Science.gov

Sample records for regional paddy field

  1. Paddy field, groundwater and land subsidence

    SciTech Connect

    Wen, L.J.

    1995-12-31

    Through many years of research and technical interchange both at home and abroad, it is commonly recognized that paddy fields possess the functions of micro-climate adjustment, flood detection and prevention, soil and water conservation, river-flow stabilization, soil salinization prevention, water purification, groundwater recharge, rural area beautification and environmental protection which are all beneficial to the public. In recent years, the global environmental problems have become a series concern throughout the world. These include the broken ozone layer, green house effects, acid rain, land desertion, tropical rain forest disappearing etc. Among them, rain forest disappearing draws great attention. Both rain forests and paddy fields are in tropical areas. They have similar functions and are disappearing because of economic pressure. This paper describes the special functions of paddy fields on water purification, ground water recharge and prevention of land subsidence, and reiterates groundwater utilization and land subsidence prevention measures. In view of the importance of groundwater resources, paddy fields, which can not be replaced by any other artificial groundwater recharge facilities, should not be reduced in acreage, nor can they be left idle. Paddy fields shall be properly maintained and managed in order to strengthen their special functions in the years to come even under heavy pressure from foreign countries.

  2. Progress in the paddy field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice feeds around 3.5 billion people and provides a significant proportion of calories for many of the world’s poor. The USA is a major producer and exporter of rice. The USDA/ARS Dale Bumpers National Rice Research Center (DBNRRC) is located in the heart of the southern USA rice growing region in A...

  3. [Runoff Pollution Experiments of Paddy Fields Under Different Irrigation Patterns].

    PubMed

    Zhou, Jing-wen; Su, Bao-lin; Huang, Ning-bo; Guan, Yu-tang; Zhao, Kun

    2016-03-15

    To study runoff and non-point source pollution of paddy fields and to provide a scientific basis for agricultural water management of paddy fields, paddy plots in the Jintan City and the Liyang City were chosen for experiments on non-point source pollution, and flood irrigation and intermittent irrigation patterns were adopted in this research. The surface water level and rainfall were observed during the growing season of paddies, and the runoff amount from paddy plots and loads of total nitrogen (TN) and total phosphorus (TP) were calculated by different methods. The results showed that only five rain events of totally 27 rainfalls and one artificially drainage formed non-point source pollution from flood irrigated paddy plot, which resulted in a TN export coefficient of 49.4 kg · hm⁻² and a TP export coefficient of 1.0 kg · hm⁻². No any runoff event occurred from the paddy plot with intermittent irrigation even in the case of maximum rainfall of 95.1 mm. Runoff from paddy fields was affected by water demands of paddies and irrigation or drainage management, which was directly correlated to surface water level, rainfall amount and the lowest ridge height of outlets. Compared with the flood irrigation, intermittent irrigation could significantly reduce non-point source pollution caused by rainfall or artificial drainage. PMID:27337888

  4. Effect of paddy-upland rotation on methanogenic archaeal community structure in paddy field soil.

    PubMed

    Liu, Dongyan; Ishikawa, Hiroki; Nishida, Mizuhiko; Tsuchiya, Kazunari; Takahashi, Tomoki; Kimura, Makoto; Asakawa, Susumu

    2015-01-01

    Methanogenic archaea are strict anaerobes and demand highly reduced conditions to produce methane in paddy field soil. However, methanogenic archaea survive well under upland and aerated conditions in paddy fields and exhibit stable community. In the present study, methanogenic archaeal community was investigated in fields where paddy rice (Oryza sativa L.) under flooded conditions was rotated with soybean (Glycine max [L.] Merr.) under upland conditions at different rotation histories, by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR methods targeting 16S rRNA and mcrA genes, respectively. Soil samples collected from the fields before flooding or seeding, during crop cultivation and after harvest of crops were analyzed. The abundance of the methanogenic archaeal populations decreased to about one-tenth in the rotational plots than in the consecutive paddy (control) plots. The composition of the methanogenic archaeal community also changed. Most members of the methanogenic archaea consisting of the orders Methanosarcinales, Methanocellales, Methanomicrobiales, and Methanobacteriales existed autochthonously in both the control and rotational plots, while some were strongly affected in the rotational plots, with fatal effect to some members belonging to the Methanosarcinales. This study revealed that the upland conversion for one or longer than 1 year in the rotational system affected the methanogenic archaeal community structure and was fatal to some members of methanogenic archaea in paddy field soil. PMID:25113614

  5. Spatial landuse planning using land evaluation and dynamic system to define sustainable area of paddy field: Case study in Karawang Regency, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Widiatmaka, Widiatmaka; Ambarwulan, Wiwin; Firmansyah, Irman; Munibah, Khursatul; Santoso, Paulus B. K.

    2015-04-01

    Indonesia is the country with the 4th largest population in the worlds; the population reached more than 237 million people. With rice as the staple food for more than 95 percent of the population, there is an important role of paddy field in Indonesian food security. Actually, paddy field in Java has produced 52,6% of the total rice production in Indonesia, showing the very high dependence of Indonesia on food production from paddy fields in Java island. Karawang Regency is one of the regions in West Java Province that contribute to the national food supply, due to its high soil fertility and its high extent of paddy field. Dynamics of land use change in this region are high because of its proximity to urban area; this dynamics has led to paddy field conversion to industry and residential landuse, which in turn change the regional rice production capacity. Decreasing paddy field landuse in this region could be serve as an example case of the general phenomena which occurred in Javanese rice production region. The objective of this study were: (i) to identify the suitable area for paddy field, (ii) to modelize the decreasing of paddy field in socio-economic context of the region, and (iii) to plan the spatial priority area of paddy field protection according to model prediction. A land evaluation for paddy was completed after a soil survey, while IKONOS imagery was analyzed to delineate paddy fields. Dynamic system model of paddy field land use is built, and then based on the model built, the land area of paddy field untill 2040 in some scenarios was developped. The research results showed that the land suitability class for paddy fields in Karawang Regency ranged from very suitable (S1) to marginally suitable (S3), with various land characteristics as limiting factors. The model predicts that if the situation of paddy field land use change continues in its business as usual path, paddy field area that would exist in the region in 2040 will stay half of the recent

  6. Depth distribution of radiocesium in Fukushima paddy fields three years after the accident

    NASA Astrophysics Data System (ADS)

    Lepage, Hugo; Laceby, J. Patrick; Evrard, Olivier; Onda, Yuichi; Lefèvre, Irène; Ayrault, Sophie

    2015-04-01

    Rice paddy fields located in the vicinity of the Fukushima Dai-Ichi Nuclear Power Plant (FDNPP) were contaminated by radioactive fallout from the March 2011 accident. Although many studies have investigated the fate of radiocesium in soil in the months following the accident, the potential migration of radiocesium in rice paddy fields requires further examination after major typhoons occurred in this region in 2011 and 2013. Further investigations are also required because paddy fields are typically comprised of Andosols, a soil type in which radiocesium has been known to potentially migrate deeper in the depth profile. To investigate the depth migration of radiocesium we collected soil cores in 10 paddy fields located less than 20 km from the FDNPP in November 2013. The maximum depth penetration of 137Cs was attributed to field maintenance (e.g. grass cutting) (97% of 137Cs in the upper 5-cm) and farming operations (tillage/cultivation - 83% of 137Cs in the upper 5-cm). The low migration observed in undisturbed paddy fields could be attributed to the presence of phyllosilicates that were detected by X-ray diffraction in Andosols. As radiocesium is mainly located in the uppermost soil layers, we recommend the rapid removal of these upper layers (e.g. the top 5 cm) to reduce radiocesium export during erosive events such as the major typhoons known to impact the region. Further research is required to thoroughly understand the impacts of erosion on the transfer and migration of radiocesium throughout the Fukushima Prefecture.

  7. Emission of Methyl halides from Japanese rice paddy fields.

    NASA Astrophysics Data System (ADS)

    Komori, D.; Sudo, S.; Akiyama, H.; Nishimura, S.; Yagi, K.; Hayashi, K.; Tanaka, Y.; Yamada, K.; Toyoda, S.; Koba, K.; Yoshida, N.

    2005-12-01

    Rice paddy field is one of emission source of methyl halide (MeX: X = Cl, Br, I) which are concerned about stratospheric ozone depletion and enhanced aerosol formation. Although significant amounts of MeX which are estimated to be emitted from rice paddies affect to regional and global atmospheric environment, understandings and recent estimations of production and consumption mechanisms of MeX have large uncertainty with depending on environmental conditions. In this study, new flux data sets of MeX emissions from Japanese rice paddy fields were reported. The fluxes of MeX were compared with environmental data sets which included meteorological parameters (ambient air temperature, ambient MeX concentrations, humidity, solar irradiance), soil parameters (soil temperature, pH, redox potential, soil water contents) to understand the emission mechanisms of MeX. Gas fluxes of C2H4 were also measured, which indicate rice plants growth and ageing. Observations of MeX flux were conducted with using automated closed chamber sampling system in Tsukuba, Japan, during a cultivation season of rice from May 2005 to September 2005. Rice plants were cultivated under intermittent irrigation. Soil gases were collected manually by using evacuated 1L stainless canisters once a week and every 4 hours in certain day during this period. Other environmental parameters were automatically obtained every 10 minutes. Seasonal variation of gas emissions of C2H4 were observed in maximum tillering phase and heading phase. In addition, clearly diurnal flux trends of C2H4 depending on solar irradiance were observed. These results suggested rice plant was remarkably growing in these phase. Similarly, large amounts of gas emissions of MeBr and MeI were observed in the same phase. Diurnal flux trends of MeBr and MeI were associated with solar irradiance. Results were generally consistent with previous reports (Redeker et al., 2000). On the other hand, MeCl flux was increased in later periods than

  8. Groundwater impact on methane emissions from flooded paddy fields

    NASA Astrophysics Data System (ADS)

    Rizzo, A.; Boano, F.; Revelli, R.; Ridolfi, L.

    2015-09-01

    High methane (CH4) fluxes emitted from paddy fields strongly contribute to the accumulation of greenhouse gases into the atmosphere, compromising the eco-compatibility of one of the most important world foods. A strong link exists between infiltration rates of irrigation water and CH4 emissions. Since depth to the groundwater table affects infiltration rates, a relevant groundwater impact is expected on CH4 emissions from paddy fields. In this work, a theoretical approach is adopted to investigate the aquifer effect on CH4 dynamics in paddies. Infiltration rates are strongly affected by the development of different connection states between aquifer and irrigation ponded water. A strong reduction in infiltration rates results from a water table near to the soil surface, when the system is hydraulically connected. When the groundwater level increases, the infiltration rate reduction due to the switch from disconnected to connected state promotes a relevant increase of CH4 emissions. This is due to a strong reduction of dissolved organic carbon (DOC) percolation, which leads to higher DOC availability for microbial CH4 production and, consequently, higher CH4 emissions. Our simulations show that CH4 fluxes can be reduced by up to 24% when groundwater level is decreased and the aquifer is disconnected from ponding water. In paddies with shallow aquifers, lowering the water table with a drainage system could thus represent a promising CH4 mitigation option.

  9. Evaluating health of paddy rice field ecosystem with remote sensing and GIS in Lower Yangtze River Plain, China

    NASA Astrophysics Data System (ADS)

    Li, Jingjing; Qin, Zhihao; Li, Wenjuan; Lin, Lu

    2008-10-01

    A paddy rice ecosystem is a farming system composed of paddy, animals, microbes and other environmental factors in specific time and space, with particular temporal and spatial dynamics. Since paddy rice is a main grain crop to feed above half of population in China, the performance of paddy rice ecosystem is highly concerned to yield level of paddy and food supply safety in China. Therefore, monitoring the performance of paddy rice ecosystem is very important to obtain the required information for evaluation of ecosystem health. In the study we intend to develop an approach to monitor the ecosystem performance spatially and dynamically in a regional scale using MODIS remote sensing data and GIS spatial mapping. On the basis of key factors governing the paddy rice ecosystem, we accordingly develop the following three indicators for the evaluation: Crop growing index (CGI), environmental Index (EI), and pests-diseases index (PDI). Then, we integrated the three indicators into a model with different weight coefficients to calculate Comprehensive ecosystem health index (CEHI) to evaluate the performance and functioning of paddy rice ecosystem in a regional scale. CGI indicates the health status of paddy rice calculated from the normalizing enhanced vegetation Index (EVI) retrieved from MODIS data. EI is estimated from temperature Index (TI) and precipitation Index (PI) indicating heat and water stress on the rice field. PDI reflects the damage brought by pests and diseases, which can be estimated using the information obtained from governmental websites. Applying the approach to Lower Yangtze River Plain, we monitor and evaluate the performance of paddy rice ecosystem in various stages of rice growing period in 2006. The results indicated that the performance of the ecosystem was generally very encouraging. During booting stage and heading and blooming stage, the health level was the highest in Anhui province, which is the main paddy rice producer in the region

  10. Urbanization dramatically altered the water balances of a paddy field dominated basin in Southern China

    NASA Astrophysics Data System (ADS)

    Hao, L.; Sun, G.; Liu, Y.; Wan, J.; Qin, M.; Qian, H.; Liu, C.; John, R.; Fan, P.; Chen, J.

    2015-02-01

    Rice paddy fields provide important ecosystem services (e.g., food production, water retention, carbon sequestration) to a large population globally. However, these benefits are declining as a result of rapid environmental and socioeconomic transformations characterized by population growth, urbanization, and climate change in many Asian countries. This case study examined the responses of streamflow and watershed water balances to the decline of rice paddy fields due to urbanization in the Qinhuai River Basin in southern China where massive industrialization has occurred in the region during the past three decades. We found that streamflow increased by 58% and evapotranspiration (ET) decreased by 23% during 1986-2013 as a result of an increase in urban areas of three folds and reduction of rice paddy field by 27%. Both highflows and lowflows increased significantly by about 28% from 2002 to 2013. The increases in streamflow were consistent with the decreases in ET and leaf area index monitored by independent remote sensing MODIS data. The reduction in ET and increase in streamflow was attributed to the large cropland conversion that overwhelmed the effects of regional climate warming and climate variability. Converting traditional rice paddy fields to urban use dramatically altered land surface conditions from a water-dominated to a human-dominated landscape, and thus was considered as one of the extreme types of contemporary hydrologic disturbances. The ongoing large-scale urbanization in the rice paddy-dominated regions in the humid southern China, and East Asia, will likely elevate stormflow volume, aggravate flood risks, and intensify urban heat island effects. Understanding the linkage between land use change and changes in hydrological processes is essential for better management of urbanizing watersheds.

  11. Evolution of regional to global paddy rice mapping methods: A review

    NASA Astrophysics Data System (ADS)

    Dong, Jinwei; Xiao, Xiangming

    2016-09-01

    Paddy rice agriculture plays an important role in various environmental issues including food security, water use, climate change, and disease transmission. However, regional and global paddy rice maps are surprisingly scarce and sporadic despite numerous efforts in paddy rice mapping algorithms and applications. With the increasing need for regional to global paddy rice maps, this paper reviewed the existing paddy rice mapping methods from the literatures ranging from the 1980s to 2015. In particular, we illustrated the evolution of these paddy rice mapping efforts, looking specifically at the future trajectory of paddy rice mapping methodologies. The biophysical features and growth phases of paddy rice were analyzed first, and feature selections for paddy rice mapping were analyzed from spectral, polarimetric, temporal, spatial, and textural aspects. We sorted out paddy rice mapping algorithms into four categories: (1) Reflectance data and image statistic-based approaches, (2) vegetation index (VI) data and enhanced image statistic-based approaches, (3) VI or RADAR backscatter-based temporal analysis approaches, and (4) phenology-based approaches through remote sensing recognition of key growth phases. The phenology-based approaches using unique features of paddy rice (e.g., transplanting) for mapping have been increasingly used in paddy rice mapping. Current applications of these phenology-based approaches generally use coarse resolution MODIS data, which involves mixed pixel issues in Asia where smallholders comprise the majority of paddy rice agriculture. The free release of Landsat archive data and the launch of Landsat 8 and Sentinel-2 are providing unprecedented opportunities to map paddy rice in fragmented landscapes with higher spatial resolution. Based on the literature review, we discussed a series of issues for large scale operational paddy rice mapping.

  12. Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil.

    PubMed

    Dittmar, Jessica; Voegelin, Andreas; Roberts, Linda C; Hug, Stephan J; Saha, Ganesh C; Ali, M Ashraf; Badruzzaman, A Borhan M; Kretzschmar, Ruben

    2007-09-01

    Arsenic-rich groundwater from shallow tube wells is widely used for the irrigation of boro rice in Bangladesh and West Bengal. In the long term this may lead to the accumulation of As in paddy soils and potentially have adverse effects on rice yield and quality. In the companion article in this issue, we have shown that As input into paddy fields with irrigation water is laterally heterogeneous. To assess the potential for As accumulation in soil, we investigated the lateral and vertical distribution of As in rice field soils near Sreenagar (Munshiganj, Bangladesh) and its changes over a 1 year cycle of irrigation and monsoon flooding. At the study site, 18 paddy fields are irrigated with water from a shallow tube well containing 397 +/- 7 microg L(-1) As. The analysis of soil samples collected before irrigation in December 2004 showed that soil As concentrations in paddy fields did not depend on the length of the irrigation channel between well and field inlet. Within individual fields, however, soil As contents decreased with increasing distance to the water inlet, leading to highly variable topsoil As contents (11-35 mg kg(-1), 0-10 cm). Soil As contents after irrigation (May 2005) showed that most As input occurred close to the water inlet and that most As was retained in the top few centimeters of soil. After monsoon flooding (December 2005), topsoil As contents were again close to levels measured before irrigation. Thus, As input during irrigation was at least partly counteracted by As mobilization during monsoon flooding. However, the persisting lateral As distribution suggests net arsenic accumulation over the past 15 years. More pronounced As accumulation may occur in regions with several rice crops per year, less intense monsoon flooding, or different irrigation schemes. The high lateral and vertical heterogeneity of soil As contents must be taken into account in future studies related to As accumulation in paddy soils and potential As transfer into rice.

  13. Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil.

    PubMed

    Dittmar, Jessica; Voegelin, Andreas; Roberts, Linda C; Hug, Stephan J; Saha, Ganesh C; Ali, M Ashraf; Badruzzaman, A Borhan M; Kretzschmar, Ruben

    2007-09-01

    Arsenic-rich groundwater from shallow tube wells is widely used for the irrigation of boro rice in Bangladesh and West Bengal. In the long term this may lead to the accumulation of As in paddy soils and potentially have adverse effects on rice yield and quality. In the companion article in this issue, we have shown that As input into paddy fields with irrigation water is laterally heterogeneous. To assess the potential for As accumulation in soil, we investigated the lateral and vertical distribution of As in rice field soils near Sreenagar (Munshiganj, Bangladesh) and its changes over a 1 year cycle of irrigation and monsoon flooding. At the study site, 18 paddy fields are irrigated with water from a shallow tube well containing 397 +/- 7 microg L(-1) As. The analysis of soil samples collected before irrigation in December 2004 showed that soil As concentrations in paddy fields did not depend on the length of the irrigation channel between well and field inlet. Within individual fields, however, soil As contents decreased with increasing distance to the water inlet, leading to highly variable topsoil As contents (11-35 mg kg(-1), 0-10 cm). Soil As contents after irrigation (May 2005) showed that most As input occurred close to the water inlet and that most As was retained in the top few centimeters of soil. After monsoon flooding (December 2005), topsoil As contents were again close to levels measured before irrigation. Thus, As input during irrigation was at least partly counteracted by As mobilization during monsoon flooding. However, the persisting lateral As distribution suggests net arsenic accumulation over the past 15 years. More pronounced As accumulation may occur in regions with several rice crops per year, less intense monsoon flooding, or different irrigation schemes. The high lateral and vertical heterogeneity of soil As contents must be taken into account in future studies related to As accumulation in paddy soils and potential As transfer into rice

  14. Mobility and Bioavailability of Technetium in Rice Paddy Fields

    SciTech Connect

    Uchida, S.; Tagami, K.

    2003-02-24

    Field observations and radiotracer experiments were carried out to investigate the behavior of 99Tc in paddy fields. The concentrations of global fallout 99Tc in soil collected from paddy fields in Japan were 6-88 milli-bequerels per kilogram (mBq/kg)-dry and activity ratios of 99Tc to 137Cs ranged from 1.1 x 10-3 to 7.0 x 10-3 with an average of (4.8 {+-} 2.1) x 10-3. (The theoretical activity ratio from nuclear fission yield is presently calculated as 3.3 x 10-4 with correction for radioactive decay.) This result implies that there was a tendency for 99Tc to accumulate in rice paddy fields. To understand the mechanisms of the accumulation, a sequential extraction method was applied over a 6-month period to waterlogged soils contaminated with TcO4-. From the results, it was clear that the TcO4- in soil under waterlogged conditions was readily changed to other insoluble physicochemical forms, such as TcO2, TcS2 and organically bound forms.

  15. [Response of mineralization of dissolved organic carbon to soil moisture in paddy and upland soils in hilly red soil region].

    PubMed

    Chen, Xiang-Bi; Wang, Ai-Hua; Hu, Le-Ning; Huang, Yuan; Li, Yang; He, Xun-Yang; Su, Yi-Rong

    2014-03-01

    Typical paddy and upland soils were collected from a hilly subtropical red-soil region. 14C-labeled dissolved organic carbon (14C-DOC) was extracted from the paddy and upland soils incorporated with 14C-labeled straw after a 30-day (d) incubation period under simulated field conditions. A 100-d incubation experiment (25 degrees C) with the addition of 14C-DOC to paddy and upland soils was conducted to monitor the dynamics of 14C-DOC mineralization under different soil moisture conditions [45%, 60%, 75%, 90%, and 105% of the field water holding capacity (WHC)]. The results showed that after 100 days, 28.7%-61.4% of the labeled DOC in the two types of soils was mineralized to CO2. The mineralization rates of DOC in the paddy soils were significantly higher than in the upland soils under all soil moisture conditions, owing to the less complex composition of DOC in the paddy soils. The aerobic condition was beneficial for DOC mineralization in both soils, and the anaerobic condition was beneficial for DOC accumulation. The biodegradability and the proportion of the labile fraction of the added DOC increased with the increase of soil moisture (45% -90% WHC). Within 100 days, the labile DOC fraction accounted for 80.5%-91.1% (paddy soil) and 66.3%-72.4% (upland soil) of the cumulative mineralization of DOC, implying that the biodegradation rate of DOC was controlled by the percentage of labile DOC fraction.

  16. Continuous field investigation assessing nitrogen and phosphorus emission from irrigated paddy field

    NASA Astrophysics Data System (ADS)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2016-04-01

    In order to maintain good river environment, it is very important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. Other than urban and industrial waste water, nutrient emission from agricultural activity is dominant pollution source into the river system. Rice is one of the staple products of Asia and paddy field occupies large areas in Asian countries. Rice is also widely cultivated in Japan. Paddy field occupies large areas in Japanese river basin areas. While paddy field can deteriorate river water quality by discharging fertilizer, it is also suggested that paddy field has water purification function. Regarding to nutrient emission from paddy field, existing monitored data are insufficient so as to discuss quantitatively seasonal change of material behavior including flooding season and dry season and to evaluate year round comprehensive impact from paddy field to the river system. These are not sufficient data for discussion of material flow and emission impact quantitatively as well as qualitatively. We have carried out field investigation in paddy fields in middle reach of the Tone River Basin. The aim of the survey is understanding of water and nutrient balance in paddy field. In order to understand emission impact from paddy field to river system, all input and output flow are measured to calculate nutrient balance in paddy field. Therefore we observed quantity of water flow into/from paddy field, water quality change of inflow and outflow during flooding season. We set focus on a monitoring paddy field IM, and monitored continuously water and nutrient behavior. By measuring water quality and flow rate of inflow, outflow, infiltrating water, ground water and depth of flooding water, we tried to quantitatively understand N and P cycle around paddy field including seasonal tendency, change accompanying with rainy events and occurred according to agricultural events like fertilization. At the beginning of flooding season, we

  17. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption.

    PubMed

    Meharg, Andrew A; Rahman, Md Mazibur

    2003-01-15

    Arsenic contaminated groundwater is used extensively in Bangladesh to irrigate the staple food of the region, paddy rice (Oryza sativa L.). To determine if this irrigation has led to a buildup of arsenic levels in paddy fields, and the consequences for arsenic exposure through rice ingestion, a survey of arsenic levels in paddy soils and rice grain was undertaken. Survey of paddy soils throughout Bangladesh showed that arsenic levels were elevated in zones where arsenic in groundwater used for irrigation was high, and where these tube-wells have been in operation for the longest period of time. Regression of soil arsenic levels with tube-well age was significant. Arsenic levels reached 46 microg g(-1) dry weight in the most affected zone, compared to levels below l0 microg g(-1) in areas with low levels of arsenic in the groundwater. Arsenic levels in rice grain from an area of Bangladesh with low levels of arsenic in groundwaters and in paddy soils showed that levels were typical of other regions of the world. Modeling determined, even these typical grain arsenic levels contributed considerably to arsenic ingestion when drinking water contained the elevated quantity of 0.1 mg L(-1). Arsenic levels in rice can be further elevated in rice growing on arsenic contaminated soils, potentially greatly increasing arsenic exposure of the Bangladesh population. Rice grain grown in the regions where arsenic is building up in the soil had high arsenic concentrations, with three rice grain samples having levels above 1.7 microg g(-1). PMID:12564892

  18. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption.

    PubMed

    Meharg, Andrew A; Rahman, Md Mazibur

    2003-01-15

    Arsenic contaminated groundwater is used extensively in Bangladesh to irrigate the staple food of the region, paddy rice (Oryza sativa L.). To determine if this irrigation has led to a buildup of arsenic levels in paddy fields, and the consequences for arsenic exposure through rice ingestion, a survey of arsenic levels in paddy soils and rice grain was undertaken. Survey of paddy soils throughout Bangladesh showed that arsenic levels were elevated in zones where arsenic in groundwater used for irrigation was high, and where these tube-wells have been in operation for the longest period of time. Regression of soil arsenic levels with tube-well age was significant. Arsenic levels reached 46 microg g(-1) dry weight in the most affected zone, compared to levels below l0 microg g(-1) in areas with low levels of arsenic in the groundwater. Arsenic levels in rice grain from an area of Bangladesh with low levels of arsenic in groundwaters and in paddy soils showed that levels were typical of other regions of the world. Modeling determined, even these typical grain arsenic levels contributed considerably to arsenic ingestion when drinking water contained the elevated quantity of 0.1 mg L(-1). Arsenic levels in rice can be further elevated in rice growing on arsenic contaminated soils, potentially greatly increasing arsenic exposure of the Bangladesh population. Rice grain grown in the regions where arsenic is building up in the soil had high arsenic concentrations, with three rice grain samples having levels above 1.7 microg g(-1).

  19. Heavy metals accumulation in parts of paddy Oryza sativa L. grown in paddy field adjacent to ultrabasic soil

    NASA Astrophysics Data System (ADS)

    Hadif, Waqeed Mahdi; Rahim, Sahibin Abd; Sahid, Ismail; Bhuiyan, Atiqur Rahman; Ibrahim, Izyanti

    2015-09-01

    The present study was carried out to evaluate the accumulation and translocation of heavy metals from soil around the root zone to various parts of the paddy plant, namely the roots, stems, leaves and rice grains. This study was conducted in 2014 in paddy field adjacent to ultrabasic soil (field 1 and 2) located in Ranau, Sabah and one field (Field 3) taken as control located at the UKM experimental plot in peninsular of Malaysia. The plant species used in the present investigation is Paddy Batu. The heavy metals studied were Chromium (Cr), Iron (Fe) and Nickel (Ni). Heavy metals in soil and plant were extracted by wet digestion method. Heavy metals present in paddy plants and soils extract were measured using the ICP-MS. Heavy metals concentrations in the plant parts in descending order is the root > leaves > stem > rice grain. Lower concentration of all heavy metals in soils and plant parts was shown by the control site (Field 3) in UKM Bangi. Higher concentration of heavy metals occurred in the roots compared to other above ground parts (stem, leaves, and grains) of the paddy plant in all of the paddy field. The bioaccumulation factor (BAF) of heavy metals in all locations were recorded in descending order as Ni > Cr > Fe, the BAF values for all metals in the rice grains were low, whereas the BAF values were recorded high for Ni in all locations. The results also showed that Fe was the most predominant metal ion in the roots, followed by Ni then Cr.

  20. Urbanization dramatically altered the water balances of a paddy field-dominated basin in southern China

    NASA Astrophysics Data System (ADS)

    Hao, L.; Sun, G.; Liu, Y.; Wan, J.; Qin, M.; Qian, H.; Liu, C.; Zheng, J.; John, R.; Fan, P.; Chen, J.

    2015-07-01

    Rice paddy fields provide important ecosystem services (e.g., food production, water retention, carbon sequestration) to a large population globally. However, these benefits are diminishing as a result of rapid environmental and socioeconomic transformations, characterized by population growth, urbanization, and climate change in many Asian countries. This case study examined the responses of stream flow and watershed water balances to the decline of rice paddy fields due to urbanization in the Qinhuai River basin in southern China, where massive industrialization has occurred during the past 3 decades. We found that stream flow increased by 58 % and evapotranspiration (ET) decreased by 23 % during 1986-2013 as a result of a three-fold increase in urban areas and a reduction of rice paddy fields by 27 %. Both high flows and low flows increased significantly by about 28 % from 2002 to 2013. The increases in stream flow were consistent with the decreases in ET and leaf area index monitored by independent remote sensing MODIS (Moderate Resolution Imaging Spectroradiometer) data. Attribution analysis, based on two empirical models, indicated that land-use/land-cover change contributed about 82-108 % of the observed increase in stream flow from 353 ± 287 mm yr-1 during 1986-2002 to 556 ± 145 during 2003-2013. We concluded that the reduction in ET was largely attributed to the conversion of cropland to urban use. The effects of land-use change overwhelmed the effects of regional climate warming and climate variability. Converting traditional rice paddy fields to urban use dramatically altered land surface conditions from an artificial wetland-dominated landscape to an urban land-use- dominated one, and thus was considered an extreme type of contemporary hydrologic disturbance. The ongoing large-scale urbanization of the rice paddy-dominated regions, in humid southern China and East Asia, will likely elevate storm-flow volume, aggravate flood risks, and intensify urban

  1. Residual Rate and Escape Route Preference of Juvenile Carassius auratus grandoculis Reared in Paddy Fields

    NASA Astrophysics Data System (ADS)

    Maehata, Masayoshi; Ohtsuka, Taisuke; Mizuno, Toshiaki; Kanao, Shigefumi

    Gathering paddy-reared juvenile fish (0-year fish) at the paddy's drain outlet at the time of the mid-summer drainage often results in many unharvested fish being left behind. To devise ways of reducing this wastage as much as possible, we performed two experiments during the irrigation season in modernized, consolidated paddy fields as follows. Experiment I: an investigation into the numbers of juvenile Carassius auratus grandoculis that succeeded in leaving a paddy field through the drain outlet. Experiment II: an investigation into their preferred route of escape from the paddy, either via the drain outlet or the water inlet, when both were available. In Experiment I, more than 39.1% of the number of fish that escaped from the paddy were still left behind in the paddy more than three days after the mid-summer drainage had begun. In Experiment II, most of the juveniles, i.e., 99.8% of the fish that escaped from the paddy, left from the water inlet. These results suggest that greater efficiency in reducing the numbers of unharvested juvenile fish in paddy culture may be achieved by first capturing fish at the drain outlet with the irrigation water shut off, and then partially refilling the paddy while using traps or other gear to catch the remaining fish that are attracted towards the water inlet.

  2. Field investigation to assess nutrient emission from paddy field to surface water in river catchment

    NASA Astrophysics Data System (ADS)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2015-04-01

    In order to maintain good river environment, it is remarkably important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. Our former research dealing with nutrient emission analysis in the Tone River basin area in Japan, in addition to urban and industrial waste water, nutrient emission from agricultural activity is dominant pollution source into the river system. Japanese style agriculture produces large amount of rice and paddy field occupies large areas in Japanese river basin areas. While paddy field can deteriorate river water quality by outflow of fertilizer, it is also suggested that paddy field has water purification function. As we carried out investigation in the Tone River Basin area, data were obtained which dissolved nitrogen concentration is lower in discharging water from paddy field than inflowing water into the field. Regarding to nutrient emission impact from paddy field, sufficient data are required to discuss quantitatively seasonal change of material behavior including flooding season and dry season, difference of climate condition, soil type, and rice species, to evaluate year round comprehensive impact from paddy field to the river system. In this research, field survey in paddy field and data collection relating rice production were carried out as a preliminary investigation to assess how Japanese style paddy field contributes year round on surface water quality. Study sites are three paddy fields located in upper reach of the Tone River basin area. The fields are flooded from June to September. In 2014, field investigations were carried out three times in flooding period and twice in dry period. To understand characteristics of each paddy field and seasonal tendency accompanying weather of agricultural event, short term investigations were conducted and we prepare for further long term investigation. Each study site has irrigation water inflow and outflow. Two sites have tile drainage system under the field and

  3. [Effects of different rice farming systems on paddy field weed community].

    PubMed

    Zhang, Dan; Min, Qing-Wen; Cheng, Sheng-Kui; Yang, Hai-Long; He, Lu; Jiao, Wen-Jun; Liu, Shan

    2010-06-01

    Taking the paddy fields planted with glutinous rice and hybrid rice in the traditional agricultural region in Congjiang County of Guizhou Province as the case, and by using semi-experiment combined with random sampling investigation, this paper studied the characteristics of weed community in the paddy fields under rice monoculture (R), rice-fish culture (R-F), and rice-fish-duck culture (R-F-D). Under the three rice farming systems, glutinous rice had higher capability in inhibiting weeds, compared with hybrid rice. Farming system R-F-D decreased the weed density significantly, with the control effect on Monochoia vaginalis and Rotala indica being 100%. The overall weed-inhibiting effect of R-F-D was significantly higher than that of the other farming systems. Under R-F-D, the species richness and Shannon diversity index of weed community decreased markedly, while the Pielou evenness index increased, indicating that the species composition of weed community changed greatly, and the occurrence of native dominant weed species decreased. It was concluded that R-F-D was a feasible farming system for the control of paddy field weed community.

  4. On dealing with the pollution costs in agriculture: A case study of paddy fields.

    PubMed

    Yaqubi, Morteza; Shahraki, Javad; Sabouhi Sabouni, Mahmood

    2016-06-15

    The main purpose of this study is to evaluate marginal abatement cost of the main agricultural pollutants. In this sense, we construct three indices including Net Global Warming Potential (NGWP) and Nitrogen Surplus (NS), simulated by a biogeochemistry model, and also an Environmental Impact Quotient (EQI) for paddy fields. Then, using a Data Envelopment Analysis (DEA) model, we evaluate environmental inefficiencies and shadow values of these indices. The results show that there is still room for improvement at no extra cost just through a better input management. Besides, enormous potential for pollution reduction in the region is feasible. Moreover, in paddy cultivation, marginal abatement cost of pesticides and herbicides are much bigger than nitrogen surplus and greenhouse gasses. In addition, in the status quo, the mitigation costs are irrelevant to production decisions. Finally, to deal with the private pollution costs, market-based instruments are proved to be better than command-and-control regulation.

  5. On dealing with the pollution costs in agriculture: A case study of paddy fields.

    PubMed

    Yaqubi, Morteza; Shahraki, Javad; Sabouhi Sabouni, Mahmood

    2016-06-15

    The main purpose of this study is to evaluate marginal abatement cost of the main agricultural pollutants. In this sense, we construct three indices including Net Global Warming Potential (NGWP) and Nitrogen Surplus (NS), simulated by a biogeochemistry model, and also an Environmental Impact Quotient (EQI) for paddy fields. Then, using a Data Envelopment Analysis (DEA) model, we evaluate environmental inefficiencies and shadow values of these indices. The results show that there is still room for improvement at no extra cost just through a better input management. Besides, enormous potential for pollution reduction in the region is feasible. Moreover, in paddy cultivation, marginal abatement cost of pesticides and herbicides are much bigger than nitrogen surplus and greenhouse gasses. In addition, in the status quo, the mitigation costs are irrelevant to production decisions. Finally, to deal with the private pollution costs, market-based instruments are proved to be better than command-and-control regulation. PMID:26998602

  6. Evaluating Attitudes towards Changes in Rural Landscape by Grazing Cattle on Abandoned Paddy Fields

    NASA Astrophysics Data System (ADS)

    Yasuhito, Kitai; Toshihiro, Hattori; Hiroshi, Takahashi

    The appearance of cattle grazing abandoned paddy fields can be used to evaluate attitudes towards this land-use change. The semantic differential (SD) method was used families of a university student to evaluate and compare attitudes towards five types of rural landscape: pasture, pasture grazed by cattle, rice paddy field, abandoned paddy field converted to pasture and abandoned paddy field converted to pasture grazed by cattle. Cattle grazing abandoned paddy fields were determined to have a positive effect on the landscape. However, all grazing cattle created a negative attitude because of the unclean appearance of the landscape. Grazing cattle at high stocking rates in small areas could create a negative attitude because of the oppressive appearance of the landscape. The acceptance of grazing cattle was lower if the animals ware newly introduced to the landscape.

  7. Investigation of spatial distribution of radiocesium in a paddy field as a potential sink.

    PubMed

    Tanaka, Kazuya; Iwatani, Hokuto; Takahashi, Yoshio; Sakaguchi, Aya; Yoshimura, Kazuya; Onda, Yuichi

    2013-01-01

    Surface soils, under various land uses, were contaminated by radionuclides that were released by the Fukushima Daiichi Nuclear Power Plant accident. Because paddy fields are one of the main land uses in Japan, we investigated the spatial distribution of radiocesium and the influence of irrigation water in a paddy field during cultivation. Soil core samples collected at a paddy field in Fukushima showed that plowing had disturbed the original depth distribution of radiocesium. The horizontal distribution of radiocesium did not show any evidence for significant influence of radiocesium from irrigation water, and its accumulation within the paddy field, since the original amount of radiocesium was much larger than was added into the paddy field by irrigation water. However, it is possible that rainfall significantly increases the loading of radiocesium.

  8. Environmental behavior of profenofos under paddy field conditions.

    PubMed

    He, Jiang; Fan, Mingtao; Liu, Xianjin

    2010-06-01

    The environmental behavior of 40% profenofos EC under paddy field conditions was studied. After application of 40% profenofos EC at 900 g a.i./ha level, the initial deposits of profenofos on rice plant, soil and water were found to be 32.700, 0.224 and 3.854 mg/kg respectively. Half-lives (t(1/2)) of profenofos on those substrates were observed to be 5.47, 3.75 and 3.42 days respectively. The residue levels of profenofos on rice straw, soil and rice grain were significantly affected by the dosage and frequency applied. The obtained results might help to recommend the suitable dose and calculate the safety period of profenofos application. PMID:20437027

  9. Temporal changes of radiocesium in irrigated paddy fields and its accumulation in rice plants in Fukushima.

    PubMed

    Yang, Baolu; Onda, Yuichi; Wakiyama, Yoshifumi; Yoshimura, Kazuya; Sekimoto, Hitoshi; Ha, Yiming

    2016-01-01

    About half of the total paddy field area, which is the dominant agricultural land in Fukushima Prefecture, was contaminated by radiocesium released by the Fukushima Daiichi Nuclear Power Plant accident. In this study, we investigated the temporal changes of radiocesium in soil, irrigation water, and rice plant in two adjacent rice paddies, with and without surface-soil-removal, in Fukushima Prefecture for over three years (2012-2014) after the nuclear accident. Our results showed that radiocesium migrated into 24-28 cm soil layers and that the activity concentration of radiocesium in paddy soils showed a significant reduction in 2014. The newly added radiocesium to paddies through irrigation water contributed only a maximum value of 0.15% and 0.75% of the total amount present in control and decontaminated paddies, respectively, throughout the study period. The radiocesium activity concentration in suspended sediment in irrigation water exponentially decreased, and the effective half-lives (Teff) for (137)Cs and (134)Cs were 1.3 and 0.9 years, respectively. Additionally, the average suspended sediment concentration in irrigation water increased between 2012 and 2014, suggesting that enhanced soil erosion had occurred in the surrounding environment. Radiocesium accumulation in rice plant also decreased with time in both paddies. However, the concentration ratio of radiocesium for rice plant in the decontaminated paddy increased compared with control paddy, despite approximately 96% of fallout radiocesium removed in paddy soil. Further analysis is required to clarify the reasons of high concentration ratio of radiocesium for rice plant in the decontaminated paddy. PMID:26561453

  10. Temporal changes of radiocesium in irrigated paddy fields and its accumulation in rice plants in Fukushima.

    PubMed

    Yang, Baolu; Onda, Yuichi; Wakiyama, Yoshifumi; Yoshimura, Kazuya; Sekimoto, Hitoshi; Ha, Yiming

    2016-01-01

    About half of the total paddy field area, which is the dominant agricultural land in Fukushima Prefecture, was contaminated by radiocesium released by the Fukushima Daiichi Nuclear Power Plant accident. In this study, we investigated the temporal changes of radiocesium in soil, irrigation water, and rice plant in two adjacent rice paddies, with and without surface-soil-removal, in Fukushima Prefecture for over three years (2012-2014) after the nuclear accident. Our results showed that radiocesium migrated into 24-28 cm soil layers and that the activity concentration of radiocesium in paddy soils showed a significant reduction in 2014. The newly added radiocesium to paddies through irrigation water contributed only a maximum value of 0.15% and 0.75% of the total amount present in control and decontaminated paddies, respectively, throughout the study period. The radiocesium activity concentration in suspended sediment in irrigation water exponentially decreased, and the effective half-lives (Teff) for (137)Cs and (134)Cs were 1.3 and 0.9 years, respectively. Additionally, the average suspended sediment concentration in irrigation water increased between 2012 and 2014, suggesting that enhanced soil erosion had occurred in the surrounding environment. Radiocesium accumulation in rice plant also decreased with time in both paddies. However, the concentration ratio of radiocesium for rice plant in the decontaminated paddy increased compared with control paddy, despite approximately 96% of fallout radiocesium removed in paddy soil. Further analysis is required to clarify the reasons of high concentration ratio of radiocesium for rice plant in the decontaminated paddy.

  11. Geochemical Transformation of Cadmium (Cd) from Creek to Paddy Fields in W Thailand

    NASA Astrophysics Data System (ADS)

    Kosolsaksakul, Peerapat; Graham, Margaret; Farmer, John

    2013-04-01

    Extensive Cd contamination of paddy soils in Tak Province, western Thailand, a consequence of Zn mining activities, was first established in 2005 and medical studies showed that the health of local communities was being impaired. Mae Tao, Tak Province, comprising many paddy fields and irrigation canals, has been selected for this study of the geochemical transformation of Cd from the contamination source in the mountainous region to the east of the study site through the community irrigation system to the paddy soils. The aim of this research is to (i) investigate the geochemical transformation of Cd as it is transported from the main irrigation creek through the canals and to the paddy fields, (ii) assess the availability of Cd to rice plants, which may be affected by both chemical and physical factors, and (iii) trial some practical treatments to minimise Cd concentrations in rice grains. Soils, irrigation canal sediments and water samples were collected during the dry season and at the onset of the rainy season. Rice samples were collected at harvesting time and samples of soil fertiliser were also obtained. Water samples were filtered, ultrafiltered and analysed by ICP-MS whilst sub-samples of dried, ground soils and sediments were first subjected to micro-wave assisted acid digestion (modified US EPA method 3052). XRD and SEM-EDX methods were used for mineralogical characterisation and selective chemical extractions have assisted in the characterisation of solid phase Cd associations. Soil Cd concentrations were in the range 2.5-87.6 µg g-1, with higher values being obtained for fields furthest from the main creek. Although current irrigation water Cd inputs are low (mean 1.9 μg L-1; flood period), high loads of suspended particles still contribute additional Cd (4.2-9.8 µg L-1) to the paddy fields. For bioavailability assessment by a 3-step BCR sequential extraction, 70-90% Cd was in the exchangeable; HOAc-extractable fraction. That indicated that most of

  12. Depth distribution of radiocesium in Fukushima paddy fields and implications for ongoing decontamination works

    NASA Astrophysics Data System (ADS)

    Lepage, H.; Evrard, O.; Onda, Y.; Lefèvre, I.; Laceby, J. P.; Ayrault, S.

    2014-09-01

    Large quantities of radiocesium were deposited across a 3000 km2 area northwest of the Fukushima Dai-ichi nuclear power plant after the March 2011 accident. Although many studies have investigated the fate of radiocesium in soil in the months following the accident, the potential migration of this radioactive contaminant in rice paddy fields requires further examination after the typhoons that occurred in this region. Such investigations will help minimize potential human exposure in rice paddy fields or transfer of radioactive contaminants from soils to rice. Radionuclide activity concentrations and organic content were analysed in 10 soil cores sampled from paddy fields in November 2013, 20 km north of the Fukushima power plant. Our results demonstrate limited depth migration of radiocesium with the majority concentrated in the uppermost layers of soils (< 5 cm). More than 30 months after the accident, 81.5 to 99.7% of the total 137Cs inventories was still found within the < 5 cm of the soil surface, despite cumulative rainfall totalling 3300 mm. Furthermore, there were no significant correlations between radiocesium migration depth and total organic carbon content. We attributed the maximum depth penetration of 137Cs to maintenance (grass cutting - 97% of 137Cs in the upper 5 cm) and farming operations (tilling - 83% of 137Cs in the upper 5 cm). As this area is exposed to erosive events, ongoing decontamination works may increase soil erodibility. We therefore recommend the rapid removal of the uppermost - contaminated - layer of the soil after removing the vegetation to avoid erosion of contaminated material during the subsequent rainfall events. Remediation efforts should be concentrated on soils characterised by radiocesium activities > 10 000 Bq kg-1 to prevent the contamination of rice. Further analysis is required to clarify the redistribution of radiocesium eroded on river channels.

  13. Depth distribution of cesium-137 in paddy fields across the Fukushima pollution plume in 2013.

    PubMed

    Lepage, Hugo; Evrard, Olivier; Onda, Yuichi; Lefèvre, Irène; Laceby, J Patrick; Ayrault, Sophie

    2015-09-01

    Large quantities of radiocesium were deposited across a 3000 km(2) area northwest of the Fukushima Dai-ichi nuclear power plant after the March 2011 accident. Although many studies have investigated the fate of (137)Cs in soil in the months following the accident, the depth distribution of this radioactive contaminant in rice paddy fields requires further examination after the typhoons that occurred in this region. Such investigations will help minimize potential human exposure in rice paddy fields. Radionuclide activity concentrations, organic content and particle size were analysed in 10 soil cores sampled from paddy fields in November 2013, 20 km north of the Fukushima power plant. Our results demonstrate limited depth migration of (137)Cs with the majority concentrated in the uppermost layers of soils (<5 cm). More than 30 months after the accident, between 46.8 and 98.7% of the total (137)Cs inventories was found within the top 5 cm of the soil surface, despite cumulative rainfall totalling 3300 mm. Furthermore, there were no significant correlations between (137)Cs depth distribution and the other parameters. We attributed the maximum depth penetration of (137)Cs to grass cutting (73.6-98.5% of (137)Cs in the upper 5 cm) and farming operations (tillage - 46.8-51.6% of (137)Cs in the upper 5 cm). As this area is exposed to erosive events, ongoing decontamination works may increase soil erodibility. We therefore recommend the rapid removal of the uppermost - contaminated - layer of the soil after removing the vegetation to avoid erosion of contaminated material during the subsequent rainfall events. Further analysis is required to thoroughly understand the impacts of erosion on the redistribution of radiocesium throughout the Fukushima Prefecture.

