energies. If T{sub N} is greater than a few thousand seconds, a < 3. For smaller values, trains of equally spaced nanoflares cannot account for the observed range of a if the distribution of nanoflare energies is either constant, randomly distributed, or a power law. Power law distributions where there is a delay between consecutive nanoflares proportional to the energy of the second nanoflare do lead to the observed range of a. However, T{sub N} must then be of the order of hundreds to no more than a few thousand seconds. If a nanoflare leads to the relaxation of a stressed coronal field to a near-potential state, the time taken to build up the required magnetic energy is thus too long to account for the EM measurements. Instead, it is suggested that a nanoflare involves the relaxation from one stressed coronal state to another, dissipating only a small fraction of the available magnetic energy. A consequence is that nanoflare energies may be smaller than previously envisioned.

  18. Active Region Emission Measure Distributions and Implications for Nanoflare Heating

    NASA Astrophysics Data System (ADS)

    Cargill, P. J.

    2014-03-01

    The temperature dependence of the emission measure (EM) in the core of active regions coronal loops is an important diagnostic of heating processes. Observations indicate that EM(T) ~ Ta below approximately 4 MK, with 2 < a < 5. Zero-dimensional hydrodynamic simulations of nanoflare trains are used to demonstrate the dependence of a on the time between individual nanoflares (TN ) and the distribution of nanoflare energies. If TN is greater than a few thousand seconds, a < 3. For smaller values, trains of equally spaced nanoflares cannot account for the observed range of a if the distribution of nanoflare energies is either constant, randomly distributed, or a power law. Power law distributions where there is a delay between consecutive nanoflares proportional to the energy of the second nanoflare do lead to the observed range of a. However, TN must then be of the order of hundreds to no more than a few thousand seconds. If a nanoflare leads to the relaxation of a stressed coronal field to a near-potential state, the time taken to build up the required magnetic energy is thus too long to account for the EM measurements. Instead, it is suggested that a nanoflare involves the relaxation from one stressed coronal state to another, dissipating only a small fraction of the available magnetic energy. A consequence is that nanoflare energies may be smaller than previously envisioned.

  19. Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application

    SciTech Connect

    Munk, Jeffrey D; Ally, Moonis Raza; Baxter, Van D; Gehl, Anthony C

    2014-01-01

    In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

  20. Theory of EMP Coupling in the Source Region

    DTIC Science & Technology

    1980-02-28

    complicated than frcc -fiell cuj1ij•, where only the fields need to be colnsidered. Nevertheless, a useful approximate theory of source region coupling...latter are rein-forced concrete , and ha0ve a IW ow lMpedaiC e to dims ta nt groun11d . The 1 I-CIMrb 11 , which 1 s n c1 Coitac t wvi t 11 thle 50 i I , a

  1. Evaluation of water source heat pumps for the Juneau, Alaska Area

    SciTech Connect

    Jacobsen, J.J.; King, J.C.; Eisenhauer, J.L.; Gibson, C.I.

    1980-07-01

    The purposes of this project were to evaluate the technical and economic feasibility of water source heat pumps (WSHP) for use in Juneau, Alaska and to identify potential demonstration projects to verify their feasibility. Information is included on the design, cost, and availability of heat pumps, possible use of seawater as a heat source, heating costs with WSHP and conventional space heating systems, and life cycle costs for WSHP-based heating systems. The results showed that WSHP's are technically viable in the Juneau area, proper installation and maintenance is imperative to prevent equipment failures, use of WSHP would save fuel oil but increase electric power consumption. Life cycle costs for WSHP's are about 8% above that for electric resistance heating systems, and a field demonstration program to verify these results should be conducted. (LCL)

  2. Design of a nuclear isotope heat source assembly for a spaceborne mini-Brayton power module.

    NASA Technical Reports Server (NTRS)

    Wein, D.; Gorland, S. H.

    1973-01-01

    Results of a study to develop a feasible design definition of a heat source assembly (HSA) for use in nominal 500-, 1200-, or 2000-W(e) mini-Brayton spacecraft power systems. The HSA is a modular design which is used either as a single unit to provide thermal energy to the 500-W(e) mini-Brayton power module or in parallel with one or two additional HSAs for the 1200- or 2000-W(e) power module systems. Principal components consist of a multihundred watt RTG isotope heat source, a heat source heat exchanger which transfers the thermal energy from the heat source to the mini-Brayton power conversion system, an auxiliary cooling system which provides requisite cooling during nonoperation of the power conversion module and an emergency cooling system which precludes accidental release of isotope fuel in the event of system failure.

  3. Flow characteristics of the raw sewage for the design of sewage-source heat pump systems.

    PubMed

    Xu, Ying; Wu, Yuebin; Sun, Qiang

    2014-01-01

    The flow characteristics of raw sewage directly affect the technical and economic performance of sewage-source heat pump systems. The purpose of this research is to characterize the flow characteristics of sewage by experimental means. A sophisticated and flexible experimental apparatus was designed and constructed. Then the flow characteristics of the raw sewage were studied through laboratorial testing and theoretical analyses. Results indicated that raw sewage could be characterized as a power-law fluid with the rheological exponent n being 0.891 and the rheological coefficient k being 0.00175. In addition, the frictional loss factor formula in laminar flow for raw sewage was deduced by theoretical analysis of the power-law fluid. Furthermore, an explicit empirical formula for the frictional loss factor in turbulent flow was obtained through curve fitting of the experimental data. Finally, the equivalent viscosity of the raw sewage is defined in order to calculate the Reynolds number in turbulent flow regions; it was found that sewage had two to three times the viscosity of water at the same temperature. These results contributed to appropriate parameters of fluid properties when designing and operating sewage-source heat pump systems.

  4. THEMIS Observations of the Magnetopause Electron Diffusion Region: Large Amplitude Waves and Heated Electrons

    NASA Technical Reports Server (NTRS)

    Tang, Xiangwei; Cattell, Cynthia; Dombeck, John; Dai, Lei; Wilson, Lynn B. III; Breneman, Aaron; Hupack, Adam

    2013-01-01

    We present the first observations of large amplitude waves in a well-defined electron diffusion region based on the criteria described by Scudder et al at the subsolar magnetopause using data from one Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite. These waves identified as whistler mode waves, electrostatic solitary waves, lower hybrid waves, and electrostatic electron cyclotron waves, are observed in the same 12 s waveform capture and in association with signatures of active magnetic reconnection. The large amplitude waves in the electron diffusion region are coincident with abrupt increases in electron parallel temperature suggesting strong wave heating. The whistler mode waves, which are at the electron scale and which enable us to probe electron dynamics in the diffusion region were analyzed in detail. The energetic electrons (approx. 30 keV) within the electron diffusion region have anisotropic distributions with T(sub e(right angle))/T(sub e(parallel)) > 1 that may provide the free energy for the whistler mode waves. The energetic anisotropic electrons may be produced during the reconnection process. The whistler mode waves propagate away from the center of the "X-line" along magnetic field lines, suggesting that the electron diffusion region is a possible source region of the whistler mode waves.

  5. Source regions of stratospheric VSLS in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Quack, Birgit; Hepach, Helmke; Atlas, Elliot; Bracher, Astrid; Endres, Sonja; Arevalo-Martinez, Damian; Bange, Hermann; Lennartz, Sinikka; Steinhoff, Tobias; Booge, Dennis; Zarvasky, Alexander; Marandino, Christa; Patey, Matt; Achterberg, Eric; Dengler, Markus; Fiehn, Alina; Tegtmeier, Susann; Krüger, Kirstin

    2016-04-01

    Halogenated very-short-lived substances (VSLS), which are naturally produced in the ocean, play a significant role in present day ozone depletion, in particular in combination with enhanced stratospheric sulfate aerosol, which is also partly derived from oceanic VSLS. The decline of anthropogenic chlorine in the stratosphere within the 21st century will increase the relative importance of the natural emissions on stratospheric ozone destruction. Especially, oceanic sources and source regions of the compounds need to be better constrained, in order to improve the future prediction. During boreal summer the Asian monsoon circulation transports air masses from the Indian Ocean to the stratosphere, while the contribution of VSLS from this ocean to stratospheric halogen and sulfur is unknown. During the research cruises SO 234/2 and SO 235 in July-August 2014 onboard RV SONNE oceanic and atmospheric halogenated VSLS such as bromoform (CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I) were measured in the subtropical and tropical West Indian Ocean for the first time. Here we present the oceanic sources of the halogenated compounds and their relation to other biogeochemical parameters (short- and longlived trace gases, phytoplankton and nutrients) along the cruise track, which covered coastal, upwelling and open ocean regimes and the Seychelles-Chagos thermocline ridge as important source region for stratospheric bromine.

  6. Spectral Determination of Source Parameters in The Marmara Region

    NASA Astrophysics Data System (ADS)

    Koseoglu, A.; Meral Ozel, N.; Barıs, S.

    2014-12-01

    Ever since the 1999 Kocaeli Earthquake, in which the Kandilli Observatory and Earthquake Research Institute (KOERI) was not able to correctly reflect the magnitude size in its preliminary report because of the saturation effect, a rapid and accurate determination of the earthquake becomes a very important issue. Therefore, in the framework of this study an automatic determination of the moment magnitude was performed by using the displacement spectra of selected earthquakes in Marmara Region. For this purpose 39 three component broadband stations from KOERI seismic network which recorded 174 earthquakes with magnitudes 2.5≤M≤5.0 in between 2006-2009 were used. Due to the importance of quality factor in determination of the moment magnitude with spectral analysis method, the quality factor was calculated for the whole region in the beginning. Source spectrum which was obtained by converting the velocity records to displacement spectra and moment magnitudes of earthquakes were determined by fitting this spectrum to classical Brune model. For this aim, an automatic procedure was utilized which based on minimizing the differences between observed and synthetic source spectra identified by the S-waves. Besides of moment magnitude and location parameters, some source parameters such as seismic moment, spectral level, corner frequency and stress drop were also calculated. Application of the method proves that determine the seismic moment from the source spectra is applicable not only for earthquakes with small magnitude but also moderate earthquakes as well.

  7. Source-rock distribution model of the periadriatic region

    SciTech Connect

    Zappaterra, E. )

    1994-03-01

    The Periadriatic area is a mosaic of geological provinces comprised of spatially and temporally similar tectonic-sedimentary cycles. Tectonic evolution progressed from a Triassic-Early Jurassic (Liassic) continental rifting stage on the northern edge of the African craton, through an Early Jurassic (Middle Liassic)-Late Cretaceous/Eocene oceanic rifting stage and passive margin formation, to a final continental collision and active margin deformation stage in the Late Cretaceous/Eocene to Holocene. Extensive shallow-water carbonate platform deposits covered large parts of the Periadriatic region in the Late Triassic. Platform breakup and development of a platform-to-basin carbonate shelf morphology began in the Late Triassic and extended through the Cretaceous. On the basis of this paleogeographic evolution, the regional geology of the Periadriatic region can be expressed in terms of three main Upper Triassic-Paleogene sedimentary sequences: (A), the platform sequence; (B), the platform to basin sequence; and (C), the basin sequence. These sequences developed during the initial rifting and subsequent passive-margin formation tectonic stages. The principal Triassic source basins and most of the surface hydrocarbon indications and economically important oil fields of the Periadriatic region are associated with sequence B areas. No major hydrocarbon accumulations can be directly attributed to the Jurassic-Cretaceous epioceanic and intraplatform source rock sequences. The third episode of source bed deposition characterizes the final active margin deformation stage and is represented by Upper Tertiary organic-rich terrigenous units, mostly gas-prone. These are essentially associated with turbiditic and flysch sequences of foredeep basins and have generated the greater part of the commercial biogenic gases of the Periadriatic region. 82 refs., 11 figs., 2 tabs.

  8. Sources and contributions of wood smoke during winter in London: assessing local and regional influences

    NASA Astrophysics Data System (ADS)

    Crilley, L. R.; Bloss, W. J.; Yin, J.; Beddows, D. C. S.; Harrison, R. M.; Allan, J. D.; Young, D. E.; Flynn, M.; Williams, P.; Zotter, P.; Prevot, A. S. H.; Heal, M. R.; Barlow, J. F.; Halios, C. H.; Lee, J. D.; Szidat, S.; Mohr, C.

    2014-10-01

    Determining the contribution of wood smoke to air pollution in large cities such as London is becoming increasingly important due to the changing nature of domestic heating in urban areas. During winter, biomass burning emissions can exceed the contributions from traffic emissions, and have been identified as a major cause of exceedences of European air quality limits. The aim of this work was to quantify the contribution of biomass burning in London to concentrations of PM2.5 and determine whether local emissions or regional contributions were the main source of biomass smoke. To achieve this, a number of biomass burning chemical tracers were analysed at a site within central London and two sites in surrounding rural areas. Concentrations of levoglucosan, elemental carbon (EC), organic carbon (OC) and K+ were generally well correlated across the three sites. At all the sites, biomass burning was found to be a source of OC and EC, with the largest contribution of EC from traffic emissions, while for OC the dominant fraction likely included contributions from secondary organic aerosols, primary biogenic and cooking sources. Source apportionment of the EC and OC using average source ratios from published data was found to give reasonable estimation of the total carbon from non-fossil and fossil fuel sources based upon comparison with estimates derived from 14C analysis. Black carbon (BC) data from 2 and 7 wavelength Aethalometers were also apportioned into the contributions from biomass burning and traffic, based upon the enhanced absorption of wood smoke at UV wavelengths compared to BC. While the source apportionment of BC using this approach found similar trends to that observed for EC, higher percentage contributions of wood burning to BC were estimated. Based on a wood smoke mass conversion factor for levoglucosan, mean wood smoke mass at the sites was found to range from 0.78-1.0 μg m-3 during the campaign in January-February 2012. Measurements on a 160 m

  9. Millimeter waves as a source of selective heating of skin.

    PubMed

    Zhadobov, Maxim; Alekseev, Stanislav I; Le Dréan, Yves; Sauleau, Ronan; Fesenko, Evgeny E

    2015-09-01

    This study demonstrates that 20-100 GHz range can be used for spatially-accurate focusing of heating inside the skin achieved by varying frequency and exposure beam size, as well as by enforcing air convection. The latter is also used to reduce overheating of skin surface. Heating at different skin depths depending on these parameters is investigated in detail using the hybrid bio-heat equation. In particular, it is shown that decreasing frequency and/or increasing exposure beam size at forced airflow result in elevation of heating of deeper layers of tissue and decrease of skin surface temperature. Changes of water content within 15%, which exceed those due to aging and presence of tumors, only slightly affect heating. Exposure intensity necessary to reach a target temperature significantly increases in different areas of body with elevated blood flow. Dependence on exposure intensity and hyperthermia treatment duration is also investigated and discussed. Results of this study suggest that the lower part of the millimeter-wave range is an attractive alternative for non-invasive thermal treatment of skin cancer with a high spatial resolution.

  10. Transition to chaos in a square enclosure containing internal heat sources

    SciTech Connect

    Baytas, A.C.

    1995-09-01

    A numerical investigation is performed to study the transition from steady to chaotic flow of a fluid confined in a two-dimensional square cavity. The cavity has rigid walls of constant temperature containing uniformly distributed internal heat source. Effects of the Rayleigh number of flow and heat transfer rates are studied. In addition to, same problem is solved for sinusoidally changing internal heat source to show its effect on the flow model and heat transfer of the enclosures. Details of oscillatory solutions and flow bifurcations are presented.

  11. Numerical study of plasma generation process and internal antenna heat loadings in J-PARC RF negative ion source

    SciTech Connect

    Shibata, T. Ueno, A.; Oguri, H.; Ohkoshi, K.; Ikegami, K.; Takagi, A.; Asano, H.; Naito, F.; Nishida, K.; Mochizuki, S.; Hatayama, A.; Mattei, S.; Lettry, J.

    2016-02-15

    A numerical model of plasma transport and electromagnetic field in the J-PARC (Japan Proton Accelerator Research Complex) radio frequency ion source has been developed to understand the relation between antenna coil heat loadings and plasma production/transport processes. From the calculation, the local plasma density increase is observed in the region close to the antenna coil. Electrons are magnetized by the magnetic field line with absolute magnetic flux density 30–120 Gauss which leads to high local ionization rate. The results suggest that modification of magnetic configuration can be made to reduce plasma heat flux onto the antenna.

  12. Numerical study of plasma generation process and internal antenna heat loadings in J-PARC RF negative ion source

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Nishida, K.; Mochizuki, S.; Mattei, S.; Lettry, J.; Hatayama, A.; Ueno, A.; Oguri, H.; Ohkoshi, K.; Ikegami, K.; Takagi, A.; Asano, H.; Naito, F.

    2016-02-01

    A numerical model of plasma transport and electromagnetic field in the J-PARC (Japan Proton Accelerator Research Complex) radio frequency ion source has been developed to understand the relation between antenna coil heat loadings and plasma production/transport processes. From the calculation, the local plasma density increase is observed in the region close to the antenna coil. Electrons are magnetized by the magnetic field line with absolute magnetic flux density 30-120 Gauss which leads to high local ionization rate. The results suggest that modification of magnetic configuration can be made to reduce plasma heat flux onto the antenna.

  13. Numerical study of plasma generation process and internal antenna heat loadings in J-PARC RF negative ion source.

    PubMed

    Shibata, T; Nishida, K; Mochizuki, S; Mattei, S; Lettry, J; Hatayama, A; Ueno, A; Oguri, H; Ohkoshi, K; Ikegami, K; Takagi, A; Asano, H; Naito, F

    2016-02-01

    A numerical model of plasma transport and electromagnetic field in the J-PARC (Japan Proton Accelerator Research Complex) radio frequency ion source has been developed to understand the relation between antenna coil heat loadings and plasma production/transport processes. From the calculation, the local plasma density increase is observed in the region close to the antenna coil. Electrons are magnetized by the magnetic field line with absolute magnetic flux density 30-120 Gauss which leads to high local ionization rate. The results suggest that modification of magnetic configuration can be made to reduce plasma heat flux onto the antenna.

  14. Gas motion through porous objects with nonuniform local distribution of heat-release sources

    NASA Astrophysics Data System (ADS)

    Levin, V. A.; Lutsenko, N. A.

    2008-09-01

    The gas motion through porous objects in the gravity force field with a non-uniform distribution of heat sources, which may arise as a result of natural or man-caused catastrophes (as the damaged power unit of the Chernobyl NPP), is investigated. The influence of different parameters of the heat-releasing zone on the process of cooling of such objects is analyzed with the aid of computational experiment. It is shown that the porous element heating is affected not only by the height of the heat-releasing zone and the heat-release intensity therein but also by the distance of the heat-releasing zone from the element inlet as well as by the width of the heat-releasing zone. The phenomenon of a reduction of the porous element heating with increasing distance of the heat-releasing zone from the porous element inlet is revealed. An ambiguous dependence of the porous object heating on the width of the heat-release zone is identified: at a growth of the heat-releasing zone width, the heating of the element may both increase and decrease depending on the distance of the heat-release zone from the element inlet.

  15. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    NASA Astrophysics Data System (ADS)

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-01

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H-) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H- current at higher frequency of cathode heating current.

  16. Federal Technology Alert: Ground-Source Heat Pumps Applied to Federal Facilities--Second Edition

    SciTech Connect

    Hadley, Donald L.

    2001-03-01

    This Federal Technology Alert, which was sponsored by the U.S. Department of Energy's Office of Federal Energy Management Programs, provides the detailed information and procedures that a Federal energy manager needs to evaluate most ground-source heat pump applications. This report updates an earlier report on ground-source heat pumps that was published in September 1995. In the current report, general benefits of this technology to the Federal sector are described, as are ground-source heat pump operation, system types, design variations, energy savings, and other benefits. In addition, information on current manufacturers, technology users, and references for further reading are provided.

  17. Short-Term Energy Outlook Model Documentation: Regional Residential Heating Oil Price Model

    EIA Publications

    2009-01-01

    The regional residential heating oil price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 census regions: Northeast, South, Midwest, and West.

  18. High intensity heat-pulse source operates without cooling system

    NASA Technical Reports Server (NTRS)

    Russell, L. D.

    1970-01-01

    Tungsten-iodine quartz lamp with on-off control is mounted at focus of ellipsoidal reflector and shutter is mounted at conjugate focus. Flux sensor monitors lamp and actuates shutter which emits a heat pulse when the radiant flux builds up to requisite level.

  19. Heat flow and hot dry rock geothermal resources of the Clearlake Region, northern California

    SciTech Connect

    Burns, K.L.

    1996-08-01

    The Geysers-Clear Lake geothermal anomaly is an area of high heat flow in northern California. The anomaly is caused by abnormally high heat flows generated by asthenospheric uplift and basaltic magmatic underplating at a slabless window created by passage of the Mendocino Triple Junction. The Clear Lake volcanic field is underlain by magmatic igneous bodies in the form of a stack of sill-form intrusions with silicic bodies generally at the top and basic magmas at the bottom. The tabular shape and wide areal extent of the heat sources results in linear temperature gradients and near-horizontal isotherms in a broad region at the center of the geothermal anomaly. The Hot Dry Rock (HDR) portion of The Geysers-Clear Lake geothermal field is that part of the geothermal anomaly that is external to the steamfield, bounded by geothermal gradients of 167 mW/m2 (4 heat flow units-hfu) and 335 mW/m2 (8 hfu). The HDR resources, to a depth of 5 km, were estimated by piece-wise linear summation based on a sketch map of the heat flow. Approximately, the geothermal {open_quotes}accessible resource base{close_quotes} (Qa) is 1.68E+21 J; the {open_quotes}HDR resource base{close_quotes} (Qha) is 1.39E+21 J; and the {open_quotes}HDR power production resource{close_quotes} (Qhp) is 1.01E+21 J. The HDR power production resource (Qhp) is equivalent to 2.78E+ 11 Mwht (megawatt hours thermal), or 1.72E+11 bbls of oil.

  20. The Temporal and Spatial Distribution Characteristics of Heating Season and Source Tracing in Beijing

    NASA Astrophysics Data System (ADS)

    Gong, Huili; Zhao, Wenhui; Li, Xiaojuan; Zhao, Wenji

    2013-01-01

    Inhalable particulate matter (IPM) is one of the principal pollutants in Beijing. Sand weather in spring and winter seasons partly because of regional airflow, in most cases it is results from autochthonic pollution, especially in heating season of winter. In this paper, the law of temporal spatial distribution of IPM and the relationship between IPM and influence factors were studied combing RS techniques with ground-based monitoring. The change of underlying surface which were obtained from high resolution Remote Sensing images in different periods was analyzed; the content of different diameter of particles were collected by ground observation instrument and chemical composition were analyzed; the relationship of distribution of IPM and underlying surface was studied using spatial analysis of GIS. The results indicate that the pollution distribution of IPM has a very close relation with underlying surface, man-made pollution sources, population density and meteorological factors.

  1. Regional characterization of land cover using multiple sources of data

    USGS Publications Warehouse

    Vogelmann, J.E.; Sohl, T.; Howard, S.M.

    1998-01-01

    Many organizations require accurate intermediate-scale land-cover information for many applications, including modeling nutrient and pesticide runoff, understanding spatial patterns of biodiversity, land-use planning, and policy development. While many techniques have been successfully used to classify land cover in relatively small regions, there are substantial obstacles in applying these methods to large, multiscene regions. The purpose of this study was to generate and evaluate a large region land-cover classification product using a multiple-layer land-characteristics database approach. To derive land-cover information, mosaicked Landsat thematic mapper (TM) scenes were analyzed in conjunction with digital elevation data (and derived slope, aspect, and shaded relief), population census information, Defense Meteorological Satellite Program city lights data, prior land-use and land-cover data, digital line graph data, and National Wetlands Inventory data. Both leaf-on and leaf-off TM data sets were analyzed. The study area was U.S. Federal Region III, which includes the states of Pennsylvania, Virginia, Maryland, Delaware, and West Virginia. The general procedure involved (1) generating mosaics of multiple scenes of leaves-on TM data using histogram equalization methods; (2) clustering mosaics into 100 spectral classes using unsupervised classification; (3) interpreting and labeling spectral classes into approximately 15 land-cover categories (analogous to Anderson Level 1 and 2 classes) using aerial photographs; (4) developing decision-making rules and models using from one to several ancillary data layers to resolve confusion in spectral classes that represented two or more targeted land-cover categories; and (5) incorporating data from other sources (for example, leaf-off TM data and National Wetlands Inventory data) to yield a final land-cover product. Although standard accuracy assessments were not done, a series of consistency checks using available

  2. Inverse Analysis of Heat Conduction in Hollow Cylinders with Asymmetric Source Distributions

    NASA Astrophysics Data System (ADS)

    Lambrakos, Samuel G.; Michopoulos, John G.; Jones, Harry N.; Boyer, Craig N.

    2008-10-01

    This paper presents an application of inverse analysis for determining both the temperature field histories and corresponding heat source distributions in hollow cylinders. The primary goal, however, is the development of an inversion infrastructure in a manner that allows taking advantage of all aspects related to its utility, including sensitivity analysis. The conditions generating heat sources are those resulting from intense pulsed-current electrical contact experiments. Under these conditions intense heat currents are generated due to the Joule conversion of the electric conduction currents. Asymmetry of the heat source is induced from the localized melting due to arc-enhanced electric conduction. Experimentally acquired temperature histories and melting domain boundary data are utilized to setup an inverse model of the heat conduction problem. This permits the construction of an estimate not only of the temperature field histories throughout the computational domain but also of an evaluation of the effective thermal diffusivity of the material involved.

  3. Investigation of Geothermal Energy as a Heat Source for Oilsands Extraction in Northern Alberta

    NASA Astrophysics Data System (ADS)

    Majorowicz, J. A.; Unsworth, M. J.; Tayfun, B.; Chacko, T.; Currie, C. A.; Gray, A.; Grobe, M.; Heaman, L. M.; Huenges, E.; Moeck, I.; Ritter, O.; Rostron, B. J.; Schmitt, D.; Vanderbaan, M.; Weides, S.

    2010-12-01

    The extraction of the Northern Alberta oil sands requires a significant amount of thermal energy which is currently supplied through the burning of natural gas. Geothermal energy could replace some of this demand. The feasibility of developing geothermal energy production in Northern Alberta is being evaluated through the Helmholtz Alberta Initiative, which is a collaboration between scientists in Germany and Canada. The geology of Northern Alberta is characterized by 500-2000 m of sedimentary rocks overlying Precambrian crystalline basement rocks of the Canadian Shield. Where the sedimentary cover is thin (e.g the Athabasca oilsands at Fort McMurray), geothermal energy production would require the development of engineered geothermal systems (EGS) within the crystalline basement rocks. Where the sedimentary basin is thicker (Peace River), heat sources may be found with the sedimentary rocks and natural geothermal reservoirs may be developed. The first stage of this research has involved a re-evaluation of the existing thermal data from boreholes. Precambrian temperature profiles are available only from two deep wells and point to large spatial variations in heat flow (30-70 mW/m**2), that are likely due to variations in the concentrations of radiogenic elements in the crust. Thermal data is also available in a large number of shallow wells, and these data shows a significant depth dependence of heat flow. Shallow temperature gradients are up to two times higher than gradients measured in deeper wells, which implies that shallow temperature data can overestimate the projected temperatures in the Precambrian rocks at depths of 4-5 km. Revised thermal gradient maps have been computed and will be presented in this poster, including extrapolation to the depths required for economically significant temperatures. The second stage of the research will involve detailed characterization of the sedimentary and basement rocks. Geophysical surveys will used combined

  4. Seismic source-region elastic calculations on KDYNA

    SciTech Connect

    Clarke, D.B.

    1994-03-01

    This paper summarizes the results of source-region simulations on the KDYNA hydrodynamics code. The source was a pressure-step function in a 40-m-radius cavity 500 m below a free surface. The problem of a driven cavity in an elastic material was chosen as a test and calibration problem for two reasons. First, the driven cavity is a model for an underground explosion. Secondly, the availability of analytical methods for waves in elastic solids means that alternate calculational paths exist for calculating the distant signals from the cavity. Data from an array of sensor points roughly 1 km from the source were saved and passed to Howard Patton and Keith K. Nakanish for input to a NMTS (Normal Mode Time Series) code. The data consisted of the time histories (0 to 2 s) of the radial and axial velocities and the radial, axial, and shear components of the stress at each sensor point. The NMTS code will use the input to predict the signals in the far field (e.g., 300 km) from the explosion source. This elastic KDYNA calculation provides a complete and satisfactory simulation for input to the NMTS code and for comparison with other calculational methods.

  5. Sources and contributions of wood smoke during winter in London: assessing local and regional influences

    NASA Astrophysics Data System (ADS)

    Crilley, L. R.; Bloss, W. J.; Yin, J.; Beddows, D. C. S.; Harrison, R. M.; Allan, J. D.; Young, D. E.; Flynn, M.; Williams, P.; Zotter, P.; Prevot, A. S. H.; Heal, M. R.; Barlow, J. F.; Halios, C. H.; Lee, J. D.; Szidat, S.; Mohr, C.

    2015-03-01

    Determining the contribution of wood smoke to air pollution in large cities such as London is becoming increasingly important due to the changing nature of domestic heating in urban areas. During winter, biomass burning emissions have been identified as a major cause of exceedances of European air quality limits. The aim of this work was to quantify the contribution of biomass burning in London to concentrations of PM2.5 and determine whether local emissions or regional contributions were the main source of biomass smoke. To achieve this, a number of biomass burning chemical tracers were analysed at a site within central London and two sites in surrounding rural areas. Concentrations of levoglucosan, elemental carbon (EC), organic carbon (OC) and K+ were generally well correlated across the three sites. At all the sites, biomass burning was found to be a source of OC and EC, with the largest contribution of EC from traffic emissions, while for OC the dominant fraction included contributions from secondary organic aerosols, primary biogenic and cooking sources. Source apportionment of the EC and OC was found to give reasonable estimation of the total carbon from non-fossil and fossil fuel sources based upon comparison with estimates derived from 14C analysis. Aethalometer-derived black carbon data were also apportioned into the contributions from biomass burning and traffic and showed trends similar to those observed for EC. Mean wood smoke mass at the sites was estimated to range from 0.78 to 1.0 μg m-3 during the campaign in January-February 2012. Measurements on a 160 m tower in London suggested a similar ratio of brown to black carbon (reflecting wood burning and traffic respectively) in regional and London air. Peaks in the levoglucosan and K+ concentrations were observed to coincide with low ambient temperature, consistent with domestic heating as a major contributing local source in London. Overall, the source of biomass smoke in London was concluded to be a

  6. Interactions of /sup 238/PuO/sub 2/ heat sources with terrestrial and aquatic environments. Interim summary

    SciTech Connect

    Patterson, J.H.; Steinkruger, F.J.; Matlack, G.M.

    1980-09-01

    Observations and some conclusions made of the interactions of /sup 238/PuO/sub 2/ heat sources with terrestrial and aquatic environments may be used in predicting heat source behavior in the event of contact of these heat sources with land or ocean and in assessing the risk to the environment. These studies indicate that plutonium transport from the heat sources is mostly a physical process involving the movement of extremely fine particles rather than the chemical migration of plutonium ions.

  7. Energy recovery during expansion of compressed gas using power plant low-quality heat sources

    DOEpatents

    Ochs, Thomas L.; O'Connor, William K.

    2006-03-07

    A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

  8. GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System

    SciTech Connect

    James Menart

    2013-06-07

    This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.

  9. Alternate energy source usage for in situ heat treatment processes

    SciTech Connect

    Stone, Jr., Francis Marion; Goodwin, Charles R; Richard, Jr., James

    2011-03-22

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for providing power to one or more subsurface heaters is described herein. The system may include an intermittent power source; a transformer coupled to the intermittent power source, and a tap controller coupled to the transformer. The transformer may be configured to transform power from the intermittent power source to power with appropriate operating parameters for the heaters. The tap controller may be configured to monitor and control the transformer so that a constant voltage is provided to the heaters from the transformer regardless of the load of the heaters and the power output provided by the intermittent power source.

  10. Magnetic pumping as a source of particle heating

    NASA Astrophysics Data System (ADS)

    Lichko, Emily; Egedal, Jan; Daughton, William; Kasper, Justin

    2016-10-01

    Magnetic pumping is a means of heating plasmas for both fusion and astrophysical applications. This study presents a generalized model, related to the compressional pumping model Fisk & Gloeckler applied to the solar wind (2006). Unlike previous models, this model includes diffusion of the anisotropic features which develop in velocity space, thereby allowing energy to be transferred to the particles directly from the turbulence. By using various orderings, the drift kinetic equation can be reduced to a more general form of Parker's equation with an anisotropic distribution function. Through expansions in both pitch angle and in space, it can be shown that this equation has power law solutions and results in an overall heating of the plasma. This form of heating is related to transit-time damping. Kinetic simulations were performed to test the theoretical model and explore regimes where spatial and velocity diffusion are of the same order of importance, regimes not easily available to analytical calculations. These simulations appear to confirm the pumping model in the appropriate limits.

  11. National Certification Standard for Ground Source Heat Pump Personnel

    SciTech Connect

    Kelly, John

    2013-07-31

    The National Certification Standard for the Geothermal Heat Pump Industry adds to the understanding of the barriers to rapid growth of the geothermal heat pump (GHP) industry by bringing together for the first time an analysis of the roles and responsibilities of each of the individual job tasks involved in the design and installation of GHP systems. The standard addresses applicable qualifications for all primary personnel involved in the design, installation, commissioning, operation and maintenance of GHP systems, including their knowledge, skills and abilities. The resulting standard serves as a foundation for subsequent development of curriculum, training and certification programs, which are not included in the scope of this project, but are briefly addressed in the standard to describe ways in which the standard developed in this project may form a foundation to support further progress in accomplishing those other efforts. Follow-on efforts may use the standard developed in this project to improve the technical effectiveness and economic feasibility of curriculum development and training programs for GHP industry personnel, by providing a more complete and objective assessment of the individual job tasks necessary for successful implementation of GHP systems. When incorporated into future certification programs for GHP personnel, the standard will facilitate increased consumer confidence in GHP technology, reduce the potential for improperly installed GHP systems, and assure GHP system quality and performance, all of which benefit the public through improved energy efficiency and mitigated environmental impacts of the heating and cooling of homes and businesses.

  12. Characterization of the Inductively Heated Plasma Source IPG6-B

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell

    2014-10-01

    In close collaboration between the Center for Astrophysics, Space Physics and Engineering Research (CASPER) at Baylor University, Texas, and the Institute of Space Systems (IRS) at the University of Stuttgart, Germany, two plasma facilities have been established using the Inductively heated Plasma Generator 6 (IPG6). The facility at Baylor University (IPG6-B) works at a frequency of 13.56 MHz and a maximum power of 15 kW. A vacuum pump of 160 m3/h in combination with a butterfly valve allows pressure control over a wide range. Intended fields of research include basic investigation into thermo-chemistry and plasma radiation, space plasma environments and high heat fluxes e.g. those found in fusion devices or during atmospheric re-entry of spacecraft. After moving the IPG6-B facility to the Baylor Research and Innovation Collaborative (BRIC) it was placed back into operation during the summer of 2014. Initial characterization in the new lab, using a heat flux probe, Pitot probe and cavity calorimeter, has been conducted for Air, Argon and Helium. The results of this characterization are presented.

  13. Impact of various operating modes on performance and emission parameters of small heat source

    NASA Astrophysics Data System (ADS)

    Vician, Peter; Holubčík, Michal; Palacka, Matej; Jandačka, Jozef

    2016-06-01

    Thesis deals with the measurement of performance and emission parameters of small heat source for combustion of biomass in each of its operating modes. As the heat source was used pellet boiler with an output of 18 kW. The work includes design of experimental device for measuring the impact of changes in air supply and method for controlling the power and emission parameters of heat sources for combustion of woody biomass. The work describes the main factors that affect the combustion process and analyze the measurements of emissions at the heat source. The results of experiment demonstrate the values of performance and emissions parameters for the different operating modes of the boiler, which serve as a decisive factor in choosing the appropriate mode.

  14. Welding Isotopic Heat Sources for the Cassini Mission to Saturn (U)

    SciTech Connect

    Franco-Ferreira, E.A.; George, T.G.

    1995-02-28

    In 1997 NASA will launch the Cassini scientific probe to the planet Saturn. Electric power for this probe will be provided by Radioisotope Thermoelectric Generators thermally driven by General Purpose Heat Source modules.

  15. Theoretical and experimental investigation of high-level radiation sources used to model a heat input

    NASA Astrophysics Data System (ADS)

    Gradov, V. M.; Petrikevich, B. B.; Shcherbakov, A. A.

    1980-03-01

    This paper examines high-intensity xenon-filled radiation sources for heat load simulation. A mathematical model of the discharge is proposed, and results of a theoretical and an experimental investigation are presented.

  16. Prospects for using high power x-rays as a volumetric heat source

    SciTech Connect

    Rosenberg, R.A.; Farrell, W.; Ma, Q.

    1997-09-01

    Third-generation, high-intensity, x-ray synchrotron radiation sources are capable of producing high heat-flux x-ray beams. In many applications finding ways to handle these powers is viewed as a burden. However, there are some technological applications where the deep penetration length of the x-rays may find beneficial uses as a volumetric heat source. In this paper the authors discuss the prospects for using high power x-rays for volumetric heating and report some recent experimental results. The particular applications they focus on are welding and surface heat treatment. The radiation source is an undulator at the Advanced Photon Source (APS). Results of preliminary tests on aluminum, aluminum metal matrix composites, and steel will be presented.

  17. Milliwatt-generator heat source. Progress report, January-June 1983

    SciTech Connect

    Mershad, E.A.

    1983-09-20

    Progress is reported in the following: heat source shipments, reimbursable orders, hardware shipments, raw material qualification/procurement, DOE audit and milliwatt generator process review, surveillance capsule evaluations, pressure burst testing, and hardware fabrication and quality. (MHR)

  18. Broadband asymmetric acoustic transmission in a single medium by an array of heat sources

    NASA Astrophysics Data System (ADS)

    Guan, Yi-Jun; Sun, Hong-Xiang; Xia, Jian-Ping; Yuan, Shou-Qi

    2017-04-01

    We report the realization of a broadband asymmetric acoustic transmission with six different-temperature heat sources in air. This exotic effect arises from the desired refractive index in propagation paths induced from heat sources of different temperatures and asymmetrical distribution, which avoids acoustic impedance differences between the heat sources and air and has no reflection energy loss. In addition, the influence of the viscosity of air, the thermal convection, and the temperature and length of the heat sources on the asymmetric transmission effect is investigated in detail. The results show that the proposed device has the advantages of broad bandwidth, high transmission contrast, and simple structure, which enable it to provide more schemes for sound manipulation. It has excellent potential applications in acoustic devices.

  19. Techniques for Source-Region EMP Experiments at AURORA

    DTIC Science & Technology

    1983-02-01

    field is uni- For a typicAl A1IRUPA sensor, V 0nsr LA u 3 p l ThCA 1 ore in.ý - 7777W,.t---7 -77 - " Also, if interference in the output cable is...HDL-CR-83-072-1 SFebruary 1983 - Techniques for Source-Region EMP Experiments at AURORA by V. A . J. van Lint Prepared by Mission Research...NUMSERPe) HDL Contact: V. A . J. van Lint William Scharf DMAK21-80-R-9072 9. P~ERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

  20. Technology Solutions Case Study: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia

    SciTech Connect

    2014-09-01

    This case study describes the construction of a new test home that demonstrates current best practices for the mixed-humid climate, including a high performance ground source heat pump for heating and cooling, a building envelope featuring advanced air sealing details and low-density spray foam insulation, and glazing that exceeds ENERGY STAR requirements.

  1. Regional Seismic Identification Research:Processing, Transportability and Source Models

    SciTech Connect

    Walter, W; Mayeda, K; Rodgers, A; Taylor, S; Dodge, D; Matzel, E; Ganzberger, M

    2004-07-09

    Our identification research for the past several years has focused on the problem of correctly discriminating small-magnitude explosions from a background of earthquakes, mining tremors, and other events. Small magnitudes lead to an emphasis on regional waveforms. It has been shown that at each test site where earthquake and explosions are in close proximity and recorded at the same station, clear differences in the regional body waves such as the relative high frequency amplitudes of P and S waves can be used to discriminate between event types. However path and source effects can also induce such differences, therefore these must be quantified and accounted for. We have been using a specific technique called Magnitude and Distance Amplitude Correction (MDAC), with some success to account for some of these effects.

  2. An Electrothermal Plasma Source Developed for Simulation of Transient Heat Loads in Future Large Fusion Devices

    NASA Astrophysics Data System (ADS)

    Gebhart, Trey; Baylor, Larry; Winfrey, Leigh

    2016-10-01

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a possible transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime, which is driven by a DC capacitive discharge. The current travels through the 4mm bore of a boron nitride liner and subsequently ablates and ionizes the liner material. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have a duration of 1ms at full-width half maximum. The peak currents and maximum source energies seen in this system are 2kA and 5kJ. The goal of this work is to show that the ET source produces electron densities and heat fluxes that are comparable to transient events in future large magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each test shot using infrared imaging and optical spectroscopy techniques. This work will compare the ET source output (heat flux, temperature, and density) with and without an applied magnetic field. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  3. Foundation heat exchangers for residential ground source heat pump systems Numerical modeling and experimental validation

    SciTech Connect

    Xing, Lu; Cullin, James; Spitler, Jeffery; Im, Piljae; Fisher, Daniel

    2011-01-01

    A new type of ground heat exchanger that utilizes the excavation often made for basements or foundations has been proposed as an alternative to conventional ground heat exchangers. This article describes a numerical model that can be used to size these foundation heat exchanger (FHX) systems. The numerical model is a two-dimensional finite-volume model that considers a wide variety of factors, such as soil freezing and evapotranspiration. The FHX numerical model is validated with one year of experimental data collected at an experimental house located near Oak Ridge, Tennessee. The model shows good agreement with the experimental data-heat pump entering fluid temperatures typically within 1 C (1.8 F) - with minor discrepancies due to approximations, such as constant moisture content throughout the year, uniform evapotranspiration over the seasons, and lack of ground shading in the model.

  4. Characterization of the Southern Nevada Region for Source Physics Experiments

    NASA Astrophysics Data System (ADS)

    Pyle, M. L.; Walter, W. R.; Myers, S. C.; Pasyanos, M.; Hauk, T. F.; Ruhl, C. J.; Smith, K. D.

    2013-12-01

    The Source Physics Experiment (SPE) includes an ongoing series of chemical explosions designed to advance seismic monitoring through better understanding of explosion physics and associated simulation codes. A candidate for a future SPE would result in direct comparison of seismic signals from well constrained and co-located earthquake and explosion sources at a common set of receivers. This possibility arises from an area of unusually shallow seismicity in southern Nevada. In May of 1993 a series of events with depths of 1-2 km were recorded at regional seismic stations as well as local stations that were temporarily deployed by the University of Nevada-Reno (UNR). The main shock had a magnitude of approximately 3.7 and 11 more events in the sequence had magnitudes over 2. As part of a feasibility study for a future SPE, LLNL, UNR and NSTec are working to improve our understanding of the region and the propagation of energy from sources in the area to local and regional stations in the western U.S. Six new telemetered seismic stations located at both original 1993 sites and additional sites have been installed and operating in and around the area since early 2011. Using both historic and current data we seek to ensure that we have the best possible locations for the 1993 sequence and current ongoing microseismicity in the region. For this purpose we use the Bayesloc multiple-event location algorithm (Myers et al., 2007; 2009) to improve hypocentral locations. Bayesloc formulates the location problem as a hierarchy of the travel-time model with travel-time corrections, an arrival time model including picking errors, and a prior model for each parameter. Using known locations of nearby previous nuclear tests we have the ability to test the accuracy and robustness of our relocation parameters and results. In our preliminary analysis, we use a mixture of local and regional nuclear test data with the algorithm for the first time, and initial tests show significant

  5. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems

    SciTech Connect

    Hong, Tainzhen; Liu, Xaiobing

    2009-11-01

    With the current movement toward net zero energy buildings, many technologies are promoted with emphasis on their superior energy efficiency. The variable refrigerant flow (VRF) and ground source heat pump (GSHP) systems are probably the most competitive technologies among these. However, there are few studies reporting the energy efficiency of VRF systems compared with GSHP systems. In this article, a preliminary comparison of energy efficiency between the air-source VRF and GSHP systems is presented. The computer simulation results show that GSHP system is more energy efficient than the air-source VRF system for conditioning a small office building in two selected US climates. In general, GSHP system is more energy efficient than the air-source VRV system, especially when the building has significant heating loads. For buildings with less heating loads, the GSHP system could still perform better than the air-source VRF system in terms of energy efficiency, but the resulting energy savings may be marginal.

  6. High-frequency torsional Alfvén waves as an energy source for coronal heating

    NASA Astrophysics Data System (ADS)

    Srivastava, Abhishek Kumar; Shetye, Juie; Murawski, Krzysztof; Doyle, John Gerard; Stangalini, Marco; Scullion, Eamon; Ray, Tom; Wójcik, Dariusz Patryk; Dwivedi, Bhola N.

    2017-03-01

    The existence of the Sun’s hot atmosphere and the solar wind acceleration continues to be an outstanding problem in solar-astrophysics. Although magnetohydrodynamic (MHD) modes and dissipation of magnetic energy contribute to heating and the mass cycle of the solar atmosphere, yet direct evidence of such processes often generates debate. Ground-based 1-m Swedish Solar Telescope (SST)/CRISP, Hα 6562.8 Å observations reveal, for the first time, the ubiquitous presence of high frequency (~12–42 mHz) torsional motions in thin spicular-type structures in the chromosphere. We detect numerous oscillating flux tubes on 10 June 2014 between 07:17 UT to 08:08 UT in a quiet-Sun field-of-view of 60” × 60” (1” = 725 km). Stringent numerical model shows that these observations resemble torsional Alfvén waves associated with high frequency drivers which contain a huge amount of energy (~105 W m‑2) in the chromosphere. Even after partial reflection from the transition region, a significant amount of energy (~103 W m‑2) is transferred onto the overlying corona. We find that oscillating tubes serve as substantial sources of Alfvén wave generation that provide sufficient Poynting flux not only to heat the corona but also to originate the supersonic solar wind.

  7. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    PubMed

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  8. High-frequency torsional Alfvén waves as an energy source for coronal heating.

    PubMed

    Srivastava, Abhishek Kumar; Shetye, Juie; Murawski, Krzysztof; Doyle, John Gerard; Stangalini, Marco; Scullion, Eamon; Ray, Tom; Wójcik, Dariusz Patryk; Dwivedi, Bhola N

    2017-03-03

    The existence of the Sun's hot atmosphere and the solar wind acceleration continues to be an outstanding problem in solar-astrophysics. Although magnetohydrodynamic (MHD) modes and dissipation of magnetic energy contribute to heating and the mass cycle of the solar atmosphere, yet direct evidence of such processes often generates debate. Ground-based 1-m Swedish Solar Telescope (SST)/CRISP, Hα 6562.8 Å observations reveal, for the first time, the ubiquitous presence of high frequency (~12-42 mHz) torsional motions in thin spicular-type structures in the chromosphere. We detect numerous oscillating flux tubes on 10 June 2014 between 07:17 UT to 08:08 UT in a quiet-Sun field-of-view of 60" × 60" (1" = 725 km). Stringent numerical model shows that these observations resemble torsional Alfvén waves associated with high frequency drivers which contain a huge amount of energy (~10(5) W m(-2)) in the chromosphere. Even after partial reflection from the transition region, a significant amount of energy (~10(3) W m(-2)) is transferred onto the overlying corona. We find that oscillating tubes serve as substantial sources of Alfvén wave generation that provide sufficient Poynting flux not only to heat the corona but also to originate the supersonic solar wind.

  9. High-frequency torsional Alfvén waves as an energy source for coronal heating

    PubMed Central

    Srivastava, Abhishek Kumar; Shetye, Juie; Murawski, Krzysztof; Doyle, John Gerard; Stangalini, Marco; Scullion, Eamon; Ray, Tom; Wójcik, Dariusz Patryk; Dwivedi, Bhola N.

    2017-01-01

    The existence of the Sun’s hot atmosphere and the solar wind acceleration continues to be an outstanding problem in solar-astrophysics. Although magnetohydrodynamic (MHD) modes and dissipation of magnetic energy contribute to heating and the mass cycle of the solar atmosphere, yet direct evidence of such processes often generates debate. Ground-based 1-m Swedish Solar Telescope (SST)/CRISP, Hα 6562.8 Å observations reveal, for the first time, the ubiquitous presence of high frequency (~12–42 mHz) torsional motions in thin spicular-type structures in the chromosphere. We detect numerous oscillating flux tubes on 10 June 2014 between 07:17 UT to 08:08 UT in a quiet-Sun field-of-view of 60” × 60” (1” = 725 km). Stringent numerical model shows that these observations resemble torsional Alfvén waves associated with high frequency drivers which contain a huge amount of energy (~105 W m−2) in the chromosphere. Even after partial reflection from the transition region, a significant amount of energy (~103 W m−2) is transferred onto the overlying corona. We find that oscillating tubes serve as substantial sources of Alfvén wave generation that provide sufficient Poynting flux not only to heat the corona but also to originate the supersonic solar wind. PMID:28256538

  10. Impact of the High Flux Isotope Reactor HEU to LEU Fuel Conversion on Cold Source Nuclear Heat Generation Rates

    SciTech Connect

    Chandler, David

    2014-03-01

    Under the sponsorship of the US Department of Energy National Nuclear Security Administration, staff members at the Oak Ridge National Laboratory have been conducting studies to determine whether the High Flux Isotope Reactor (HFIR) can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. As part of these ongoing studies, an assessment of the impact that the HEU to LEU fuel conversion has on the nuclear heat generation rates in regions of the HFIR cold source system and its moderator vessel was performed and is documented in this report. Silicon production rates in the cold source aluminum regions and few-group neutron fluxes in the cold source moderator were also estimated. Neutronics calculations were performed with the Monte Carlo N-Particle code to determine the nuclear heat generation rates in regions of the HFIR cold source and its vessel for the HEU core operating at a full reactor power (FP) of 85 MW(t) and the reference LEU core operating at an FP of 100 MW(t). Calculations were performed with beginning-of-cycle (BOC) and end-of-cycle (EOC) conditions to bound typical irradiation conditions. Average specific BOC heat generation rates of 12.76 and 12.92 W/g, respectively, were calculated for the hemispherical region of the cold source liquid hydrogen (LH2) for the HEU and LEU cores, and EOC heat generation rates of 13.25 and 12.86 W/g, respectively, were calculated for the HEU and LEU cores. Thus, the greatest heat generation rates were calculated for the EOC HEU core, and it is concluded that the conversion from HEU to LEU fuel and the resulting increase of FP from 85 MW to 100 MW will not impact the ability of the heat removal equipment to remove the heat deposited in the cold source system. Silicon production rates in the cold source aluminum regions are estimated to be about 12.0% greater at BOC and 2.7% greater at EOC for the LEU core in comparison to the HEU core. Silicon is aluminum s major transmutation product and

  11. Behavioral observations and operant procedures using microwaves as a heat source for young chicks

    SciTech Connect

    Morrison, W.D.; McMillan, I.; Bate, L.A.; Otten, L.; Pei, D.C.

    1986-08-01

    Four trials, using operant conditioning procedures, were conducted to study the response of chicks, housed at 16 C, to microwave or infrared heat. Microwave power density was 26 mW/cm2 in Trial 1, 13 mW/cm2 in Trial 2, and 10 mW/cm2 in Trials 3 and 4. Chicks voluntarily demanded between 28 and 63% as much heat (min heat/hr) from microwave source as from infrared source at all power densities. There was no correlation, however, between the ratio of heat demanded and the power density used. There were no significant differences in growth between infrared- or microwave-heated chicks. It is evident from these studies that 8-day-old broiler chicks are capable of associating the performance of a task with a thermal reward provided by the microwaves. They are also able to utilize these microwaves through operant conditioning without any visible detrimental effect to their health or behavior.

  12. Source and Path Effects on Regional Phases in China

    SciTech Connect

    Phillips, W.S., Randall, G.E., Hartse, H.E., Taylor, S.R., Patton, H.J.

    1997-12-31

    As part of the CTBT Research and Development regional characterization effort, we are assembling, organizing and analyzing geological, geophysical,and seismic data for inclusion in a knowledge base for China. We have collected seismic data from 11 Chinese Digital Seismic Network (CDSN) stations as well as IRIS stations AAK, TLY, ULN and NIL from adjoining regions. Using the published event locations and origin times, we identify Pn, Pg, Sn, and Lg phases,construct travel time curves, and estimate apparent velocities from broadband and short period seismograms. Following this, we collect amplitudes of regional seismic phases and associated noise levels using bandpassed waveforms. Studies of path specific propagation of the seismic phases have mapped blockages and have generated corrections useful in reducing scatter in magnitude estimates and in discriminant ratios. Such path corrections reduce RMS distance and mb- corrected Lg amplitude to as much as 60% of its original level (log{sub 10} domain). Path corrections are less effective with Pn data. We also study source scaling effects on these data which will allow us to refine path corrections further.

  13. A regional comparison of solar, heat pump, and solar-heat pump systems

    NASA Astrophysics Data System (ADS)

    Manton, B. E.; Mitchell, J. W.

    1982-08-01

    A comparative study of the thermal and economic performance of the parallel and series solar heat pump systems, stand alone solar and stand alone heat pump systems for residential space and domestic hot water heating for the U.S. using FCHART 4.0 is presented. Results show that the parallel solar heat pump system yields the greatest energy savings in the south. Very low cost collectors (50-150 dollars/sq m) are required for a series solar heat pump system in order for it to compete economically with the better of the parallel or solar systems. Conventional oil or gas furnaces need to have a seasonal efficiency of at least 70-85% in order to save as much primary energy as the best primary system in the northeast. In addition, the implications of these results for current or proposed federal tax credit measures are discussed.

  14. Getting granite dikes out of the source region

    NASA Technical Reports Server (NTRS)

    Rubin, Allan M.

    1995-01-01

    Whether a dike can propagate far from a magma reservoir depends upon the competition between the rate at which propagation widens the dike and the rate at which freezing constricts the aperture available for magma flow. Various formulations are developed for a viscous fluid at temperature T(sub m) intruding a growing crack in an elastic solid. The initial solid temperature equals T(sub m) at the source and decreases linearly with distance from the source. If T(sub m) is the unique freezing temperature of the fluid, dike growth is initially self-similar and an essentially exact solution is obtained; if T(sub m) is above the solidus temperature, the solution is approximate but is designed to overestimate the distance the dike may propagate. The ability of a dike to survive thermally depends primarily upon a single parameter that is a measure of the ratio of the dike frozen margin thickness to elastic thickness. Perhaps more intuitively, one may define a minimum distance from the essentially solid reservoir wall to the point at which the host rock temperature drops below the solidus, necessary for dikes to propagate far into subsolidus rock. It is concluded that for reasonable material properties and source conditions, most basalt dikes will have little difficulty leaving the source region, but most rhyolite dikes will be halted by freezing soon after the magma encounters rock at temperatures below the magma solidus. While these results can explain why granitic dikes are common near granitic plutons but rare elsewhere, the potentially large variation in magmatic systems makes it premature to rule out the possibility that most granites are transported through the crust in dikes. Nonetheless, these results highlight difficulties with such proposals and suggest that it may also be premature to rule out the possibility that most granite plutons ascend as more equidimensional bodies.

  15. The solar assisted air-source heat pump system, part 1

    NASA Astrophysics Data System (ADS)

    Hino, T.

    1980-11-01

    A new heat pump heating and air conditioning system was proposed and tested. It features the effective utilization of climatic conditions as its heat sources and sinks, to improve the thermodynamic efficiencies. Reduced electricity consumption, utility load leveling and the least environmental pollutions are expected. The outdoor unit of this heat pump is composed of aluminum panels that are painted black to enhance the radiative heat exchange and fixed almost perpendicularly to improve the natural convective heat transfer with air. The working fluid is halocarbon and commonly used in the heat transfer circuits and the refrigeration cycle. In the heating cycle, the liquid refrigerant evaporates in the passages of the panel. When insolation to the panels is sufficient to meet the heat pump evaporator capacity, the panel temperature will be almost the same as the outdoor air temperature. Thus little convective heat loss to the surrounding air occurs. As the insolation decreases the panel temperature falls several degrees below the outdoor air to absorb heat out of the air until the equilibrium condition is reached.

  16. Preliminary design study of an alternate heat source assembly for a Brayton isotope power system

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.

    1978-01-01

    Results are presented for a study of the preliminary design of an alternate heat source assembly (HSA) intended for use in the Brayton isotope power system (BIPS). The BIPS converts thermal energy emitted by a radioactive heat source into electrical energy by means of a closed Brayton cycle. A heat source heat exchanger configuration was selected and optimized. The design consists of a 10 turn helically wound Hastelloy X tube. Thermal analyses were performed for various operating conditions to ensure that post impact containment shell (PICS) temperatures remain within specified limits. These limits are essentially satisfied for all modes of operation except for the emergency cooling system for which the PICS temperatures are too high. Neon was found to be the best choice for a fill gas for auxiliary cooling system operation. Low cycle fatigue life, natural frequency, and dynamic loading requirements can be met with minor modifications to the existing HSA.

  17. Heat transfer from a square source to an impinging liquid jet confined by an annular wall

    SciTech Connect

    Besserman, D.L. ); Incropera, F.P.; Ramadhyani, S. )

    1992-02-01

    The objective of this study has been to consider experimentally impingement cooling of a chiplike source by a liquid, circular jet under conditions for which single-phase convection heat transfer from the source may be influenced by annular collection of the spent fluid. The experiments were performed with water and for operating conditions that are consistent with ship cooling requirements.

  18. On Heating the Sun's Corona by Magnetic Explosions: Feasibility in Active Regions and prospects for Quiet Regions and Coronal Holes

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, D. A.; Porter, Jason G.; Suess, Steven T.

    1999-01-01

    We build a case for the persistent strong coronal heating in active regions and the pervasive quasi-steady heating of the corona in quiet regions and coronal holes being driven in basically the same way as the intense transient heating in solar flares: by explosions of sheared magnetic fields in the cores of initially closed bipoles. We begin by summarizing the observational case for exploding sheared core fields being the drivers of a wide variety of flare events, with and without coronal mass ejections. We conclude that the arrangement of an event's flare heating, whether there is a coronal mass ejection, and the time and place of the ejection relative to the flare heating are all largely determined by four elements of the form and action of the magnetic field: (1) the arrangement of the impacted, interacting bipoles participating in the event, (2) which of these bipoles are active (have sheared core fields that explode) and which are passive (are heated by injection from impacted active bipoles), (3) which core field explodes first, and (4) which core-field explosions are confined within the closed field of their bipoles and which ejectively open their bipoles. We then apply this magnetic-configuration framework for flare heating to the strong coronal heating observed by the Yohkoh Soft X-ray Telescope in an active region with strongly sheared core fields observed by the MSFC vector magnetograph. All of the strong coronal heating is in continually microflaring sheared core fields or in extended loops rooted against the active core fields. Thus, the strong heating occurs in field configurations consistent with the heating being driven by frequent core-field explosions that are smaller but similar to those in confined flares and flaring arches. From analysis of the thermal and magnetic energetics of two selected core-field microflares and a bright extended loop, we find that (1) it is energetically feasible for the sheared core fields to drive all of the coronal

  19. COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM

    SciTech Connect

    Jiang Zhu; Yong X. Tao

    2011-11-01

    In this paper, a hotel with hybrid geothermal heat pump system (HyGSHP) in the Pensacola is selected and simulated by the transient simulation software package TRNSYS [1]. To verify the simulation results, the validations are conducted by using the monthly average entering water temperature, monthly facility consumption data, and etc. And three types of HVAC systems are compared based on the same building model and HVAC system capacity. The results are presented to show the advantages and disadvantages of HyGSHP compared with the other two systems in terms of energy consumptions, life cycle cost analysis.

  20. Fuel cell power source for a cold region

    NASA Astrophysics Data System (ADS)

    Datta, B. K.; Velayutham, G.; Goud, A. Prasad

    operation. Based on the results of these experiments, the design of the fuel cell power source for cold region application has been finalised. The paper deals with the design criteria and design factors to be considered for the fuel cell power source for cold region application and details of tests and test results that led to the final design concept for such an application. The paper also deals with a proposed hybrid power plant taking into account the exploitation of wind energy with a fuel cell and generation of hydrogen by an electrolyser and provision of hydrogen storage.

  1. Optimal Operation System of the Integrated District Heating System with Multiple Regional Branches

    NASA Astrophysics Data System (ADS)

    Kim, Ui Sik; Park, Tae Chang; Kim, Lae-Hyun; Yeo, Yeong Koo

    This paper presents an optimal production and distribution management for structural and operational optimization of the integrated district heating system (DHS) with multiple regional branches. A DHS consists of energy suppliers and consumers, district heating pipelines network and heat storage facilities in the covered region. In the optimal management system, production of heat and electric power, regional heat demand, electric power bidding and sales, transport and storage of heat at each regional DHS are taken into account. The optimal management system is formulated as a mixed integer linear programming (MILP) where the objectives is to minimize the overall cost of the integrated DHS while satisfying the operation constraints of heat units and networks as well as fulfilling heating demands from consumers. Piecewise linear formulation of the production cost function and stairwise formulation of the start-up cost function are used to compute nonlinear cost function approximately. Evaluation of the total overall cost is based on weekly operations at each district heat branches. Numerical simulations show the increase of energy efficiency due to the introduction of the present optimal management system.

  2. Identification of heat risk patterns in the U.S. National Capital Region by integrating heat stress and related vulnerability.

    PubMed

    Aubrecht, Christoph; Özceylan, Dilek

    2013-06-01

    The increase in the number and severity of weather extremes (including excessive heat) potentially associated with climate change has highlighted the needs for research into risk assessment and risk reduction measures. Extreme heat events, the focus of this paper, have been consistently reported as the leading cause of weather-related mortality in the United States in recent years. In order to fully understand impact potentials and analyze risk in its individual components both the spatially and temporally varying patterns of heat and the multidimensional characteristics of vulnerability have to be considered. In this paper we present a composite index aggregating these factors to assess heat related risk for the U.S. National Capital Region in 2010. The study reveals how risk patterns are in part driven by the geographic variations of vulnerability, generally showing a clear difference between high-risk urban areas and wide areas of low risk in the suburban and rural environments. This pattern is particularly evident for the core center of the study area around the District of Columbia, which is largely characterized by high index values despite not having experienced the peak of the heat stress as compared to other regions in the metropolitan area. The article aims to set a framework for local-level heat stress risk assessment that can provide valuable input and decision support for climate adaptation planning as well as emergency managers aiming at risk reduction and optimization of resource distribution.

  3. Noise tube sources for the far IR and millimeter region

    NASA Technical Reports Server (NTRS)

    Moller, K. D.; Zoeller, R. G.; Ugras, N. G.; Zablocky, P.; Heaney, James B.; Stewart, K. P.; Boucarut, R. A.

    1988-01-01

    The radiant output of a noise tube designed for the 90-140-GHz (3.3-2.1-mm) frequency range has been compared with that from mercury lamps over the wavelength region from 0.4 to about 6 mm. Lamellar grating and Michelson Fourier transform spectrometers were used in conjunction with He cooled bolometers of NEP from 10 to the -12th to 10 to the -14th W/sq rt H2 to measure relative spectral irradiance. With this instrumental arrangement, the radiant power emitted by the noise tube was observed to be less than that from a mercury lamp, at least to a 3-mm wavelength, but it produced less source noise than an ac operated mercury lamp. When the noise tube operating current was reduced, the spectral irradiance peak shifted to longer wavelengths.

  4. Heating of H II regions with application to the Galactic center

    NASA Technical Reports Server (NTRS)

    Maloney, Philip R.; Hollenbach, David J.; Townes, Charles H.

    1992-01-01

    The heating and thermal equilibrium of photoionized gas is reviewed. Photon-heating mechanisms (UV photoionization heating, grain photoelectric heating, and X-ray heating) either fail to provide the required heating rates or else require that the ionization state of the gas is very high. Specific application to the Galactic center observations show that the total heating power required to maintain the gas at the derived temperatures, using the observed emission measure in the bar and the temperature distribution derived from the radio recombination lines, is about 7 x 10 exp 6 solar luminosities, comparable to the bolometric luminosity of the central source as measured by the FIR flux from grains. Thus, the cooling emission from this hot gas, if LTE-derived temperatures are correct, would supply a major fraction of the bolometric and ionizing luminosity inferred from the ionized gas in the central 1 pc cavity and the dust and neutral gas in the surrounding torus.

  5. An inductively heated hot cavity catcher laser ion source

    NASA Astrophysics Data System (ADS)

    Reponen, M.; Moore, I. D.; Pohjalainen, I.; Rothe, S.; Savonen, M.; Sonnenschein, V.; Voss, A.

    2015-12-01

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary 107Ag21+ ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z 94Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusion coefficients for silver in graphite were measured for temperatures of 1470 K, 1630 K, and 1720 K, from which an activation energy of 3.2 ± 0.3 eV could be determined.

  6. An inductively heated hot cavity catcher laser ion source

    SciTech Connect

    Reponen, M.; Moore, I. D. Pohjalainen, I.; Savonen, M.; Voss, A.; Rothe, S.; Sonnenschein, V.

    2015-12-15

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary {sup 107}Ag{sup 21+} ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z {sup 94}Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusion coefficients for silver in graphite were measured for temperatures of 1470 K, 1630 K, and 1720 K, from which an activation energy of 3.2 ± 0.3 eV could be determined.

  7. Thermionic converter with differentially heated cesium-oxygen source and method of operation

    DOEpatents

    Rasor, Ned S.; Riley, David R.; Murray, Christopher S.; Geller, Clint B.

    2000-01-01

    A thermionic converter having an emitter, a collector, and a source of cesium vapor is provided wherein the source of cesium vapor is differentially heated so that said source has a hotter end and a cooler end, with cesium vapor evaporating from said hotter end into the space between the emitter and the collector and with cesium vapor condensing at said cooler end. The condensed cesium vapor migrates through a porous element from the cooler end to the hotter end.

  8. Puna: a source region for the Pampean loess

    SciTech Connect

    Bloom, A.L.; Strecker, M.R.; Scoppa, C.

    1985-01-01

    The Quaternary Pampean loess of NE Argentina has the same texture and grain-size distribution as northern hemisphere loess, but a very different mineral composition. Unweathered calcic and intermediate plagioclase is the most abundant mineral in the sand fraction followed by quartz, orthoclase, volcanic glass, and fragments of volcanic rock. Glass shards make up more than one-half of the silt fraction in most samples, but their abundance is highly variable. Grain size increases toward the west and southwest, primarily by an increase in the proportion of sand. Most authorities infer a polygenetic source for the Pampean loess. Andean volcanoes and the Patagonian plains to the west and southwest are commonly mentioned, but there are almost no Quaternary volcanoes in the Andes between 28/sup 0/ and 34/sup 0/ S latitude, directly west of the main Pampean loess region. A previously unconsidered, mineralogically appropriate, and currently active source for the silt fraction of the Pampean loess is the Puna, the high plateau in NW Argentina where volcanism has been active throughout the late Cenozoic Era. Shuttle astronauts in September 1983 photographed streamers of dust blowing SE out of desert basins in the Puna, originating more than 3700 m above sea level. The dust was clearly visible above low clouds that covered the Pampas at the time, where surface winds were light and variable. Wind streaks and yardangs prove that eolian erosion is active in the Puna.

  9. The Geysers-Clear Lake geothermal area, California - an updated geophysical perspective of heat sources

    USGS Publications Warehouse

    Stanley, W.D.; Blakely, R.J.

    1995-01-01

    The Geysers-Clear Lake geothermal area encompasses a large dry-steam production area in The Geysers field and a documented high-temperature, high-pressure, water-dominated system in the area largely south of Clear Lake, which has not been developed. An updated view is presented of the geological/geophysical complexities of the crust in this region in order to address key unanswered questions about the heat source and tectonics. Forward modeling, multidimensional inversions, and ideal body analysis of the gravity data, new electromagnetic sounding models, and arguments made from other geophysical data sets suggest that many of the geophysical anomalies have significant contributions from rock property and physical state variations in the upper 7 km and not from "magma' at greater depths. Regional tectonic and magmatic processes are analyzed to develop an updated scenario for pluton emplacement that differs substantially from earlier interpretations. In addition, a rationale is outlined for future exploration for geothermal resources in The Geysers-Clear Lake area. -from Authors

  10. Generation of Acoustic-Gravity Waves in Ionospheric HF Heating Experiments: Simulating Large-Scale Natural Heat Sources

    NASA Astrophysics Data System (ADS)

    Pradipta, Rezy

    In this thesis, we investigate the potential role played by large-scale anomalous heat sources (e.g. prolonged heat wave events) in generating acoustic-gravity waves (AGWs) that might trigger widespread plasma turbulence in the ionospheric layer. The main hypothesis is that, the thermal gradients associated with the heat wave fronts could act as a source of powerful AGW capable of triggering ionospheric plasma turbulence over extensive areas. In our investigations, first we are going to examine a case study of the summer 2006 North American heat wave event. Our examination of GPS-derived total electron content (TEC) data over the North American sector reveals a quite noticeable increase in the level of daily plasma density fluctuations during the summer 2006 heat wave period. Comparison with the summer 2005 and summer 2007 data further confirms that the observed increase of traveling ionospheric disturbances (TIDs) during the summer 2006 heat wave period was not simply a regular seasonal phenomenon. Furthermore, a series of field experiments had been carried out at the High-frequency Active Auroral Research Program (HAARP) facility in order to physically simulate the process of AGW/TID generation by large-scale thermal gradients in the ionosphere. In these ionospheric HF heating experiments, we create some time-varying artificial thermal gradients at an altitude of 200--300 km above the Earth's surface using vertically-transmitted amplitude-modulated 0-mode HF heater waves. For our experiments, a number of radio diagnostic instruments had been utilized to detect the characteristic signatures of heater-generated AGW/TID. So far, we have been able to obtain several affirmative indications that some artificial AGW/TID are indeed being radiated out from the heated plasma volume during the HAARP-AGW experiments. Based on the experimental evidence, we may conclude that it is certainly quite plausible for large-scale thermal gradients associated with severe heat wave

  11. Numerical Study on Natural Vacuum Solar Desalination System with Varying Heat Source Temperature

    NASA Astrophysics Data System (ADS)

    Ambarita, H.

    2017-03-01

    A natural vacuum desalination unit with varying low grade heat source temperature is investigated numerically. The objective is to explore the effects of the variable temperature of the low grade heat source on performances and characteristics of the desalination unit. The specifications of the desalination unit are naturally vacuumed with surface area of seawater in evaporator and heating coil are 0.2 m2 and 0.188 m2, respectively. Temperature of the heating coil is simulated based on the solar radiation in the Medan city. A program to solve the governing equations in forward time step marching technique is developed. Temperature of the evaporator, fresh water production rate, and thermal efficiency of the desalination unit are analysed. Simulation is performed for 9 hours, it starts from 8.00 and finishes at 17.00 of local time. The results show that, the desalination unit with operation time of 9 hours can produce 5.705 L of freshwater and thermal efficiency is 81.8 %. This reveals that varying temperature of the heat source of natural vacuum desalination unit shows better performance in comparison with constant temperature of the heat source.

  12. Wake-induced unsteady stagnation-region heat-transfer measurements

    NASA Technical Reports Server (NTRS)

    Magari, P. J.; Lagraff, L. E.

    1992-01-01

    Results of an experimental investigation of wake-induced unsteady heat transfer in the stagnation region of a cylinder are presented. A quasi-steady representation of the stator/rotor interaction in a gas turbine using two stationary cylinders in crossflow is created. Time-averaged and time-resolved heat-transfer results are obtained over a wide range of Reynolds numbers at two Mach numbers: one incompressible and one transonic. The augmentation of the heat transfer in the stagnation region due to wake unsteadiness is documented by comparison with isolated cylinder tests. The time-averaged heat-transfer rate at the stagnation line, expressed in terms of the Frossling number, is found to reach a maximum independent of the Reynolds number. The power spectra and cross correlation of the heat-transfer signals in the stagnation region reveal the importance of large vortical structures shed from the upstream wake generator.

  13. Solar source regions of 3HE-rich particle events

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Lin, R. P.; Reames, D. V.; Stone, R. G.; Liggett, M.

    1985-01-01

    Hydrogen alpha X-ray, and metric and kilometric radio data to examine the solar sources of energetic 3He-rich particle events observed near earth in association with impulsive 2 to 100 keV electron events were applied. Each 3He/electron event is associated with a kilometric type 3 burst belonging to a family of such bursts characterized by similar interplanetary propagation paths from the same solar active region. The 3He/electron events correlate very well with the interplanetary low frequency radio brightnesses of these events, but progressively worse with signatures from regions closer to the Sun. When H alpha brightnings can be associated with 3He/electron events, they have onsets coinciding to within 1 min of that of the associated metric type 3 burst but are often too small to be reported. The data are consistent with the earlier idea that many type 3 bursts, the 3He/electron events, are due to particle acceleration in the corona, well above the associated H alpha and X-ray flares.

  14. High-Resolution Ranging of the ELF/VLF Source Region Generated by the HAARP HF Transmitter

    NASA Astrophysics Data System (ADS)

    Moore, R. C.; Fujimaru, S.; Wang, T.

    2008-12-01

    During the 2008 PARS Summer School a novel technique was employed to determine the location of the dominant ELF/VLF source region using ground-based ELF/VLF receivers located between 30 and 100 km from the HAARP HF transmitter in Gakona, Alaska. Previous ELF/VLF wave generation studies have approximated the altitude of the dominant ELF/VLF source region assuming the location is directly above the HF heater (e.g., Rietveld et al. [1989]). It may be the case, however, that different portions of the spatially distributed HF-heated region dominate the ELF/VLF signals observed at ground-based receivers located different radial distances from the HF transmitter. We employ the dual-beam capabilities of the HAARP array together with a specific modulation frequency-time format to provide bounds for the dominant ELF/VLF source region location. In this paper, we experimentally determine (with ±1 km ranging accuracy) the location of the dominant ELF/VLF source region within the larger HF-heated ionospheric patch and analyze its dependence on receiver location.

  15. Curing of a bisphenol E based cyanate ester using magnetic nanoparticles as an internal heat source through induction heating.

    PubMed

    Hubbard, Jeremiah W; Orange, François; Guinel, Maxime J-F; Guenthner, Andrew J; Mabry, Joseph M; Sahagun, Christopher M; Rinaldi, Carlos

    2013-11-13

    We report on the control of cyclotrimerization forming a polycyanurate polymer using magnetic iron oxide nanoparticles in an alternating-current (ac) field as an internal heat source, starting from a commercially available monomer. Magnetic nanoparticles were dispersed in the monomer and catalytic system using sonication, and the mixture was subjected to an alternating magnetic field, causing the magnetic nanoparticles to dissipate the energy of the magnetic field in the form of heat. Internal heating of the particle/monomer/catalyst system was sufficient to start and sustain the polymerization reaction, producing a cyanate ester network with conversion that compared favorably to polymerization through heating in a conventional laboratory oven. The two heating methods gave similar differential scanning calorimetry temperature profiles, conversion rates, and glass transition temperatures when using the same temperature profile. The ability of magnetic nanoparticles in an ac field to drive the curing reaction should allow for other reactions forming high-temperature thermosetting polymers and for innovative ways to process such polymers.

  16. A study of mixed convection in large baffled rectangular chambers with and without internal heat sources

    NASA Astrophysics Data System (ADS)

    Yerkes, K. L.

    1990-03-01

    A numerical and experimental investigation to determine the thermal effects on the development of the flow structure in large baffled rectangular chambers with and without internal heat sources was completed. Two- and three-dimensional numerical models were formulated using the time dependent laminar Navier-Stokes equations assuming a Boussinesq fluid with a Prandtl number of 0.7. Experiments were conducted using a scaled down model simulated the full size chamber enabling experimental data to be obtained and subsequently compared with numerical results. Flow visualization experiments were conducted using the larger, full size chamber. Internal horizontal baffles and heat sources were located symmetrically about the vertical centerline axis. Mixed convection without internal heat sources for both aided and opposed buoyant forces showed that the development of the flow structure was sensitive to small variations in the temperature difference between the inlet and the vertical walls. Mixed convection with internal heat sources showed the flow structure to develop through a series of bifurcations from steady state, to periodic, aperiodic and finally chaotic with increasing heat source temperature. Use of the scaled down laboratory experimental model as an indicator for the flow development in the larger full size chamber showed significant 3-D effects. Flow visualization in the larger full size chamber using Silahydrocarbon aerosol droplets showed good agreement with the 2-D numerical results.

  17. The Power Source(s) of Nearby Low-Ionization Nuclear Emission Regions

    NASA Astrophysics Data System (ADS)

    Molina, Mallory; Eracleous, Michael; Maoz, Dan; Barth, Aaron J.; Walsh, Jonelle; Ho, Luis C.; Shields, Joseph C.

    2015-01-01

    The majority of low-ionization nuclear emission regions (LINERs) harbor supermassive black holes (SMBHs) with very low accretion rates. Since SMBHs spend most of their lifetimes in these low-accretion rate states, understanding LINERs is important for understanding active galactic nuclei (AGN) in the context of galaxy evolution. On scales of ~100 pc, the energy budget of LINERs appears to be deficient when the only source of power considered is the AGN. Thus, other energy sources are likely to contribute to the excitation of the emission-line gas. To probe these sources, we observed three nearby, bright LINERs, NGC 1052, NGC 4278 and NGC 4579, with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST). We specifically looked at the 0.1-1 arcsecond (corresponding to 5-50 pc) scale to find what and how far from the nucleus these other energy sources are. After subtracting both the unresolved nuclear light and the spatially-extended starlight, we measured a number of diagnostic emission line ratios. We find that line ratios, such as [O III]/[O II] and [O III]/H-beta change as a function of distance from the nucleus. Within 5 pc, the line ratios suggest AGN photoionization. At larger distances the line ratios seem to be inconsistent with AGN photoionization, but they appear to be consistent with excitation by hot stars or shocks.

  18. Spatial distribution and source apportionment of PFASs in surface sediments from five lake regions, China

    PubMed Central

    Qi, Yanjie; Huo, Shouliang; Xi, Beidou; Hu, Shibin; Zhang, Jingtian; He, Zhuoshi

    2016-01-01

    Perfluoroalkyl substances (PFASs) have been found in environment globally. However, studies on PFAS occurrence in sediments of lakes or reservoirs remain relatively scarce. In this study, two hundred and sixty-two surface sediment samples were collected from forty-eight lakes and two reservoirs all over China. Average PFAS concentrations in surface sediments from each lake or reservoir varied from 0.086 ng/g dw to 5.79 ng/g dw with an average of 1.15 ng/g dw. Among five lake regions, average PFAS concentrations for the lakes from Eastern Plain Region were the highest. Perfluorooctanoic acid, perfluoroundecanoic acid and perfluorooctane sulfonic acid (PFOS) were the predominant PFASs in surface sediments. The significant positive correlations between PFAS concentrations and total organic carbon, total nitrogen and total phosphorus contents in sediments revealed the influences of sedimentary characteristics on PFAS occurrence. A two-dimensional hierarchical cluster analysis heat map was depicted to analyze the possible origins of sediments and individual PFAS. The food-packaging, textile, electroplating, firefighting and semiconductor industry emission sources and the precious metals and coating industry emission sources were identified as the main sources by two receptor models, with contributions of 77.7 and 22.3% to the total concentrations of C4-C14- perfluoroalkyl carboxylic acids and PFOS, respectively. PMID:26947748

  19. Spatial distribution and source apportionment of PFASs in surface sediments from five lake regions, China

    NASA Astrophysics Data System (ADS)

    Qi, Yanjie; Huo, Shouliang; Xi, Beidou; Hu, Shibin; Zhang, Jingtian; He, Zhuoshi

    2016-03-01

    Perfluoroalkyl substances (PFASs) have been found in environment globally. However, studies on PFAS occurrence in sediments of lakes or reservoirs remain relatively scarce. In this study, two hundred and sixty-two surface sediment samples were collected from forty-eight lakes and two reservoirs all over China. Average PFAS concentrations in surface sediments from each lake or reservoir varied from 0.086 ng/g dw to 5.79 ng/g dw with an average of 1.15 ng/g dw. Among five lake regions, average PFAS concentrations for the lakes from Eastern Plain Region were the highest. Perfluorooctanoic acid, perfluoroundecanoic acid and perfluorooctane sulfonic acid (PFOS) were the predominant PFASs in surface sediments. The significant positive correlations between PFAS concentrations and total organic carbon, total nitrogen and total phosphorus contents in sediments revealed the influences of sedimentary characteristics on PFAS occurrence. A two-dimensional hierarchical cluster analysis heat map was depicted to analyze the possible origins of sediments and individual PFAS. The food-packaging, textile, electroplating, firefighting and semiconductor industry emission sources and the precious metals and coating industry emission sources were identified as the main sources by two receptor models, with contributions of 77.7 and 22.3% to the total concentrations of C4-C14- perfluoroalkyl carboxylic acids and PFOS, respectively.