  14. Depth distribution of cesium-137 in paddy fields across the Fukushima pollution plume in 2013.

    PubMed

    Lepage, Hugo; Evrard, Olivier; Onda, Yuichi; Lefèvre, Irène; Laceby, J Patrick; Ayrault, Sophie

    2015-09-01

    Large quantities of radiocesium were deposited across a 3000 km(2) area northwest of the Fukushima Dai-ichi nuclear power plant after the March 2011 accident. Although many studies have investigated the fate of (137)Cs in soil in the months following the accident, the depth distribution of this radioactive contaminant in rice paddy fields requires further examination after the typhoons that occurred in this region. Such investigations will help minimize potential human exposure in rice paddy fields. Radionuclide activity concentrations, organic content and particle size were analysed in 10 soil cores sampled from paddy fields in November 2013, 20 km north of the Fukushima power plant. Our results demonstrate limited depth migration of (137)Cs with the majority concentrated in the uppermost layers of soils (<5 cm). More than 30 months after the accident, between 46.8 and 98.7% of the total (137)Cs inventories was found within the top 5 cm of the soil surface, despite cumulative rainfall totalling 3300 mm. Furthermore, there were no significant correlations between (137)Cs depth distribution and the other parameters. We attributed the maximum depth penetration of (137)Cs to grass cutting (73.6-98.5% of (137)Cs in the upper 5 cm) and farming operations (tillage - 46.8-51.6% of (137)Cs in the upper 5 cm). As this area is exposed to erosive events, ongoing decontamination works may increase soil erodibility. We therefore recommend the rapid removal of the uppermost - contaminated - layer of the soil after removing the vegetation to avoid erosion of contaminated material during the subsequent rainfall events. Further analysis is required to thoroughly understand the impacts of erosion on the redistribution of radiocesium throughout the Fukushima Prefecture. PMID:26026933

  15. Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field

    NASA Astrophysics Data System (ADS)

    Gruening, Carsten; Meijide, Ana; Manca, Giovanni; Goded, Ignacio; Seufert, Guenther; Cescatti, Alessandro

    2016-04-01

    Rice paddy fields are one of the biggest anthropogenic sources of methane (CH4), the second most important greenhouse gas (GHG) after carbon dioxide (CO2). Therefore most studies on greenhouse gases (GHG) in these agricultural systems focus on the evaluation of CH4 production. However, there are other GHGs such as CO2 and nitrous oxide (N2O) also exchanged within the atmosphere. Since each of the GHGs has its own radiative forcing effect, the total GHG budget of rice cultivation and its global warming potential (GWP) must be assessed. For this purpose a field experiment was carried out in a Mediterranean rice paddy field in the Po Valley (Italy), the largest rice producing region in Europe. Ecosystem CO2 and CH4 fluxes were assessed using the eddy covariance technique, while soil respiration and soil CH4 and N2O fluxes were measured with closed chambers for two complete years. Combining all GHGs measured, the rice paddy field acted as a sink of -368 and -828 g CO2 eq m-2 year-1 in the first and second years respectively. Both years, it was a CO2 sink and a CH4 source, while the N2O contribution to the GWP was relatively small. Differences in the GHG budget between the two years of measurements were mainly caused by the greater CH4 emissions in the first year (37.4 g CH4 m-2 compared to 21.03 g CH4 m-2 in the second year), probably as a consequence of the drainage of the water table in the middle of the growing season during the second year, which resulted in lower CH4 emissions without significant increases of N2O and CO2 fluxes. However, midseason drainage also resulted in small decreases of yield, indicating that GHG budget studies from agricultural systems should consider carbon exports through the harvest. The balance between net GWP and carbon yield indicated a loss of carbon equivalents from the system, which was more than 30-fold higher in the first year. Our results therefore suggest that an adequate management of the water table has the potential to be an

  16. Contribution of Ebullition to Methane and Carbon Dioxide Emission from Water between Plant Rows in a Tropical Rice Paddy Field.

    PubMed

    Komiya, Shujiro; Noborio, Kosuke; Katano, Kentaro; Pakoktom, Tiwa; Siangliw, Meechai; Toojinda, Theerayut

    2015-01-01

    Although bubble ebullition through water in rice paddy fields dominates direct methane (CH4) emissions from paddy soil to the atmosphere in tropical regions, the temporal changes and regulating factors of this ebullition are poorly understood. Bubbles in a submerged paddy soil also contain high concentrations of carbon dioxide (CO2), implying that CO2 ebullition may occur in addition to CH4 ebullition. We investigated the dynamics of CH4 and CO2 ebullition in tropical rice paddy fields using an automated closed chamber installed between rice plants. Abrupt increases in CH4 concentrations occurred by bubble ebullition. The CO2 concentration in the chamber air suddenly increased at the same time, which indicated that CO2 ebullition was also occurring. The CH4 and CO2 emissions by bubble ebullition were correlated with falling atmospheric pressure and increasing soil surface temperature. The relative contribution of CH4 and CO2 ebullitions to the daily total emissions was 95-97% and 13-35%, respectively.

  17. Contribution of Ebullition to Methane and Carbon Dioxide Emission from Water between Plant Rows in a Tropical Rice Paddy Field.

    PubMed

    Komiya, Shujiro; Noborio, Kosuke; Katano, Kentaro; Pakoktom, Tiwa; Siangliw, Meechai; Toojinda, Theerayut

    2015-01-01

    Although bubble ebullition through water in rice paddy fields dominates direct methane (CH4) emissions from paddy soil to the atmosphere in tropical regions, the temporal changes and regulating factors of this ebullition are poorly understood. Bubbles in a submerged paddy soil also contain high concentrations of carbon dioxide (CO2), implying that CO2 ebullition may occur in addition to CH4 ebullition. We investigated the dynamics of CH4 and CO2 ebullition in tropical rice paddy fields using an automated closed chamber installed between rice plants. Abrupt increases in CH4 concentrations occurred by bubble ebullition. The CO2 concentration in the chamber air suddenly increased at the same time, which indicated that CO2 ebullition was also occurring. The CH4 and CO2 emissions by bubble ebullition were correlated with falling atmospheric pressure and increasing soil surface temperature. The relative contribution of CH4 and CO2 ebullitions to the daily total emissions was 95-97% and 13-35%, respectively. PMID:27347533

  18. Contribution of Ebullition to Methane and Carbon Dioxide Emission from Water between Plant Rows in a Tropical Rice Paddy Field

    PubMed Central

    Komiya, Shujiro; Noborio, Kosuke; Katano, Kentaro; Pakoktom, Tiwa; Siangliw, Meechai; Toojinda, Theerayut

    2015-01-01

    Although bubble ebullition through water in rice paddy fields dominates direct methane (CH4) emissions from paddy soil to the atmosphere in tropical regions, the temporal changes and regulating factors of this ebullition are poorly understood. Bubbles in a submerged paddy soil also contain high concentrations of carbon dioxide (CO2), implying that CO2 ebullition may occur in addition to CH4 ebullition. We investigated the dynamics of CH4 and CO2 ebullition in tropical rice paddy fields using an automated closed chamber installed between rice plants. Abrupt increases in CH4 concentrations occurred by bubble ebullition. The CO2 concentration in the chamber air suddenly increased at the same time, which indicated that CO2 ebullition was also occurring. The CH4 and CO2 emissions by bubble ebullition were correlated with falling atmospheric pressure and increasing soil surface temperature. The relative contribution of CH4 and CO2 ebullitions to the daily total emissions was 95–97% and 13–35%, respectively. PMID:27347533

  19. Effects of Land Use Changes from Paddy Fields on Soil Bacterial Communities in a Hilly and Mountainous Area

    PubMed Central

    Rokunuzzaman, Md; Ueda, Yumiko; Chen, Li; Tanaka, Sota; Ohnishi, Kouhei

    2016-01-01

    Soil bacterial community structures in terraced rice fields and abandoned lands in a hilly and mountainous area were analyzed using 16S rRNA gene sequences. The DGGE band patterns of each soil were similar. Based on pyrosequencing data, the richness and diversity of bacterial species were slightly higher in paddy fields than in other soils. A beta-diversity analysis clearly indicated that the bacterial community structure in paddy fields differed from those in non-paddy field lands and crop fields that had not been used as a paddy field. These results may reflect the history of land use. PMID:27098398

  20. Nitrogen and phosphorus effluent loads from a paddy-field district adopting collective crop rotation.

    PubMed

    Hama, T; Aoki, T; Osuga, K; Sugiyama, S; Iwasaki, D

    2012-01-01

    Japanese paddy rice systems commonly adopt the rotation of vegetables, wheat and soybeans with paddy rice. Crop rotation may, however, increase the nutrient load in effluent discharged from the district because more fertilizer is applied to the rotation crops than is applied to paddy crops. We investigated a paddy-field district subject to collective crop rotation and quantified the annual nutrient load of effluent from the district in three consecutive years. The total annual exports of nitrogen and phosphorus over the investigation period ranged from 30.3 to 40.6 kg N ha(-1) and 2.62 to 3.13 kg P ha(-1). The results suggest that rotation cropping increases the effluent nutrient load because applied fertilizer is converted to nitrate, and surface runoff is increased due to the absence of shuttering boards at the field outlets.

  1. Measurement and estimation of radiocesium discharge rate from paddy field during land preparation and mid-summer drainage.

    PubMed

    Miyazu, Susumu; Yasutaka, Tetsuo; Yoshikawa, Natsuki; Tamaki, Shouhei; Nakajima, Kousei; Sato, Iku; Nonaka, Masanori; Harada, Naoki

    2016-05-01

    In this research, we evaluated the range of (137)Cs discharge rates from paddy fields during land preparation and mid-summer drainage. First, we investigated (137)Cs discharge loads during land preparation and mid-summer drainage and their ratio to the (137)Cs inventory of paddy field soil. We found that total discharge rates were 0.003-0.028% during land preparation and 0.001-0.011% during mid-summer drainage. Next, we validated the range of obtained total discharge of (137)Cs from the paddy fields using a simplified equation and literature review. As a result, we conclude that the range of total outflow loads of suspended solids for the investigated paddy field was generally representative of paddy fields in Japan. Moreover, the (137)Cs discharge ratio had a wide range, but was extremely small relative to (137)Cs present in paddy field soil before irrigation.

  2. Fipronil application on rice paddy fields reduces densities of common skimmer and scarlet skimmer.

    PubMed

    Kasai, Atsushi; Hayashi, Takehiko I; Ohnishi, Hitoshi; Suzuki, Kazutaka; Hayasaka, Daisuke; Goka, Koichi

    2016-01-01

    Several reports suggested that rice seedling nursery-box application of some systemic insecticides (neonicotinoids and fipronil) is the cause of the decline in dragonfly species noted since the 1990s in Japan. We conducted paddy mesocosm experiments to investigate the effect of the systemic insecticides clothianidin, fipronil and chlorantraniliprole on rice paddy field biological communities. Concentrations of all insecticides in the paddy water were reduced to the limit of detection within 3 months after application. However, residuals of these insecticides in the paddy soil were detected throughout the experimental period. Plankton species were affected by clothianidin and chlorantraniliprole right after the applications, but they recovered after the concentrations decreased. On the other hand, the effects of fipronil treatment, especially on Odonata, were larger than those of any other treatment. The number of adult dragonflies completing eclosion was severely decreased in the fipronil treatment. These results suggest that the accumulation of these insecticides in paddy soil reduces biodiversity by eliminating dragonfly nymphs, which occupy a high trophic level in paddy fields. PMID:26979488

  3. Fipronil application on rice paddy fields reduces densities of common skimmer and scarlet skimmer

    PubMed Central

    Kasai, Atsushi; Hayashi, Takehiko I.; Ohnishi, Hitoshi; Suzuki, Kazutaka; Hayasaka, Daisuke; Goka, Koichi

    2016-01-01

    Several reports suggested that rice seedling nursery-box application of some systemic insecticides (neonicotinoids and fipronil) is the cause of the decline in dragonfly species noted since the 1990s in Japan. We conducted paddy mesocosm experiments to investigate the effect of the systemic insecticides clothianidin, fipronil and chlorantraniliprole on rice paddy field biological communities. Concentrations of all insecticides in the paddy water were reduced to the limit of detection within 3 months after application. However, residuals of these insecticides in the paddy soil were detected throughout the experimental period. Plankton species were affected by clothianidin and chlorantraniliprole right after the applications, but they recovered after the concentrations decreased. On the other hand, the effects of fipronil treatment, especially on Odonata, were larger than those of any other treatment. The number of adult dragonflies completing eclosion was severely decreased in the fipronil treatment. These results suggest that the accumulation of these insecticides in paddy soil reduces biodiversity by eliminating dragonfly nymphs, which occupy a high trophic level in paddy fields. PMID:26979488

  4. Heavy metal contents of paddy fields of Alcácer do Sal, Portugal.

    PubMed

    Fernandes, J C; Henriques, F S

    1990-01-01

    Recent claims of metal contamination in the lower reaches of the Sado River, in the Alcácer do Sal region, Portugal, a major rice-producing area were investigated by carrying out metal surveys in the area. The elements Fe, Mn, Zn, Cu and Pb were measured in the soil and in rice plant parts--roots, shoots and grain--as well as in some weeds growing in the Sado banks, near the paddy fields. Results showed that the metal contents of paddy soils were similar to background concentrations, with the exception of Zn and Cu, which were above those concentrations and reached their highest levels at Vale de Guizo, the monitored station located furthest upstream in the Sado River. At some sites, plant roots accumulated relatively large amounts of Fe, Mn, Zn and Cu, but the shoot levels of these metals were within the normal range for rice plants. It is possible that varying, but significant, amounts of Fe associated with the roots were in the form of ferric hydroxide plaque covering their surfaces. Copper levels in the shoots of rice were below the normal contents cited for this plant in the literature. Metal levels of river sediments collected near Vale de Guizo seem to corroborate the possibility of some metal contamination in the Sado River, most probably derived from pyrites mining activity in the upper zone of the Sado basin. PMID:2305246

  5. Heavy metal contents of paddy fields of Alcácer do Sal, Portugal.

    PubMed

    Fernandes, J C; Henriques, F S

    1990-01-01

    Recent claims of metal contamination in the lower reaches of the Sado River, in the Alcácer do Sal region, Portugal, a major rice-producing area were investigated by carrying out metal surveys in the area. The elements Fe, Mn, Zn, Cu and Pb were measured in the soil and in rice plant parts--roots, shoots and grain--as well as in some weeds growing in the Sado banks, near the paddy fields. Results showed that the metal contents of paddy soils were similar to background concentrations, with the exception of Zn and Cu, which were above those concentrations and reached their highest levels at Vale de Guizo, the monitored station located furthest upstream in the Sado River. At some sites, plant roots accumulated relatively large amounts of Fe, Mn, Zn and Cu, but the shoot levels of these metals were within the normal range for rice plants. It is possible that varying, but significant, amounts of Fe associated with the roots were in the form of ferric hydroxide plaque covering their surfaces. Copper levels in the shoots of rice were below the normal contents cited for this plant in the literature. Metal levels of river sediments collected near Vale de Guizo seem to corroborate the possibility of some metal contamination in the Sado River, most probably derived from pyrites mining activity in the upper zone of the Sado basin.

  6. Ammonia Volatilization Losses from Paddy Fields under Controlled Irrigation with Different Drainage Treatments

    PubMed Central

    He, Yupu; Yang, Shihong; Wang, Yijiang

    2014-01-01

    The effect of controlled drainage (CD) on ammonia volatilization (AV) losses from paddy fields under controlled irrigation (CI) was investigated by managing water table control levels using a lysimeter. Three drainage treatments were implemented, namely, controlled water table depth 1 (CWT1), controlled water table depth 2 (CWT2), and controlled water table depth 3 (CWT3). As the water table control levels increased, irrigation water volumes in the CI paddy fields decreased. AV losses from paddy fields reduced due to the increases in water table control levels. Seasonal AV losses from CWT1, CWT2, and CWT3 were 59.8, 56.7, and 53.0 kg N ha−1, respectively. AV losses from CWT3 were 13.1% and 8.4% lower than those from CWT1 and CWT2, respectively. A significant difference in the seasonal AV losses was confirmed between CWT1 and CWT3. Less weekly AV losses followed by TF and PF were also observed as the water table control levels increased. The application of CD by increasing water table control levels to a suitable level could effectively reduce irrigation water volumes and AV losses from CI paddy fields. The combination of CI and CD may be a feasible water management method of reducing AV losses from paddy fields. PMID:24741349

  7. [Effects of different multiple cropping systems on paddy field weed community under long term paddy-upland rotation].

    PubMed

    Yang, Bin-Juan; Huang, Guo-Qin; Xu, Ning; Wang, Shu-Bin

    2013-09-01

    Based on a long term field experiment, this paper studied the effects of different multiple cropping systems on the weed community composition and species diversity under paddy-upland rotation. The multiple cropping rotation systems could significantly decrease weed density and inhibited weed growth. Among the rotation systems, the milk vetch-early rice-late maize --> milk vetchearly maize intercropped with early soybean-late rice (CCSR) had the lowest weed species dominance, which inhibited the dominant weeds and decreased their damage. Under different multiple cropping systems, the main weed community was all composed of Monochoia vaginalis, Echinochloa crusgalli, and Sagittaria pygmae, and the similarity of weed community was higher, with the highest similarity appeared in milk vetch-early rice-late maize intercropped with late soybean --> milk vetch-early maize-late rice (CSCR) and in CCSR. In sum, the multiple cropping rotations in paddy field could inhibit weeds to a certain extent, but attentions should be paid to the damage of some less important weeds.

  8. Can't See the Forest for the Rice: Factors Influencing Spatial Variations in the Density of Trees in Paddy Fields in Northeast Thailand

    NASA Astrophysics Data System (ADS)

    Watanabe, Moriaki; Vityakon, Patma; Rambo, A. Terry

    2014-02-01

    The widespread presence of trees in paddy fields is a unique feature of Northeast Thailand's agricultural landscape. A survey of spatial variability in the density of trees in paddy fields in the Northeast Region was conducted utilizing high resolution satellite images and found that the mean density in the whole region was 12.1 trees/ha (varying from a high of 44.6 trees/ha to a low of 0.8 trees/ha). In general, tree densities are higher in the southeastern part of the region and much lower in the northern central part. Tree density was influenced by multiple factors including: (1) the history of land development, with more recently developed paddy fields having higher densities, (2) topography, with fields located at higher topographical positions having a higher mean density of trees, (3) access to natural forest resources, with fields in areas located close to natural forests having higher densities, (4) amount of annual rainfall, with fields in areas with higher average annual rainfall having higher tree densities, and (5) landholding size, with fields in areas with larger-sized landholdings having more trees. However, there is a considerable extent of co-variation among these factors. Although trees remain an important element of the paddy field landscape in the Northeast, it appears that their density has been declining in recent years. If this trend continues, then the vast "invisible forest" represented by trees in paddy fields may truly disappear, with negative consequences for the villagers' livelihoods, biodiversity conservation, and carbon sequestration in the rural ecosystem.

  9. Can't see the forest for the rice: factors influencing spatial variations in the density of trees in paddy fields in northeast Thailand.

    PubMed

    Watanabe, Moriaki; Vityakon, Patma; Rambo, A Terry

    2014-02-01

    The widespread presence of trees in paddy fields is a unique feature of Northeast Thailand's agricultural landscape. A survey of spatial variability in the density of trees in paddy fields in the Northeast Region was conducted utilizing high resolution satellite images and found that the mean density in the whole region was 12.1 trees/ha (varying from a high of 44.6 trees/ha to a low of 0.8 trees/ha). In general, tree densities are higher in the southeastern part of the region and much lower in the northern central part. Tree density was influenced by multiple factors including: (1) the history of land development, with more recently developed paddy fields having higher densities, (2) topography, with fields located at higher topographical positions having a higher mean density of trees, (3) access to natural forest resources, with fields in areas located close to natural forests having higher densities, (4) amount of annual rainfall, with fields in areas with higher average annual rainfall having higher tree densities, and (5) landholding size, with fields in areas with larger-sized landholdings having more trees. However, there is a considerable extent of co-variation among these factors. Although trees remain an important element of the paddy field landscape in the Northeast, it appears that their density has been declining in recent years. If this trend continues, then the vast "invisible forest" represented by trees in paddy fields may truly disappear, with negative consequences for the villagers' livelihoods, biodiversity conservation, and carbon sequestration in the rural ecosystem.

  10. Generation of methane from paddy fields and cattle in India, and its reduction at source

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, T. K.; Goyal, P.; Singh, M. P.

    Methane (CH4) is a saturated organic gas. About 500 Tg yr -1 methane is generated globally. It is evident that 70% of the total emission have anthropogenic sources. The paddy fields contribute a significant portion of the total methane generated. About 20% of the total methane is generated from the paddy fields. In India, methane efflux rate is negative to 49 mg m -2 hr -1. The mean CH4 flux from Indian paddy fields is calculated to be 4.0 Tgyr -1. Livestock, and in particular ruminants are one of the important sources of methane emission on a global scale. There are two sources of methane emission from live stock: (1) from digestive process of ruminants, (2) from animal wastes. The estimated value of methane emission from digestive process of ruminants in India accounts for 6.47 Tgyr -1, and animal wastes accounts for 1.60 Tgyr -1. Total generation of methane from animals in India is about 8.0 Tg yr -1 . In paddy fields the key of controlling methane emission lies in the control of irrigation water. The methane emission can be decreased drastically if the field is under dry conditions for a few days at the end of tillering. In the case of livestock, reduction of methane emission can be done by (1) increasing the intake of the animal, (2) modifying the composition of the diet, (3) eliminating protozoa in rumen, (4) improving fibre digestion efficiency and (5) inhibiting activity of methanogenic bacteria.

  11. [Research on vertical distribution pattern and reserve of organic carbon in paddy field soil of Qianguo, Jilin].

    PubMed

    Tang, Jie; Zhang, Wen-Hui; Li, Zhao-Yang; Zhang, Nan; Hu, Meng

    2013-07-01

    Taking Qianguo paddy field of Jilin Province as investigation object, based on the soil test data of 7 different periods developed for 4 to 55 years, the vertical distribution of SOC content in the 1 m paddy field section was studied adopting the space scale method instead of time scale. The paddy soil carbon sink in last 20 years was discussed and the organic carbon storage of Qianguo paddy field soil was estimated. According to the second soil census data, the characteristics of soil SOC used in fields of different type were comparatively analyzed. The results showed that the paddy field SOC decreased from top to bottom by layer, which showed an increasing trend with the increase of development age; the organic carbon content in the surface soil layer (0-30 cm) (1 820.79 t) was 46.87% of the total organic carbon storage in deep soil (3 885.05 t), and the soil SOCD content was highly different depending on the type of field, ranked in descending order as paddy field, dry land, and saline field. The development of paddy field is a SOC accumulating carbon sink process, which is conducive to the transfer of organic carbon from the surface soil layer to the bottom soil layer.

  12. Responses of seasonal and diurnal soil CO2 effluxes to land-use change from paddy fields to Lei bamboo (Phyllostachys praecox) stands

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Li, Yongfu; Chang, Scott X.; Jiang, Peikun; Zhou, Guomo; Zhang, Jiaojiao; Liu, Juan

    2013-10-01

    Land-use change often markedly alters soil carbon (C) dynamics such as soil surface CO2 efflux. This study aims to test the hypotheses that converting paddy fields to bamboo stands would markedly reduce soil CO2 efflux and their temperature sensitivity (change of soil CO2 efflux rate by increasing 10 °C of temperature), and change the relationship between soil CO2 efflux and other environmental factors. A 12-month field study was conducted to measure the seasonal and diurnal soil CO2 effluxes in three adjacent paddy field-bamboo forest pairs with the automated soil CO2 flux system (LI-8100). Results showed that soil CO2 effluxes from both of the two land-uses had distinct seasonal patterns, and were reduced from 45.4 to 34.7 t CO2 ha-1 yr-1 in cumulative CO2 emissions when paddy fields were converted to bamboo stands. About 80% of the variation in soil respiration in the bamboo stands was explained by soil temperature; however, a positive relationship between soil CO2 efflux and soil temperature in the paddy field was observed only when the soil was not submerged under water, indicating that soil water saturation in the paddy fields altered the soil CO2 efflux-temperature relationship. A negative relationship (P < 0.01) between soil CO2 efflux and soil moisture was observed in the paddy fields, while no such relationship was observed in the bamboo stands. The apparent temperature sensitivity of soil respiration (Q10) was dependent on the depth of the soil temperature measurement and was increased by converting paddy fields to bamboo stands, rejecting the hypothesis. In Lei bamboo stands, the R2 for the soil respiration-temperature regression was higher using seasonal and diurnal CO2 efflux data together than using the seasonal data alone. We conclude that the conversion of paddy fields to Lei bamboo stands decreased the annual soil CO2 efflux but increased its temperature sensitivity, and altered the relationship between soil respiration and soil moisture. When

  13. Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells.

    PubMed

    Kouzuma, Atsushi; Kaku, Nobuo; Watanabe, Kazuya

    2014-12-01

    Microbial fuel cells (MFCs) are devices that use living microbes for the conversion of organic matter into electricity. MFC systems can be applied to the generation of electricity at water/sediment interfaces in the environment, such as bay areas, wetlands, and rice paddy fields. Using these systems, electricity generation in paddy fields as high as ∼80 mW m(-2) (based on the projected anode area) has been demonstrated, and evidence suggests that rhizosphere microbes preferentially utilize organic exudates from rice roots for generating electricity. Phylogenetic and metagenomic analyses have been conducted to identify the microbial species and catabolic pathways that are involved in the conversion of root exudates into electricity, suggesting the importance of syntrophic interactions. In parallel, pot cultures of rice and other aquatic plants have been used for rhizosphere MFC experiments under controlled laboratory conditions. The findings from these studies have demonstrated the potential of electricity generation for mitigating methane emission from the rhizosphere. Notably, however, the presence of large amounts of organics in the rhizosphere drastically reduces the effect of electricity generation on methane production. Further studies are necessary to evaluate the potential of these systems for mitigating methane emission from rice paddy fields. We suggest that paddy-field MFCs represent a promising approach for harvesting latent energy of the natural world.

  14. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods.

    PubMed

    Takahashi, Yoshio; Minamikawa, Reiko; Hattori, Kéiko H; Kurishima, Katsuaki; Kihou, Nobuharu; Yuita, Kouichi

    2004-02-15

    The behavior of As in paddy fields is of great interest considering high As contents of groundwater in several Asian countries where rice is the main staple. We determined the concentrations of Fe, Mn, and As in soil, soil water, and groundwater samples collected at different depths down to 2 m in an experimental paddy field in Japan during the cycle of flooded and non-flooded periods. In addition, we measured the oxidation states of Fe, Mn, and As in situ in soil samples using X-ray absorption near-edge structure (XANES) and conducted sequential extraction of the soil samples. The results show that Fe (hydr)oxide hosts As in soil. Arsenic in irrigation waters is incorporated in Fe (hydr)oxide in soil during the non-flooded period, and the As is quickly released from soil to water during the flooded period because of reductive dissolution of the Fe (hydr)oxide phase and reduction of As from As(V) to As(III). The enhancement of As dissolution by the reduction of As is supported by high As/Fe ratios of soil water during the flooded period and our laboratory experiments where As(III) concentrations and As(III)/As(V) ratios in submerged soil were monitored. Our work, primarily based on data from an actual paddy field, suggests that rice plants are enriched in As because the rice grows in flooded paddy fields when mobile As(III) is released to soil water. PMID:14998016

  15. Effect of phosphate fertilizer application on phosphorus (P) losses from paddy soils in Taihu Lake Region. I. Effect of phosphate fertilizer rate on P losses from paddy soil.

    PubMed

    Zhang, H C; Cao, Z H; Shen, Q R; Wong, M H

    2003-02-01

    A field plot study was conducted on two types of paddy soils in the Taihu Lake Region, during the rice season of year 2000 in order to assess phosphorus (P) losses by runoff and vertical leaching, which are considered the two main pathways of P movement from paddy soil into its surrounding water course. Commercial NPK compound fertilizer and single superphosphate fertilizer were applied to furnish 0, 30, 150, and 300 kg applied P ha m(-2). The experiments consisted of three replicates of each treatment in Changshu site and four replicates in Anzhen site, with a plot size of 5 x 6 m2 in a randomized block. Results revealed that the average concentration range for total P (TP) in runoff was 1.857-7.883, 1.038-5.209, 0.783-1.255 and 0.572-0.691 mg P l(-1) respectively for P300, P150, P30 and P0 in Anzhen, while it was 2.431-2.449, 1.578-1.890, 1.050-1.315 and 0.749-0.941 mg P l(-1) respectively in Changshu. In all treatments, particulate P (PP) represented a major portion of the TP lost in runoff, it was 80% in Anzhen, and it was even more (>90%) in Changshu. Phosphate fertilizer treatments significantly affected P concentrations and P loads in the runoff. The mean concentration and average seasonal TP load from the P150 plots were 1.809 mg P l(-1) and 395 g P ha m(-2) season(-1) respectively, and lower than that from the P300 plots (2.957 mg P l(-1) and 652 g P ha m(-2) season(-1)). These were obviously higher than from the P30 (0.761 mg P l(-1) and 221 g P ha m(-2) season(-1)) and P0 (0.484 mg P l(-1) and 146 g P ha m(-2) season(-1)) respectively. There was no significant difference found between the P30 and the P0 in both sites. Under usual P application rate, there were total 31.7 and 20.6 tones P removed by runoff from permeable (Anzhen site) and waterlogged (Changshu site) paddy soils in the southern Jiangsu region (major part of the TLR) in the rice season of the year 2000. But if the P application rate is unusual high, or the Olsen P in soil accumulates to

  16. Behavior of Suspended Sediments with Radionuclide in the Paddy Field, Fukushima Japan

    NASA Astrophysics Data System (ADS)

    Wakahara, T.; Onda, Y.; Kato, H.

    2011-12-01

    After the nuclear reactor accident in Fukushima on March 11, 2011, huge amounts of radionuclide such as Caesium-137, which is an artificial radionuclide with a half-life of 30.17 years, has been produced. Most of the fallen Cs-137 infiltrated into soil together with rainfall and was absorbed by soil sediments. The potential concentration of radionuclides into paddy field, as investigated in this study, has consequency on health, agriculture and remediation of contaminated areas. Paddy field typically are flat, surrounded by dams (10-50 cm)delimiting small pools with a water level of approximately20cm. Therefore, they can potentially catch huge amounts of suspended sediments from incoming rivers. However, recent studies suggested the paddy field can be a source of suspended sediments in some conditions. In this study, we intended to investigate the characteristics of Cs137 associated to sediment into paddy field as well as its incoming and outgoing and flux of that in paddy field. The study site was set on the Yoshiguchi, Kawamata-cho, Fukushima prefecture(N 37 35' 26.15", E140 38' 14.97"). This place is located 30km from the damaged Fukushima nuclear reactor. Two plots were set: One was tillaged as usual (plot UE, 30x17m), while the upper 5 to 10 cm of the other plot's surface was scraped before tillage.(plot ST, 43x17m). The lower part of each plot has a Parshall flume with water gauge, turbidimeter and rain gauge. After tillage, water was put into the plot field and rice seedlings were transplanted. Every week we corrected a suspended sediment samples and measured Cs137 concentration. At the plot ST, out flow of the Cs137 density was less than 35% of that of UE plot.

  17. Effects of Fipronil Insecticide Application on Sympetrum sp. Larvae and Adults in Experimental Rice Paddy Field

    NASA Astrophysics Data System (ADS)

    Jinguji, Hiroshi; Ueda, Tetsuyuki; Tsunoda, Manami; Aihara, Shoko; Saito, Mitsuo

    The effect of on sowing and before transplanting application of the phenyl pyrazole insecticide, fipronil, on the survivorship Sympetrum spp. was investigated in plots of an experimental rice paddy field. In addition, the effect of two pesticide applications on rice weevils was investigated. A total of nine paddy plots were used in this study: three were treated with fipronil at the before transplanting application , three at the on sowing application, and the three remaining plots were left untreated for use as controls. Fipronil concentrations in paddy water at the time of application in before transplanting and on sowing treatments reached 1.45 and 1.20 μg/L, respectively. A comparison of experimental and control plots revealed a marked absence of Sympetrum frequens larvae, exuviae and adults from fipronil-treated fields. Adult density of Sympetrum sp. and members of Lestidae in paddy fields before transplanting application were considerably lower than in control plots. Our results show that before transplanting application is more effective than on sowing application for treating rice weevils, but that on sowing application may still be harm against dragonflies.

  18. Reducing CH4 emission from rice paddy fields by altering water management

    NASA Astrophysics Data System (ADS)

    Sudo, S.; Itoh, M.

    2010-12-01

    Percentage of atmospheric methane emitted form rice paddy is estimated at 60Tg/yr (20 - 100Tg/yr) which is near 10% of total global methane emission of 535Tg/yr (410 - 660Tg) (IPCC(1995), and which is near 30% of anthropogenic CH4 emission. Thus, mitigation of CH4 emission is urgently required. CH4 in paddy soil is emanated by the activities of anaerobic bacteria which is called methane producer through reduction of CO2 or decomposition of acetic acid, and it is transported to atmosphere through soil or paddy water surface. It is effective to control methane emission from rice paddy that period is extended on intermittent drainage, composted rice straw is incorporated as fertilizer instead of flesh one, or other. However, empirical approach of these kinds of experiments had not been sufficient because such a kind of experiment required significant times and efforts. In this study, we conducted demonstrative experiments to verify the effects of water management method differences in order to reduce CH4 emission from rice paddy at 9 experimental sites in 8 prefectures. In this, we used new gas analyzer which can measure CH4, CO2 and N2O at once developed by National Institute for Agro-Environmental Sciences (NIAES), Japan. In this report, we show the results in two years of this study. 'Nakaboshi' (mid-season-drainage) is one of cultivation methods in rice paddy that surface water in paddy field is once drained for about 10 days and the field is maintained like upland field to give adequate stress to rice plant for better harvest qualities and yields. Our targeted evaluation was dependencies of Nakaboshi periods lengths and Nakaboshi periods to CH4 emission reduction amounts for total cultivation periods within harvest yield maintained. The longer length of Nakaboshi period was extended, the lesser CH4 emitted even after when Nakaboshi period lasted, as a whole. In some cases, for example in Kagoshima, exceptional phenomena of that significant high emission were

  19. Crop Uptake of Arsenic from Flooded Paddy Fields in the Mekong Delta

    NASA Astrophysics Data System (ADS)

    Mohr, K.; Boye, K.

    2014-12-01

    Arsenic is found naturally in the soils in the Mekong delta in Vietnam and Cambodia. It originates from erosion in the Himalayas. When similar levels of arsenic are present in well aerated soil, it is not dangerous, because it is strongly bound to soil particles and not readily plant available. Arsenic is released when the soil is saturated with water, and therefore contaminates crops grown in flooded fields. This results in people being exposed to unsafe levels of arsenic from their food, such as rice and lotus, which are normally grown under flooded conditions. Rice is a staple food in these regions, so the transfer of arsenic from soil, to water, and ultimately into the grain, poses a threat to human health. We have conducted a limited, preliminary field survey of arsenic levels in soil, flood water, and crops from distinctly different paddy fields in the lower Mekong delta in Vietnam and Cambodia. The purpose of the study was to identify soils and crops (or specific plant parts) that are especially prone to arsenic transfer from soil to crop, and vice versa (i.e. arsenic uptake is prevented in spite of being present in the soil). In addition to arsenic concentration in soil, plant and water, we are examining other elements, such as carbon, nitrogen, sulfur and iron, which give us clues about what chemical and microbial processes that control the overall arsenic uptake.

  20. Variations in soil microbial community structure induced by the conversion from paddy fields to upland fields

    NASA Astrophysics Data System (ADS)

    Dai, X.

    2015-12-01

    Land-use conversion is an important factor influencing the carbon and nitrogen gas exchange between land and atmosphere, and soil microorganisms is main driver of soil carbon and nitrogen gas production. Understanding the effect of land-use conversion on soil microbial communities and its influencing factor is important for greenhouse gas emission reduction and soil organic carbon and nitrogen sequestration and stability. The influence of land use conversion on soil process was undergoing a dynamic change, but little research has been done to understand the effect on soil microbial communities during the initial years after land conversion. In the study, the influences of land-use conversion from double rice cropping (RR) to maize-maize (MM) and soybean-peanut (SP) double cropping systems on soil physical and chemical properties, and microbial community structure was studied after two years of the conversion in southern China. The results showed that land use conversion significantly changed soil properties, microbial communities and biomass. Soil pH significantly decreased by 0.50 and 0.52 after conversion to MM and SP, respectively. Soil TN and NH4-N also significantly decreased by 9%-15% and 60% after conversion to upland fields, respectively. The total PLFAs, bacterial, gram-positive bacterial (G+), gram-negative bacterial (G-) and actinomycetic PLFAs decreased significantly. The ng g-1 soil concentration of monounsaturated chain PLFAs 16:1ω7c and 18:1ω9t were significantly higher at paddy fields than at upland fields. No significant differences in soil properties, microbial communities and biomass were found between conversed MM and SP. Our results indicated that land use conversion, not crop type conversed had a significant effects on soil properties and microbial communities at the initial of land conversion. And soil pH was the key factor regulating the variations in soil microbial community structure after land use conversion from paddy to upland fields.

  1. [Quantifying direct N2O emissions from paddy fields during rice growing season in China: model and input data validation].

    PubMed

    Zou, Jian-Wen; Liu, Shu-Wei; Qin, Yan-Mei; Feng, De-Sheng; Zhu, Hui-Lin; Xu, Yong-Zhong

    2009-04-15

    The models on direct N2O emissions from rice paddies under different water regimes developed by the authors were validated against field measurements in China reported in 2005-2007 and in other regions. In flooding rice paddies (F), N2O emission predicted by the model was consistent with previous reports in other regions. Under the water regime of flooding-midseason drainage-reflooding (F-D-F), the model developed in this study was comparable to that established by using worldwide database. The models also well fitted N2O emissions from rice paddies under the water regime of flooding-midseason drainage-reflooding-moisture but without waterlogging (F-D-F-M) in China. Consistency of rice production data derived from the database of this study with those reported in previous studies suggests that the model input data of rice production had high reliability. The input data showed that water management and nitrogen input regimes have greatly changed in rice paddies since the 1950s. During the 1950s-1970s, about 20%-25% of the rice paddy was continuous water logging, and 75%-80% under the water regime of F-D-F. Since the 1980s, about 12%-16%, 77% and 7%-12% of paddy fields were under the water regimes of F, F-D-F and F-D-F-M, respectively. Total N input during the rice growing season averaged 87.49 kg x hm(-2) in the 1950s and 224.64 kg x hm(-2) in the 1990s. Chemical N input during the rice growing season has increased from 37.4 kg x hm(-2) in the 1950s to 198.8 kg x hm(-2) in the 1990s, accounting for 43% and 88% of the seasonal total N inputs, respectively. Manure N input was applied at stable rate, ranging from 45.2 kg x hm(-2) to 48.2 kg x hm(-2) during the 1950s-1970s, but thereafter it decreased over time. The contribution of manure N to total N inputs has decreased from 52% in the 1950s to 9% in the 1990s. Crop residue N retained during the rice growing season has increased from 4.9 kg x hm(-2) in the 1950s to 6.3 kg x hm(-2) in the 1980s. A high spatial

  2. Localization and Classification of Paddy Field Pests using a Saliency Map and Deep Convolutional Neural Network

    PubMed Central

    Liu, Ziyi; Gao, Junfeng; Yang, Guoguo; Zhang, Huan; He, Yong

    2016-01-01

    We present a pipeline for the visual localization and classification of agricultural pest insects by computing a saliency map and applying deep convolutional neural network (DCNN) learning. First, we used a global contrast region-based approach to compute a saliency map for localizing pest insect objects. Bounding squares containing targets were then extracted, resized to a fixed size, and used to construct a large standard database called Pest ID. This database was then utilized for self-learning of local image features which were, in turn, used for classification by DCNN. DCNN learning optimized the critical parameters, including size, number and convolutional stride of local receptive fields, dropout ratio and the final loss function. To demonstrate the practical utility of using DCNN, we explored different architectures by shrinking depth and width, and found effective sizes that can act as alternatives for practical applications. On the test set of paddy field images, our architectures achieved a mean Accuracy Precision (mAP) of 0.951, a significant improvement over previous methods. PMID:26864172

  3. Localization and Classification of Paddy Field Pests using a Saliency Map and Deep Convolutional Neural Network.

    PubMed

    Liu, Ziyi; Gao, Junfeng; Yang, Guoguo; Zhang, Huan; He, Yong

    2016-01-01

    We present a pipeline for the visual localization and classification of agricultural pest insects by computing a saliency map and applying deep convolutional neural network (DCNN) learning. First, we used a global contrast region-based approach to compute a saliency map for localizing pest insect objects. Bounding squares containing targets were then extracted, resized to a fixed size, and used to construct a large standard database called Pest ID. This database was then utilized for self-learning of local image features which were, in turn, used for classification by DCNN. DCNN learning optimized the critical parameters, including size, number and convolutional stride of local receptive fields, dropout ratio and the final loss function. To demonstrate the practical utility of using DCNN, we explored different architectures by shrinking depth and width, and found effective sizes that can act as alternatives for practical applications. On the test set of paddy field images, our architectures achieved a mean Accuracy Precision (mAP) of 0.951, a significant improvement over previous methods.

  4. The variations of Oxidation-Reduction Potential in paddy soil and effects on the methane emission from a periodically irrigated paddy field.

    NASA Astrophysics Data System (ADS)

    Yagi, K.; Iwata, T.; Wakikuromaru, N.

    2014-12-01

    Paddy fields are one of the most important eco-system in monsoon Asia and one of the largest source of CH4 emission. CH4 has significant contribution to the global warming next to CO2 and its greenhouse effect is about 21 times as large as same amount of CO2. CH4 is generated by decomposition of organic matter in soil under anaerobic condition. Oxidation-Reduction Potential (ORP) is the most suitable index representing soil aerobic condition. Or, CH4 is more generated under lower ORP conditions. In this study, ORP in paddy soil was measured during rice cultivated season at a periodically irrigated paddy field, and some effects on the methane flux from the paddy soil was investigated. 3-days flood and 4-days drained condition were regularly repeated at the site from late-June to early October. ORP under flooded condition was measured during irrigated term in 2013 at two mode; regular interval measurement every 2 weeks and intensive measurements during two flooded periods. Methane flux was also measured by the aerodynamic gradient technique. ORP showed rapid decrease when irrigation water was introduced in the paddy field, and lower ORP was shown under the longer flooded condition. From the seasonal-term point of view, lower ORP was shown in later rice season. ORP was suitably modeled as a function of irrigation time. During an irrigation period for four days, higher methane emissions were shown under lower OPR conditions as shown in Fig.1. From the seasonal-term point of view, however, no significant relationship between ORP and methane fluxes. Rapid rise of CH4 flux in early August and gradual decrease between late August and September were shown. It is suggested that seasonal change of methane flux is affected by seasonal changes of soil temperature or the growth level of rice plants.

  5. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    PubMed

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study. PMID:25508755

  6. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    PubMed

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study. PMID:25474976

  7. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    PubMed

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.

  8. Comparison of greenhouse gas emissions from rice paddy fields under different nitrogen fertilization loads in Chongming Island, Eastern China.

    PubMed

    Zhang, Xianxian; Yin, Shan; Li, Yinsheng; Zhuang, Honglei; Li, Changsheng; Liu, Chunjiang

    2014-02-15

    Rice is one of the major crops of southern China and Southeast Asia. Rice paddies are one of the largest agricultural greenhouse gas (GHG) sources in this region because of the application of large quantities of nitrogen (N) fertilizers to the plants. In particular, the production of methane (CH4) is a concern. Investigating a reasonable amount of fertilizers to apply to plants is essential to maintaining high yields while reducing GHG emissions. In this study, three levels of fertilizer application [high (300 kg N/ha), moderate (210 kg N/ha), and low (150 kg N/ha)] were designed to examine the effects of variation in N fertilizer application rate on carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions from the paddy fields in Chongming Island, Shanghai, China. The high level (300 kg N/ha) represented the typical practice adopted by the local farmers in the area. Maximum amounts of CH4 and N2O fluxes were observed upon high-level fertilizer application in the plots. Cumulative N2O emissions of 23.09, 40.10, and 71.08 mg N2O/m(2) were observed over the growing season in 2011 under the low-, moderate-, and high-level applications plots, respectively. The field data also indicated that soil temperatures at 5 and 10 cm soil depths significantly affected soil respiration; the relationship between Rs and soil temperature in this study could be described by an exponential model. Our study showed that reducing the high rate of fertilizer application is a feasible way of attenuating the global-warming potential while maintaining the optimum yield for the studied paddy fields.

  9. Purification of contaminated paddy fields by clean water irrigation over two decades.

    PubMed

    Tai, Yiping; Lu, Huanping; Li, Zhian; Zhuang, Ping; Zou, Bi; Xia, Hanping; Wang, Faming; Wang, Gang; Duan, Jun; Zhang, Jianxia

    2013-10-01

    Paddy fields near a mining site in north part of Guangdong Province, PR China, were severely contaminated by heavy metals as a result of wastewater irrigation from the tailing pond. The following clean water irrigation for 2 decades produced marked rinsing effect, especially on Pb and Zn. Paddy fields continuously irrigated with wastewater ever since mining started (50 years) had 1,050.0 mg kg−1 of Pb and 810.3 mg kg−1 of Zn for upper 20 cm soil, in comparison with 215.9 mg kg−1 of Pb and 525.4 mg kg−1 of Zn, respectively, with clean water irrigation for 20 years. Rinsing effect mainly occurred to a depth of upper 40 cm, of which the soil contained highest metals. Copper and Cd in the farmlands were also reduced due to clean water irrigation. Higher availability of Pb might partly account for more Pb transferred from the tailing pond to the farmland and also more Pb removal from the farmland as a result of clean water irrigation. Neither rice in the paddy field nor dense weeds in the uncultivated field largely took up the metals. However, they might contribute to activate metals differently, leading to a different purification extent. Rotation of rice and weed reduced metal retention in the farmland soil, in comparison with sole rice growth. Harvesting of rice grain (and partially rice stalk) only contributed small fraction of total amount of removed metal. In summary, heavy metal in paddy field resulting from irrigation of mining wastewater could be largely removed by clean water irrigation for sufficient time.

  10. Reducing nitrogen runoff from paddy fields with arbuscular mycorrhizal fungi under different fertilizer regimes.

    PubMed

    Zhang, Shujuan; Wang, Li; Ma, Fang; Zhang, Xue; Fu, Dafang

    2016-08-01

    Nitrogen (N) runoff from paddy fields serves as one of the main sources of water pollution. Our aim was to reduce N runoff from paddy fields by fertilizer management and inoculation with arbuscular mycorrhizal fungi (AMF). In northeast China, Shuangcheng city in Heilongjiang province, a field experiment was conducted, using rice provided with 0%, 20%, 40%, 60%, 80%, and 100% of the local norm of fertilization (including N, phosphorus and potassium), with or without inoculation with Glomus mosseae. The volume, concentrations of total N (TN), dissolved N (DN) and particulate N (PN) of runoff water were measured. We found that the local norm of fertilization led to 18.9kg/ha of N runoff during rice growing season, with DN accounting for 60%-70%. We also found that reduction in fertilization by 20% cut down TN runoff by 8.2% while AMF inoculation decreased N runoff at each fertilizer level and this effect was inhibited by high fertilization. The combination of inoculation with AMF and 80% of the local norm of fertilization was observed to reduce N runoff by 27.2%. Conclusively, we suggested that the contribution of AMF inoculation combined with decreasing fertilization should get more attention to slow down water eutrophication by reducing N runoff from paddy fields. PMID:27521940

  11. Heavy metal contamination of paddy soils and rice (Oryza sativa L.) from Kocani Field (Macedonia).

    PubMed

    Rogan, Nastja; Serafimovski, Todor; Dolenec, Matej; Tasev, Goran; Dolenec, Tadej

    2009-08-01

    This research focuses on the heavy metal contamination of the paddy soils and rice from Kocani Field (eastern Macedonia) resulting from irrigation by riverine water impacted by past and present base-metal mining activities and acid mine drainage. Very high concentrations of As, Cd, Cu, Pb and Zn were found in the paddy soils (47.6, 6.4, 99, 983 and 1,245 microg g(-1)) and the rice (0.53, 0.31, 5.8, 0.5 and 67 microg g(-1)) in the western part of Kocani Field, close to the Zletovska River, which drains the mining facilities of the Pb-Zn mine in Zletovo. In terms of health risk, the observed highest concentrations of these elements in the rice could have an effect on human health and should be the subject of further investigations. PMID:18777118

  12. a Study on the SAR Data Observation Time for the Classification of Planting Condition of Paddy Fields

    NASA Astrophysics Data System (ADS)

    Kimura, A.; Kondo, A.; Mochizuki, K.

    2016-06-01

    In recent years, cultivation methods of rice have been diversified due to the low cost of rice-growing techniques. For example, there is direct sowing of seed rice in paddy field in addition to the practice of usual paddy field to flooding at the time of planting. The yield of the usual paddy field and the direct sowing is different even though the same varieties are grown in the same area. It is necessary to grasp by performing classification for the usual paddy field or direct sowing for the management of agricultural crops. The main objective of this study was to select the observation time for the classification of paddy fields' planting conditions by utilizing Synthetic Aperture Radar TerraSAR-X satellite. The planting conditions included the usual planting of rice, the direct sowing of rice and the soybean. We selected the observation time by the statistical distance of the microwave backscattering in each paddy field for maximizing the planting condition classification. In addition, the satellite data observation timing considered the processing time of the analysis and the acquisition costs. The acquisition was performed 4 periods from 2 periods in the rice growing season and the planting phase. In the current study, we were able to classify the usual planting of rice, the direct sowing of rice and the soybean by TerraSAR-X data for the later planting of rice during mid-May and initial growth of rice in early June.

  13. Analysis of water movement in paddy rice fields (I) experimental studies

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Kai; Liu, Chen Wuing

    2002-03-01

    For the purpose of increasing the amount of ground water recharge, we investigated the hydraulic characteristics of water infiltration in a flooded paddy rice field in Ten-Chung, Chung-Hwa county, Taiwan. Experimental results based on mini-tensiometers and double ring infiltrometer measurements indicated that the least permeable layer occurred at the interface of the puddled topsoil and non-puddled subsoil. The average thickness of this layer was about 7.5 cm and saturated hydraulic conductivity ranged from 0.034 to 0.083 cm/day. Vertical infiltration flow was saturated within the plow sole layer and became unsaturated in the subsoil below the plow sole layer. The hydraulic conductivity of the subsoil, 20-30 times greater than that of the plow sole layer, revealed that the subsoil was more permeable than the plow sole layer. In situ measurements also demonstrated that breakage of the plow sole layer increased infiltration rate by a factor of 3.7. Increasing ponded water depth from 6 to 16 cm increased infiltration 1.5 fold. It is suggested that using the fallow paddy rice fields without puddling is a feasible way to enhance groundwater recharge, but for cultivated paddy rice fields, breaking the plow sole needs further study in terms of its recoverability and because of the potential contamination of the shallow aquifer by agrochemicals. The experimental data can be applied in numerical simulation models to quantify detailed water movement mechanisms and accurately estimate the amount of ground water recharge in paddy rice fields.

  14. [Effects of controlled release fertilizers on N2O emission from paddy field].

    PubMed

    Li, Fangmin; Fan, Xiaolin; Liu, Fang; Wang, Qiang

    2004-11-01

    With close chamber method, this paper studied the effects of controlled release fertilizer (CRF), non-coated compound fertilizer (Com) and conventional urea (CK) on N2O emission from paddy field. The results showed that within 10 days after transplanting, the ammonium and nitrate concentrations in the surface water of the plot treated with CRF were significantly different from those treated with Com. The partial coefficient between N2O emission rates and corresponding nitrate concentrations in the water was significantly high (r = 0.6834). Compared with Com, CRF was able to reduce N2O emission from the paddy field. Within 100 days after basal application, the N2O emission rate of treatment CRF was only 13.45%-21.26% of Corn and 71.17%-112.47% of CK. The N2O emission of Com was mainly concentrated in 1-25 d after basal fertilization and mid-aeration period, but that of CRF was remarkably lower during same period, while the peak of N2O emission of CK was postponed and reduced. It was concluded that both one-time fertilization of CRF and several-time fertilizations of conventional urea were able to reduce N2O emission from the paddy field. PMID:15707336

  15. [Effects of controlled release fertilizers on N2O emission from paddy field].

    PubMed

    Li, Fangmin; Fan, Xiaolin; Liu, Fang; Wang, Qiang

    2004-11-01

    With close chamber method, this paper studied the effects of controlled release fertilizer (CRF), non-coated compound fertilizer (Com) and conventional urea (CK) on N2O emission from paddy field. The results showed that within 10 days after transplanting, the ammonium and nitrate concentrations in the surface water of the plot treated with CRF were significantly different from those treated with Com. The partial coefficient between N2O emission rates and corresponding nitrate concentrations in the water was significantly high (r = 0.6834). Compared with Com, CRF was able to reduce N2O emission from the paddy field. Within 100 days after basal application, the N2O emission rate of treatment CRF was only 13.45%-21.26% of Corn and 71.17%-112.47% of CK. The N2O emission of Com was mainly concentrated in 1-25 d after basal fertilization and mid-aeration period, but that of CRF was remarkably lower during same period, while the peak of N2O emission of CK was postponed and reduced. It was concluded that both one-time fertilization of CRF and several-time fertilizations of conventional urea were able to reduce N2O emission from the paddy field.

  16. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields

    PubMed Central

    Arai-Sanoh, Yumiko; Takai, Toshiyuki; Yoshinaga, Satoshi; Nakano, Hiroshi; Kojima, Mikiko; Sakakibara, Hitoshi; Kondo, Motohiko; Uga, Yusaku

    2014-01-01

    To clarify the effect of deep rooting on grain yield in rice (Oryza sativa L.) in an irrigated paddy field with or without fertilizer, we used the shallow-rooting IR64 and the deep-rooting Dro1-NIL (a near-isogenic line homozygous for the Kinandang Patong allele of DEEPER ROOTING 1 (DRO1) in the IR64 genetic background). Although total root length was similar in both lines, more roots were distributed within the lower soil layer of the paddy field in Dro1-NIL than in IR64, irrespective of fertilizer treatment. At maturity, Dro1-NIL showed approximately 10% higher grain yield than IR64, irrespective of fertilizer treatment. Higher grain yield of Dro1-NIL was mainly due to the increased 1000-kernel weight and increased percentage of ripened grains, which resulted in a higher harvest index. After heading, the uptake of nitrogen from soil and leaf nitrogen concentration were higher in Dro1-NIL than in IR64. At the mid-grain-filling stage, Dro1-NIL maintained higher cytokinin fluxes from roots to shoots than IR64. These results suggest that deep rooting by DRO1 enhances nitrogen uptake and cytokinin fluxes at late stages, resulting in better grain filling in Dro1-NIL in a paddy field in this study. PMID:24988911

  17. Soil microbial C:N ratio is a robust indicator of soil productivity for paddy fields

    PubMed Central

    Li, Yong; Wu, Jinshui; Shen, Jianlin; Liu, Shoulong; Wang, Cong; Chen, Dan; Huang, Tieping; Zhang, Jiabao

    2016-01-01

    Maintaining good soil productivity in rice paddies is important for global food security. Numerous methods have been developed to evaluate paddy soil productivity (PSP), most based on soil physiochemical properties and relatively few on biological indices. Here, we used a long-term dataset from experiments on paddy fields at eight county sites and a short-term dataset from a single field experiment in southern China, and aimed at quantifying relationships between PSP and the ratios of carbon (C) to nutrients (N and P) in soil microbial biomass (SMB). In the long-term dataset, SMB variables generally showed stronger correlations with the relative PSP (rPSP) compared to soil chemical properties. Both correlation and variation partitioning analyses suggested that SMB N, P and C:N ratio were good predictors of rPSP. In the short-term dataset, we found a significant, negative correlation of annual rice yield with SMB C:N (r = −0.99), confirming SMB C:N as a robust indicator for PSP. In treatments of the short-term experiment, soil amendment with biochar lowered SMB C:N and improved PSP, while incorporation of rice straw increased SMB C:N and reduced PSP. We conclude that SMB C:N ratio does not only indicate PSP but also helps to identify management practices that improve PSP. PMID:27739462

  18. Paddy field mapping and yield estimation by satellite imagery and in situ observations

    NASA Astrophysics Data System (ADS)

    Oyoshi, K.; Sobue, S.

    2011-12-01

    Since Asian countries are responsible for approximately 90% of the world rice production and consumptions, rice is the most significant cereal crop in Asia. In order to ensure food security and take mitigation strategies or policies to manage food shortages, timely and accurate statistics of rice production are essential. It is time and cost consuming work to create accurate statistics of rice production by ground-based measurements. Hence, satellite remote sensing is expected to contribute food security through the systematic collection of food security related information such as crop growth or yield estimation. In 2011, Japan Aerospace Exploration Agency (JAXA) is collaborating with GISTDA (Geo-Informatics and Space Technology Development Agency, Thailand) in research projects of rice yield estimation by integrating satellite imagery and in situ data. Thailand is one of the largest rice production countries and the largest rice exporting country, therefore rice related statistics are imperative for food security and economy in the country. However, satellite observation by optical sensor in tropics including Thailand is highly limited, because the area is frequently covered by cloud. In contrast, Japanese microwave sensor, namely Phased-Array L-Band Synthetic Aperture Radar (PALSAR) on board Advanced Land Observing Satellite (ALOS) is suitable for monitoring cloudy area such as Southeast Asia, because PALSAR can penetrate clouds and collect land-surface information even if the area is covered by cloud. In this study, rice crop yield over Khon Kaen, northeast part of Thailand was estimated by combining satellite imagery and in-situ observation. This study consists of mainly two parts, paddy field mapping and yield estimation by numerical crop model. First, paddy field areas were detected by integrating PALSAR and AVNIR-2 data. PALSAR imagery has much speckle noise and the border of each landcover is ambiguous compared to that of optical sensor. To overcome this

  19. A simple approach to assess N load capacity of rice paddy fields in the southern Taihu Lake watershed.

    PubMed

    Xin-Qiang, Liang; Hui-Fang, Zhang; Miao-Miao, He; Chun-Yan, Zhu; Fei-Er, Wang

    2016-01-01

    High nitrogen (N) leaching from irrigated agricultural soils is the result of N input exceeding soil N load capacity (NLC). A simple approach was developed in this research to assess the NLC of paddy soils in the southern Taihu Lake watershed. Paddy soils were classified into four types (Submergenic, Illuvium, Gleyed, and Percogenic) and 28 soil samples representing all four types were collected from across the region. The NLC values of the paddy soils were assessed using a split-line model and the spatial variability of the NLC among various rice paddy soils in the region was also evaluated with Kriging analysis. Results showed the NLC of paddy soils were both soil type and background N content related. The critical N sorption values (NLC plus soil N background) of the Gleyed, Illuvium, Submergenic, and Percogenic paddy soil samples varied from 283.1 to 315.6 mg kg(-1), 203.0 to 270.2 mg kg(-1), 240.6 to 254.4 mg kg(-1), and 177.4 to 186.2 mg kg(-1), respectively. However, on average the NLC of paddy soils in the region was 80.3 mg kg(-1), and the corresponding environmental N load threshold was around 110 kg N ha(-1). Geo-statistic results showed that the NLCs were unevenly distributed throughout the rice paddy dominated areas of the southern Taihu Lake watershed. The NLC assessment approach and spatial distribution information provided helpful guidance to set an environmental N threshold for best N management and hence reduce degradation of water for the whole rice ecosystem. PMID:27642829

  20. [Establishing a minimum data set of soil quality assessment for cold-waterlogged paddy field in Fujian Province, China].

    PubMed

    Wang, Fei; Li, Qing-hua; Lin, Cheng; He, Chun-mei; Zhong, Shao-jie; Li, Yu; Lin, Xin-jian

    2015-05-01

    The yields of cold-waterlogged (CW) paddy fields widely spreading in Jiangnan mountainous areas are moderate or low but have a high potential to be increased. Based on data including 41 soil characteristics of 17 pairs of typical surface soils of cold-waterlogged paddy field and non cold-waterlogged (NCW) paddy field at a neighboring landscape unit in Fujian Province, various index differences of soil properties and causes between CW paddy field and NCW paddy field were systematically studied, and a minimum data set (MDS) of soil quality assessment for CW paddy field was established by principal component analysis. By pair analysis, soil characteristics of CW paddy field showed that the content of organic matter increased by 31.7%, but the microbial biomass C decreased by 37.8%, which belonged to active soil organic matter component. The content of ferrous iron (Fe2+) increased by 177.0%, but the available phosphorus (P) and potassium (K) decreased by 52.3% and 22.8%, respectively. Catalase and invertase activities increased by 58.3% and 22. 1%, but phosphatase, nitrate reductase activities and microflora decreased by 47. 8%, 66.6% and 29.8%-46.0%, respectively. The sand content increased about 8.0%, but the water immersed bulk density decreased by 25.8%. There were significant differences of indices for 28 of all 41 soil characteristics. Five principal components cumulatively exhibiting about 78.5% contribution were concluded from the 28 soil characteristics to reflect characteristics related to soil biochemistry, active organic nitrogen, reducing barriers, physical and chemical nutrients, respectively. Eventually, correlation analysis combined with expert experience method were applied to optimize MDS containing six factors for soil quality assessments, including C/N, bacteria, microbial biomass N, total reducing agents, physical sand and total P. PMID:26571666

  1. Modeling of Movement of Field Gudgeon, Gnathopogon elongatus elongatus, in Agricultural Canals in Yatsu Paddy Fields

    NASA Astrophysics Data System (ADS)

    Takemura, Takeshi; Koizumi, Noriyuki; Mizutani, Masakazu; Mori, Atsushi; Watabe, Keiji

    It is important as quantitative information for making a decision of project sites for networking of water area, to predict reproductive process of fish population when consolidating fish-ways on points dividing fish habitat. To that end, it is necessary to predict the number of individuals migrating to new habitats. Hence, modeling of movement of individuals is necessary as a first step in population modeling. We constructed a mathematical model of movement of field gudgeon in agricultural canals, comparing with observed data obtained by our surveys. A unit time span of this model is 50 days. This model is able to consider existence of 2 types of movement, namely, individuals of sedentary type and individuals of ambulant type. Parameters of the model were decided based on observed data which correspond to 1 unit span. Next, moving distances of 6 individuals for 4 unit span were calculated using those parameters. A histogram of calculated values was similar to that of observed data which correspond to 4 unit span. The model is expected to provide an important immigration component to a population dynamics model which is currently under development. The population model is needed to predict population recovery processes where areas of paddy fields are joined in larger networks through construction of fish-ways.

  2. Simulation of future global warming scenarios in rice paddies with an open-field warming facility

    PubMed Central

    2011-01-01

    To simulate expected future global warming, hexagonal arrays of infrared heaters have previously been used to warm open-field canopies of upland crops such as wheat. Through the use of concrete-anchored posts, improved software, overhead wires, extensive grounding, and monitoring with a thermal camera, the technology was safely and reliably extended to paddy rice fields. The system maintained canopy temperature increases within 0.5°C of daytime and nighttime set-point differences of 1.3 and 2.7°C 67% of the time. PMID:22145582

  3. Change of PAHs with evolution of paddy soils from prehistoric to present over the last six millennia in the Yangtze River Delta region, China.

    PubMed

    Zhang, Jin; Cornelia, Mueller-Niggemann; Wang, Minyan; Cao, Zhihong; Luo, Xiping; Wong, Minghung; Chen, Wei

    2013-04-01

    To evaluate the influence of hydroponics management on soil organic components with evolution of paddy soil over the last six millennia, PAHs, as a biomarker, as well as total organic carbon content were used to explore changes of paddy soil organic carbon in two entirely buried ancient paddy soil profiles. The results showed that hydroponics management can cause organic carbon deposition in rice paddy. The changing of total PAH concentrations was not always in accordance with the changing of total organic carbon contents in layers of the buried ancient paddy soils. The PAHs in 6280 BP prehistoric paddy soil layer was 3-ring>5-ring>4-ring>6-ring, while in layers of the present paddy soil and the prehistoric upland were 3-ring>4-ring>5-ring>6-ring. The contribution of phenanthrene to total PAHs in two profiles and the increasing ratio of phenanthrene to alkylated PAHs from parent material/6280 BP prehistoric upland to 6280 BP paddy suggested substantial increase of the anthropogenic influence of hydroponics management on rice paddy soil. And in view of the (14)C age and bioremains in the two profiles, it was only possible for PAHs to be derived from hydroponics management with evolution of the paddy soils form the Neolithic age. Cadalene could be used as an indicator for biological sources of PAHs released by rice plant residues, and benzo[g,h,i]fluoranthene and benzo[g,h,i]perylene for pyrogenic sources released by field vegetation fires. PMID:23435064

  4. [Quantifying direct N2O emissions from paddy fields during rice growing season in China: model establishment].

    PubMed

    Zou, Jian-Wen; Qin, Yan-Mei; Liu, Shu-Wei

    2009-02-15

    Various water management regimes, such as continuous flooding (F), flooding-midseason drainage-reflooding (F-D-F), and flooding-midseason drainage-reflooding-moist intermittent irrigation but without water logging (F-D-F-M), are currently practiced in paddy rice production in China. These water regimes have incurred a sensitive change in direct N2O emission from rice paddy fields. In order to establish statistical models quantifying the country-specific emission factor and background emission of N2O in paddy fields during the rice growing season, we compiled and statistically analyzed field data on 71 N2O measurements from 17 field studies that were published in peer-reviewed Chinese and English journals. For each field study, we documented the seasonal N2O emission, the type and amount of organic amendment and fertilizer nitrogen application, the water management regime, the drainage duration, the field location and cropping season. Seasonal total N2O was, on average, equivalent to 0.02% of the nitrogen applied in the continuous flooding rice paddies. Under the water regime of F-D-F or the F-D-F-M, seasonal N2O emissions increased with N fertilizer applied in rice paddies. Applying an Ordinary Least Square (OLS) linear regression model resulted in an emission factor of 0.42% for N2O, and in unpronounced background N2 O emission under the water regime of F-D-F. Under the F-D-F-M water regime, N2O emission factor and N2O-N background emission were estimated to be 0.73% and 0.79 kg x hm(-2) during the paddy rice growing season, respectively. After considering three different water regimes in rice paddies in China, the emission factor of N for N2O and N2O-N background emission averaged 0.54% and 0.43 kg x hm(-2). The results of this study suggest that paddy rice relative to upland crop production could have contributed to mitigating N2O emissions from agriculture in China. The emission factor of N for N2O and its background emissions can be directly adopted to develop

  5. [Carbon sequestration effects of rice straw return in double season paddy field in Southern China].

    PubMed

    Wu, Jia-Mei; Ji, Xiong-Hui; Peng, Hua; Shi, Li-Hong; Liu, Zhao-Bing; Tian, Fa-Xiang; Huo, Lian-Jie; Zhu, Jian

    2011-12-01

    In a long-term site-specific experiment with rice straw return (RSR) and in a short-term experiment with different RSR modes, this paper studied the effects of RSR on the soil organic carbon (SOC) sequestration, methane emission, and net carbon sink in a double season paddy field. RSR increased the SOC content, and the annual increasing rate of soil carbon sink in plow layer (0-15 cm) under long-term RSR was 0.07 t C x hm(-2) x a(-1). With the increasing amount of RSR, the apparent SOC transformation rate decreased. RSR promoted the methane emission from the paddy field significantly, and the methane emission flux in treatment RSR plus NPK during early- and late rice growth seasons increased by 75.0% and 251.5% (P < 0.01), respectively, compared with that in treatment NPK. The methane emission increased with the increasing amount of RSR. Under the similar tillage mode and rice yield, the rice straw returned had the similar apparent methane transformation rate. Considering the soil carbon sequestration and the net carbon sink after methane emission in the paddy field comprehensively, treatment RSR plus NPK had significant negative effect on the carbon sink which was basically approached to the bio-fixation of carbon by rice and increased by 158.3%, as compared with treatment NPK. Among different RSR modes, rice straw mulching plus no tillage decreased soil methane emission significantly, with the net carbon sink decreased by 50.9% as compared with the treatment high stubble plus tillage, and benefited the high and stable yielding of rice. PMID:22384587

  6. Comparative Metagenomics of Anode-Associated Microbiomes Developed in Rice Paddy-Field Microbial Fuel Cells

    PubMed Central

    Kouzuma, Atsushi; Kasai, Takuya; Nakagawa, Gen; Yamamuro, Ayaka; Abe, Takashi; Watanabe, Kazuya

    2013-01-01

    In sediment-type microbial fuel cells (sMFCs) operating in rice paddy fields, rice-root exudates are converted to electricity by anode-associated rhizosphere microbes. Previous studies have shown that members of the family Geobacteraceae are enriched on the anodes of rhizosphere sMFCs. To deepen our understanding of rhizosphere microbes involved in electricity generation in sMFCs, here, we conducted comparative analyses of anode-associated microbiomes in three MFC systems: a rice paddy-field sMFC, and acetate- and glucose-fed MFCs in which pieces of graphite felt that had functioned as anodes in rice paddy-field sMFC were used as rhizosphere microbe-bearing anodes. After electric outputs became stable, microbiomes associated with the anodes of these MFC systems were analyzed by pyrotag sequencing of 16S rRNA gene amplicons and Illumina shotgun metagenomics. Pyrotag sequencing showed that Geobacteraceae bacteria were associated with the anodes of all three systems, but the dominant Geobacter species in each MFC were different. Specifically, species closely related to G. metallireducens comprised 90% of the anode Geobacteraceae in the acetate-fed MFC, but were only relatively minor components of the rhizosphere sMFC and glucose-fed MFC, whereas species closely related to G. psychrophilus were abundantly detected. This trend was confirmed by the phylogenetic assignments of predicted genes in shotgun metagenome sequences of the anode microbiomes. Our findings suggest that G. psychrophilus and its related species preferentially grow on the anodes of rhizosphere sMFCs and generate electricity through syntrophic interactions with organisms that excrete electron donors. PMID:24223712

  7. Nitrogen removal from water containing high nitrate nitrogen in a paddy field (wetland).

    PubMed

    Nakasone, H; Kuroda, H; Kato, T; Tabuchi, T

    2003-01-01

    Nowadays, it has become very common to find in Japan that nitrate nitrogen concentrations are very high in spring water and in well water where the land use of a watershed is agricultural. We have often observed around 50 mg/L of nitrate nitrogen in the spring water where we live. Crops produced in those fields are mainly vegetables such as celery, cabbage, lettuce, carrots, and so on. Green tea is also popular in Japan. In order to produce good quality green tea, farmers apply a great amount of nitrogen fertilizer. This amount can reach up to 1,000 kg/ha in some areas, although the average application amounts to 628 kg/ha in Japan. As a result, ground water that is rich in nitrate flows into the river, which results in a high nitrogen concentration in river water and ground water. Further, this causes a low pH in river water in some tributary rivers in Japan, though this kind of case is very rare. We knew from field tests that if water contained a high nitrogen concentration and was introduced into paddy fields, high nitrogen removal would be performed. This paper presents the outline and results of a system on how to remove nitrogen using paddy fields (wetlands). Further, this paper presents the evaluated results of the removal quantity at the watershed level.

  8. ¹³⁷Cs in irrigation water and its effect on paddy fields in Japan after the Fukushima nuclear accident.

    PubMed

    Yoshikawa, Natsuki; Obara, Hitomi; Ogasa, Marie; Miyazu, Susumu; Harada, Naoki; Nonaka, Masanori

    2014-05-15

    There is concern that radiocesium deposited in the environment after the accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011 will migrate to paddy fields through hydrological pathways and cause serious and long-lasting damage to the agricultural activities. This study was conducted in the Towa region of Nihonmatsu in the northern part of Fukushima Prefecture, Japan, (1) to quantify (137)Cs in stream water used to irrigate paddy fields by separating the dissolved and particulate components in water samples and then fractionating the particulate components bonded in different ways using a sequential extraction procedure, and (2) to determine the amounts of radiocesium newly added to paddy fields in irrigation water relative to the amounts of radiocesium already present in the fields from the deposition of atmospheric fallout immediately after the FDNPP accident. Three catchments were studied, and the (137)Cs activity concentrations in stream water samples were 79-198 mBq L(-1) under stable runoff conditions and 702-13,400 Bq L(-1) under storm runoff conditions. The residual fraction (F4, considered to be non-bioavailable) was dominant, accounting for 59.5-82.6% of the total (137)Cs activity under stable runoff conditions and 69.4-95.1% under storm runoff conditions. The (137)Cs newly added to paddy fields in irrigation water only contributed 0.03-0.05% of the amount already present in the soil (201-348 kBq m(-2)). This indicates that the (137)Cs inflow load in irrigation water is negligible compared with that already in the soil. However, the contribution from the potentially bioavailable fractions (F1+F2+F3) was one order of magnitude larger, accounting for 0.20-0.59%. The increase in the dissolved and soluble radiocesium fraction (F1) was especially large (3.0% to infinity), suggesting that radiocesium migration in irrigation water is increasing the accumulation of radiocesium in rice.

  9. Preliminary Study on the Radar Vegetation Index (RVI) Application to Actual Paddy Fields by ALOS/PALSAR Full-polarimetry SAR Data

    NASA Astrophysics Data System (ADS)

    Yamada, Y.

    2015-04-01

    Kim and van Zyl (2001) proposed a kind of radar vegetation index (RVI). RVI = 4*min(λ1, λ2, λ3) / (λ1 + λ2 + λ3) They modified the equation as follows. (2009) RVI = 8 * σ0hv / (σ0hh + σ0vv +σ0hv ) by L-band full-polarimetric SAR data. They applied it into rice crop and soybean. (Y.Kim, T.Jackson et al., 2012) They compared RVI for L-, C- and X-bands to crop growth data, LAI and NDVI. They found L-band RVI was well correlated with Vegetation Water Content, LAI and NDVI. But the field data were collected by the multifrequency polarimetric scatterometer. The platform height was 4.16 meters from the ground. The author tried to apply the method to actual paddy fields near Tsukuba science city in Japan using ALOS/PALSAR, full-polarimetry L-band SAR data. The staple crop in Eastern Asia is rice and paddy fields are dominant land use. A rice-planting machine comes into wide use in this areas. The young rice plants were bedded regularly ridged line in the paddy fields by the machine. The space between two ridges of rice plants is about 30 cm and the wave length of PALSAR sensor is about 23 cm. Hence the Bragg scattering will appear depending upon the direction of the ridges of paddy fields. Once the Bragg scattering occurs, the backscattering values from the pixels should be very high comparing the surrounding region. Therefore the radar vegetation index (RVI) would be saturated. The RVI did not follow the increasing of vegetation anymore. Japan has launched ALOS-2 satellite and it has PALSAR-2, L-band SAR. Therefore RVI application product by PALSAR-2 will be watched with deep interest.

  10. Difference in cesium accumulation among rice cultivars grown in the paddy field in Fukushima Prefecture in 2011 and 2012.

    PubMed

    Ohmori, Yoshihiro; Inui, Yayoi; Kajikawa, Masataka; Nakata, Atsumi; Sotta, Naoyuki; Kasai, Koji; Uraguchi, Shimpei; Tanaka, Nobuhiro; Nishida, Sho; Hasegawa, Takahiro; Sakamoto, Takuya; Kawara, Yuko; Aizawa, Kayoko; Fujita, Haruka; Li, Ke; Sawaki, Naoya; Oda, Koshiro; Futagoishi, Ryuichiro; Tsusaka, Takahiro; Takahashi, Satomi; Takano, Junpei; Wakuta, Shinji; Yoshinari, Akira; Uehara, Masataka; Takada, Shigeki; Nagano, Hayato; Miwa, Kyoko; Aibara, Izumi; Ojima, Takuya; Ebana, Kaoru; Ishikawa, Satoru; Sueyoshi, Kuni; Hasegawa, Hiroshi; Mimura, Tetsuro; Mimura, Mari; Kobayashi, Natsuko I; Furukawa, Jun; Kobayashi, Daisuke; Okouchi, Toshiyasu; Tanoi, Keitaro; Fujiwara, Toru

    2014-01-01

    After the accident of the Fukushima 1 Nuclear Power Plant in March 2011, radioactive cesium was released and paddy fields in a wide area including Fukushima Prefecture were contaminated. To estimate the levels of radioactive Cs accumulation in rice produced in Fukushima, it is crucial to obtain the actual data of Cs accumulation levels in rice plants grown in the actual paddy field in Fukushima City. We herein conducted a two-year survey in 2011 and 2012 of radioactive and non-radioactive Cs accumulation in rice using a number of rice cultivars grown in the paddy field in Fukushima City. Our study demonstrated a substantial variation in Cs accumulation levels among the cultivars of rice.

  11. Can arbuscular mycorrhiza and fertilizer management reduce phosphorus runoff from paddy fields?

    PubMed

    Zhang, Shujuan; Wang, Li; Ma, Fang; Zhang, Xue; Li, Zhe; Li, Shiyang; Jiang, Xiaofeng

    2015-07-01

    Our study sought to assess how much phosphorus (P) runoff from paddy fields could be cut down by fertilizer management and inoculation with arbuscular mycorrhizal fungi. A field experiment was conducted in Lalin River basin, in the northeast China: six nitrogen-phosphorus-potassium fertilizer levels were provided (0, 20%, 40%, 60%, 80%, and 100% of the recommended fertilizer supply), with or without inoculation with Glomus mosseae. The volume and concentrations of particle P (PP) and dissolved P (DP) were measured for each runoff during the rice growing season. It was found that the seasonal P runoff, including DP and PP, under the local fertilization was 3.7 kg/ha, with PP, rather than DP, being the main form of P in runoff water. Additionally, the seasonal P runoff dropped only by 8.9% when fertilization decreased by 20%; rice yields decreased with declining fertilization. We also found that inoculation increased rice yields and decreased P runoff at each fertilizer level and these effects were lower under higher fertilization. Conclusively, while rice yields were guaranteed arbuscular mycorrhizal inoculation and fertilizer management would play a key role in reducing P runoff from paddy fields.

  12. Improving water management practices to reduce nutrient export from rice paddy fields.

    PubMed

    Zhang, Zhi-Jian; Yao, Ju-Xiang; Wang, Zhao-De; Xu, Xin; Lin, Xian-Yong; Czapar, George F; Zhang, Jian-Ying

    2011-01-01

    Nitrogen (N) and phosphorus (P) loss from rice paddy fields represents a significant threat to water quality in China. In this project, three irrigation-drainage regimes were compared, including one conventional irrigation-drainage regime, i.e. continuous submergence regime (CSR), and two improved regimes, i.e. the alternating submergence-nonsubmergence regime (ASNR) and the zero-drainage irrigation technology (ZDIT), to seek cost-effective practices for reducing nutrient loss. The data from these comparisons showed that, excluding the nutrient input from irrigation, the net exports of total N and total P via surface field drainage ranged from -3.93 to 2.39 kg ha and 0.17 to 0.95 g ha(-1) under the CSR operation, respectively, while N loss was -2.46 to -2.23 kg ha(-1) and P export was -0.65 to 0.31 kg ha(-1) under the improved regimes. The intensity of P export was positively correlated to the rate of P application. Reducing the draining frequency or postponing the draining operation would shift the ecological role of the paddy field from a nutrient export source to an interception sink when ASNR or the zero-drainage water management was used. In addition, since the rice yields are being guaranteed at no additional cost, the improved irrigation-drainage operations would have economic as well as environmental benefits.

  13. A study on characteristics of Methane emission from a periodically irrigated paddy field in Japan

    NASA Astrophysics Data System (ADS)

    Wakikuromaru, N.; Iwata, T.; Yagi, K.

    2014-12-01

    Methane (CH4) is generated by organic matter decomposition in the anaerobic soil. Paddy field is one of the most important eco-system in monsoon Asia. It is said that about 10% of CH4sources is paddy fields (IPCC AR4, 2007). In this study, methane emission from a single-rice crop field was estimated by long-term micrometeorological measurements. Methane emission was calculated by the aerodynamic gradient technique from January 2011 to August 2014. Intermittent water management was carried out during cultivation period at the observational site, HCH, located in Okayama, Japan. 3-days flood and 4-days drained condition were regularly repeated from late-June to early October. Seasonal variations of CH4flux for irrigation term from 2011 to 2013 were shown in Fig.1. Remarkably large fluxes were shown at early stage of irrigation term in 2011.It seemed to be caused by the relatively longer flooded condition that the first flooded period was 20 days. Flux in 2012 was smaller than in other year through the entire irrigation period. Rapid rise in flux for early August and gradual decrease between late August and September were shown in 2013. Fluxes under drained condition showed larger emission than under flooded condition. Cumulative CH4 emissions during cultivated period from 2011 to 2013 were estimated 15.7, 8.6, and 12.9 gC/m2, respectively.

  14. The dynamics of arsenic in four paddy fields in the Bengal delta.

    PubMed

    Stroud, Jacqueline L; Norton, Gareth J; Islam, M Rafiqul; Dasgupta, Tapash; White, Rodger P; Price, Adam H; Meharg, Andrew A; McGrath, Steve P; Zhao, Fang-Jie

    2011-04-01

    Irrigation with arsenic contaminated groundwater in the Bengal Delta may lead to As accumulation in the soil and rice grain. The dynamics of As concentration and speciation in paddy fields during dry season (boro) rice cultivation were investigated at 4 sites in Bangladesh and West Bengal, India. Three sites which were irrigated with high As groundwater had elevated As concentrations in the soils, showing a significant gradient from the irrigation inlet across the field. Arsenic concentration and speciation in soil pore water varied temporally and spatially; higher As concentrations were associated with an increasing percentage of arsenite, indicating a reductive mobilization. Concentrations of As in rice grain varied by 2-7 fold within individual fields and were poorly related with the soil As concentration. A field site employing alternating flooded-dry irrigation produced the lowest range of grain As concentration, suggesting a lower soil As availability caused by periodic aerobic conditions. PMID:21236535

  15. Co-contamination of Cu and Cd in paddy fields: Using periphyton to entrap heavy metals.

    PubMed

    Yang, Jiali; Tang, Cilai; Wang, Fengwu; Wu, Yonghong

    2016-03-01

    The ubiquitous native periphyton was used to entrap Cu and Cd from paddy fields. Results showed that Cu- and Cd-hydrate species such as CuOH(+), Cu2(OH)2(2+), CdOH(+), and Cu3(OH)4(2+) decreased with time in the presence of periphyton. When the initial concentrations of Cu and Cd were 10mg/L, the heavy metal content in the periphyton fluctuated from 145.20mg/kg to 342.42 mg/kg for Cu and from 101.75 mg/kg to 236.29 mg/kg for Cd after 2h exposure. The concentration of Cd in periphytic cells varied from 42.93 mg/kg to 174 mg/kg after 2h. The dominant periphyton microorganism species shifted from photoautotrophs to heterotrophs during the exposure of periphyton to Cu and Cd co-contamination. Although Cu and Cd could inhibit periphyton photosynthesis and carbon utilization, the periphyton was able to adapt to the test conditions. Cu and Cd accumulation in rice markedly decreased in the presence of periphyton while the number of rice seeds germinating was higher in the periphyton treatments. These results suggest that the inclusion of native periphyton in paddy fields provides a promising buffer to minimize the effects of Cu and Cd pollution on rice growth and food safety. PMID:26551219

  16. Object-Based Analysis and Change Detection of Paddy Field at Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    PARK, J.; Kim, Y.; Kwak, Y.

    2015-12-01

    Remote sensing technology has been used in land use and land cover classification. Especially paddy fields is an important cultivated area in Asia. To accurately extract the area is the important indicator to estimate the food production. In this research paddy fields classification in Hokkaido was performed using Topographical features (DEM), Climatic features (accumulated temperature), Spectrometer features (MODIS). Fig. 1. shows the overview of the analysis methods of this research. The process of this research is carried out in 3 steps.1. Determine the accumulated temperature by retrieving the temperature data from the AMeDAS data. 2. Extract the river from the DEM. Set the elevation of the river to 0 to seek the land elevation around it relatively. 3. Calculate the WI (Water Index) using MODIS band 4(Green)and Band 2(NIR). Time series NDVI has been corrected by the FFT method (use a low-pass filter). Phenology information was extracted such as vegetation Onset time, Max value and Duration. Result of the classification was compared with the current vegetation map of the Ministry of the Environment. As a result we can confirm that existence of vegetation map around Sapporo and Asahikawa is almost same. but around Obihiro it was clear that overestimate by water index.

  17. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery

    PubMed Central

    Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Zhu, Zhe; Zhang, Geli; Du, Guoming; Jin, Cui; Kou, Weili; Wang, Jie; Li, Xiangping

    2016-01-01

    Accurate and timely rice paddy field maps with a fine spatial resolution would greatly improve our understanding of the effects of paddy rice agriculture on greenhouse gases emissions, food and water security, and human health. Rice paddy field maps were developed using optical images with high temporal resolution and coarse spatial resolution (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) or low temporal resolution and high spatial resolution (e.g., Landsat TM/ETM+). In the past, the accuracy and efficiency for rice paddy field mapping at fine spatial resolutions were limited by the poor data availability and image-based algorithms. In this paper, time series MODIS and Landsat ETM+/OLI images, and the pixel- and phenology-based algorithm are used to map paddy rice planting area. The unique physical features of rice paddy fields during the flooding/open-canopy period are captured with the dynamics of vegetation indices, which are then used to identify rice paddy fields. The algorithm is tested in the Sanjiang Plain (path/row 114/27) in China in 2013. The overall accuracy of the resulted map of paddy rice planting area generated by both Landsat ETM+ and OLI is 97.3%, when evaluated with areas of interest (AOIs) derived from geo-referenced field photos. The paddy rice planting area map also agrees reasonably well with the official statistics at the level of state farms (R2 = 0.94). These results demonstrate that the combination of fine spatial resolution images and the phenology-based algorithm can provide a simple, robust, and automated approach to map the distribution of paddy rice agriculture in a year.

  18. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery

    PubMed Central

    Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Zhu, Zhe; Zhang, Geli; Du, Guoming; Jin, Cui; Kou, Weili; Wang, Jie; Li, Xiangping

    2016-01-01

    Accurate and timely rice paddy field maps with a fine spatial resolution would greatly improve our understanding of the effects of paddy rice agriculture on greenhouse gases emissions, food and water security, and human health. Rice paddy field maps were developed using optical images with high temporal resolution and coarse spatial resolution (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) or low temporal resolution and high spatial resolution (e.g., Landsat TM/ETM+). In the past, the accuracy and efficiency for rice paddy field mapping at fine spatial resolutions were limited by the poor data availability and image-based algorithms. In this paper, time series MODIS and Landsat ETM+/OLI images, and the pixel- and phenology-based algorithm are used to map paddy rice planting area. The unique physical features of rice paddy fields during the flooding/open-canopy period are captured with the dynamics of vegetation indices, which are then used to identify rice paddy fields. The algorithm is tested in the Sanjiang Plain (path/row 114/27) in China in 2013. The overall accuracy of the resulted map of paddy rice planting area generated by both Landsat ETM+ and OLI is 97.3%, when evaluated with areas of interest (AOIs) derived from geo-referenced field photos. The paddy rice planting area map also agrees reasonably well with the official statistics at the level of state farms (R2 = 0.94). These results demonstrate that the combination of fine spatial resolution images and the phenology-based algorithm can provide a simple, robust, and automated approach to map the distribution of paddy rice agriculture in a year. PMID:27695195

  19. [Responses of CO2 fluxes to light intensity and temperature in rice paddy field].

    PubMed

    Zhu, Yong-li; Wu, Jin-shui; Tong, Cheng-li; Wang, Ke-lin; Wang, Qin-xue

    2008-04-01

    CO2 fluxes in rice paddy ecosystem in subtropical hilly region were measured continuously using eddy covariance technique. The objectives were to investigate the responses of CO2 fluxes to light intensity and temperature in the paddy ecosystem. Results showed a rectangular hyperbolic light-response function could be used to describe the relationship of CO2 flux and photosynthetic photon flux density (PPFD). The absolute values of CO2 fluxes increased with the increment of PPFD. When PPFD was higher than 1000 micromol/(m2 x s), the maximum was observed. CO2 fluxes responded differently to light between early and late rice. Values of quantum yield of late rice (0.0465-0.0999 micromol/micromol) were general higher than that of early rice (0.0176-0.0541 micromol/micromol). Moreover, the quantum yield and the maximum rate of photosynthesis assimilation in the blooming stage were higher than that in tillering and ripening stages. In nighttime, respiration from soil and plants (ecosystem respiration, Reco) changed exponentially with the increase of soil temperature at the depth of 5 cm (T5), 10 cm (T10), and 20 cm (T20), respectively. Whereas, T5 was more feasible than others to be considered as the temperature parameter for Reco calculation. During early rice growing season, Reco was more sensitive to temperature change than that during late rice growing season. PMID:18637359

  20. Arsenic dynamics in porewater of an intermittently irrigated paddy field in Bangladesh.

    PubMed

    Roberts, Linda C; Hug, Stephan J; Voegelin, Andreas; Dittmar, Jessica; Kretzschmar, Ruben; Wehrli, Bernhard; Saha, Ganesh C; Badruzzaman, A Borhan M; Ali, M Ashraf

    2011-02-01

    In Bangladesh, irrigation of dry season rice (boro) with arsenic-contaminated groundwater is leading to increased As levels in soils and rice, and to concerns about As-induced yield reduction. Arsenic concentrations and speciation in soil porewater are strongly influenced by redox conditions, and thus by water management during rice growth. We studied the dynamics of As, Fe, P, Si, and other elements in porewater of a paddy field near Sreenagar (Munshiganj), irrigated according to local practice, in which flooding was intermittent. During early rice growth, As porewater concentrations reached up to 500 μg L(-1) and were dominated by As(III), but As release was constrained to the lower portion of the soil above the plow pan. In the later part of the season, soil conditions were oxic throughout the depth range relevant to rice roots and porewater concentrations only intermittently increased to ∼150 μg L(-1) As(V) following irrigation events. Our findings suggest that intermittent irrigation, currently advocated in Bangladesh for water-saving purposes, may be a promising means of reducing As input to paddy soils and rice plant exposure to As. PMID:21166387

  1. Arsenic dynamics in porewater of an intermittently irrigated paddy field in Bangladesh.

    PubMed

    Roberts, Linda C; Hug, Stephan J; Voegelin, Andreas; Dittmar, Jessica; Kretzschmar, Ruben; Wehrli, Bernhard; Saha, Ganesh C; Badruzzaman, A Borhan M; Ali, M Ashraf

    2011-02-01

    In Bangladesh, irrigation of dry season rice (boro) with arsenic-contaminated groundwater is leading to increased As levels in soils and rice, and to concerns about As-induced yield reduction. Arsenic concentrations and speciation in soil porewater are strongly influenced by redox conditions, and thus by water management during rice growth. We studied the dynamics of As, Fe, P, Si, and other elements in porewater of a paddy field near Sreenagar (Munshiganj), irrigated according to local practice, in which flooding was intermittent. During early rice growth, As porewater concentrations reached up to 500 μg L(-1) and were dominated by As(III), but As release was constrained to the lower portion of the soil above the plow pan. In the later part of the season, soil conditions were oxic throughout the depth range relevant to rice roots and porewater concentrations only intermittently increased to ∼150 μg L(-1) As(V) following irrigation events. Our findings suggest that intermittent irrigation, currently advocated in Bangladesh for water-saving purposes, may be a promising means of reducing As input to paddy soils and rice plant exposure to As.

  2. [Influence of paddy rice-upland crop rotation of cold-waterlogged paddy field on crops produc- tion and soil characteristics].

    PubMed

    Wang, Fei; Li, Qing-hua; Lin, Cheng; He, Chun-mei; Zhong, Shao-jie; Li, Yu; Lin, Xin-jian; Huang, Jian-cheng

    2015-05-01

    Two consecutive years (4-crop) experiments were conducted to study the influence of different paddy rice-upland crop rotation in cold-waterlogged paddy field on the growth of crops and soil characteristics. The result showed that compared with the rice-winter fallow (CK) pattern, the two-year average yield of paddy rice under four rotation modes, including rape-rice (R-R), spring corn-rice (C-R), Chinese milk vetch-rice (M-R) and bean-rice (B-R), were increased by 5.3%-26.7%, with significant difference observed in C-R and R-R patterns. Except for M-R pattern, the annual average total economic benefits were improved by 79.0%-392.4% in all rotation pattern compared with the CK, and the ration of output/input was enhanced by 0.06-0.72 unit, with the most significant effect found in the C-R pattern. Likewise, compared with the CK, the contents of chlorophyll and carotenoid, and net photosynthetic rate (Pn) of rice plant were all increased during the full-tillering stage of rice in all rotation patterns. The rusty lines and rusty spots of soils were more obvious compared with the CK during the rice harvest, particularly in R-R, C-R and B-R patterns. The ratio of water-stable soil macro aggregates of plough layer of soil (> 2 mm) decreased at different levels in all rotation patterns while the ratios of middle aggregate (0.25-2 mm, expect for M-R) and micro aggregate of soil (< 0.25 mm) were opposite. There was a decreasing trend for soil active reducing agents in all rotation patterns, whereas the available nutrient increased. The amounts of soil bacteria in C-R and B-R patterns, fungi in B-R rotation pattern, cellulose bacteria in R-R, C-R and B-R patterns and N-fixing bacteria in B-R pattern were improved by 285.7%-403.0%, 221.7%, 64.6-92.2% and 162.2%, respectively. Moreover, the differences in all microorganisms were significant. Thus, based on the experimental results of cold-waterlogged paddy field, it was concluded that changing from single cropping rice system

  3. [Influence of paddy rice-upland crop rotation of cold-waterlogged paddy field on crops produc- tion and soil characteristics].

    PubMed

    Wang, Fei; Li, Qing-hua; Lin, Cheng; He, Chun-mei; Zhong, Shao-jie; Li, Yu; Lin, Xin-jian; Huang, Jian-cheng

    2015-05-01

    Two consecutive years (4-crop) experiments were conducted to study the influence of different paddy rice-upland crop rotation in cold-waterlogged paddy field on the growth of crops and soil characteristics. The result showed that compared with the rice-winter fallow (CK) pattern, the two-year average yield of paddy rice under four rotation modes, including rape-rice (R-R), spring corn-rice (C-R), Chinese milk vetch-rice (M-R) and bean-rice (B-R), were increased by 5.3%-26.7%, with significant difference observed in C-R and R-R patterns. Except for M-R pattern, the annual average total economic benefits were improved by 79.0%-392.4% in all rotation pattern compared with the CK, and the ration of output/input was enhanced by 0.06-0.72 unit, with the most significant effect found in the C-R pattern. Likewise, compared with the CK, the contents of chlorophyll and carotenoid, and net photosynthetic rate (Pn) of rice plant were all increased during the full-tillering stage of rice in all rotation patterns. The rusty lines and rusty spots of soils were more obvious compared with the CK during the rice harvest, particularly in R-R, C-R and B-R patterns. The ratio of water-stable soil macro aggregates of plough layer of soil (> 2 mm) decreased at different levels in all rotation patterns while the ratios of middle aggregate (0.25-2 mm, expect for M-R) and micro aggregate of soil (< 0.25 mm) were opposite. There was a decreasing trend for soil active reducing agents in all rotation patterns, whereas the available nutrient increased. The amounts of soil bacteria in C-R and B-R patterns, fungi in B-R rotation pattern, cellulose bacteria in R-R, C-R and B-R patterns and N-fixing bacteria in B-R pattern were improved by 285.7%-403.0%, 221.7%, 64.6-92.2% and 162.2%, respectively. Moreover, the differences in all microorganisms were significant. Thus, based on the experimental results of cold-waterlogged paddy field, it was concluded that changing from single cropping rice system

  4. [Rules and impact factors of greenhouse gases emission in the saline-alkali paddy fields in different years].