  20. Thermodynamic inspection of concrete using a controlled heat source

    NASA Astrophysics Data System (ADS)

    Milne, James M.

    1990-10-01

    Concrete is not quite such a non-destructable material as many are led to believe. It can deteriorate with time due to changes in the chemistry, the effect of moisture penetration and the corrosion of reinforcing steel bars. Much of this damage occurs relatively close to the surface, sometimes revealed by discolourations or the presence of cracks and sometimes as spallation when the corrosion products of steel cause delamination of the near surface concrete. These effects may occur in good quality concrete but their severity and rapidity of onset may be enhanced by fabrication defects when aggregates may not be to specification or the packing conditions cause porosity. It may thus be months or even years afterwards that these defects come to light. As a consequence a new industry has been formed to inspect concrete structures which may include X-ray equipment, linac accelerators, gamma isotope sources, ultrasonics, radar and of course thermography. Each of these nethods will have their own particular attractive features and merits. But most of these activities tend to be used more as a "fire fighting" service than as one ensuring regular maintenance of critical structures or even as quality control of structures during building. Quite often it seems that Non-destructive Testing is turned into a litigation service for dissatisfied customers and thermography is no stranger to this topic. It is heartening to see that the ASTM organisation in the USA and British Standards are encouraging and developing suitable standards for the inspection of concrete by thermographic techniques.

  1. Land surface parameterization for regional surface heat transfer in hilly grassland

    NASA Technical Reports Server (NTRS)

    Sugita, Michiaki; Brutsaert, Wilfried

    1990-01-01

    Radiometrically obtained surface temperature data and wind and temperature data from the atmospheric boundary layer are analyzed to determine the regional surface-heat flux. Monin-Obukhov similarity theory is employed to analyze the wind speed and the relationship between the surface potential temperature and the potential temperature. The radiometric scalar roughness is considered and found to be related to solar elevation and canopy height, although the regional sensible heat flux derived by the similarity theory analysis agrees with measured flux values.

  2. Properties of Regions of ELF Radiation Induced by HF Ionospheric Heating

    NASA Astrophysics Data System (ADS)

    Piddyachiy, D.; Bell, T. F.; Inan, U. S.; Foust, F.; Lehtinen, N. G.; Parrot, M.

    2011-12-01

    ELF wave (30 - 3000 Hz) generation and propagation is an important topic of research affecting many areas of space physics. For example, ELF waves generated by lightning discharges can effectively interact with particles in the Earth's radiation belts. Also, ELF waves can penetrate effectively under water to allow wireless communication with submersible crafts. However, it is difficult to generate ELF waves artificially because of their long wavelengths. In this work, the High Frequency Active Auroral Research Program (HAARP) transmitter array (3.6 MW, 2.75 - 10 MHz) is used to generate ELF waves in a controlled manner through periodic heating of the ionospheric D-layer and subsequent modulation of the conductivity of the auroral electrojet. The low-earth-orbit DEMETER satellite is used to study ELF power distribution as a function of the distance from the source. The spatial power distribution depends on many factors. Some of them can be controlled: the ELF and HF frequencies, direction, and modulation techniques. Other parameters are natural and cannot be directly affected: strength of the electrojet current, plasma density, and so on. Initial studies were conducted on a case by case basis, but now they are complemented by a statistical study of multiple experiments over four years. Three regions of ELF radiation are seen in case studies and in an averaged pattern. The most important feature is a column of radiation into space about the size of the heated region (~50 km) and average field strength of 100-150 uV/m. Total ELF power in the column is estimated to be about 1 W. It is found that the column is displaced by 50 - 100 km to the South from the field line of the source. A full-wave model predicts a column of about the same size, but displaced to the North from the field line by 50 km. In addition, the model enables the identification of different physical mechanisms of wave propagation to the three regions of radiation. In brief, in region 1 (the column) and

  3. Methane Emissions in the London Region: Deciphering Regional Sources with Mobile Measurements

    NASA Astrophysics Data System (ADS)

    Zazzeri, G.; Lowry, D.; Fisher, R. E.; France, J. L.; Lanoisellé, M.; Bjorkegren, A.; Nisbet, E. G.

    2014-12-01

    Methane stable isotope analysis, coupled with mole fraction measurement, has been used to link isotopic signature to methane emissions from the leading methane sources in the London region, such as landfills and gas leaks. A mobile Picarro G2301 CRDS analyser was installed in a vehicle, together with an anemometer and a Hemisphere GPS receiver, to measure atmospheric methane mole fractions and their relative location. When methane plumes were located and intercepted, air samples were collected in Tedlar bags, for δ13C-CH4 isotopic analysis by CF-GC-IRMS (Continous Flow-Gas Chromatography-Isotopic Ratio Mass Spectroscopy). This method provides high precision isotopic values, determining δ13C-CH4 to ±0.05 per mil. The bulk signature of the methane plume into the atmosphere from the whole source area was obtained by Keeling plot analysis, and a δ13C-CH4 signature, with the relative uncertainty, allocated to each methane source investigated. The averaged δ13C-CH4 signature for landfill sites around the London region is - 58 ± 3 ‰, whereas the δ13C-CH4 signature for gas leaks is fairly constant at -36 ± 2 ‰, a value characteristic of North Sea supply. The Picarro G2301 analyser was installed also on the roof of King's College London, located in the centre of the city, and connected to an air inlet located 7 meters above roof height. An auto-sampler was connected to the same air inlet and launched remotely when a high nocturnal build up was expected, allowing up to twenty air bags to be collected for methane isotopic analysis over a 24 hour period. The main source contributing to overnight methane build up in central London is fugitive gas, in agreement with inventories. From the isotopic characterisation of urban methane sources and the source mix in London, the contribution to the urban methane budget and the local distribution of the methane sources given in inventories can be validated.

  4. Alternative Energy Sources for Heating the Stratospheres of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Marley, Mark S.; Zahnle, K.; Freedman, R.; Lodders, K.; Fortney, J.

    2009-09-01

    Spitzer Space Telescope observations have constrained the atmospheric thermal structure of many transiting extrasolar giant planets. Many of these planets, like their solar system cousins, apparently have hot stratospheres. It has been suggested that absorption in the optical by gaseous TiO and VO provides the necessary energy source to power their thermal emission. While this mechanism is certainly plausible in the hottest Jupiters, temperature inversions have also been observed in cooler planets in which TiO and VO should be condensed into grains. Motivated by the importance of photochemistry in producing important atmospheric absorbers in the solar system, we have explored the role of atmospheric sulfur photochemistry in hot Jupiter atmospheres. Our photochemical kinetics code was previously used to study various problems in solar system, including the aftermath of the S/L-9 impacts into Jupiter. We find that the optically active gases S2 and HS (mercapto) are generated photochemically and thermochemically at T > 1200 K from H2S with peak abundances between 1 and 10 mbar. S2 absorbs UV between 240 and 340 nm and is optically thick for metallicities higher than solar. HS is generally more abundant than S2 and absorbs between 300 and 460 nm. Together these species play an important role in the stratospheric energy budget of hot Jupiters and may provide a mechanism for producing temperature inversions under conditions where gaseous TiO and VO are not present. At lower temperatures, below 1200 K, we find that the atmospheric chemistry enters a different domain where the production of soots may be favored. Such soots may be responsible for the haze detected in the atmosphere of HD189733 and may also play a role in the stratospheric energy budgets of cooler planets.

  5. An evaluation of alternate production methods for Pu-238 general purpose heat source pellets

    SciTech Connect

    Mark Borland; Steve Frank

    2009-06-01

    For the past half century, the National Aeronautics and Space Administration (NASA) has used Radioisotope Thermoelectric Generators (RTG) to power deep space satellites. Fabricating heat sources for RTGs, specifically General Purpose Heat Sources (GPHSs), has remained essentially unchanged since their development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the applicable fields of chemistry, manufacturing and control systems. This paper evaluates alternative processes that could be used to produce Pu 238 fueled heat sources. Specifically, this paper discusses the production of the plutonium-oxide granules, which are the input stream to the ceramic pressing and sintering processes. Alternate chemical processes are compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product.

  6. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    SciTech Connect

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-08

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H{sup −}) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H{sup −} current at higher frequency of cathode heating current.

  7. Source sector and region contributions to BC and PM2.5 in Central Asia

    NASA Astrophysics Data System (ADS)

    Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.; Shafer, M. M.; Schauer, J. J.; Solomon, P. A.; Saide, P. E.; Spak, S. N.; Cheng, Y. F.; Denier van der Gon, H. A. C.; Lu, Z.; Streets, D. G.; Janssens-Maenhout, G.; Wiedinmyer, C.; Lantz, J.; Artamonova, M.; Chen, B.; Imashev, S.; Sverdlik, L.; Deminter, J. T.; Adhikary, B.; D'Allura, A.; Wei, C.; Carmichael, G. R.

    2014-05-01

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector and source region contributions in Central Asia (CA) are analyzed for the period April 2008-July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted Aerosol Optical Depth (AOD) values (annual mean value ∼0.2) in CA vary seasonally with lowest values in the winter. Surface PM2.5 concentrations (annual mean value ∼10 μg m-3) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the winter (hourly values from 2-90 μg m-3). Surface concentrations of black carbon (BC) (mean value ∼0.1 μg m-3) show peak values in the winter. The simulated values are compared to surface measurements of AOD, and PM2.5, PM10, BC, organic carbon (OC) mass concentrations at two regional sites in the Kyrgyz Republic (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM2.5. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrate that this region is strategically located to characterize regional and intercontinental transport of pollutants

  8. Source sector and region contributions to BC and PM2.5 in Central Asia

    NASA Astrophysics Data System (ADS)

    Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.; Shafer, M. M.; Schauer, J. J.; Solomon, P. A.; Saide, P. E.; Spak, S. N.; Cheng, Y. F.; Denier van der Gon, H. A. C.; Lu, Z.; Streets, D. G.; Janssens-Maenhout, G.; Wiedinmyer, C.; Lantz, J.; Artamonova, M.; Chen, B.; Imashev, S.; Sverdlik, L.; Deminter, J. T.; Adhikary, B.; D'Allura, A.; Wei, C.; Carmichael, G. R.

    2015-02-01

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008-July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM2.5 concentrations (annual mean value ~10 μg m-3) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the winter (hourly values from 2 to 90 μg m-3). Surface concentrations of black carbon (BC) (mean value ~0.1 μg m-3) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM2.5, PM10, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM2.5. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located to characterize regional and intercontinental transport of pollutants

  9. Demonstration of a non-contact x-ray source using an inductively heated pyroelectric accelerator

    NASA Astrophysics Data System (ADS)

    Klopfer, Michael; Satchouk, Vladimir; Cao, Anh; Wolowiec, Thomas; Alivov, Yahya; Molloi, Sabee

    2015-04-01

    X-ray emission from pyroelectric sources can be produced through non-contact thermal cycling using induction heating. In this study, we demonstrated a proof of concept non-contact x-ray source powered via induction heating. An induction heater operating at 62.5 kHz provided a total of 6.5 W of delivered peak thermal power with 140 V DC of driving voltage. The heat was applied to a ferrous substrate mechanically coupled to a cubic 1 cm3 Lithium Niobate (LiNbO3) pyroelectric crystal maintained in a 3-12 mTorr vacuum. The maximum temperature reached was 175 °C in 86 s of heating. The cooling cycle began immediately after heating and was provided by passive radiative cooling. The total combined cycle time was 250 s. x-ray photons were produced and analyzed in both heating and cooling phases. Maximum photon energies of 59 keV and 55 keV were observed during heating and cooling, respectively. Non-contact devices such as this, may find applications in cancer therapy (brachytherapy), non-destructive testing, medical imaging, and physics education fields.

  10. Numerical simulation of precessing vortex core dumping by localized nonstationary heat source

    NASA Astrophysics Data System (ADS)

    Porfiriev, Denis; Gorbunova, Anastasiya; Zavershinsky, Igor; Sugak, Semen; Molevich, Nonna

    2016-10-01

    The precessing vortex core (PVC) is a crucial structure for many technical devices with the heat release. For this purpose, we performed the 3D numerical simulations of PVC in the swirling flow created in the open tube with the paraxial nonstationary heat source. Power of the source was modulated by sinusoidal law. We showed that three turbulence models give the qualitatively similar dependences of PVC frequency and amplitude on the heat-source power. The numerical simulation demonstrated that the obtained PVC is a left-handed co-rotated bending single-vortex structure. For considered values of the swirl and mass flow rate, we obtained that, for wide range of modulation frequencies, the growth of the heat-source power leads to gradual increase in the PVC frequency and slow change in the amplitude of vortex core oscillations. However, for specific modulation frequency, which depends on the tube geometry, dependencies of the PVC frequency and the amplitudes of oscillations have distinct maximum and minimum. Which means that, under specific conditions, flow pattern changes dramatically and precession is almost dumped at the relatively low values of heat power.

  11. General-purpose heat source: Research and development program. Process evaluation, fuel pellet GF-47

    SciTech Connect

    Reimus, M.A.H.; George, T.G.

    1995-12-01

    The general-purpose heat source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. Because the potential for a launch abort or return from orbit exists for any space mission, the heat source must be designed and constructed to survive credible accident environments. Previous testing conducted in support of the Galileo and Ulysses missions has documented the response of the GPHS heat source to a variety of fragment-impact, aging, atmospheric reentry, and Earth-impact conditions. Although heat sources for previous missions were fabricated by the Westinghouse Savannah River Company (WSRC), GPHS fueled-clads required for the Cassini mission to Saturn will be fabricated by Los Alamos National Laboratory (LANL). This evaluation is part of an ongoing program to determine the similarity of GPHS fueled clads and fuel pellets fabricated at LANL to those fabricated at WSRC. Pellet GF-47, which was fabricated at LANL in late 1994, was submitted for chemical and ceramographic analysis. The results indicated that the pellet had a chemical makeup and microstructure within the range of material fabricated at WSRC in the early 1980s.

  12. Ecological restoration and its effects on a regional climate: the source region of the Yellow River, China.

    PubMed

    Li, Zhouyuan; Liu, Xuehua; Niu, Tianlin; Kejia, De; Zhou, Qingping; Ma, Tianxiao; Gao, Yunyang

    2015-05-19

    The source region of the Yellow River, China, experienced degradation during the 1980s and 1990s, but effective ecological restoration projects have restored the alpine grassland ecosystem. The local government has taken action to restore the grassland area since 1996. Remote sensing monitoring results show an initial restoration of this alpine grassland ecosystem with the structural transformation of land cover from 2000 to 2009 as low- and high-coverage grassland recovered. From 2000 to 2009, the low-coverage grassland area expanded by over 25% and the bare soil area decreased by approximately 15%. To examine the relationship between ecological structure and function, surface temperature (Ts) and evapotranspiration (ET) levels were estimated to study the dynamics of the hydro-heat pattern. The results show a turning point in approximately the year 2000 from a declining ET to a rising ET, eventually reaching the 1990 level of approximately 1.5 cm/day. We conclude that grassland coverage expansion has improved the regional hydrologic cycle as a consequence of ecological restoration. Thus, we suggest that long-term restoration and monitoring efforts would help maintain the climatic adjustment functions of this alpine grassland ecosystem.

  13. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.

    SciTech Connect

    Maguire, Jeff; Burch, Jay; Merrigan, Tim; Ong, Sean

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently re-emerged on the U.S. market, and they have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine the actual energy consumption of a HPWH in different U.S. regions, annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the United States. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  14. Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.: Preprint

    SciTech Connect

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2014-01-01

    Residential heat pump water heaters (HPWHs) have recently reemerged on the U.S. market. These units have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine what actual in use energy consumption of a HPWH may be in different regions of the U.S., annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the U.S. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

  15. ELECTRON HEATING IN MAGNETOROTATIONAL INSTABILITY: IMPLICATIONS FOR TURBULENCE STRENGTH IN THE OUTER REGIONS OF PROTOPLANETARY DISKS

    SciTech Connect

    Mori, Shoji; Okuzumi, Satoshi

    2016-01-20

    The magnetorotational instability (MRI) drives vigorous turbulence in a region of protoplanetary disks where the ionization fraction is sufficiently high. It has recently been shown that the electric field induced by the MRI can heat up electrons and thereby affect the ionization balance in the gas. In particular, in a disk where abundant dust grains are present, the electron heating causes a reduction of the electron abundance, thereby preventing further growth of the MRI. By using the nonlinear Ohm's law that takes into account electron heating, we investigate where in protoplanetary disks this negative feedback between the MRI and ionization chemistry becomes important. We find that the “e-heating zone,” the region where the electron heating limits the saturation of the MRI, extends out up to 80 AU in the minimum-mass solar nebula with abundant submicron-sized grains. This region is considerably larger than the conventional dead zone whose radial extent is ∼20 AU in the same disk model. Scaling arguments show that the MRI turbulence in the e-heating zone should have a significantly lower saturation level. Submicron-sized grains in the e-heating zone are so negatively charged that their collisional growth is unlikely to occur. Our present model neglects ambipolar and Hall diffusion, but our estimate shows that ambipolar diffusion would also affect the MRI in the e-heating zone.

  16. Electron Heating in Magnetorotational Instability: Implications for Turbulence Strength in the Outer Regions of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Mori, Shoji; Okuzumi, Satoshi

    2016-01-01

    The magnetorotational instability (MRI) drives vigorous turbulence in a region of protoplanetary disks where the ionization fraction is sufficiently high. It has recently been shown that the electric field induced by the MRI can heat up electrons and thereby affect the ionization balance in the gas. In particular, in a disk where abundant dust grains are present, the electron heating causes a reduction of the electron abundance, thereby preventing further growth of the MRI. By using the nonlinear Ohm's law that takes into account electron heating, we investigate where in protoplanetary disks this negative feedback between the MRI and ionization chemistry becomes important. We find that the “e-heating zone,” the region where the electron heating limits the saturation of the MRI, extends out up to 80 AU in the minimum-mass solar nebula with abundant submicron-sized grains. This region is considerably larger than the conventional dead zone whose radial extent is ∼20 AU in the same disk model. Scaling arguments show that the MRI turbulence in the e-heating zone should have a significantly lower saturation level. Submicron-sized grains in the e-heating zone are so negatively charged that their collisional growth is unlikely to occur. Our present model neglects ambipolar and Hall diffusion, but our estimate shows that ambipolar diffusion would also affect the MRI in the e-heating zone.

  17. Plane Strain Deformation In A Thermoelastic Microelongated Solid With Internal Heat Source

    NASA Astrophysics Data System (ADS)

    Ailawalia, P.; Sachdeva, S. K.; Pathania, D. S.

    2015-12-01

    The purpose of this paper is to study the two dimensional deformation due to an internal heat source in a thermoelastic microelongated solid. A mechanical force is applied along an overlaying elastic layer of thickness h. The normal mode analysis has been applied to obtain the exact expressions for the displacement component, force stress, temperature distribution and microelongation. The effect of the internal heat source on the displacement component, force stress, temperature distribution and microelongation has been depicted graphically for Green-Lindsay (GL) theory of thermoelasticity.

  18. The structure and heating of the chromosphere-corona transition region

    NASA Technical Reports Server (NTRS)

    Moore, R. L.

    1972-01-01

    The structure and heating (or energy balance) of the transition region and the role of the transition region in the structure and heating of the solar atmosphere as a whole are investigated. The features of the structure of the atmosphere and radiative energy losses of the atmosphere are summarized. A static, planar model of the solar temperature which has a temperature profile representative of the actual solar atmosphere is considered. Then a static, planar model of the transition region which is heated by thermal conduction from the corona and cooled by radiative losses is developed. A general conclusion is that the temperature profile of the transition region and lower corona results primarily from the energy balance of the corona, while the number density is determined by the energy balance of the transition region.

  19. Induction heating pure vapor source of high temperature melting point materials on electron cyclotron resonance ion source.

    PubMed

    Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu; Sato, Fuminobu; Iida, Toshiyuki

    2010-02-01

    Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10(-4)-10(-3) Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.

  20. Evolved Lithologies and Their Inferred Sources in the Northwestern Procellarum Region of the Moon

    NASA Technical Reports Server (NTRS)

    Jolliff, Bradley L.

    2004-01-01

    Compositional remote sensing from the Lunar Prospector mission reveals the Procellarum- Imbrium region of the Moon, also referred to as the Procellarum KREEP Terrane, to be an area of significant enrichment of heat-producing residua (i.e., Thrich) of the early lunar differentiation. Previous estimates place as much as 60-70% of the whole-Moon content of Th into the crust and as much as 35-40% of the crustal Th content into the Procellarum KREEP Terrane [5], which occupies only approx. 10-15% of the volume of the crust. Although these estimates have significant uncertainty, the correspondence of the enrichment of Th (and other heat producers U and K) in this region is consistent with extended igneous activity, manifested at the surface by extensive basaltic volcanism and subdued topography. Such activity may have extended also to a significant depth, probably including the upper mantle. In this abstract, we present evidence based on Apollo samples for some of the most extensively fractionated lunar rocks types, including a Th-rich mare basalt from Apollo 12, and monzogabbro (also known as monzodiorite), granite, and alkali anorthosite from Apollo 12 and 14 samples. We relate these to likely exposures and sources indicated by compositional remote sensing.

  1. SESAME, a Synchrotron Light Source for the Middle East Region

    SciTech Connect

    Einfeld, D.; Sarraf, R.H.; Attal, M.; Tavakoli, K.; Hashemi, H.; Hassanzadegan, H.; Elsisi, A.; Amro, A.; Foudeh, D.; Kalantari, B.; Aladwan, A.; Varnasery, S.; Al-Dmour, E.; Tarawneh, H.

    2003-08-26

    Developed under the auspices of UNESCO, SESAME (Synchrotron light for Experimental Science and Application in the Middle East) will be a major international research centre in the Middle East / Mediterranean region. Most of the applications require hard x-rays up to 20 keV photons. SESAME will be a 2GeV 3rd Generation Ligth Source with an emittance of 17 nmrad and 13 places for the installation of insertion devices with a length around 3 meter. The circumference of the machine will be 120m. As injector the 800 MeVBooster Synchrotron will be used with small changes. Furthermore also the BESSY I quadrupoles and sextupoles can be used. In a later stage these new ones will be replaced in order to increase the length of the straight sections and to introduce mini beta sections for the reduction of the beam cross section. At SESAME around 35 % of the circumference can be used for the installation of insertion devices.

  2. Coronal temperatures, heating, and energy flow in a polar region of the sun at solar maximum

    NASA Technical Reports Server (NTRS)

    Withbroe, G. L.; Kohl, J. L.; Weiser, H.; Munro, R. H.

    1985-01-01

    The profiles of resonantly scattered Lyman-alpha coronal radiation have been used to determine the hydrogen kinetic temperature from 1.5 to 4 solar radius from the center of the polar region of the corona observed in 1980 at solar maximum. Hydrogen temperatures derived from the line profiles were found to decrease with height from 1.2 million K at r = 1.5 solar radii to 600,000 K at r = 4 solar radius. Comparison of the measured kinetic temperatures with predictions from a semiempirical two-fluid model showed evidence of a small amount of heating or a nonthermal contribution to the motions of coronal protons between 1.5 and 4 solar radius. The widths of the profiles confirmed an upper limit of 110 + or - 15 km/s on the rms magnitude of the line-of-sight component of velocities between 1.5 and 4 solar radius. Density measurements obtained in situ in the solar wind in the ecliptic were used to locate the sources of low speed and high-speed winds in the polar region. An eclipse photograph of the corona at solar maximum is provided.

  3. Coronal temperatures, heating, and energy flow in a polar region of the sun at solar maximum

    SciTech Connect

    Withbroe, G.L.; Kohl, J.L.; Weiser, H.; Munro, R.H.

    1985-10-01

    The profiles of resonantly scattered Lyman-alpha coronal radiation have been used to determine the hydrogen kinetic temperature from 1.5 to 4 solar radius from the center of the polar region of the corona observed in 1980 at solar maximum. Hydrogen temperatures derived from the line profiles were found to decrease with height from 1.2 million K at r = 1.5 solar radii to 600,000 K at r = 4 solar radius. Comparison of the measured kinetic temperatures with predictions from a semiempirical two-fluid model showed evidence of a small amount of heating or a nonthermal contribution to the motions of coronal protons between 1.5 and 4 solar radius. The widths of the profiles confirmed an upper limit of 110 + or - 15 km/s on the rms magnitude of the line-of-sight component of velocities between 1.5 and 4 solar radius. Density measurements obtained in situ in the solar wind in the ecliptic were used to locate the sources of low speed and high-speed winds in the polar region. An eclipse photograph of the corona at solar maximum is provided. 31 references.

  4. A New Scheme of Radiation Transfer in HII Regions including Transient Heating of Grains

    NASA Astrophysics Data System (ADS)

    Ghosh, S. K.; Verma, R. P.

    2000-06-01

    A new scheme of radiation transfer for understanding the infrared spectra of HII regions, has been developed. This scheme considers non-equilibrium processes (e.g. transient heating of the very small grains, VSG; and the polycyclic aromatic hydrocarbon, PAH) also, in addition to the equilibrium thermal emission from normal dust grains (BG). The spherically symmetric interstellar dust cloud is segmented into a large number of "onion skin" shells in order to implement the non-equilibrium processes. The scheme attempts to fit the observed SED originating from the dust component, by exploring the following parameters : (i) geometrical details of the dust cloud, (ii) PAH size and abundance, (iii) composition of normal grains (BG), (iv) radial distribution of all dust (BG, VSG & PAH). The scheme has been applied to a set of five compact HII regions (IRAS 18116-1646, 18162-2048, 19442+2427, 22308+5812 & 18434-0242) whose spectra are available with adequate spectral resolution. The best fit models and inferences about the parameters for these sources are presented.

  5. Evidence for Steady Heating: Observations of an Active Region Core with Hinode and TRACE

    NASA Astrophysics Data System (ADS)

    Warren, Harry P.; Winebarger, Amy R.; Brooks, David H.

    2010-03-01

    The timescale for energy release is an important parameter for constraining the coronal heating mechanism. Observations of "warm" coronal loops (~1 MK) have indicated that the heating is impulsive and that coronal plasma is far from equilibrium. In contrast, observations at higher temperatures (~3 MK) have generally been consistent with steady heating models. Previous observations, however, have not been able to exclude the possibility that the high temperature loops are actually composed of many small-scale threads that are in various stages of heating and cooling and only appear to be in equilibrium. With new observations from the EUV Imaging Spectrometer and X-ray Telescope (XRT) on Hinode we have the ability to investigate the properties of high temperature coronal plasma in extraordinary detail. We examine the emission in the core of an active region and find three independent lines of evidence for steady heating. We find that the emission observed in XRT is generally steady for hours, with a fluctuation level of approximately 15% in an individual pixel. Short-lived impulsive heating events are observed, but they appear to be unrelated to the steady emission that dominates the active region. Furthermore, we find no evidence for warm emission that is spatially correlated with the hot emission, as would be expected if the high temperature loops are the result of impulsive heating. Finally, we also find that intensities in the "moss," the footpoints of high temperature loops, are consistent with steady heating models provided that we account for the local expansion of the loop from the base of the transition region to the corona. In combination, these results provide strong evidence that the heating in the core of an active region is effectively steady, that is, the time between heating events is short relative to the relevant radiative and conductive cooling times.

  6. Electric currents and coronal heating in NOAA active region 6952

    NASA Technical Reports Server (NTRS)

    Metcalf, T. R.; Canfield, R. C.; Hudson, H. S.; Mickey, D. L.; Wulser, J. -P.; Martens, P. C. H.; Tsuneta, S.

    1994-01-01

    We examine the spatial and temporal relationship between coronal structures observed with the soft X-ray telescope (SXT) on board the Yohkoh spacecraft and the vertical electric current density derived from photospheric vector magnetograms obtained using the Stokes Polarimeter at the Mees Solar Observatory. We focus on a single active region: AR 6952 which we observed on 7 days during 1991 December. For 11 independent maps of the vertical electric current density co-aligned with non-flaring X-ray images, we search for a morphological relationship between sites of high vertical current density in the photosphere and enhanced X-ray emission in the overlying corona. We find no compelling spatial or temporal correlation between the sites of vertical current and the bright X-ray structures in this active region.

  7. Heat flow and temperature-depth curves throughout Alaska: finding regions for future geothermal exploration

    NASA Astrophysics Data System (ADS)

    Batir, Joseph F.; Blackwell, David D.; Richards, Maria C.

    2016-06-01

    The objective of this research is to contribute to the understanding of the thermal regime of Alaska and its relationship to geology, regional tectonics, and to suggest potential sites for future geothermal energy production. New heat flow data were collected and are combined with existing published and unpublished data, although large sections of Alaska still lack data. Fault traces were implemented into the heat flow contouring as an additional gridding constraint, to incorporate both heat flow measurements and geology. New heat flow data supported the use of geologic trends in the heat flow mapping procedure, and a heat flow map of Alaska was produced with this added constraint. The multi-input contouring strategy allows production of a map with a regional interpretation of heat flow, in addition to site-specific heat flow and thermal model interpretations in areas with sufficient data density. Utilizing the new heat flow map, temperature-at-depth curves were created for example areas. Temperature-at-depth curves are calculated to 10 km depth for the areas of Anchorage, Fairbanks, Juneau, the Alaska Peninsula, Bristol Bay, and the Copper River Basin. The temperatures-at-depth predicted near the population centers of Anchorage and Juneau are relatively low, limiting the geothermal resource potential. The Fairbanks area temperature estimates are near conventional power production temperatures (150 °C) between 3.5 and 4 km. All data areas, except at Juneau, have temperatures sufficient for low temperature geothermal applications (40 °C) by 2 km. A high heat flow region exists within the Aleutian Volcanic Arc, although new data show heat flow variations from 59 to 120 mW m-2, so individual geothermal resources within the arc will be irregularly located.

  8. ELECTRON CLOUD AT COLLIMATOR AND INJECTION REGION OF THE SPALLATION NEUTRON SOURCE ACCUMULATOR RING.

    SciTech Connect

    WANG, L.; HSEUH, H.-C.; LEE, Y.Y.; RAPARIA, D.; WEI, J.; COUSINEAU, S.

    2005-05-16

    The beam loss along the Spallation Neutron Source's accumulator ring is mainly located at the collimator region and injection region. This paper studied the electron cloud build-up at these two regions with the three-dimension program CLOUDLAND.

  9. Plume source regions in the South Atlantic - spatial and temporal variability and implications for the LLSVP source region

    NASA Astrophysics Data System (ADS)

    Class, C.; le Roex, A. P.; O'Connor, J. M.; Jokat, W.

    2012-12-01

    To the extent that a lower mantle origin is accepted for individual mantle plumes, they are our only means of investigating the chemical variability of lower mantle regions in space and time. Ultimately such mapping of the lower mantle should provide important constraints on the geological processes that led to the formation of these plume source regions. It is generally accepted that mantle plume sources contain differentiated recycled material from the surface of the Earth, but uncertainties remain as to the nature, composition and age of these recycled components. In addition, in the southern hemisphere plumes preferentially rise from the edges of large low shear wave velocity provinces (LLSVP). It remains to be shown whether LLSVPs contribute material to rising mantle plumes and what their geochemical composition might be. The South Atlantic with four closely spaced mantle plumes in the vicinity to the African LLSVP could provide insights into these questions. Criteria in support of a lower mantle origin of these plumes are (1) presence of a flood basalt province (Tristan-Gough), (2) longevity of age-progressive volcanism (Tristan-Gough 130Ma, Shona 80 Ma, Discovery 40 Ma), as well as (3) enrichment of primordial 3He relative to MORB mantle (Discovery, Shona, Bouvet). The South Atlantic plumes are aligned and produce volcanism synchronously, consistent with their origin at the western edge of the African LLSVP. Geochemically the South Atlantic plumes are heterogeneous, spanning compositions in isotope space from EMI to Stracke's FOZO and the extreme DUPAL signature with high delta 74 and delta 84 as represented by Gough Island. The extreme DUPAL is found in 3 of the 4 plume systems, indicating a common mantle source. The extreme DUPAL contributed to the Tristan-Gough plume system since 70 Ma and represents the southern component of the laterally zoned plume conduit (Rhode, personal comm. 2012). The Discovery plume is laterally zoned since 40 Ma and the extreme

  10. GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System

    SciTech Connect

    James Menart

    2013-06-07

    This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..

  11. Design and qualification testing of a strontium-90 fluoride heat source

    SciTech Connect

    Fullam, H.T.

    1981-12-01

    The Strontium Heat Source Development Program began at the Pacific Northwest Laboratory (PNL) in 1972 and is scheduled to be completed by the end of FY-1981. The program is currently funded by the US Department of Energy (DOE) By-Product Utilization Program. The primary objective of the program has been to develop the data and technology required to permit the licensing of power systems for terrestrial applications that utilize /sup 90/SrF/sub 2/-fueled radioisotope heat sources. A secondary objective of the program has been to design and qualification-test a general purpose /sup 90/SrF/sub 2/-fueled heat source. The effort expended in the design and testing of the heat source is described. Detailed information is included on: heat source design, licensing requirements, and qualification test requirements; the qualification test procedures; and the fabrication and testing of capsules of various materials. The results obtained in the qualification tests show that the outer capsule design proposed for the /sup 90/SrF/sub 2/ heat source is capable of meeting current licensing requirements when Hastelloy S is used as the outer capsule material. The data also indicate that an outer capsule of Hastelloy C-4 would probably also meet licensing requirements, although Hastelloy S is the preferred material. Therefore, based on the results of this study, the general purpose /sup 90/SrF/sub 2/ heat source will consist of a standard WESF Hastelloy C-276 inner capsule filled with /sup 90/SrF/sub 2/ and a Hastelloy S outer capsule having a 2.375-in. inner diameter and 0.500-in. wall thickness. The end closures for this study, the general purpose /sup 90/SrF/sub 2/ heat a Hastelloy S outer capsule having a 2.375-in. inner diameter and 0.500-in. wall thickness. The end closures for the outer capsule will utilize an interlocking joint design requiring a 0.1-in. penetration closure weld. (LCL)

  12. Exergy and Energy analysis of a ground-source heat pump for domestic water heating under simulated occupancy conditions

    SciTech Connect

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D; Gehl, Anthony C

    2012-01-01

    This paper presents detailed analysis of a water to water ground source heat pump (WW-GSHP) to provide all the hot water needs in a 345 m2 house located in DOE climate zone 4 (mixed-humid). The protocol for hot water use is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which aims to capture the living habits of the average American household and its impact on energy consumption. The entire house was operated under simulated occupancy conditions. Detailed energy and exergy analysis provides a complete set of information on system efficiency and sources of irreversibility, the main cause of wasted energy. The WW-GSHP was sized at 5.275 kW (1.5-ton) for this house and supplied hot water to a 303 L (80 gal) water storage tank. The WW-GSHP shared the same ground loop with a 7.56 kW (2.1-ton) water to air ground source heat pump (WA-GSHP) which provided space conditioning needs to the entire house. Data, analyses, and measures of performance for the WW-GSHP in this paper complements the results of the WA-GSHP published in this journal (Ally, Munk et al. 2012). Understanding the performance of GSHPs is vital if the ground is to be used as a viable renewable energy resource.

  13. L- and U-shaped heat pipes thermal modules with twin fans for cooling of electronic system under variable heat source areas

    NASA Astrophysics Data System (ADS)

    Wang, Jung-Chang

    2014-04-01

    This study utilizes a versatile superposition method with thermal resistance network analysis to design and experiment on a thermal module with embedded six L-shaped or two U-shaped heat pipes and plate fins under different fan speeds and heat source areas. This type of heat pipes-heat sink module successively transfer heat capacity from a heat source to the heat pipes, the heat sink and their surroundings, and are suitable for cooling electronic systems via forced convection mechanism. The thermal resistances contain all major components from the thermal interface through the heat pipes and fins. Thermal performance testing shows that the lowest thermal resistances of the representative L- and U-shaped heat pipes-heat sink thermal modules are respectively 0.25 and 0.17 °C/W under twin fans of 3,000 RPM and 30 × 30 mm2 heat sources. The result of this work is a useful thermal management method to facilitate rapid analysis.

  14. Simulations of the L-H transition dynamics with different heat and particle sources

    NASA Astrophysics Data System (ADS)

    Li, Hui-Dong; Wang, Zhan-Hui; Weiland, Jan; Feng, Hao; Sun, Wei-Guo

    2015-11-01

    It is crucial to increase the total stored energy by realizing the transition from a low confinement (L-mode) state to a high confinement (H-mode) state in magnetic confinement fusion. The L-H transition process is simulated by using the predictive transport code based on Weiland’s fluid model. Based on the equilibrium parameters obtained from equilibrium fitting (EFIT) in the experiment, the electron density ne, electron temperature Te, ion temperatures Ti, ion poloidal Vp, and toroidal momenta Vt are simulated self-consistently. The L-H transition dynamic behaviors with the formation of the transport barriers of ion and electron temperatures, the electron density, and the ion toroidal momenta are analyzed. During the L-H transition, the strong poloidal flow shear in the edge transport barrier region is observed. The crashes of the electron and ion temperature pedestals are also observed during the L-H transition. The effects of the heating and particle sources on the L-H transition process are studied systematically, and the critical power threshold of the L-H transition is also found. Project supported by the Funds of the Youth Innovation Team of Science and Technology in Sichuan Province, China (Grant No. 2014TD0023), the National Natural Science Foundation of China (Grant Nos. 11447228 and 11205053), and the China National Magnetic Confinement Fusion Science Program (Grant No. 2013GB107001).

  15. Regional versus Local Sources of aerosols over Cyprus

    NASA Astrophysics Data System (ADS)

    Kleanthous, Savvas; Nicolaou, Panagiota; Theodosi, Christina; Zarmpas, Pavlos; Christofides, Ioannis; Mihalopoulos, Nikolaos

    2013-04-01

    Long term monitoring of PM concentrations in Cyprus reported the occurrence of a significant number of PM exceedances above the limits set by EU legislation and point out the need for abatement strategies. To address these critical issues, mass and chemical composition of daily PM10 aerosol samples were collected at a suburban (Limassol; LIM RES), a natural background site (EMEP site, Ayia Marina) and an urban center (Nicosia, NIC TRA) from January 2010 to December 2010. By considering the chemical composition measured at EMEP as representative of the regional background, the contribution of local sources at both NIC TRA and LIM RES sites can be also estimated. In total, "local" ions account for 1.7 and 2.4 μg m-3, i.e 33 and 48% of the total ionic mass recorded in NIC TRA and LIM RES. Sea salt attained levels of 2.3 ± 1.2 μg m-3, 1.9 ± 1.3 μg m-3 and 3.5 ± 2.3 μg m-3, contributing up to 10, 7 and 11% of the PM10 mass measured at EMEP, NIC TRA and LIM RES, respectively. The local concentrations of OC and EC were equal to 3.3±1.1 μg m-3 and 3.2±1.3 μg m-3 for NIC TRA and 1.70±0.03 μg m-3 and 1.39±0.42 μg m-3 for LIM RES relative to the values measured at the EMEP site. The high EC concentrations in NIC TRA underline the major role of traffic-related emissions. As expected for the natural background site, OC/EC ratio equals 4.84, a strong indicator of secondary organic aerosol (SOA) formation. Whereas in the urban and suburban sites, the OC/EC ratio is lower ranging from 1.46 to 1.84, denoting significant influence from fossil fuel primary emissions in the studied areas. Considering that dust at EMEP is due to "regional" dust, the dust measured at both traffic related sites is the sum of "regional" and "local dust", the second most probably originating from soil dust and car/road abrasion. The "local dust" at NIC TRA and LIM RES accounted for 28% and 21% of the total PM10 mass, whilst regional dust at EMEP of 45%. The temporal variation of "local dust

  16. Wave Driven Exothermic Heating in the Mesopause Region

    NASA Technical Reports Server (NTRS)

    Hickey, Michael P.

    1997-01-01

    A full-wave propagation model was developed that describes the propagation of gravity waves from the Earth's surface to the upper boundary, which can be placed anywhere between 150 and 500 km altitude. The model includes a realistic background atmosphere, and includes the effects of mean horizontal winds and their vertical shears, mean vertical temperature gradients, the eddy and molecular diffusion of heat and momentum, and the effects of ion-drag. This model solves five coupled second-order differential equations (continuity, momentum, and energy) in the vertical coordinate to derive the perturbation variables u', v', w' (horizontal and vertical velocity components), T' (temperature) and p' (pressure). The upper boundary can be automatically selected based on tests using the radiation condition at the upper boundary, wherein the height is increased until the wave is experiencing severe dissipation at the upper boundary, ensuring that substantial absorption occurs for any waves reflected from the upper boundary. The determination of wave amplitude is a key requirement of wave energetics. Therefore, the fullwave model has been applied to airglow observations in order to determine wave amplitudes as a function of altitude. This was accomplished by using the full-wave model output to drive a chemistry perturbation module that describes minor species perturbations and the resulting airglow perturbations. The full-wave output was multiplied by an altitude-independent factor such that the modeled and observed relative airglow intensity perturbations were equal. The effects of mean winds were included in these studies, and found to be the most important model input affecting the calculations (being more important than the choice of eddy diffusion profiles and chemical kinetic coefficients). In one study (Hickey et al., 1997a) these winds could not be well estimated from the measurements, whereas in the second study (Hickey et al.,1997b) the mean were well defined with a

  17. Model of the heat source of the Cerro Prieto magma-hydrothermal system, Baja California, Mexico

    SciTech Connect

    Elders, W.A.; Bird, D.K.; Williams, A.E.; Schiffman, P.; Cox, B.

    1982-08-10

    Earlier studies at Cerro Prieto by UCR have led to the development of a qualitative model for field flow in the geothermal system before it was drilled and perturbed by production. Current efforts are directed towards numerical modelling of heat and mass transfer in the system in this undisturbed state. A two-dimensional model assumes that the heat sources were a single basalt/gabbro intrusion which provided heat to the system as it cooled. After compiling various information on the physical properties of the reservoir, the enthalpy contained in two 1cm thick section across the reservoir orthogonal to each other was calculated. Next various shapes, sizes and depths for the intrusion as initial conditions and boundary conditions for the calculation of heat transfer were considered. A family of numerical models which so far gives the best matches to the conditions observed in the field today have in common a funnel-shaped intrusion with a top 4km wide emplaced at a depth of 5km some 30,000 to 50,000 years ago, providing heat to the geothermal system. Numerical modelling is still in progress. Although none of the models so far computed may be a perfect match for the thermal history of the reservoir, they all indicate that the intrusive heat source is young, close and large.

  18. Depth of faulting and ancient heat flows in the Kuiper region of Mercury from lobate scarp topography

    NASA Astrophysics Data System (ADS)

    Egea-González, Isabel; Ruiz, Javier; Fernández, Carlos; Williams, Jean-Pierre; Márquez, Álvaro; Lara, Luisa M.

    2012-01-01

    Mercurian lobate scarps are interpreted to be the surface expressions of thrust faults formed by planetary cooling and contraction, which deformed the crust down to the brittle-ductile transition (BDT) depth at the time of faulting. In this work we have used a forward modeling procedure in order to analyze the relation between scarp topography and fault geometries and depths associated with a group of prominent lobate scarps (Santa Maria Rupes and two unnamed scarps) located in the Kuiper region of Mercury for which Earth-based radar altimetry is available. Also a backthrust associated with one of the lobate scarps has been included in this study. We have obtained best fits for depths of faulting between 30 and 39 km; the results are consistent with the previous results for other lobate scarps on Mercury. The so-derived fault depths have been used to calculate surface heat flows for the time of faulting, taking into account crustal heat sources and a heterogeneous surface temperature due to the variable insolation pattern. Deduced surface heat flows are between 19 and 39 mW m-2 for the Kuiper region, and between 22 and 43 mW m-2 for Discovery Rupes. Both BDT depths and heat flows are consistent with the predictions of thermal history models for the range of time relevant for scarp formation.

  19. Empirical models for liquid metal heat transfer in the entrance region of tubes and rod bundles

    NASA Astrophysics Data System (ADS)

    Jaeger, Wadim

    2016-10-01

    Experiments focusing on liquid metals heat transfer in pipes and rod bundles with thermally and hydraulically developing flow are reviewed. Empirical heat transfer correlations are developed for engineering applications. In the developing regions the heat transfer is in-stationary. The heat transfer at the entrance is around 100 % higher due to the developing process including the lateral exchange of energy and momentum than for developed flow. Developing flow is not physically considered in the framework of system codes, which are used for thermal-hydraulic analysis of power and process plants with a multitude of components like pipes, tanks, valves and heat exchangers. Therefore, the application to liquid metal flows is limited to developed flow, which is independent of the distance from the flow entrance. The heat transfer enhancement in developing flows is important for the optimization of components like heat exchangers and helps to reduce unnecessary conservatism. In this work, empirical models are developed to account for developing flows in pipes and rod bundles. A literature review is performed to collect available experimental data for developing flow in liquid metal heat transfer. The evaluation shows that the length for pure thermally developing pipe flow is much larger (20-30 hydraulic diameters) than for combined thermally and hydraulically developing flow (10-15 hydraulic diameters). In rod bundles, fully combined developed flow is established after 30-40 hydraulic diameters downstream of the entrance. The derived empirical models for the heat transfer enhancement in the developing regions are implemented into a best estimate system code. The validation of these models by means of post-test analyses of 16 experiments shows that they are very well able to represent the heat transfer in developing regions.

  20. Mathematical Modeling of Magneto Pulsatile Blood Flow Through a Porous Medium with a Heat Source

    NASA Astrophysics Data System (ADS)

    Sharma, B. K.; Sharma, M.; Gaur, R. K.; Mishra, A.

    2015-05-01

    In the present study a mathematical model for the hydro-magnetic non-Newtonian blood flow in the non-Darcy porous medium with a heat source and Joule effect is proposed. A uniform magnetic field acts perpendicular to the porous surface. The governing non-linear partial differential equations have been solved numerically by applying the explicit finite difference Method (FDM). The effects of various parameters such as the Reynolds number, hydro-magnetic parameter, Forchheimer parameter, Darcian parameter, Prandtl number, Eckert number, heat source parameter, Schmidt number on the velocity, temperature and concentration have been examined with the help of graphs. The present study finds its applications in surgical operations, industrial material processing and various heat transfer operations.

  1. Plasma diagnostics approach to welding heat source/molten pool interaction

    SciTech Connect

    Key, J.F.; McIlwain, M.E.; Isaacson, L.

    1980-01-01

    Plasma diagnostic techniques show that weld fusion zone profile and loss of metal vapors from the molten pool are strongly dependent on both the intensity and distribution of the heat source. These plasma properties, are functions of cathode vertex angle and thermal conductivity of the shielding gas, especially near the anode.

  2. Cost and Performance Review of Electrical Resistance Heating (ERH) for Source Treatment

    DTIC Science & Technology

    2007-03-01

    phase liquid ( DNAPL ) or high concentrations of volatile contaminants. ERH is a remediation technology that involves passing electrical current...Electrical resistant heating (ERH), Naval Facilities Engineering Service Center (NFESC), remediation, nonaqueous-phase liquid ( DNAPL ) 16. SECURITY...Camp Lejeune. Performance data from these sites indicate that ERH treats dense nonaqueous-phase liquid ( DNAPL ) source zones through a variety of

  3. Predictable Therma-fil removal technique using the system-B heat source.

    PubMed

    Guess, Garrett M

    2004-01-01

    A clinical tip is suggested to assist in the removal of Therma-fil obturators during conventional endodontic retreatment. Using a heat source such as the System-B, the plastic carriers that are normally an obstacle to retreatment can be efficiently removed using the technique described.

  4. FRG sealed isotopic heat sources project (C-229) project management plan

    SciTech Connect

    Metcalf, I.L.

    1997-05-16

    This Project Management Plan defines the cost, scope, schedule, organizational responsibilities, and work breakdown structure for the removal of the Federal Republic of Germany (FRG) Sealed Isotopic Heat Sources from the 324 Building and placed in interim storage at the Central Waste Complex (CWC).

  5. Measurements of the Influence of Integral Length Scale on Stagnation Region Heat Transfer

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. James; Ching, Chang Y.

    1994-01-01

    The purpose was twofold: first, to determine if a length scale existed that would cause the greatest augmentation in stagnation region heat transfer for a given turbulence intensity and second, to develop a prediction tool for stagnation heat transfer in the presence of free stream turbulence. Toward this end, a model with a circular leading edge was fabricated with heat transfer gages in the stagnation region. The model was qualified in a low turbulence wind tunnel by comparing measurements with Frossling's solution for stagnation region heat transfer in a laminar free stream. Five turbulence generating grids were fabricated; four were square mesh, biplane grids made from square bars. Each had identical mesh to bar width ratio but different bar widths. The fifth grid was an array of fine parallel wires that were perpendicular to the axis of the cylindrical leading edge. Turbulence intensity and integral length scale were measured as a function of distance from the grids. Stagnation region heat transfer was measured at various distances downstream of each grid. Data were taken at cylinder Reynolds numbers ranging from 42,000 to 193,000. Turbulence intensities were in the range 1.1 to 15.9 percent while the ratio of integral length scale to cylinder diameter ranged from 0.05 to 0.30. Stagnation region heat transfer augmentation increased with decreasing length scale. An optimum scale was not found. A correlation was developed that fit heat transfer data for the square bar grids to within +4 percent. The data from the array of wires were not predicted by the correlation; augmentation was higher for this case indicating that the degree of isotropy in the turbulent flow field has a large effect on stagnation heat transfer. The data of other researchers are also compared with the correlation.

  6. Mantle convection with continental drift and heat source around the mantle transition zone

    NASA Astrophysics Data System (ADS)

    Ichikawa, H.; Kameyama, M.; Kawai, K.

    2012-12-01

    Geological studies have suggested that significant amount of granitic crustal materials have been lost from the surface by the delamination (~1.1 km^3/yr) [1], continental collision (~0.4-0.7 km^3/yr) [1, 2], and subduction at ocean-margin (~2.5-3 km^3/yr) [1, 2]. At ocean-margin subduction zones, most of the granitic materials subducted from the surface are expected to be conveyed through subduction channels by viscous drag to 270km depth [Ichikawa el al., in revision]. If so, then the subducted crustal materials might be expected to be trapped in the mid-mantle owing to the density difference from peridotitic materials induced by the phase transition from coesite to stishovite at 270km depth. In other words, strong heat source materials are most likely to be accumulated around the mantle transition zone, at least, near the plate subduction zones. In this study, we conducted two-dimensional numerical experiments of mantle convection with continental drift and a heat source placed around the mantle transition zone, in order to study the effect of the subducted granitic materials drifting around the mantle transition zone. The simulations deal with a time-dependent convection of fluid under the extended Boussinesq approximation in a model of a two-dimensional rectangular box of 2900km height and 11600km width, where a continent and heat source is imposed. We found that the addition of the heat source considerably reduces the time scale of continental drift. In the absence of the heat source, the resulting time scale is too long compared with that of the so-called supercontinent cycle, where the breakup is induced from a plume generated by an insulating effect of the continent. The heat source also causes massive mechanical mixing especially on the upper mantle. The result suggests that the heat source drifting around mantle transition zone can be a possible candidate inducing the supercontinent cycle in an appropriate time scale. [1] Clift, P. D., P. Vannucchi, and

  7. Optimization and Thermoeconomics Research of a Large Reclaimed Water Source Heat Pump System

    PubMed Central

    Zhang, Zi-ping; Du, Fang-hui

    2013-01-01

    This work describes a large reclaimed water source heat pump system (RWSHPS) and elaborates on the composition of the system and its design principles. According to the characteristics of the reclaimed water and taking into account the initial investment, the project is divided into two stages: the first stage adopts distributed heat pump heating system and the second adopts the combination of centralized and decentralized systems. We analyze the heating capacity of the RWSHPS, when the phase II project is completed, the system can provide hydronic heating water with the supply and return water temperature of 55°C/15°C and meet the hydronic heating demand of 8 million square meters of residential buildings. We make a thermal economics analysis by using Thermal Economics theory on RWSHPS and gas boiler system, it is known that the RWSHPS has more advantages, compared with the gas boiler heating system; both its thermal efficiency and economic efficiency are relatively high. It provides a reference for future applications of the RWSHPS. PMID:24089607

  8. Optimization and thermoeconomics research of a large reclaimed water source heat pump system.

    PubMed

    Zhang, Zi-ping; Du, Fang-hui

    2013-01-01

    This work describes a large reclaimed water source heat pump system (RWSHPS) and elaborates on the composition of the system and its design principles. According to the characteristics of the reclaimed water and taking into account the initial investment, the project is divided into two stages: the first stage adopts distributed heat pump heating system and the second adopts the combination of centralized and decentralized systems. We analyze the heating capacity of the RWSHPS, when the phase II project is completed, the system can provide hydronic heating water with the supply and return water temperature of 55°C/15°C and meet the hydronic heating demand of 8 million square meters of residential buildings. We make a thermal economics analysis by using Thermal Economics theory on RWSHPS and gas boiler system, it is known that the RWSHPS has more advantages, compared with the gas boiler heating system; both its thermal efficiency and economic efficiency are relatively high. It provides a reference for future applications of the RWSHPS.

  9. Development of a High Performance Air Source Heat Pump for the US Market

    SciTech Connect

    Abdelaziz, Omar; Shen, Bo; Gao, Zhiming; Baxter, Van D; Iu, Ipseng

    2011-01-01

    Heat pumps present a significant advantage over conventional residential heating technologies due to higher energy efficiencies and less dependence on imported oil. The US development of heat pumps dates back to the 1930 s with pilot units being commercially available in the 1950 s. Reliable and cost competitive units were available in the US market by the 1960 s. The 1973 oil embargo led to increased interest in heat pumps prompting significant research to improve performance, particularly for cold climate locations. Recent increasing concerns on building energy efficiency and environmental emissions have prompted a new wave of research in heat pump technology with special emphasis on reducing performance degradation at colder outdoor air temperatures. A summary of the advantages and limitations of several performance improvement options sought for the development of high performance air source heat pump systems for cold climate applications is the primary focus of this paper. Some recommendations for a high performance cold climate heat pump system design most suitable for the US market are presented.

  10. Development of a Variable-Speed Residential Air-Source Integrated Heat Pump

    SciTech Connect

    Rice, C Keith; Shen, Bo; Munk, Jeffrey D; Ally, Moonis Raza; Baxter, Van D

    2014-01-01

    A residential air-source integrated heat pump (AS-IHP) is under development in partnership with a U.S. manufacturer. A nominal 10.6 kW (3-ton) cooling capacity variable-speed unit, the system provides both space conditioning and water heating. This multi-functional unit can provide domestic water heating (DWH) in either full condensing (FC) (dedicated water heating or simultaneous space cooling and water heating) or desuperheating (DS) operation modes. Laboratory test data were used to calibrate a vapor-compression simulation model for each mode of operation. The model was used to optimize the internal control options for efficiency while maintaining acceptable comfort conditions and refrigerant-side pressures and temperatures within allowable operating envelopes. Annual simulations were performed with the AS-IHP installed in a well-insulated house in five U.S. climate zones. The AS-IHP is predicted to use 45 to 60% less energy than a DOE minimum efficiency baseline system while meeting total annual space conditioning and water heating loads. Water heating energy use is lowered by 60 to 75% in cold to warmer climates, respectively. Plans are to field test the unit in Knoxville, TN.

  11. Ground heat flux and power sources of low-enthalpy geothermal systems

    NASA Astrophysics Data System (ADS)

    Bayer, Peter; Blum, Philipp; Rivera, Jaime A.

    2015-04-01

    Geothermal heat pumps commonly extract energy from the shallow ground at depths as low as approximately 400 m. Vertical borehole heat exchangers are often applied, which are seasonally operated for decades. During this lifetime, thermal anomalies are induced in the ground and surface-near aquifers, which often grow over the years and which alleviate the overall performance of the geothermal system. As basis for prediction and control of the evolving energy imbalance in the ground, focus is typically set on the ground temperatures. This is reflected in regulative temperature thresholds, and in temperature trends, which serve as indicators for renewability and sustainability. In our work, we examine the fundamental heat flux and power sources, as well as their temporal and spatial variability during geothermal heat pump operation. The underlying rationale is that for control of ground temperature evolution, knowledge of the primary heat sources is fundamental. This insight is also important to judge the validity of simplified modelling frameworks. For instance, we reveal that vertical heat flux from the surface dominates the basal heat flux towards a borehole. Both fluxes need to be accounted for as proper vertical boundary conditions in the model. Additionally, the role of horizontal groundwater advection is inspected. Moreover, by adopting the ground energy deficit and long-term replenishment as criteria for system sustainability, an uncommon perspective is adopted that is based on the primary parameter rather than induced local temperatures. In our synthetic study and dimensionless analysis, we demonstrate that time of ground energy recovery after system shutdown may be longer than what is expected from local temperature trends. In contrast, unrealistically long recovery periods and extreme thermal anomalies are predicted without account for vertical ground heat fluxes and only when the energy content of the geothermal reservoir is considered.

  12. Sensitivity analysis on the performances of a closed-loop Ground Source Heat Pump

    NASA Astrophysics Data System (ADS)

    Casasso, Alessandro; Sethi, Rajandrea

    2014-05-01

    Ground Source Heat Pumps (GSHP) permit to achieve a significant reduction of greenhouse gas emissions, and the margins for economic saving of this technology are strongly correlated to the long-term sustainability of the exploitation of the heat stored in the soil. The operation of a GSHP over its lifetime should be therefore modelled considering realistic conditions, and a thorough characterization of the physical properties of the soil is essential to avoid large errors of prediction. In this work, a BHE modelling procedure with the finite-element code FEFLOW is presented. Starting from the governing equations of the heat transport in the soil around a GSHP and inside the BHE, the most important parameters are individuated and the adopted program settings are explained. A sensitivity analysis is then carried on both the design parameters of the heat exchanger, in order to understand the margins of improvement of a careful design and installation, and the physical properties of the soil, with the aim of quantifying the uncertainty induced by their variability. The relative importance of each parameter is therefore assessed by comparing the statistical distributions of the fluid temperatures and estimating the energy consumption of the heat pump, and practical conclusions are from these results about the site characterization, the design and the installation of a BHE. References Casasso A., Sethi R., 2014 Efficiency of closed loop geothermal heat pumps: A sensitivity analysis, Renewable Energy 62 (2014), pp. 737-746 Chiasson A.C., Rees S.J., Spitler J.D., 2000, A preliminary assessment of the effects of groundwater flow on closed-loop ground-source heat pump systems, ASHRAE Transactions 106 (2000), pp. 380-393 Delaleux F., Py X., Olives R., Dominguez A., 2012, Enhancement of geothermal borehole heat exchangers performances by improvement of bentonite grouts conductivity, Applied Thermal Engineering 33-34, pp. 92-99 Diao N., Li Q., Fang Z., 2004, Heat transfer in

  13. Numerical and functional representations of regional heat flow in South America

    NASA Astrophysics Data System (ADS)

    Hamza, Valiya M.; Dias, Fernando J. S. Silva; Gomes, Antonio J. L.; Terceros, Zenón G. Delgadilho

    2005-10-01

    A summary of heat flow data acquired over recent years in several areas in the eastern (Brazil and Paraguay) and western (Bolivia, Chile, Colombia and Ecuador) parts of South American continent are presented. The improvements in the database have allowed numerical representations of heat flow for southeastern and central segments of the Precambrian fold belts in Brazil, Central Andean cordilleras in Chile and Bolivia, Southern Volcanic arc in Peru, Neuquén Province in southwestern Argentina, Chaco basin in Paraguay, Oriente basin in Ecuador and the system of pericratonic basins in north central Colombia. The maps reveal considerable variability in heat flow, not only between the main tectonic units but also within them. The intra-regional variations seem to originate mainly from complexities in local geologic structures while the inter-regional ones seem to point to action of deep-seated tectonic processes. The cordilleran regions are, in general, characterized by relatively high heat flow (>70 mW/m 2), compared with the coastal regions to the west and the Pre-cordilleran basins to the east. In the eastern part of the continent, heat flow is low to normal (<60 mW/m 2), the exceptions being the Mesozoic rift basins, areas of Cenozoic alkaline intrusions and some isolated belts of overthrust tectonics in the central parts of Brazil. There are indications that heat flow is high in the Patagonian Platform relative to that found in the Brazilian Platform. In addition, polynomial methods were employed for examining large-scale variations of heat flow over the continent. Specifically, a general-purpose least square solution was used to determine the coefficients of up to fourth order in latitude and longitude. Some of the large-scale trends seen in low order polynomial representations seem to be indicative of the nature of deep-seated heat transfer processes. The systematic increase in regional heat flow in the north-south direction is an example. It is considered as the

  14. Improvement of efficiency and temperature control of induction heating vapor source on electron cyclotron resonance ion source.

    PubMed

    Takenaka, T; Kiriyama, R; Muramatsu, M; Kitagawa, A; Uchida, T; Kurisu, Y; Nozaki, D; Yano, K; Yoshida, Y; Sato, F; Kato, Y; Iida, T

    2012-02-01

    An electron cyclotron resonance ion source (ECRIS) is used to generate multicharged ions for many kinds of the fields. We have developed an evaporator by using induction heating method that can generate pure vapor from solid state materials in ECRIS. We develop the new matching and protecting circuit by which we can precisely control the temperature of the induction heating evaporator. We can control the temperature within ±15 °C around 1400 °C under the operation pressure about 10(-4) Pa. We are able to use this evaporator for experiment of synthesizing process to need pure vapor under enough low pressure, e.g., experiment of generation of endohedral Fe-fullerene at the ECRIS.

  15. An experimental study of waveguide coupled microwave heating with conventional multicusp negative ion sources

    NASA Astrophysics Data System (ADS)

    Komppula, J.; Kalvas, T.; Koivisto, H.; Laulainen, J.; Tarvainen, O.

    2015-04-01

    Negative ion production with conventional multicusp plasma chambers utilizing 2.45 GHz microwave heating is demonstrated. The experimental results were obtained with the multicusp plasma chambers and extraction systems of the RF-driven RADIS ion source and the filament driven arc discharge ion source LIISA. A waveguide microwave coupling system, which is almost similar to the one used with the SILHI ion source, was used. The results demonstrate that at least one third of negative ion beam obtained with inductive RF-coupling (RADIS) or arc discharge (LIISA) can be achieved with 1 kW of 2.45 GHz microwave power in CW mode without any modification of the plasma chamber. The co-extracted electron to H- ratio and the optimum pressure range were observed to be similar for both heating methods. The behaviour of the plasma implies that the energy transfer from the microwaves to the plasma electrons is mainly an off-resonance process.

  16. Flow Boiling Heat Transfer to Lithium Bromide Aqueous Solution in Subcooled Region

    NASA Astrophysics Data System (ADS)

    Kaji, Masao; Furukawa, Masahiro; Nishizumi, Takeharu; Ozaki, Shinji; Sekoguchi, Kotohiko

    A theoretical prediction model of the boiling heat transfer coefficient in the subcooled region for water and lithium bromide aqueous solution flowing in a rectangular channel is proposed. In the present heat transfer model, a heat flux is assumed to consist of both the forced convective and the boiling effect components. The forced convective component is evaluated from the empirical correlation of convective heat transfer coefficient for single-phase flow considering the effect of increase of liquid velocity due to net vapor generation. Empirical correlations for determining the heat flux due to the boiling effect and the quality at the onset point of net vapor generation are obtained from the data presented in the first report1). Agreement between the present theoretical prediction and the experimental data is satisfactorily good both for water and lithium bromide aqueous solution.

  17. Influence of Turbulence Parameters, Reynolds Number, and Body Shape on Stagnation-Region Heat Transfer

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. James; Simoneau, Robert J.; Ching, Chan Y.

    1994-01-01

    The purpose of the present work was threefold: (1) to determine if a free-stream turbulence length scale existed that would cause the greatest augmentation in stagnation-region heat transfer over laminar levels; (2) to investigate the effect of velocity gradient on stagnation-region heat transfer augmentation by free-stream turbulence; and (3) to develop a prediction tool for stagnation heat transfer in the presence of free-stream turbulence. Heat transfer was measured in the stagnation region of four models with elliptical leading edges that had ratios of major to minor axes of 1:1, 1.5:1, 2.25:1, and 3:1. Five turbulence-generating grids were fabricated; four were square mesh, biplane grids made from square bars. The fifth grid was an array of fine parallel wires that were perpendicular to the model spanwise direction. Heat transfer data were taken at Reynolds numbers ranging from 37 000 to 228 000. Turbulence intensities were in the range of 1.1 to 15.9% while the ratio of integral length scale to leading-edge diameter ranged from 0.05 to 0.30. Stagnation-point velocity gradient was varied by nearly 50%. Stagnation-region heat transfer augmentation was found to increase with decreasing length scale but no optimum length scale was found. Heat transfer augmentation due to turbulence was found to be unaffected by the velocity gradient near the leading edge. A correlation was developed that fit heat transfer data for the square-bar grids to within +/- 4%.

  18. Stagnation Region Heat Transfer: The Influence of Turbulence Parameters, Reynolds Number and Body Shape

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. James; Simoneau, Robert J.

    1994-01-01

    The effect of velocity gradient on stagnation region heat transfer augmentation by free stream turbulence was investigated. Heat transfer was measured in the stagnation region of four models with elliptical leading edges with ratios of major to minor axes of 1:1, 1.5:1, 2.25:1, and 3:1. Four geometrically similar, square bar, square mesh, biplane grids were used to generate free stream turbulence with different intensities and length. Heat transfer measurements were made for the following ranges of parameters: Reynolds number, based on leading edge diameter, 37,000 to 228,000; dimensionless leading edge velocity gradient, 1.20 to 1.80; turbulence intensity, 1.1 to 15.9%; and length scale to leading edge diameter ratio, 0.05 to 0.30. Stagnation point heat transfer augmentation by free stream turbulence can be predicted using a modified version of a previously developed correlation for a circular leading edge. Heat transfer augmentation was independent of body shape at the stagnation point. The heat transfer distribution down-stream from the stagnation point can be predicted using the normalized laminar heat transfer distribution.

  19. Waste heat recovery from the European Spallation Source cryogenic helium plants - implications for system design

    SciTech Connect

    Jurns, John M.; Bäck, Harald; Gierow, Martin

    2014-01-29

    The European Spallation Source (ESS) neutron spallation project currently being designed will be built outside of Lund, Sweden. The ESS design includes three helium cryoplants, providing cryogenic cooling for the proton accelerator superconducting cavities, the target neutron source, and for the ESS instrument suite. In total, the cryoplants consume approximately 7 MW of electrical power, and will produce approximately 36 kW of refrigeration at temperatures ranging from 2-16 K. Most of the power consumed by the cryoplants ends up as waste heat, which must be rejected. One hallmark of the ESS design is the goal to recycle waste heat from ESS to the city of Lund district heating system. The design of the cooling system must optimize the delivery of waste heat from ESS to the district heating system and also assure the efficient operation of ESS systems. This report outlines the cooling scheme for the ESS cryoplants, and examines the effect of the cooling system design on cryoplant design, availability and operation.

  20. A self-regulating heat pump to utilize wind and wave energy sources

    SciTech Connect

    Pritchard, C.; Low, R. )

    1990-01-01

    This paper describes the efficiency of using shaft work to drive a heat pump and the utilization of variable shaft work to upgrade heat from a source at near- constant temperature. A prototype heat pump is described that enables heat from an ambient source at {approximately} 20{degrees}C to be delivered to a load at {approximately} 100{degrees}C by a vapor compression system working with variable power input, such as that deriving from wind or wave energy. The design incorporates features that enable power inputs from 0.3-3 kW to be harnessed, corresponding to the wave energy in a 0.1-m width of usable wavefront, or the wind energy abstracted by a rotor of 2.5-m diameter in windspeeds of 7-15 m/s. A c.o.p. of {approximately}3 may be obtained over this range of power input. Thus the heat output is equivalent to that obtainable directly from an energy conversion device of three times the size.

  1. Hot Plasma from Solar Active Region Cores: a Test of AC and DC Coronal Heating Models?

    NASA Astrophysics Data System (ADS)

    Schmelz, J. T.; Asgari-Targhi, M.; Christian, G. M.; Dhaliwal, R. S.; Pathak, S.

    2015-06-01

    Direct current (DC) models of solar coronal heating invoke magnetic reconnection to convert magnetic free energy into heat, whereas alternating current (AC) models invoke wave dissipation. In both cases the energy is supplied by photospheric footpoint motions. For a given footpoint velocity amplitude, DC models predict lower average heating rates but greater temperature variability when compared to AC models. Therefore, evidence of hot plasma (T > 5 MK) in the cores of active regions could be one of the ways for current observations to distinguish between AC and DC models. We have analyzed data from the X-Ray Telescope (XRT) and the Atmospheric Imaging Assembly for 12 quiescent active region cores, all of which were observed in the XRT Be_thick channel. We did Differential Emission Measure (DEM) analysis and achieved good fits for each data set. We then artificially truncated the hot plasma of the DEM model at 5 MK and examined the resulting fits to the data. For some regions in our sample, the XRT intensities continued to be well-matched by the DEM predictions, even without the hot plasma. This truncation, however, resulted in unacceptable fits for the other regions. This result indicates that the hot plasma is present in these regions, even if the precise DEM distribution cannot be determined with the data available. We conclude that reconnection may be heating the hot plasma component of these active regions.

  2. HOT PLASMA FROM SOLAR ACTIVE REGION CORES: A TEST OF AC AND DC CORONAL HEATING MODELS?

    SciTech Connect

    Schmelz, J. T.; Christian, G. M.; Dhaliwal, R. S.; Pathak, S.; Asgari-Targhi, M.

    2015-06-20

    Direct current (DC) models of solar coronal heating invoke magnetic reconnection to convert magnetic free energy into heat, whereas alternating current (AC) models invoke wave dissipation. In both cases the energy is supplied by photospheric footpoint motions. For a given footpoint velocity amplitude, DC models predict lower average heating rates but greater temperature variability when compared to AC models. Therefore, evidence of hot plasma (T > 5 MK) in the cores of active regions could be one of the ways for current observations to distinguish between AC and DC models. We have analyzed data from the X-Ray Telescope (XRT) and the Atmospheric Imaging Assembly for 12 quiescent active region cores, all of which were observed in the XRT Be-thick channel. We did Differential Emission Measure (DEM) analysis and achieved good fits for each data set. We then artificially truncated the hot plasma of the DEM model at 5 MK and examined the resulting fits to the data. For some regions in our sample, the XRT intensities continued to be well-matched by the DEM predictions, even without the hot plasma. This truncation, however, resulted in unacceptable fits for the other regions. This result indicates that the hot plasma is present in these regions, even if the precise DEM distribution cannot be determined with the data available. We conclude that reconnection may be heating the hot plasma component of these active regions.

  3. Performance and Economic Modeling of Horizontally Drilled Ground-Source Heat Pumps in Select California Climates

    NASA Astrophysics Data System (ADS)

    Wiryadinata, Steven

    Service life modeling was performed to gage the viability of unitary 3.5 kWt, ground-source terminal heat pumps (GTHP) employing horizontal directionally drilled geothermal heat exchangers (GHX) over air-source terminal heat pumps (PTHP) in hotels and motels and residential apartment building sectors in California's coastal and inland climates. Results suggest the GTHP can reduce hourly peak demand for the utility by 7%-25% compared to PTHP, depending on the climate and building type. The annual energy savings, which range from -1% to 5%, are highly dependent on the GTHP pump energy use relative to the energy savings attributed to the difference in ground and air temperatures (DeltaT). In mild climates with small ?T, the pump energy use may overcome any advantage to utilizing a GHX. The majority of total levelized cost savings - ranging from 0.18/ft2 to 0.3/ft 2 - are due to reduced maintenance and lifetime capital cost normally associated with geothermal heat pump systems. Without these reductions (not validated for the GTHP system studied), the GTHP technology does not appear to offer significant advantages over PTHP in the climate zones studied here. The GTHP levelized cost was most sensitive to variations in installed cost and in some cases, energy use (influenced by climate zone choice), which together highlights the importance of climate selection for installation, and the need for larger market penetration of ground-source systems in order to bring down installed costs as the technology matures.

  4. General-Purpose Heat Source: Research and development program: Cold-Process Verification Test Series

    SciTech Connect

    Reimus, M.A.H.; George, T.G.

    1996-06-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. Because any space mission could experience a launch abort or return from orbit, the heat source must be designed and constructed to survive credible accident environments. Previous testing conducted in support of the Galileo and Ulysses missions documented the response of GPHSs and individual GPHS capsules fueled with {sup 238}UO{sub 2} ({sup 235}U-depleted) to a variety of explosive overpressure and impact events. In the early 1990s, Los Alamos National Laboratory (LANL) resumed fabrication of {sup 238}UO{sub 2} GPHS pellets. The Cold-Process Verification (CPV) Test Series was designed to compare the response of GPHS heat sources loaded with recently fabricated hot- and cold-pressed {sup 238}UO{sub 2} pellets to the response of urania pellets used in the Galileo and Ulysses performance tests. This report documents eleven bare-capsule impacts and one impact of a fully loaded GPHS module. All of the failures observed in the bare-clad impact tests were similar to failures observed in previous safety tests. No failures occurred in the module impact test.

  5. Application analysis of ground source heat pumps in building space conditioning

    SciTech Connect

    Qian, Hua; Wang, Yungang

    2013-07-01

    The adoption of geothermal energy in space conditioning of buildings through utilizing ground source heat pump (GSHP, also known as geothermal heat pump) has increased rapidly during the past several decades. However, the impacts of the GSHP utilization on the efficiency of heat pumps and soil temperature distribution remained unclear and needs further investigation. This paper presents a novel model to calculate the soil temperature distribution and the coefficient of performance (COP) of GSHP. Different scenarios were simulated to quantify the impact of different factors on the GSHP performance, including heat balance, daily running mode, and spacing between boreholes. Our results show that GSHP is suitable for buildings with balanced cooling and heating loads. It can keep soil temperature at a relatively constant level for more than 10 years. Long boreholes, additional space between boreholes, intermittent running mode will improve the performance of GSHP, but large initial investment is required. The improper design will make the COP of GSHP even lower than traditional heat pumps. Professional design and maintenance technologies are greatly needed in order to promote this promising technology in the developing world.

  6. Sources Approved for Coverage under the SQCS General Permit in Region 8

    EPA Pesticide Factsheets

    The sources on Indian country reservation lands that the Region 8 has approved for coverage under the General Air Quality Permit for New and Modified Minor Source Stone Quarrying, Crushing, and Screening Facilities in Indian Country (SQCS General Permit).

  7. Regularities pertinent to heat transfer between torch gas layers and steam boiler firebox waterwalls. Part I. Geometrical and physical torch model as a source of heat radiation

    NASA Astrophysics Data System (ADS)

    Makarov, A. N.

    2014-09-01

    The progress seen in the 19th-21st centuries in the development of methods for calculating heat transfer in torch furnaces, fireboxes, and combustion chambers is analyzed. Throughout the 20th century, calculations of heat transfer were carried out based on the law for radiation from solid bodies deduced by Y. Stefan and L. Boltzmann. It is shown that the use of this law for calculating heat transfer of a torch (a gaseous source of radiation) in heating furnaces and power-generating installations leads to incorrect results. It is substantiated that there is crisis of methods for calculating heat transfer in torch furnaces and power-generating installations. Geometrical and physical torch models in the form of radiating cylindrical gas volumes as sources of heat radiation are proposed for overcoming this crisis.

  8. Alteration mineralogy and geochemistry as an exploration tool for detecting basement heat sources in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Uysal, Tonguc; Gasparon, Massimo; van Zyl, Jacobus; Wyborn, Doone

    2010-05-01

    crystallisation temperatures (150-200°C). Normalised REE patterns of the mostly altered granite samples show a strong negative Ce anomaly, signifying oxidation of trivalent Ce to less soluble tetravalent Ce. Oxygen and hydrogen isotope compositions of illites from the granites and sedimentary rocks are very similar, with d18O = -1.8 per mill to +2.7 per mill; δD = -99 per mill to -121 per mill for granites and d18O = +2.3 per mill to +9.7 per mill, dD = -78 per mill to -119 per mill for sedimentary rocks. The calculated oxygen and hydrogen isotope compositions of fluids in equilibrium with the illites are depleted in 18O and deuterium, comparable to those of waters reported for most high-latitude sedimentary basins. Hence, stable isotope data of alteration minerals in the granite and the overlying sedimentary rocks suggest the operation of a hydrothermal system involving high latitude meteoric waters during extensional tectonism in the Cooper Basin region. Investigation of alteration mineralogy and geochemistry of relatively shallow sedimentary sections (generally intersected in previously drilled petroleum holes) represents a potentially strong tool to evaluate the presence of a geothermal heat source in the basement of sedimentary basins.

  9. Regional maps of occupational heat exposure: past, present, and potential future

    PubMed Central

    Hyatt, Olivia M.; Lemke, Bruno; Kjellstrom, Tord

    2010-01-01

    Background An important feature of climate change is increasing human heat exposure in workplaces without cooling systems in tropical and subtropical countries. Detailed gridded heat exposure maps will provide essential information for public health authorities. Objectives To develop and test methods for calculating occupational heat exposures and present results in easily interpreted maps. Design Published formulas for a common occupational heat exposure index, the WBGT (Wet Bulb Globe Temperature), were used in combination with global gridded climate data to calculate heat exposure in 0.5° grid squares. Monthly averages of daily maximum temperatures, as indicators of typical temperatures during the hottest part of the day, and corresponding water vapour pressures produced estimates of monthly WBGT indoors (without cooling systems) or outdoors in the shade. Results The maps show the WBGT within four hot regions of the world during the three hottest months in 1975 and 2000: Australia, South Asia, Southern Africa, Central America, and southern US. Between 1975 and 2000 a WBGT increase of 0.5–1°C was common and the maps show clear decreases in some places. The time trends fit with the development of global climate change. The high WBGT values (particularly in South Asia) already cause excessive occupational heat exposures during the three hottest months. If continued climate change increases WBGT by 3°C, our maps identify areas where occupational heat stress in non-cooled workplaces will be extreme. Conclusions The mapping method provides a rapid visual impression of occupational heat exposures in large regions of the world. The local changes in WBGT between 1975 and 2000 fit with the global climate change trends. Future increases of WBGT may create extreme heat exposure situations in large areas of the world. PMID:21165172

  10. Heat pipe array heat exchanger

    DOEpatents

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  11. Heating mechanisms for intermittent loops in active region cores from AIA/SDO EUV observations

    SciTech Connect

    Cadavid, A. C.; Lawrence, J. K.; Christian, D. J.; Jess, D. B.; Nigro, G.

    2014-11-01

    We investigate intensity variations and energy deposition in five coronal loops in active region cores. These were selected for their strong variability in the AIA/SDO 94 Å intensity channel. We isolate the hot Fe XVIII and Fe XXI components of the 94 Å and 131 Å by modeling and subtracting the 'warm' contributions to the emission. HMI/SDO data allow us to focus on 'inter-moss' regions in the loops. The detailed evolution of the inter-moss intensity time series reveals loops that are impulsively heated in a mode compatible with a nanoflare storm, with a spike in the hot 131 Å signals leading and the other five EUV emission channels following in progressive cooling order. A sharp increase in electron temperature tends to follow closely after the hot 131 Å signal confirming the impulsive nature of the process. A cooler process of growing emission measure follows more slowly. The Fourier power spectra of the hot 131 Å signals, when averaged over the five loops, present three scaling regimes with break frequencies near 0.1 min{sup –1} and 0.7 min{sup –1}. The low frequency regime corresponds to 1/f noise; the intermediate indicates a persistent scaling process and the high frequencies show white noise. Very similar results are found for the energy dissipation in a 2D 'hybrid' shell model of loop magneto-turbulence, based on reduced magnetohydrodynamics, that is compatible with nanoflare statistics. We suggest that such turbulent dissipation is the energy source for our loops.