    PubMed

    Tang, Jie; Fang, Tian-Ru; Hou, Ke-Yi; Zhao, Ren-Zhu; Liang, Shuang

    2014-12-01

    With the method of combining field sampling and plot test, we took saline-alkali paddy field of Qianguo county, Jilin province as an investigation object. According to the nature of soil in the area, we monitored CH4 and N2O which released from soil during rice growth period and tested the soil pH and soil organic carbon to analyze the law and reasons of greenhouse gas emission in the paddy fields. The results showed that N2O emission from paddy fields presented three peaks with distinct seasonal patterns. Application of fertilizer provided additional reactive substrate, which affected N2O emission significantly. Under flooding conditions, the main source of N2O is a denitrification process, while after drainage, nitrification was the predominance. CH4 emission showed a single peak at rice tillering stage when rice grew vigorously. That deoxidation condition dominated in the deep water layer in the paddy fields provided suitable conditions for CH4 producing microorganisms, which result in the emergence of CH4 emission peak. The pH doesn't have an obvious influence on CH4 and N2O, while SOC content in soil and pattern of CH4 emission showed a significantly positive correlation. PMID:25826947

  5. [Rules and impact factors of greenhouse gases emission in the saline-alkali paddy fields in different years].

    PubMed

    Tang, Jie; Fang, Tian-Ru; Hou, Ke-Yi; Zhao, Ren-Zhu; Liang, Shuang

    2014-12-01

    With the method of combining field sampling and plot test, we took saline-alkali paddy field of Qianguo county, Jilin province as an investigation object. According to the nature of soil in the area, we monitored CH4 and N2O which released from soil during rice growth period and tested the soil pH and soil organic carbon to analyze the law and reasons of greenhouse gas emission in the paddy fields. The results showed that N2O emission from paddy fields presented three peaks with distinct seasonal patterns. Application of fertilizer provided additional reactive substrate, which affected N2O emission significantly. Under flooding conditions, the main source of N2O is a denitrification process, while after drainage, nitrification was the predominance. CH4 emission showed a single peak at rice tillering stage when rice grew vigorously. That deoxidation condition dominated in the deep water layer in the paddy fields provided suitable conditions for CH4 producing microorganisms, which result in the emergence of CH4 emission peak. The pH doesn't have an obvious influence on CH4 and N2O, while SOC content in soil and pattern of CH4 emission showed a significantly positive correlation.

  6. Draft Genome Sequence of Methylosinus sp. Strain 3S-1, an Isolate from Rice Root in a Low-Nitrogen Paddy Field.

    PubMed

    Bao, Zhihua; Shinoda, Ryo; Minamisawa, Kiwamu

    2016-01-01

    N2-fixing methanotrophs play an important role in the methane-nitrogen cycle in rice paddies. We report here the draft genome sequence of Methylosinus sp. strain 3S-1 isolated from rice root in a paddy field without N fertilizer input. PMID:27587832

  7. Draft Genome Sequence of Methylosinus sp. Strain 3S-1, an Isolate from Rice Root in a Low-Nitrogen Paddy Field

    PubMed Central

    Bao, Zhihua; Shinoda, Ryo

    2016-01-01

    N2-fixing methanotrophs play an important role in the methane-nitrogen cycle in rice paddies. We report here the draft genome sequence of Methylosinus sp. strain 3S-1 isolated from rice root in a paddy field without N fertilizer input. PMID:27587832

  8. Improvements in the Weeding of Levee Slope of Terraced Paddy Fields with Statutory Regulation of Places of Scenic Beauty

    NASA Astrophysics Data System (ADS)

    Uchikawa, Yoshiyuki; Kimura, Kazuhiro; Hirata, Ayumi

    A growing number of terraced paddy fields in Japan are being conserved as cultural assets like places of scenic beauty. This has meant that the task of weeding levee slope of these terraced paddy fields has become increasingly important, not only for general maintenance of the terraced paddy fields, but also because of the impact landscape, vegetation and the surrounding environment. However, the steep gradient of the levee slope and lack of footholds mean that the workability and safety associated with this weeding work is problematic. In addition, in the event that an area has been designated as a cultural asset, there are restrictions regarding how it can be modified and local farmers are reluctant to change their traditional farming methods in such cases. This study therefore sought to clarify the actual condition of the levee slope weeding work undertaken in the places of scenic beauty Obasute Tanada district. Empirical validations of potential measures for reforming the work environment were evaluated based on the findings of this investigation. We demonstrated that it is possible to modify current work practices while still maintaining and preserving the terraced paddy fields, even in designated scenic locations. To improve the working environment for levee slope weeding, we propose creating berms to serve as footholds at the toes of slopes.

  9. Impacts of the herbicide butachlor on the larvae of a paddy field breeding frog (Fejervarya limnocharis) in subtropical Taiwan.

    PubMed

    Liu, Wan-Yi; Wang, Ching-Yuh; Wang, Tsu-Shing; Fellers, Gary M; Lai, Bo-Chi; Kam, Yeong-Choy

    2011-03-01

    Butachlor is the most commonly used herbicide on paddy fields in Taiwan and throughout Southeast Asia. Since paddy fields provide habitat for pond breeding amphibians, we examined growth, development, time to metamorphosis, and survival of alpine cricket frog tadpoles (Fejervarya limnocharis) exposed to environmentally realistic concentrations of butachlor. We documented negative impacts of butachlor on survival, development, and time to metamorphosis, but not on tadpole growth. The 96 h LC(50) for tadpoles was 0.87 mg/l, much lower than the 4.8 mg/l recommended dosage for application to paddy fields. Even given the rapid breakdown of butachlor, tadpoles would be exposed to concentrations in excess of their 96 h LC(50) for an estimated 126 h. We also documented DNA damage (genotoxicity) in tadpoles exposed to butachlor at concentrations an order of magnitude less than the 4.8 mg/l recommended application rate. We did not find that butachlor depressed cholinesterase activity of tadpoles, unlike most organophosphorus insecticides. We conclude that butachlor is likely to have widespread negative impacts on amphibians occupying paddy fields with traditional herbicide application.

  10. Impacts of the herbicide butachlor on the larvae of a paddy field breeding frog (Fejervarya limnocharis) in subtropical Taiwan

    USGS Publications Warehouse

    Liu, Wan-Yi; Wang, Ching-Yuh; Wang, Tsu-Shing; Fellers, Gary M.; Lai, Bo-Chi; Kam, Yeong-Choy

    2011-01-01

    Butachlor is the most commonly used herbicide on paddy fields in Taiwan and throughout Southeast Asia. Since paddy fields provide habitat for pond breeding amphibians, we examined growth, development, time to metamorphosis, and survival of alpine cricket frog tadpoles (Fejervarya limnocharis) exposed to environmentally realistic concentrations of butachlor. We documented negative impacts of butachlor on survival, development, and time to metamorphosis, but not on tadpole growth. The 96 h LC50 for tadpoles was 0.87 mg/l, much lower than the 4.8 mg/l recommended dosage for application to paddy fields. Even given the rapid breakdown of butachlor, tadpoles would be exposed to concentrations in excess of their 96 h LC50 for an estimated 126 h. We also documented DNA damage (genotoxicity) in tadpoles exposed to butachlor at concentrations an order of magnitude less than the 4.8 mg/l recommended application rate. We did not find that butachlor depressed cholinesterase activity of tadpoles, unlike most organophosphorus insecticides. We conclude that butachlor is likely to have widespread negative impacts on amphibians occupying paddy fields with traditional herbicide application.

  11. Heavy Metals Uptake by Asian Swamp Eel, Monopterus albus from Paddy Fields of Kelantan, Peninsular Malaysia: Preliminary Study

    PubMed Central

    Yin, Sow Ai; Ismail, Ahmad; Zulkifli, Syaizwan Zahmir

    2012-01-01

    Swamp eel, Monopterus albus is one of the common fish in paddy fields, thus it is suitable to be a bio-monitor for heavy metals pollution studies in paddy fields. This study was conducted to assess heavy metals levels in swamp eels collected from paddy fields in Kelantan, Malaysia. The results showed zinc [Zn (86.40 μg/g dry weight)] was the highest accumulated metal in the kidney, liver, bone, gill, muscle and skin. Among the selected organs, gill had the highest concentrations of lead (Pb), cadmium (Cd) and nickel (Ni) whereas muscle showed the lowest total metal accumulation of Zn, Pb, copper (Cu), Cd and Ni. Based on the Malaysian Food Regulation, the levels of Zn and Cu in edible parts (muscle and skin) were within the safety limits. However, Cd, Pb and Ni exceeded the permissible limits. By comparing with the maximum level intake (MLI), Pb, Ni and Cd in edible parts can still be consumed. This investigation indicated that M. albus from paddy fields of Kelantan are safe for human consumption with little precaution. PMID:24575231

  12. Assessment of the air-soil partitioning of polycyclic aromatic hydrocarbons in a paddy field using a modified fugacity sampler.

    PubMed

    Wang, Yan; Luo, Chunling; Wang, Shaorui; Liu, Junwen; Pan, Suhong; Li, Jun; Ming, Lili; Zhang, Gan; Li, Xiangdong

    2015-01-01

    Rice, one of the most widely cultivated crops, has received great attention in contaminant uptake from soil and air, especially for the special approaches used for its cultivation. The dry-wet alternation method can influence the air-soil partitioning of semivolatile organic compounds (SVOCs) in the paddy ecosystem. Here, we modified a fugacity sampler to investigate the air-surface in situ partitioning of ubiquitous polycyclic aromatic hydrocarbons (PAHs) at different growth stages in a suburban paddy field in South China. The canopy of rice can form a closed space, which acts like a chamber that can force the air under the canopy to equilibrate with the field surface. When we compared the fugacities calculated using a fugacity model of the partition coefficients to the measured fugacities, we observed similar trends in the variation, but significantly different values between different growing stages, especially during the flooding stages. However, the measured and calculated fugacity fractions were comparable when uncertainties in our calculations were considered, with the exception of the high molecular weight (HMW) PAHs. The measured fugacity fractions suggested that the HMW PAHs were also closed to equilibrium between the paddy field and atmosphere. The modified fugacity sampler provided a novel way of accurately determining the in situ air-soil partitioning of SVOCs in a wet paddy field.

  13. Conversion of upland to paddy field specifically alters the community structure of archaeal ammonia oxidizers in an acid soil

    NASA Astrophysics Data System (ADS)

    Alam, M. S.; Ren, G. D.; Lu, L.; Zheng, Y.; Peng, X. H.; Jia, Z. J.

    2013-08-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the major energy-generating compounds (i.e., ammonia and oxygen). The diversification of AOA and AOB communities along ecological gradients of substrate availability in a complex environment have been much debated but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB upon conversion of an upland field to a paddy field and long-term field fertilization in an acid soil. Real-time quantitative polymerase chain reaction of ammonia monooxygenase (amoA) genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils for more than 100 yr, whereas a slight decline in AOB numbers was observed. Denaturing gradient gel electrophoresis fingerprints of amoA genes further revealed remarkable changes in the community compositions of AOA after conversion of aerobic upland to flooded paddy field. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, whereas the marine group 1.1a-associated lineage predominated in AOA communities in paddy soils. Irrespective of whether the soil was upland or paddy soil, long-term field fertilization led to increased abundance of amoA genes in AOA and AOB compared with control treatments (no fertilization), whereas archaeal amoA gene abundances outnumbered their bacterial counterparts in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster-3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatment. The results of this study suggest that the marine group 1.1a-associated AOA will be better adapted to the flooded paddy field than AOA ecotypes of the soil group 1.1b lineage, and indicate that long-term flooding is the dominant selective force driving the

  14. Sediment trap efficiency of paddy fields at the watershed scale in a mountainous catchment in northwest Vietnam

    NASA Astrophysics Data System (ADS)

    Slaets, Johanna I. F.; Schmitter, Petra; Hilger, Thomas; Vien, Tran Duc; Cadisch, Georg

    2016-06-01

    Composite agricultural systems with permanent maize cultivation in the uplands and irrigated rice in the valleys are very common in mountainous southeast Asia. The soil loss and fertility decline of the upland fields is well documented, but little is known about reallocation of these sediments within the landscape. In this study, a turbidity-based linear mixed model was used to quantify sediment inputs, from surface reservoir irrigation water and from direct overland flow, into a paddy area of 13 ha. Simultaneously, the sediment load exported from the rice fields was determined. Mid-infrared spectroscopy was applied to analyze sediment particle size. Our results showed that per year, 64 Mg ha-1 of sediments were imported into paddy fields, of which around 75 % were delivered by irrigation water and the remainder by direct overland flow during rainfall events. Overland flow contributed one-third of the received sandy fraction, while irrigated sediments were predominantly silty. Overall, rice fields were a net sink for sediments, trapping 28 Mg ha-1 a-1 or almost half of total sediment inputs. As paddy outflow consisted almost exclusively of silt- and clay-sized material, 24 Mg ha-1 a-1 of the trapped amount of sediment was estimated to be sandy. Under continued intensive upland maize cultivation, such a sustained input of coarse material could jeopardize paddy soil fertility, puddling capacity and ultimately food security of the inhabitants of these mountainous areas. Preventing direct overland flow from entering the paddy fields, however, could reduce sand inputs by up to 34 %.

  15. Sediment trap efficiency of paddy fields at the watershed scale in a mountainous catchment in Northwest Vietnam

    NASA Astrophysics Data System (ADS)

    Slaets, J. I. F.; Schmitter, P.; Hilger, T.; Vien, T. D.; Cadisch, G.

    2015-12-01

    Composite agricultural systems with permanent maize cultivation in the uplands and irrigated rice in the valleys are very common in mountainous Southeast Asia. The soil loss and fertility decline of the upland fields is well documented, but little is known about reallocation of these sediments within the landscape. In this study, a turbidity-based linear mixed model was used to quantify sediment inputs, from surface reservoir irrigation water and from direct overland flow, into a paddy area of 13 hectares. Simultaneously, the sediment load exported from the rice fields was determined. Mid-infrared spectroscopy was applied to analyze sediment particle size. Our results showed that per year, 64 Mg ha-1 of sediments were imported into paddy fields, of which around 75 % were delivered by irrigation water and the remainder by direct overland flow during rainfall events. Overland flow contributed one third of the received sandy fraction, while irrigated sediments were predominantly silty. Overall, rice fields were a net sink for sediments, trapping 28 Mg ha-1 a-1 or almost half of total sediment inputs. As paddy outflow consisted almost exclusively of silt- and clay-sized material, 24 Mg ha-1 a-1 of the trapped amount of sediment was estimated to be sandy. Under continued intensive upland maize cultivation, such a sustained input of coarse material could jeopardize paddy soil fertility, puddling capacity and ultimately also food security of the inhabitants of these mountainous areas. Preventing direct overland flow from entering the paddy fields, however, could reduce sand inputs by up to 34 %.

  16. Effects of Bt-transgenic rice cultivation on planktonic communities in paddy fields and adjacent ditches.

    PubMed

    Liu, Yongbo; Liu, Fang; Wang, Chao; Quan, Zhanjun; Li, Junsheng

    2016-09-15

    The non-target effects of transgenic plants are issues of concern; however, their impacts in cultivated agricultural fields and adjacent natural aquatic ecosystems are poorly understood. We conducted field experiments during two growing seasons to determine the effects of cultivating Bacillus thuringiensis (Bt)-transgenic rice on the phytoplankton and zooplankton communities in a paddy field and an adjacent ditch. Bt toxin was detected in soil but not in water. Water quality was not significantly different between non-Bt and Bt rice fields, but varied among up-, mid- and downstream locations in the ditch. Cultivation of Bt-transgenic rice had no effects on zooplankton communities. Phytoplankton abundance and biodiversity were not significantly different between transgenic and non-transgenic rice fields in 2013; however, phytoplankton were more abundant in the transgenic rice field than in the non-transgenic rice field in 2014. Water quality and rice type explained 65.9% and 12.8% of this difference in 2014, respectively. Phytoplankton and zooplankton were more abundant in mid- and downstream, than upstream, locations in the ditch, an effect that we attribute to water quality differences. Thus, the release of Bt toxins into field water during the cultivation of transgenic crops had no direct negative effects on plankton community composition, but indirect effects that alter environmental conditions should be taken into account during the processes of management planning and policymaking. PMID:27219503

  17. Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value.

    PubMed

    Yu, Huan-Yun; Liu, Chuanping; Zhu, Jishu; Li, Fangbai; Deng, Dong-Mei; Wang, Qi; Liu, Chengshuai

    2016-02-01

    Cadmium (Cd) availability can be significantly affected by soil properties. The effect of pH value on Cd availability has been confirmed. Paddy soils in South China generally contain high contents of iron (Fe). Thus, it is hypothesized that Fe fractions, in addition to pH value, may play an important role in the Cd bioavailability in paddy soil and this requires further investigation. In this study, 73 paired soil and rice plant samples were collected from paddy fields those were contaminated by acid mine drainage containing Cd. The contents of Fe in the amorphous and DCB-extractable Fe oxides were significantly and negatively correlated with the Cd content in rice grain or straw (excluding DCB-extractable Fe vs Cd in straw). In addition, the concentration of HCl-extractable Fe(II) derived from Fe(III) reduction was positively correlated with the Cd content in rice grain or straw. These results suggest that soil Fe redox could affect the availability of Cd in rice plant. Contribution assessment of soil properties to Cd accumulation in rice grain based on random forest (RF) and stochastic gradient boosting (SGB) showed that pH value should be the most important factor and the content of Fe in the amorphous Fe oxides should be the second most important factor in affecting Cd content in rice grain. Overall, compared with the studies from temperate regions, such as Europe and northern China, Fe oxide exhibited its unique role in the bioavailability of Cd in the reddish paddy soil from our study area. The exploration of practical remediation strategies for Cd from the perspective of Fe oxide may be promising. PMID:26629644

  18. Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value.

    PubMed

    Yu, Huan-Yun; Liu, Chuanping; Zhu, Jishu; Li, Fangbai; Deng, Dong-Mei; Wang, Qi; Liu, Chengshuai

    2016-02-01

    Cadmium (Cd) availability can be significantly affected by soil properties. The effect of pH value on Cd availability has been confirmed. Paddy soils in South China generally contain high contents of iron (Fe). Thus, it is hypothesized that Fe fractions, in addition to pH value, may play an important role in the Cd bioavailability in paddy soil and this requires further investigation. In this study, 73 paired soil and rice plant samples were collected from paddy fields those were contaminated by acid mine drainage containing Cd. The contents of Fe in the amorphous and DCB-extractable Fe oxides were significantly and negatively correlated with the Cd content in rice grain or straw (excluding DCB-extractable Fe vs Cd in straw). In addition, the concentration of HCl-extractable Fe(II) derived from Fe(III) reduction was positively correlated with the Cd content in rice grain or straw. These results suggest that soil Fe redox could affect the availability of Cd in rice plant. Contribution assessment of soil properties to Cd accumulation in rice grain based on random forest (RF) and stochastic gradient boosting (SGB) showed that pH value should be the most important factor and the content of Fe in the amorphous Fe oxides should be the second most important factor in affecting Cd content in rice grain. Overall, compared with the studies from temperate regions, such as Europe and northern China, Fe oxide exhibited its unique role in the bioavailability of Cd in the reddish paddy soil from our study area. The exploration of practical remediation strategies for Cd from the perspective of Fe oxide may be promising.

  19. Mapping paddy rice distribution using multi-temporal Landsat imagery in the Sanjiang Plain, northeast China

    PubMed Central

    XIAO, Xiangming; DONG, Jinwei; QIN, Yuanwei; WANG, Zongming

    2016-01-01

    Information of paddy rice distribution is essential for food production and methane emission calculation. Phenology-based algorithms have been utilized in the mapping of paddy rice fields by identifying the unique flooding and seedling transplanting phases using multi-temporal moderate resolution (500 m to 1 km) images. In this study, we developed simple algorithms to identify paddy rice at a fine resolution at the regional scale using multi-temporal Landsat imagery. Sixteen Landsat images from 2010–2012 were used to generate the 30 m paddy rice map in the Sanjiang Plain, northeast China—one of the major paddy rice cultivation regions in China. Three vegetation indices, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI), were used to identify rice fields during the flooding/transplanting and ripening phases. The user and producer accuracies of paddy rice on the resultant Landsat-based paddy rice map were 90% and 94%, respectively. The Landsat-based paddy rice map was an improvement over the paddy rice layer on the National Land Cover Dataset, which was generated through visual interpretation and digitalization on the fine-resolution images. The agricultural census data substantially underreported paddy rice area, raising serious concern about its use for studies on food security.

  20. Mapping paddy rice distribution using multi-temporal Landsat imagery in the Sanjiang Plain, northeast China

    PubMed Central

    XIAO, Xiangming; DONG, Jinwei; QIN, Yuanwei; WANG, Zongming

    2016-01-01

    Information of paddy rice distribution is essential for food production and methane emission calculation. Phenology-based algorithms have been utilized in the mapping of paddy rice fields by identifying the unique flooding and seedling transplanting phases using multi-temporal moderate resolution (500 m to 1 km) images. In this study, we developed simple algorithms to identify paddy rice at a fine resolution at the regional scale using multi-temporal Landsat imagery. Sixteen Landsat images from 2010–2012 were used to generate the 30 m paddy rice map in the Sanjiang Plain, northeast China—one of the major paddy rice cultivation regions in China. Three vegetation indices, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI), were used to identify rice fields during the flooding/transplanting and ripening phases. The user and producer accuracies of paddy rice on the resultant Landsat-based paddy rice map were 90% and 94%, respectively. The Landsat-based paddy rice map was an improvement over the paddy rice layer on the National Land Cover Dataset, which was generated through visual interpretation and digitalization on the fine-resolution images. The agricultural census data substantially underreported paddy rice area, raising serious concern about its use for studies on food security. PMID:27695637

  1. [Effects of straw mulching on CO2 flux in wintry fallow paddy field].

    PubMed

    Yin, Chun-mei; Xie, Xiao-li; Wang, Kai-rong

    2008-01-01

    This paper studied the effects of straw mulching on the CO2 flux in a wintry fallow paddy field at Taoyuan Agro-ecological Station, Chinese Academy of Sciences. The results showed that the effects of straw mulching mainly exerted in two ways. First, it positively affected soil temperature, making the CO2 flux increased obviously. Straw mulching gave a net emission of 2.68 g CO2 x m(-2) x d(-1), while no mulching gave a net fixation of 1.99 g CO2 x m(-2) x d(-1), the difference between them being very significant (P < 0.01). Second, straw mulching decreased the biomass of weeds and the photosynthetically active radiation they absorbed, which in turn resulted in an increase of CO2 flux. Under straw mulching, the water content in surface soil layer (0-15 cm) increased by 9% or more, but no significant change was observed in CO2 flux.

  2. Variations and constancy of mercury and methylmercury accumulation in rice grown at contaminated paddy field sites in three Provinces of China.

    PubMed

    Li, B; Shi, J B; Wang, X; Meng, M; Huang, L; Qi, X L; He, B; Ye, Z H

    2013-10-01

    Many paddy fields have been contaminated by mercury (Hg) in mining areas of China. In this study, twenty-six rice cultivars and three Hg contaminated paddy fields in different geographic regions were selected for field trials and aimed to investigate the variations and similarities in total Hg (THg) and methylmercury (MeHg) accumulations in brown rice (seeds) across sites. Our results revealed widescale cultivar variation in THg (13-52 ng g(-1) at Wanshan) and MeHg (3.5-23 ng g(-1)) accumulation and %MeHg (17.7-89%) in seeds. The ability to translocate is an important factor in the levels of THg and MeHg in seed. Cultivar tended to stability in THg accumulation across sites. Some cultivars accumulated lower concentrations of both THg and MeHg in seeds at fields seriously contaminated by Hg. Present results suggest that appropriate cultivar selection is a possible way to reduce THg and MeHg accumulation in seeds of rice grown in Hg-contaminated regions.

  3. Crop Species Recognition and Discrimination Paddy-Rice from Reaped-Fields by the Radar Vegetation Index (rvi) of ALOS-2/PALSAR2

    NASA Astrophysics Data System (ADS)

    Yamada, Y.

    2016-06-01

    The Japanese ALOS-2 satellite was launched on May 24th, 2014. It has the L-band SAR, PALSAR-2. Kim,Y. and van Zyl, J.J. proposed a kind of Radar Vegetation Index (RVI) as RVI = 8 * σ0hv / (σ0hh + σ0vv + 2* σ0hv) by L-band full-polarimetric radar data. Kim, Y. and Jackson, T.J., et al. applied the equation into rice and soybean by multi-frequency polarimetric scatterometer above 4.16 meters from the ground. Their report showed the L-band was the most promising wave length for estimating LAI and NDVI from RVI. The author tried to apply the analysis to the actual paddy field areas, both Inashiki region and Miyagi region in the eastern main island, "Honshu", areas of Japan by ALOS-2/PALSAR-2 full-polarimetry data in the summer season, the main crop growing time, of 2015. Judging from conventional methods, it will be possible to discriminate paddy rice growing fields from reaped fields or the other crops growing fields by the PALSAR-2 data. But the RVI value is vaguely related to such land use or biomass at the present preliminary experiment. The continuous research by the additional PALSAR-2 full-polarimetry data should be desired.

  4. [Comparisons of Microbial Numbers, Biomasses and Soil Enzyme Activities Between Paddy Field and Drvland Origins in Karst Cave Wetland].

    PubMed

    Jin, Zhen-jiang; Zeng, Hong-hu; Li, Qiang; Cheng, Ya-ping; Tang, Hua-feng; Li, Min; Huang, Bing-fu

    2016-01-15

    The purpose of this study is to compare microbial number, microbial biomass as well as soil enzyme activity between paddy field and dryland originated karst wetland ecosystems. The soil samples (0-20 cm) of uncultivated wetland, paddy field and dryland were collected in Huixian karst cave wetland, Guilin, China. Microbial numbers and biomass were detected using dilute plate incubation counting and chloroform fumigation-extraction, respectively. Microbial DNA was extracted according to the manufacturer's instructions of the kit. Microbial activity was examined using soil enzyme assays as well. The result showed that the bacteria number in paddy filed was (4.36 +/- 2.25) x 10(7) CFU x g(-1), which was significantly higher than those in wetland and dryland. Fungi numbers were (6.41 +/- 2.16) x 10(4) CFU x g(-1) in rice paddy and (6.52 +/- 1.55) x 10(4) CFU x g(-1) in wetland, which were higher than that in dryland. Actinomycetes number was (2.65 +/- 0.72) x 10(6) CFU x g(-1) in dryland, which was higher than that in wetland. Microbial DNA concentration in rice paddy was (11.92 +/- 3.69) microg x g(-1), which was higher than that in dryland. Invertase activity was (66.87 +/- 18.61) mg x (g x 24 h)(-1) in rice paddy and alkaline phosphatase activity was (2.07 +/- 0.99) mg x (g x 2 h)(-1) in wetland, both of which were higher than those in dryland. Statistical analysis showed there was a significant positive correlation of microbial DNA content, alkaline phosphatase activity and microbial carbon with soil pH, soil organic carbon (SOC), total nitrogen, alkali-hydrolyzable nitrogen, soil moisture, exchangeable Ca2+ and exchangeable Mg2+, as well as a significant positive correlation of intervase activity with the former three microbial factors. The above results indicated that microbial biomass and function responded much more sensitively to land-use change than microbial number in karst cave wetland system. Soil moisture, SOC and some factors induced by land-use change

  5. [Comparisons of Microbial Numbers, Biomasses and Soil Enzyme Activities Between Paddy Field and Drvland Origins in Karst Cave Wetland].

    PubMed

    Jin, Zhen-jiang; Zeng, Hong-hu; Li, Qiang; Cheng, Ya-ping; Tang, Hua-feng; Li, Min; Huang, Bing-fu

    2016-01-15

    The purpose of this study is to compare microbial number, microbial biomass as well as soil enzyme activity between paddy field and dryland originated karst wetland ecosystems. The soil samples (0-20 cm) of uncultivated wetland, paddy field and dryland were collected in Huixian karst cave wetland, Guilin, China. Microbial numbers and biomass were detected using dilute plate incubation counting and chloroform fumigation-extraction, respectively. Microbial DNA was extracted according to the manufacturer's instructions of the kit. Microbial activity was examined using soil enzyme assays as well. The result showed that the bacteria number in paddy filed was (4.36 +/- 2.25) x 10(7) CFU x g(-1), which was significantly higher than those in wetland and dryland. Fungi numbers were (6.41 +/- 2.16) x 10(4) CFU x g(-1) in rice paddy and (6.52 +/- 1.55) x 10(4) CFU x g(-1) in wetland, which were higher than that in dryland. Actinomycetes number was (2.65 +/- 0.72) x 10(6) CFU x g(-1) in dryland, which was higher than that in wetland. Microbial DNA concentration in rice paddy was (11.92 +/- 3.69) microg x g(-1), which was higher than that in dryland. Invertase activity was (66.87 +/- 18.61) mg x (g x 24 h)(-1) in rice paddy and alkaline phosphatase activity was (2.07 +/- 0.99) mg x (g x 2 h)(-1) in wetland, both of which were higher than those in dryland. Statistical analysis showed there was a significant positive correlation of microbial DNA content, alkaline phosphatase activity and microbial carbon with soil pH, soil organic carbon (SOC), total nitrogen, alkali-hydrolyzable nitrogen, soil moisture, exchangeable Ca2+ and exchangeable Mg2+, as well as a significant positive correlation of intervase activity with the former three microbial factors. The above results indicated that microbial biomass and function responded much more sensitively to land-use change than microbial number in karst cave wetland system. Soil moisture, SOC and some factors induced by land-use change

  6. Radiocesium discharge from paddy fields with different initial scrapings for decontamination after the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Wakahara, Taeko; Onda, Yuich; Kato, Hiroaki; Sakaguchi, Aya; Yoshimura, Kazuya

    2014-11-01

    To explore the behavior of radionuclides released after the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in March 2011, and the distribution of radiocesium in paddy fields, we monitored radiocesium (Cs) and suspended sediment (SS) discharge from paddy fields. We proposed a rating scale for measuring the effectiveness of surface soil removal. Our experimental plots in paddy fields were located ∼40 km from the FDNPP. Two plots were established: one in a paddy field where surface soil was not removed (the "normally cultivated paddy field") and the second in a paddy field where the top 5-10 cm of soil was removed before cultivation (the "surface-removed paddy field"). The amounts of Cs and SS discharge from the paddy fields were continuously measured from June to August 2011. The Cs soil inventory measured 3 months after the FDNPP accident was approximately 200 kBq m(-2). However, after removing the surface soil, the concentration of Cs-137 decreased to 5 kBq m(-2). SS discharged from the normally cultivated and surface-removed paddy fields after puddling (mixing of soil and water before planting rice) was 11.0 kg and 3.1 kg, respectively, and Cs-137 discharge was 630,000 Bq (1240 Bq m(-2)) and 24,800 Bq (47.8 Bq m(-2)), respectively. The total amount of SS discharge after irrigation (natural rainfall-runoff) was 5.5 kg for the normally cultivated field and 70 kg for the surface-removed field, and the total amounts of Cs-137 discharge were 51,900 Bq (102 Bq m(-2)) and 165,000 Bq (317 Bq m(-2)), respectively. During the irrigation period, discharge from the surface-removed plot showed a twofold greater inflow than that from the normally cultivated plot. Thus, Cs inflow may originate from the upper canal. The topsoil removal process eliminated at least approximately 95% of the Cs-137, but upstream water contaminated with Cs-137 flowed into the paddy field. Therefore, to accurately determine the Cs discharge, it is important to examine Cs inflow from the

  7. Assessing the pollution risk of soil Chromium based on loading capacity of paddy soil at a regional scale

    PubMed Central

    Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun

    2015-01-01

    The accumulation of a trace metal in rice grain is not only affected by the total concentration of the soil trace metal, but also by crop variety and related soil properties, such as soil pH, soil organic matter (SOM) and so on. However, these factors were seldom considered in previous studies on mapping the pollution risk of trace metals in paddy soil at a regional scale. In this study, the spatial nonstationary relationships between rice-Cr and a set of perceived soil properties (soil-Cr, soil pH and SOM) were explored using geographically weighted regression; and the relationships were then used for calculating the critical threshold (CT) of soil-Cr concentration that may ensure the concentration of rice-Cr being below the permissible limit. The concept of “loading capacity” (LC) for Cr in paddy soil was then defined as the difference between the CT and the real concentration of Cr in paddy soil, so as to map the pollution risk of soil-Cr to rice grain and assess the risk areas in Jiaxing city, China. Compared with the information of the concentration of the total soil-Cr, such results are more valuable for spatial decision making in reducing the accumulation of rice-Cr at a regional scale. PMID:26675587

  8. Assessing the pollution risk of soil Chromium based on loading capacity of paddy soil at a regional scale

    NASA Astrophysics Data System (ADS)

    Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun

    2015-12-01

    The accumulation of a trace metal in rice grain is not only affected by the total concentration of the soil trace metal, but also by crop variety and related soil properties, such as soil pH, soil organic matter (SOM) and so on. However, these factors were seldom considered in previous studies on mapping the pollution risk of trace metals in paddy soil at a regional scale. In this study, the spatial nonstationary relationships between rice-Cr and a set of perceived soil properties (soil-Cr, soil pH and SOM) were explored using geographically weighted regression; and the relationships were then used for calculating the critical threshold (CT) of soil-Cr concentration that may ensure the concentration of rice-Cr being below the permissible limit. The concept of “loading capacity” (LC) for Cr in paddy soil was then defined as the difference between the CT and the real concentration of Cr in paddy soil, so as to map the pollution risk of soil-Cr to rice grain and assess the risk areas in Jiaxing city, China. Compared with the information of the concentration of the total soil-Cr, such results are more valuable for spatial decision making in reducing the accumulation of rice-Cr at a regional scale.

  9. The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon.

    PubMed

    Yu, Huan-Yun; Ding, Xiaodong; Li, Fangbai; Wang, Xiangqin; Zhang, Shirong; Yi, Jicai; Liu, Chuanping; Xu, Xianghua; Wang, Qi

    2016-08-01

    Adequate silicon (Si) can greatly boost rice yield and improve grain quality through alleviating stresses associated with heavy metals and metalloids such as arsenic (As) and cadmium (Cd). The soil plant-available Si is relatively low in South China due to severe desilicification and allitization of the soils in this region. Conversely, pollution of heavy metals and metalloids in the soils of this region occurs widely, especially As and Cd pollution in paddy soil. Therefore, evaluating the plant availability of Si in paddy soil of South China and examining its correlation with the availability of heavy metals and metalloids are of great significance. Accordingly, in our study, 107 pairs of soil and rice plant samples were collected from paddy fields contaminated by As and Cd in South China. Significantly positive correlations between Si in rice plants and Si fractions in soils extracted with citric acid, NaOAc-HOAc buffer, and oxalate-ammonium oxalate buffer suggest that these extractants are more suitable for use in extracting plant-available Si in the soils of our present study. Significantly negative correlations between different Si fractions and As or Cd in rice plant tissues and negative exponential correlations between the molar ratios of Si to As/Cd in rice roots, straws, husks or grains and As/Cd in rice grains indicate that Si can significantly alleviate the accumulation of As/Cd from soils to the rice plants. Finally, a contribution assessment of soil properties to As/Cd accumulation in rice grains based on random forest showed that in addition to Si concentrations in soil or rice plants, other factors such as Fe fractions and total phosphorus also contributed largely to As/Cd accumulation in rice grains. Overall, Si exhibited its unique role in mitigating As or Cd stress in rice, and our study results provide strong field evidence for this role. PMID:27209244

  10. The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon.

    PubMed

    Yu, Huan-Yun; Ding, Xiaodong; Li, Fangbai; Wang, Xiangqin; Zhang, Shirong; Yi, Jicai; Liu, Chuanping; Xu, Xianghua; Wang, Qi

    2016-08-01

    Adequate silicon (Si) can greatly boost rice yield and improve grain quality through alleviating stresses associated with heavy metals and metalloids such as arsenic (As) and cadmium (Cd). The soil plant-available Si is relatively low in South China due to severe desilicification and allitization of the soils in this region. Conversely, pollution of heavy metals and metalloids in the soils of this region occurs widely, especially As and Cd pollution in paddy soil. Therefore, evaluating the plant availability of Si in paddy soil of South China and examining its correlation with the availability of heavy metals and metalloids are of great significance. Accordingly, in our study, 107 pairs of soil and rice plant samples were collected from paddy fields contaminated by As and Cd in South China. Significantly positive correlations between Si in rice plants and Si fractions in soils extracted with citric acid, NaOAc-HOAc buffer, and oxalate-ammonium oxalate buffer suggest that these extractants are more suitable for use in extracting plant-available Si in the soils of our present study. Significantly negative correlations between different Si fractions and As or Cd in rice plant tissues and negative exponential correlations between the molar ratios of Si to As/Cd in rice roots, straws, husks or grains and As/Cd in rice grains indicate that Si can significantly alleviate the accumulation of As/Cd from soils to the rice plants. Finally, a contribution assessment of soil properties to As/Cd accumulation in rice grains based on random forest showed that in addition to Si concentrations in soil or rice plants, other factors such as Fe fractions and total phosphorus also contributed largely to As/Cd accumulation in rice grains. Overall, Si exhibited its unique role in mitigating As or Cd stress in rice, and our study results provide strong field evidence for this role.

  11. [Effects of winter cover crop on methane and nitrous oxide emission from paddy field].

    PubMed

    Tang, Hai-ming; Tang, Wen-guang; Shuai, Xi-qiang; Yang, Guang-li; Tang, Hai-tao; Xiao, Xiao-Ping

    2010-12-01

    Static chamber-GC technique was employed to study the effects of different treatment winter cover crops, including no-tillage and directly sowing ryegrass (T1), no-tillage and directly sowing Chinese milk vetch (T2), tillage and transplanting rape (T3), no-tillage and directly sowing rape (T4), and fallowing (CK), on the CH4 and N2O emission from double cropping rice paddy field. During the growth period of test winter cover crops, the CH4 and N2O emission in treatments T1-T4 was significantly higher than that in CK (P < 0.01). Treatments T1 and T3 not only had the largest CH4 emission (0.60 and 0.88 g x m(-2)), but also had the largest N2O emission (0.20 and 0.23 g x m(-2), respectively). After the winter cover crops returned to field, the CH4 emission from early and late rice fields in treatments T1, T2, T3, and T4 was larger than that in CK. In early rice field, treatments T1 and T2 had the largest CH4 emission (21.70 and 20.75 g x m(-2)); while in late rice field, treatments T3 and T4 had the largest one (58.90 and 54.51 g x m(-2) respectively). Treatments T1-T4 also had larger N2O emission from early and late rice fields than the CK did. The N2O emission from early rice field in treatments T1, T2, T3, and T4 was increased by 53.7%, 12.2%, 46.3%, and 29.3%, and that from late rice field in corresponding treatments was increased by 28.6%, 3.8%, 34.3%, and 27.6%, respectively, compared with CK.

  12. [Distribution characteristics of soil humus fractions stable carbon isotope natural abundance (delta 13C) in paddy field under long-term ridge culture].

    PubMed

    Tang, Xiao-hong; Luo, You-jin; Ren, Zhen-jiang; Lü, Jia-ke; Wei, Chao-fu

    2011-04-01

    A 16-year field experiment was conducted in a ridge culture paddy field in the hilly region of Sichuan Basin, aimed to investigate the distribution characteristics of stable carbon isotope natural abundance (delta 13C) in soil humus fractions. The soil organic carbon (SOC) content in the paddy field under different cultivation modes ranked in the order of wide ridge culture > ridge culture > paddy and upland rotation. In soil humus substances (HS), humin (HU) was the main composition, occupying 21% - 30% of the total SOC. In the extracted soil carbon, humic acid (HA) dominated, occupying 17% - 21% of SOC and 38% - 65% of HS. The delta 13C value of SOC ranged from -27.9 per thousand to -25.6 per thousand, and the difference of the delta 13C value between 0-5 cm and 20-40 cm soil layers was about 1.9 per thousand. The delta 13C value of HA under different cultivation modes was 1 per thousand - 2 per thousand lower than that of SOC, and more approached to the delta 13C value of rapeseed and rice residues. As for fulvic acid (FA), its delta 13C value was about 2 per thousand and 4 per thousand higher than that of SOC and HA, respectively. The delta 13C value of HU in plough layer (0-20 cm) and plow layer (20-40 cm) ranged from -23.7 per thousand - -24.9 per thousand and -22.6 per thousand - -24.2 per thousand, respectively, reflecting the admixture of young and old HS. The delta 13C value in various organic carbon fractions was HU>FA>SOC>rapeseed and rice residues>HA. Long-term rice planting benefited the increase of SOC content, and cultivation mode played an important role in affecting the distribution patterns of soil humus delta 13C in plough layer and plow layer. PMID:21774322

  13. [Distribution characteristics of soil humus fractions stable carbon isotope natural abundance (delta 13C) in paddy field under long-term ridge culture].

    PubMed

    Tang, Xiao-hong; Luo, You-jin; Ren, Zhen-jiang; Lü, Jia-ke; Wei, Chao-fu

    2011-04-01

    A 16-year field experiment was conducted in a ridge culture paddy field in the hilly region of Sichuan Basin, aimed to investigate the distribution characteristics of stable carbon isotope natural abundance (delta 13C) in soil humus fractions. The soil organic carbon (SOC) content in the paddy field under different cultivation modes ranked in the order of wide ridge culture > ridge culture > paddy and upland rotation. In soil humus substances (HS), humin (HU) was the main composition, occupying 21% - 30% of the total SOC. In the extracted soil carbon, humic acid (HA) dominated, occupying 17% - 21% of SOC and 38% - 65% of HS. The delta 13C value of SOC ranged from -27.9 per thousand to -25.6 per thousand, and the difference of the delta 13C value between 0-5 cm and 20-40 cm soil layers was about 1.9 per thousand. The delta 13C value of HA under different cultivation modes was 1 per thousand - 2 per thousand lower than that of SOC, and more approached to the delta 13C value of rapeseed and rice residues. As for fulvic acid (FA), its delta 13C value was about 2 per thousand and 4 per thousand higher than that of SOC and HA, respectively. The delta 13C value of HU in plough layer (0-20 cm) and plow layer (20-40 cm) ranged from -23.7 per thousand - -24.9 per thousand and -22.6 per thousand - -24.2 per thousand, respectively, reflecting the admixture of young and old HS. The delta 13C value in various organic carbon fractions was HU>FA>SOC>rapeseed and rice residues>HA. Long-term rice planting benefited the increase of SOC content, and cultivation mode played an important role in affecting the distribution patterns of soil humus delta 13C in plough layer and plow layer.

  14. Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields.

    PubMed

    Zhong, Yiming; Wang, Xiaopeng; Yang, Jingping; Zhao, Xing; Ye, Xinyi

    2016-09-15

    The application rate of nitrogen fertilizer was believed to dramatically influence greenhouse gas (GHG) emissions from paddy fields. Thus, providing a suitable nitrogen fertilization rate to ensure rice yields, reducing GHG emissions and exploring emission behavior are important issues for field management. In this paper, a two year experiment with six rates (0, 75, 150, 225, 300, 375kgN/ha) of nitrogen fertilizer application was designed to examine GHG emissions by measuring carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) flux and their cumulative global warming potential (GWP) from paddy fields in Hangzhou, Zhejiang in 2013 and 2014. The results indicated that the GWP and rice yields increased with an increasing application rate of nitrogen fertilizer. Emission peaks of CH4 mainly appeared at the vegetative phase, and emission peaks of CO2, and N2O mainly appeared at reproductive phase of rice growth. The CO2 flux was significantly correlated with soil temperature, while the CH4 flux was influenced by logging water remaining period and N2O flux was significantly associated with nitrogen application rates. This study showed that 225kgN/ha was a suitable nitrogen fertilizer rate to minimize GHG emissions with low yield-scaled emissions of 3.69 (in 2013) and 2.23 (in 2014) kg CO2-eq/kg rice yield as well as to ensure rice yields remained at a relatively high level of 8.89t/ha in paddy fields. PMID:27179680

  15. [Control effects of rice-duck farming and other weed management strategies on weed communities in paddy fields].

    PubMed

    Wei, Shouhui; Qiang, Sheng; Ma, Bo; Wei, Jiguang; Chen, Jianwei; Wu, Jianqiang; Xie, Tongzhou; Shen, Xiaokun

    2005-06-01

    By the methods of community ecology, field studies were conducted to evaluate the control effects of three weed management strategies, i. e., rice-duck farming (RD), manual weeding (MW) and chemical weeding (CW), on the weed communities in paddy fields. The results showed that under rice-duck farming, the weed density in paddy fields decreased significantly, and the control effects on dominant weed species such as Monochoria vaginalis, Cyperus difformis, Sagittaria pygmaea were all above 95%, with an overall effect higher than CW and MW. Under RD, the species richness and Shannon-Wiener diversity indices decreased slightly, while Pielou community evenness indices increased markedly, indicating that the species composition of weed community was greatly improved, and the infestation of former dominant weed species was reduced. The structure of weed communities in paddy fields varied with different weed management strategies, e. g., under RD, Lindernia procumbens, Cyperus difformis and Fimbristylis miliacea constituted the major weed community, and the Whittaker index was significant higher than that of CW, MW and CK, which indicated that rice-duck farming had a greater effect on the structure of the weed communities. The same conclusion could be drawn from Sorensen's similarity indices and cluster analysis with Sorensen's index as the distance measurement.

  16. Silicon cycle in rice paddy fields: insights provided by relations between silicon forms in topsoils and plant silicon uptake

    NASA Astrophysics Data System (ADS)

    Klotzbücher, Thimo; Marxen, Anika; Jahn, Reinhold; Vetterlein, Doris

    2016-04-01

    Silicon (Si) enhances the resistance of plants against abiotic and biotic stresses. The amounts of Si taken up by rice plants typically exceed those of major essential nutrients such as nitrogen and phosphorous. Silicon cycling in paddy fields is, however, still poorly studied. We examined relationships between Si forms in topsoil and plant Si uptake for 4 Vietnamese regions with low, and 3 Philippine regions with high Si availability (10 fields per region). Mean rice straw Si concentrations within regions ranged from 3.0 to 8.4%. For most of the Vietnamese fields they were lower than the critical value of 5.0%, suggesting a Si limitation of plant growth. For fields with low Si availability, straw Si concentrations were positively related to acetate-extractable Si in topsoil (i.e., dissolved and adsorbed Si), while such a relationship was not found for fields with high Si availability, where straw Si concentrations were on a similar level, suggesting a maximum Si uptake capacity was reached. Mean annual Si uptake by rice within regions ranged from 0.31 to 1.40 Mg Si ha-1 year-1, i.e., values that are much larger than published values for other ecosystems. They are determined by the continuous supply of plant-available Si during the cropping season, biomass production, and number of crops per year. Weatherable silicate minerals mainly cause spatial differences in supply of plant-available Si. Regional means of concentrations of carbonate-extractable Si (i.e., amorphous Si oxides) ranged from 2.2 to 16.7 g Si kg-1. Input of phytoliths (amorphous Si bodies in straw) is presumed to be an important factor for storage of carbonate-extractable Si in topsoil. Laboratory incubation experiments showed positive relationships between concentrations of carbonate-extractable Si and the release of dissolved Si from soil, suggesting amorphous Si oxides are among the most soluble Si-containing solids in soil. Estimates suggest that up to ~20% of Si taken up by plants might derive

  17. [Effects of different fertilization modes on paddy field topsoil organic carbon content and carbon sequestration duration in South China].

    PubMed

    Zhu, Li-Qun; Yang, Min-Fang; Xu, Min-Lun; Zhang, Wu-Yi; Bian, Xin-Min

    2012-01-01

    Based on the organic carbon data of 222 topsoil samples taken from 38 paddy field experiment sites in South China, calculations were made on the relative annual change of topsoil organic carbon content (RAC) and carbon sequestration duration in the paddy fields in South China under five fertilization modes (inorganic nitrogen fertilization, N; inorganic nitrogen and phosphorus fertilization, NP; inorganic nitrogen, phosphorus, and potassium fertilization, NPK; organic fertilization, O; and inorganic plus organic fertilization, OF). The RAC under the fertilizations was 0-0.4 g x kg(-1) x a(-1), with an increment of 0.20 and 0.26 g x kg(-1) x a(-1) in double and triple cropping systems, respectively. The RAC was higher in treatments O and OF than in treatments N, NP, and NPK, being the highest (0.32 g x kg(-1) x a(-1)) in treatment OF. The topsoil organic carbon accumulation rate decreased with increasing time, and the carbon sequestration duration in treatments N, NP, NPK, O, and OF was about 22, 28, 38, 57, and 54 years, respectively. Inorganic plus organic fertilization was the most effective practice for soil carbon sequestration in the paddy fields in South China.