  12. Application of turbulence modeling to predict surface heat transfer in stagnation flow region of circular cylinder

    NASA Technical Reports Server (NTRS)

    Wang, Chi R.; Yeh, Frederick C.

    1987-01-01

    A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.

  13. 21 cm signals from ionized and heated regions around first stars

    NASA Astrophysics Data System (ADS)

    Fang, Li-Zhi

    2008-01-01

    The 21 cm signals from the UV photon sources of reionization epoch is investigated with solving the radiative transfer equation by the WENO algorithm. The results show that a spherical shell of 21 cm emission and absorption will develop around a point source once the speed of the ionization front (I-front) is significantly lower than the speed of light. The 21 cm shell extends from the I-front to the front of light; its inner part is the emission region and its outer part is the absorption region. The 21 cm emission region depends strongly on the intensity, frequency-spectrum and life-time of the UV ionizing source. At redshift 1+z = 20, for a UV ionizing source with an intensity Ė~=1045 erg s-1 and a power law spectrum ν-α with α = 2, the emission region has a comoving size of 1-3 Mpc at the age of the source to be ~=2 Myr. However, the emission regions are very small, and would even be erased by thermal broadening if the source satisfies one of the following conditions: 1. the intensity is less than Ė~=1043 erg s-1 2. the frequency spectrum is thermal at temperature T~=105 K, and 3. the frequency spectrum is a power law with α>=3. On the other hand, the 21 cm absorption regions are developed in all these cases. For a source of short life-time, no 21 cm emission region can be formed if the source dies out before the I-front speed is significantly lower than the speed of light. Yet, a 21 cm absorption region can form and develop even after the emission of the source ceases.

  14. System simulation for an untreated sewage source heat pump (USSHP) in winter

    NASA Astrophysics Data System (ADS)

    Qin, Na; Hao, Peng Z.

    2017-01-01

    The paper discusses the system characteristics of an untreated sewage source heat pump in winter. In this system, the sewage enters into the evaporator directly. The variable parameters to control the system contain the sewage temperature at evaporator inlet and the water temperature at condenser inlet. It is found that most parameters, except the condensation heat transfer coefficient, change in the form of sine wave the same as the sewage temperature at inlet. The heating load and consumed power are 12.9kW and 3.45kW when the sewage temperature at inlet is 13°C. COP is about 3.75 in the range of the sewage temperature at inlet of 12-13°C.

  15. Allothermal gasification of biomass using micron size biomass as external heat source.

    PubMed

    Cheng, Gong; Li, Qian; Qi, Fangjie; Xiao, Bo; Liu, Shiming; Hu, Zhiquan; He, Piwen

    2012-03-01

    An allothermal biomass gasification system using biomass micron fuel (BMF) as external heat source was developed. In this system, heat supplied to gasifier was generated from combustion of BMF. Biomass feedstock was gasified with steam and then tar in the produced gas was decomposed in a catalytic bed with NiO/γ-Al(2)O(3) catalyst. Finally the production gas was employed as a substitute for civil fuel gas. An overall energy analysis of the system was also investigated. The results showed that the lower heating value of the product gas reached more than 12 MJ/Nm(3). The combusted BMF accounted for 26.8% of the total energy input. Allothermal gasification based on the substituted BMF for conventional energy was an efficient and economical technology to obtain bioenergy.

  16. ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump

    EPA Pesticide Factsheets

    Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner Equipment that are effective as of September 15, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=airsrc_heat.pr_crit_as_heat_pumps Listed products have been submitted to EPA by ENERGY STAR partners that do not participate in the AHRI certification program. EPA will continue to update this list with products that are certified by EPA-recognized certification bodies other than AHRI. The majority of ENERGY STAR products, certified by AHRI, can be found on the CEE/AHRI Verified Directory at http://www.ceedirectory.org/

  17. Operation of the CAPRICE electron cyclotron resonance ion source applying frequency tuning and double frequency heating.

    PubMed

    Maimone, F; Tinschert, K; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P

    2012-02-01

    The properties of the electromagnetic waves heating the electrons of the ECR ion sources (ECRIS) plasma affect the features of the extracted ion beams such as the emittance, the shape, and the current, in particular for higher charge states. The electron heating methods such as the frequency tuning effect and the double frequency heating are widely used for enhancing the performances of ECRIS or even for the routine operation during the beam production. In order to better investigate these effects the CAPRICE ECRIS has been operated using these techniques. The ion beam properties for highly charged ions have been measured with beam diagnostic tools. The reason of the observed variations of this performance can be related to the different electromagnetic field patterns, which are changing inside the plasma chamber when the frequency is varying.

  18. Evaluation of geothermal energy as a heat source for the oilsands industry in Northern Alberta (Canada)

    NASA Astrophysics Data System (ADS)

    Majorowicz, J. A.; Unsworth, M.; Gray, A.; Nieuwenhuis, G.; Babadagli, T.; Walsh, N.; Weides, S.; Verveda, R.

    2012-12-01

    The extraction and processing of bitumen from the oilsands of Northern Alberta requires very large amounts of heat that is obtained by burning natural gas. At current levels, the gas used represents 6% of Canada's natural gas production. Geothermal energy could potentially provide this heat, thereby reducing both the financial costs and environmental impact of the oilsands industry. The Helmholtz Alberta Initiative is evaluating this application of geothermal energy through an integrated program of geology, geophysics, reservoir simulation and calculations of the cost benefit. A first stage in this evaluation is refining estimates of subsurface temperature beneath Northern Alberta. This has involved three stages: (1) Corrected industrial thermal data have been used to revise estimates of the upper crustal temperatures beneath the oilsands regions in Alberta. The geothermal gradient map produced using heat flow and thermal conductivity for the entire Phanerozoic column suggests that the overall gradient of the entire column is less than the gradients calculated directly from industry measurements. (2) Paleoclimatic corrections must be applied , since this region has experienced a significant increase in surface temperatures since the end of the last ice age causing a perturbation of shallow heat flow. For this reason, estimates of geothermal gradient based on shallow data are not necessarily characteristic of the whole sedimentary column and can lead to errors in temperature prediction at depth. (3) Improved measurements have been made of the thermal conductivity of the crystalline basement rocks (average = 2.9±0.8 W/m K). Thermal conductivity exhibits significant spatial variability and to a large degree controls the temperature conditions in the Precambrian crystalline basement rocks and its heat content at given heat flow-heat generation. When these steps are used to calculate subsurface temperatures, it can be shown that the temperatures required for geothermal

  19. Preliminary direct heat geothermal resource assessment of the Tennessee Valley region

    SciTech Connect

    Staub, W.P.

    1980-01-01

    A preliminary appraisal of the direct heat geothermal energy resources of the Tennessee Valley region has been completed. This region includes Kentucky, Tennessee and parts of adjacent states. Intermediate and deep aquifers were selected for study. Basement and Top-of-Knox structure and temperature maps were compiled from oil and gas well data on file at various state geological survey offices. Results of this study indicate that the New Madrid seismic zone is the only area within the region that possesses potential for direct heat utilization. In other areas geothermal energy is either too deep for economical extraction or it will not be able to compete with other local energy resources. The only anomalously high temperature well outside the New Madrid seismic zone was located in the Rome Trough and near the central part of the eastern Kentucky coal basin. Geothermal energy in that region would face strong competition from coal, oil and natural gas.

  20. A strongly heated neutron star in the transient z source MAXI J0556-332

    SciTech Connect

    Homan, Jeroen; Remillard, Ronald A.; Fridriksson, Joel K.; Wijnands, Rudy; Cackett, Edward M.; Degenaar, Nathalie; Linares, Manuel

    2014-11-10

    We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556-332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color-color and hardness-intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556-332 had near- or super-Eddington luminosities for a large part of its ∼16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46 ± 15 kpc. Fits to the quiescent spectra of MAXI J0556-332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45 ± 3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 M {sub ☉}. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ∼500 days of quiescence, except for two observations that were likely affected by enhanced low-level accretion. The temperatures we obtain for the fits that include a power law (kT{sub eff}{sup ∞} = 184-308 eV) are much higher than those seen for any other neutron star heated by accretion, while the inferred cooling (e-folding) timescale (∼200 days) is similar to other sources. Fits without a power law yield higher temperatures (kT{sub eff}{sup ∞} = 190-336 eV) and a shorter e-folding time (∼160 days). Our results suggest that the heating of the neutron-star crust in MAXI J0556-332 was considerably more efficient than for other systems, possibly indicating additional or more efficient shallow heat sources in its crust.

  1. In situ preparation of catalytic combustion films used as micro heat source by inkjet printing method

    NASA Astrophysics Data System (ADS)

    Xiao, Jinhua; Wang, Xiaohong; Luo, Xi; Hu, Zhiyu

    2015-02-01

    Catalyst films for methanol combustion, which could be used as micro heat source to provide energy for micro-nano-scale devices, were fabricated with an inkjet printing method. The inkjet printing was used to prepare catalyst films by optimizing inkjet-printed parameters (voltage: 65-70 V; pulse width: 20-30 μs; ink viscosity: near 1 mPa s) and depositing uniform morphologies (substrate temperature: 80 °C; water/ethylene glycol (W/EG): 95:5, v/v). The performances of micro catalytic heat source were evaluated by an infrared thermography (IR) camera. The temperature response reached 95% of the steady state temperature in about 150 s, the temperature difference reached 100 °C on the catalyst surface, and the temperature of catalytic combustion was controlled by adjusting the methanol/air (10% v/v) flow rate.

  2. Temperature distribution of air source heat pump barn with different air flow

    NASA Astrophysics Data System (ADS)

    He, X.; Li, J. C.; Zhao, G. Q.

    2016-08-01

    There are two type of airflow form in tobacco barn, one is air rising, the other is air falling. They are different in the structure layout and working principle, which affect the tobacco barn in the distribution of temperature field and velocity distribution. In order to compare the temperature and air distribution of the two, thereby obtain a tobacco barn whose temperature field and velocity distribution are more uniform. Taking the air source heat pump tobacco barn as the investigated subject and establishing relevant mathematical model, the thermodynamics of the two type of curing barn was analysed and compared based on Fluent. Provide a reasonable evidence for chamber arrangement and selection of outlet for air source heat pump tobacco barn.

  3. Organic Rankine-cycle turbine power plant utilizing low temperature heat sources

    NASA Astrophysics Data System (ADS)

    Maizza, V.

    1980-03-01

    Utilizing and converting of existing low temperature and waste heat sources by the use of a high efficiency bottoming cycle is attractive and should be possible for many locations. This paper presents a theoretical study on possible combination of an organic Rankine-cycle turbine power plate with the heat pump supplied by waste energy sources. Energy requirements and system performances are analyzed using realistic design operating condition for a middle town. Some conversion systems employing working fluids other than water are being studied for the purpose of proposed application. Thermodynamic efficiencies, with respect to available resource, have been calculated by varying some system operating parameters at various reference temperature. With reference to proposed application equations and graphs are presented which interrelate the turbine operational parameters for some possible working fluids with computation results.

  4. Determining the nature of active region heating using high spatially and spectrally resolved x-ray observations

    NASA Astrophysics Data System (ADS)

    Sterrett, M. W.; Cirtain, J. W.

    2013-12-01

    Rarely have active regions on the Sun been studied at wavelengths less than 10 nm while simultaneously maintaining both high spatial and high spectral measurements. Marshall's Grazing Incidence X-ray Spectrometer (MaGIXS) will measure the soft X-ray solar spectrum within a wavelength range of 0.6 - 2.4 nm (0.5 - 2.0 keV) while maintaining a 5 arcsec spatial resolution. The wavelength range of 0.6 - 2.4 nm can provide insight into the heating roles of two of the likely coronal heating mechanisms: nanoflare and Alfven wave heating. The key difference in nanoflares and Alfven wave heating is the high temperature components of plasmas inside single magnetic strands. If the observed frequency of the heating event is low, it is determined to be a nanoflare. If the frequency of the heating event is high, it is Alfvenic in nature. To discriminate between these two distinct events requires that the components of the local high-temperature plasma be measured. MaGIXS is a proposed sounding rocket experiment. Currently in its prototype phase, MaGIXS is being aligned and characterized in hopes of a 2015 launch. To measure the attributes of high-temperature plasma, MaGIXS will employ the use of a matched pair of parabolic mirrors in conjunction with a planar varied-line-space silicon wafer grating. The two mirrors act as a collimator and re-focusing system, molding the beam to desired specifications and removing off-axis optical aberrations in the process. The grating has a HeNe alignment feature which allows the grating to be aligned at atmospheric pressure while focusing the HeNe laser beam near the center of MaGIXS wavelength range. This presentation will cover the alignment procedure of the mirrors, and the results of preliminary testing using both white light and X-ray sources.

  5. GPHS motion studies for heat pulse intervals of reentries from gravity-assist trajectories. [General Purpose Heat Source Module (GPHS)

    SciTech Connect

    Lucero, E.F.; Sharbaugh, R.C.

    1990-03-01

    Motion studies of the General Purpose Heat Source Module, GPHS, were conducted in the heat pulse interval associated with entries from earth gravity assist trajectories. The APL six-degree-of-freedom reentry program designated TMAGRA6C was used. The objectives of the studies were to (1) determine the effect of ablation on GPHS motion, and (2) determine whether the GPHS module entering the earth's atmosphere from an earth-gravity-assist trajectory has a preferred orientation during the heat pulse phase of reentry. The results are given in summary form for easy visualization of the initial conditions investigated and to provide a quick-look of the resulting motion. Detail of the motion is also given for the parameters of interest for each case studied. Selected values of initial pitch rate, roll rate, and combinations of these within the range 0[degree] to 1000[degrees]/sec were investigated for initial reentry angles of -7[degrees] (shallow) and -90[degrees] (steep) and initial angles of attack of 0[degree] (broadface to the wind) and 90[degrees]. Although the studies are not exhaustive, a sufficient number of reentry conditions (initial altitude, reentry angle, angle of attack, rotational motion) have been investigated to deduce certain trends. The results also provide information on additional reentry conditions that need to be investigated. The present results show four GPHS orientations that predominate - all with some pitch oscillations and rolling motion. These are: angles of attack, [alpha][sub R] of 0[degree], 30[degrees], 90[degrees] and tumbling. It should be assumed that all these orientations are equally probable because only combinations of two initial reentry angles, [gamma][sub 0], and two values of [alpha][sub R]. have been investigated. Further the probability for any given initial rate on orientation is not known.

  6. Estimation of spatially varying heat transfer coefficient from a flat plate with flush mounted heat sources using Bayesian inference

    NASA Astrophysics Data System (ADS)

    Jakkareddy, Pradeep S.; Balaji, C.

    2016-09-01

    This paper employs the Bayesian based Metropolis Hasting - Markov Chain Monte Carlo algorithm to solve inverse heat transfer problem of determining the spatially varying heat transfer coefficient from a flat plate with flush mounted discrete heat sources with measured temperatures at the bottom of the plate. The Nusselt number is assumed to be of the form Nu = aReb(x/l)c . To input reasonable values of ’a’ and ‘b’ into the inverse problem, first limited two dimensional conjugate convection simulations were done with Comsol. Based on the guidance from this different values of ‘a’ and ‘b’ are input to a computationally less complex problem of conjugate conduction in the flat plate (15mm thickness) and temperature distributions at the bottom of the plate which is a more convenient location for measuring the temperatures without disturbing the flow were obtained. Since the goal of this work is to demonstrate the eficiacy of the Bayesian approach to accurately retrieve ‘a’ and ‘b’, numerically generated temperatures with known values of ‘a’ and ‘b’ are treated as ‘surrogate’ experimental data. The inverse problem is then solved by repeatedly using the forward solutions together with the MH-MCMC aprroach. To speed up the estimation, the forward model is replaced by an artificial neural network. The mean, maximum-a-posteriori and standard deviation of the estimated parameters ‘a’ and ‘b’ are reported. The robustness of the proposed method is examined, by synthetically adding noise to the temperatures.

  7. Sources and potential application of waste heat utilization at a gas processing facility

    NASA Astrophysics Data System (ADS)

    Alshehhi, Alyas Ali

    Waste heat recovery (WHR) has the potential to significantly improve the efficiency of oil and gas plants, chemical and other processing facilities, and reduce their environmental impact. In this Thesis a comprehensive energy audit at Abu Dhabi Gas Industries Ltd. (GASCO) ASAB gas processing facilities is undertaken to identify sources of waste heat and evaluate their potential for on-site recovery. Two plants are considered, namely ASAB0 and ASAB1. Waste heat evaluation criteria include waste heat grade (i.e., temperature), rate, accessibility (i.e., proximity) to potential on-site waste heat recovery applications, and potential impact of recovery on installation performance and safety. The operating parameters of key waste heat source producing equipment are compiled, as well as characteristics of the waste heat streams. In addition, potential waste heat recovery applications and strategies are proposed, focusing on utilities, i.e., enhancement of process cooling/heating, electrical/mechanical power generation, and steam production. The sources of waste heat identified at ASAB facilities consist of gas turbine and gas generator exhaust gases, flared gases, excess propane cooling capacity, excess process steam, process gas air-cooler heat dissipation, furnace exhaust gases and steam turbine outlet steam. Of the above waste heat sources, exhaust gases from five gas turbines and one gas generator at ASAB0 plant, as well as from four gas turbines at ASAB1 plant, were found to meet the rate (i.e., > 1 MW), grade (i.e., > 180°C), accessibility (i.e., < 50 m from potential on-site WHR applications) and minimal impact criteria on the performance and safety of existing installations, for potential waste heat recovery. The total amount of waste heat meeting these criteria were estimated at 256 MW and 289 MW at ASAB0 and ASAB1 plants, respectively, both of which are substantial. Of the 289 MW waste generated at ASAB1, approximately 173 MW are recovered by waste heat

  8. Performance prediction between horizontal and vertical source heat pump systems for greenhouse heating with the use of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Benli, Hüseyin

    2016-08-01

    This paper presents the suitability of artificial neural networks (ANNs) to predict the performance and comparison between a horizontal and a vertical ground source heat pump system. Performance forecasting is the precondition for the optimal control and energy saving operation of heat pump systems. In this study, performance parameters such as air temperature entering condenser fan-coil unit, air temperature leaving condenser fan-coil unit, and ground temperatures (2 and 60 m) obtained experimental studies are input data; coefficient of performance of system (COPsys) is in output layer. The back propagation learning algorithm with three different variants such as Levenberg-Marguardt, Pola-Ribiere conjugate gradient, and scaled conjugate gradient, and also tangent sigmoid transfer function were used in the network so that the best approach can be found. The results showed that LM with three neurons in the hidden layer is the most suitable algorithm with maximum correlation coefficients R2 of 0.999, minimum root mean square RMS value and low coefficient variance COV. The reported results confirmed that the use of ANN for performance prediction of COPsys,H-V is acceptable in these studies.

  9. "Hot" Non-flaring Plasmas in Active Region Cores Heated by Single Nanoflares

    NASA Astrophysics Data System (ADS)

    Barnes, Will Thomas; Cargill, Peter; Bradshaw, Stephen

    2016-05-01

    We use hydrodynamic modeling tools, including a two-fluid development of the EBTEL code, to investigate the properties expected of "hot" (i.e. between 106.7 and 107.2 K) non-flaring plasmas due to nanoflare heating in active regions. Here we focus on single nanoflares and show that while simple models predict an emission measure distribution extending well above 10 MK that is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium and, for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the "smoking gun" of nanoflare heating, lies between 1 MK and 10 MK. Signatures of the actual heating may be detectable in some instances.

  10. Modelling nanoflares in active regions and implications for coronal heating mechanisms

    PubMed Central

    Cargill, P. J.; Warren, H. P.; Bradshaw, S. J.

    2015-01-01

    Recent observations from the Hinode and Solar Dynamics Observatory spacecraft have provided major advances in understanding the heating of solar active regions (ARs). For ARs comprising many magnetic strands or sub-loops heated by small, impulsive events (nanoflares), it is suggested that (i) the time between individual nanoflares in a magnetic strand is 500–2000 s, (ii) a weak ‘hot’ component (more than 106.6 K) is present, and (iii) nanoflare energies may be as low as a few 1023 ergs. These imply small heating events in a stressed coronal magnetic field, where the time between individual nanoflares on a strand is of order the cooling time. Modelling suggests that the observed properties are incompatible with nanoflare models that require long energy build-up (over 10 s of thousands of seconds) and with steady heating. PMID:25897093

  11. Modelling nanoflares in active regions and implications for coronal heating mechanisms.

    PubMed

    Cargill, P J; Warren, H P; Bradshaw, S J

    2015-05-28

    Recent observations from the Hinode and Solar Dynamics Observatory spacecraft have provided major advances in understanding the heating of solar active regions (ARs). For ARs comprising many magnetic strands or sub-loops heated by small, impulsive events (nanoflares), it is suggested that (i) the time between individual nanoflares in a magnetic strand is 500-2000 s, (ii) a weak 'hot' component (more than 10(6.6) K) is present, and (iii) nanoflare energies may be as low as a few 10(23) ergs. These imply small heating events in a stressed coronal magnetic field, where the time between individual nanoflares on a strand is of order the cooling time. Modelling suggests that the observed properties are incompatible with nanoflare models that require long energy build-up (over 10 s of thousands of seconds) and with steady heating.

  12. RF Sources for the ITER Ion Cyclotron Heating and Current Drive System

    SciTech Connect

    Hosea, J.; Brunkhorst, C.; Fredd, E.; Goulding, R. H.; Goulding, R. H.; Greenough, N.; Kung, C.; Rasmussen, D. A.; Swain, D. W.; Wilson, J. R.

    2005-10-04

    The RF source requirements for the ITER ion cyclotron (IC) heating and current drive system are very challenging ? 20 MW CW power into an antenna load with a VSWR of up to 2 over the frequency range of 35-65 MHz. For the two present antenna designs under consideration, 8 sources providing 2.5 MW each are to be employed. For these sources, the outputs of two final power amplifiers (FPAs), using the high power CPI 4CM2500KG tube, are combined with a 180? hybrid combiner to easily meet the ITER IC source requirements ? 2.5 MW is supplied at a VSWR of 2 at ? 70% of the maximum tube power available in class B operation. The cylindrical cavity configuration for the FPAs is quite compact so that the 8 combined sources fit into the space allocated at the ITER site with room to spare. The source configuration is described in detail and its projected operating power curves are presented. Although the CPI tube has been shown to be stable under high power operating conditions on many facilities, a test of the combined FPA source arrangement is in preparation using existing high power 30 MHz amplifiers to assure that this configuration can be made robustly stable for all phases at a VSWR up to 2. The possibility of using 12 sources to feed a suitably modified antenna design is also discussed in the context of providing flexibility for specifying the final IC antenna design.

  13. Air-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    SciTech Connect

    Murphy, Richard W; Rice, C Keith; Baxter, Van D; Craddick, William G

    2007-07-01

    This report documents the development of an air-source integrated heat pump (AS-IHP) through the third quarter of FY2007. It describes the design, analyses and testing of the AS-IHP, and provides performance specifications for a field test prototype and proposed control strategy. The results obtained so far continue to support the AS-IHP being a promising candidate to meet the energy service needs for DOE's development of a Zero Energy Home (ZEH) by the year 2020.

  14. A custom flexible experimental setup to test air source heat pump for smart buildings

    NASA Astrophysics Data System (ADS)

    Cracium, Vasile S.; Bojesen, Carsten; Trifa, Viorel

    2012-09-01

    In this paper a custom made experimental stand is presented, named controlled lab environment (CLE or climatic box), built for testing an air source heat pump (ASHP) under controlled evaporator ambient conditions and verify the performance and behavior of a theoretical model of the ASHP as a basis for optimization and efficiency improvements. While the data acquisitions from experiments are not yet available, the paper presents the design considerations and schematics of the CLE and a thermodynamic model of an ASHP.

  15. On the relationship between photospheric footpoint motions and coronal heating in solar active regions

    SciTech Connect

    Van Ballegooijen, A. A.; Asgari-Targhi, M.; Berger, M. A.

    2014-05-20

    Coronal heating theories can be classified as either direct current (DC) or alternating current (AC) mechanisms, depending on whether the coronal magnetic field responds quasi-statically or dynamically to the photospheric footpoint motions. In this paper we investigate whether photospheric footpoint motions with velocities of 1-2 km s{sup –1} can heat the corona in active regions, and whether the corona responds quasi-statically or dynamically to such motions (DC versus AC heating). We construct three-dimensional magnetohydrodynamic models for the Alfvén waves and quasi-static perturbations generated within a coronal loop. We find that in models where the effects of the lower atmosphere are neglected, the corona responds quasi-statically to the footpoint motions (DC heating), but the energy flux into the corona is too low compared to observational requirements. In more realistic models that include the lower atmosphere, the corona responds more dynamically to the footpoint motions (AC heating) and the predicted heating rates due to Alfvén wave turbulence are sufficient to explain the observed hot loops. The higher heating rates are due to the amplification of Alfvén waves in the lower atmosphere. We conclude that magnetic braiding is a highly dynamic process.

  16. A new, compact far-infrared source in the W31 region

    NASA Technical Reports Server (NTRS)

    Fazio, G. G.; Lada, C. J.; Kleinmann, D. E.; Wright, E. L.; Ho, P. T. P.; Low, F. J.

    1978-01-01

    In a survey of the W31 region, a compact far-infrared source was detected at the position of the radio continuum source G 10.6-0.4. Associated with this infrared source and in close coincidence with its position is an H II region with a compact core and extended halo as well as OH and H2O masers. An extended molecular cloud, centered on these sources, has also been detected. The compact source and associated masers may be located at the H II region-molecular-cloud interface in a thin shocked layer of neutral gas driven into the molecular cloud by the expansion of the H II region. The compact H II region is depleted of dust and must be surrounded by a very dense shell of dust and gas (hydrogen number density in excess of 200,000 per cu cm). The source probably represents an early stage of stellar evolution.

  17. DIAGNOSING THE TIME DEPENDENCE OF ACTIVE REGION CORE HEATING FROM THE EMISSION MEASURE. II. NANOFLARE TRAINS

    SciTech Connect

    Reep, J. W.; Bradshaw, S. J.; Klimchuk, J. A. E-mail: stephen.bradshaw@rice.edu

    2013-02-20

    The time dependence of heating in solar active regions can be studied by analyzing the slope of the emission measure distribution coolward of the peak. In a previous study we showed that low-frequency heating can account for 0% to 77% of active region core emission measures. We now turn our attention to heating by a finite succession of impulsive events for which the timescale between events on a single magnetic strand is shorter than the cooling timescale. We refer to this scenario as a 'nanoflare train' and explore a parameter space of heating and coronal loop properties with a hydrodynamic model. Our conclusions are (1) nanoflare trains are consistent with 86% to 100% of observed active region cores when uncertainties in the atomic data are properly accounted for; (2) steeper slopes are found for larger values of the ratio of the train duration {Delta} {sub H} to the post-train cooling and draining timescale {Delta} {sub C}, where {Delta} {sub H} depends on the number of heating events, the event duration and the time interval between successive events ({tau} {sub C}); (3) {tau} {sub C} may be diagnosed from the width of the hot component of the emission measure provided that the temperature bins are much smaller than 0.1 dex; (4) the slope of the emission measure alone is not sufficient to provide information about any timescale associated with heating-the length and density of the heated structure must be measured for {Delta} {sub H} to be uniquely extracted from the ratio {Delta} {sub H}/{Delta} {sub C}.

  18. Finite Volume Based Computer Program for Ground Source Heat Pump System

    SciTech Connect

    Menart, James A.

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump

  19. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    SciTech Connect

    James A Menart, Professor

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled Finite Volume Based Computer Program for Ground Source Heat Pump Systems. The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The

  20. Improved Bayesian Infrasonic Source Localization for regional infrasound

    DOE PAGES

    Blom, Philip S.; Marcillo, Omar; Arrowsmith, Stephen J.

    2015-10-20

    The Bayesian Infrasonic Source Localization (BISL) methodology is examined and simplified providing a generalized method of estimating the source location and time for an infrasonic event and the mathematical framework is used therein. The likelihood function describing an infrasonic detection used in BISL has been redefined to include the von Mises distribution developed in directional statistics and propagation-based, physically derived celerity-range and azimuth deviation models. Frameworks for constructing propagation-based celerity-range and azimuth deviation statistics are presented to demonstrate how stochastic propagation modelling methods can be used to improve the precision and accuracy of the posterior probability density function describing themore » source localization. Infrasonic signals recorded at a number of arrays in the western United States produced by rocket motor detonations at the Utah Test and Training Range are used to demonstrate the application of the new mathematical framework and to quantify the improvement obtained by using the stochastic propagation modelling methods. Moreover, using propagation-based priors, the spatial and temporal confidence bounds of the source decreased by more than 40 per cent in all cases and by as much as 80 per cent in one case. Further, the accuracy of the estimates remained high, keeping the ground truth within the 99 per cent confidence bounds for all cases.« less

  1. Improved Bayesian Infrasonic Source Localization for regional infrasound

    SciTech Connect

    Blom, Philip S.; Marcillo, Omar; Arrowsmith, Stephen J.

    2015-10-20

    The Bayesian Infrasonic Source Localization (BISL) methodology is examined and simplified providing a generalized method of estimating the source location and time for an infrasonic event and the mathematical framework is used therein. The likelihood function describing an infrasonic detection used in BISL has been redefined to include the von Mises distribution developed in directional statistics and propagation-based, physically derived celerity-range and azimuth deviation models. Frameworks for constructing propagation-based celerity-range and azimuth deviation statistics are presented to demonstrate how stochastic propagation modelling methods can be used to improve the precision and accuracy of the posterior probability density function describing the source localization. Infrasonic signals recorded at a number of arrays in the western United States produced by rocket motor detonations at the Utah Test and Training Range are used to demonstrate the application of the new mathematical framework and to quantify the improvement obtained by using the stochastic propagation modelling methods. Moreover, using propagation-based priors, the spatial and temporal confidence bounds of the source decreased by more than 40 per cent in all cases and by as much as 80 per cent in one case. Further, the accuracy of the estimates remained high, keeping the ground truth within the 99 per cent confidence bounds for all cases.

  2. Design evolution and verification of the general-purpose heat source

    SciTech Connect

    Schock, A

    1980-01-01

    The General-Purpose Heat Source (GPHS) is a radioisotope heat source for use in space power systems. It employs a modular design, to make it adaptable to a wide range of energy conversion systems and power levels. Each 250 W module is completely autonomous, with its own passive safety provisions to prevent fuel release under all abort modes, including atmospheric reentry and earth impact. Prior development tests had demonstrated good impact survival as long as the iridium fuel capsules retained their ductility. This requires high impact temperatures, typically above 900/sup 0/C and reasonably fine grain size, which in turn requires avoidance of excessive operating temperatures and reentry temperatures. These three requirements - on operating, reentry, and impact temperatures - are in mutual conflict, since thermal design changes to improve any one of these temperatures tend to worsen one or both of the others. This conflict creates a difficult design problem, which for a time threatened the success of the program. The present paper describes how this problem was overcome by successive design revisions, supplemented by thermal analyses and confirmatory vibration and impact tests; and how this may be achieved while raising the specific power of the GPHS to 83 W/lb, a 50% improvement over previously flown radioisotope heat sources.

  3. Stress analysis and testing of the outer capsule design for the Strontium Heat Source Development Program

    SciTech Connect

    Simonen, F.A.; Shippell, R.J. Jr.; Atteridge, D.G.

    1980-01-01

    The objective of the Strontium Heat Source Development Program is to obtain the data needed to license /sup 90/SrF/sub 2/ heat sources - specifically the /sup 90/SrF/sub 2/ capsules produced in the Waste Encapsulation and Storage Facility (WESF) at Hanford. Toward this end, a high integrity outer capsule has been designed to replace the present outer capsule of the WESF /sup 90/SrF/sub 2/ capsule. The proposed design of a Hastelloy S outer capsule which features a mechanical interlock type of end closure is described. Qualification testing requirements are outlined, and stress analyses and developmental tests are described. These tests were performed on AISI-1018 steel stand-in capsules, and included both external pressure and impact tests. The external pressure tests showed that stress calculations seriously overestimated the pressure capability of the outer capsule. Possible reasons for the lack of agreement between the tests and the analyses are evaluated. The stress analyses and tests results indicate that the proposed outer capsule will meet the heat source qualification requirements. Future tests will be conducted to experimentally verify that the Hastelloy S outer capsule in an aged condition meets the structural integrity requirements.

  4. Development of a radioisotope heat source for the two-watt radioisotope thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Howell, Edwin I.; McNeil, Dennis C.; Amos, Wayne R.

    1992-01-01

    Described is a radioisotope heat source for the Two-Watt Radioisotope Thermoelectric Generator (RTG) which is being considered for possible application by the U.S. Navy and for other Department of Defense applications. The heat source thermal energy (75 Wt) is produced from the alpha decay of plutonium-238 which is in the form of high-fired plutonium dioxide. The capsule is non-vented and consists of three domed cylindrical components each closed with a corresponding sealed end cap. Surrounding the fuel is the liner component, which is fabricated from a tantalum-based alloy, T-111. Also fabricated from T-111 is the next component, the strength member, which serves to meet pressure and impact criteria. The outermost component, or clad, is the oxidation- and corrosion-resistant nickel-based alloy, Hastelloy S. This paper defines the design considerations, details the hardware fabrication and welding processes, discusses the addition of yttrium to the fuel to reduce liner embrittlement, and describes the testing that has been conducted or is planned to assure that there is fuel containment not only during the heat source operational life, but also in case of an accident environment.

  5. Integration of Radioisotope Heat Source with Stirling Engine and Cooler for Venus Internal-Structure Mission

    SciTech Connect

    Schock, Alfred

    1993-10-01

    The primary mission goal is to perform long-term seismic measurements on Venus, to study its largely unknown internal structure. The principal problem is that most payload components cannot long survive Venus's harsh environment, 90 bars at 500 degrees C. To meet the mission life goal, such components must be protected by a refrigerated payload bay. JPL Investigators have proposed a mission concept employing a lander with a spherical payload bay cooled to 25 degrees C by a Stirling cooler powered by a radioisotope-heated Sitrling engine. To support JPL's mission study, NASA/Lewis and MTI have proposed a conceptual design for a hydraulically coupled Stirling engine and cooler, and Fairchild Space - with support of the Department of Energy - has proposed a design and integration scheme for a suitable radioisotope heat source. The key integration problem is to devise a simple, light-weight, and reliable scheme for forcing the radioisotope decay heat to flow through the Stirling engine during operation on Venus, but to reject that heat to the external environment when the Stirling engine and cooler are not operating (e.g., during the cruise phase, when the landers are surrounded by heat shields needed for protection during subsequent entry into the Venusian atmosphere.) A design and integration scheme for achieving these goals, together with results of detailed thermal analyses, are described in this paper. There are 7 copies in the file.

  6. Model for the heat source of the Cerro Prieto magma-hydrothermal system, Baja California, Mexico

    SciTech Connect

    Elders, W.A.; Bird, D.K.; Williams, A.E.; Schiffman, P.; Cox, B.

    1981-01-01

    Earlier studies at Cerro Prieto led to the development of a qualitative model for fluid flow in the geothermal system before it was drilled and perturbed by production. Current efforts are directed towards numerical modeling of heat and mass transfer in the system in this undisturbed state. This one-dimensional model assumes that the heat source was a single basalt/gabbro intrusion which provided heat to the system as it cooled. After compilation of various information of the physical properties of the reservoir, the enthalpy contained in two 1 cm thick sections across the reservoir orthogonal to each other was calculated. Various shapes, sizes and depths for the intrusion were considered as initial conditions and boundary conditions for the calculations of heat transfer. A family of numerical models which so far gives the best matches to the conditions observed in the field today have in common a funnel-shaped intrusion with a top 4 km wide emplaced at a depth of 5 km some 30,000 to 50,000 years ago, providing heat to the geothermal system.

  7. Source sector and region contributions to BC and PM2.5 in Central Asia

    DOE PAGES

    Kulkarni, S.; Sobhani, N.; Miller-Schulze, J. P.; ...

    2015-02-18

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector, and source region contributions in Central Asia (CA) are analyzed for the period April 2008–July 2009 using the Sulfur Transport and dEposition Model (STEM) chemical transport model and modeled meteorology from the Weather Research and Forecasting (WRF) model. Predicted aerosol optical depth (AOD) values (annual mean value ~0.2) in CA vary seasonally, with lowest values in the winter. Surface PM2.5 concentrations (annual mean value ~10 μg m-3) also exhibit a seasonal cycle, with peak values and largest variability in the spring/summer, and lowest values and variability in the winter (hourly valuesmore » from 2 to 90 μg m-3). Surface concentrations of black carbon (BC) (mean value ~0.1 μg m-3) show peak values in the winter. The simulated values are compared to surface measurements of AOD as well as PM2.5, PM10, BC, and organic carbon (OC) mass concentrations at two regional sites in Kyrgyzstan (Lidar Station Teplokluchenka (LST) and Bishkek). The predicted values of AOD and PM mass concentrations and their seasonal cycles are fairly well captured. The carbonaceous aerosols are underpredicted in winter, and analysis suggests that the winter heating emissions are underestimated in the current inventory. Dust, from sources within and outside CA, is a significant component of the PM mass and drives the seasonal cycles of PM and AOD. On an annual basis, the power and industrial sectors are found to be the most important contributors to the anthropogenic portion of PM2.5. Residential combustion and transportation are shown to be the most important sectors for BC. Biomass burning within and outside the region also contributes to elevated PM and BC concentrations. The analysis of the transport pathways and the variations in particulate matter mass and composition in CA demonstrates that this region is strategically located to characterize regional and intercontinental transport of

  8. Air Pollution in Megacities: Sources and Regional/Global Effects

    NASA Astrophysics Data System (ADS)

    Artaxo, P.

    2007-12-01

    Air Pollution in Megacities is increasing significantly in all continents. The socio-economic and health problems are escalating, especially in developing countries. In terms of sources, urban transportation is relevant in most cities, as well as industrial pollution. In Latin American Cities such as Sao Paulo, Mexico City and Santiago, serious governmental efforts are being doing to reduce emissions and effects. Latin America has about 300 cities with population above 300.000 people. In Sao Paulo, the significant increase in the use of ethanol as fuel brings important increase in aldehyde concentrations. In all 3 Megacities, high aerosol concentrations are observed, with clear effects on population health. Large studies on aerosol source apportionment were done in these 3 cities, and detailed results will be presented. Quantification of aerosol sources is a problem, especially in the organic aerosol component that is high in most of Megacities. In Asia and Africa, the problems are similar as in Latin America, and the large emissions from these urban centers are relevant and needs to be taken into account in policies to reduce carbon dioxide emissions.

  9. Coulomb collisions of ring current particles: Indirect source of heat for the ionosphere

    NASA Technical Reports Server (NTRS)

    Cole, K. D.

    1975-01-01

    The additional energy requirements of the topside ionosphere during a magnetic storm are less than one quarter of the ring current energy. This energy is supplied largely by Coulomb collisions of ring current protons of energy less than about 20 keV with background thermal electrons which conduct the heat to the ionosphere. Past criticisms are discussed of this mechanism for the supply of energy to the SAR-arc and neighboring regions of the ionosphere.

  10. Distinct atmospheric patterns and associations with acute heat-induced mortality in five regions of England

    NASA Astrophysics Data System (ADS)

    Petrou, Ilias; Dimitriou, Konstantinos; Kassomenos, Pavlos

    2015-10-01

    The main objective of this paper was to identify possible acute heat-induced summer mortality in five regions of England namely the Yorkshire and the Humber, West Midlands, North East, North West and South East regions and reveal associations with specific air flows. For this purpose, backward air mass trajectories corresponding to daily episodes of increased temperatures were produced and divided to clusters, in order to define atmospheric pathways associated with warm air mass intrusions. A statistically significant at 95 % confidence interval increase in daily total mortality (DTMORT) was observed during the selected episodes at all five regions and thus, heat-induced mortality was indicated. The calculated raise was more intense in the West Midlands, North West and South East regions, whereas the results in the North East and Yorkshire and the Humber regions were less evident. Large fractions of thermal episodes, elevated average temperature values and higher average DTMORT levels were primarily associated with the short-medium range South West (SW) and/or East-South East (E-SE) trajectory clusters, suggesting relations among heat-induced mortality and specific atmospheric circulations. Short-medium length of SW and E-SE airflows, calculated by an application of Haversine formula along the centroid trajectory of each cluster, implies the arrival of slow moving air masses. Atmospheric stagnation could enhance human thermal stress due to low wind speed.

  11. Simulation of ion cyclotron heating in the auroral current region in the VASIMR

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Chang-Diaz, F. R.; Squire, J. P.; Brukardt, M.; Glover, T. W.; Bengtson, R. D.; Jacobson, V. T.; McCaskill, G. E.; Cassady, L.

    Plasma physics has found an increasing range of practical industrial applications including the development of electric spacecraft propulsion systems One of these systems the Variable Specific Impulse Magnetoplasma Rocket VASIMR engine both applies and can be used to simulate several important physical processes occurring in the magnetosphere These processes include the mechanisms involved in the ion acceleration and heating that occur in the Birkeland currents of an auroral arc system Auroral current region processes that are simulated in VASIMR include lower hybrid heating parallel electric field acceleration and ion cyclotron acceleration This paper will focus on using a physics demonstration model VASIMR to study ion cyclotron heating ICRH similar to auroral zone processes The production of upward moving ion conics and ion heating are significant features in auroral processes It is believed that ion cyclotron heating plays a role in these processes but laboratory simulation of these auroral effects is difficult owing to the fact that the ions involved only pass through the acceleration region once In the Variable Specific Impulse Magnetoplasma Rocket VASIMR we have successfully simulated these effects The current configuration of the VASIMR uses a helicon antenna with up to 20 kW of power to generate plasma then uses an RF booster stage that uses left hand polarized slow mode waves launched from the high field side of the resonance The current setup for the booster uses 2 to 4 MHz waves with up to 20 kW of power This is

  12. Enhanced primary sludge sonication by heat insulation to reclaim carbon source for biological phosphorous removal.

    PubMed

    Tian, Qing; Wang, Qi; Zhu, Yanbing; Li, Fang; Zhuang, Lin; Yang, Bo

    2017-01-01

    Ultrasound pretreatment is a potent step to disintegrate primary sludge (PS). The supernatant of sonicated PS is recycled as an alternative carbon source for biological phosphorus removal. In this study, we investigated the role of temperature on PS disintegration during sonication. We found that a temperature of 60°C yielded a dissolution rate of about 2% soluble chemical oxygen demand (SCOD) as compared to 7% SCOD using sonication at the specific energy (SE) of 7359kJ/kg TS. Using the SE of 6000kJ/kg TS with heat insulation during sonication, the SCOD dissolution rate of PS was similar to the result at the SE of 7051kJ/kg TS without heat insulation. Upon treatment with sonication, the PS released low concentrations of Cu and Zn into the supernatant. The phosphorus-accumulating organisms (PAOs) used the supernatant of sonicated PS as the carbon source. Supplementation with the diluted sonicated PS supernatant (SCOD≈1000mg/L) in anaerobic phase resulted in the release of phosphorus (36mg/L) and the production of polyhydroxyalkanoates (PHAs) (0.36g PHA/g SS). Compared with sodium acetate, higher polyhydroxyvalerate (PHV) faction in the polyhydroxyalkanoates (PHAs) was observed in the biomass when incubated with sonicated PS as the carbon source. This work provides a simple pathway to conserve energy and to enhance efficiencies of ultrasonic pretreatment and the recovery of carbon source from the sludge for improving the phosphorus removal in the ENR system.

  13. A critical evaluation of semianalytic methods in the study of centrally heated, unresolved, infrared sources

    NASA Technical Reports Server (NTRS)

    Doty, Steven D.; Leung, Chun Ming

    1994-01-01

    We critically evaluate current methods of analysis in infrared (IR) astronomy and investigate the conditions under which these semianalytic methods are reliable. Specifically we examine the usual assumptions of homogeneities in dust density and temperature, and neglect of opacity effects when applied to internally heated, unresolved IR sources. To accomplish this, a series of radiation transport models for these sources have been constructed. The model results are treated as observed quantities and analyzed to derive the source parameters, using simple semianalytic methods. The discrepancies between the derived and actual model parameters can then be attributed to the limitations of the analysis methods and provide a measure of their reliability. Applying this approach to centrally heated, unresolved IR sources, we have studied in detail the following diagnostic problems: (1) determination of dust mass from monochromatic and integrated luminosities; (2) estimation of dust temperature distribution from color temperatures derived from the flux spectrum; and (3) determination of the empirical grain emissivity law (opacity function) for both continuum and spectral features.

  14. Solar Source Regions of Energetic 3He Emission

    NASA Astrophysics Data System (ADS)

    Mason, G. M.; Nitta, N. V.; Cohen, C. M.; Wiedenbeck, M. E.

    2012-12-01

    One of the surprising observations from the ACE mission has been the detection of energetic 3He emission occurring over multi-day periods. Previously observations of solar energetic 3He had detected short-lived "impulsive" energetic particle events which were associated with type III bursts and energetic electrons. The ACE observations were able to detect 3He at very low levels (<1% of 4He compared to ~10% in most earlier work) and this showed that the impulsive events often occurred during seemingly continuous multi-day periods of 3He emission. During solar active periods, 3He was present at 1 AU the majority of the time, giving evidence for either semi-continuous processes or else unresolved multiple small injections. The obvious injections during such periods were strongly associated with jet activity By adding STEREO and SDO observations we are seeking to extend the observational picture for these events. First, by following single 3He emitting regions from STEREO-B to ACE to STEREO-A we seek to examine for how long the 3He emission can continue, since any single spacecraft can be magnetically connected to a single region for only a few days and ACE often sees emission periods of that length. Second, by using SDO-AIA we seek to probe further the properties of the emitting regions to see if the previously reported association with jets is seen in events which we can now observe with greater resolution, sensitivity, and cadence than previously possible.

  15. The feasibility of retrieving nuclear heat sources from orbit with the space shuttle

    SciTech Connect

    Pyatt, D.W.; Englehart, R.W.

    1980-01-01

    Spacecraft launched for orbital missions have a finite orbital lifetime. Current estimates for the lifetime of the nine nuclear powered U.S. satellites now in orbit range from 150 years to 10{sup 6} years. Orbital lifetime is determined primarily by altitude, solar activity, and the satellite ballistic coefficient. There is also the potential of collision with other satellites or space debris, which would reduce the lifetime in orbit. These orbiting power sources contain primarily Pu-238 and Pu-239 as the fuel material. Pu-238 has an approximate 87-year half life and so considerable amounts of daughter products are present after a few tens of years. In addition, there are minor but possibly significant amounts of impurity isotopes present with their own decay chains. Radioisotopic heat sources have been designed to evolving criteria since the first launches. Early models were designed to burn up upon reentry. Later designs were designed to reenter intact. After tens or hundreds of years in orbit, the ability of any orbiting heat source to reenter intact and impact while maintaining containment integrity is in doubt. Such ability could only be verified by design to provide protection in the case of early mission failures such as launch aborts, failure to achieve orbit, or the attainment of only a short orbit. With the development of the Space Shuttle there exists the potential ability to recover heat sources in orbit after their missions are completed. Such retrieval could allow the risk of eventual reentry burnup or impact with atmospheric dispersion and subsequent radiation doses to the public to be avoided.

  16. An Integrated Approach on Groundwater Flow and Heat/Solute Transport for Sustainable Groundwater Source Heat Pump (GWHP) System Operation

    NASA Astrophysics Data System (ADS)

    Park, D. K.; Bae, G. O.; Joun, W.; Park, B. H.; Park, J.; Park, I.; Lee, K. K.

    2015-12-01

    The GWHP system uses a stable temperature of groundwater for cooling and heating in buildings and thus has been known as one of the most energy-saving and cost-efficient renewable energy techniques. A GWHP facility was installed at an island located at the confluence of North Han and South Han rivers, Korea. Because of well-developed alluvium, the aquifer is suitable for application of this system, extracting and injecting a large amount of groundwater. However, the numerical experiments under various operational conditions showed that it could be vulnerable to thermal interference due to the highly permeable gravel layer, as a preferential path of thermal plume migration, and limited space for well installation. Thus, regional groundwater flow must be an important factor of consideration for the efficient operation under these conditions but was found to be not simple in this site. While the groundwater level in this site totally depends on the river stage control of Paldang dam, the direction and velocity of the regional groundwater flow, observed using the colloidal borescope, have been changed hour by hour with the combined flows of both the rivers. During the pumping and injection tests, the water discharges in Cheongpyeong dam affected their respective results. Moreover, the measured NO3-N concentrations might imply the effect of agricultural activities around the facility on the groundwater quality along the regional flow. It is obvious that the extraction and injection of groundwater during the facility operation will affect the fate of the agricultural contaminants. Particularly, the gravel layer must also be a main path for contaminant migration. The simulations for contaminant transport during the facility operation showed that the operation strategy for only thermal efficiency could be unsafe and unstable in respect of groundwater quality. All these results concluded that the integrated approach on groundwater flow and heat/solute transport is necessary

  17. What Is the Source of Quiet Sun Transition Region Emission?

    NASA Astrophysics Data System (ADS)

    Schmit, D. J.; De Pontieu, Bart

    2016-11-01

    Dating back to the first observations of the on-disk corona, there has been a qualitative link between the photosphere’s magnetic network and enhanced transition-temperature plasma emission. These observations led to the development of a general model that describes emission structures through the partitioning of the atmospheric volume with different magnetic loop geometries that exhibit different energetic equilibria. Does the internetwork produce transition-temperature emission? What fraction of network flux connects to the corona? How does quiet Sun emission compare with low-activity Sun-like stars? In this work, we revisit the canonical model of the quiet Sun, with high-resolution observations from the Interface Region Imaging Spectrograph (IRIS) and HMI in hand, to address those questions. We use over 900 deep exposures of Si iv 1393 Å from IRIS along with nearly simultaneous HMI magnetograms to quantify the correlation between transition-temperature emission structures and magnetic field concentrations through a number of novel statistics. Our observational results are coupled with analysis of the Bifrost MHD model and a large-scale potential field model. Our results paint a complex portrait of the quiet Sun. We measure an emission signature in the distant internetwork that cannot be attributed to network contribution. We find that the dimmest regions of emission are not linked to the local vertical magnetic field. Using the MHD simulation, we categorize the emission contribution from cool mid-altitude loops and high-altitude coronal loops and discuss the potential emission contribution of spicules. Our results provide new constraints on the coupled solar atmosphere so that we can build on our understanding of how dynamic thermal and magnetic structures generate the observed phenomena in the transition region.

  18. Turbulent diffusion from a heated line source in non-equilibrium grid turbulence

    NASA Astrophysics Data System (ADS)

    Nedic, Jovan; Tavoularis, Stavros

    2015-11-01

    We have investigated turbulent diffusion of heat injected passively from a line source in equilibrium and non-equilibrium grid-generated turbulence, which are, respectively, flows in which the value of the non-dimensional rate of kinetic energy dissipation is constant or changes with streamwise distance from the grid. We used three grids with uniform square meshes and one fractal square grid (FSG), all of the same solidity, to generate non-equilibrium and equilibrium turbulence in a wind-tunnel. The regular grids have mesh sizes that are comparable to the first (RG160), second (RG80) and fourth (RG18) iterations of the fractal grid. The heated line source was inserted on the centre-plane of the grids at either of two downstream locations or an upstream one and it spanned the entire width of the wind-tunnel. We found that RG160 produced the greatest heat diffusion, followed by FSG, RG80 and RG18, in this order. The apparent turbulent diffusivity produced by the four grids also decreased in the same order. These findings conform with Taylor's theory of diffusion by continuous movements. Moreover, the present study demonstrates that the fractal space-scale unfolding (SSU) mechanism does not apply to grids with the same solidity but different effective mesh sizes. Supported by NSERC.

  19. Model simulation of a localized high intensity heat source interacting with cooled metal plates

    NASA Astrophysics Data System (ADS)

    Cranfill, F. M.

    The basic, generic problem of a localized high intensity heat source directed against one surface of a plate of finite thickness was investigated using the finite element program ANSYS. After reviewing similar work in nuclear fuel and laser machining, ANSYS was verified against a known solution. ANSYS was used to create a model that yields minimum heat transfer coefficients needed to prevent the initiation of melting in thin aluminum, titanium, and stainless steel (AISI 304) plates. These heat transfer coefficients were converted into minimum local Nusselt numbers and graphed against local Nusselt number correlations for constant temperature flat plates in forced and free convection regimes. A detailed listing of both laminar and turbulent correlations is presented along with references. The suitability of liquid sodium, air, and water (under high pressure) as coolants for a source intensity of 2.0 x 10 to the 7th power w/sq m was examined. For free convection, only liquid sodium cooling a titanium plate is feasible, For forced convection, liquid sodium is feasible in laminar flow fo r all three plates with velocities ranging from 0.28 m/s to 1.09 m/s. Water is feasible for aluminum and titanium in turbulent flow at velocities of approximately 4 m/s.

  20. General-purpose heat source developmet: Safety test program. Postimpact evaluation, design iteration test 4

    NASA Astrophysics Data System (ADS)

    George, T. G.; Schonfeld, F. W.

    1984-12-01

    The general-purpose heat source (GPHS) provides power for space missions by transmitting the heat of Pu-238 decay to thermoelectric elements. Because of the inevitable return of certain aborted missions, the heat source must be designed and constructed to survive both re-entry and Earth impact. The design iteration test (DIT) series is part of an ongoing test program. The fourth test (DIT-4) was designed to evaluate the effect on impact behavior of changing the procedure used at the mount facility (MF) to remove surface defects from drawn cups. The change involved switching from a manual abrasion technique to a motorized, rubber-bonded abrasive wheel. In DIT-4 a partial GPHS module containing two fueled clads (one cleaned manually, and one cleaned with an abrasive wheel) was impacted at a velocity of 58 m/s and a temperature of 930 C. Both capsules were severely deformed by the impact and contained large interal cracks. Although the manually cleaned capsule breached, the breaching crack was only 2 microns wide and released negligible amounts of fuel. There did not appear to be any correlation between cleaning method and capsule performance. Postimpact analyses of the DIT-4 test components are described with emphasis on microstructure and impact response.

  1. General-Purpose Heat Source development: safety test program. Postimpact evaluation, Design Iteration Test 2

    SciTech Connect

    Schonfeld, F.W.; George, T.G.

    1984-06-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of /sup 238/PuO/sub 2/ decay to thermoelectric elements. Because of the inevitable return of certain missions, the heat source must be Designed and constructed to survive both re-entry and Earth impact. The Design Iteration Test (DIT) series is part of an ongoing test program. In the first Design Iteration Test (DIT-1), a full GPHS module ontaining four iridium-alloy capsules loaded with /sup 238/PuO/sub 2/ was impacted at 57 m/s and 930/sup 0/C. All four capsules survived and none was breached. The capsules used in DIT-1 were loaded and welded at Los Alamos. The second Design Iteration Test (DIT-2) also used a full GPHS module and was impacted at 58 m/s and 930/sup 0/C. The four iridium-alloy capsules used in this test were loaded and welded at the Savannah River Plant (SRP). Postimpact examination revealed that two capsules had survived and two capsules had breached; a small quantity (approx. = 50 ..mu..g) of /sup 238/PuO/sub 2/ was released from the breached capsules. Internal cracking similar to that observed in the DIT-1 capsules was evident in all four of the DIT-2 capsules. Postimpact analyses of the units are described with emphasis on weld structure and performance.

  2. Case study for ARRA-funded ground-source heat pump (GSHP) demonstration at Oakland University

    SciTech Connect

    Im, Piljae; Liu, Xiaobing

    2015-09-01

    High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights the findings of a case study of one of the ARRA-funded GSHP demonstration projects, a ground-source variable refrigerant flow (GS-VRF) system installed at the Human Health Building at Oakland University in Rochester, Michigan. This case study is based on the analysis of measured performance data, maintenance records, construction costs, and simulations of the energy consumption of conventional central heating, ventilation, and air-conditioning (HVAC) systems providing the same level of space conditioning as the demonstrated GS-VRF system. The evaluated performance metrics include the energy efficiency of the heat pump equipment and the overall GS-VRF system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of the GS-VRF system compared with conventional HVAC systems. This case study also identified opportunities for reducing uncertainties in the performance evaluation, improving the operational efficiency, and reducing the installed cost of similar GSHP systems in the future.

  3. Focus group discussions among owners and non-owners of ground source heat pumps

    SciTech Connect

    Roberson, B.F.

    1988-07-01

    This research was sponsored by the Office of Buildings and Community Systems and conducted by the Pacific Northwest Laboratory as part of an ongoing effort to enhance the commercial use of federally developed technology. Federal dollars have supported research on the development of ground source heat pumps (GSHP) for several years. Though several companies currently sell GSHP's for residential use, their share of the total heating and air conditioning business remains less than one percent. Large manufacturing companies with national distribution have not yet added GSHP equipment to their product line. GSHP's use only about one half (Braud 1987) to one third (Bose 1987) of the energy needed to operate conventional furnaces and air conditioners. Consequently, a high level of market penetration by the GSHP offers direct benefits to both utility companies and individual users of the systems. Widespread use of these highly efficient systems will reduce both total energy consupmtion, and problems associated with high levels of energy use during peak periods. This will allow utility companies to delay capital expenditures for new facilities to meet the growing energy demand during peak periods. The cost effective use of electricity also reduces the likelihood of homeowners switching to a different fuel source for heating. 5 refs.

  4. Transient natural ventilation of a room with a distributed heat source

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Shaun D.; Woods, Andrew W.

    We report on an experimental and theoretical study of the transient flows which develop as a naturally ventilated room adjusts from one temperature to another. We focus on a room heated from below by a uniform heat source, with both high- and low-level ventilation openings. Depending on the initial temperature of the room relative to (i) the final equilibrium temperature and (ii) the exterior temperature, three different modes of ventilation may develop. First, if the room temperature lies between the exterior and the equilibrium temperature, the interior remains well-mixed and gradually heats up to the equilibrium temperature. Secondly, if the room is initially warmer than the equilibrium temperature, then a thermal stratification develops in which the upper layer of originally hot air is displaced upwards by a lower layer of relatively cool inflowing air. At the interface, some mixing occurs owing to the effects of penetrative convection. Thirdly, if the room is initially cooler than the exterior, then on opening the vents, the original air is displaced downwards and a layer of ambient air deepens from above. As this lower layer drains, it is eventually heated to the ambient temperature, and is then able to mix into the overlying layer of external air, and the room becomes well-mixed. For each case, we present new laboratory experiments and compare these with some new quantitative models of the transient flows. We conclude by considering the implications of our work for natural ventilation of large auditoria.

  5. Magnetic Characteristics of Active Region Heating Observed with TRACE, SOHO/EIT, and Yohkoh/SXT

    NASA Technical Reports Server (NTRS)

    Porter, J. G.; Falconer, D. A.; Moore, R. L.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Over the past several years, we have reported results from studies that have compared the magnetic structure and heating of the transition region and corona (both in active regions and in the quiet Sun) by combining X-ray and EUV images from Yohkoh and Solar and Heliospheric Observatory (SOHO) with photospheric magnetograms from ground-based observatories. Our findings have led us to the hypothesis that most heating throughout the corona is driven from near and below the base of the corona by eruptive microflares occurring in compact low-lying "core magnetic fields (i.e., fields rooted along and closely enveloping polarity inversion lines in the photospheric magnetic flux). We now extend these studies, comparing sequences of UV images from Transition Region and Coronal Explorer (TRACE) with longitudinal magnetograms from Kitt Peak and vector magnetograms from MUSIC. These comparisons confirm the previous results regarding the importance of core-field activity to active region heating. Activity in fields associated with satellite polarity inclusions and/or magnetically sheared configurations is especially prominent. This work is funded by NASA's Office of Space Science through the Sun-Earth Connection Guest Investigator Program and the Solar Physics Supporting Research and Technology Program.

  6. Aerosol and Trace Gas Sources in Northern China: Changes in Concentrations Before and After the Official "Heating Season" Help Characterize Emissions From Coal-Fired Boilers

    NASA Astrophysics Data System (ADS)

    Li, C.; Marufu, L. T.; Dickerson, R. R.; Li, Z.; Stehr, J. W.; Chen, H.; Wang, P.

    2006-05-01

    In March 2005, as a part of the project EAST-AIRE (East Asian Study of Tropospheric Aerosols: An International Regional Experiment), in-situ measurements of trace gases and aerosol optical properties were made at Xianghe, a rural surface site about 70 km east-southeast, generally downwind, of Beijing metropolitan area. CO, SO2, NO/NOy, O3, aerosol absorption coefficient, and aerosol scattering coefficients were determined simultaneously using the University of Maryland light aircraft instrument package. Pollutant ratios have been calculated to characterize the emission sources around the site. A dramatic drop in the NOy/CO ratio found around March 13/14 suggesting a sudden shutoff of a large fraction of the high- temperature combustion sources in the region. This observed change in concentrations occurred simultaneously with the transition from "heating season" to "non-heating season" in Northern China. Over the course of just a few days (around March 15), all boilers used to provide heat for cities and towns in this region are shut down in accordance with a governmental guideline. Most of these boilers operate with coal, and by using ratios of NOy/CO, SO2/CO, aerosol scattering/CO, and aerosol absorption/CO during and after the "heating season", emissions from these small to medium sized coal-fired boilers can be characterized. Results indicate that these residential and small-scale industrial heaters are a major source of NOy and SO2. Besides elevating the regional atmospheric pollutant level, the trace gases and aerosols emitted also have potential effects in other aspects such as the biogeochemical cycle of N and the agricultural production in this region.

  7. Dose distributions in regions containing beta sources: Irregularly shaped source distributions in homogeneous media

    SciTech Connect

    Werner, B.L. )

    1991-11-01

    Methods are introduced by which dose rate distributions due to nonuniform, irregularly shaped distributions of beta emitters can be calculated using dose rate distributions for uniform, spherical source distributions. The dose rate distributions can be written in the MIRD formalism.

  8. Study of heat sources interacting in integrated circuits by laser mirage effect

    SciTech Connect

    Perpiñà, X.; Jordà, X.; Vellvehi, M.; Altet, J.

    2014-08-25

    This work exploits the mirage effect to analyze multiple heat sources thermally interacting in an integrated circuit (IC) by means of a probe IR laser beam, which strikes on the die lateral walls and passes through the die substrate. Under such conditions, the criteria for locating such hot spots, as well as their relative power dissipation, are discussed on the basis of a theoretical model inferred in this work. Finally, the technique feasibility is shown in a real application scenario, obtaining 5-μm spatial lateral resolution and an error in power dissipation measurements below 5%. This method may become a practical alternative to usual off-chip techniques for inspecting hot spots in ICs and to experimentally characterize heat flow in the semiconductor substrate.

  9. Color Stability of Dental Restorative Materials Submitted to Heat Sources, for Forensic Purposes.

    PubMed

    Biancalana, Roberto Cesar; Vicente, Sergio Augusto de Freitas; Alves da Silva, Ricardo Henrique; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2017-03-01

    During postmortem examination of the dental arches of carbonized victims, dental restorative materials may be found. The aim of this study was to evaluate the effect of heat source action on the color stability of composite resin (CR) and glass ionomer cement (GIC) restorations, to discriminate between them and compare with antemortem dental data. Sixty bovine teeth (30 CR and 30 GIC) were prepared (6 × 6 × 2 mm) and separated into groups (n = 10). The color readouts were taken by spectrophotometer, before and after heat action (100°C, 200°C, 300°C), in an oven for 15 min. There were color alterations for all coordinates (ΔE, ΔL*, Δa* eΔb*) for both materials. GIC presented greater change. The authors concluded that it is possible to distinguish between the materials by the color changes analyzed by instrumental method, helping victim identification.

  10. Study of heat sources interacting in integrated circuits by laser mirage effect

    NASA Astrophysics Data System (ADS)

    Perpiñà, X.; Jordà, X.; Vellvehi, M.; Altet, J.

    2014-08-01

    This work exploits the mirage effect to analyze multiple heat sources thermally interacting in an integrated circuit (IC) by means of a probe IR laser beam, which strikes on the die lateral walls and passes through the die substrate. Under such conditions, the criteria for locating such hot spots, as well as their relative power dissipation, are discussed on the basis of a theoretical model inferred in this work. Finally, the technique feasibility is shown in a real application scenario, obtaining 5-μm spatial lateral resolution and an error in power dissipation measurements below 5%. This method may become a practical alternative to usual off-chip techniques for inspecting hot spots in ICs and to experimentally characterize heat flow in the semiconductor substrate.

  11. Advective heat transport associated with regional Earth degassing in central Apennine (Italy)

    NASA Astrophysics Data System (ADS)

    Chiodini, G.; Cardellini, C.; Caliro, S.; Chiarabba, C.; Frondini, F.

    2013-07-01

    In this work we show that the main springs of the central Apennine transport a total amount of heat of ˜2.2×109 J s-1. Most of this heat (57%) is the result of geothermal warming while the remaining 43% is due to gravitational potential energy dissipation. This result indicates that a large area of the central Apennines is very hot with heat flux values >300 mW m-2. These values are higher than those measured in the magmatic and famously geothermal provinces of Tuscany and Latium and about 1/3 of the total heat discharged at Yellowstone. This finding is surprising because the central Apennines have been thought to be a relatively cold area. Translated by CO2 rich fluids, this heat anomaly suggests the existence of a thermal source such as a large magmatic intrusion at depth. Recent tomographic images of the area support the presence of such an intrusion visible as a broad negative velocity anomaly in seismic waves. Our results indicate that the thermal regime of tectonically active areas of the Earth, where meteoric waters infiltrate and deeply circulate, should be revised on the basis of mass and energy balances of the groundwater systems.

  12. Analysis of heat wave occurrences in the Carpathian basin using regional climate model simulations

    NASA Astrophysics Data System (ADS)

    Bartha, E. B.; Pongracz, R.; Bartholy, J.

    2012-04-01

    Human health is very likely affected by regional consequences of global warming. One of the most severe impacts is probably associated to temperature-related climatological extremes, such as heat waves. In the coming decades hot conditions in most regions of the world are very likely to occur more frequently and more intensely than in the recent decades. In order to develop adaptation and mitigation strategies on local scale, it is essential to analyze the projected changes related to warming climatic conditions including heat waves. In 2004, a Heat Health Watch Warning System was developed in Hungary on the basis of a retrospective analysis of mortality and meteorological data to anticipate heat waves that may result in a large excess of mortality. In the frame of this recently introduced Health Watch System, three levels of heat wave warning are applied. They are associated to the daily mean temperature values, and defined as follows: - Warning level 1 (advisory for internal use) is issued when the daily mean temperature exceeds 25 °C. - Warning level 2 (heat wave watch) is issued when the daily mean temperature for at least 3 consecutive days exceeds 25 °C. - Warning level 3 (heat wave alert) is issued when the daily mean temperature for at least 3 consecutive days exceeds 27 °C. In the present study, frequency of the above climatic conditions are analyzed using regional climate model (RCM) experiments are analyzed for the recent past and the coming decades (1961-2100) for the Carpathian basin. At the Dept. of Meteorology, Eotvos Lorand University two different RCMs have been adapted: RegCM (with 10 km horizontal resolution, originally developed by Giorgi et al., currently, available from the International Centre for Theoretical Physics, ICTP) and PRECIS (with 25 km horizontal resolution, developed at the UK Met Office, Hadley Centre). Their initial and lateral boundary conditions have been provided by global climate models ECHAM and HadCM3, respectively. For

  13. An experimental study of waveguide coupled microwave heating with conventional multicusp negative ion sources

    SciTech Connect

    Komppula, J.; Kalvas, T.; Koivisto, H.; Laulainen, J.; Tarvainen, O.

    2015-04-08

    Negative ion production with conventional multicusp plasma chambers utilizing 2.45 GHz microwave heating is demonstrated. The experimental results were obtained with the multicusp plasma chambers and extraction systems of the RF-driven RADIS ion source and the filament driven arc discharge ion source LIISA. A waveguide microwave coupling system, which is almost similar to the one used with the SILHI ion source, was used. The results demonstrate that at least one third of negative ion beam obtained with inductive RF-coupling (RADIS) or arc discharge (LIISA) can be achieved with 1 kW of 2.45 GHz microwave power in CW mode without any modification of the plasma chamber. The co-extracted electron to H{sup −} ratio and the optimum pressure range were observed to be similar for both heating methods. The behaviour of the plasma implies that the energy transfer from the microwaves to the plasma electrons is mainly an off-resonance process.

  14. Comparison of predicted far-field temperatures for discrete and smeared heat sources

    SciTech Connect

    Ryder, E.E.

    1992-12-16

    A fundamental concern in the design of the potential repository at Yucca Mountain. Nevada is the response of the host rock to the emplacement of heat-generating waste. The thermal perturbation of the rock mass has implications regarding the structural, hydrologic. and geochemical performance of the potential repository. The phenomenological coupling of many of these performance aspects makes repository thermal modeling a difficult task. For many of the more complex, coupled models, it is often necessary to reduce the geometry of the potential repository to a smeared heat-source approximation. Such simplifications have impacts on induced thermal profiles that in turn may influence other predicted responses through one- or two-way thermal couplings. The effect of waste employment layout on host-rock thermal was chosen as the primary emphasis of this study. Using a consistent set of modeling and input assumptions, far-field thermal response predictions made for discrete-source as well as plate source approximations of the repository geometry. Input values used in the simulations are consistent with a design-basis a real power density (APD) of 80 kW/acre as would be achieved assuming a 2010 emplacement start date, a levelized receipt schedule, and a limitation on available area as published in previous design studies. It was found that edge effects resulting from general repository layout have a significant influence on the shapes and extents of isothermal profiles, and should be accounted for in far-field modeling efforts.

  15. Heating of the nighttime D region by very low frequency transmitters

    NASA Technical Reports Server (NTRS)

    Rodriguez, Juan V.; Inan, Umran S.; Bell, Timothy F.

    1994-01-01

    VLF signals propagating in the Earth-ionosphere waveguide are used to probe the heated nighttime D region over three U.S. Navy very low frequency (VLF,3-30 kHz) transmitters. Ionospheric cooling and heating are observed when a transmitter turns off and on in the course of normal operations. Heating by the 24.0-kHz NAA transmitter in Cutler, Maine, (1000 kW radiated power) was observed by this method in 41 of 52 off/on episodes during December 1992, increasing the amplitude and retarding the phase of the 21.4-kHz NSS probe wave propagating from Annapolis, Maryland, to Gander, Newfoundland, by as much as 0.84 dB and 5.3 deg, respectively. In 6 of these 41 episodes, the amplitude of the 28.5-kHz NAU probe wave propagating from Puerto Rico to Gander was also perturbed by as much as 0.29 dB. The latter observations were unexpected due to the greater than 770 km distance between NAA and the NAU-Gander great circle path. Heating by the NSS (21.4 kHz, 265 kW) and NLK (24.8 kHz, 850 kW) transmitters was observed serendipitously in data from earlier measurements of the amplitudes of VLF signals propagating in the Earth-ionosphere waveguide. A three-dimensional model of wave absorption and electron heating in a magnetized, weakly ionized plasma is used to calculate the extent nad shape of the collision frequency (i.e., electron temperature) enhancement above a VLF transmitter. The enhancements are annular, with a geomagnetic north-south asymmetry and a radius at the outer half-maximum of the collision frequency enhancement of about 150 km. Heating by the NAA transmitter is predicted to increase the nighttime D region electron temperature by as much as a factor of 3. The calculated changes in the D region conductivity are used in a three-dimensional model of propagation in the Earth-ionosphere wavelength to predict the effect of the heated patch on a subionospheric VLF probe wave. The range of predicted scattered field amplitudes is in general consistent with the observed

  16. Projection of temperature and heat waves for Africa with an ensemble of CORDEX Regional Climate Models

    NASA Astrophysics Data System (ADS)

    Dosio, Alessandro

    2016-09-01

    The most severe effects of global warning will be related to the frequency and severity of extreme events. We provide an analysis of projections of temperature and related extreme events for Africa based on a large ensemble of Regional Climate Models from the COordinated Regional climate Downscaling EXperiment (CORDEX). Results are presented not only by means of widely used indices but also with a recently developed Heat Wave Magnitude Index-daily (HWMId), which takes into account both heat wave duration and intensity. Results show that under RCP8.5, warming of more than 3.5 °C is projected in JFM over most of the continent, whereas in JAS temperatures over large part of Northern Africa, the Sahara and the Arabian peninsula are projected to increase up to 6 °C. Large increase in in the number of warm days (Tx90p) is found over sub equatorial Africa, with values up to more than 90 % in JAS, and more than 80 % in JFM over e.g., the gulf of Guinea, Central African Republic, South Sudan and Ethiopia. Changes in Tn90p (warm nights) are usually larger, with some models projecting Tn90p reaching 95 % starting from around 2060 even under RCP4.5 over the Gulf of Guinea and the Sahel. Results also show that the total length of heat spells projected to occur normally (i.e. once every 2 years) under RCP8.5 may be longer than those occurring once every 30 years under the lower emission scenario. By employing the recently developed HWMId index, it is possible to investigate the relationship between heat wave length ad intensity; in particular it is shown that very intense heat waves such as that occurring over the Horn of Africa may have values of HWMId larger than that of longer, but relatively weak, heat waves over West Africa.

  17. Case Study for the ARRA-Funded Ground Source Heat Pump Demonstration at Ball State University

    SciTech Connect

    Im, Piljae; Liu, Xiaobing; Henderson, Jr., Hugh

    2016-12-01

    With funding provided by the American Recovery and Reinvestment Act (ARRA), 26 ground-source heat pump (GSHP) projects were competitively selected in 2009 to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. One of the selected demonstration projects is a district central GSHP system installed at Ball State University (BSU) in Muncie, IN. Prior to implementing the district GSHP system, 47 major buildings in BSU were served by a central steam plant with four coal-fired and three natural-gas-fired steam boilers. Cooling was provided by five water-cooled centrifugal chillers at the District Energy Station South (DESS). The new district GSHP system replaced the existing coal-fired steam boilers and conventional water-cooled chillers. It uses ground-coupled heat recovery (HR) chillers to meet the simultaneous heating and cooling demands of the campus. The actual performance of the GSHP system was analyzed based on available measured data from August 2015 through July 2016, construction drawings, maintenance records, personal communications, and construction costs. Since Phase 1 was funded in part by the ARRA grant, it is the focus of this case study. The annual energy consumption of the GSHP system was calculated based on the available measured data and other related information. It was compared with the performance of a baseline scenario— a conventional water-cooled chiller and natural-gas-fired boiler system, both of which meet the minimum energy efficiencies allowed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 90.1-2013). The comparison was made to determine source energy savings, energy cost savings, and CO2 emission reductions achieved by the GSHP system. A cost analysis was performed to evaluate the simple payback of the GSHP system. The following sections summarize the results of the analysis, the lessons learned, and recommendations for improvement

  18. Sigmoid CME Source Regions at The Sun: Some Recent Results

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.

    2000-01-01

    Identifying coronal mass ejection (CME) precursors in the solar corona would be an important step in space weather forecasting, as well as a vital key to understanding the physics of CMEs. Twisted magnetic field structures are suspected of being the source of at least some CMEs. These features can appear sigmoid (S or inverse-S) shaped in soft X-ray, (SXR) images. We review recent observations of these structures and their relation to CMEs. using SXR data from the Soft X-ray Telescope (SXT) on the Yohkoh satellite, and EUV data from the EUV Imaging Telescope (EIT) on the SOHO satellite. These observations indicate that the pre-eruption sigmoid patterns are more prominent in SXRs than in EUV, and that sigmoid precursors are present in over 50% of CMEs. These findings are important for CME research, and may potentially be a major component to space weather forecasting. So far, however, the studies have been subject to restrictions that will have to be relaxed before sigmoid morphology can be used as a reliable predictive too[. Moreover, some CMEs do not display a SXR sigmoid structure prior to eruption, and some others show no prominent SXR signature of any kind before or during eruption.

  19. Mobile-phone based visible light communication using region-grow light source tracking for unstable light source.

    PubMed

    Liang, Kevin; Chow, Chi-Wai; Liu, Yang

    2016-07-25

    In order to increase the data rate of the camera-based visible light communication (VLC) system, using rolling shutter effect has been demonstrated successfully, in which the pixel rows of the complementary-metal-oxide-semiconductor (CMOS) image sensor are activated sequentially. Previous camera-based VLCs focused on using a stable LED light source, and its illumination area is positioned at the center of an image frame. In this work, we investigate the performance of a camera-based VLC with light source at different parts of an image frame. We propose and demonstrate using region-grow algorithm to track the light source. We also evaluate and discuss different scenarios when the light source is moved. Besides, a recorded > 5 kbit/s net data rate can be achieved by using only a single phosphor-based white-light LED source. Here, we demonstrate that 4.502 pixel/bit can be achieved.

  20. Augmentation of Stagnation Region Heat Transfer Due to Turbulence from a DLN Can Combustor

    NASA Technical Reports Server (NTRS)

    VanFossen, G. James; Bunker, Ronald S.

    2001-01-01

    Heat transfer measurements have been made in the stagnation region of a flat plate with a circular leading edge. Electrically heated aluminum strips placed symmetrically about the leading edge stagnation region were used to measure spanwise-averaged heat transfer coefficients. The maximum Reynolds number obtained, based on leading edge diameter, was about 100,000. The model was immersed in the flow field downstream of an approximately half-scale model of a can-type combustor from a low NO(x), ground-based power-generating turbine. The tests were conducted with room temperature air; no fuel was added. Room air flowed into the combustor through six vane-type fuel/air swirlers. The combustor can contained no dilution holes. The fuel/air swirlers all swirled the incoming airflow in a counterclockwise direction (facing downstream). A five-hole probe flow field survey in the plane of the model stagnation point showed the flow was one big vortex with flow angles up to 36 deg at the outer edges of the rectangular test section. Hot-wire measurements showed test section flow had very high levels of turbulence, around 28.5%, and had a relatively large axial-length scale-to-leading edge diameter ratio of 0.5. X-wire measurements showed the turbulence to be nearly isotropic. Stagnation heat transfer augmentation over laminar levels was around 77% and was about 14% higher than predicted by a previously developed correlation for isotropic grid-generated turbulence.

  1. Augmentation of Stagnation Region Heat Transfer Due to Turbulence From a DLN Can Combustor

    NASA Technical Reports Server (NTRS)

    VanFossen, G. James; Bunker, Ronald S.

    2000-01-01

    Heat transfer measurements have been made in the stagnation region of a flat plate with a circular leading edge. Electrically heated aluminum strips placed symmetrically about the leading edge stagnation region were used to measure spanwise averaged heat transfer coefficients. The maximum Reynolds number obtained, based on leading edge diameter, was about 100,000. The model was immersed in the flow field downstream of an approximately half scale model of a can-type combustor from a low NO(x), ground based power-generating turbine. The tests were conducted with room temperature air; no fuel was added. Room air flowed into the combustor through six vane type fuel/air swirlers. The combustor can contained no dilution holes. The fuel/air swirlers all swirled the incoming airflow in a counter clockwise direction (facing downstream). A 5-hole probe flow field survey in the plane of the model stagnation point showed the flow was one big vortex with flow angles up to 36' at the outer edges of the rectangular test section. Hot wire measurements showed test section flow had very high levels of turbulence, around 28.5 percent, and had a relatively large axial-length scale-to-leading edge diameter ratio of 0.5. X-wire measurements showed the turbulence to be nearly isotropic. Stagnation heat transfer augmentation over laminar levels was around 77 percent and was about 14 percent higher than predicted by a previously developed correlation for isotropic grid generated turbulence.