  18. Mapping spatial variability of soil salinity in a coastal paddy field based on electromagnetic sensors.

    PubMed

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles.

  19. Mapping spatial variability of soil salinity in a coastal paddy field based on electromagnetic sensors.

    PubMed

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles. PMID:26020969

  20. Acute toxicity evaluation of copper, arsenic and HCH to paddy field crab, Paratelphusa hydrodromus (Herb.).

    PubMed

    Vardhanan, Y Shibu; Radhakrishnan, Tresa

    2002-10-01

    Routine static tests were conducted for determining the median lethal tolerance limit of paddy field crab, Paratelphusa hydrodromus exposed to Copper, Arsenic and HCH at different time intervals of 24, 48, 72 and 96 hour. The LC50 values for Copper came to be 28.00, 22.00, 18.20 and 15.70 ppm; Arsenic 136.00, 128.00, 121.500 and 114.00 ppm and HCH 10.00, 8.80, 7.00 and 6.00 ppm, respectively. The safe concentration, application factor and safe application rate were also calculated. They were for, Copper: 5.56, 1.59 and 3.26 ppm, Arsenic: 38.53, 11.40 and 76.00 and HCH : 4.07, 0.06 and 1.28 ppm. Animals exposed to different concentrations of test chemicals (Copper, Arsenic and HCH) showed prominent behavioural/morphological alterations viz., coughing, redness on the ventral side, paralysis and disorientation in scaphognathite activity. Animals exposed to high concentrations showed an avoidance behaviour by keeping away from the direct contact with the toxic solution either by climbing on the wall of aquarium or by mounting over the weak individual and forming a type of pyramid. PMID:12674379

  1. Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil

    PubMed Central

    Kato, Souichiro; Chino, Kanako; Kamimura, Naofumi; Masai, Eiji; Yumoto, Isao; Kamagata, Yoichi

    2015-01-01

    Anaerobic degradation of lignin-derived aromatics is an important metabolism for carbon and nutrient cycles in soil environments. Although there are some studies on degradation of lignin-derived aromatics by nitrate- and sulfate-reducing bacteria, knowledge on their degradation under methanogenic conditions are quite limited. In this study, methanogenic microbial communities were enriched from rice paddy field soil with lignin-derived methoxylated monoaromatics (vanillate and syringate) and their degradation intermediates (protocatechuate, catechol, and gallate) as the sole carbon and energy sources. Archaeal community analysis disclosed that both aceticlastic (Methanosarcina sp.) and hydrogenotrophic (Methanoculleus sp. and Methanocella sp.) methanogens dominated in all of the enrichments. Bacterial community analysis revealed the dominance of acetogenic bacteria (Sporomusa spp.) only in the enrichments on the methoxylated aromatics, suggesting that Sporomusa spp. initially convert vanillate and syringate into protocatechuate and gallate, respectively, with acetogenesis via O-demethylation. As the putative ring-cleavage microbes, bacteria within the phylum Firmicutes were dominantly detected from all of the enrichments, while the dominant phylotypes were not identical between enrichments on vanillate/protocatechuate/catechol (family Peptococcaceae bacteria) and on syringate/gallate (family Ruminococcaceae bacteria). This study demonstrates the importance of cooperation among acetogens, ring-cleaving fermenters/syntrophs and aceticlastic/hydrogenotrophic methanogens for degradation of lignin-derived aromatics under methanogenic conditions. PMID:26399549

  2. Persistence of metsulfuron-methyl in paddy field and detection of its residues in crop produce.

    PubMed

    Sondhia, Shobha

    2009-12-01

    Among sulfonylurea herbicides, metsulfuron-methyl [methyl 2-(4-methoxy-6-methyl-1,3,5-triazine-2-ylcarbamoylsulfamoyl) benzoic acid] is widely used due to its selectivity against a wide range of weeds in cereal, pasture, and plantation crops. Use of persistent herbicides has increased risk of accumulation of residues in soil, groundwater, crop produce, food chain etc. Thus an experiment was conducted to see persistence of metsulfuron-methyl in paddy field under tropical conditions. Metsulfuron-methyl was applied at 2, 4, 5, and 8 a.i. g ha−1 rates after 25 days in transplanted rice as post emergence herbicide. Concentration of metsulfuron-methyl in soil at 30 days was found 0.008, 0.010, 0.011 and 0.016 μg g−1 at 2, 4, 5 and 8 g a.i. ha−1 application rates, respectively. However, residue level of metsulfuron-methyl in soil, rice grains and straw at harvest was found below 0.001 μg g−1.

  3. [Further reduction of nitrogen fertilizer application in paddy field under green manuring of Taihu Area, China].

    PubMed

    Zhao, Dong; Yan, Ting-mei; Qiao, Jun; Yang, Lin-zhang; Tang, Fang; Song, Yun-fei

    2015-06-01

    This study focused on the nitrogen loss via runoff, change of nitrogen in different forms in surface water in paddy field, and grain yield, through further reduction of nitrogen fertilizer application rate under green manuring without basal dressing. Results showed that with 150 kg · hm(-2) inorganic N fertilizer input after return of green manure to soil, no basal dressing could not only sharply reduce N concentration in surface water and decrease 17.2% of N loss, but also increase 2.8% of grain yield in comparison with basal dressing. It was a worthwhile farming method that inorganic nitrogen fertilizer was not used for basal dressing but for topdressing after return of green ma- nure to soil in Taihu Area. However, the grain yield would decrease if the rate of topdressing nitro- gen was excessively reduced or increased. After all, it was feasible to realize harmonization of grain yield and environmental benefits in Taihu Area, with 133 kg · hm(-2) inorganic N fertilizer input after return of green manure to soil as well as no application of basal dressing, which could greatly reduce N fertilizer input and N loss as well as ensure rice yield.

  4. [Further reduction of nitrogen fertilizer application in paddy field under green manuring of Taihu Area, China].

    PubMed

    Zhao, Dong; Yan, Ting-mei; Qiao, Jun; Yang, Lin-zhang; Tang, Fang; Song, Yun-fei

    2015-06-01

    This study focused on the nitrogen loss via runoff, change of nitrogen in different forms in surface water in paddy field, and grain yield, through further reduction of nitrogen fertilizer application rate under green manuring without basal dressing. Results showed that with 150 kg · hm(-2) inorganic N fertilizer input after return of green manure to soil, no basal dressing could not only sharply reduce N concentration in surface water and decrease 17.2% of N loss, but also increase 2.8% of grain yield in comparison with basal dressing. It was a worthwhile farming method that inorganic nitrogen fertilizer was not used for basal dressing but for topdressing after return of green ma- nure to soil in Taihu Area. However, the grain yield would decrease if the rate of topdressing nitro- gen was excessively reduced or increased. After all, it was feasible to realize harmonization of grain yield and environmental benefits in Taihu Area, with 133 kg · hm(-2) inorganic N fertilizer input after return of green manure to soil as well as no application of basal dressing, which could greatly reduce N fertilizer input and N loss as well as ensure rice yield. PMID:26572018

  5. [Effects of water managements on soil nematode communities in a paddy field].

    PubMed

    Ou, Wei; Li, Qi; Liang, Wenju; Jiang, Yong; Wen, Dazhong

    2004-10-01

    This paper studied the effect of water managements on the abundance, trophic groups and community composition of soil nematodes in a paddy field in the Lower Reaches of Liaohe Plain at the depths of 0-10 cm, 10-20 cm and 20-30 cm during rice (Oryza sativa L.) growth season. The total number of nematodes at 0-10 cm soil depth was lower in percolation-controlling treatments than in control during pre-tillage and yellow ripeness stage. No significant difference was found in the total number of nematodes at 10-20 cm soil depth during the study period, but significant difference was observed in 20-30 cm soil depth during pre-tillage and yellow ripeness stage. Sixteen families and 22 genera were observed, and Plectus, Tylenchus and Monhystera were the dominant genera. Plectus and Tylenchus were sensitive to different water managements. Significant difference was found in the number of bacterivores at 0-10 cm soil depth during pre-tillage and yellow ripeness stage in percolation-controlling treatments, which exhibited a similar trend with the total number of nematodes. Bacterivores and plant-parasites were the most abundant trophic groups in all plots and at all soil depths during the study period, averaging 60.8% and 33.8% of the nematode communities, respectively, and omnivores-predators were the least abundant groups.

  6. Spatial and Temporal Variability of Macronutrients in a Lime-amended Acid Paddy Field

    NASA Astrophysics Data System (ADS)

    Vidal Vázquez, E.; Morales, L. A.; Paz González, A.

    2012-04-01

    Soil spatial variability is a natural occurring and or management induced feature that is important for site-specific management practices such as variable rate fertilization. Since rice paddy fields are flat and flooded, apparently they should be homogeneous and subsequently it could be thought that spatial variability in yields and soil attributes might be negligible. However, significant levels of variability in soil general properties, soil nutrients and rice yields have been observed even in small paddy fields. Describing spatial variability of within-field properties is a fundamental first step toward determining management strategies. The aim of this study was to analyze patterns of spatial variability in available macronutrients (NH4+-N, P and K) from an acid rice soil submitted to lime amendment. The experimental site was located at Corrientes province, Argentina. The climate is warm, subtropical with abundant rainfall the whole year round. The study soil was typic Plintacualf. Field trials were set up involving three treatments: control, without lime addition, plus two different dolomite doses of 625 and 1250 kg.ha-1. Before lime addition, soil pH was 3.7; organic matter content was 2.14 % and cation exchange capacity (CEC) was 21.7 Cmolc kg -1. Soil was sampled at three different stages, first before sowing in aerobic conditions and them two more times in anaerobiosis, i.e. by bunch formation and flowering. Ninety-six soil samples per treatment were taken during each of the three sampling periods. NH4+-N, P and K were routinely determined. Spatial variability was assessed through the analysis of semivariograms. Next, kriging maps were constructed and compared for successive sampling dates. The statistical variability of NH4+-N, P and K over the study period was low to medium, depending on treatment and sampling dates. Lime application produced a positive effect on the NH4+ availability at sowing time. Increased Olsen-P availability during sowing and

  7. DIRECT AND INDIRECT EFFECTS OF MICROBES ON TECHNETIUM INSOLUBILIZATION IN PADDY FIELDS

    SciTech Connect

    Ishii, N.; Tagami, K.; Uchida, S.

    2003-02-27

    Direct and indirect effects of microorganisms on technetium insolubilization in water covering waterlogged soils were studied. Seven soils were waterlogged and then the water covering the soils were collected for further tracer experiments. The samples in contact with air were incubated with 95mTcO4--at 25 C for 4 to 5 days. After incubation, the samples were sequentially separated into four fractions: one insoluble fraction (> 0.2 {micro}m) and three soluble fractions (TcO4 -, cationic, and other forms). The radioactivity of 95mTc in each fraction was measured with a NaI (Tl) scintillation counter. The insolubility of Tc was observed in the untreated samples. The maximum insolubilization radioactivity was 37% of the total radioactivity in P38, which was collected from a paddy field, gray lowland soil. Microscopic observations revealed that bacteria were the dominant species in the insoluble fraction of P38. For the other samples, less than 9% of the Tc was found in insoluble form. In order to clarify biological and nonbiological factor affecting the insolubility, a reducing agent or nutrients were added to the P38 sample. The amount of insoluble Tc was enhanced by the addition of nutrients, while the addition of the reducing agent resulted in a dramatic decrease in the amount of the insoluble Tc. Most of the 95mTcO4 - added to the filtered or autoclaved samples was present in the form of the pertechnetate anion, even in P38. The filtered and autoclaved samples contained metabolites and dead cell particles, respectively. These materials, therefore, did not affect the physicochemical changes in Tc. These results suggest that specific bacteria having the ability to render Tc insoluble even under not strictly anaerobic conditions directly contribute to the insolubility of Tc.

  8. Assessment of reclaimed wastewater irrigation impacts on water quality, soil, and rice cultivation in paddy fields.

    PubMed

    Kang, Moon Seong; Kim, Sang Min; Park, Seung Woo; Lee, Jeong Jae; Yoo, Kyung H

    2007-03-01

    The objective of this research was to monitor and assess the impact of reclaimed wastewater irrigation on water quality, soil, and rice cultivation by comparing the effects of various wastewater treatment levels on the growth and yield of rice. A randomized complete block design was used for the application methods of the wastewater effluents to paddy rice, with five treatments and six replications. The treatments were: control with groundwater irrigation (GW); irrigation with polluted water form a nearby stream (SW); and three treatments of reclaimed wastewater irrigation at different treatment levels. The three levels of wastewater treatments included wastewater effluents: (i) directly from the wastewater plant (WW); (ii) after passing through a sand filter (WSF); and (iii) after passing a sand filter followed by an ultraviolet treatment (WSFUV). Each plot was 4 x 4 m and was planted with rice (Oryza sativa L.) in 2002 and 2003. The results indicated that irrigation of rice with reclaimed municipal wastewater caused no adverse effects on the growth and yield of rice. The chemical compositions of the rice from all plots were within the normal ranges of brown rice quality in Korea. No adverse effects were observed on chemical concentrations including the heavy metals Cu, As, Cd, Zn, Hg, and Pb, in either the brown rice or the field. The results showed that treated municipal wastewater can be safely used as an alternative water source for the irrigation of rice, although continued monitoring will be needed to determine the long-term effects with regard to soil contamination and other potential health concerns.

  9. Understanding the ecological background of rice agriculture on the Ningshao Plain during the Neolithic Age: pollen evidence from a buried paddy field at the Tianluoshan cultural site

    NASA Astrophysics Data System (ADS)

    Li, Chunhai; Zheng, Yunfei; Yu, Shiyong; Li, Yongxiang; Shen, Huadong

    2012-03-01

    The progressive rise of atmospheric CH4 level since 5 ka has been hypothesized to result from human agricultural activities that turned forested lands, which would otherwise be a carbon sink, into paddy fields. Increasing numbers of Neolithic cultural sites unearthed in coastal eastern China, providing unique opportunities to test this hypothesis. Here, we present detailed pollen data from a buried paddy field at Tianluoshan cultural site on the Ningshao Plain, eastern China, to reconstruct the ecological conditions associated with the establishment of paddy fields. Stratigraphic data, radiocarbon ages, and pollen analyses show that vegetation underwent six phases of evolution and paddy fields were developed from 7000 to 4200 cal. yr BP. We found no evidence of slash-and-burn agriculture at the study site. Together with no presence of the irrigation system, our pollen data suggest the paddy fields at this site originated from wetlands. Hence, our findings do not support the hypothesis that anthropogenic-induced deforestation play ed a significant role in the rise of the atmospheric CH4 rise since the middle Holocene.

  10. Differences in ecological impacts of systemic insecticides with different physicochemical properties on biocenosis of experimental paddy fields.

    PubMed

    Hayasaka, Daisuke; Korenaga, Tomoko; Sánchez-Bayo, Francisco; Goka, Koichi

    2012-01-01

    The environmental risks of pesticides are typically determined by laboratory single-species tests based on OECD test guidelines, even if biodiversity should also be taken into consideration. To evaluate how realistic these assessments are, ecological changes caused by the systemic insecticides imidacloprid and fipronil, which have different physicochemical properties, when applied at recommended commercial rates on rice fields were monitored using experimental paddy mesocosms. A total of 178 species were observed. There were no significant differences in abundance of crop arthropods among the experimental paddies. However, zooplankton, benthic and neuston communities in imidacloprid-treated field had significantly less abundance of species than control and fipronil fields. Significant differences in abundance of nekton community were also found between both insecticide-treated paddies and control. Influences on the growth of medaka fish were also found in both adults and their fries. Both Principal Response Curve analysis (PRC) and Detrended Correspondence Analysis (DCA) showed the time series variations in community structure among treatments, in particular for imidacloprid during the middle stage of the experimental period. These results show the ecological effect-concentrations (LOEC ~ 1 μg/l) of these insecticides in mesocosms, especially imidacloprid, are clearly different from their laboratory tests. We suggest that differences in the duration of the recovery process among groups of species are due to different physicochemical properties of the insecticides. Therefore, realistic prediction and assessment of pesticide effects at the community level should consider not only the sensitivity traits and interaction among species but also the differences in physicochemical characteristics of each pesticide. PMID:21877228

  11. Using natural Chinese zeolite to remove ammonium from rainfall runoff following urea fertilization of a paddy rice field.

    PubMed

    Wang, Xiao-Ling; Qiao, Bin; Li, Song-Min; Li, Jian-Sheng

    2016-03-01

    The potential of natural Chinese zeolite to remove ammonium from rainfall runoff following urea applications to a paddy rice field is assessed in this study. Laboratory batch kinetic and isotherm experiments were carried out first to investigate the ammonium adsorption capacity of the natural zeolite. Field experiments using zeolite adsorption barriers installed at drain outlets in a paddy rice field were also carried out during natural rainfall events to evaluate the barrier's dynamic removal capacity of ammonium. The results demonstrate that the adsorption kinetics are accurately described by the Elovich model, with a coefficient of determination (R (2)) ranging from 0.9705 to 0.9709, whereas the adsorption isotherm results indicate that the Langmuir-Freundlich model provides the best fit (R (2) = 0.992) for the equilibrium data. The field experiments show that both the flow rate and the barrier volume are important controls on ammonium removal from rainfall runoff. A low flow rate leads to a higher ammonium removal efficiency at the beginning of the tests, while a high flow rate leads to a higher quantity of ammonium adsorbed over the entire runoff process.

  12. Arsenic concentrations in paddy soil and rice and health implications for major rice-growing regions of Cambodia.

    PubMed

    Seyfferth, Angelia L; McCurdy, Sarah; Schaefer, Michael V; Fendorf, Scott

    2014-05-01

    Despite the global importance of As in rice, research has primarily focused on Bangladesh, India, China, and the United States with limited attention given to other countries. Owing to both indigenous As within the soil and the possible increases arising from the onset of irrigation with groundwater, an assessment of As in rice within Cambodia is needed, which offers a "base-case" comparison against sediments of similar origin that comprise rice paddy soils where As-contaminated water is used for irrigation (e.g., Bangladesh). Here, we evaluated the As content of rice from five provinces (Kandal, Prey Veng, Battambang, Banteay Meanchey, and Kampong Thom) in the rice-growing regions of Cambodia and coupled that data to soil-chemical factors based on extractions of paddy soil collected and processed under anoxic conditions. At total soil As concentrations ranging 0.8 to 18 μg g(-1), total grain As concentrations averaged 0.2 μg g(-1) and ranged from 0.1 to 0.37 with Banteay Meanchey rice having significantly higher values than Prey Veng rice. Overall, soil-extractable concentrations of As, Fe, P, and Si and total As were poor predictors of grain As concentrations. While biogeochemical factors leading to reduction of As(V)-bearing Fe(III) oxides are likely most important for predicting plant-available As, husk and straw As concentrations were the most significant predictors of grain-As levels among our measured parameters. PMID:24712677

  13. Arsenic concentrations in paddy soil and rice and health implications for major rice-growing regions of Cambodia.

    PubMed

    Seyfferth, Angelia L; McCurdy, Sarah; Schaefer, Michael V; Fendorf, Scott

    2014-05-01

    Despite the global importance of As in rice, research has primarily focused on Bangladesh, India, China, and the United States with limited attention given to other countries. Owing to both indigenous As within the soil and the possible increases arising from the onset of irrigation with groundwater, an assessment of As in rice within Cambodia is needed, which offers a "base-case" comparison against sediments of similar origin that comprise rice paddy soils where As-contaminated water is used for irrigation (e.g., Bangladesh). Here, we evaluated the As content of rice from five provinces (Kandal, Prey Veng, Battambang, Banteay Meanchey, and Kampong Thom) in the rice-growing regions of Cambodia and coupled that data to soil-chemical factors based on extractions of paddy soil collected and processed under anoxic conditions. At total soil As concentrations ranging 0.8 to 18 μg g(-1), total grain As concentrations averaged 0.2 μg g(-1) and ranged from 0.1 to 0.37 with Banteay Meanchey rice having significantly higher values than Prey Veng rice. Overall, soil-extractable concentrations of As, Fe, P, and Si and total As were poor predictors of grain As concentrations. While biogeochemical factors leading to reduction of As(V)-bearing Fe(III) oxides are likely most important for predicting plant-available As, husk and straw As concentrations were the most significant predictors of grain-As levels among our measured parameters.

  14. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field.

    PubMed

    Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2016-01-01

    The nitrate-dependent denitrifying anaerobic methane oxidation (DAMO) process, which is metabolized together by anaerobic methanotrophic archaea and NC10 phylum bacteria, is expected to be important for the global carbon and nitrogen cycles. However, there are little studies about the existence of this process and the functional microbes in environments. Therefore, the coexistence of DAMO archaea and bacteria in a paddy field was evaluated in this study. Next-generation sequencing showed that the two orders, Methanosarcinales and Nitrospirales, to which DAMO archaea and DAMO bacteria belong, were detected in the four soil samples. Then the in vitro experiments demonstrated both of nitrite- and nitrate-dependent DAMO activities, which confirmed the coexistence of DAMO archaea and DAMO bacteria. It was the first report about the coexistence of DAMO archaea and bacteria in a paddy field. Furthermore, anammox bacteria were detected in two of the four samples. The in vitro experiments did not show anammox activity in the initial period but showed low anammox activity after 20 days' enrichment. These results implicated that anammox bacteria may coexist with DAMO microorganisms in this field, but at a very low percentage.

  15. Combination system of full-scale constructed wetlands and wetland paddy fields to remove nitrogen and phosphorus from rural unregulated non-point sources.

    PubMed

    Sun, Haijun; Zhang, Hailin; Yu, Zhimin; Wu, Jiasen; Jiang, Peikun; Yuan, Xiaoyan; Shi, Weiming

    2013-12-01

    Constructed wetlands (CWs) have been used effectively to remove nitrogen (N) and phosphorus (P) from non-point sources. Effluents of some CWs were, however, still with high N and P concentrations and remained to be pollution sources. Widely distributed paddy fields can be exploited to alleviate this concern. We were the first to investigate a combination system of three-level CWs with wetland paddy fields in a full scale to remove N and P from rural unregulated non-point sources. The removal efficiencies (REs) of CWs reached 57.3 % (37.4-75.1 %) for N and 76.3 % (62.0-98.4 %) for P. The CWs retained about 1,278 kg N ha(-1) year(-1) and 121 kg P ha(-1) year(-1). There was a notable seasonal change in REs of N and P, and the REs were different in different processing components of CWs. The removal rates of wetland paddy fields adopt "zero-drainage" water management according to local rainfall forecast and physiological water demand of crop growth reached 93.2 kg N ha(-1) year(-1) and 5.4 kg P ha(-1) year(-1). The rice season had higher potential in removing N and P than that in the wheat season. The whole combined system (0.56 ha CWs and 5.5 ha wetland paddy fields) removed 1,790 kg N year(-1) and 151 kg P year(-1), which were higher than those from CWs functioned alone. However, another 4.7-ha paddy fields were needed to fully remove the N and P in the effluents of CWs. The combination of CWs and paddy fields proved to be a more efficient nutrient removal system.

  16. Combination system of full-scale constructed wetlands and wetland paddy fields to remove nitrogen and phosphorus from rural unregulated non-point sources.

    PubMed

    Sun, Haijun; Zhang, Hailin; Yu, Zhimin; Wu, Jiasen; Jiang, Peikun; Yuan, Xiaoyan; Shi, Weiming

    2013-12-01

    Constructed wetlands (CWs) have been used effectively to remove nitrogen (N) and phosphorus (P) from non-point sources. Effluents of some CWs were, however, still with high N and P concentrations and remained to be pollution sources. Widely distributed paddy fields can be exploited to alleviate this concern. We were the first to investigate a combination system of three-level CWs with wetland paddy fields in a full scale to remove N and P from rural unregulated non-point sources. The removal efficiencies (REs) of CWs reached 57.3 % (37.4-75.1 %) for N and 76.3 % (62.0-98.4 %) for P. The CWs retained about 1,278 kg N ha(-1) year(-1) and 121 kg P ha(-1) year(-1). There was a notable seasonal change in REs of N and P, and the REs were different in different processing components of CWs. The removal rates of wetland paddy fields adopt "zero-drainage" water management according to local rainfall forecast and physiological water demand of crop growth reached 93.2 kg N ha(-1) year(-1) and 5.4 kg P ha(-1) year(-1). The rice season had higher potential in removing N and P than that in the wheat season. The whole combined system (0.56 ha CWs and 5.5 ha wetland paddy fields) removed 1,790 kg N year(-1) and 151 kg P year(-1), which were higher than those from CWs functioned alone. However, another 4.7-ha paddy fields were needed to fully remove the N and P in the effluents of CWs. The combination of CWs and paddy fields proved to be a more efficient nutrient removal system. PMID:23703587

  17. The Size of Winter-Flooded Paddy Fields No Longer Limits the Foraging Habitat Use of the Endangered Crested Ibis (Nipponia nippon) in Winter.

    PubMed

    Hu, Can-Shi; Song, Xiao; Ding, Chang-Qing; Ye, Yuan-Xing; Qing, Bao-Ping; Wang, Chao

    2016-08-01

    Paddy fields have traditionally been viewed as the key foraging habitats for the endangered crested ibis (Nipponia nippon). With the population of this species now increasing, its distribution has expanded to both lowland areas and outside the nature reserve. However, little is known about the current foraging habitat preferences of these birds, especially during winter. In this research, a total of 54 used sites and 50 unused sites were investigated during winter from December 2011 to January 2012. The results of logistic regression analysis indicate that soil softness, human disturbance, and distance to the nearest road were important factors. For the site plots of winter-flooded paddy fields, the birds prefer the paddy fields with higher coverage of vegetation, except softer foraging sites and lower human-related disturbance. In lowland areas, the size of winter-flooded paddy fields was not a limiting factor, due to the availability of other wetlands capable of providing abundant food. The micro-habitat characteristics were important indicators of foraging habitat quality rather than the size of winter-flooded paddy fields, and the food accessibility may play an important role in the process of foraging habitat use. We suggest the improvement of the foraging micro-habitat and environmental characteristics would be effective in ensuring the availability of food in the dispersed lowland areas. The local people still needed to be encouraged and compensated by their single-cropping cultivation, ploughed the paddy fields after harvesting and irrigated them with shallow water flooded in the original core areas of the nature reserve.

  18. Effect of enhanced UV-B radiation on methane emission in a paddy field and rice root exudation of low-molecular-weight organic acids.

    PubMed

    He, Yongmei; Zhan, Fangdong; Li, Yuan; Xu, Weiwei; Zu, Yanqun; Yue, Ming

    2016-06-01

    A local rice variety, "Baijiaolaojing", was grown in a paddy field in the Yuanyang rice terraces under ambient and supplemental levels of ultraviolet-B (UV-B, 280-315 nm) radiation. The effects of enhanced UV-B radiation (5 and 10 kJ m(-2) d(-1)) on methane emissions in the paddy field were evaluated using a closed-chamber gas chromatography-based system, and the contents of low-molecular-weight organic acids (LMWOAs) in root exudates were determined by high-performance liquid chromatography (HPLC). Peaks in methane emissions in the paddy field were detected at 60, 80 and 100 days after rice transplantation. The highest level of cumulative methane emissions occurred at the tillering stage, followed by the jointing-booting and maturity stages. The lowest level was found at the flowering stage. The enhanced UV-B radiation did not change the seasonal variation in methane emissions in the paddy field; however, it induced a significant increase in the flux of methane emissions at the jointing-booting and maturity stages, as well as a significant increase in the cumulative flux of methane emissions throughout the growth period. In addition, the enhanced UV-B radiation caused an increase in the contents of oxalic acid and succinic acid and a decrease in the contents of tartaric acid and malic acid in rice root exudates. Furthermore, a significant positive correlation (r = 0.725, p < 0.01) was found between the content of oxalic acid and the methane emissions in the paddy field. The results indicated that enhanced UV-B radiation promoted methane emissions in the paddy field, which was closely associated with its impact on the exudation of LMWOAs by rice roots. PMID:27194164

  19. The Size of Winter-Flooded Paddy Fields No Longer Limits the Foraging Habitat Use of the Endangered Crested Ibis (Nipponia nippon) in Winter.

    PubMed

    Hu, Can-Shi; Song, Xiao; Ding, Chang-Qing; Ye, Yuan-Xing; Qing, Bao-Ping; Wang, Chao

    2016-08-01

    Paddy fields have traditionally been viewed as the key foraging habitats for the endangered crested ibis (Nipponia nippon). With the population of this species now increasing, its distribution has expanded to both lowland areas and outside the nature reserve. However, little is known about the current foraging habitat preferences of these birds, especially during winter. In this research, a total of 54 used sites and 50 unused sites were investigated during winter from December 2011 to January 2012. The results of logistic regression analysis indicate that soil softness, human disturbance, and distance to the nearest road were important factors. For the site plots of winter-flooded paddy fields, the birds prefer the paddy fields with higher coverage of vegetation, except softer foraging sites and lower human-related disturbance. In lowland areas, the size of winter-flooded paddy fields was not a limiting factor, due to the availability of other wetlands capable of providing abundant food. The micro-habitat characteristics were important indicators of foraging habitat quality rather than the size of winter-flooded paddy fields, and the food accessibility may play an important role in the process of foraging habitat use. We suggest the improvement of the foraging micro-habitat and environmental characteristics would be effective in ensuring the availability of food in the dispersed lowland areas. The local people still needed to be encouraged and compensated by their single-cropping cultivation, ploughed the paddy fields after harvesting and irrigated them with shallow water flooded in the original core areas of the nature reserve. PMID:27498793

  20. The effect of fertilization on cesium concentration of rice grown in a paddy field in Fukushima Prefecture in 2011 and 2012.

    PubMed

    Ohmori, Yoshihiro; Kajikawa, Masataka; Nishida, Sho; Tanaka, Nobuhiro; Kobayashi, Natsuko I; Tanoi, Keitaro; Furukawa, Jun; Fujiwara, Toru

    2014-01-01

    After the accident of the Fukushima 1 nuclear power plant in March 2011, radioactive cesium was released and paddy field in a wide area of Fukushima Prefecture was contaminated. To reduce radioactive Cs uptake by rice, it is important to understand factors that affect Cs uptake in rice. Here we describe our study in 2011 and 2012 to investigate Cs concentration in two rice cultivars, Koshihikari and Hitomebore, the top two cultivars in Fukushima prefecture, grown under different fertilizer conditions in the contaminated paddy field. Our study demonstrated that high nitrogen and low potassium conditions increase Cs concentrations both in straw and brown rice.

  1. An examination of soil and water conservation practices in the paddy fields of Guilan province, Iran.

    PubMed

    Ashoori, Daryoush; Bagheri, Asghar; Allahyari, Mohammad S; Al-Rimawi, Ahmad S

    2016-06-01

    This study examined the use of soil and water conservation (SWC) practices among rice farmers in Iran. A random sample of 400 rice paddy farmers in the Foumanat plain of Guilan province, who use SWC measures, was drawn from a population of 52 thousand farmers. A two-part questionnaire was used to examine the level of utilization of SWC practices and to profile paddy farmers. Internal consistency was demonstrated with a coefficient alpha of 0.76, and the content and face validity of the instrument was confirmed by a panel of soil and water experts. Descriptive and analytical statistics were used to analyze the data. Results of ANOVA indicated that the mean levels of SWC practices vary considerably at the 0.01 level of significance by groups of age, education, non-agricultural income, production costs, yield, cultivated paddies and distance from home to the farm or to the main road. Similarly, significant differences were observed by groups of family size, rice production, ownership of livestock and profits from rice production at 0.05 level. The levels of experience in agriculture and ownership of poultry were found to have no significant effects on SWC practices. PMID:27276379

  2. Optimizing rice plant photosynthate allocation reduces N2O emissions from paddy fields

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Huang, Xiaomin; Zhang, Xin; Zhang, Xingyue; Zhang, Yi; Zheng, Chengyan; Deng, Aixing; Zhang, Jun; Wu, Lianhai; Hu, Shuijin; Zhang, Weijian

    2016-07-01

    Rice paddies are a major source of anthropogenic nitrous oxide (N2O) emissions, especially under alternate wetting-drying irrigation and high N input. Increasing photosynthate allocation to the grain in rice (Oryza sativa L.) has been identified as an effective strategy of genetic and agronomic innovation for yield enhancement; however, its impacts on N2O emissions are still unknown. We conducted three independent but complementary experiments (variety, mutant study, and spikelet clipping) to examine the impacts of rice plant photosynthate allocation on paddy N2O emissions. The three experiments showed that N2O fluxes were significantly and negatively correlated with the ratio of grain yield to total aboveground biomass, known as the harvest index (HI) in agronomy (P < 0.01). Biomass accumulation and N uptake after anthesis were significantly and positively correlated with HI (P < 0.05). Reducing photosynthate allocation to the grain by spikelet clipping significantly increased white root biomass and soil dissolved organic C and reduced plant N uptake, resulting in high soil denitrification potential (P < 0.05). Our findings demonstrate that optimizing photosynthate allocation to the grain can reduce paddy N2O emissions through decreasing belowground C input and increasing plant N uptake, suggesting the potential for genetic and agronomic efforts to produce more rice with less N2O emissions.

  3. Optimizing rice plant photosynthate allocation reduces N2O emissions from paddy fields

    PubMed Central

    Jiang, Yu; Huang, Xiaomin; Zhang, Xin; Zhang, Xingyue; Zhang, Yi; Zheng, Chengyan; Deng, Aixing; Zhang, Jun; Wu, Lianhai; Hu, Shuijin; Zhang, Weijian

    2016-01-01

    Rice paddies are a major source of anthropogenic nitrous oxide (N2O) emissions, especially under alternate wetting-drying irrigation and high N input. Increasing photosynthate allocation to the grain in rice (Oryza sativa L.) has been identified as an effective strategy of genetic and agronomic innovation for yield enhancement; however, its impacts on N2O emissions are still unknown. We conducted three independent but complementary experiments (variety, mutant study, and spikelet clipping) to examine the impacts of rice plant photosynthate allocation on paddy N2O emissions. The three experiments showed that N2O fluxes were significantly and negatively correlated with the ratio of grain yield to total aboveground biomass, known as the harvest index (HI) in agronomy (P < 0.01). Biomass accumulation and N uptake after anthesis were significantly and positively correlated with HI (P < 0.05). Reducing photosynthate allocation to the grain by spikelet clipping significantly increased white root biomass and soil dissolved organic C and reduced plant N uptake, resulting in high soil denitrification potential (P < 0.05). Our findings demonstrate that optimizing photosynthate allocation to the grain can reduce paddy N2O emissions through decreasing belowground C input and increasing plant N uptake, suggesting the potential for genetic and agronomic efforts to produce more rice with less N2O emissions. PMID:27378420

  4. Optimizing rice plant photosynthate allocation reduces N2O emissions from paddy fields.

    PubMed

    Jiang, Yu; Huang, Xiaomin; Zhang, Xin; Zhang, Xingyue; Zhang, Yi; Zheng, Chengyan; Deng, Aixing; Zhang, Jun; Wu, Lianhai; Hu, Shuijin; Zhang, Weijian

    2016-01-01

    Rice paddies are a major source of anthropogenic nitrous oxide (N2O) emissions, especially under alternate wetting-drying irrigation and high N input. Increasing photosynthate allocation to the grain in rice (Oryza sativa L.) has been identified as an effective strategy of genetic and agronomic innovation for yield enhancement; however, its impacts on N2O emissions are still unknown. We conducted three independent but complementary experiments (variety, mutant study, and spikelet clipping) to examine the impacts of rice plant photosynthate allocation on paddy N2O emissions. The three experiments showed that N2O fluxes were significantly and negatively correlated with the ratio of grain yield to total aboveground biomass, known as the harvest index (HI) in agronomy (P < 0.01). Biomass accumulation and N uptake after anthesis were significantly and positively correlated with HI (P < 0.05). Reducing photosynthate allocation to the grain by spikelet clipping significantly increased white root biomass and soil dissolved organic C and reduced plant N uptake, resulting in high soil denitrification potential (P < 0.05). Our findings demonstrate that optimizing photosynthate allocation to the grain can reduce paddy N2O emissions through decreasing belowground C input and increasing plant N uptake, suggesting the potential for genetic and agronomic efforts to produce more rice with less N2O emissions. PMID:27378420

  5. An examination of soil and water conservation practices in the paddy fields of Guilan province, Iran.

    PubMed

    Ashoori, Daryoush; Bagheri, Asghar; Allahyari, Mohammad S; Al-Rimawi, Ahmad S

    2016-06-01

    This study examined the use of soil and water conservation (SWC) practices among rice farmers in Iran. A random sample of 400 rice paddy farmers in the Foumanat plain of Guilan province, who use SWC measures, was drawn from a population of 52 thousand farmers. A two-part questionnaire was used to examine the level of utilization of SWC practices and to profile paddy farmers. Internal consistency was demonstrated with a coefficient alpha of 0.76, and the content and face validity of the instrument was confirmed by a panel of soil and water experts. Descriptive and analytical statistics were used to analyze the data. Results of ANOVA indicated that the mean levels of SWC practices vary considerably at the 0.01 level of significance by groups of age, education, non-agricultural income, production costs, yield, cultivated paddies and distance from home to the farm or to the main road. Similarly, significant differences were observed by groups of family size, rice production, ownership of livestock and profits from rice production at 0.05 level. The levels of experience in agriculture and ownership of poultry were found to have no significant effects on SWC practices.

  6. Optimizing rice plant photosynthate allocation reduces N2O emissions from paddy fields.

    PubMed

    Jiang, Yu; Huang, Xiaomin; Zhang, Xin; Zhang, Xingyue; Zhang, Yi; Zheng, Chengyan; Deng, Aixing; Zhang, Jun; Wu, Lianhai; Hu, Shuijin; Zhang, Weijian

    2016-01-01

    Rice paddies are a major source of anthropogenic nitrous oxide (N2O) emissions, especially under alternate wetting-drying irrigation and high N input. Increasing photosynthate allocation to the grain in rice (Oryza sativa L.) has been identified as an effective strategy of genetic and agronomic innovation for yield enhancement; however, its impacts on N2O emissions are still unknown. We conducted three independent but complementary experiments (variety, mutant study, and spikelet clipping) to examine the impacts of rice plant photosynthate allocation on paddy N2O emissions. The three experiments showed that N2O fluxes were significantly and negatively correlated with the ratio of grain yield to total aboveground biomass, known as the harvest index (HI) in agronomy (P < 0.01). Biomass accumulation and N uptake after anthesis were significantly and positively correlated with HI (P < 0.05). Reducing photosynthate allocation to the grain by spikelet clipping significantly increased white root biomass and soil dissolved organic C and reduced plant N uptake, resulting in high soil denitrification potential (P < 0.05). Our findings demonstrate that optimizing photosynthate allocation to the grain can reduce paddy N2O emissions through decreasing belowground C input and increasing plant N uptake, suggesting the potential for genetic and agronomic efforts to produce more rice with less N2O emissions.

  7. [Effects of labor-saving rice cultivation modes on the diversity of potential weed communities in paddy fields].

    PubMed

    Li, Shu-Shun; Qiang, Sheng; Jiao, Jun-Sen

    2009-10-01

    Aimed to understand the effects of various labor-saving rice cultivation modes on the diversity of potential weed communities in paddy fields, an investigation was made on the quantitative characteristics of the weed seed bank under dry direct seeding, water direct seeding, seedling throwing, mechanized-transplanting, wheat-rice interplanting, and conventional manual transplanting. Under dry direct seeding, the density of the weed seed bank was up to 228,416 seeds x m(-2), being significantly higher than that under the other five cultivation modes. Wheat-rice interplanting ranked the second place. The seed density of sedge weeds under dry direct seeding and that of broad leaf weeds under wheat-rice interplanting were significantly higher than the seed densities of various kinds of weeds under other cultivation modes. Conventional manual transplanting mode had the highest species richness, with Margalef index being 1.86. The diversity indices, including Shannon-Wiener index, Gini index, and Pielou evenness index under water direct seeding and wheat-rice interplanting were higher than those under other cultivation modes. Comparing with conventional manual transplanting mode, the other five cultivation modes had their own dominant species in the potential weed community, and thereby, different labor-saving rice cultivation modes should be applied by turns to control the potential weed community in paddy fields effectively and persistently.

  8. [Modeling the ammonia volatilization from common urea and controlled releasing urea fertilizers in paddy soil of Taihui region of China by Jayaweera-Mikkelsen model].

    PubMed

    Li, Hui-lin; Han, Yong; Cai, Zu-cong

    2008-04-01

    The ammonia volatilization on the Typic Gleyi-stagnic Anthrosol with application of common urea and controlled release urea (LP-S100) fertilizers in the rice seasons in paddy soil of Taihui region of China was modeled by Jayaweera-Mikkelsen model. Results showed great difference of ammonia volatilization from two type fertilizers was detected with lysimeter experiment in the rice season. Nitrogen loss via ammonia volatilization after common urea application with conventional ways was 29%-35%, while only 5% of controlled release urea-N was volatilized. The Jayaweera-Mikkelsen model was over estimated the total amount of ammonia volatilization in the whole season, and great deviation from the measured data was obvious for the higher volatilization from common urea fertilizer. The estimated data were 2.95-4.19 times of the measures one for common urea treatments, while they were 1.19-1.40 times of those measured for LP-S100 treatments. The order of magnitude quotient was one of the indicators to evaluate the model estimation. The value of it was 0.8, which indicated the estimation of the model need improvement. Though sensitive analysis for the five parameters in the model was tested and amended the parameter of the concentration of NH4+ -N, a limited term was inducted in the model operation. The amended model got better results as the ratio of estimation to measured data was decreased to 1.12-1.28. The alga activity in the paddy field influenced ammonia volatilization and might make the failure of the model estimation of the original model. PMID:18637360

  9. [Modeling the ammonia volatilization from common urea and controlled releasing urea fertilizers in paddy soil of Taihui region of China by Jayaweera-Mikkelsen model].

    PubMed

    Li, Hui-lin; Han, Yong; Cai, Zu-cong

    2008-04-01

    The ammonia volatilization on the Typic Gleyi-stagnic Anthrosol with application of common urea and controlled release urea (LP-S100) fertilizers in the rice seasons in paddy soil of Taihui region of China was modeled by Jayaweera-Mikkelsen model. Results showed great difference of ammonia volatilization from two type fertilizers was detected with lysimeter experiment in the rice season. Nitrogen loss via ammonia volatilization after common urea application with conventional ways was 29%-35%, while only 5% of controlled release urea-N was volatilized. The Jayaweera-Mikkelsen model was over estimated the total amount of ammonia volatilization in the whole season, and great deviation from the measured data was obvious for the higher volatilization from common urea fertilizer. The estimated data were 2.95-4.19 times of the measures one for common urea treatments, while they were 1.19-1.40 times of those measured for LP-S100 treatments. The order of magnitude quotient was one of the indicators to evaluate the model estimation. The value of it was 0.8, which indicated the estimation of the model need improvement. Though sensitive analysis for the five parameters in the model was tested and amended the parameter of the concentration of NH4+ -N, a limited term was inducted in the model operation. The amended model got better results as the ratio of estimation to measured data was decreased to 1.12-1.28. The alga activity in the paddy field influenced ammonia volatilization and might make the failure of the model estimation of the original model.

  10. Actual Condition of Paddy Field Levee Maintenance by Various Farm Households including Large-scale Farming in the Developed Land Renting Area

    NASA Astrophysics Data System (ADS)

    Sakata, Yasuyo

    The survey of interview, resource acquisition, photographic operation, and questionnaire were carried out in the “n” Community in the “y” District in Hakusan City in Ishikawa Prefecture to investigate the actual condition of paddy field levee maintenance in the area where land-renting market was proceeding, large-scale farming was dominant, and the problems of geographically scattered farm-land existed. In the study zone, 1) an agricultural production legal person rent-cultivated some of the paddy fields and maintained the levees, 2) another agricultural production legal person rent-cultivated some of the soy bean fields for crop changeover and land owners maintained the levees. The results indicated that sufficient maintenance was executed on the levees of the paddy fields cultivated by the agricultural production legal person, the soy bean fields for crop changeover, and the paddy fields cultivated by the land owners. Each reason is considered to be the managerial strategy, the economic incentive, the mutual monitoring and cross-regulatory mechanism, etc.

  11. Temporal variations in arsenic uptake by rice plants in Bangladesh: the role of iron plaque in paddy fields irrigated with groundwater.

    PubMed

    Garnier, J-M; Travassac, F; Lenoble, V; Rose, J; Zheng, Y; Hossain, M S; Chowdhury, S H; Biswas, A K; Ahmed, K M; Cheng, Z; van Geen, A

    2010-09-01

    The transfer of arsenic to rice grains is a human health issue of growing relevance in regions of southern Asia where shallow groundwater used for irrigation of paddy fields is elevated in As. In the present study, As and Fe concentrations in soil water and in the roots of rice plants, primarily the Fe plaque surrounding the roots, were monitored during the 4-month growing season at two sites irrigated with groundwater containing approximately 130microgl(-1) As and two control sites irrigated with water containing <15microgl(-1) As. At both sites irrigated with contaminated water, As concentrations in soil water increased from <10microgl(-1) to >1000microgl(-1) during the first five weeks of the growth season and then gradually declined to <10microgl(-1) during the last five weeks. At the two control sites, concentrations of As in soil water never exceeded 40microgl(-1). At both contaminated sites, the As content of roots and Fe plaque rose to 1000-1500mgkg(-1) towards the middle of the growth season. It then declined to approximately 300mgkg(-1) towards the end, a level still well above As concentration of approximately 100mgkg(-1) in roots and plaque measured throughout the growing season at the two control sites. These time series, combined with simple mass balance considerations, demonstrate that the formation of Fe plaque on the roots of rice plants by micro-aeration significantly limits the uptake of As by rice plants grown in paddy fields. Large variations in the As and Fe content of plant stems at two of the sites irrigated with contaminated water and one of the control sites were also recorded. The origin of these variations, particularly during the last month of the growth season, needs to be better understood because they are likely to influence the uptake of As in rice grains. PMID:20576285

  12. Emissions of CH4 and N2O under different tillage systems from double-cropped paddy fields in Southern China.

    PubMed

    Zhang, Hai-Lin; Bai, Xiao-Lin; Xue, Jian-Fu; Chen, Zhong-Du; Tang, Hai-Ming; Chen, Fu

    2013-01-01

    Understanding greenhouse gases (GHG) emissions is becoming increasingly important with the climate change. Most previous studies have focused on the assessment of soil organic carbon (SOC) sequestration potential and GHG emissions from agriculture. However, specific experiments assessing tillage impacts on GHG emission from double-cropped paddy fields in Southern China are relatively scarce. Therefore, the objective of this study was to assess the effects of tillage systems on methane (CH4) and nitrous oxide (N2O) emission in a double rice (Oryza sativa L.) cropping system. The experiment was established in 2005 in Hunan Province, China. Three tillage treatments were laid out in a randomized complete block design: conventional tillage (CT), rotary tillage (RT) and no-till (NT). Fluxes of CH4 from different tillage treatments followed a similar trend during the two years, with a single peak emission for the early rice season and a double peak emission for the late rice season. Compared with other treatments, NT significantly reduced CH4 emission among the rice growing seasons (P<0.05). However, much higher variations in N2O emission were observed across the rice growing seasons due to the vulnerability of N2O to external influences. The amount of CH4 emission in paddy fields was much higher relative to N2O emission. Conversion of CT to NT significantly reduced the cumulative CH4 emission for both rice seasons compared with other treatments (P<0.05). The mean value of global warming potentials (GWPs) of CH4 and N2O emissions over 100 years was in the order of NTregions.