  2. Micro- and Nanoscale Energetic Materials as Effective Heat Energy Sources for Enhanced Gas Generators.

    PubMed

    Kim, Sang Beom; Kim, Kyung Ju; Cho, Myung Hoon; Kim, Ji Hoon; Kim, Kyung Tae; Kim, Soo Hyung

    2016-04-13

    In this study, we systematically investigated the effect of micro- and nanoscale energetic materials in formulations of aluminum microparticles (Al MPs; heat source)/aluminum nanoparticles (Al NPs; heat source)/copper oxide nanoparticles (CuO NPs; oxidizer) on the combustion and gas-generating properties of sodium azide microparticles (NaN3 MPs; gas-generating agent) for potential applications in gas generators. The burn rate of the NaN3 MP/CuO NP composite powder was only ∼0.3 m/s. However, the addition of Al MPs and Al NPs to the NaN3 MP/CuO NP matrix caused the rates to reach ∼1.5 and ∼5.3 m/s, respectively. In addition, the N2 gas volume flow rate generated by the ignition of the NaN3 MP/CuO NP composite powder was only ∼0.6 L/s, which was significantly increased to ∼1.4 and ∼3.9 L/s by adding Al MPs and Al NPs, respectively, to the NaN3 MP/CuO NP composite powder. This suggested that the highly reactive Al MPs and NPs, with the assistance of CuO NPs, were effective heat-generating sources enabling the complete thermal decomposition of NaN3 MPs upon ignition. Al NPs were more effective than Al MPs in the gas generators because of the increased reactivity induced by the reduced particle size. Finally, we successfully demonstrated that a homemade airbag with a specific volume of ∼140 mL could be rapidly and fully inflated by the thermal activation of nanoscale energetic material-added gas-generating agents (i.e., NaN3 MP/Al NP/CuO NP composites) within the standard time of ∼50 ms for airbag inflation.

  3. Flow Boiling Heat Transfer to Lithium Bromide Aqueous Solution in Subcooled Region

    NASA Astrophysics Data System (ADS)

    Furukawa, Masahiro; Kaji, Masao; Nishizumi, Takeharu; Ozaki, Shinji; Sekoguchi, Kotohiko

    To improve the thermal performance of high temperature generator of absorption chiller/heater, heat transfer characteristics of flow boiling of lithium bromide aqueous solution in the subcooled region were experimentally investigated. Experiments were made for water and lithium bromide aqueous solution flowing in a rectangular channel (5 mm × 20 mm cross section) with one side wall heated. Boiling onset quality of lithium bromide aqueous solution is greater than that of water. The heat transfer coefficient of lithium bromide aqueous solution is about a half of that of water under the same experimental conditions of inlet velocity and heat flux. The experimental data of heat transfer coefficient for water are compared with the empirical correlation of Thom et al.11) and a fairly good agreement is obtained. The predictive calculations by the method of Sekoguchi et al.12) are compared with the data for water and lithium bromide aqueous solution. Agreement between them is good for water, while the results for lithium bromide aqueous solution are not satisfactory.

  4. Quantifying the impact of residential heating on the urban air quality in a typical European coal combustion region.

    PubMed

    Junninen, Heikki; Mønster, Jacob; Rey, Maria; Cancelinha, Jose; Douglas, Kevin; Duane, Matthew; Forcina, Victtorio; Müller, Anne; Lagler, Fritz; Marelli, Luisa; Borowiak, Annette; Niedzialek, Joanna; Paradiz, Bostian; Mira-Salama, Daniel; Jimenez, Jose; Hansen, Ute; Astorga, Covadonga; Stanczyk, Krzysztof; Viana, Mar; Querol, Xavier; Duvall, Rachelle M; Norris, Gary A; Tsakovski, Stefan; Wåhlin, Peter; Horák, Jiri; Larsen, Bo R

    2009-10-15

    The present investigation, carried out as a case study in a typical major city situated in a European coal combustion region (Krakow, Poland), aims at quantifying the impact on the urban air quality of residential heating by coal combustion in comparison with other potential pollution sources such as power plants, industry, and traffic. Emissions were measured for 20 major sources, including small stoves and boilers, and the particulate matter (PM) was analyzed for 52 individual compounds together with outdoor and indoor PM10 collected during typical winter pollution episodes. The data were analyzed using chemical mass balance modeling (CMB) and constrained positive matrix factorization (CMF) yielding source apportionments for PM10, B(a)P, and other regulated air pollutants namely Cd, Ni, As, and Pb. The results are potentially very useful for planning abatement strategies in all areas of the world, where coal combustion in small appliances is significant. During the studied pollution episodes in Krakow, European air quality limits were exceeded with up to a factor 8 for PM10 and up to a factor 200 for B(a)P. The levels of these air pollutants were accompanied by high concentrations of azaarenes, known markers for inefficient coal combustion. The major culprit for the extreme pollution levels was demonstrated to be residential heating by coal combustion in small stoves and boilers (>50% for PM10 and >90% B(a)P), whereas road transport (<10% for PM10 and <3% for B(a)P), and industry (4-15% for PM10 and <6% for B(a)P) played a lesser role. The indoor PM10 and B(a)P concentrations were at high levels similar to those of outdoor concentrations and were found to have the same sources as outdoors. The inorganic secondary aerosol component of PM10 amounted to around 30%, which for a large part may be attributed to the industrial emission of the precursors SO2 and NOx.

  5. General-purpose heat source project and space nuclear safety fuels program. Progress report, February 1980

    SciTech Connect

    Maraman, W.J.

    1980-05-01

    This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are: General-Purpose Heat Source Development and Space Nuclear Safety and Fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

  6. Internal Heat Source in a Thermoelastic Hydrostatically Initially Stressed Plate Immersed in a Liquid

    NASA Astrophysics Data System (ADS)

    Ailawalia, P.; Singla, A.

    2016-09-01

    An infinite homogeneous isotropic generalized thermoelastic hydrostatically initially stressed plate involving an internal heat source and bordering on inviscid liquid half-spaces is considered. The normal mode analysis is used to obtain exact expressions for the displacement component, force stress, and temperature distributions. The numerical results are presented graphically for the Lord-Shulman theory of thermoelasticity when a mechanical force is applied to both of the plate sides. A comparison of the results in the presence and absence of a hydrostatic initial stress is made.

  7. Non-zero helicity of a cyclonic vortex over localized heat source

    NASA Astrophysics Data System (ADS)

    Sukhanovskii, A.; Evgrafova, A.; Popova, E.

    2016-10-01

    Experimental and numerical study of the steady-state cyclonic vortex from isolated heat source in a rotating fluid layer is described. The structure of laboratory cyclonic vortex is similar to the typical structure of tropical cyclones from observational data and numerical modelling including secondary flows in the boundary layer. Differential characteristics of the flow were studied by numerical simulation using CFD software FlowVision. It was found that helicity in a described system has non-zero value. Physical interpretation of helicity distribution is provided.

  8. Minimization of operator-balance interactive warmup by use of an alter ego heat source

    NASA Astrophysics Data System (ADS)

    Braudaway, D. W.

    Operator-equipment interaction is a well-known but frustrating part of many high precision measurements. Deterioration in performance of a high-precision balance required testing to identify the cause of the problem and to establish effectiveness of the solution. An unexpected result of the tests was a clear characterization of a significant operator-balance thermal interaction and verification of the empirically determined warmup requirement. The repeatability of the interactive effect inspired development of a replacement for the operator using an alter ego heat source.

  9. Aerodynamic Mixing Downstream from Line Source of Heat in High-intensity Sound Field

    NASA Technical Reports Server (NTRS)

    Mickelson, William R; Baldwin, Lionel V

    1956-01-01

    Theory and measurement showed that the heat wake downstream from a line source is displaced by a transverse standing sound wave in a manner similar to a flag waving in a harmonic mode. With a 147 db, 104 cps standing wave, time-mean temperatures were reduced by an order of magnitude except near the displacement-pattern nodal points. The theory showed that a 161 db, 520 cps standing wave considerably increased the mixing in both the time-mean and instantaneous senses.

  10. Ground-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    SciTech Connect

    Murphy, Richard W; Rice, C Keith; Baxter, Van D; Craddick, William G

    2007-09-01

    . With the greater energy savings the cost of the more energy efficient components required for the IHP can be recovered more quickly than if they were applied to individual pieces of equipment to meet each individual energy service need. An IHP can be designed to use either outdoor air or geothermal resources (e.g., ground, ground water, surface water) as the environmental energy source/sink. Based on a scoping study of a wide variety of possible approaches to meeting the energy service needs for a ZEH, DOE selected the IHP concept as the most promising and has supported research directed toward the development of both air- and ground-source versions. This report describes the ground-source IHP (GS-IHP) design and includes the lessons learned and best practices revealed by the research and development (R&D) effort throughout. Salient features of the GS-IHP include a variable-speed rotary compressor incorporating a brushless direct current permanent magnet motor which provides all refrigerant compression, a variable-speed fan for the indoor section, a multiple-speed ground coil circuit pump, and a single-speed pump for water heating operation. Laboratory IHP testing has thus far used R-22 because of the availability of the needed components that use this refrigerant. It is expected that HFC R-410A will be used for any products arising from the IHP concept. Data for a variable-speed compressor that uses R-410A has been incorporated into the DOE/ORNL Mark VI Heat Pump Design Model (HPDM). HPDM was then linked to TRNSYS, a time-series-dependent simulation model capable of determining the energy use of building cooling and heating equipment as applied to a defined house on a sub-hourly basis. This provided a highly flexible design analysis capability for advanced heat pump equipment; however, the program also took a relatively long time to run. This approach was used with the initial prototype design reported in Murphy et al. (2007a) and in the business case analysis of

  11. VLF signatures of lightening-induced heating and ionization of the nighttime D-region

    SciTech Connect

    Inan, U.S.; Rodriquez, J.V. ); Idone, V.P. )

    1993-11-05

    48.5 kHz signals from a transmitter in Silver Creek, Nebraska, propagating to Huntsville (HU), Alabama over a [approximately]1200 km Great Circle Path (GCP) exhibit characteristic amplitude changes which appear within 20 ms of cloud-to-ground (CG) flashes located within 50 km of the path. Data are consistent with the heating of ionospheric electrons by the electromagnetic (EM) pulse from lightning producing ionization changes in the D-region over the thunderstorm.

  12. A Study of the Structure of the Source Region of the Solar Wind in Support of a Solar Probe Mission

    NASA Technical Reports Server (NTRS)

    Habbal , Shadia R.

    1998-01-01

    Despite the richness of the information about the physical properties and the structure of the solar wind provided by the Ulysses and SOHO observations, fundamental questions regarding the nature of the coronal heating mechanisms, their source, and the manifestations of the fast and slow solar wind, still remain unanswered. The last unexplored frontier to establish the connection between the structure and dynamics of the solar atmosphere, its extension into interplanetary space, and the mechanisms responsible for the evolution of the solar wind, is the corona between 1 and 30 R(sub s). A Solar Probe mission offers an unprecedented opportunity to explore this frontier. The uniqueness of this mission stems from its trajectory in a plane perpendicular to the ecliptic which reaches within 9 R(sub s), of the solar surface over the poles and 3 - 9 R(sub s), at the equator. With a complement of simultaneous in situ and remote sensing observations, this mission is destined to have a significant impact on our understanding of the fundamental processes that heat the corona and drive the solar wind. The Solar Probe should be able to detect remnants and signatures of the processes which heat the corona and accelerate the solar wind. The primary objective of this proposal was to explore the structure of the different source regions of the solar wind through complementary observational and theoretical studies in support of a Solar Probe mission.

  13. Response of the annual and zonal mean winds and temperatures to variations in the heat and momentum sources

    NASA Technical Reports Server (NTRS)

    Schneider, E. K.

    1984-01-01

    Comparisons are made among solutions to zonal-mean equations obtained with parameterized friction and radiative cooling and those forced from specified heat and momentum sources. Budget equations are defined for zonally averaged steady state responses in a thin spherically rotating atmosphere. The heat sources and sinks and mean meridional circulation that maintain observed annual and zonal mean temperatures are identified with a diagnostic calculation. Estimates are made of the surface sensible heating, atmospheric latent heating and vertical flux eddy divergences. The heat and moisture sources and sinks are varied to obtain the steady state responses. The Hadley circulation is fairly insensitive to changes in the strength of the eddy momentum flux when sufficient internal friction is present. Varying the width of the total precipitation of the intertropical convergence zone with fixed eddy fluxes and extratropical heat sources yields conditions similar to El Nino. Finally, a minimum speed is found for the jet stream after varying the horizontal eddy momentum fixing latent and eddy heat sources.

  14. Mini-Brayton heat source assembly design study. Volume 1: Space shuttle mission. [feasibility of Brayton isotope power system design

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Conceptual design definitions of a heat source assembly for use in nominal 500 watt electrical (W(e)) 1200 W(e)and 2000 W(e) mini-Brayton isotope power systems are reported. The HSA is an independent package which maintains thermal and nuclear control of an isotope fueled heat source and transfers the thermal energy to a Brayton rotating unit turbine-alternator-compressor power conversion unit.

  15. Design of Isotope Heat Source for Automatic Modular Dispersal During Reentry, and Its Integration with Heat Exchangers of 6-kWe Dynamic Isotope Power System

    SciTech Connect

    Schock, Alfred

    1989-01-01

    In late 1986 the Air Force Space Division (AF / SD) had expressed an interest in using a Dynamic Isotope Power System (DIPS) of approximately 6-kWe to power the Boost Surveillance and Tacking System (BSTS) satellites. In support of that objective, the U.S. Department of Energy (DOE) requested Fairchild Space Company to perform a conceptual design study of the DIPS heat source and of its integration with the dynamic power conversion system, with particular emphasis on system safety. This paper describes the results of that study. The study resulted in a design for a single heat source of ~30-kWt, employing the standard 250-W General Purpose Heat Source (GPHS) modules which DOE had previously developed and safety-tested for Radioisotope Thermoelectric Generators (RTS's)

  16. Measurement of heat-transfer coefficients in shock wave-turbulent boundary layer interaction regions with a multi-layered thin film heat transfer gauge

    NASA Technical Reports Server (NTRS)

    Hayashi, M.; Sakurai, A.; Aso, S.

    1986-01-01

    A thin film heat transfer gauge is applied to the measurement of heat transfer coefficients in the interaction regions of incident shock waves and fully developed turbulent boundary layers. It was developed to measure heat flux with high spatial resolution and fast response for wind tunnels with long flow duration. To measure the heat transfer coefficients in the interaction region in detail, experiments were performed under the conditions of Mach number = 4, total pressure = 1.2 MPa, 0.59 to approximately 0.65. Reynolds number = 1.3 to approximately 1.5 x 10 to the 7th power and incident shock angles from 17.8 to 22.8 degrees. The results show that the heat transfer coefficient changes complicatedly in the interaction region. At the beginning the interaction region, the heat transfer coefficient decreases at first, reaches its minimum value at the point where the pressure begins to increase, and then increases sharply. When the boundary layer begins to separate, even a small separation bubble causes significant changes in the heat transfer coefficient, while the pressure does not show any changes which suggests that the boundary layer begins to separate.

  17. Air Pollution in Moscow Region and Kiev during Heat Wave in July-August 2010

    NASA Astrophysics Data System (ADS)

    Zvyagintsev, A. M.; Tarasova, O. A.; Belikov, I. B.; Blum, O. B.; Elansky, N. F.; Kuznetsova, I. N.; Shumsky, R. A.

    2010-12-01

    The summer of 2010 was extremely hot and dry over the European part of Russia and Ukraine. Some days the air temperature rose up to 40 degrees Celsius. An anomaly of the mesoscale atmospheric processes in the form of a blocking anticyclone in the low atmosphere caused untypical transport of air masses: south-eastern winds became dominating in the Moscow region in summer 2010 instead of north-western transport, which is usually prevailing in summer. Due to long drought and high temperatures (ca. 1 month from July 15) natural fires occurred from time to time over huge territories to the east of Moscow (from Nyzhny Novgorod to Riazan). Forest and peat fires led to unprecedented air pollution and transport of biomass burning products over long distances. The smoke plume repeatedly extended to the Moscow megapolis. Arrival of the polluted air from the burning sources nearest to Moscow was accompanied by a haze with reduced visibility down to 100-200 m, as well as by a strong smell of burning and corresponding abrupt decrease of air quality. Strong photochemical smog of the Los-Angeles type was observed some days in the Moscow megapolis. Air masses polluted with the products of natural fires traveled within the territory of central Russia without crossing its western border. They had no impact on the air quality in Kiev, where air composition was defined by local emissions and meteorological conditions. The short intervals with temperatures above 35 degrees Celsius were accompanied by change of air masses and precipitation events. This paper presents measurement of surface ozone, NOx and CO mixing ratios and PM10 in the Moscow region as well as ozone and NOx level observations in Kiev. Eight-hourly averaged surface ozone mixing ratios in Moscow exceeded 60 ppb during about 30 days. During 20 days a haze was observed in the city from time to time, and the haze was continuous for the period from 3rd to 10th of August. The most intensive smog was observed during 6-8 August

  18. Hybrid Ground-Source Heat Pump Installations: Experiences, Improvements, and Tools

    SciTech Connect

    Scott Hackel; Amanda Pertzborn

    2011-06-30

    One innovation to ground-source heat pump (GSHP, or GHP) systems is the hybrid GSHP (HyGSHP) system, which can dramatically decrease the first cost of GSHP systems by using conventional technology (such as a cooling tower or a boiler) to meet a portion of the peak heating or cooling load. This work uses three case studies (two cooling-dominated, one heating-dominated) to demonstrate the performance of the hybrid approach. Three buildings were studied for a year; the measured data was used to validate models of each system. The models were used to analyze further improvements to the hybrid approach, and establish that this approach has positive impacts, both economically and environmentally. Lessons learned by those who design and operate the systems are also documented, including discussions of equipment sizing, pump operation, and cooling tower control. Finally, the measured data sets and models that were created during this work are described; these materials have been made freely available for further study of hybrid systems.

  19. Interferometric evidence for quantum heated particles in the inner region of protoplanetary disks around Herbig stars

    NASA Astrophysics Data System (ADS)

    Klarmann, L.; Benisty, M.; Min, M.; Dominik, C.; Berger, J.-P.; Waters, L. B. F. M.; Kluska, J.; Lazareff, B.; Le Bouquin, J.-B.

    2017-03-01

    Context. To understand the chemical composition of planets, it is important to know the chemical composition of the region where they form in protoplanetary disks. Because of its fundamental role in chemical and biological processes, carbon is a key element to trace. Aims: We identify the carriers and processes behind the extended near-infrared (NIR) flux observed around several Herbig stars. Methods: We compared the extended NIR flux from objects in the PIONIER Herbig Ae/Be survey with their flux in the policyclic aromatic hydrocarbon (PAH) features. HD 100453 is used as a benchmark case to investigate the influence of quantum heated particles, like PAHs or very small carbonaceous grains, in more detail. We use the Monte Carlo radiative transfer code MCMax to do a parameter study of the quantum heated particle (QHP) size and scale height and examine the influence of quantum heating on the amount of extended flux in the NIR visibilities. Results: There is a correlation between the PAH feature flux of a disk and the amount of its extended NIR flux. We find that very small carbonaceous grains create the observed extended NIR flux around HD 100453 and still lead to a realistic SED. These results cannot be achieved without using quantum heating effects, e.g. only with scattered light and grains in thermal equilibrium. Conclusions: It is possible to explain the extended NIR emission around Herbig stars with the presence of carbonaceous, quantum heated particles. Interferometric observations can be used to constrain the spatial distribution and typical size of carbonaceous material in the terrestrial planet forming region.

  20. Advanced variable speed air source integrated heat pump (AS-IHP) development - CRADA final report

    SciTech Connect

    Baxter, Van D.; Rice, C. Keith; Munk, Jeffrey D.; Ally, Moonis Raza; Shen, Bo

    2015-09-30

    Between August 2011 and September 2015, Oak Ridge National Laboratory (ORNL) and Nordyne, LLC (now Nortek Global HVAC LLC, NGHVAC) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. Two generations of laboratory prototype systems were designed, fabricated, and lab-tested during 2011-2013. Performance maps for the system were developed using the latest research version of the DOE/ORNL Heat Pump Design Model, or HPDM, (Rice 1991; Rice and Jackson 2005; Shen et al 2012) as calibrated against the lab test data. These maps were the input to the TRNSYS (SOLAR Energy Laboratory, et al, 2010) system to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of 13 SEER air-source heat pump (ASHP) and resistance water heater with Energy Factor (EF) of 0.9). Predicted total annual energy savings, while providing space conditioning and water heating for a tight, well insulated 2600 ft2 (242 m2) house at 5 U.S. locations, ranged from 46 to 61%, averaging 52%, relative to the baseline system (lowest savings at the cold-climate Chicago location). Predicted energy use for water heating was reduced 62 to 76% relative to resistance WH. Based on these lab prototype test and analyses results a field test prototype was designed and fabricated by NGHVAC. The unit was installed in a 2400 ft2 (223 m2) research house in Knoxville, TN and field tested from May 2014 to April 2015. Based on the demonstrated field performance of the AS-IHP prototype and estimated performance of a baseline system operating under the same loads and weather conditions, it was estimated that the prototype would achieve ~40% energy savings relative to the minimum efficiency suite. The estimated WH savings were >60% and SC mode savings were >50%. But estimated SH savings were only about 20%. It is believed that had the test

  1. Heat Transfer by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    NASA Astrophysics Data System (ADS)

    Dreyer, Michael; Fuhrmann, Eckart

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The topic of this paper is to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat trans-fer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. The paper will deliver correlations for the effective contact angle and the heat transfer coefficient as a function of the relevant dimensionsless parameters as well as physical explanations for the observed behavior. The data will be used

  2. Environmental assessment of general-purpose heat source safety verification testing

    SciTech Connect

    1995-02-01

    This Environmental Assessment (EA) was prepared to identify and evaluate potential environmental, safety, and health impacts associated with the Proposed Action to test General-Purpose Heat Source (GPHS) Radioisotope Thermoelectric Generator (RTG) assemblies at the Sandia National Laboratories (SNL) 10,000-Foot Sled Track Facility, Albuquerque, New Mexico. RTGs are used to provide a reliable source of electrical power on board some spacecraft when solar power is inadequate during long duration space missions. These units are designed to convert heat from the natural decay of radioisotope fuel into electrical power. Impact test data are required to support DOE`s mission to provide radioisotope power systems to NASA and other user agencies. The proposed tests will expand the available safety database regarding RTG performance under postulated accident conditions. Direct observations and measurements of GPHS/RTG performance upon impact with hard, unyielding surfaces are required to verify model predictions and to ensure the continual evolution of the RTG designs that perform safely under varied accident environments. The Proposed Action is to conduct impact testing of RTG sections containing GPHS modules with simulated fuel. End-On and Side-On impact test series are planned.

  3. Explosion overpressure test series: General-Purpose Heat Source development: Safety Verification Test program

    SciTech Connect

    Cull, T.A.; George, T.G.; Pavone, D.

    1986-09-01

    The General-Purpose Heat Source (GPHS) is a modular, radioisotope heat source that will be used in radioisotope thermoelectric generators (RTGs) to supply electric power for space missions. The first two uses will be the NASA Galileo and the ESA Ulysses missions. The RTG for these missions will contain 18 GPHS modules, each of which contains four /sup 238/PuO/sub 2/-fueled clads and generates 250 W/sub (t)/. A series of Safety Verification Tests (SVTs) was conducted to assess the ability of the GPHS modules to contain the plutonia in accident environments. Because a launch pad or postlaunch explosion of the Space Transportation System vehicle (space shuttle) is a conceivable accident, the SVT plan included a series of tests that simulated the overpressure exposure the RTG and GPHS modules could experience in such an event. Results of these tests, in which we used depleted UO/sub 2/ as a fuel simulant, suggest that exposure to overpressures as high as 15.2 MPa (2200 psi), without subsequent impact, does not result in a release of fuel.

  4. Production of {sup 238}PuO{sub 2} heat sources for the Cassini mission

    SciTech Connect

    George, T.G.; Foltyn, E.M.

    1998-01-01

    NASA{close_quote}s Cassini mission to Saturn, scheduled to launch in October, 1997, is perhaps the most ambitious interplanetary explorer ever constructed. Electric power for the spacecraft{close_quote}s science instruments and on-board computers will be provided by three radioisotope thermoelectric generators (RTGs) powered by 216 {sup 238}PuO{sub 2}-fueled General-Purpose Heat Source (GPHS) capsules. In addition, critical equipment and instruments on the spacecraft and Huygens probe will be warmed by 128 Light-Weight Radioisotope Heater Units (LWRHUs). Fabrication and assembly of the GPHS capsules and LWRHU heat sources was performed at Los Alamos National Laboratory (LANL) between January 1994 and September 1996. During this production campaign, LANL pressed and sintered 315 GPHS fuel pellets and 181 LWRHU pellets. By October 1996, NMT-9 had delivered a total of 235 GPHS capsules to EG&G Mound Applied Technologies (EG&G MAT) in Miamisburg, Ohio. EG&G MAT conditioned the capsules for use, loaded the capsules into the Cassini RTGs, tested the RTGs, and coordinated transportation to Kennedy Space Center (KSC). LANL also fabricated and assembled a total of 180 LWRHUs. The LWRHUs required for the Cassini spacecraft were shipped to KSC in mid-1997. {copyright} {ital 1998 American Institute of Physics.}

  5. Clinical applications of internal heat source analysis for breast cancer identification.

    PubMed

    Han, F; Liang, C W; Shi, G L; Wang, L; Li, K Y

    2015-02-13

    Nondestructive preoperative breast imaging techniques are widely used for breast cancer testing and diagnosis. This study aimed to evaluate the feasibility and efficacy of quantitative diagnosis via the thermal analysis of abnormal metabolism. Nine hundred forty-eight women who underwent breast biopsy from 2009 to 2013 were investigated. Thermal analysis was used to calculate the internal heat source (i.e., tumor) thermal power for each participant. The applicability and effectiveness of our approach were estimated using the chi-square test, kappa statistics (k), and odds ratios (OR). Breast density and tumor size were considered during this estimation. A thermal power q = 0.2 w was determined as the optimal separation threshold between breast cancer and benign disease. Moreover, good agreement (k = 0.837) with the gold-standard assessment (breast biopsy) was confirmed in 93.2% of the patients (N = 884/948), and the sensitivity and specificity were 94.2 and 92.9%, respectively. The results also found no significant differences in methodological accuracy between the fatty and dense breasts (OR = 1.194, P = 0.524). Furthermore, after dividing the cohort into three groups according to tumor size (T1: <2 cm; T2: 2 to 5 cm; T3: >5 cm), the tumor size had no effect on the proposed method (ORs = 1, P = 0.724). Internal heat source analysis can feasibly and efficiently distinguish between breast cancer and benign disease.

  6. Using MODIS and AVHRR data to determine regional surface heating field and heat flux distributions over the heterogeneous landscape of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ma, Yaoming; Han, Cunbo; Zhong, Lei; Wang, Binbin; Zhu, Zhikun; Wang, Yongjie; Zhang, Lang; Meng, Chunchun; Xu, Chao; Amatya, Pukar Man

    2014-08-01

    In this study, a parameterization methodology based on Advanced Very High-Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), and in situ data is proposed and tested for deriving the regional surface heating field, sensible heat flux, and latent heat flux over a heterogeneous landscape. In this case study, this method is applied to the whole Tibetan Plateau (TP) area. Four sets of AVHRR data and four sets of MODIS data (collected on 17 January 2003, 14 April 2003, 23 July 2003, and 16 October 2003) were used in this study to make comparisons between winter, spring, summer, and autumn values. The satellite-derived results were also validated using the "ground truth" as measured in the stations of CAMP/Tibet (Coordinated Enhanced Observing Period (CEOP) and Asia-Australia Monsoon Project on the Tibetan Plateau). The results show that the surface heating field, sensible heat flux, and latent heat flux in the four seasons across the TP are in close accordance with its land surface status. These parameters range widely due to the strongly contrasting surface features found within the TP region. Also, the estimated surface heating field, sensible heat flux, and latent heat flux all agree with the ground truth data, and usually, the absolute percentage difference between the two sets of data is less than 10 % at the validation stations. The AVHRR results were also in agreement with the MODIS data, with the latter usually displaying a higher level of accuracy. We have thus concluded that the proposed method was successful in retrieving surface heating field, sensible heat flux, and latent heat flux values using AVHRR, MODIS, and in situ data over the heterogeneous land surface of the TP. Shortcomings and possible further improvements in the method are also discussed.

  7. An analysis of the Voyager 2 Ultraviolet Spectrometer occultation data at Uranus - Inferring heat sources and model atmospheres

    NASA Technical Reports Server (NTRS)

    Stevens, Michael H.; Strobel, Darrell F.; Herbert, Floyd

    1993-01-01

    Heat source information is derived here from the Voyager 2 Ultraviolet Spectrometer occultation data of Uranus. Analytic functions for the local heat dependence on altitude are used to obtain a temperature profile by solving the heat equation. The stellar entrance and exit occultation and a solar occultation are used to infer the thermal and density structure of the atmosphere. The least squares fit solution to the solar occultation data gives one source located at 1.8 x 10 exp -5 microbar with a strength of 0.056 +/- 0.01 erg/sq cm/s. Latitudinal temperature gradients are obtained.

  8. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source.

  9. Regional fluid flow and heat distribution over geological time scales at the margin of unconfined and confined carbonate sequences

    NASA Astrophysics Data System (ADS)

    Havril, Timea; Mádl-Szönyi, Judit; Molson, John

    2016-04-01

    permeability confining formation, which facilitates buoyancy-driven flow by restricting the dissipation of heat. Over geological time, these cells were gradually overprinted by gravity-driven flow and thermal advection due to the uplift of the western part of the system. The limited thickness of the cover along the western block allowed efficient water infiltration into the system, which leads to an increased cooling effect. Further uplifting of the western part leads to a change of the main character of the flow patterns, with gravity-driven groundwater flow dominating over the effect of buoyancy-driven flow. Although cooling of the system has significantly progressed, conditions over the confined part of the system are still favorable for the development of thermal convection cells, and leads to significant heat accumulation under the confined sub-basin. The flow and heat transport simulations have helped to derive the main evolutionary characteristics of groundwater flow and heat transport patterns for the unconfined and confined parts of the region. The result is flow convergence toward the discharge zone from different sources over geological time scales. This is decisive for heat accumulation as well as for the development of a deep geothermal energy potential in confined carbonates. The research is supported by the Hungarian Research Fund.

  10. Using a Differential Emission Measure and Density Measurements in an Active Region Core to Test a Steady Heating Model

    NASA Astrophysics Data System (ADS)

    Winebarger, Amy R.; Schmelz, Joan T.; Warren, Harry P.; Saar, Steve H.; Kashyap, Vinay L.

    2011-10-01

    The frequency of heating events in the corona is an important constraint on the coronal heating mechanisms. Observations indicate that the intensities and velocities measured in active region cores are effectively steady, suggesting that heating events occur rapidly enough to keep high-temperature active region loops close to equilibrium. In this paper, we couple observations of active region (AR) 10955 made with the X-Ray Telescope and the EUV Imaging Spectrometer on board Hinode to test a simple steady heating model. First we calculate the differential emission measure (DEM) of the apex region of the loops in the active region core. We find the DEM to be broad and peaked around 3 MK. We then determine the densities in the corresponding footpoint regions. Using potential field extrapolations to approximate the loop lengths and the density-sensitive line ratios to infer the magnitude of the heating, we build a steady heating model for the active region core and find that we can match the general properties of the observed DEM for the temperature range of 6.3 < log T < 6.7. This model, for the first time, accounts for the base pressure, loop length, and distribution of apex temperatures of the core loops. We find that the density-sensitive spectral line intensities and the bulk of the hot emission in the active region core are consistent with steady heating. We also find, however, that the steady heating model cannot address the emission observed at lower temperatures. This emission may be due to foreground or background structures, or may indicate that the heating in the core is more complicated. Different heating scenarios must be tested to determine if they have the same level of agreement.

  11. Conjugate Convection with Surface Radiation from a Square-Shaped Electronic Device with Multiple Identical Discrete Heat Sources

    NASA Astrophysics Data System (ADS)

    Shah, A. P.; Krishna, Y. M.; Rao, C. G.

    2013-04-01

    Numerical simulation studies on combined conduction-convection-radiation from a square-shaped electronic device with multiple identical flush-mounted discrete heat sources have been performed and the prominent results are reported here. The problem geometry comprises a square shaped slab with four symmetrically located flush mounted identical discrete heat sources. The heat generated in the heat sources gets conducted through the slab and subsequently gets dissipated from its boundaries by the combined modes of convection and radiation. Air, a radiatively transparent medium is considered to be the cooling agent. The governing equations for temperature distribution in the entire computational domain are obtained by appropriate energy balance between the heat generated, conducted, convected and radiated. The resulting partial differential equations are solved using finite difference method in conjunction with Gauss-Seidel iterative technique. A computer code is prepared for the purpose. Exhaustive numerical studies are performed to elucidate the effects of parameters like volumetric heat generation, thermal conductivity, surface emissivity and convection heat transfer coefficient on local temperature distribution, peak device temperature and relative contributions of convection and radiation in heat dissipation.

  12. The role of atmospheric heat transport and regional feedbacks in the Arctic warming at equilibrium

    NASA Astrophysics Data System (ADS)

    Yoshimori, Masakazu; Abe-Ouchi, Ayako; Laîné, Alexandre

    2017-01-01

    It is well known that the Arctic warms much more than the rest of the world even under spatially quasi-uniform radiative forcing such as that due to an increase in atmospheric CO2 concentration. While the surface albedo feedback is often referred to as the explanation of the enhanced Arctic warming, the importance of atmospheric heat transport from the lower latitudes has also been reported in previous studies. In the current study, an attempt is made to understand how the regional feedbacks in the Arctic are induced by the change in atmospheric heat transport and vice versa. Equilibrium sensitivity experiments that enable us to separate the contributions of the Northern Hemisphere mid-high latitude response to the CO2 increase and the remote influence of surface warming in other regions are carried out. The result shows that the effect of remote forcing is predominant in the Arctic warming. The dry-static energy transport to the Arctic is reduced once the Arctic surface warms in response to the local or remote forcing. The feedback analysis based on the energy budget reveals that the increased moisture transport from lower latitudes, on the other hand, warms the Arctic in winter more effectively not only via latent heat release but also via greenhouse effect of water vapor and clouds. The change in total atmospheric heat transport determined as a result of counteracting dry-static and latent heat components, therefore, is not a reliable measure for the net effect of atmospheric dynamics on the Arctic warming. The current numerical experiments support a recent interpretation based on the regression analysis: the concurrent reduction in the atmospheric poleward heat transport and future Arctic warming predicted in some models does not imply a minor role of the atmospheric dynamics. Despite the similar magnitude of poleward heat transport change, the Arctic warms more than the Southern Ocean even in the equilibrium response without ocean dynamics. It is shown that a

  13. Design Optimization and the Limits of Steady-State Heating Efficiency for Conventional Single-Speed Air-Source Heat Pumps

    SciTech Connect

    Rice, C.K.

    2001-06-06

    The ORNL Heat Pump Model and an optimizing program were used to explore the limits of steady-state heating efficiency for conventional air-source heat pumps. The method used allows for the simultaneous optimization of ten selected design variables, taking proper account of their interactions, while constraining other parameters to chosen limits or fixed values. Designs were optimized for a fixed heating capacity, but the results may be scaled to other capacities. Substantial performance improvement is predicted compared to today's state of the art heat pump. With increased component efficiencies that are expected in the near future and with modest increases in heat exchanger area, a 28% increase in heating efficiency is predicted; for long-term improvements with considerably larger heat exchangers, a 56% increase is possible. The improved efficiencies are accompanied by substantial reductions in the requirements for compressor and motor size. The predicted performance improvements are attributed not only to improved components and larger heat exchangers but also to the use of an optimizing design procedure. Deviations from the optimized design may be necessary to make use of available component sizes and to maintain good cooling-mode performance while improving the heating efficiency. Sensitivity plots (i.e., COP as a function of one or more design parameters) were developed to explore design flexibilities and to evaluate their consequences. The performance of the optimized designs was compared to that of modified ideal cycles to assess the factors that limit further improvement. It is hoped that the design methods developed will be useful to designers in the heat pump industry.

  14. Simulation of Stagnation Region Heating in Hypersonic Flow on Tetrahedral Grids

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2007-01-01

    Hypersonic flow simulations using the node based, unstructured grid code FUN3D are presented. Applications include simple (cylinder) and complex (towed ballute) configurations. Emphasis throughout is on computation of stagnation region heating in hypersonic flow on tetrahedral grids. Hypersonic flow over a cylinder provides a simple test problem for exposing any flaws in a simulation algorithm with regard to its ability to compute accurate heating on such grids. Such flaws predominantly derive from the quality of the captured shock. The importance of pure tetrahedral formulations are discussed. Algorithm adjustments for the baseline Roe / Symmetric, Total-Variation-Diminishing (STVD) formulation to deal with simulation accuracy are presented. Formulations of surface normal gradients to compute heating and diffusion to the surface as needed for a radiative equilibrium wall boundary condition and finite catalytic wall boundary in the node-based unstructured environment are developed. A satisfactory resolution of the heating problem on tetrahedral grids is not realized here; however, a definition of a test problem, and discussion of observed algorithm behaviors to date are presented in order to promote further research on this important problem.

  15. X-RAY SOURCE HEIGHTS IN A SOLAR FLARE: THICK-TARGET VERSUS THERMAL CONDUCTION FRONT HEATING

    SciTech Connect

    Reep, J. W.; Bradshaw, S. J.; Holman, G. D. E-mail: stephen.bradshaw@rice.edu

    2016-02-10

    Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 2002 November 28 C1.1 flare, first observed with RHESSI by Sui et al. and quantitatively analyzed by O’Flannagain et al., very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed.

  16. Source Sector and Region Contributions to BC and PM2.5 in Central Asia

    EPA Science Inventory

    Particulate matter (PM) mass concentrations, seasonal cycles, source sector and source region contributions in Central Asia (CA) are analyzed for the period April 2008-July 2009 using the STEM chemical transport model and modeled meteorology from the WRF model. Predicted AOD valu...

  17. Region 9 Tribal Minor NSR: New Source General Application (Form NEW)

    EPA Pesticide Factsheets

    This form should be used to register New or Modified Minor Sources (except Oil and Gas Industry Sources until March 2, 2016) with proposed construction or modifications that are subject to minor NSR with the EPA Region 9 Tribal NSR Permitting Program.

  18. Transition Region and Chromospheric Signatures of Impulsive Heating Events. I. Observations

    NASA Astrophysics Data System (ADS)

    Warren, Harry P.; Reep, Jeffrey W.; Crump, Nicholas A.; Simões, Paulo J. A.

    2016-09-01

    We exploit the high spatial resolution and high cadence of the Interface Region Imaging Spectrograph (IRIS) to investigate the response of the transition region and chromosphere to energy deposition during a small flare. Simultaneous observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager provide constraints on the energetic electrons precipitating into the flare footpoints, while observations of the X-Ray Telescope, Atmospheric Imaging Assembly, and Extreme Ultraviolet Imaging Spectrometer (EIS) allow us to measure the temperatures and emission measures from the resulting flare loops. We find clear evidence for heating over an extended period on the spatial scale of a single IRIS pixel. During the impulsive phase of this event, the intensities in each pixel for the Si iv 1402.770 Å, C ii 1334.535 Å, Mg ii 2796.354 Å, and O i 1355.598 Å emission lines are characterized by numerous small-scale bursts typically lasting 60 s or less. Redshifts are observed in Si iv, C ii, and Mg ii during the impulsive phase. Mg ii shows redshifts during the bursts and stationary emission at other times. The Si iv and C ii profiles, in contrast, are observed to be redshifted at all times during the impulsive phase. These persistent redshifts are a challenge for one-dimensional hydrodynamic models, which predict only short-duration downflows in response to impulsive heating. We conjecture that energy is being released on many small-scale filaments with a power-law distribution of heating rates.

  19. The heat equation source determination for the case of non-smooth boundary and initial conditions

    NASA Astrophysics Data System (ADS)

    Solovi’ev, V. V.; Tkachenko, D. S.

    2017-01-01

    An inverse problem of reconstructing the source of a special kind for parabolic equations in a bounded region with smooth boundary is considered. Solutions are sought in the Holder classes. We prove an uniqueness criterion for the solution and sufficient conditions of Fredholm property of the task at hand. As a consequence of the sufficient conditions for existence and uniqueness of solution of the inhomogeneous inverse problems are found.

  20. Mapping regional distribution of land surface heat fluxes on the southern side of the central Himalayas using TESEBS

    NASA Astrophysics Data System (ADS)

    Amatya, Pukar Man; Ma, Yaoming; Han, Cunbo; Wang, Binbin; Devkota, Lochan Prasad

    2016-05-01

    Recent scientific studies based on large-scale climate model have highlighted the importance of the heat release from the southern side of the Himalayas for the development of South Asian Summer Monsoon. However, studies related to land surface heat fluxes are nonexistent on the southern side. In this study, we test the feasibility of deriving land surface heat fluxes on the central Himalayan region using Topographically Enhanced Surface Energy Balance System (TESEBS), which is forced by MODIS land surface products and Global Land Data Assimilation System (GLDAS) meteorological data. The model results were validated using the first eddy covariance measurement system established in the southern side of the central Himalayas. The derived land surface heat fluxes were close to the field measurements with mean bias of 15.97, -19.89, 8.79, and -20.39 W m-2 for net radiation flux, ground heat flux, sensible heat flux, and latent heat flux respectively. Land surface heat fluxes show strong contrast in pre monsoon, summer monsoon, post monsoon, and winter seasons and different land surface states among the different physiographic regions. In the central Himalayas, the latent heat flux is the dominant consumer of available energy for all physiographic regions except for the High Himalaya where the sensible heat flux is high.

  1. Improved efficiency and precise temperature control of low-frequency induction-heating pure iron vapor source on ECR ion source

    NASA Astrophysics Data System (ADS)

    Kato, Y.; Takenaka, T.; Yano, K.; Kiriyama, R.; Kurisu, Y.; Nozaki, D.; Muramatsu, M.; Kitagawa, A.; Uchida, T.; Yoshida, Y.; Sato, F.; Iida, T.

    2012-11-01

    Multiply charged ions to be used prospectively are produced from solid pure material in an electron cyclotron resonance ion source (ECRIS). Recently a pure iron source is also required for the production of caged iron ions in the fullerene in order to control cells in vivo in bio-nano science and technology. We adopt directly heating iron rod by induction heating (IH) because it has non-contact with insulated materials which are impurity gas sources. We choose molybdenum wire for the IH coils because it doesn't need water cooling. To improve power efficiency and temperature control, we propose to the new circuit without previously using the serial and parallel dummy coils (SPD) for matching and safety. We made the circuit consisted of inductively coupled coils which are thin-flat and helix shape, and which insulates the IH power source from the evaporator. This coupling coils circuit, i.e. insulated induction heating coil transformer (IHCT), can be move mechanically. The secondary current can be adjusted precisely and continuously. Heating efficiency by using the IHCT is much higher than those of previous experiments by using the SPD, because leakage flux is decreased and matching is improved simultaneously. We are able to adjust the temperature in heating the vapor source around melting point. And then the vapor pressure can be controlled precisely by using the IHCT. We can control ±10K around 1500°C by this method, and also recognize to controlling iron vapor flux experimentally in the extreme low pressures. Now we come into next stage of developing induction heating vapor source for materials with furthermore high temperature melting points above 2000K with the IHCT, and then apply it in our ECRIS.

  2. Infrared Photometry of 487 Sources in the Inner Regions of NGC 5128 (Centaurus A)

    NASA Astrophysics Data System (ADS)

    Alonso, M. Victoria; Minniti, Dante

    1997-04-01

    We study the sources present in the inner 3 kpc region of NGC 5128 (Cen A), most of which are star clusters of different ages. Photometry of archival Hubble Space Telescope WFPC images (F675W filter) is complemented with IR photometry (JHK' filters) obtained with the IRAC2B infrared array camera at the ESO/MPI 2.2 m telescope. From IR color maps we divide the field into two regions: a clear region outside the dust lane, and an obscured region well inside the dust lane of NGC 5128. In the unreddened region there is a great variety of sources such as globular clusters, star associations, and H II regions. These sources are not individual stars, which would be too faint to be resolved from ground-based telescopes. The vast majority of IR sources in the reddened region, where the dust lane dominates, are not seen at all in the deep HST images. The presence of large amounts of differential extinction makes it difficult to evaluate them. In total, there are 372 objects detected in the inner region of NGC 5128. From them, 125 objects are detected both in IR and HST frames. There are 247 IR sources without optical counterparts (47 in the clear region and 200 in the dust lane). Accounting for the small volume sampled, there must be a total of ~500 sources with K < 18 in the dust lane region. The distribution of these sources is rather uniform and not particularly centrally concentrated. This fact suggests that the majority of them are located in a disk, as would be expected if they are young associations or clusters. The degree of background and foreground contamination is evaluated using observations of a nearby field. We found 115 IR sources in this field. The nucleus itself is invisible in deep optical images, but it is clearly identified in the IR. In the region just south of the nucleus the extinction must be larger than AK = 3. In the clear region, where the effect of the dust lane is negligible, we have identified some objects as intermediate-age clusters containing

  3. Evaluation of the need for emergency heat exchangers for long term emergency cooling of the Advanced Neutron Source Reactor

    SciTech Connect

    Khayat, M.I.; Anderson, J.L.; Battle, R.E.; March-Leuba, J.

    1994-05-01

    This report summarizes the work performed to evaluate the heat transferred to the light water pools from the primary piping system for the Advanced Neutron Source reactor (ANSR) conceptual design. It has been determined that the ANSR primary piping system will remove sufficient heat from the primary coolant system to the pools for certain design basis event accidents without the emergency heat exchangers if the design parameters, such as pool volumes and pipe sizes (length and surface area), are selected appropriately. Based on this analysis, the emergency heat exchangers might be removed, and their function can be performed by the primary piping passing through the light water pools described in the conceptual design report. This study also shows that connecting the pipe chase pool and the heat exchanger pools improve performance for ANSR emergency heat removal.

  4. Neutral-Line Magnetic Shear and Enhanced Coronal Heating in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Gary, G. A.; Shimizu, T.

    1997-01-01

    By examining the magnetic structure at sites in the bright coronal interiors of active regions that are not flaring but exhibit persistent strong coronal heating, we establish some new characteristics of the magnetic origins of this heating. We have examined the magnetic structure of these sites in five active regions, each of which was well observed by both the Yohkoh SXT and the Marshall Space Flight Center Vector Magnetograph and showed strong shear in its magnetic field along part of at least one neutral line (polarity inversion). Thus, we can assess whether this form of nonpotential field structure in active regions is a characteristic of the enhanced coronal heating and vice versa. From 27 orbits' worth of Yohkoh SXT images of the five active regions, we have obtained a sample of 94 persistently bright coronal features (bright in all images from a given orbit), 40 long (greater than or approximately equals 20,000 km) neutral-line segments having strong magnetic shear throughout (shear angle greater than 45 deg), and 39 long neutral-line segments having weak magnetic shear throughout (shear angle less than 45 deg). From this sample, we find that: (1) all of our persistently bright coronal features are rooted in magnetic fields that are stronger than 150 G; (2) nearly all (95%) of these enhanced coronal features are rooted near neutral lines (closer than 10,000 km); (3) a great majority (80%) of the bright features are rooted near strong-shear portions of neutral lines; (4) a great majority (85%) of long strong-shear segments of neutral lines have persistently bright coronal features rooted near them; (5) a large minority (40%) of long weak-shear segments of neutral lines have persistently bright coronal features rooted near them; and (6) the brightness of a persistently bright Coronal feature often changes greatly over a few hours. From these results, we conclude that most persistent enhanced heating of coronal loops in active regions: (1) requires the

  5. Quantification of Explosion Source Characteristics from Near Source, Regional and Teleseismic Distances

    DTIC Science & Technology

    1989-07-31

    explosions: application to regional discrimination of earthquakes and explosions, Bull. Seism. Soc. Am. 78, 1773-1795. Chiappetta, R. F. and D. G. Borg ...O 2bO*- 93 Cl) (0 L 4- NYS 0 0 0 szoo 110 94, mr Cj W- -C -C-C 0 0 0 CI) CI) CD) 0) (t) 0) L L L - 4 - 0 0 C9 0 _0 00 0;z 0 LUi OLo 00. 4J - 0 0 .P.4...Kjeller, NORWAY N-2007 Kjeller, NORWAY Dr. Michel Campillo Dr. Jorg Schlittenhardt I.R.I.G.M.-B.P. 68 Fed. Inst. for Geosciences & Nat’l Res. 38402 St

  6. Pulp Chamber Heating: An In Vitro Study Evaluating Different Light Sources and Resin Composite Layers.

    PubMed

    Andreatta, Lígia Maria Lima; Furuse, Adilson Yoshio; Prakki, Anuradha; Bombonatti, Juliana Fraga Soares; Mondelli, Rafael Francisco Lia

    2016-01-01

    The aim of the present in vitro study was to evaluate the temperature variation inside the pulp chamber during light-activation of the adhesive and resin composite layers with different light sources. Cavities measuring 8x10 mm were prepared on the buccal surface of bovine incisors, leaving a remaining dentin thickness of 1 mm. Specimens were placed in a 37±1 °C water bath to standardize the temperature. The temperature in the pulp chamber was measured every 10 s during 40 s of light activation of the adhesive system (SBMP-3M/ESPE) and in the three consecutive 1-mm-thick layers of resin composite (Z250-3M/ESPE). Three light source devices were evaluated: Elipar 2500 (QTH), LD Max (LED low irradiance) and VALO (LED high irradiance). The results were submitted to one-way ANOVA with repeated measures and Tukey's test, both with p<0.001. The exothermic reaction warming was observed in the Z250 increments, but not in the SBMP. The high irradiance LED showed a higher temperature average (42.7±1.56 °C), followed by the quartz-tungsten-halogen light (40.6±0.67 °C) and the lower irradiance LED (37.8±0.12 °C). Higher temperature increases were observed with the adhesive and the first resin composite increment light-activation, regardless of the employed light source. From the second increment of Z250, the restorative material acted as a dispersive structure of heat, reducing temperature increases. Regardless the light source and restorative step, the temperature increased with the irradiation time. It may be concluded that the light source, irradiation time and resin composite thickness interfered in the temperature variation inside the pulp chamber.

  7. Evaporative cooling of ventral regions of the skin in heat-stressed laying hens.

    PubMed

    Wolfenson, D; Bachrach, D; Maman, M; Graber, Y; Rozenboim, I

    2001-07-01

    Laying hens held in battery cages in naturally ventilated poultry houses in hot countries usually develop hyperthermia, which adversely affects their performance. The present means of cooling alleviate to some degree, but cannot eliminate, the stress imposed by heat. A new approach to cooling of laying hens was developed, based on wetting the skin and promoting evaporation of water from the ventral regions of the bird. The type of plumage in the ventral regions and the exposed skin of the apteria enable more efficient wetting than is possible with dorsal cooling. A ventral cooling regime, comprising an initial period of frequent wettings followed by intermittent wetting for 10 s every 30 min was able to maintain normothermia of laying hens subjected to a 10-h period of heat exposure. Dorsal cooling was less efficient; body temperature and respiration rate were higher and skin temperatures were lower than in ventrally cooled hens. During 10 d of heat exposure, ventrally cooled hens maintained egg weight and shell index (mg/cm2), whereas their food intake decreased moderately. In contrast, egg weight, shell index, and food intake all decreased markedly in uncooled or dorsally cooled hens. Transient alterations in plasma concentrations of corticosterone, progesterone, and estradiol were noted in uncooled and dorsally cooled hens but not in ventrally cooled hens. Results indicate that ventral cooling is an efficient method to alleviate heat stress in laying hens during summer. Successful implementation of ventral cooling in poultry houses will depend on optimal installation of sprinklers and on minimal wetting of manure.

  8. Structural, Thermal, and Safety Analysis of Isotope Heat Source and Integrated Heat Exchangers for 6-kWe Dynamic Isotope Power System (DIPS)

    SciTech Connect

    Schock, Alfred

    1989-01-01

    The design of the 30-kWt isotope heat source integrated with a Rankine boiler and a Brayton gas heater, which was described in the preceding paper in these proceedings, was subjected to structural, thermal, and safety analyses. The present paper describes and discusses the results of these analyses. Detailed structural analyses of the heat source integrated with the boiler and gas heater showed positive safety margins at all locations during the launch. Detailed thermal analyses showed acceptable temperatures at all locations, during assembly, transfer and orbital operations. Reentry thermal analyses showed that the clads have acceptable peak and impact temperatures. Loss-of-cooling analyses indicated the feasibility of a passive safety concept for preventing over temperatures. Static structural analysis showed positive safety margins at all locations, and dynamic analysis showed that there were no low-frequency resources. Continuum-mechanics code analyses of the effects of the impact of Solid Rocket Booster (SRB) fragments on the heat source and of the very unlikely impact of the full heat source on concrete indicated relatively modest fuel clad deformations and little or no fuel release.

  9. Plants adapted to warmer climate do not outperform regional plants during a natural heat wave.

    PubMed

    Bucharova, Anna; Durka, Walter; Hermann, Julia-Maria; Hölzel, Norbert; Michalski, Stefan; Kollmann, Johannes; Bossdorf, Oliver

    2016-06-01

    With ongoing climate change, many plant species may not be able to adapt rapidly enough, and some conservation experts are therefore considering to translocate warm-adapted ecotypes to mitigate effects of climate warming. Although this strategy, called assisted migration, is intuitively plausible, most of the support comes from models, whereas experimental evidence is so far scarce. Here we present data on multiple ecotypes of six grassland species, which we grew in four common gardens in Germany during a natural heat wave, with temperatures 1.4-2.0°C higher than the long-term means. In each garden we compared the performance of regional ecotypes with plants from a locality with long-term summer temperatures similar to what the plants experienced during the summer heat wave. We found no difference in performance between regional and warm-adapted plants in four of the six species. In two species, regional ecotypes even outperformed warm-adapted plants, despite elevated temperatures, which suggests that translocating warm-adapted ecotypes may not only lack the desired effect of increased performance but may even have negative consequences. Even if adaptation to climate plays a role, other factors involved in local adaptation, such as biotic interactions, may override it. Based on our results, we cannot advocate assisted migration as a universal tool to enhance the performance of local plant populations and communities during climate change.

  10. Compact sources of suprathermal microwave emission detected in quiescent active regions during lunar occultations

    NASA Astrophysics Data System (ADS)

    Correia, E.; Kaufmann, P.; Strauss, F. M.

    1992-04-01

    Solar quiescent active regions are known to exhibit radio emission from discrete structures. The knowledge of their dimensions and brightness temperatures is essential for understanding the physics of quiescent, confined plasma regions. Solar eclipses of 10 August, 1980 and 26 January, 1990, observed with high sensitivity and high time resolution at 22 GHz, allowed an unprecedented opportunity to identify Fresnel diffraction effects during lunar occultations of active regions. The results indicate the presence of quiescent discrete sources smaller than one arcsec in one dimension. Assuming symmetrical sources, their brightness temperatures were larger than 2 x 10 exp 7 K and 8 x 10 exp 7 K, for the 1980 and 1990 observations, respectively.

  11. SIGMA discovery of a transient hard X-ray source in the galactic center region.

    NASA Astrophysics Data System (ADS)

    Vargas, M.; Goldwurm, A.; Paul, J.; Denis, M.; Borrel, V.; Bouchet, L.; Roques, J. P.; Jourdain, E.; Trudolyubov, S.; Gilfanov, M.; Churazov, E.; Sunyaev, R.; Khavenson, N.; Dyachkov, A.; Novikov, B.; Chulkov, I.

    1996-09-01

    A new X-ray transient source, GRS 1730-312 (=KS 1730-312), was discovered by the hard X-ray/soft γ-ray coded mask telescope SIGMA/GRANAT in the Galactic Center region during observations performed in September 1994. The flare started on September 22 and lasted approximately 3days, during which the source became the brightest object of the region at energies above 35keV. The average 35-200keV spectrum can be described by a power law with photon index of -2.5 or by a thermal bremsstrahlung model with kT_e_=~70keV. SIGMA data have been found consistent with the spectral shape and with the spectral evolution observed by the TTM/Mir-Kvant telescope at lower energies. This new source belongs to the population of hard X-ray sources already detected by SIGMA in the direction of the Galactic Bulge region.

  12. Source and path corrections, feature selection, and outlier detection applied to regional event discrimination in China

    SciTech Connect

    Hartse, H.E.; Taylor, S.R.; Phillips, W.S.; Velasco, A.A.

    1999-03-01

    The authors are investigating techniques to improve regional discrimination performance in uncalibrated regions. These include combined source and path corrections, spatial path corrections, path-specific waveguide corrections to construct frequency-dependent amplitude corrections that remove attenuation, corner frequency scaling, and source region/path effects (such as blockages). The spatial method and the waveguide method address corrections for specific source regions and along specific paths. After applying the above corrections to phase amplitudes, the authors form amplitude ratios and use a combination of feature selection and outlier detection to choose the best-performing combination of discriminants. Feature selection remains an important issue. Most stations have an inadequate population of nuclear explosions on which to base discriminant selection. Additionally, mining explosions are probably not good surrogates for nuclear explosions. The authors are exploring the feasibility of sampling the source and path corrected amplitudes for each phase as a function of frequency in an outlier detection framework. In this case, the source identification capability will be based on the inability of the earthquake source model to fit data from explosion sources.

  13. Spatial distribution and source identification of trace elements in topsoil from heavily industrialized region, Aliaga, Turkey.

    PubMed

    Kara, Melik; Dumanoğlu, Yetkin; Altıok, Hasan; Elbir, Tolga; Odabası, Mustafa; Bayram, Abdurrahman

    2014-10-01

    Topsoil samples (n = 40) were collected from a heavily industrialized region in Turkey. The region includes several scrap processing iron-steel plants with electric arc furnaces (EAFs), a petroleum refinery, a petrochemical complex, steel rolling mills, a natural gas-fired power plant, ship-breaking yards and very dense transportation activities. The region has undergone a rapid transition from an agricultural region to a heavily industrialized region in the last three decades. Collected soil samples were analyzed for 48 trace elements using inductively coupled plasma-mass spectrometry (ICP-MS). The elemental distribution pattern in the region indicated that Nemrut area with dense iron-steel production activities was a hotspot for elemental pollution. In addition to crustal elements, concentrations of anthropogenic trace elements (i.e., Fe, Zn, Pb, Mn, Cu, Cd, Cr and Mo) were very high in the area influencing many parts of the region. Elemental compositions of fugitive sources polluting the soil (i.e., paved and unpaved roads, slag piles, EAFs filter dust piles and coal piles) were also determined. The methods (enrichment factors [EFs] and the index of geoaccumulation [Igeo]) used for determination of pollution status of soil showed that Cr, Ag, Zn, As and Pb were the strongly contaminating elements for the region. Principal component analysis (PCA) clearly indicated that anthropogenic sources (steel production, refinery and petrochemical processes and traffic) were important sources in this region.

  14. Specific heat of /sup 3/He in the Fermi-liquid region

    SciTech Connect

    Mayberry, M.C.; Phillips, N.E.

    1983-03-01

    A CMN thermometer has been calibrated by nuclear-orientation thermometry at low temperatures and He vapor-pressure thermometry at high temperatures. The calibration agrees well with the NBS temperature scale between 100 and 200 mK. Specific-heat data on /sup 3/He in the Fermi-liquid region obtained with this thermometer are in good agreement with recent measurements at Bell Laboratories. It is argued that discrepancies with other data can be understood on the basis of errors in the temperature scales on which they are based.

  15. SOLAR HARD X-RAY SOURCE SIZES IN A BEAM-HEATED AND IONIZED CHROMOSPHERE

    SciTech Connect

    O'Flannagain, Aidan M.; Gallagher, Peter T.; Brown, John C.

    2015-02-01

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by Kontar et al. using the Ramaty High-Energy Solar Spectroscopic Imager have shown that HXR source sizes are three to six times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionization (NUI) structure along the path of the electron beam has not been fully explored as a solution to this problem. Ionized plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionized region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to this effect, along with the associated density enhancement in the upper chromosphere, injection of a beam of electrons into a partially ionized plasma should result in an HXR source that is substantially more vertically extended relative to that for a neutral target. Here we present the results of a modification to the CTTM, which takes into account both a localized form of chromospheric NUI and an increased target density. We find 50 keV HXR source widths, with and without the inclusion of a locally ionized region, of ∼3 Mm and ∼0.7 Mm, respectively. This helps to provide a theoretical solution to the currently open question of overly extended HXR sources.

  16. Solar Hard X-Ray Source Sizes in a Beam-heated and Ionized Chromosphere

    NASA Astrophysics Data System (ADS)

    O'Flannagain, Aidan M.; Brown, John C.; Gallagher, Peter T.

    2015-02-01

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by Kontar et al. using the Ramaty High-Energy Solar Spectroscopic Imager have shown that HXR source sizes are three to six times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionization (NUI) structure along the path of the electron beam has not been fully explored as a solution to this problem. Ionized plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionized region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to this effect, along with the associated density enhancement in the upper chromosphere, injection of a beam of electrons into a partially ionized plasma should result in an HXR source that is substantially more vertically extended relative to that for a neutral target. Here we present the results of a modification to the CTTM, which takes into account both a localized form of chromospheric NUI and an increased target density. We find 50 keV HXR source widths, with and without the inclusion of a locally ionized region, of ~3 Mm and ~0.7 Mm, respectively. This helps to provide a theoretical solution to the currently open question of overly extended HXR sources.

  17. Conceptual Trade Study of General Purpose Heat Source Powered Stirling Converter Configurations

    NASA Technical Reports Server (NTRS)

    Turpin, J. B.

    2007-01-01

    This Technical Manual describes a parametric study of general purpose heat source (GPHS) powered Stirling converter configurations. This study was performed in support of MSFC s efforts to establish the capability to perform non-nuclear system level testing and integration of radioisotope power systems. Six different GPHS stack configurations at a total of three different power levels (80, 250, and 500 W(sub e) were analyzed. The thermal profiles of the integrated GPHS modules (for each configuration) were calculated to determine maximum temperatures for comparison to allowable material limits. Temperature profiles for off-nominal power conditions were also assessed in order to better understand how power demands from the Stirling engine impact the performance of a given configuration.

  18. Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator Programs

    SciTech Connect

    Gabriel, D. M.; Miller, G. D.; Bohne, W. A.

    1995-03-16

    The purpose of this document is to serve as the Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) programs performed at EG&G Mound Applied Technologies. As such, it identifies and describes the systems and activities in place to support the requirements contained in DOE Order 5700.6C as reflected in MD-10334, Mound Quality Policy and Responsibilities and the DOE/RPSD supplement, OSA/PQAR-1, Programmatic Quality Assurance Requirements for Space and Terrestrial Nuclear Power Systems. Unique program requirements, including additions, modifications, and exceptions to these quality requirements, are contained in the appendices of this plan. Additional appendices will be added as new programs and activities are added to Mound's HS/RTG mission assignment.

  19. Studies of heat-source driven natural convection: A numerical investigation

    NASA Technical Reports Server (NTRS)

    Emara, A. A.; Kulacki, F. A.

    1977-01-01

    Thermal convection driven by uniform volumetric energy sources was studied in a horizontal fluid layer bounded from above by a rigid, isothermal surface and from below by a rigid, zero heat-flux surface. The side walls of the fluid domain were assumed to be rigid and perfectly insulating. The computations were formally restricted to two-dimensional laminar convection but were carried out for a range of Rayleigh numbers which spans the regimes of laminar and turbulent flow. The results of the computations consists of streamline and isotherm patterns, horizontally averaged temperature distributions, and horizontally averaged Nusselt numbers at the upper surface. Flow and temperature fields do not exhibit a steady state, but horizontally averaged Nusselt numbers reach limiting, quasi-steady values for all Rayleigh numbers considered. Correlations of the Nusselt number in terms of the Rayleigh and Prandtl numbers were determined.

  20. Structural testing of the Los Alamos National Laboratory Heat Source/Radioisotopic Thermoelectric Generator shipping container

    SciTech Connect

    Bronowski, D.R.; Madsen, M.M.

    1991-06-01

    The Heat Source/Radioisotopic Thermoelectric Generator shipping container is a Type B packaging design currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to the normal and hypothetical accident environments defined in Title 10 Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this package design. This report documents the test program portion of the design verification, using several prototype packages. Four types of testing were performed: 30-foot hypothetical accident condition drop tests in three orientations, 40-inch hypothetical accident condition puncture tests in five orientations, a 21 psi external overpressure test, and a normal conditions of transport test consisting of a water spray and a 4 foot drop test. 18 refs., 104 figs., 13 tabs.

  1. A combined power and ejector refrigeration cycle for low temperature heat sources

    SciTech Connect

    Zheng, B.; Weng, Y.W.

    2010-05-15

    A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)

  2. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    SciTech Connect

    Sartori, E. Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Veltri, P.; Sonato, P.

    2014-02-15

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  3. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Sonato, P.; Veltri, P.

    2014-02-01

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  4. Titanium tritide radioisotope heat source development : palladium-coated titanium hydriding kinetics and tritium loading tests.

    SciTech Connect

    Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom

    2012-01-01

    We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

  5. Integration of Americium Heat Source into the Advanced Stirling Radioisotope Generator

    NASA Astrophysics Data System (ADS)

    Schulze, Erich; Quinn, Richard

    2014-08-01

    The Lockheed Martin developed Advanced Stirling Radioisotope Generator (ASRG) design uses similar technology as proposed for the European Space Agency (ESA) Radioisotope Power System (RPS) development program but different isotopes. The RPS uses americium, 241Am isotope, while the ASRG uses plutonium, 238Pu isotope. The 238Pu isotope provides four times greater thermal output per kilogram than the 241Am isotope. Lockheed Martin performed an internally funded feasibility assessment that determined integration of a 241Am fueled heat source into the ASRG is achievable with no changes to ASRG technology and only structural and volumetric design considerations required. Lockheed Martin is interested in developing collaborative partnerships with the United Kingdom (UK) for the ESA RPS development program.

  6. PARAMETRIC STUDY OF GROUND SOURCE HEAT PUMP SYSTEM FOR HOT AND HUMID CLMATE

    SciTech Connect

    Zhu, Jiang; Tao, Yong X.

    2011-12-15

    The U-tube sizes and varied thermal conductivity with different grout materials are studied based on the benchmark residential building in Hot-humid Pensacola, Florida. In this study, the benchmark building is metered and the data is used to validate the simulation model. And a list of comparative simulation cases with varied parameter value are simulated to study the importance of pipe size and grout to the ground source heat pump energy consumption. The simulation software TRNSYS [1] is employed to fulfill this task. The results show the preliminary energy saving based on varied parameters. Future work needs to be conducted for the cost analysis, include the installation cost from contractor and materials cost.

  7. Certification testing of the Los Alamos National Laboratory Heat Source/Radioisotopic Thermoelectric Generator shipping container

    SciTech Connect

    Bronowski, D.R.; Madsen, M.M.

    1991-09-01

    The Heat Source/Radioisotopic Thermoelectric Generator shipping counter is a Type B packaging currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to normal and hypothetical accident environments defined in Title 10 of the Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this packaging design. This report documents the testing portion of the design verification. Six tests were conducted on a prototype package: a water spray test, a 4-foot normal conditions drop test, a 30-foot drop test, a 40-inch puncture test, a 30-minute thermal test, and an 8-hour immersion test.

  8. Literature Review: Weldability of Iridium DOP-26 Alloy for General Purpose Heat Source

    SciTech Connect

    Burgardt, Paul; Pierce, Stanley W.

    2016-10-19

    The basic purpose of this paper is to provide a literature review relative to fabrication of the General Purpose Heat Source (GPHS) that is used to provide electrical power for deep space missions of NASA. The particular fabrication operation to be addressed here is arc welding of the GPHS encapsulation. A considerable effort was made to optimize the fabrication of the fuel pellets and of other elements of the encapsulation; that work will not be directly addressed in this paper. This report consists of three basic sections: 1) a brief description of the GPHS will be provided as background information for the reader; 2) mechanical properties and the optimization thereof as relevant to welding will be discussed; 3) a review of the arc welding process development and optimization will be presented. Since the welding equipment must be upgraded for future production, some discussion of the historical establishment of relevant welding variables and possible changes thereto will also be discussed.

  9. Comparative study of beam losses and heat loads reduction methods in MITICA beam source.

    PubMed

    Sartori, E; Agostinetti, P; Dal Bello, S; Marcuzzi, D; Serianni, G; Sonato, P; Veltri, P

    2014-02-01

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  10. The effect of local thermal nonequilibrium on conduction in metal foam tube heat exchanger with a uniform heat source

    NASA Astrophysics Data System (ADS)

    Biglari, Mojtaba; Sakhaei, Ali; Ganji, Davood Domairy; Akbarzadeh, Sanaz; Rezvani, Abdollad

    2016-09-01

    The effect of local thermal nonequilibrium on the steady state heat conduction in metal foam tube heat exchanger as a porous layer in the presence of internal heat generated by considering the thermal conductivity coefficient as a function of temperature was investigated. A two temperature model is investigated by using reconstruction of variational iteration method (RVIM). The obtained results from RVIM are compared with the numerical results of Maple. These comparisons reveal that RVIM is a very powerful and precise approach to solve nonlinear ordinary differential equations and there is a good agreement between them. In this study, the effects of porosity and internal heat generation on the temperature distribution in the solid and liquid phases are presented.

  11. Application of the cis-regulatory region of a heat-shock protein 70 gene to heat-inducible gene expression in the ascidian Ciona intestinalis.

    PubMed

    Kawaguchi, Akane; Utsumi, Nanami; Morita, Maki; Ohya, Aya; Wada, Shuichi

    2015-01-01

    Temporally controlled induction of gene expression is a useful technique for analyzing gene function. To make such a technique possible in Ciona intestinalis embryos, we employed the cis-regulatory region of the heat-shock protein 70 (HSP70) gene Ci-HSPA1/6/7-like for heat-inducible gene expression in C. intestinalis embryos. We showed that Ci-HSPA1/6/7-like becomes heat shock-inducible by the 32-cell stage during embryogenesis. The 5'-upstream region of Ci-HSPA1/6/7-like, which contains heat-shock elements indispensable for heat-inducible gene expression, induces the heat shock-dependent expression of a reporter gene in the whole embryo from the 32-cell to the middle gastrula stages and in progressively restricted areas of embryos in subsequent stages. We assessed the effects of heat-shock treatments in different conditions on the normality of embryos and induction of transgene expression. We evaluated the usefulness of this technique through overexpression experiments on the well-characterized, developmentally relevant gene, Ci-Bra, and showed that this technique is applicable for inferring the gene function in C. intestinalis.

  12. Production of general purpose heat source (GPHS) using advanced manufacturing methods

    NASA Astrophysics Data System (ADS)

    Miller, Roger G.

    1996-03-01

    Mankind will continue to explore the stars through the use of unmanned space craft until the technology and costs are compatible with sending travelers to the outer planets of our solar system and beyond. Unmanned probes of the present and future will be necessary to develop the necessary technologies and obtain information that will make this travel possible. Because of the significant costs incurred, the use of modern manufacturing technologies must be used to lower the investment needed even when shared by international partnerships. For over the last 30 years, radioisotopes have provided the heat from which electrical power is extracted. Electric power for future spacecraft will be provided by either Radioisotope Thermoelectric Generators (RTG), Radioisotopic Thermophotovoltaic systems (RTPV), radioisotope Stirling systems, or a combination of these. All of these systems will be thermally driven by General Purpose Heat Source (GPHS) fueled clad in some configuration. The GPHS clad contains a 238PuO2 pellet encapsulated in an iridium alloy container. Historically, the fabrication of the iridium alloy shells has been performed at EG&G Mound and Oak Ridge National Laboratory (ORNL), and girth welding at Westinghouse Savannah River Corporation (WSRC) and Los Alamos National Laboratory (LANL). This paper will describe the use of laser processing for welding, drilling, cutting, and machining with other manufacturing methods to reduce the costs of producing GPHS fueled clad components and compléted assemblies. Incorporation of new quality technologies will compliment these manufacturing methods to reduce cost.

  13. Geothermal(Ground-Source)Heat Pumps: Market Status, Barriers to Adoption, and Actions to Overcome Barriers

    SciTech Connect

    Hughes, Patrick

    2008-12-01

    More effective stewardship of our resources contributes to the security, environmental sustainability, and economic well-being of the nation. Buildings present one of the best opportunities to economically reduce energy consumption and limit greenhouse gas emissions. Geothermal heat pumps (GHPs), sometimes called ground-source heat pumps, have been proven capable of producing large reductions in energy use and peak demand in buildings. However, GHPs have received little attention at the policy level as an important component of a national strategy. Have policymakers mistakenly overlooked GHPs, or are GHPs simply unable to make a major contribution to the national goals for various reasons? This brief study was undertaken at DOE's request to address this conundrum. The scope of the study includes determining the status of global GHP markets and the status of the GHP industry and technology in the United States, assembling previous estimates of GHP energy savings potential, identifying key barriers to application of GHPs, and identifying actions that could accelerate market adoption of GHPs. The findings are documented in this report along with conclusions and recommendations.

  14. Alternative Energy Sources for Stratospheric Heating in the Atmospheres of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Marley, Mark S.; Zahnle, K.; Fortney, J.; Lodders, K.; Freedman, R.

    2009-05-01

    Spitzer Space Telescope observations of the transiting hot Jupiter exoplanets have revealed that some possess hot stratospheres, well in excess of the planetary equilibrium temperatures. Stratospheres are a commonplace attribute of solar system planetary atmospheres and are often heated by absorption of incident UV flux by photochemically produced species. Hubeny et al. (2003) and Fortney et al. (2008), however, suggested that strong optical absorption by equilibrium gaseous atmospheric TiO and VO could provide the necessary energy source for at least some hot Jupiters. Fortney et al. in fact suggested that hot Jupiters might be spectroscopically classified on the basis of the presence or absence of these species into pM and pL spectral classes, analogously to ultracool dwarfs. However there are difficulties with this mechanism, most notably that TiO and VO may condense out into a refractory cloud layer relatively deeply in the atmosphere of even very hot giant planets. Guided by the prediction of Zahnle et al. (2009) that sulfur photochemistry will produce copious S2 in hot Jupiter atmospheres, we explore the heating potential of this and other photochemical species. We find that sulfur products, in at least some cases, may provide an important component of the stratospheric energy budget. This prediction may be tested by UV transit spectroscopy.

  15. Moisture content of PuO/sub 2/ fuel used for the milliwatt generator heat source

    SciTech Connect

    Zanotelli, W.A.

    1980-01-31

    The determination of the moisture content of /sup 238/Pu dioxide fuel for use in Milliwatt Generator heat sources was studied in an attempt to more clearly define the production fuel preloading procedures. The study indicated that water was not present or being adsorbed at various steps of the process (or during storage) that could lead to compatibility problems during pretreatment or long-term storage. The moisture content of the plutonium dioxide was analyzed by a commercial moisture analyzer. The moisture content at all steps of the process including storage averaged from 0.002% to 0.005%. The moisture content of the plutonium dioxide exposed to moist atmosphere for 7 days was 0.001%. These values indicated that no significant amount of moisture was adsorbed by the plutonium dioxide fuel charges. The only significant moisture content found was an average of 3.47%, after self-calcination. This was expected since no additional steps, other than self-heating of the fuel, are taken to remove the water.

  16. Assessment of antifreeze solutions for ground-source heat pump systems

    SciTech Connect

    Heinonen, E.W.; Tapscott, R.E.; Wildin, M.W.; Beall, A.N.

    1997-12-31

    This paper assesses the risks of using six different fluids (methanol, ethanol, aqueous potassium acetate, propylene glycol, aqueous calcium magnesium acetate, and aqueous urea) as antifreezes in ground-source heat pump (GSHP) systems. Areas assessed included fire hazard; corrosion and leakage; health hazard; environmental; detailed heat pump system analysis, resulting in predictions of annual energy use, life-cycle cost, and power plant emissions; and regulatory risk to future use. For each area, each antifreeze was rated as having either significant potential for problems, minor potential for problems, or little or no potential for problems. Propylene glycol had low risk in all areas, despite having higher energy use; potassium acetate, calcium magnesium acetate, and urea had low to medium risk in all areas except leakage, which was high for all three fluids, and corrosion, which was high for urea; ethanol and methanol had high fire risk in their pure forms (but low risk in diluted form) and corrosion problems with iron compounds. In addition, ethanol had high environmental and health risks.

  17. Enhancement of single-phase heat transfer and critical heat flux from an ultra-high-flux simulated microelectronic heat source to a rectangular impinging jet of dielectric liquid

    SciTech Connect

    Wadsworth, D.C.; Mudawar, I. )

    1992-08-01

    Jet impingement is encountered in numerous applications demanding high heating or cooling fluxes. Examples include annealing of metal sheets and cooling of turbine blades, x-ray medical devices, laser weapons, and fusion blankets. The attractive heat transfer attributes of jet impingement have also stimulated research efforts on cooling of high-heat-flux microelectronic devices. These devices are fast approaching heat fluxes in excess of 100 W/cm[sup 2], which have to be dissipated using coolants that are both electrically and chemically compatible with electronic components. Unfortunately, fluids satisfying these requirements tend to possess poor transport properties, creating a need for significant enhancement in the heat transfer coefficient by such means as increased coolant flow rate and phase change. The cooling problem is compounded by a need to cool large arrays of heat sources in minimal volume, and to reduce the spacing between adjacent circuit boards. These requirements place severe constraints on the packaging of jet impingement cooling hardware.

  18. Development of a Remotely-sensed Soil Heat Flux Parameterization for Natural Landscapes in Semi-arid Regions

    NASA Astrophysics Data System (ADS)

    Kim, J.; Scott, R.; Hogue, T.

    2007-12-01

    Due to the difficulties in directly measuring soil heat flux (G), research on empirical estimation has moved toward use of a strong association between soil heat flux and net radiation (Rnet). The majority of these studies are concentrated on the estimation of soil heat flux from mature agricultural areas in semi-arid regions due to the high demand for irrigation water. However, natural land surfaces, the largest fraction of semi-arid and arid regions, have not been well studied with regards to soil heat flux estimation. Therefore, application of the previously developed empirical equations to natural land surfaces results in large uncertainty in soil heat flux estimates. This study explores development of an empirical relationship that is well-suited for natural landscapes within semi-arid areas in order to provide a more thorough assessment of regional evaporation (i.e. water consumption) in water-limited regions. Particularly, we seek to develop an empirical relationship between soil heat flux and net radiation when observations from the mid-day polar orbiting satellites (i.e. Terra/Aqua) are available. MODIS-derived components such as vegetation indices, albedo and surface temperature are being used to characterize this relationship over a set of flux tower sites in southern Arizona. Evaluation of existing soil heat flux schemes as well as results from validation of a new formulation suitable for use in natural landscapes within semi-arid regions will be presented.

  19. Effect of nose shape on three-dimensional stagnation region streamlines and heating rates

    NASA Technical Reports Server (NTRS)

    Hassan, Basil; Dejarnette, Fred R.; Zoby, E. V.

    1991-01-01

    A new method for calculating the three-dimensional inviscid surface streamlines and streamline metrics using Cartesian coordinates and time as the independent variable of integration has been developed. The technique calculates the streamline from a specified point on the body to a point near the stagnation point by using a prescribed pressure distribution in the Euler equations. The differential equations, which are singular at the stagnation point, are of the two point boundary value problem type. Laminar heating rates are calculated using the axisymmetric analog concept for three-dimensional boundary layers and approximate solutions to the axisymmetric boundary layer equations. Results for elliptic conic forebody geometries show that location of the point of maximum heating depends on the type of conic in the plane of symmetry and the angle of attack, and that this location is in general different from the stagnation point. The new method was found to give smooth predictions of heat transfer in the nose region where previous methods gave oscillatory results.

  20. Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater Part 1: Southern and South Central Climate Zones

    SciTech Connect

    Geoghegan, Patrick J; Shen, Bo; Keinath, Christopher M.; Garrabrant, Michael A.

    2016-01-01

    Commercial hot water heating accounts for approximately 0.78 Quads of primary energy use with 0.44 Quads of this amount from natural gas fired heaters. An ammonia-water based commercial absorption system, if fully deployed, could achieve a high level of savings, much higher than would be possible by conversion to the high efficiency nonheat-pump gas fired alternatives. In comparison with air source electric heat pumps, the absorption system is able to maintain higher coefficients of performance in colder climates. The ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. A thermodynamic model of a single effect ammonia-water absorption system for commercial space and water heating was developed, and its performance was investigated for a range of ambient and return water temperatures. This allowed for the development of a performance map which was then used in a building energy modeling software. Modeling of two commercial water heating systems was performed; one using an absorption heat pump and another using a condensing gas storage system. The energy and financial savings were investigated for a range of locations and climate zones in the southern and south central United States. A follow up paper will analyze northern and north/central regions. Results showed that the system using an absorption heat pump offers significant savings.