  13. Temporal variations in arsenic uptake by rice plants in Bangladesh: the role of iron plaque in paddy fields irrigated with groundwater

    PubMed Central

    Garnier, J.-M.; Travassac, F.; Lenoble, V.; Rose, J.; Zheng, Y.; Hossain, M.S.; Chowdhury, S. H.; Biswas, A. K.; Ahmed, K.M.; Cheng, Z.; van Geen, A.

    2010-01-01

    The transfer of arsenic to rice grains is a human health issue of growing relevance in regions of southern Asia where shallow groundwater used for irrigation of paddy fields is elevated in As. In the present study, As and Fe concentrations in soil water and in the roots of rice plants, primarily the Fe plaque surrounding the roots, were monitored during the 4-month growing season at two sites irrigated with groundwater containing ~130 μg/L As and two control sites irrigated with water containing <15 μg/L As. At both sites irrigated with contaminated water, As concentrations in soil water increased from <10 μg/L to >1000 μg/L during the first five weeks of the growth season and then gradually declined to <10 μg/L during the last five weeks. At the two control sites, concentrations of As in soil water never exceeded 40 μg/L. At both contaminated sites, the As content of roots and Fe plaque rose to 1000-1500 mg/kg towards the middle of the growth season. It then declined to ~300 mg/kg towards the end, a level still well above As concentration of ~100 mg/kg in roots and plaque measured throughout the growing season at the two control sites. These time series, combined with simple mass balance considerations, demonstrate that the formation of Fe plaque on the roots of rice plants by micro-aeration significant limits uptake of As by rice plants grown in paddy fields. Large variations in the As and Fe content of plant stems at two of the sites irrigated with contaminated water and one of the control sites were also recorded. The origin of these variations, particularly during the last month of the growth season, need to be better understood because they are likely to influence uptake of As in rice grains. PMID:20576285

  14. Emissions of CH4 and N2O under Different Tillage Systems from Double-Cropped Paddy Fields in Southern China

    PubMed Central

    Zhang, Hai-Lin; Bai, Xiao-Lin; Xue, Jian-Fu; Chen, Zhong-Du; Tang, Hai-Ming; Chen, Fu

    2013-01-01

    Understanding greenhouse gases (GHG) emissions is becoming increasingly important with the climate change. Most previous studies have focused on the assessment of soil organic carbon (SOC) sequestration potential and GHG emissions from agriculture. However, specific experiments assessing tillage impacts on GHG emission from double-cropped paddy fields in Southern China are relatively scarce. Therefore, the objective of this study was to assess the effects of tillage systems on methane (CH4) and nitrous oxide (N2O) emission in a double rice (Oryza sativa L.) cropping system. The experiment was established in 2005 in Hunan Province, China. Three tillage treatments were laid out in a randomized complete block design: conventional tillage (CT), rotary tillage (RT) and no-till (NT). Fluxes of CH4 from different tillage treatments followed a similar trend during the two years, with a single peak emission for the early rice season and a double peak emission for the late rice season. Compared with other treatments, NT significantly reduced CH4 emission among the rice growing seasons (P<0.05). However, much higher variations in N2O emission were observed across the rice growing seasons due to the vulnerability of N2O to external influences. The amount of CH4 emission in paddy fields was much higher relative to N2O emission. Conversion of CT to NT significantly reduced the cumulative CH4 emission for both rice seasons compared with other treatments (P<0.05). The mean value of global warming potentials (GWPs) of CH4 and N2O emissions over 100 years was in the order of NTregions. PMID:23750250

  15. Elevated ground-level O(3) changes the diversity of anoxygenic purple phototrophic bacteria in paddy field.

    PubMed

    Feng, Youzhi; Lin, Xiangui; Yu, Yongchang; Zhu, Jianguo

    2011-11-01

    The knowledge of the impact of elevated ground-level O(3) below ground the agro-ecosystem is limited. A field experiment in China Ozone Free-Air Concentration Enrichment (FACE-O(3)) facility on a rice-wheat rotation system was carried out to investigate responses of anoxygenic phototrophic purple bacteria (AnPPB) to elevated ground-level O(3). AnPPB community structures and sizes in paddy soil were monitored by molecular approaches including PCR-DGGE and real-time quantitative PCR based upon the pufM gene on three typical rice growth stages. Repetitive sequence-based PCR (rep-PCR) in combination with culture-reliant method was conducted to reveal changes in genotypic diversity. Elevated ground-level O(3) statistically reduce AnPPB abundance and percentage in total bacterial community in flooded rice soil via decreasing their genotypic diversity and metabolic versatility. Concomitantly, their community composition changed after rice anthesis stage under elevated ground-level O(3). Our results from AnPPB potential responses imply that continuously elevated ground-level O(3) in the future would eventually harm the health of paddy ecosystem through negative effect on soil microorganisms. PMID:21698401

  16. Carbon decomposition process of the residual biomass in the paddy soil of a single-crop rice field

    NASA Astrophysics Data System (ADS)

    Okada, K.; Iwata, T.

    2014-12-01

    In cultivated fields, residual organic matter is plowed into soil after harvest and decaying in fallow season. Greenhouse gases such as CO2 and CH4 is generated by the decomposition of the substantial organic matter and released into the atmosphere. In some fields, open burning is carried out by tradition, when carbon in residual matter is released into atmosphere as CO2. However, burning effect on carbon budget between crop lands and atmosphere is not entirely considered yet. In this study, coarse organic matter (COM) in paddy soil of a single-crop rice field was sampled on regular intervals between January, 2011 and August, 2014 The amount of carbon release from residual matter was estimated by analyzing of the variations in carbon content of COM. Effects of soil temperature (Ts) and soil water content (SWC) at the paddy field on the rate of carbon decomposition was investigated. Though decreasing rate of COM was much smaller in winter season, it is accelerated at the warming season between April and June every year. Decomposition was resisted for next rice cultivated season despite of highest soil temperature. In addition, the observational field was divided into two areas, and three time open burning experiments were conducted in November, 2011, 2012, and 2013. In each year, three sampling surveys, or plants before harvest and residuals before and after the burning experiment, were done. From these surveys, it is suggested that about 48±2% of carbon contents of above-ground plant was yield out as grain by harvest, and about 27±2% of carbon emitted as CO2 by burning. Carbon content of residuals plowed into soil after the harvest was estimated 293±1 and 220±36gC/m2 in no-burned and burned area, respectively, based on three-years average. It is estimated that 70 and 60% of the first input amount of COM was decomposed after a year in no-burned and burned area, respectively.

  17. Effects of nitrogen fertilizer sources and tillage practices on greenhouse gas emissions in paddy fields of central China

    NASA Astrophysics Data System (ADS)

    Zhang, Z. S.; Chen, J.; Liu, T. Q.; Cao, C. G.; Li, C. F.

    2016-11-01

    The effects of nitrogen (N) fertilizer sources and tillage practices on greenhouse gas (GHG) emission have been well elucidated separately. However, it is still remained unclear regarding the combined effects of N fertilization and tillage practices on the global warming potential (GWP) and net ecosystem economic budget (NEEB) in paddy fields. In this paper, a 2-year field experiment was performed to investigate the effects of N fertilizer sources (N0, no N; IF, 100% N from chemical fertilizer; SRIF, 50% N from slow-release fertilizer and 50% N from chemical fertilizer; OF, 100% N from organic fertilizer; OFIF, 50% N from organic fertilizer and 50% N from chemical fertilizer) and tillage practices (CT, conventional intensive tillage; NT, no-tillage) on the emissions of methane (CH4) and nitrous oxide (N2O), GWP, greenhouse gas intensity (GHGI), and NEEB in paddy fields of central China. Compared with N0 treatment, IF, SRIF, OF and OFIF treatments greatly enhanced the cumulative seasonal CH4 emissions (by 54.7%, 41.7%, 51.1% and 66.0%, respectively) and N2O emissions (by 164.5%, 93.4%, 130.2% and 251.3%, respectively). NT treatment significantly decreased the GWP and GHGI compared with CT treatment. On the other hand, NT treatment significantly decreased CH4 emissions by 8.5-13.7%, but did not affect N2O emissions relative to CT treatment. Application of N fertilizers significantly increased GWP and GHGI. It was worth noting that the combined treatment of OFIF and NT resulted in the second-highest GWP and GHGI and the largest NEEB among all treatments. Therefore, our results suggest that OFIF combined with NT is an eco-friendly strategy to optimize the economic and environmental benefits of paddy fields in central China. Although the treatment of SRIF plus NT showed the lowest GWP and GHGI and the highest grain yield among all treatments, it led to the lowest NEEB due to its highest fertilizer cost. These results indicate that the government should provide

  18. Simultaneous enantioselective determination of phenylpyrazole insecticide flufiprole and its chiral metabolite in paddy field ecosystem by ultra-high performance liquid chromatography/tandem mass spectrometry.

    PubMed

    Li, Jing; Zhang, Yuting; Cheng, Youpu; Yuan, Shankui; Liu, Lei; Shao, Hui; Li, Hui; Li, Na; Zhao, Pengyue; Guo, Yongze

    2016-03-20

    A novel and sensitive ultra-high performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous enantioselective determination of flufiprole and its hydrolysis metabolite in paddy field ecosystem. The separation and determination were performed using reversed-phase chromatography on a novel cellulose chiral stationary phase, a Lux Cellulose-4 (150 mm × 2.0 mm) column, under isocratic conditions at 0.25 mL/min flow rate. The effects of other four different polysaccharide-based chiral stationary phases (CSPs) on the separation and simultaneous enantioseparation of the two target compounds were also evaluated. The elution orders of the eluting enantiomers were identified by an optical rotation detector. Modified QuEChERS (acronym for Quick, Easy, Cheap, Effective, Rugged and Safe) method and solid-phase extraction (SPE) were used for the enrichment and cleanup of paddy water, rice straw, brown rice and paddy soil samples, respectively. Parameters including the matrix effect, linearity, precision, accuracy and stability were evaluated. Under the optimal conditions, the mean recoveries for all enantiomers from the above four sample matrix were ranged from 83.6% to 107%, with relative standard deviations (RSD) in the range of 1.0-5.8%. Coefficients of determination R(2)≥0.998 were achieved for each enantiomer in paddy water, rice straw, brown rice and paddy soil matrix calibration curves within the range of 5-500 μg/kg. The limits of quantification (LOQ) for all stereoisomers in the above four matrices were all below 2.0 μg/kg. The methodology was successfully applied for simultaneously enantioselective analysis of flufiprole enantiomers and their chiral metabolite in the real samples, indicating its efficacy in investigating the environmental stereochemistry of flufiprole in paddy field ecosystem.

  19. [Cultivated landscape pattern change due to the rice paddy expansion in Northeast China: A case study in Fujin].

    PubMed

    Du, Guo-ming; Pan, Tao; Yin, Zhe-rui; Dong, Jin-wei

    2015-01-01

    On the background of global climate change, agriculture in North China has been experiencing substantial modifications to adapt to the ongoing regional warming. One of the most significant land use change is the conversation from upland cropland to paddy cropland, which is characterized by the dramatic changes of agricultural landscape pattern. In this study, we generated land use maps in Fujin City in 2000 and 2013 by using Landsat TM imagery, and analyzed the landscape pattern changes (cropland composite, special distribution, and patch characteristics, etc.) of croplands by using landscape indices and empirical approach. The results indicated a rapid cropland increase from 512400 hm2(reclamation ratio 60.4%) in 2000 to 699300 hm2(reclamation 82.4%) in 2013, especially, the paddy cropland proportion in the total cropland increased from 6.7% to more than half (54.1%) , that is, the agricultural land use mode had changed from the initial stage of paddy agriculture to the intermediate stage. The reclamation area and common agricultural area showed different paddy agriculture development characteristics: in 2000, the paddy field ratios in the common agricultural area and reclamation area were similar (5.5% and 8.3% respectively); however, in 2013, the paddy field ratio in the common agricultural area (33.6%) was significantly lower than that in reclamation area (83.4%). In 2000, the total number of cropland patches was 2311 in the study, including 1010 patches from the common agricultural area and 1301 patches from the reclamation area. The coefficient of variation (CV) , and shape index (SI) of cropland patches in upland cropland were always higher than in paddy cropland. Upland cropland had larger mean patch size with the plaque area index above 60% and higher connectivity. The patch density of upland cropland was lower than that of paddy cropland. In the conversions to the intermediate and later stages of paddy agriculture, the patch number of cropland increased

  20. Arsenic accumulation in a paddy field in Bangladesh: seasonal dynamics and trends over a three-year monitoring period.

    PubMed

    Dittmar, Jessica; Voegelin, Andreas; Roberts, Linda C; Hug, Stephan J; Saha, Ganesh C; Ali, M Ashraf; Badruzzaman, A Borhan M; Kretzschmar, Ruben

    2010-04-15

    Shallow groundwater, often rich in arsenic (As), is widely used for irrigation of dry season boro rice in Bangladesh. In the long term, this may lead to increasing As contents in rice paddy soils, which threatens rice yields, food quality, and human health. The objective of this study was to quantify gains and losses of soil As in a rice paddy field during irrigation and monsoon flooding over a three-year period. Samples were collected twice a year on a 3D-sampling grid to account for the spatially heterogeneous As distribution within the soil. Gains and losses of soil As in different depth segments were calculated using a mass-balance approach. Annual As input with irrigation water was estimated as 4.4 +/- 0.4 kg ha(-1) a(-1). Within the top 40 cm of soil, the mean As accumulation over three years amounted to 2.4 +/- 0.4 kg ha(-1) a(-1), implying that on average 2.0 kg ha(-1) a(-1) were lost from the soil. Seasonal changes of soil As showed that 1.05 to 2.1 kg ha(-1) a(-1) were lost during monsoon flooding. The remaining As-loss (up to 0.95 kg ha(-1) a(-1)) was attributed to downward flow with percolating irrigation water. Despite these losses, we estimate that total As within the top 40 cm of soil at our field site would further increase by a factor of 1.5 to 2 by the year 2050 under current cultivation practices. PMID:20235529

  1. Bioaccumulation of organochlorine pesticides and polychlorinated biphenyls by loaches living in rice paddy fields of Northeast China.

    PubMed

    Zhang, Haijun; Lu, Xianbo; Zhang, Yichi; Ma, Xindong; Wang, Shuqiu; Ni, Yuwen; Chen, Jiping

    2016-09-01

    The concentrations of 21 organochlorine pesticide (OCP) residues and 18 polychlorinated biphenyl (PCB) congeners were measured in two loach species (Misgurnus mohoity and Paramisgurnus dabryanus) and the soils of their inhabiting rice paddies from three typical rice production bases of Northeast China to explore the main factors influencing the bioaccumulation. The concentrations of ∑18PCBs and ∑21OCPs in loaches were determined to be in the ranges of 0.14-0.76 ng g(-1) wet weight (ww) and 1.19-78.53 ng g(-1) ww, respectively. Most of loaches showed the considerably high contamination levels of dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), hexachlorobenzene (HCB), which accounted for over 97% of the total OCPs. The much lower maximum allowable loach consumption rates (<15 g d(-1)) indicated a high carcinogenic risk that results from the consumption of rice-field loaches. The field biota-soil accumulation factor (BSAF) was calculated as a main measure of bioaccumulation potential. The comparisons of BSAF values and the results of multivariate analysis indicated that habitat-specific environmental conditions, mainly the paddy soil contamination levels and average temperature, decisively affected the bioaccumulation of organochlorine contaminants. When the influence of lipid contents was offset, M. mohoity loaches were found to have a higher potential to accumulation PCBs and OCPs than P. dabryanus loaches, while the bioaccumulation potentials did not exhibit significant differences between juvenile and adult loaches and between male and female loaches. The octanol-water partition coefficient (KOW) was the main chemical factor influencing bioaccumulation potentials. The BSAF values presented an increasing tendency with increasing log KOW values from 6.0 to approximately 7.0, followed by a decreasing tendency with a continuous increase in log KOW values. Moreover, loaches exhibited an isomeric-selective bioaccumulation for p

  2. [Distribution characteristics of soil profile nitrous oxide concentration in paddy fields with different rice-upland crop rotation systems].

    PubMed

    Liu, Ping-li; Zhang, Xiao-lin; Xiong, Zheng-qin; Huang, Tai-qing; Ding, Min; Wang, Jin-yang

    2011-09-01

    To investigate the dynamic distribution patterns of nitrous oxide (N2O) in the soil profiles in paddy fields with different rice-upland crop rotation systems, a special soil gas collection device was adopted to monitor the dynamics of N2O at the soil depths 7, 15, 30, and 50 cm in the paddy fields under both flooding and drainage conditions. Two rotation systems were installed, i.e., wheat-single rice and oilseed rape-double rice, each with or without nitrogen (N) application. Comparing with the control, N application promoted the N2O production in the soil profiles significantly (P < 0.01), and there existed significant correlations in the N2O concentration among the four soil depths during the whole observation period (P < 0.01). In the growth seasons of winter wheat and oilseed rape under drainage condition and with or without N application, the N2O concentrations at the soil depths 30 cm and 50 cm were significantly higher than those at the soil depths 7 cm and 15 cm; whereas in the early rice growth season under flooding condition and without N application, the N2O concentrations at the soil depth 7 cm and 15 cm were significantly higher than those at the soil depths 30 cm and 50 cm (P < 0.05). No significant differences were observed in the N2O concentrations at the test soil depths among the other rice cropping treatments. The soil N2O concentrations in the treatments without N application peaked in the transitional period from the upland crops cropping to rice planting, while those in the treatments with N application peaked right after the second topdressing N of upland crops. Relatively high soil N2O concentrations were observed at the transitional period from the upland crops cropping to rice planting.

  3. Geographical variation in inorganic arsenic in paddy field samples and commercial rice from the Iberian Peninsula.

    PubMed

    Signes-Pastor, Antonio J; Carey, Manus; Carbonell-Barrachina, Angel A; Moreno-Jiménez, Eduardo; Green, Andy J; Meharg, Andrew A

    2016-07-01

    This study investigated total arsenic and arsenic speciation in rice using ion chromatography with mass spectrometric detection (IC-ICP-MS), covering the main rice-growing regions of the Iberian Peninsula in Europe. The main arsenic species found were inorganic and dimethylarsinic acid. Samples surveyed were soil, shoots and field-collected rice grain. From this information soil to plant arsenic transfer was investigated plus the distribution of arsenic in rice across the geographical regions of Spain and Portugal. Commercial polished rice was also obtained from each region and tested for arsenic speciation, showing a positive correlation with field-obtained rice grain. Commercial polished rice had the lowest i-As content in Andalucia, Murcia and Valencia while Extremadura had the highest concentrations. About 26% of commercial rice samples exceeded the permissible concentration for infant food production as governed by the European Commission. Some cadmium data is also presented, available with ICP-MS analyses, and show low concentration in rice samples. PMID:26920305

  4. Geographical variation in inorganic arsenic in paddy field samples and commercial rice from the Iberian Peninsula.

    PubMed

    Signes-Pastor, Antonio J; Carey, Manus; Carbonell-Barrachina, Angel A; Moreno-Jiménez, Eduardo; Green, Andy J; Meharg, Andrew A

    2016-07-01

    This study investigated total arsenic and arsenic speciation in rice using ion chromatography with mass spectrometric detection (IC-ICP-MS), covering the main rice-growing regions of the Iberian Peninsula in Europe. The main arsenic species found were inorganic and dimethylarsinic acid. Samples surveyed were soil, shoots and field-collected rice grain. From this information soil to plant arsenic transfer was investigated plus the distribution of arsenic in rice across the geographical regions of Spain and Portugal. Commercial polished rice was also obtained from each region and tested for arsenic speciation, showing a positive correlation with field-obtained rice grain. Commercial polished rice had the lowest i-As content in Andalucia, Murcia and Valencia while Extremadura had the highest concentrations. About 26% of commercial rice samples exceeded the permissible concentration for infant food production as governed by the European Commission. Some cadmium data is also presented, available with ICP-MS analyses, and show low concentration in rice samples.

  5. Sun-induced chlorophyll fluorescence reveals strong representation of photosynthesis at ecosystem level in rice paddy field in Japan

    NASA Astrophysics Data System (ADS)

    Kato, T.; Tsujimoto, K.; Nasahara, K. N.; Akitsu, T.; Ono, K.; Miyata, A.

    2015-12-01

    Chlorophyll fluorescence emission from ecosystem induced by sunlight (Sun-Induced Fluorescence: SIF) is now a key factor to accurately estimate the ecosystem-level photosynthesis activity as suggested by satellite studies, and has been recently detected by satellites [Frankenberg et al., 2011; Guanter et al., 2012; Joiner et al., 2013] and measured at field stations [Daumard et al., 2010; Porcar-Castell, 2011]. However, the few example of field-based assessment on the representation ability reduces its value for the availability to better understand the dynamics in CO2uptake by land ecosystem. To elucidate the potential of SIF to estimate ecosystem GPP in typical Asian crop type, the canopy-top SIF was calculated from the spectrum data in Japanese rice paddy field in Mase in central Japan (36°03'N, 140°01'E, 11 m a.s.l.), and compared with eddy-tower measured GPP on half-hourly and daily bases during seven years from 2006 to 2012. The rice (Oriza sativa L.; cultivar Koshihikari) was transplanted in May and harvested in September normally. The SIF was estimated from the spectrums of downward Sun irradiance and upward canopy-reflected radiance measured at the height of 3m above ground by HemiSpherical Spectro-Radiometer (HSSR), consisting of the spectroradiometer (MS-700, Eko inc., Tokyo, Japan) with the full-width at half maximum (FWHM) of 10 nm and wavelength interval of 3.3 nm. The SIF around 760nm (O2-A band: Fs760) was calculated according to the Fraunhofer Line Depth principle [Maier et al., 2003] with several additional arrangements. The GPP increased almost linearly as both Fs760 and APAR (Absorbed Photosyntethically Active Radiation) increased based on monthly-averaged diurnal courses during the growing season in 2006. The slopes of their regression lines differed much among the months in APAR, but in Fs760. These nearly constant relationships among the months between GPP and Fs760 were kept for all the observation years. Daily averaged GPP and Fs760

  6. Biochar amendment reduces rice Cd uptake in polluted and unpolluted paddy soils: a long term field experiment

    NASA Astrophysics Data System (ADS)

    Bian, R.; Cui, L.; Pan, G.; Li, L.

    2012-04-01

    The bioavailability of Cd in agricultural soils has been a great health concern due to the potential risk through exposure of agro-food produced in Cd-contaminated fields. Yet, rice subject to Cd contamination appears to have expanded at the last decade due to irrigation with waste water and chemical fertilization in south china. This is supposed to raise the Cd accumulation of rice grain. Therefore, techniques to reduce Cd mobility and plant uptake have been a urgent demand for food safety in China.A field experiment was performed in a high-polluted (HP), mid-pollute (MP) and unpolluted (UP) paddy soil with biochar(BC) amendment in 2011. BC was applied in HP, MP and UP in 2008, 2009, 2009 with the rates of 0, 10, 20, 40t ha-1 in HP, MP and 0, 40t ha-1 in UP. The experiment was monitored in 2011. It was observed that BC amendment did not affect rice grain yield but significantly increased soil pH by 0.58-0.77, 1.30 units in MP, UP and there was no difference in HP. The Cacl2 extracted Cd in soil was decreased by 18.1%-28.9% in HP, 49.3%-67.5% in MP and 83.1% in UP, respectively. Meanwhile, H2O extractable Cd in soil was decreased by 20.0%-31.7% in HP, 32.7%-44.2% in MP and 25.0% in UP, respectively. With the BC treatment, rice grain Cd concentration was decreased 4.7%-17.6% in HP, 35.9%-53.4% in MP. Especially in UP field, the rice grain Cd concentration was decreased from 0.22mg kg-1 to 0.07mg kg-1 which was below National standard (0.20mg kg-1) in China. The straw and root Cd contents were also significantly decreased with BC application. Therefore, BC amendment in polluted and unpolluted fields can sustainably reduce rice Cd uptake and it may offer a basic option to reduce Cd levels in rice. Keywords: Biochar, Cd, bioavailability, paddy soil, food safety

  7. [Effects of long-term fertilization on reddish paddy soil quality and its evaluation in a typical double-rice cropping region of China].

    PubMed

    Nie, Jun; Yang, Zeng-Ping; Zheng, Sheng-Xian; Liao, Yu-Lin; Xie, Jian; Xiang, Yan-Wen

    2010-06-01

    In order to quantify the effects of 27 years application of chemical fertilizers, pig manure, and rice straw on the reddish paddy soil quality in double rice cropping region, the indices of soil bulk density, porosity, maximum water holding capacity, normalized mean weight diameter, pH, cation exchange capacity, available nutrients, organic matter, microbial biomass C, enzyme activities, and rice yield were selected as the evaluation indicators, and classified into four functional groups, i. e., resistance to physical degradation, plant nutrients supply and storage, resistance to biochemical degradation, and sustaining of crop productivity. The soil quality index (SQI) was calculated based on the four functional groups. The results showed that the SQI ranged from 0.544 in treatment CK to 0.729 in treatment NPK plus rice straw. Treatments PK, NP, and NK induced soil degradation, compared to treatment NPK. The deficiencies of soil P and K were the main limiting factors for the double rice productivity in reddish paddy soil area. Even though 30 t x hm(-2) x a(-1) of pig manure and 4.2 t x hm(-2) x a(-1) of rice straw were applied, the soil P and K were still not adequate for the requirement of rice growth. There was no obvious effect of long-term application of lime on the reddish paddy soil quality. The combined application of NPK with organic manure was an important and effective measure in improving soil quality in double rice cropping regions of Southern China. PMID:20873620

  8. Internal aeration of paddy field rice (Oryza sativa) during complete submergence---importance of light and floodwater O2.

    PubMed

    Winkel, Anders; Colmer, Timothy D; Ismail, Abdelbagi M; Pedersen, Ole

    2013-03-01

    Flash floods can submerge paddy field rice (Oryza sativa), with adverse effects on internal aeration, sugar status and survival. Here, we investigated the in situ aeration of roots of rice during complete submergence, and elucidated how underwater photosynthesis and floodwater pO(2) influence root aeration in anoxic soil. In the field, root pO(2) was measured using microelectrodes during 2 d of complete submergence. Leaf gas films that formed on the superhydrophobic leaves were left intact, or experimentally removed, to elucidate their effect on internal aeration. In darkness, root pO(2) declined to very low concentrations (0.24 kPa) and was strongly correlated with floodwater pO(2). In light, root pO(2) was high (14 kPa) and primarily a function of the incident light determining the rates of underwater net photosynthesis. Plants with intact leaf gas films maintained higher underwater net photosynthesis relative to plants without gas films when the submerged shoots were in light. During complete submergence, internal aeration of rice in the field relies on underwater photosynthesis during the day and entry of O(2) from the floodwater during the night. Leaf gas films enhance photosynthesis during submergence leading to improved O(2) production and sugar status, and therefore contribute to the submergence tolerance of rice.

  9. [Effects of long-term applying sulfur- and chloride-containing chemical fertilizers on weed growth in paddy field].

    PubMed

    Shen, Pu; Gao, Ju-sheng; Xu, Ming-gang; Li, Dong-chu; Niu, De-kui; Qin, Dao-zhu

    2011-04-01

    An investigation was made at a double-rice paddy field in the Qiyang Red Soil Field Experimental Station, Hunan Province, China to study the species and biomass of weeds growing in rice (Oryza sativa L.) growth season after 34-year application of sulfur (SO4(2-)) and chloride (Cl(-))-containing chemical fertilizers under the same application rates of nitrogen (N), phosphorus (P), and potassium (K). Long-term application of Cl(-)-containing chemical fertilizer resulted in the greatest species number of weeds and the highest biomass of floating weeds and wet weeds, compared with long-term application of SO4(2-) and Cl(-) +SO4(2-)-containing chemical fertilizers. In early rice growth season, the biomass of weeds after applying Cl(-)-containing chemical fertilizer was 51.4% and 17.6% higher than that after applying Cl(-) + SO4(2-) and SO4(2-)-containing chemical fertilizers, respectively; in late rice growth season, the increment was 144% and 242%, respectively. More floating weeds were observed after applying Cl(-) + SO4(2-) and SO4(2-)-containing chemical fertilizers, but few of them were found after applying Cl(-)-containing chemical fertilizer. The total dry mass of weeds and the dry mass of wet weeds were positively correlated with soil Cl(-) content (r = 0.764, P < 0.01 and r = 0.948, P < 0.01, respectively), but negatively correlated with soil SO4(2-)-S content (r = 0.849, P < 0.01 and r = 0.641, P < 0.05). Soil alkali-hydrolyzable N and available P, under the co-effects of soil SO4(2-)-S, Cl(-), and pH, had indirect effects on the total dry mass of weeds. By adopting various fertilization measures to maintain proper soil pH and alkali-hydrolyzable N and available P contents, increase soil SO42(-)-S content, and decrease soil Cl(-) content, it could be possible to effectively inhibit the growth of wet weeds and to decrease the total biomass of weeds in double-rice paddy field.

  10. Assessment of heavy metals (Cd and Pb) and micronutrients (Cu, Mn, and Zn) of paddy (Oryza sativa L.) field surface soil and water in a predominantly paddy-cultivated area at Puducherry (Pondicherry, India), and effects of the agricultural runoff on the elemental concentrations of a receiving rivulet.

    PubMed

    Reddy, M Vikram; Satpathy, Deepmala; Dhiviya, K Shyamala

    2013-08-01

    The concentrations of toxic heavy metals-Cd and Pb and micronutrients-Cu, Mn, and Zn were assessed in the surface soil and water of three different stages of paddy (Oryza sativa L.) fields, the stage I-the first stage in the field soon after transplantation of the paddy seedlings, holding adequate amount of water on soil surface, stage II-the middle stage with paddy plants of stem of about 40 cm length, with sufficient amount of water on the soil surface, and stage III-the final stage with fully grown rice plants and very little amount of water in the field at Bahour, a predominantly paddy cultivating area in Puducherry located on the southeast Coast of India. Comparison of the heavy metal and micronutrient concentrations of the soil and water across the three stages of paddy field showed their concentrations were significantly higher in soil compared with that of water (p < 0.05) of the fields probably because of accumulation and adsorption in soil. The elemental concentrations in paddy soil as well as water was in the ranking order of Cd > Mn > Zn > Cu > Pb indicating concentration of Cd was maximum and Pb was minimum. The elemental concentrations in both soil and water across the three stages showed a ranking order of stage II > stage III > stage I. The runoff from the paddy fields has affected the elemental concentrations of the water and sediment of an adjacent receiving rivulet.

  11. [Effects of no-tillage and stubble-remaining on soil enzyme activities in broadcasting rice seedlings paddy field].

    PubMed

    Ren, Wan-Jun; Huang, Yun; Wu, Jin-Xiu; Liu, Dai-Yin; Yang, Wen-Yu

    2011-11-01

    A field experiment was conducted to study the effects of four cultivation modes (conventional tillage, no-tillage, conventional tillage + stubble-remaining, and no-tillage + stubble-remaining) on the activities of urease, acid phosphatase, protease, and cellulose in different soil layers in a broadcasting rice seedlings paddy field. Under the four cultivation modes, the activities of test enzymes were higher in upper than in deeper soil layers, and had a greater difference between the soil layers under no-tillage + stubble-remaining. In upper soil layers, the activities of test enzymes were higher in the treatments of no-tillage than in the treatments of conventional tillage, being the highest under no-tillage + stubble-remaining and the lowest under conventional tillage. In deeper soil layers, the test enzyme activities were the highest under conventional tillage + stubble-remaining, followed by no-tillage + stubble-remaining, no-tillage, and conventional tillage. During the growth period of rice, soil urease and cellulose activities were lower at tillering stage, increased to the maximum at booting stage, and decreased then, soil acid phosphatase activity was higher at tillering stage but lower at elongating stage, whereas soil protease activity peaked at tillering and heading stages.

  12. [Effect of controlled release fertilizer on nitrous oxide emission from paddy field under plastic film mulching cultivation].

    PubMed

    Zhang, Yi; Lü, Shi-Hua; Ma, Jing; Xu, Hua; Yuan, Jiang; Dong, Yu-Jiao

    2014-03-01

    A field experiment was conducted to assess the effect of controlled release fertilizer on N2O emission in paddy field under plastic film mulching cultivation (PM) with water-saving irrigation. Results showed that in the rice growing season, cumulative N2O emissions from the plots applied with urea (PM+U) and with controlled release fertilizer (PM+CRF) were (38.2 +/- 4.4) and (21.5 +/- 5.2) mg N x m(-2), respectively. The N2O emission factors were 0.25% and 0.14% in the treatments PM+U and PM+CRF, respectively. The controlled release fertilizer decreased the total N2O emission by 43.6% compared with urea, of which 49.6% was reduced before the drying period. It also reduced the peak of N2O emission by 52.6%. However, it did not affect soil microbial biomass N and soil NH(4+)-N content at any rice growing stage, and grain yield either. No significant correlation was observed between N2O flux and soil Eh or soil temperature at the depth of 5 cm. PMID:24984495

  13. [Effect of controlled release fertilizer on nitrous oxide emission from paddy field under plastic film mulching cultivation].

    PubMed

    Zhang, Yi; Lü, Shi-Hua; Ma, Jing; Xu, Hua; Yuan, Jiang; Dong, Yu-Jiao

    2014-03-01

    A field experiment was conducted to assess the effect of controlled release fertilizer on N2O emission in paddy field under plastic film mulching cultivation (PM) with water-saving irrigation. Results showed that in the rice growing season, cumulative N2O emissions from the plots applied with urea (PM+U) and with controlled release fertilizer (PM+CRF) were (38.2 +/- 4.4) and (21.5 +/- 5.2) mg N x m(-2), respectively. The N2O emission factors were 0.25% and 0.14% in the treatments PM+U and PM+CRF, respectively. The controlled release fertilizer decreased the total N2O emission by 43.6% compared with urea, of which 49.6% was reduced before the drying period. It also reduced the peak of N2O emission by 52.6%. However, it did not affect soil microbial biomass N and soil NH(4+)-N content at any rice growing stage, and grain yield either. No significant correlation was observed between N2O flux and soil Eh or soil temperature at the depth of 5 cm.

  14. Seasonal and diurnal variations of atmospheric PAHs and OCPs in a suburban paddy field, South China: Impacts of meteorological parameters and sources

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Li, Qilu; Wang, Shaorui; Wang, Yujie; Luo, Chunling; Li, Jun; Zhang, Gan

    2015-07-01

    The atmospheric contaminations of polycyclic aromatic hydrocarbons (PAHs), hexachlorocyclohexanes (HCHs), and DDTs have been extensively monitored for decades, but contaminations in agricultural paddy fields have rarely been reported. We measured the atmospheric PAH, HCH, and DDT constituents during different rice growth stages in a suburban paddy field in South China. Diurnal variations were found in the atmospheric concentrations of PAHs and HCHs, but not for DDTs. Additional nocturnal emissions and meteorological conditions, such as low nocturnal stable atmospheric boundary layers, may be mainly responsible for the higher PAH and HCH levels at night, respectively. Atmospheric concentrations of PAH, HCH, and DDT constituents varied with rice growth stage, but no regular seasonal variation was found, suggesting that rice growth has no significant influence on the atmospheric concentrations of these chemicals. A correlation analysis suggested that meteorological parameters, such as temperature, precipitation, mixing layer height, or wind speed, may directly or indirectly affect the air concentrations of PAHs, HCHs, and DDTs. Source apportionment showed that atmospheric PAHs, HCHs, and DDTs in the paddy field originated from mixed sources, and the contribution of each source varied with time. The isomer ratio of fluoranthene/(fluoranthene + pyrene) may result in an invalid diagnosis of PAHs.

  15. Diversity of bacteriophages infecting Xanthomonas oryzae pv. oryzae in paddy fields and its potential to control bacterial leaf blight of rice.

    PubMed

    Chae, Jong-Chan; Hung, Nguyen Bao; Yu, Sang-Mi; Lee, Ha Kyung; Lee, Yong Hoon

    2014-06-28

    Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a very serious disease in rice-growing regions of the world. In spite of their economic importance, there are no effective ways of protecting rice plants from this disease. Bacteriophages infecting Xoo affect the population dynamics of the pathogen and consequently the occurrence of the disease. In this study, we investigated the diversity, host range, and infectivity of Xoo phages, and their use as a bicontrol agent on BLB was tested. Among the 34 phages that were isolated from floodwater in paddy fields, 29 belonged to the Myoviridae family, which suggests that the dominant phage in the ecosystem was Myoviridae. The isolated phages were classified into two groups based on plaque size produced on the lawn of Xoo. In general, there was a negative relationship between plaque size and host range, and interestingly the phages having a narrow host range had low efficiency of infectivity. The deduced protein sequence analysis of htf genes indicated that the gene was not a determinant of host specificity. Although the difference in host range and infectivity depending on morphotype needs to be addressed, the results revealed deeper understanding of the interaction between the phages and Xoo strains in floodwater and damp soil environments. The phage mixtures reduced the occurrence of BLB when they were treated with skim milk. The results indicate that the Xoo phages could be used as an alternative control method to increase the control efficacy and reduce the use of agrochemicals.

  16. Phylogeny of numerically abundant culturable anaerobic bacteria associated with degradation of rice plant residue in Japanese paddy field soil.

    PubMed

    Akasaka, Hiroshi; Izawa, Tomoe; Ueki, Katsuji; Ueki, Atsuko

    2003-03-01

    Culturable anaerobic bacterial populations on rice plant residue (straw and stubble with roots) in paddy field soil were found on the order of 10(9) CFU (colony-forming units) (g dry weight of plant residue)(-1), and the percentages of spores were usually less than 1% of the total anaerobes. Anaerobic bacteria were isolated from each sample by picking up colonies on the roll tube agar used for the enumeration. The phylogenetic analysis of 47 isolates based on 16S rRNA gene sequences revealed that the composition of dominant culturable anaerobic bacteria on rice plant residue was rather simple. The most dominant group was closely related to the Cellulomonas species in the Actinobacteria phylum and accounted for more than 60% of the isolates for most of the samples. The second major group was also affiliated with the Actinobacteria phylum and tentatively named the 'propionate-producing Actinobacteria group' because the strains in the group commonly produced propionate. Strains in the third group, the 'Prevotella-like group', were Gram-negative, strictly anaerobic rods and placed in the Bacteroides phylum with 16S rRNA gene similarities of 86-92% to the closest relatives. Some other strains belonging to Betaproteobacteria and the clostridial group were also isolated. Most of the strains affiliated to the clostridial group were isolated from the heat-treated samples. Some phenotypic characteristics of representative strains of each group are also described.

  17. Characterization of Nivalenol-Producing Fusarium culmorum Isolates Obtained from the Air at a Rice Paddy Field in Korea

    PubMed Central

    Kim, Da-Woon; Kim, Gi-Yong; Kim, Hee-Kyoung; Kim, Jueun; Jeon, Sun Jeong; Lee, Chul Won; Lee, Hyang Burm; Yun, Sung-Hwan

    2016-01-01

    Together with the Fusarium graminearum species complex, F. culmorum is a major member of the causal agents of Fusarium head blight on cereals such as wheat, barley and corn. It causes significant yield and quality losses and results in the contamination of grain with mycotoxins that are harmful to humans and animals. In Korea, F. culmorum is listed as a quarantine fungal species since it has yet to be found in the country. In this paper, we report that two isolates (J1 and J2) of F. culmorum were collected from the air at a rice paddy field in Korea. Species identification was confirmed by phylogenetic analysis using multi-locus sequence data derived from five genes encoding translation elongation factor, histone H3, phosphate permease, a reductase, and an ammonia ligase and by morphological comparison with reference strains. Both diagnostic PCR and chemical analysis confirmed that these F. culmorum isolates had the capacity to produce nivalenol, the trichothecene mycotoxin, in rice substrate. In addition, both isolates were pathogenic on wheat heads and corn stalks. This is the first report on the occurrence of F. culmorum in Korea. PMID:27298593

  18. [Dynamic simulation of nitrogen application level effects on rice yield and optimization analysis of fertilizer supply in paddy field].

    PubMed

    Yang, Jingping; Jiang, Ning; Chen, Jie

    2003-10-01

    Field and water tank plot experiments were conducted in Zhejiang Province in 1999 to determine the effects of nitrogen application amount and times on rice growth and yield, and rice growth simulation model ORYZA-0 and nitrogen management module were used to establish a modified nitrogen effect-rice growth model. The simulated results presented a higher positive relationship with the measured results. According to the simulated and measured results, 160 kg.hm-2 was the economic nitrogen application amount for two rice varieties production, and the nitrogen application strategies were: 1) < 100 kg.hm-2 nitrogen fertilizer should be applied within 35 days after transplanting; 2) when the nitrogen application level was between 100-200 kg.hm-2, it should be applied within 45 days after transplanting; 3) if the nitrogen application amount exceeded 200 kg.hm-2, it should be put into paddy field within 60 days after transplanting; 4) as the nitrogen application amount increased, the nitrogen supply at the later rice growth stage should be increased. As for the second cropping rice, the more times the nitrogen applied in the field, the more closeness the rice yield reached the APCUM curve(optimized nitrogen curve) suggested. But in real rice production, it is impossible for farmers to adopt more times of N applying, since labor and cost will increase. Based on the experimental parameters and real rice production situation, the reasonable nitrogen application under 160 kg.hm-2 levels for high yielding second cropping rice was split into 4 times with fraction 0.2:0.3:0.3:0.2 at 5, 20, 30, 40 days after transplanting. The rice yield could reach 5,916 kg.hm-2, resulted in a 3.12% increase as compared with the yield under actual fertilizer application amount and timing.

  19. Effects of raising frogs and putting pest-killing lamps in paddy fields on the prevention of rice pests and diseases

    NASA Astrophysics Data System (ADS)

    Teng, Qing; Hu, Xue-Feng; Luo, Fan; Cao, Ming-Yang

    2014-05-01

    Frogs in paddy fields become less and less due to applying large amounts of pesticides and human hunting for a long time, which causes the aggravation of rice pests and diseases. A field experiment was carried out in the suburb of Shanghai to study the effects of artificially raising frogs and putting frequency oscillation pest-killing lamps in paddy fields on the prevention of rice pests and diseases. The field experiment includes three treatments. Treatment I: 150 frogs, each 20 g in weight, per 100 m2 were put in the fields; Treatment II: a frequency oscillation pest-killing lamp was put in the fields; Treatment III: no frogs and pest-killing lamps were put in the fields. All the experimental fields were operated based on the organic faming system. The amount of organic manure, 7500 kg/hm2, was applied to the fields as base fertilizer before sowing in early June, 2013. No any chemical fertilizers and pesticides were used during the entire period of rice growth. Each treatment is in triplicate and each plot is 67 m2 in area. The results are as follows: (1) During the entire growth period, the incidences of rice pests and diseases with Treatment I and II are significantly lower than those with CK (Treatment III). The incidence of chilo suppressalis with Treatment I, II and III is 0, 0.46% and 1.69%, respectively; that of cnaphalocrocis medinalis is 7.67%, 6.62% and 10.10%, respectively; that of rice sheath blight is 0, 11.11% and 5.43%, respectively; that of rice planthopper is 4.25 per hill, 5.75 per hill and 11 per hill, respectively. (2) The grain yield of the three treatments is significantly different. That of Treatment I, II and III is 5157.73 kg/hm2, 4761.60 kg/hm2 and 3645.14kg/hm2 on average, respectively. (3) Affected by frog activities, the contents of NH4-N, available P and available K in the soil with Treatment I are significantly raised. All the above suggest that artificially raising frogs in paddy fields could effectively prevent rice pests and

  20. Effect of Different Fertilizer Application on the Soil Fertility of Paddy Soils in Red Soil Region of Southern China

    PubMed Central

    Dong, Wenyi; Zhang, Xinyu; Wang, Huimin; Dai, Xiaoqin; Sun, Xiaomin; Qiu, Weiwen; Yang, Fengting

    2012-01-01

    Appropriate fertilizer application is an important management practice to improve soil fertility and quality in the red soil regions of China. In the present study, we examined the effects of five fertilization treatments [these were: no fertilizer (CK), rice straw return (SR), chemical fertilizer (NPK), organic manure (OM) and green manure (GM)] on soil pH, soil organic carbon (SOC), total nitrogen (TN), C/N ratio and available nutrients (AN, AP and AK) contents in the plowed layer (0–20 cm) of paddy soil from 1998 to 2009 in Jiangxi Province, southern China. Results showed that the soil pH was the lowest with an average of 5.33 units in CK and was significantly higher in NPK (5.89 units) and OM (5.63 units) treatments (P<0.05). The application of fertilizers have remarkably improved SOC and TN values compared with the CK, Specifically, the OM treatment resulted in the highest SOC and TN concentrations (72.5% and 51.2% higher than CK) and NPK treatment increased the SOC and TN contents by 22.0% and 17.8% compared with CK. The average amounts of C/N ratio ranged from 9.66 to 10.98 in different treatments, and reached the highest in OM treatment (P<0.05). During the experimental period, the average AN and AP contents were highest in OM treatment (about 1.6 and 29.6 times of that in the CK, respectively) and second highest in NPK treatment (about 1.2 and 20.3 times of that in the CK). Unlike AN and AP, the highest value of AK content was observed in NPK treatments with 38.10 mg·kg−1. Thus, these indicated that organic manure should be recommended to improve soil fertility in this region and K fertilizer should be simultaneously applied considering the soil K contents. Considering the long-term fertilizer efficiency, our results also suggest that annual straw returning application could improve soil fertility in this trial region. PMID:23028550

  1. Effect of different fertilizer application on the soil fertility of paddy soils in red soil region of southern China.

    PubMed

    Dong, Wenyi; Zhang, Xinyu; Wang, Huimin; Dai, Xiaoqin; Sun, Xiaomin; Qiu, Weiwen; Yang, Fengting

    2012-01-01

    Appropriate fertilizer application is an important management practice to improve soil fertility and quality in the red soil regions of China. In the present study, we examined the effects of five fertilization treatments [these were: no fertilizer (CK), rice straw return (SR), chemical fertilizer (NPK), organic manure (OM) and green manure (GM)] on soil pH, soil organic carbon (SOC), total nitrogen (TN), C/N ratio and available nutrients (AN, AP and AK) contents in the plowed layer (0-20 cm) of paddy soil from 1998 to 2009 in Jiangxi Province, southern China. Results showed that the soil pH was the lowest with an average of 5.33 units in CK and was significantly higher in NPK (5.89 units) and OM (5.63 units) treatments (P<0.05). The application of fertilizers have remarkably improved SOC and TN values compared with the CK, Specifically, the OM treatment resulted in the highest SOC and TN concentrations (72.5% and 51.2% higher than CK) and NPK treatment increased the SOC and TN contents by 22.0% and 17.8% compared with CK. The average amounts of C/N ratio ranged from 9.66 to 10.98 in different treatments, and reached the highest in OM treatment (P<0.05). During the experimental period, the average AN and AP contents were highest in OM treatment (about 1.6 and 29.6 times of that in the CK, respectively) and second highest in NPK treatment (about 1.2 and 20.3 times of that in the CK). Unlike AN and AP, the highest value of AK content was observed in NPK treatments with 38.10 mg·kg(-1). Thus, these indicated that organic manure should be recommended to improve soil fertility in this region and K fertilizer should be simultaneously applied considering the soil K contents. Considering the long-term fertilizer efficiency, our results also suggest that annual straw returning application could improve soil fertility in this trial region.

  2. Cadmium (Cd) distribution and contamination in Chinese paddy soils on national scale.

    PubMed

    Liu, Xiaojuan; Tian, Guangjin; Jiang, Dong; Zhang, Chi; Kong, Lingqiang

    2016-09-01

    Rice is a staple food by an increasing number of people in China. As more issues have arisen in China due to rice contaminated by cadmium (Cd), Cd contamination in arable soils has become a severe problem. In China, many studies have examined Cd contamination in arable soils on a national scale, but little studies have focused on the distribution of Cd in paddy fields. This study explored the spatial pattern of Cd in paddy soils in China, made a preliminary evaluation of the potential risk, and identified the most critically contaminated regions based on the domestic rough rice trade flow. The results showed that Cd concentrations in paddy soils in China ranged from 0.01 to 5.50 mg/kg, with a median value of 0.23 mg/kg. On average, the highest Cd concentrations were in Hunan (0.73 mg/kg), Guangxi (0.70 mg/kg), and Sichuan (0.46 mg/kg) provinces. Cd concentrations in paddy soils in central and western regions were higher than those in eastern regions, especially the southeastern coastal regions. Of the administrative regions, Cd standard exceedance rate was 33.2 %, and the heavy pollution rate was 8.6 %. Regarding to Cd of paddy soil, soil environmental quality was better in Northeast China Plain than in Yangtze River Basin and southeastern coastal region. Mining activities were the main anthropogenic pollution source of Cd in Chinese paddy soil. Based on rice trade, more of the Chinese population would be exposed to Cd through intake of rice produced in Hunan province. Certain regions that output rice, especially Hunan province, should be given priority in the management and control of Cd contamination in paddy soil.

  3. Cadmium (Cd) distribution and contamination in Chinese paddy soils on national scale.

    PubMed

    Liu, Xiaojuan; Tian, Guangjin; Jiang, Dong; Zhang, Chi; Kong, Lingqiang

    2016-09-01

    Rice is a staple food by an increasing number of people in China. As more issues have arisen in China due to rice contaminated by cadmium (Cd), Cd contamination in arable soils has become a severe problem. In China, many studies have examined Cd contamination in arable soils on a national scale, but little studies have focused on the distribution of Cd in paddy fields. This study explored the spatial pattern of Cd in paddy soils in China, made a preliminary evaluation of the potential risk, and identified the most critically contaminated regions based on the domestic rough rice trade flow. The results showed that Cd concentrations in paddy soils in China ranged from 0.01 to 5.50 mg/kg, with a median value of 0.23 mg/kg. On average, the highest Cd concentrations were in Hunan (0.73 mg/kg), Guangxi (0.70 mg/kg), and Sichuan (0.46 mg/kg) provinces. Cd concentrations in paddy soils in central and western regions were higher than those in eastern regions, especially the southeastern coastal regions. Of the administrative regions, Cd standard exceedance rate was 33.2 %, and the heavy pollution rate was 8.6 %. Regarding to Cd of paddy soil, soil environmental quality was better in Northeast China Plain than in Yangtze River Basin and southeastern coastal region. Mining activities were the main anthropogenic pollution source of Cd in Chinese paddy soil. Based on rice trade, more of the Chinese population would be exposed to Cd through intake of rice produced in Hunan province. Certain regions that output rice, especially Hunan province, should be given priority in the management and control of Cd contamination in paddy soil. PMID:27255314

  4. [Effects of controlled release nitrogen fertilizer on surface water N dynamics and its runoff loss in double cropping paddy fields in Dongtinghu Lake area].

    PubMed

    Ji, Xiong-Hui; Zheng, Sheng-Xian; Lu, Yan-Hong; Liao, Yu-Lin

    2007-07-01

    By using leakage pond to simulate the double cropping paddy fields in Dongtinghu Lake area, this paper studied the effects of urea (CF) and controlled release nitrogen fertilizer (CRNF) on the dynamics of surface water pH, electrical conductivity (EC), total nitrogen (TN), ammonia nitrogen (NH4(+)-N) and nitrate nitrogen (NO3(-)-N) and the runoff loss of TN in alluvial sandy loamy paddy soil and purple calcareous clayed paddy soil, the two main paddy soils in this area. The results showed that after applying urea, the surface water TN and NH4(+)-N concentrations reached the peak at the 1st and 3rd day, respectively, and decreased rapidly then. Surface water NO3(-)-N concentration was very low, though it showed a little raise at the 3rd to 7th day after applying urea in purple calcareous clayed paddy soil. In early rice field, surface water pH rose gradually within 15 days after applying urea, while in late rice field, it did within 3 days. EC kept consistent with the dynamics of NH4(+)-N. CRNF, especially 70% N CRNF, gave rise to distinctly lower surface water pH, EC, and TN and NH4(+)-N concentrations within 15 days after application, but NO3- concentration rose slightly at late growth stages, compared with urea application. The monitoring of TN runoff loss indicated that during double cropping rice growth season, the loss amount of TN under urea application was 7.70 kg x hm(-2), accounting for 2.57% of applied urea-N. The two runoff events occurred within 20 days after urea application contributed significantly to the TN runoff loss. CRNF application resulted in a significantly lower TN concentration in runoff water from the 1st runoff event occurred within 10 days of its application, and thereafter, the total TN runoff loss for CRNF and 70% N CRNF application was decreased by 24.5% and 27.2%, respectively, compared with urea application. PMID:17886631

  5. [Effects of controlled release nitrogen fertilizer on surface water N dynamics and its runoff loss in double cropping paddy fields in Dongtinghu Lake area].

    PubMed

    Ji, Xiong-Hui; Zheng, Sheng-Xian; Lu, Yan-Hong; Liao, Yu-Lin

    2007-07-01

    By using leakage pond to simulate the double cropping paddy fields in Dongtinghu Lake area, this paper studied the effects of urea (CF) and controlled release nitrogen fertilizer (CRNF) on the dynamics of surface water pH, electrical conductivity (EC), total nitrogen (TN), ammonia nitrogen (NH4(+)-N) and nitrate nitrogen (NO3(-)-N) and the runoff loss of TN in alluvial sandy loamy paddy soil and purple calcareous clayed paddy soil, the two main paddy soils in this area. The results showed that after applying urea, the surface water TN and NH4(+)-N concentrations reached the peak at the 1st and 3rd day, respectively, and decreased rapidly then. Surface water NO3(-)-N concentration was very low, though it showed a little raise at the 3rd to 7th day after applying urea in purple calcareous clayed paddy soil. In early rice field, surface water pH rose gradually within 15 days after applying urea, while in late rice field, it did within 3 days. EC kept consistent with the dynamics of NH4(+)-N. CRNF, especially 70% N CRNF, gave rise to distinctly lower surface water pH, EC, and TN and NH4(+)-N concentrations within 15 days after application, but NO3- concentration rose slightly at late growth stages, compared with urea application. The monitoring of TN runoff loss indicated that during double cropping rice growth season, the loss amount of TN under urea application was 7.70 kg x hm(-2), accounting for 2.57% of applied urea-N. The two runoff events occurred within 20 days after urea application contributed significantly to the TN runoff loss. CRNF application resulted in a significantly lower TN concentration in runoff water from the 1st runoff event occurred within 10 days of its application, and thereafter, the total TN runoff loss for CRNF and 70% N CRNF application was decreased by 24.5% and 27.2%, respectively, compared with urea application.

  6. [Influences of water-saved and nitrogen-reduced practice on soil microbial and microfauna assemblage in paddy field].

    PubMed

    Gui, Juan; Chen, Xiao-yun; Liu, Man-qiang; Zhuang, Xi-ping; Sun, Zhen; Hu, Feng

    2016-01-01

    The resource and environmental problems caused by excessive consumption of water and fertilizer in rice production have recently aroused widespread concern. This study investigated the effects of irrigation modes (conventional irrigation and 25% water-saved irrigation) and different N application rates (conventional high-nitrogen fertilization and 40% nitrogen-reduced fertilization) on microbial and microfauna assemblages at tillering and ripening stages in paddy field. The results showed that compared with conventional irrigation (CF), water-saved irrigation (WS) decreased the soil pH at tillering stage. Soil dissolved organic matter (dissolved organic C and N) and microbial biomass C and N were significantly affected by irrigation, nitrogen fertilizer and their interactions. WS or N-reduced fertilization (LN) decreased the contents of dissolved organic matter; WS increased microbial biomass C but decreased microbial biomass N. Nitrate was significantly higher in WS than CF, while ammonium showed reverse pattern. At tillering stage, the soil microbial biomass from bacteria, fungi, actinomy and protozoa was higher in WS than in CF, but the trend was opposite at ripening stage. There was a significant interation between irrigation and fertilization on soil rotifer numbers and microbial-feeding nematodes. At tillering stage, WS increased the numbers of rotifer and nematode, and also the proportion of bacterial-feeding nematode; LN increased the abundance of rotifer but decreased the abundance of nematode. In summary, soil microbial and microfauna assemblages showed different response to water-saved and nitrogen-reduced agricultural managements, which depended on different crop growth stages, but also the complex interactions of water and nitrogen and between biological groups in food webs. PMID:27228599

  7. [Influences of water-saved and nitrogen-reduced practice on soil microbial and microfauna assemblage in paddy field].

    PubMed

    Gui, Juan; Chen, Xiao-yun; Liu, Man-qiang; Zhuang, Xi-ping; Sun, Zhen; Hu, Feng

    2016-01-01

    The resource and environmental problems caused by excessive consumption of water and fertilizer in rice production have recently aroused widespread concern. This study investigated the effects of irrigation modes (conventional irrigation and 25% water-saved irrigation) and different N application rates (conventional high-nitrogen fertilization and 40% nitrogen-reduced fertilization) on microbial and microfauna assemblages at tillering and ripening stages in paddy field. The results showed that compared with conventional irrigation (CF), water-saved irrigation (WS) decreased the soil pH at tillering stage. Soil dissolved organic matter (dissolved organic C and N) and microbial biomass C and N were significantly affected by irrigation, nitrogen fertilizer and their interactions. WS or N-reduced fertilization (LN) decreased the contents of dissolved organic matter; WS increased microbial biomass C but decreased microbial biomass N. Nitrate was significantly higher in WS than CF, while ammonium showed reverse pattern. At tillering stage, the soil microbial biomass from bacteria, fungi, actinomy and protozoa was higher in WS than in CF, but the trend was opposite at ripening stage. There was a significant interation between irrigation and fertilization on soil rotifer numbers and microbial-feeding nematodes. At tillering stage, WS increased the numbers of rotifer and nematode, and also the proportion of bacterial-feeding nematode; LN increased the abundance of rotifer but decreased the abundance of nematode. In summary, soil microbial and microfauna assemblages showed different response to water-saved and nitrogen-reduced agricultural managements, which depended on different crop growth stages, but also the complex interactions of water and nitrogen and between biological groups in food webs.

  8. Evidence for the cooccurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field.

    PubMed

    Shen, Li-Dong; Liu, Shuai; Huang, Qian; Lian, Xu; He, Zhan-Fei; Geng, Sha; Jin, Ren-Cun; He, Yun-Feng; Lou, Li-Ping; Xu, Xiang-Yang; Zheng, Ping; Hu, Bao-Lan

    2014-12-01

    Anaerobic ammonium oxidation (anammox) and nitrite-dependent anaerobic methane oxidation (n-damo) are two of the most recent discoveries in the microbial nitrogen cycle. In the present study, we provide direct evidence for the cooccurrence of the anammox and n-damo processes in a flooded paddy field in southeastern China. Stable isotope experiments showed that the potential anammox rates ranged from 5.6 to 22.7 nmol N2 g(-1) (dry weight) day(-1) and the potential n-damo rates varied from 0.2 to 2.1 nmol CO2 g(-1) (dry weight) day(-1) in different layers of soil cores. Quantitative PCR showed that the abundance of anammox bacteria ranged from 1.0 × 10(5) to 2.0 × 10(6) copies g(-1) (dry weight) in different layers of soil cores and the abundance of n-damo bacteria varied from 3.8 × 10(5) to 6.1 × 10(6) copies g(-1) (dry weight). Phylogenetic analyses of the recovered 16S rRNA gene sequences showed that anammox bacteria affiliated with "Candidatus Brocadia" and "Candidatus Kuenenia" and n-damo bacteria related to "Candidatus Methylomirabilis oxyfera" were present in the soil cores. It is estimated that a total loss of 50.7 g N m(-2) per year could be linked to the anammox process, which is at intermediate levels for the nitrogen flux ranges of aerobic ammonium oxidation and denitrification reported in wetland soils. In addition, it is estimated that a total of 0.14 g CH4 m(-2) per year could be oxidized via the n-damo process, while this rate is at the lower end of the aerobic methane oxidation rates reported in wetland soils.

  9. From tidal wetland to paddy rice fields - Changes in soil microbial communities during 2000 years of rice cultivation

    NASA Astrophysics Data System (ADS)

    Bannert, Andrea; Kleineidam, Kristina; Frenzel, Peter; Ho, Adrian; Schloter, Michael

    2010-05-01

    In many areas of China tidal wetlands have been converted into agricultural land for lowland rice cultivation. However, the consequences and effects on soil microbial communities are poorly understood. Therefore, we investigated bacterial and archaeal communities involved in nitrification and denitrification based on diversity and abundance pattern of the corresponding functional genes in a tidal wetland and two paddy soils cultivated for 50 years respectively 2000 years with rice. The abundances of all measured genes increased from the tidal wetland to the 2000 years paddy soil in reference to one gram of soil due to a significant increase of the microbial biomass. When relating the functional gene copies to the extracted microbial biomass highest copy numbers were observed in the paddy soil with 50 years of rice cultivation history with exception of the archaeal nitrification gene amoA. T-RFLP data of the archaeal amoA gene and the bacterial denitrification gene nosZ revealed significant differences in community composition in the three investigated soils. Overall, our results indicate clear changes in abundance and diversity pattern of microbial communities participating in nitrogen cycling during rice paddy evolution.

  10. Contrasting effects of elevated CO2 and warming on temperature sensitivity of soil organic matter decomposition in a Chinese paddy field.

    PubMed

    Chen, Zhaozhi; Wang, Bingyu; Wang, Jinyang; Pan, Genxing; Xiong, Zhengqin

    2015-10-01

    Climate changes including elevated CO2 and temperature have been known to affect soil carbon (C) storage, while the effects of climate changes on the temperature sensitivity of soil organic matter (SOM) are unclear. A 365-day laboratory incubation was used to investigate the temperature sensitivity for decomposition of labile (Q 10-L) and recalcitrant (Q 10-R) SOMs by comparing the time required to decompose a given amount of C at 25 and 35 °C. Soils were collected from a paddy field that was subjected to four treatments: ambient CO2 and temperature, elevated CO2 (500 μmol/mol), enhanced temperature (+2 °C), and their combination. The results showed that the temperature sensitivity of SOM decomposition increased with increasing SOM recalcitrance in this paddy soil (Q 10-L = 2.21 ± 0.16 vs. Q 10-R = 2.78 ± 0.42; mean ± SD). Elevated CO2 and enhanced temperature showed contrasting effects on the temperature sensitivity of SOM decomposition. Elevated CO2 stimulated Q 10-R but had no effect on Q 10-L; in contrast, enhanced temperature increased Q 10-L but had no effect on Q 10-R. Furthermore, the elevated CO2 combined with enhanced temperature treatment significantly increased Q 10-L and Q 10-R by 18.9 and 10.2 %, respectively, compared to the ambient conditions. Results suggested that the responses of SOM to temperature, especially for the recalcitrant SOM pool, were altered by climate changes. The greatly enhanced temperature sensitivity of SOM decomposition by elevated CO2 and temperature indicates that more CO2 will be released to the atmosphere and losses of soil C may be even greater than that previously expected in paddy field. PMID:27590882

  11. Speciation and degradation of triphenyltin in typical paddy fields and its uptake into rice plants.

    PubMed

    Antes, Fabiane G; Krupp, Eva; Flores, Erico M M; Dressler, Valderi L; Feldmann, Joerg

    2011-12-15

    Triphenyltin (TPhT) is a biocide used worldwide in agriculture, especially in rice crop farming. The distribution and dissipation of TPhT in rice fields, as well as uptake of TPhT and other phenyltin compounds (monophenyltin, MPhT, and diphenyltin, DPhT) is still unknown at present. In this study, speciation analysis of phenyltin compounds was carried out in soil and water from a rice field where TPhT was applied during rice seeding according to legal application rates in Brazil. The results indicate the degradation of biocide and distribution of tin species into soil and water. To evaluate whether TPhT is taken up by plants, rice plants were exposed to three different TPhT application rates in a controlled mesocosm during 7 weeks. After this period, tin speciation was determined in soil, roots, leaves, and grains of rice. Degradation of TPhT was observed in soil, where DPhT and MPhT were detected. MPhT, DPhT, and TPhT were also detected in the roots of plants exposed to all TPhT application rates. Only TPhT was detected in leaves and at relatively low concentration, suggesting selective transport of TPhT in the xylem, in contrast to DPhT and MPhT. Concentration of phenyltin species in rice grains was lower than the limit of detection, suggesting that rice plants do not have the capability to take up TPhT from soil and transport it to the grains.

  12. The effects of rape residue mulching on net global warming potential and greenhouse gas intensity from no-tillage paddy fields.

    PubMed

    Zhang, Zhi-Sheng; Cao, Cou-Gui; Guo, Li-Jin; Li, Cheng-Fang

    2014-01-01

    A field experiment was conducted to provide a complete greenhouse gas (GHG) accounting for global warming potential (GWP), net GWP, and greenhouse gas intensity (GHGI) from no-tillage (NT) paddy fields with different amounts of oilseed rape residue mulch (0, 3000, 4000, and 6000 kg dry matter (DM) ha(-1)) during a rice-growing season after 3 years of oilseed rape-rice cultivation. Residue mulching treatments showed significantly more organic carbon (C) density for the 0-20 cm soil layer at harvesting than no residue treatment. During a rice-growing season, residue mulching treatments sequestered significantly more organic C from 687 kg C ha(-1) season(-1) to 1654 kg C ha(-1) season(-1) than no residue treatment. Residue mulching significantly increased emissions of CO2 and N2O but decreased CH4 emissions. Residue mulching treatments significantly increased GWP by 9-30% but significantly decreased net GWP by 33-71% and GHGI by 35-72% relative to no residue treatment. These results suggest that agricultural economic viability and GHG mitigation can be achieved simultaneously by residue mulching on NT paddy fields in central China.

  13. The Effects of Rape Residue Mulching on Net Global Warming Potential and Greenhouse Gas Intensity from No-Tillage Paddy Fields

    PubMed Central

    Zhang, Zhi-Sheng; Cao, Cou-Gui; Guo, Li-Jin; Li, Cheng-Fang

    2014-01-01

    A field experiment was conducted to provide a complete greenhouse gas (GHG) accounting for global warming potential (GWP), net GWP, and greenhouse gas intensity (GHGI) from no-tillage (NT) paddy fields with different amounts of oilseed rape residue mulch (0, 3000, 4000, and 6000 kg dry matter (DM) ha−1) during a rice-growing season after 3 years of oilseed rape-rice cultivation. Residue mulching treatments showed significantly more organic carbon (C) density for the 0–20 cm soil layer at harvesting than no residue treatment. During a rice-growing season, residue mulching treatments sequestered significantly more organic C from 687 kg C ha−1 season−1 to 1654 kg C ha−1 season−1 than no residue treatment. Residue mulching significantly increased emissions of CO2 and N2O but decreased CH4 emissions. Residue mulching treatments significantly increased GWP by 9–30% but significantly decreased net GWP by 33–71% and GHGI by 35–72% relative to no residue treatment. These results suggest that agricultural economic viability and GHG mitigation can be achieved simultaneously by residue mulching on NT paddy fields in central China. PMID:25140329

  14. Novel Approach for Estimating Nitrogen Content in Paddy Fields Using Low Altitude Remote Sensing System

    NASA Astrophysics Data System (ADS)

    Saberioon, M. M.; Gholizadeh, A.

    2016-06-01

    Concerns over the use of nitrogen have been increasing due to the high cost of fertilizers and environmental pollutions caused by excess nitrogen application in agricultural fields. Several methods are available to assess the amount of nitrogen in crops, however, they are expensive, time-consuming, inaccurate, and/or require specialists to operate the tools. Researcher recently suggested remote sensing and specifically Low Altitude Remote Sensing (LARS) system of chlorophyll content in crop canopies as a low-cost alternative to estimate plant nitrogen status. The main objective of this study was to develop and test a new Vegetation Index (VI) to determine the status of nitrogen and chlorophyll content in rice leaf by analysing and considering all Visible (Vis) bands. Besides, capability of introduced VI has compared with all known VIs in both Vis and Near Infrared (NIR) bands in canopy scale. To develop the VI, images from 6-pannel leaf colour chart were acquired using Basler Scout scA640-70fc under light-emitting diode lighting, in which principal component analysis was used to retain the lower order principal component to develop a new index called IPCA. A conventional digital camera mounted to an Unmanned Aerial Vehicle (UAV) was also used to acquire images over the rice canopy in Vis bands. Simultaneously, Tetracam agriculture digital camera was employed to acquire rice canopy image in Vis-NIR bands. The results indicated that the proposed index at canopy (r = 0.78) scale could be used as a sensor to determine the status of chlorophyll content consequently for monitoring nitrogen in rice plant through different growth stages. Moreover, results confirmed that a lowcost LARS system would be suited for high spatial and temporal resolution images and data analysis for proper assessment of key nutrients in crop farming in a fast, inexpensive and non-destructive way.

  15. [Effects of combined applications of pig manure and chemical fertilizers on CH4 and N2O emissions and their global warming potentials in paddy fields with double-rice cropping].

    PubMed

    Wang, Cong; Shen, Jian-Lin; Zheng, Liang; Liu, Jie-Yun; Qin, Hong-Ling; Li, Yong; Wu, Jin-Shui

    2014-08-01

    A field experiment was carried out to study the effects of combined applications of pig manure and chemical fertilizers on CH4 and N2O emissions, which were measured using the static chamber/gas chromatography method, and their global warming potentials in typical paddy fields with double-rice cropping in Hunan province. The results showed that the combined applications of pig manure and chemical fertilizers did not change the seasonal patterns of CH4 and N2O emissions from paddy soils, but significantly changed the magnitudes of CH4 and N2O fluxes in rice growing seasons as compared with sole application of chemical fertilizers. During the two rice growing seasons, the cumulative CH4 emissions for the pig manure and chemical nitrogen (N) fertilizer each contributing to 50% of the total applied N (1/2N + PM) treatment were higher than those for the treatments of no N fertilizer (ON), half amount of chemical N fertilizer (1/2N) and 100% chemical N fertilizer (N) by 54.83%, 33.85% and 43.30%, respectively (P < 0.05), whilst the cumulative N2O emissions for the 1/2N + PM treatment were decreased by 67.50% compared with N treatment, but increased by 129.43% and 119.23% compared with ON and 1/2N treatments, respectively (P < 0.05). CH4 was the dominant contributor to the global warming potential (GWP) in both rice growing seasons, which contributed more than 99% to the integrated GWP of CH4 and N2O emissions for all the four treatments. Both GWP and yield-scaled GWP for the treatment of 1/2N + PM were significantly higher than the other three treatments. The yield-scaled GWP for the treatment of 1/2N + PM was higher than those for the N, 1/2N and ON treatments by 58.21%, 26.82% and 20. 63%, respectively. Therefore, combined applications of pig manure and chemical fertilizers in paddy fields would increase the GWP of CH4 and N2O emissions during rice growing seasons and this effect should be considered in regional greenhouse gases emissions inventory.

  16. Trace analysis of pesticides in paddy field water by direct injection using liquid chromatography-quadrupole-linear ion trap-mass spectrometry.

    PubMed

    Pareja, Lucía; Martínez-Bueno, M J; Cesio, Verónica; Heinzen, Horacio; Fernández-Alba, A R

    2011-07-29

    A multiresidue method was developed for the quantification and confirmation of 70 pesticides in paddy field water. After its filtration, water was injected directly in a liquid chromatograph coupled to a hybrid triple quadrupole-linear ion trap-mass spectrometer (QqLIT). The list of target analytes included organophosphates, phenylureas, sulfonylureas, carbamates, conazoles, imidazolinones and others compounds widely used in different countries where rice is cropped. Detection and quantification limits achieved were in the range from 0.4 to 80 ng L(-1) and from 2 to 150 ng L(-1), respectively. Correlation coefficients for the calibration curves in the range 0.1-50 μg L(-1) were higher than 0.99 except for diazinon (0.1-25 μg L(-1)). Only 9 pesticides presented more than 20% of signal suppression/enhancement, no matrix effect was observed in the studied conditions for the rest of the target pesticides. The method developed was used to investigate the occurrence of pesticides in 59 water samples collected in paddy fields located in Spain and Uruguay. The study shows the presence of bensulfuron methyl, tricyclazole, carbendazim, imidacloprid, tebuconazole and quinclorac in a concentration range from 0.08 to 7.20 μg L(-1).

  17. In situ field application of electrokinetic remediation for an As-, Cu-, and Pb-contaminated rice paddy site using parallel electrode configuration.

    PubMed

    Jeon, Eun-Ki; Jung, Ji-Min; Ryu, So-Ri; Baek, Kitae

    2015-10-01

    The applicability of an in situ electrokinetic process with a parallel electrode configuration was evaluated to treat an As-, Cu-, and Pb-contaminated paddy rice field in full scale (width, 17 m; length, 12.2 m; depth, 1.6 m). A constant voltage of 100 V was supplied and electrodes were spaced 2 m apart. Most As, Cu, and Pb were bound to Fe oxide and the major clay minerals in the test site were kaolinite and muscovite. The electrokinetic system removed 48.7, 48.9, and 54.5 % of As, Cu, and Pb, respectively, from the soil during 24 weeks. The removal of metals in the first layer (0-0.4 m) was higher than that in the other three layers because it was not influenced by groundwater fluctuation. Fractionation analysis showed that As and Pb bound to amorphous Fe and Al oxides decreased mainly, and energy consumption was 1.2 kWh/m(3). The standard deviation of metal concentration in the soil was much higher compared to the hexagonal electrode configuration because of a smaller electrical active area; however, the electrode configuration removed similar amounts of metals compared to the hexagonal system. From these results, it was concluded that the electrokinetic process could be effective at remediating As-, Cu-, and Pb-contaminated paddy rice field in situ. PMID:26032450

  18. In situ field application of electrokinetic remediation for an As-, Cu-, and Pb-contaminated rice paddy site using parallel electrode configuration.

    PubMed

    Jeon, Eun-Ki; Jung, Ji-Min; Ryu, So-Ri; Baek, Kitae

    2015-10-01

    The applicability of an in situ electrokinetic process with a parallel electrode configuration was evaluated to treat an As-, Cu-, and Pb-contaminated paddy rice field in full scale (width, 17 m; length, 12.2 m; depth, 1.6 m). A constant voltage of 100 V was supplied and electrodes were spaced 2 m apart. Most As, Cu, and Pb were bound to Fe oxide and the major clay minerals in the test site were kaolinite and muscovite. The electrokinetic system removed 48.7, 48.9, and 54.5 % of As, Cu, and Pb, respectively, from the soil during 24 weeks. The removal of metals in the first layer (0-0.4 m) was higher than that in the other three layers because it was not influenced by groundwater fluctuation. Fractionation analysis showed that As and Pb bound to amorphous Fe and Al oxides decreased mainly, and energy consumption was 1.2 kWh/m(3). The standard deviation of metal concentration in the soil was much higher compared to the hexagonal electrode configuration because of a smaller electrical active area; however, the electrode configuration removed similar amounts of metals compared to the hexagonal system. From these results, it was concluded that the electrokinetic process could be effective at remediating As-, Cu-, and Pb-contaminated paddy rice field in situ.

  19. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data

    NASA Astrophysics Data System (ADS)

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2015-08-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting.

  20. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data

    PubMed Central

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2016-01-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting. PMID:27667901

  1. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data

    PubMed Central

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2016-01-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting.

  2. Mapping paddy rice planting area in wheat-rice double-cropped areas through integration of Landsat-8 OLI, MODIS, and PALSAR images

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Zhou, Yuting; Zhang, Yao

    2015-05-01

    As farmland systems vary over space and time (season and year), accurate and updated maps of paddy rice are needed for studies of food security and environmental problems. We selected a wheat-rice double-cropped area from fragmented landscapes along the rural-urban complex (Jiangsu Province, China) and explored the potential utility of integrating time series optical images (Landsat-8, MODIS) and radar images (PALSAR) in mapping paddy rice planting areas. We first identified several main types of non-cropland land cover and then identified paddy rice fields by selecting pixels that were inundated only during paddy rice flooding periods. These key temporal windows were determined based on MODIS Land Surface Temperature and vegetation indices. The resultant paddy rice map was evaluated using regions of interest (ROIs) drawn from multiple high-resolution images, Google Earth, and in-situ cropland photos. The estimated overall accuracy and Kappa coefficient were 89.8% and 0.79, respectively. In comparison with the National Land Cover Data (China) from 2010, the resultant map better detected changes in the paddy rice fields and revealed more details about their distribution. These results demonstrate the efficacy of using images from multiple sources to generate paddy rice maps for two-crop rotation systems.

  3. Mapping paddy rice planting area in wheat-rice double-cropped areas through integration of Landsat-8 OLI, MODIS, and PALSAR images.

    PubMed

    Wang, Jie; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Zhou, Yuting; Zhang, Yao

    2015-05-12

    As farmland systems vary over space and time (season and year), accurate and updated maps of paddy rice are needed for studies of food security and environmental problems. We selected a wheat-rice double-cropped area from fragmented landscapes along the rural-urban complex (Jiangsu Province, China) and explored the potential utility of integrating time series optical images (Landsat-8, MODIS) and radar images (PALSAR) in mapping paddy rice planting areas. We first identified several main types of non-cropland land cover and then identified paddy rice fields by selecting pixels that were inundated only during paddy rice flooding periods. These key temporal windows were determined based on MODIS Land Surface Temperature and vegetation indices. The resultant paddy rice map was evaluated using regions of interest (ROIs) drawn from multiple high-resolution images, Google Earth, and in-situ cropland photos. The estimated overall accuracy and Kappa coefficient were 89.8% and 0.79, respectively. In comparison with the National Land Cover Data (China) from 2010, the resultant map better detected changes in the paddy rice fields and revealed more details about their distribution. These results demonstrate the efficacy of using images from multiple sources to generate paddy rice maps for two-crop rotation systems.

  4. Mapping paddy rice planting area in wheat-rice double-cropped areas through integration of Landsat-8 OLI, MODIS, and PALSAR images.

    PubMed

    Wang, Jie; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Zhou, Yuting; Zhang, Yao

    2015-01-01

    As farmland systems vary over space and time (season and year), accurate and updated maps of paddy rice are needed for studies of food security and environmental problems. We selected a wheat-rice double-cropped area from fragmented landscapes along the rural-urban complex (Jiangsu Province, China) and explored the potential utility of integrating time series optical images (Landsat-8, MODIS) and radar images (PALSAR) in mapping paddy rice planting areas. We first identified several main types of non-cropland land cover and then identified paddy rice fields by selecting pixels that were inundated only during paddy rice flooding periods. These key temporal windows were determined based on MODIS Land Surface Temperature and vegetation indices. The resultant paddy rice map was evaluated using regions of interest (ROIs) drawn from multiple high-resolution images, Google Earth, and in-situ cropland photos. The estimated overall accuracy and Kappa coefficient were 89.8% and 0.79, respectively. In comparison with the National Land Cover Data (China) from 2010, the resultant map better detected changes in the paddy rice fields and revealed more details about their distribution. These results demonstrate the efficacy of using images from multiple sources to generate paddy rice maps for two-crop rotation systems. PMID:25965027

  5. Effects of Tillage and Nitrogen Fertilizers on CH4 and CO2 Emissions and Soil Organic Carbon in Paddy Fields of Central China

    PubMed Central

    Zhi-Kui, Kou; Zhi-Sheng, Zhang; Jin-Ping, Wang; Ming-Li, Cai; Cou-Gui, Cao

    2012-01-01

    Quantifying carbon (C) sequestration in paddy soils is necessary to help better understand the effect of agricultural practices on the C cycle. The objective of the present study was to assess the effects of tillage practices [conventional tillage (CT) and no-tillage (NT)] and the application of nitrogen (N) fertilizer (0 and 210 kg N ha−1) on fluxes of CH4 and CO2, and soil organic C (SOC) sequestration during the 2009 and 2010 rice growing seasons in central China. Application of N fertilizer significantly increased CH4 emissions by 13%–66% and SOC by 21%–94% irrespective of soil sampling depths, but had no effect on CO2 emissions in either year. Tillage significantly affected CH4 and CO2 emissions, where NT significantly decreased CH4 emissions by 10%–36% but increased CO2 emissions by 22%–40% in both years. The effects of tillage on the SOC varied with the depth of soil sampling. NT significantly increased the SOC by 7%–48% in the 0–5 cm layer compared with CT. However, there was no significant difference in the SOC between NT and CT across the entire 0–20 cm layer. Hence, our results suggest that the potential of SOC sequestration in NT paddy fields may be overestimated in central China if only surface soil samples are considered. PMID:22574109

  6. Changes of paddy rice planting areas in Northeastern Asia from 1986 to 2014 based on Landsat data

    NASA Astrophysics Data System (ADS)

    Dong, J.; Xiao, X.; Kou, W.; Qin, Y.; Wang, J.; Zhang, G.; Jin, C.; Zhou, Y.; Menarguez, M. A.; Moore, B., III

    2014-12-01

    Paddy rice is an important cereal crop and main grain source for more than half of the global human population. However, knowledge about its area and spatial pattern is still limited due to large changes in agriculture in different regions; for example, higher latitude areas underwent increase (e.g., northeastern China) and decrease (e.g., South Korea) of paddy rice planting areas due to climatic warming, urbanization and other drivers. It is necessary to track paddy rice planting area changes in these regions in the past decades. We developed a pixel- and phenology-based image analysis system, Landsat-RICE, to map the paddy rice by using Landsat imagery. The algorithm was based on the unique physical and spectral characteristics of paddy rice fields during the flooding and transplanting phases. First, Landsat images are preprocessed and time series vegetation indices (NDVI, EVI, and LSWI) are generated. Second, MODIS Land Surface Temperature (LST) data were used to define thermal plant growing season (0 oC, 5 oC and 10 oC), which provides a guide for selection of Landsat images within the period of flooding and transplanting. Third, several non-cropland land cover maps (e.g., permanent water bodies, built-up and barren lands, sparsely vegetated lands, and evergreen vegetation) are produced through analysis of Landsat-based vegetation indices within the plant growing season and combined as a mask. Fourthly, vegetation index data within the time window of flooded and rice transplanting were analyzed to identify flood/transplanting signals. Finally, the maps of paddy rice planting areas were generated through overlying the results from Step 3 and 4. Paddy rice planting area changes were investigated in some hotspots of Northeastern Asia from 1986 to 2014 at 30-m spatial resolution and 5-year interval. This study has demonstrated that our newly developed Landsat-Rice system is robust and effective for tracking paddy rice changes in cold temperate and temperate zones.

  7. Effects of winter cover crops straws incorporation on CH4 and N2O emission from double-cropping paddy fields in southern China.

    PubMed

    Tang, Hai-Ming; Xiao, Xiao-Ping; Tang, Wen-Guang; Wang, Ke; Sun, Ji-Min; Li, Wei-Yan; Yang, Guang-Li

    2014-01-01

    Residue management in cropping systems is believed to improve soil quality. However, the effects of residue management on methane (CH4) and nitrous oxide (N2O) emissions from paddy field in Southern China have not been well researched. The emissions of CH4 and N2O were investigated in double cropping rice (Oryza sativa L.) systems with straw returning of different winter cover crops by using the static chamber-gas chromatography technique. A randomized block experiment with three replications was established in 2004 in Hunan Province, China, including rice-rice-ryegrass (Lolium multiflorum L.) (Ry-R-R), rice-rice-Chinese milk vetch (Astragalus sinicus L.) (Mv-R-R) and rice-rice with winter fallow (Fa-R-R). The results showed that straw returning of winter crops significantly increased the CH4 emission during both rice growing seasons when compared with Fa-R-R. Ry-R-R plots had the largest CH4 emissions during the early rice growing season with 14.235 and 15.906 g m(-2) in 2012 and 2013, respectively, when Ry-R-R plots had the largest CH4 emission during the later rice growing season with 35.673 and 38.606 g m(-2) in 2012 and 2013, respectively. The Ry-R-R and Mv-R-R also had larger N2O emissions than Fa-R-R in both rice seasons. When compared to Fa-R-R, total N2O emissions in the early rice growing season were increased by 0.05 g m(-2) in Ry-R-R and 0.063 g m(-2) in Mv-R-R in 2012, and by 0.058 g m(-2) in Ry-R-R and 0.068 g m(-2) in Mv-R-R in 2013, respectively. Similar result were obtained in the late rice growing season, and the total N2O emissions were increased by 0.104 g m(-2) in Ry-R-R and 0.073 g m(-2) in Mv-R-R in 2012, and by 0.108 g m(-2) in Ry-R-R and 0.076 g m(-2) in Mv-R-R in 2013, respectively. The global warming potentials (GWPs) from paddy fields were ranked as Ry-R-R>Mv-R-R>Fa-R-R. As a result, straw returning of winter cover crops has significant effects on increase of CH4 and N2O emission from paddy field in double cropping rice system.

  8. Effects of Winter Cover Crops Straws Incorporation on CH4 and N2O Emission from Double-Cropping Paddy Fields in Southern China

    PubMed Central

    Tang, Hai-Ming; Xiao, Xiao-Ping; Tang, Wen-Guang; Wang, Ke; Sun, Ji-Min; Li, Wei-Yan; Yang, Guang-Li

    2014-01-01

    Residue management in cropping systems is believed to improve soil quality. However, the effects of residue management on methane (CH4) and nitrous oxide (N2O) emissions from paddy field in Southern China have not been well researched. The emissions of CH4 and N2O were investigated in double cropping rice (Oryza sativa L.) systems with straw returning of different winter cover crops by using the static chamber-gas chromatography technique. A randomized block experiment with three replications was established in 2004 in Hunan Province, China, including rice–rice–ryegrass (Lolium multiflorum L.) (Ry-R-R), rice–rice–Chinese milk vetch (Astragalus sinicus L.) (Mv-R-R) and rice–rice with winter fallow (Fa-R-R). The results showed that straw returning of winter crops significantly increased the CH4 emission during both rice growing seasons when compared with Fa-R-R. Ry-R-R plots had the largest CH4 emissions during the early rice growing season with 14.235 and 15.906 g m−2 in 2012 and 2013, respectively, when Ry-R-R plots had the largest CH4 emission during the later rice growing season with 35.673 and 38.606 g m−2 in 2012 and 2013, respectively. The Ry-R-R and Mv-R-R also had larger N2O emissions than Fa-R-R in both rice seasons. When compared to Fa-R-R, total N2O emissions in the early rice growing season were increased by 0.05 g m−2 in Ry-R-R and 0.063 g m−2 in Mv-R-R in 2012, and by 0.058 g m−2 in Ry-R-R and 0.068 g m−2 in Mv-R-R in 2013, respectively. Similar result were obtained in the late rice growing season, and the total N2O emissions were increased by 0.104 g m−2 in Ry-R-R and 0.073 g m−2 in Mv-R-R in 2012, and by 0.108 g m−2 in Ry-R-R and 0.076 g m−2 in Mv-R-R in 2013, respectively. The global warming potentials (GWPs) from paddy fields were ranked as Ry-R-R>Mv-R-R>Fa-R-R. As a result, straw returning of winter cover crops has significant effects on increase of CH4 and N2O emission from paddy field in double cropping rice system

  9. Effects of winter covering crop residue incorporation on CH₄ and N₂O emission from double-cropped paddy fields in southern China.

    PubMed

    Tang, Haiming; Xiao, Xiaoping; Tang, Wenguang; Wang, Ke; Sun, Jimin; Li, Weiyan; Yang, Guangli

    2015-08-01

    Residue management in cropping systems is useful to improve soil quality. However, the studies on the effects of residue management on methane (CH4) and nitrous oxide (N2O) emission from paddy field in southern China are few. Therefore, the emissions of CH4 and N2O were investigated in double cropping rice (Oryza sativa L.) systems with different winter covering crops using the static chamber-gas chromatography technique to assess the effects of different covering crops on the emissions of greenhouse gases. The experiment was established in 2004 in Hunan Province, China. Three winter cropping systems were used: rice-rice-rape (Brassica napus L.) (T1), rice-rice-potato with straw mulching (Solanum tuberosum L.) (T2), and rice-rice with winter fallow (CK). A randomized block design was adopted in plots, with three replications. The results showed that T2 plots had the largest CH4 emissions during the early and late rice growing season with 12.506 and 32.991 g m(-2), respectively. When compared to CK, total N2O emissions in the early rice growth period and the emissions of the gas increased by 0.013 g m(-2) in T1 and 0.045 g m(-2) in T2, respectively. Similar results were obtained in the late rice growth period; the total N2O emissions increased by 0.027 g m(-2) in T1 and 0.084 g m(-2) in T2, respectively. The mean value of global warming potentials (GWPs) of CH4 and N2O emissions over 100 years was in the order of T2 > T1 > CK, which indicated CK and T1 was significantly lower than T2 (P < 0.05). This suggests that adoption of T1 would be beneficial for greenhouse gas emission mitigation and could be a good option cropping pattern in double rice cropped regions. PMID:25913315

  10. [Effects of different organic manure sources and their combinations with chemical fertilization on soil nematode community structure in a paddy field of East China].

    PubMed

    Liu, Ting; Ye, Cheng-Long; Chen, Xiao-Yun; Ran, Wei; Shen, Qi-Rong; Hu, Feng; Li, Hui-Xin

    2013-12-01

    A comparative study was conducted to investigate the effects of different fertilization modes on the soil nematode community structure in a paddy field with paddy rice and wheat rotation in Jintan County (31 degrees 39'41.8" N, 119 degrees 28'23.5" E) of Jiangsu Province, East China. Six treatments were installed, i. e., no fertilization (CK), 100% chemical NPK fertilization (F), pig manure compost plus 50% chemical fertilization (PF), straw returning plus 100% chemical fertilization (SF), pig manure compost and straw returning plus 50% chemical fertilization (PSF), and application of commercial pig manure-inorganic complex fertilizer (PMF). The soil samples were collected from the field after the paddy rice harvested in autumn. The two continuous years study showed that the soil nematode community structure varied with fertilization treatments and years. The combined application of chemical fertilizers and organic manures increased the total number of soil nematodes, decreased the abundance of soil bacterivorous nematodes, and made the abundance of predator- and omnivore nematodes increased significantly. No significant differences were observed in the abundance of soil fungivorous nematodes among all the treatments. Chemical fertilization alone and the application of commercial pig manure-inorganic complex fertilizer had no obvious suppression effect on the soil phytophagous nematodes. The abundance of soil bacteriavorous nematodes under the combined application of chemical fertilizers and organic manures was relatively increased in the second year, as compared with that in the first year, while the abundance of soil phytophagous nematodes (Hirschmanniella) was relatively decreased in the second year. From the aspect of nematode ecological indices, the Margalef diversity index (H) under the combined application of chemical fertilizers and organic manures in the second year had an increasing trend, while the NCR index had less change. The Wasilewka index had a

  11. [Effects of different organic manure sources and their combinations with chemical fertilization on soil nematode community structure in a paddy field of East China].

    PubMed

    Liu, Ting; Ye, Cheng-Long; Chen, Xiao-Yun; Ran, Wei; Shen, Qi-Rong; Hu, Feng; Li, Hui-Xin

    2013-12-01

    A comparative study was conducted to investigate the effects of different fertilization modes on the soil nematode community structure in a paddy field with paddy rice and wheat rotation in Jintan County (31 degrees 39'41.8" N, 119 degrees 28'23.5" E) of Jiangsu Province, East China. Six treatments were installed, i. e., no fertilization (CK), 100% chemical NPK fertilization (F), pig manure compost plus 50% chemical fertilization (PF), straw returning plus 100% chemical fertilization (SF), pig manure compost and straw returning plus 50% chemical fertilization (PSF), and application of commercial pig manure-inorganic complex fertilizer (PMF). The soil samples were collected from the field after the paddy rice harvested in autumn. The two continuous years study showed that the soil nematode community structure varied with fertilization treatments and years. The combined application of chemical fertilizers and organic manures increased the total number of soil nematodes, decreased the abundance of soil bacterivorous nematodes, and made the abundance of predator- and omnivore nematodes increased significantly. No significant differences were observed in the abundance of soil fungivorous nematodes among all the treatments. Chemical fertilization alone and the application of commercial pig manure-inorganic complex fertilizer had no obvious suppression effect on the soil phytophagous nematodes. The abundance of soil bacteriavorous nematodes under the combined application of chemical fertilizers and organic manures was relatively increased in the second year, as compared with that in the first year, while the abundance of soil phytophagous nematodes (Hirschmanniella) was relatively decreased in the second year. From the aspect of nematode ecological indices, the Margalef diversity index (H) under the combined application of chemical fertilizers and organic manures in the second year had an increasing trend, while the NCR index had less change. The Wasilewka index had a

  12. Characterization and risk assessment of polychlorinated biphenyls in soils and rice tissues in a suburban paddy field of the Pearl River Delta, South China.

    PubMed

    Li, Qilu; Wang, Yan; Luo, Chunling; Li, Jun; Zhang, Gan

    2015-08-01

    We investigated the concentration and composition of polychlorinated biphenyls (PCBs) in paddy soils and rice tissues and the associated potential health risks in the urban agricultural areas of the Pearl River Delta (PRD), South China. The results indicated that highly chlorinated PCBs were more prominent in soil when the concentrations of low-molecular-weight PCBs were relatively high in rice plants. There was a trend of decreasing PCB concentrations with soil depth and a significant correlation between PCBs and the total organic carbon or total nitrogen concentration in section soils. The PCB concentrations followed the order of root > leaf > stem > grain. Although the dioxin toxicity equivalency values and estimated daily intake levels (based direct and indirect consumption) were lower than in other seriously contaminated regions, there is still a need to monitor PCB pollution in urban agriculture because of the PCB emissions from capacitor storage following the rapid urbanization experienced in the PRD.

  13. Using DET and DGT probes (ferrihydrite and titanium dioxide) to investigate arsenic concentrations in soil porewater of an arsenic-contaminated paddy field in Bangladesh.

    PubMed

    Garnier, Jean-Marie; Garnier, Jérémie; Jézéquel, Didier; Angeletti, Bernard

    2015-12-01

    Arsenic concentration in the pore water of paddy fields (Csoln) irrigated with arsenic-rich groundwater is a key parameter in arsenic uptake by rice. Pore water extracts from cores and in situ deployment of DET and DGT probes were used to measure the arsenic concentration in the pore water. Ferrihydrite (Fe) and titanium dioxide (Ti) were used as DGT binding agents. Six sampling events during different growing stages of the rice, inducing different biogeochemical conditions, were performed in one rice field. A time series of DGT experiments allow the determination of an in situ arsenic diffusion coefficient in the diffusive gel (3.34×10(-6) cm(2) s(-1)) needed to calculate the so-called CDGT(Fe) and CDGT(Ti) concentrations. Over 3 days of a given sampling event and for cores sampled at intervals smaller than 50 cm, great variability in arsenic Csoln concentrations between vertical profiles was observed, with maxima of concentrations varying from 690 to 2800 μg L(-1). Comparisons between arsenic measured Csol and CDET and calculated CDGT(Fe) and CDGT(Ti) concentrations show either, in a few cases, roughly similar vertical profiles, or in other cases, significantly different profiles. An established iron oxyhydroxide precipitation in the DET gel may explain why measured arsenic CDET concentrations occasionally exceeded Csoln. The large spread in results suggests limitations to the use of DET and type of DGT probes used here for similarly representing the spatio-temporal variations of arsenic content in soil pore water in specific environmental such as paddy soils. PMID:26225738

  14. Using DET and DGT probes (ferrihydrite and titanium dioxide) to investigate arsenic concentrations in soil porewater of an arsenic-contaminated paddy field in Bangladesh.

    PubMed

    Garnier, Jean-Marie; Garnier, Jérémie; Jézéquel, Didier; Angeletti, Bernard

    2015-12-01

    Arsenic concentration in the pore water of paddy fields (Csoln) irrigated with arsenic-rich groundwater is a key parameter in arsenic uptake by rice. Pore water extracts from cores and in situ deployment of DET and DGT probes were used to measure the arsenic concentration in the pore water. Ferrihydrite (Fe) and titanium dioxide (Ti) were used as DGT binding agents. Six sampling events during different growing stages of the rice, inducing different biogeochemical conditions, were performed in one rice field. A time series of DGT experiments allow the determination of an in situ arsenic diffusion coefficient in the diffusive gel (3.34×10(-6) cm(2) s(-1)) needed to calculate the so-called CDGT(Fe) and CDGT(Ti) concentrations. Over 3 days of a given sampling event and for cores sampled at intervals smaller than 50 cm, great variability in arsenic Csoln concentrations between vertical profiles was observed, with maxima of concentrations varying from 690 to 2800 μg L(-1). Comparisons between arsenic measured Csol and CDET and calculated CDGT(Fe) and CDGT(Ti) concentrations show either, in a few cases, roughly similar vertical profiles, or in other cases, significantly different profiles. An established iron oxyhydroxide precipitation in the DET gel may explain why measured arsenic CDET concentrations occasionally exceeded Csoln. The large spread in results suggests limitations to the use of DET and type of DGT probes used here for similarly representing the spatio-temporal variations of arsenic content in soil pore water in specific environmental such as paddy soils.

  15. Iodide sorption and partitioning in solid, liquid and gas phases in soil samples collected from Japanese paddy fields.

    PubMed

    Ishikawa, Nao K; Uchida, Shigeo; Tagami, Keiko

    2011-07-01

    Sorption kinetics of iodide (I(-)), which is one of the major inorganic chemical forms of iodine in soil environments, were studied under four sets of experimental conditions characterised by temperature or biological activity. We compared partitioning ratios in solid, liquid and gas phases in soils as well as soil-soil solution distribution coefficients (K(d)s) at two different temperatures 4 and 23 °C, for 63 paddy soil samples collected throughout Japan. Interestingly, (125)I emission from soil was observed; the partitioning ratios in gas phase ranged from 0 to 27 % at 4 °C and from 0 to 42 % at 23 °C. In addition, the authors found that K(d) values at 23 °C had good correlation with pH though there was no correlation between K(d) values at 4 °C and pH because of the difference in biological activity.

  16. Temporal patterns and source apportionment of nitrate-nitrogen leaching in a paddy field at Kelantan, Malaysia.

    PubMed

    Hussain, Hazilia; Yusoff, Mohd Kamil; Ramli, Mohd Firuz; Abd Latif, Puziah; Juahir, Hafizan; Zawawi, Mohamed Azwan Mohammed

    2013-11-15

    Nitrate-nitrogen leaching from agricultural areas is a major cause for groundwater pollution. Polluted groundwater with high levels of nitrate is hazardous and cause adverse health effects. Human consumption of water with elevated levels of NO3-N has been linked to the infant disorder methemoglobinemia and also to non-Hodgkin's disease lymphoma in adults. This research aims to study the temporal patterns and source apportionment of nitrate-nitrogen leaching in a paddy soil at Ladang Merdeka Ismail Mulong in Kelantan, Malaysia. The complex data matrix (128 x 16) of nitrate-nitrogen parameters was subjected to multivariate analysis mainly Principal Component Analysis (PCA) and Discriminant Analysis (DA). PCA extracted four principal components from this data set which explained 86.4% of the total variance. The most important contributors were soil physical properties confirmed using Alyuda Forecaster software (R2 = 0.98). Discriminant analysis was used to evaluate the temporal variation in soil nitrate-nitrogen on leaching process. Discriminant analysis gave four parameters (hydraulic head, evapotranspiration, rainfall and temperature) contributing more than 98% correct assignments in temporal analysis. DA allowed reduction in dimensionality of the large data set which defines the four operating parameters most efficient and economical to be monitored for temporal variations. This knowledge is important so as to protect the precious groundwater from contamination with nitrate.

  17. Metal distribution in the tissues of two benthic fish from paddy fields in the middle reach of the Yangtze River.

    PubMed

    Xu, Tao; Huang, Yingping; Chen, Jun

    2014-04-01

    Metal content was determined in two fish species (Misgurnus anguillicaudatus and Monopterus albus) inhabiting rice paddies along the Middle Reach of the Yangtze River. Both are species important food fish in East Asia. The levels of eight metals (Fe, Mn, Zn, Cu, Cr, As, Cd, Pb) in skin, muscle and intestinal tissues were measured and correlated with fish size. Metal distribution among the tissues was examined and the potential risk of fish consumption was evaluated. Correlations between metal concentration and fish size were not significant. Concentrations of essential metals varied significantly among tissues, but the differences were not significant for non-essential metals. Correlations among metals in skin tissue were stronger than in intestinal and muscle tissues. Metal concentrations in the edible tissues of both fish met permissible levels for consumption, except Pb in loach skin and Cr loach in muscle. The potential risk caused by Pb from skin and Cr from muscle of loach consumption should be considered in future risk assessmeents.

  18. [Study on canopy spectral characteristics of paddy polluted by heavy metals].

    PubMed

    Ren, Hong-Yan; Zhuang, Da-Fang; Pan, Jian-Jun; Shi, Xue-Zheng; Shi, Run-He; Wang, Hong-Jie

    2010-02-01

    Because of frequent mining, heavy metals are brought into environment like soils, water and atmosphere, resulting heavy metal contamination in the agricultural region beside mines. Heavy metals contamination causes vegetation stress like destruction of chloroplast structure, chlorophyll content decrease, blunt photosynthesis, etc. Spectral responses to changes in chlorophyll content and photosynthesis make it possible that remote sensing is applied in monitoring heavy metals stress on paddy plants. Field spectroradiometer was used to acquire canopy reflectance spectra of paddy plants contaminated by heavy metals released from local mining. The present study was conducted to (1) investigate discrimination of canopy reflectance spectra of heavy metal polluted and normal paddy plants; (2) extract spectral characteristics of contaminated paddy plants and compare them. By means of correlation analysis, sensitive bands (SB) were firstly picked out from canopy spectra. Secondly, on the basis of these sensitive bands, normalized difference vegetation indices (NDVI) were established, and then red edge position (REP) was extracted from canopy spectra via curve fitting of inverted Gaussian model. As a result of correlation analysis, 460, 560, 660 and 1 100 nm were considered respectively as sensitive band for Pb, Zn, Cu and As concentration in paddy leaves. Furthermore, heavy metal concentrations (Pb, Zn, Cu and As) were significantly correlated with NDVIs (Pb, NDV(510, 810); Zn, NDVI(510, 870; Cu, NDVI(660, 870); As, NDVI(510, 810)). Heavy metals were also significantly correlated with REP, however, the inflexion termed as spectral critical value (SCV) between low and high heavy metals concentrations should be considered during applying REP in remote sensing monitoring. Moreover, NDVI and REP are much better than SB in terms of capability of expressing spectral information. Therefore, heavy metals contamination in paddy plants can be remotely monitored via ground

  19. Dissolved carbon and nitrogen dynamics in paddy fields under different water management practices and implications on green-house gas emissions

    NASA Astrophysics Data System (ADS)

    Miniotti, Eleonora; Said-Pullicino, Daniel; Bertora, Chiara; Pelissetti, Simone; Sacco, Dario; Grignani, Carlo; Lerda, Cristina; Romani, Marco; Celi, Luisella

    2013-04-01

    The alternation of oxidizing and reducing conditions in paddy soils results in considerable complexity in the biogeochemical cycling of elements and their interactions, influencing important soil processes. Water management practices may play an important role in controlling the loss of nutrients from rice paddies to surface and subsurface waters, as well as soil organic matter (SOM) stabilization and the emission of green-house gases (GHG) such as methane and nitrous oxide. The aim of this study was therefore to evaluate the interaction between changes in soil redox conditions and element cycling in temperate paddy soils as a function of different water management practices. The research was carried out within an experimental platform (1.2 ha) located at the Rice Research Center of Ente Nazionale Risi (Castello d'Agogna, PV, NW Italy) where three water management practices are being compared with two plots for each treatment. These included (i) rice cultivation under traditional submerged conditions (FLD); (ii) seeding under dry soil conditions and flooding delayed by about 40 days (DRY); (iii) seeding under dry soil conditions and rotational irrigation (IRR). Surface and subsurface (25, 50 and 75 cm) water samples were collected at regular intervals over the cropping season from V-notch weirs and porous ceramic suction cups installed in each plot, and subsequently analyzed for DOC, SUVA, Fe(II), ammonium and nitrate-N. Moreover, methane and nitrous oxide fluxes were measured in situ by the closed-chamber technique. DOC concentrations in soil solutions were generally higher in FLD and DRY treatments with respect to IRR throughout the cropping season. Higher DOC contents after field flooding in FLD and DRY treatments also corresponded with greater concentrations of reduced Fe, higher SUVA values, lower Eh values and higher pH values, suggesting that desorption of more aromatic, mineral-associated SOM could be responsible for the observed increase in DOC. These

  20. Continuous in-situ methane measurements at paddy fields in a rural area of India with poor electric infrastructure, using a low-cost instrument based on open-path near-IR laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hidemori, T.; Matsumi, Y.; Nakayama, T.; Kawasaki, M.; Sasago, H.; Takahashi, K.; Imasu, R.; Takeuchi, W.; Adachi, M.; Machida, T.; Terao, Y.; Nomura, S.; Dhaka, S. K.; Singh, J.

    2015-12-01

    In southeast and south Asia, the previous satellite observations suggest that the methane emission from rice paddies is significant and important source of methane during rainy season. Since it is difficult to measure methane stably and continuously at rural areas such as the paddy fields in terms of infrastructures and maintenances, there are large uncertainties in quantitative estimation of methane emission in these areas and there are needs for more certification between satellite and ground based measurements. To measure methane concentrations continuously at difficult situations such as the center of paddy fields and wetlands, we developed the continuous in-situ measurement system, not to look for your lost keys under the streetlight. The methane gas sensor is used an open-path laser based measurement instrument (LaserMethane, ANRITSU CORPORATION), which can quickly and selectively detect average methane concentrations on the optical path of the laser beam. The developed system has the power supply and telecommunication system to run the laser gas sensor in rural areas with poor electricity infrastructure.The methane measurement system was installed at paddy fields of Sonepat, Haryana on the north of Delhi in India and has been operated from the end of 2014. The air sampling along with our measurement has been carried out once a week during daytime to calibrate the laser instrument. We found that the seasonal variation of methane concentrations was different from the satellite observations and there were significant diurnal variations, which it was difficult to detect from occasional air samplings. We will present details of the measurement system and recent results of continuous methane measurements in India.

  1. Quantification and modelling of water flow in rain-fed paddy fields in NE Thailand: Evidence of soil salinization under submerged conditions by artesian groundwater

    NASA Astrophysics Data System (ADS)

    Hammecker, Claude; Maeght, Jean-Luc; Grünberger, Olivier; Siltacho, Siwaporn; Srisruk, Kriengsak; Noble, Andrew

    2012-08-01

    SummaryWater flow and solute transport in soils forms an essential part in many groundwater hydrology studies. This is especially true for Northeast Thailand, where the agricultural land is affected by the soil salinity, which is a widespread and an increasing phenomenon affecting 25% of the agricultural land. Salinization appears as scattered discrete patches of 10-100 m2 in the lowlands, illustrated by white efflorescences during the dry season and bare soil during the cropping season. A field study was undertaken in farm plots to measure the water flow and solute transport within the soil surface and the vadose zone, both inside and outside a saline patch. The water flow was measured on the soil surface with lysimeters and infiltration rings, and was derived in the soil from the hydraulic gradients measured with tensiometers placed at different depths. The salt transport was evaluated with water traps also placed at different depths, where the soil water's electrical conductivity was measured throughout the rainy season. Field study results demonstrated that the accumulation of saline solutions in rain fed paddy fields, occurred mainly during the rainy season while the soil surface remained flooded. During this period the saline water table rose towards the soil surface independently of infiltration into the soil. It happened in specific places where the compacted soil layer, generally ubiquitous in the area at a depth of 40-50 cm, is interrupted. Therefore salinity appeareds in discret points as patches. Artesian upward flow already described in this area (Haworth et al., 1966; Williamson et al., 1989; Imaizumi et al., 2002) is most probably responsible for this water table rise, thereby affecting crop productivity. Numerical modelling of water flow using HYDRUS-3D further supported these results and showed that managing the depth of flooding within the plot can significantly reduce the outbreak of these saline plumes.

  2. Influence of nitrogen loading and plant nitrogen assimilation on nitrogen leaching and N₂O emission in forage rice paddy fields fertilized with liquid cattle waste.

    PubMed

    Riya, Shohei; Zhou, Sheng; Kobara, Yuso; Sagehashi, Masaki; Terada, Akihiko; Hosomi, Masaaki

    2015-04-01

    Livestock wastewater disposal onto rice paddy fields is a cost- and labor-effective way to treat wastewater and cultivate rice crops. We evaluated the influence of nitrogen loading rates on nitrogen assimilation by rice plants and on nitrogen losses (leaching and N2O emission) in forage rice fields receiving liquid cattle waste (LCW). Four forage rice fields were subjected to nitrogen loads of 107, 258, 522, and 786 kg N ha(-1) (N100, N250, N500, and N750, respectively) using basal fertilizer (chemical fertilizer) (50 kg N ha(-1)) and three LCW topdressings (each 57-284 kg N ha(-1)). Nitrogen assimilated by rice plants increased over time. However, after the third topdressing, the nitrogen content of the biomass did not increase in any treatment. Harvested aboveground biomass contained 93, 60, 33, and 31 % of applied nitrogen in N100, N250, N500, and N750, respectively. The NH4 (+) concentration in the pore water at a depth of 20 cm was less than 1 mg N L(-1) in N100, N250, and N500 throughout the cultivation period, while the NH4 (+) concentration in N750 increased to 3 mg N L(-1) after the third topdressing. Cumulative N2O emissions ranged from -0.042 to 2.39 kg N ha(-1); the highest value was observed in N750, followed by N500. In N750, N2O emitted during the final drainage accounted for 80 % of cumulative N2O emissions. This study suggested that 100-258 kg N ha(-1) is a recommended nitrogen loading rate for nitrogen recovery by rice plants without negative environmental impacts such as groundwater pollution and N2O emission.

  3. Effect of rice husk gasification residue application on herbicide behavior in micro paddy lysimeter.

    PubMed

    Ok, Junghun; Pisith, Sok; Watanabe, Hirozumi; Thuyet, Dang Quoc; Boulange, Julien; Takagi, Kazuhiro

    2015-06-01

    Effects of rice husk gasification residues (RHGR) application on the fate of herbicides, butachlor and pyrazosulfuron-ethyl, in paddy water were investigated using micro paddy lysimeters (MPLs). The dissipation of both herbicides in paddy water was faster in the RHGR treated MPL than in the control MPL. The average concentrations of butachlor and pyrazosulfuron-ethyl in paddy water in the lysimeter treated with RHGR during 21 days were significantly reduced by 51% and 48%, respectively, as compared to those in the lysimeter without RHGR application. The half-lives (DT50) of butachlor in paddy water for control and treatment were 3.1 and 2.3 days respectively, and these values of pyrazosulfuron-ethyl were 3.0 and 2.2 days, respectively. Based on this study, RHGR application in rice paddy environment is an alternative method to reduce the concentration of herbicide in paddy field water and consequently to reduce potential pollution to aquatic environment.

  4. [Straw return to rice paddy: soil carbon sequestration and increased methane emission].

    PubMed

    Lu, Fei; Wang, Xiao-Ke; Han, Bing; Ouyang, Zhi-Yun; Zheng, Hua

    2010-01-01

    Based on the long-term datasets of soil organic matter content and the observation data of rice paddies' methane (CH4) emission collected from the agricultural experiment stations across the country, the rice paddies in China were divided into single cropping and double cropping regions. The soil carbon sequestration potential of straw return in three types of rice paddies in the two regions, i. e., single cropping rice paddies, upland/paddy alternated rice paddies, and double cropping rice paddies, was evaluated, based on the datasets of soil organic matter content; and the total CH4 emission from rice paddies without straw return was estimated, with reference to the experimental data of paddies' CH4 emission and by the method of mean emission coefficient. The total CH4 emission from our paddies after straw return and the global warming potential of the increased CH4 emission were also estimated by using the related methods and parameters given by IPCC. It was estimated that the full popularization of straw return to China's rice paddies would sequester 10.48 Tg x a(-1) of C, and the contribution to the global warming mitigation was 38.43 Tg CO2-eqv x a(-1). In the meanwhile, the CH4 emission from our rice paddies would be increased from 5.796 Tg x a(-1) to 9.114 Tg x a(-1), and the increased 3.318 Tg x a(-1) of CH4 emission would lead to a global warming potential of 82.95 Tg CO2 -eqv x a(-1), which was 2.158 times of the mitigation from carbon sequestration in rice paddies. Therefore, the increased CH4 emission due to straw return should be regarded as an important greenhouse gas leakage, since it could greatly offset the mitigation benefits of soil carbon sequestration in China's rice paddies.

  5. Effects of fertilization on microbial abundance and emissions of greenhouse gases (CH4 and N2O) in rice paddy fields.

    PubMed

    Fan, Xianfang; Yu, Haiyang; Wu, Qinyan; Ma, Jing; Xu, Hua; Yang, Jinghui; Zhuang, Yiqing

    2016-02-01

    This study is to explore effects of nitrogen application and straw incorporation on abundance of relevant microbes and CH 4 and N2O fluxes in a midseason aerated rice paddy field. Fluxes of CH 4 and N2O were recorded, and abundance of relevant soil microbial functional genes was determined during rice-growing season in a 6-year-long fertilization experiment field in China. Results indicate that application of urea significantly changed the functional microbial composition, while the influence of straw incorporation was not significant. Application of urea significantly decreased the gene abundances of archaeal amoA and mcrA, but it significantly increased the gene abundances of bacterial amoA. CH 4 emission was significantly increased by fresh straw incorporation. Incorporation of burnt straw tended to increase CH 4 emission, while the urea application had no obvious effect on CH 4 emission. N2O emission was significantly increased by urea application, while fresh or burnt straw incorporation tended to decrease N2O emission. The functional microbial composition did not change significantly over time, although the abundances of pmoA, archaeal amoA, nirS, and nosZ genes changed significantly. The change of CH 4 emission showed an inverse trend with the one of the N2O emissions over time. To some extent, the abundance of some functional genes in this study can explain CH 4 and N2O emissions. However, the correlation between CH 4 and N2O emissions and the abundance of related functional genes was not significant. Environmental factors, such as soil Eh, may be more related to CH 4 and N2O emissions.

  6. Estimation of Actual Crop ET of Paddy Using the Energy Balance Model SMARET and Validation with Field Water Balance Measurements and a Crop Growth Model (ORYZA)

    NASA Astrophysics Data System (ADS)

    Nallasamy, N. D.; Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.

    2014-12-01

    Sustainable management of water resources requires reliable estimates of actual evapotranspiration (ET) at fine spatial and temporal resolution. This is significant in the case of rice based irrigation systems, one of the major consumers of surface water resources and where ET forms a major component of water consumption. However huge tradeoff in the spatial and temporal resolution of satellite images coupled with lack of adequate number of cloud free images within a growing season act as major constraints in deriving ET at fine spatial and temporal resolution using remote sensing based energy balance models. The scale at which ET is determined is decided by the spatial and temporal scale of Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI), which form inputs to energy balance models. In this context, the current study employed disaggregation algorithms (NL-DisTrad and DisNDVI) to generate time series of LST and NDVI images at fine resolution. The disaggregation algorithms aimed at generating LST and NDVI at finer scale by integrating temporal information from concurrent coarse resolution data and spatial information from a single fine resolution image. The temporal frequency of the disaggregated images is further improved by employing composite images of NDVI and LST in the spatio-temporal disaggregation method. The study further employed half-hourly incoming surface insolation and outgoing long wave radiation obtained from the Indian geostationary satellite (Kalpana-1) to convert the instantaneous ET into daily ET and subsequently to the seasonal ET, thereby improving the accuracy of ET estimates. The estimates of ET were validated with field based water balance measurements carried out in Gadana, a subbasin predominated by rice paddy fields, located in Tamil Nadu, India.

  7. Effects of elevated ozone concentration on CH4 and N2O emission from paddy soil under fully open-air field conditions.

    PubMed

    Tang, Haoye; Liu, Gang; Zhu, Jianguo; Kobayashi, Kazuhiko

    2015-04-01

    We investigated the effects of elevated ozone concentration (E-O3) on CH4 and N2O emission from paddies with two rice cultivars: an inbred Indica cultivar Yangdao 6 (YD6) and a hybrid one II-you 084 (IIY084), under fully open-air field conditions in China. A mean 26.7% enhancement of ozone concentration above the ambient level (A-O3) significantly reduced CH4 emission at tillering and flowering stages leading to a reduction of seasonal integral CH4 emission by 29.6% on average across the two cultivars. The reduced CH4 emission is associated with O3-induced reduction in the whole-plant biomass (-13.2%), root biomass (-34.7%), and maximum tiller number (-10.3%), all of which curbed the carbon supply for belowground CH4 production and its release from submerged soil to atmosphere. Although no significant difference was detected between the cultivars in the CH4 emission response to E-O3, a larger decrease in CH4 emission with IIY084 (-33.2%) than that with YD6 (-7.0%) was observed at tillering stage, which may be due to the larger reduction in tiller number in IIY084 by E-O3. Additionally, E-O3 reduced seasonal mean NOx flux by 5.7% and 11.8% with IIY084 and YD6, respectively, but the effects were not significant statistically. We found that the relative response of CH4 emission to E-O3 was not significantly different from those reported in open-top chamber experiments. This study has thus confirmed that increasing ozone concentration would mitigate the global warming potential of CH4 and suggested consideration of the feedback mechanism between ozone and its precursor emission into the projection of future ozone effects on terrestrial ecosystem.

  8. Effects of elevated ozone concentration on CH4 and N2O emission from paddy soil under fully open-air field conditions.

    PubMed

    Tang, Haoye; Liu, Gang; Zhu, Jianguo; Kobayashi, Kazuhiko

    2015-04-01

    We investigated the effects of elevated ozone concentration (E-O3) on CH4 and N2O emission from paddies with two rice cultivars: an inbred Indica cultivar Yangdao 6 (YD6) and a hybrid one II-you 084 (IIY084), under fully open-air field conditions in China. A mean 26.7% enhancement of ozone concentration above the ambient level (A-O3) significantly reduced CH4 emission at tillering and flowering stages leading to a reduction of seasonal integral CH4 emission by 29.6% on average across the two cultivars. The reduced CH4 emission is associated with O3-induced reduction in the whole-plant biomass (-13.2%), root biomass (-34.7%), and maximum tiller number (-10.3%), all of which curbed the carbon supply for belowground CH4 production and its release from submerged soil to atmosphere. Although no significant difference was detected between the cultivars in the CH4 emission response to E-O3, a larger decrease in CH4 emission with IIY084 (-33.2%) than that with YD6 (-7.0%) was observed at tillering stage, which may be due to the larger reduction in tiller number in IIY084 by E-O3. Additionally, E-O3 reduced seasonal mean NOx flux by 5.7% and 11.8% with IIY084 and YD6, respectively, but the effects were not significant statistically. We found that the relative response of CH4 emission to E-O3 was not significantly different from those reported in open-top chamber experiments. This study has thus confirmed that increasing ozone concentration would mitigate the global warming potential of CH4 and suggested consideration of the feedback mechanism between ozone and its precursor emission into the projection of future ozone effects on terrestrial ecosystem. PMID:25403809

  9. The rice REDUCED CULM NUMBER11 gene controls vegetative growth under low-temperature conditions in paddy fields independent of RCN1/OsABCG5.

    PubMed

    Funabiki, Atsushi; Takano, Sho; Matsuda, Shuichi; Tokuji, Yoshihiko; Takamure, Itsuro; Kato, Kiyoaki

    2013-10-01

    Low temperature tolerance during vegetative growth is an important objective in rice (Oryza sativa L.) breeding programs. We isolated a novel reduced culm number mutant, designated reduced culm number11 (rcn11), by screening under low-temperature condition in a paddy fields. Since the shoot architecture of the rcn11 was very similar to that of the rcn1, we examined whether RCN11 is involved in RCN1/OsABCG5-associated vegetative growth control. The rcn11 mutant has no mutation in the RCN1/OsABCG5 gene and rcn11 has no effect on RCN1/OsABCG5 gene expression. In the rcn1 mutant, RCN1/OsABCG5 was upregulated showing that RCN1/OsABCG5 is controlled by negative feedback regulation. Absence of an effect of rcn11 on RCN1/OsABCG5 feedback regulation supported that RCN11 is not involved in the RCN1/OsABCG5-associated transport system. A genetic allelism test and molecular mapping study showed that rcn11 is independent of rcn1 on rice chromosome 3 and located on chromosome 8. The rcn1 rcn11 phenotype suggests that RCN11 acts on vegetative growth independent of RCN1/OsABCG5. A root development comparison between rcn1 and rcn11 in young seedlings represented that rcn11 reduced crown root number and elongation, whereas rcn1 reduced lateral root density and elongation. Thus, rcn11 will shed new light on vegetative growth control under low temperature.

  10. Seasonal parameter extraction of paddy rice fields in West Java using multi-temporal MODIS imagery datasets

    NASA Astrophysics Data System (ADS)

    Sianturi, Riswan S.; Nieuwenhuis, Willem; Jetten, V. G.

    2015-10-01

    Continuous monitoring on farming practices is urgently needed provided the challenges faced by rice fields. Information of seasonal parameters supplies crucial inputs for monitoring rice fields as well as improving other applications, such as biomass monitoring, yield estimation, integrated pest management, irrigation water management, and precision farming. We extracted the heading stages using multi-temporal MODerate resolution Imaging Spectroradiometer (MODIS) imageries in rice fields in northern districts of West Java, Indonesia. The spatial distribution of the heading stages in the whole year suggests complex cropping pattern of rice fields in West Java. The monthly average of EVI shows that green waves move northward as the results of stipulated cropping calendar. The Root Mean Square Error (RMSE) for the heading stages is 12.77 days. The heading stages periods of most rice fields are from the middle of February to the middle of March and from the middle of June to the middle of July for rendeng and gadu, consecutively. The findings provide timely and cost effective information for monitoring rice fields.

  11. H2-Producing Bacterial Community during Rice Straw Decomposition in Paddy Field Soil: Estimation by an Analysis of [FeFe]-Hydrogenase Gene Transcripts

    PubMed Central

    Baba, Ryuko; Asakawa, Susumu; Watanabe, Takeshi

    2016-01-01

    The transcription patterns of [FeFe]-hydrogenase genes (hydA), which encode the enzymes responsible for H2 production, were investigated during rice straw decomposition in paddy soil using molecular biological techniques. Paddy soil amended with and without rice straw was incubated under anoxic conditions. RNA was extracted from the soil, and three clone libraries of hydA were constructed using RNAs obtained from samples in the initial phase of rice straw decomposition (day 1 with rice straw), methanogenic phase of rice straw decomposition (day 14 with rice straw), and under a non-amended condition (day 14 without rice straw). hydA genes related to Proteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, and Thermotogae were mainly transcribed in paddy soil samples; however, their proportions markedly differed among the libraries. Deltaproteobacteria-related hydA genes were predominantly transcribed on day 1 with rice straw, while various types of hydA genes related to several phyla were transcribed on day 14 with rice straw. Although the diversity of transcribed hydA was significantly higher in the library on day 14 with rice straw than the other two libraries, the composition of hydA transcripts in the library was similar to that in the library on day 14 without rice straw. These results indicate that the composition of active H2 producers and/or H2 metabolic patterns dynamically change during rice straw decomposition in paddy soil. PMID:27319579

  12. H2-Producing Bacterial Community during Rice Straw Decomposition in Paddy Field Soil: Estimation by an Analysis of [FeFe]-Hydrogenase Gene Transcripts.

    PubMed

    Baba, Ryuko; Asakawa, Susumu; Watanabe, Takeshi

    2016-09-29

    The transcription patterns of [FeFe]-hydrogenase genes (hydA), which encode the enzymes responsible for H2 production, were investigated during rice straw decomposition in paddy soil using molecular biological techniques. Paddy soil amended with and without rice straw was incubated under anoxic conditions. RNA was extracted from the soil, and three clone libraries of hydA were constructed using RNAs obtained from samples in the initial phase of rice straw decomposition (day 1 with rice straw), methanogenic phase of rice straw decomposition (day 14 with rice straw), and under a non-amended condition (day 14 without rice straw). hydA genes related to Proteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, and Thermotogae were mainly transcribed in paddy soil samples; however, their proportions markedly differed among the libraries. Deltaproteobacteria-related hydA genes were predominantly transcribed on day 1 with rice straw, while various types of hydA genes related to several phyla were transcribed on day 14 with rice straw. Although the diversity of transcribed hydA was significantly higher in the library on day 14 with rice straw than the other two libraries, the composition of hydA transcripts in the library was similar to that in the library on day 14 without rice straw. These results indicate that the composition of active H2 producers and/or H2 metabolic patterns dynamically change during rice straw decomposition in paddy soil.

  13. H2-Producing Bacterial Community during Rice Straw Decomposition in Paddy Field Soil: Estimation by an Analysis of [FeFe]-Hydrogenase Gene Transcripts.

    PubMed

    Baba, Ryuko; Asakawa, Susumu; Watanabe, Takeshi

    2016-09-29

    The transcription patterns of [FeFe]-hydrogenase genes (hydA), which encode the enzymes responsible for H2 production, were investigated during rice straw decomposition in paddy soil using molecular biological techniques. Paddy soil amended with and without rice straw was incubated under anoxic conditions. RNA was extracted from the soil, and three clone libraries of hydA were constructed using RNAs obtained from samples in the initial phase of rice straw decomposition (day 1 with rice straw), methanogenic phase of rice straw decomposition (day 14 with rice straw), and under a non-amended condition (day 14 without rice straw). hydA genes related to Proteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, and Thermotogae were mainly transcribed in paddy soil samples; however, their proportions markedly differed among the libraries. Deltaproteobacteria-related hydA genes were predominantly transcribed on day 1 with rice straw, while various types of hydA genes related to several phyla were transcribed on day 14 with rice straw. Although the diversity of transcribed hydA was significantly higher in the library on day 14 with rice straw than the other two libraries, the composition of hydA transcripts in the library was similar to that in the library on day 14 without rice straw. These results indicate that the composition of active H2 producers and/or H2 metabolic patterns dynamically change during rice straw decomposition in paddy soil. PMID:27319579

  14. The Extraction Model of Paddy Rice Information Based on GF-1 Satellite WFV Images.

    PubMed

    Yang, Yan-jun; Huang, Yan; Tian, Qing-jiu; Wang, Lei; Geng, Jun; Yang, Ran-ran

    2015-11-01

    In the present, using the characteristics of paddy rice at different phenophase to identify it by remote sensing images is an efficient way in the information extraction. According to the remarkably properties of paddy rice different from other vegetation, which the surface of paddy fields is with a large number of water in the early stage, NDWI (normalized difference water index) which is used to extract water information can reasonably be applied in the extraction of paddy rice at the early stage of the growth. And using NDWI ratio of two phenophase can expand the difference between paddy rice and other surface features, which is an important part for the extraction of paddy rice with high accuracy. Then using the variation of NDVI (normalized differential vegetation index) in different phenophase can further enhance accuracy of paddy rice information extraction. This study finds that making full advantage of the particularity of paddy rice in different phenophase and combining two indices (NDWI and NDVI) associated with paddy rice can establish a reasonable, accurate and effective extraction model of paddy rice. This is also the main way to improve the accuracy of paddy rice extraction. The present paper takes Lai'an in Anhui Province as the research area, and rice as the research object. It constructs the extraction model of paddy rice information using NDVI and NDWI between tillering stage and heading stage. Then the model was applied to GF1-WFV remote sensing image on July 12, 2013 and August 30, 2013. And it effectively extracted out of paddy rice distribution in Lai'an and carried on the mapping. At last, the result of extraction was verified and evaluated combined with field investigation data in the study area. The result shows that using the extraction model can quickly and accurately obtain the distribution of rice information, and it has the very good universality.

  15. Influence of water management and fertilizer application on (137)Cs and (133)Cs uptake in paddy rice fields.

    PubMed

    Wakabayashi, Shokichi; Itoh, Sumio; Kihou, Nobuharu; Matsunami, Hisaya; Hachinohe, Mayumi; Hamamatsu, Shioka; Takahashi, Shigeru

    2016-06-01

    Cesium-137 derived from the Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident contaminated large areas of agricultural land in Eastern Japan. Previous studies before the accident have indicated that flooding enhances radiocesium uptake in rice fields. We investigated the influence of water management in combination with fertilizers on (137)Cs concentrations in rice plants at two fields in southern Ibaraki Prefecture. Stable Cs ((133)Cs) in the plants was also determined as an analogue for predicting (137)Cs behavior after long-term aging of soil (137)Cs. The experimental periods comprised 3 y starting from 2012 in one field, and 2 y from 2013 in another field. These fields were divided into three water management sections: a long-flooding section without midsummer drainage, and medial-flooding, and short-flooding sections with one- or two-week midsummer drainage and earlier end of flooding than the long-flooding section. Six or four types of fertilizer subsections (most differing only in potassium application) were nested in each water management section. Generally, the long-flooding treatment led to higher (137)Cs and (133)Cs concentrations in both straw and brown rice than medial- and short-flooding treatments, although there were some notable exceptions in the first experimental year at each site. Effects of differing potassium fertilizer treatments were cumulative; the effects on (137)Cs and (133)Cs concentrations in rice plants were not obvious in 2012 and 2013, but in 2014, these concentrations were highest where potassium fertilizer had been absent and lowest where basal dressings of K had been tripled. The relationship between (137)Cs and (133)Cs in rice plants was not correlative in the first experimental year at each site, but correlation became evident in the subsequent year(s). This study demonstrates a novel finding that omitting midsummer drainage and/or delaying drainage during the grain-filling period enhances

  16. Mercury cycling in a flooded rice paddy

    NASA Astrophysics Data System (ADS)

    Rothenberg, Sarah E.; Feng, Xinbin

    2012-09-01

    In 2008 and 2009, mercury (Hg) cycling was investigated in a flooded rice paddy in the Wanshan Hg mining region of eastern Guizhou, China, in the rice-planted (2008 and 2009) and fallow (2009) sections of the same paddy. In the rice-planted section, pore water was more acidic and pore water methylmercury (MeHg) concentrations were higher compared to the fallow section. However, iron (Fe) and sulfur (S) cycling differed in 2008 and 2009, with higher sediment Fe concentrations in 2009, when pore water MeHg and sulfate concentrations were more strongly correlated in the rice-planted section. We explored whether elevated sediment Fe contributed to S cycling and hence, Hg(II)-methylation. Critical pH values for formation of FeS(s) were estimated. Based on pore water pH collected in both sections of the paddy, the fallow section was more often a sink for FeS(s), while FeS(s) did not form in the rice-planted section, although sulfide concentrations were low in both sections in both years (i.e.,<10 μM). We hypothesized Fe(III) oxidized sulfide, and intermediate S species (e.g., polysulfides) were further oxidized to sulfate instead of forming FeS(s), thus prolonging sulfate reduction and promoting Hg(II)-methylation in the rice-planted section in 2009. Results suggested Fe(III) reduction increased electron acceptors for sulfate-reducing bacteria, which indirectly enhanced Hg(II)-methylation. Additionally, highest sediment MeHg concentrations were observed in the fallow section after the paddy was dried and re-wetted, indicating water-saving rice cultivation practices (e.g., alternating wetting and drying), may cause MeHg concentrations in paddy soil to spike, which should be further investigated.

  17. Impact of six transgenic Bacillus thuringiensis rice lines on four nontarget thrips species attacking rice panicles in the paddy field.

    PubMed

    Akhtar, Z R; Tian, J C; Chen, Y; Fang, Q; Hu, C; Peng, Y F; Ye, G Y

    2013-02-01

    As a key component of ecological risk assessments, nontarget effects of Bacillus thuringiensis (Bt) rice have been tested under laboratory and field conditions for various organisms. A 2-yr field experiment was conducted to observe the nontarget effects of six transgenic rice lines (expressing the Cry1Ab or fused protein of Cry1Ab and Cry1Ac) on four nontarget thrips species including Frankliniella intonsa (Trybom), F. tenuicornis (Uzel), Haplothrips aculeatus (F.), and H. tritici (Kurd), as compared with their rice parental control lines. Two sampling methods including the beat plate and plastic bag method were used to monitor the population densities of the four thrips species for 2 yr. The results showed that the seasonal average densities of four tested thrips species in Bt rice plots were significantly lower than or very similar to those in the non-Bt rice plots depending on rice genotypes, sampling methods, and years. Among all six tested Bt rice lines, transgenic B1 and KMD2 lines suppressed the population of these tested thrips species the most. Our results indicate that the tested Bt rice lines are unlikely to result in high population pressure of thrips species in comparison with non-Bt rice. In some cases, Bt rice lines could significantly suppress thrips populations in the rice ecosystem. In addition, compatibility of Bt rice, with rice host plant resistance to nontarget sucking pests is also discussed within an overall integrated pest management program for rice.

  18. Field application of electrokinetic remediation for multi-metal contaminated paddy soil using two-dimensional electrode configuration.

    PubMed

    Kim, Woo-Seung; Jeon, Eun-Ki; Jung, Ji-Min; Jung, Hong-Bae; Ko, Sung-Hwan; Seo, Chang-Il; Baek, Kitae

    2014-03-01

    In this study, we evaluated the feasibility of in situ electrokinetic remediation for arsenic (As)-, copper (Cu)-, and lead (Pb)-contaminated soil, in a pilot-scale field application with two-dimensional electrode configurations. Square and hexagonal configurations with different electrode spacing, 1 m and 2 m, were investigated under a constant 100 V. A square configuration with electrode spacing of 2 m removed 61.5 % of As, 11.4 % of Cu, and 0.9 % of Pb, respectively, and a hexagonal configuration with the same spacing showed a higher removal efficiency in top (59 % of As, 0-0.5 m) and middle (53 % of As, 0.5-1.0 m) layers, but much lower removal efficiency in the bottom layer (1-1.5 m), which was thought to be due to groundwater flow through periodic rise and fall of tides. Fractionation analysis showed that As bound to Fe-Mn oxyhydroxide was the main form of As removed by the electrokinetic process. The two-dimensional configuration wasted less electrical energy by Joule heating, and required fewer electrode installations, compared to the one-dimensional electrode configuration. PMID:24338001

  19. Field application of electrokinetic remediation for multi-metal contaminated paddy soil using two-dimensional electrode configuration.

    PubMed

    Kim, Woo-Seung; Jeon, Eun-Ki; Jung, Ji-Min; Jung, Hong-Bae; Ko, Sung-Hwan; Seo, Chang-Il; Baek, Kitae

    2014-03-01

    In this study, we evaluated the feasibility of in situ electrokinetic remediation for arsenic (As)-, copper (Cu)-, and lead (Pb)-contaminated soil, in a pilot-scale field application with two-dimensional electrode configurations. Square and hexagonal configurations with different electrode spacing, 1 m and 2 m, were investigated under a constant 100 V. A square configuration with electrode spacing of 2 m removed 61.5 % of As, 11.4 % of Cu, and 0.9 % of Pb, respectively, and a hexagonal configuration with the same spacing showed a higher removal efficiency in top (59 % of As, 0-0.5 m) and middle (53 % of As, 0.5-1.0 m) layers, but much lower removal efficiency in the bottom layer (1-1.5 m), which was thought to be due to groundwater flow through periodic rise and fall of tides. Fractionation analysis showed that As bound to Fe-Mn oxyhydroxide was the main form of As removed by the electrokinetic process. The two-dimensional configuration wasted less electrical energy by Joule heating, and required fewer electrode installations, compared to the one-dimensional electrode configuration.

  20. Polar Field Reversals and Active Region Decay

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Ettinger, Sophie

    2015-07-01

    We study the relationship between polar field reversals and decayed active region magnetic flux. Photospheric active region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. We summarize the published evidence from observation and modeling of the influence of meridional flow variations and decaying active region flux's spatial distribution, such as the Joy's law tilt angle. Using NSO Kitt Peak synoptic magnetograms covering cycles 21-24, we investigate in detail the relationship between the transport of decayed active region flux to high latitudes and changes in the polar field strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar field changes. In the most abrupt cases of polar field reversal, a few activity complexes (systems of active regions) are identified as the main cause. The poleward transport of large quantities of decayed trailing-polarity flux from these complexes is found to correlate well in time with the abrupt polar field changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with trailing-polarity flux located poleward of leading-polarity flux. The activity complexes of the cycle 21 and 22 maxima were larger and longer-lived than those of the cycle 23 and 24 maxima, and the poleward surges were stronger and more unipolar and the polar field changes larger and faster. The cycle 21 and 22 polar reversals were dominated by only a few long-lived complexes whereas the cycle 23 and 24 reversals were the cumulative effects of more numerous, shorter-lived regions. We conclude that sizes and lifetimes of activity complexes are key to

  1. Polar Field Reversals and Active Region Decay

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Ettinger, Sophie

    2015-04-01

    We study the relationship between polar field reversals and decayed active region magnetic flux. Photospheric active region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. Using NSO Kitt Peak synoptic magnetograms, we investigate in detail the relationship between the transport of decayed active region flux to high latitudes and changes in the polar field strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar field changes. In the most abrupt cases of polar field reversal, a few activity complexes (systems of active regions) are identified as the main cause. The poleward transport of large quantities of decayed lagging-polarity flux from these complexes is found to correlate well in time with the abrupt polar field changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with lagging-polarity flux located poleward of leading-polarity flux. This work is carried out through the National Solar Observatory Summer Research Assistantship (SRA) Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

  2. Magnetic Field Strengths in Photodissociation Regions

    NASA Astrophysics Data System (ADS)

    Balser, Dana S.; Anish Roshi, D.; Jeyakumar, S.; Bania, T. M.; Montet, Benjamin T.; Shitanishi, J. A.

    2016-01-01

    We measure carbon radio recombination line (RRL) emission at 5.3 {{GHz}} toward four H ii regions with the Green Bank Telescope to determine the magnetic field strength in the photodissociation region (PDR) that surrounds the ionized gas. Roshi suggests that the non-thermal line widths of carbon RRLs from PDRs are predominantly due to magneto-hydrodynamic waves, thus allowing the magnetic field strength to be derived. We model the PDR with a simple geometry and perform the non-LTE radiative transfer of the carbon RRL emission to solve for the PDR physical properties. Using the PDR mass density from these models and the carbon RRL non-thermal line width we estimate total magnetic field strengths of B∼ 100{--}300 μ {{G}} in W3 and NGC 6334A. Our results for W49 and NGC 6334D are less well constrained with total magnetic field strengths between B∼ 200{--}1000 μ {{G}}. H i and OH Zeeman measurements of the line of sight magnetic field strength ({B}{{los}}), taken from the literature, are between a factor of ∼ 0.5{--}1 of the lower bound of our carbon RRL magnetic field strength estimates. Since | {B}{{los}}| ≤slant B, our results are consistent with the magnetic origin of the non-thermal component of carbon RRL widths.

  3. Soil type-depending effect of paddy management: composition and distribution of soil organic matter

    NASA Astrophysics Data System (ADS)

    Urbanski, Livia; Kölbl, Angelika; Lehndorff, Eva; Houtermans, Miriam; Schad, Peter; Zhang, Gang-Lin; Rahayu Utami, Sri; Kögel-Knabner, Ingrid

    2016-04-01

    Paddy soil management is assumed to promote soil organic matter accumulation and specifically lignin caused by the resistance of the aromatic lignin structure against biodegradation under anaerobic conditions during inundation of paddy fields. The present study investigates the effect of paddy soil management on soil organic matter composition compared to agricultural soils which are not used for rice production (non-paddy soils). A variety of major soil types, were chosen in Indonesia (Java), including Alisol, Andosol and Vertisol sites (humid tropical climate of Java, Indonesia) and in China Alisol sites (humid subtropical climate, Nanjing). This soils are typically used for rice cultivation and represent a large range of soil properties to be expected in Asian paddy fields. All topsoils were analysed for their soil organic matter composition by solid-state 13C nuclear magnetic resonance spectroscopy and lignin-derived phenols by CuO oxidation method. The soil organic matter composition, revealed by solid-state 13C nuclear magnetic resonance, was similar for the above named different parent soil types (non-paddy soils) and was also not affected by the specific paddy soil management. The contribution of lignin-related carbon groups to total SOM was similar in the investigated paddy and non-paddy soils. A significant proportion of the total aromatic carbon in some paddy and non-paddy soils was attributed to the application of charcoal as a common management practise. The extraction of lignin-derived phenols revealed low VSC (vanillyl, syringyl, cinnamyl) values for all investigated soils, being typical for agricultural soils. An inherent accumulation of lignin-derived phenols due to paddy management was not found. Lignin-derived phenols seem to be soil type-dependent, shown by different VSC concentrations between the parent soil types. The specific paddy management only affects the lignin-derived phenols in Andosol-derived paddy soils which are characterized by

  4. Phosphorus losses to water from lowland rice fields under rice-wheat double cropping system in the Tai Lake region.

    PubMed

    Cao, Z H; Zhang, H C

    2004-01-01

    To assess P losses to surface water by runoff during the rice season and by drainage flow during the winter wheat season, serial field trials were conducted in different types of paddy soils in the Tai Lake Region (TLR) during 2000 and 2001. Four P application rates were set as 0 (CK), 30, 150, and 300 kg P/hm2 for flooded rice trials and 0 (CK), 20, 80, 160 kg P/hm2 for winter wheat trials respectively. Field experiments were done in two locations with a plot size of 30 m2 and four replications in a randomized complete block design. A simplified lysimeter was installed for each plot to collect all the runoff or drainage flow from each event. Total P (TP) losses to surface water during rice season by runoff flow from four treatments were 150 (CK), 220 (T30), 395 (T150), 670 (T300) g P/ hm2 in year 2000, and 298, 440, 1828, 3744 g P/hm2 in year 2001 respectively in Wuxi station, here the soil is permeable paddy soil derived from loam clay deposit. While the losses were 102, 140, 210, 270 in year 2000, and 128, 165, 359, 589 g P/hm2 in year 2001 respectively in Changshu station, here the soil is waterlogged paddy soil derived from silt loam deposit. During the winter wheat season, total P lost from the fields by drainage flow in the four treatments were 253 (CK), 382 (T20), 580 (T89), 818 (T160) g P/hm2 in year 2000--2001, and 573.3, 709.4, 1123.2, 1552.4 g P/hm2 in year 2001--2002 at the Wuxi station. While these were 395.6, 539.1, 1356.8, 1972.1 g P/hm2 in year 2000--2001, and 811.5, 1184.6, 3001.2, 5333.1 g P/hm2 in year 2001--2002 at the Changshu station. Results revealed that P fertilizer application rates significantly affected the TP concentrations and TP loads in runoff during the rice season, and by drainage flow during the winter wheat season. Both TP loads were significantly increased as the P application rate increases. The data indicate that TP losses to surface water were much higher during the winter wheat season than during the rice season in two

  5. Vector Magnetic Field in Emerging Flux Regions

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Pariat, E.

    A crucial phase in magnetic flux emergence is the rise of magnetic flux tubes through the solar photosphere, which represents a severe transition between the very different environments of the solar interior and corona. Multi-wavelength observations with Flare Genesis, TRACE, SoHO, and more recently with the vector magnetographs at THEMIS and Hida (DST) led to the following conclusions. The fragmented magnetic field in the emergence region - with dipped field lines or bald patches - is directly related with Ellerman bombs, arch filament systems, and overlying coronal loops. Measurements of vector magnetic fields have given evidence that undulating "serpentine" fields are present while magnetic flux tubes cross the photosphere. See the sketch below, and for more detail see Pariat et al. (2004, 2007); Watanabe et al. (2008):

  6. Geopotential field anomalies and regional tectonic features

    NASA Astrophysics Data System (ADS)

    Mandea, Mioara; Korte, Monika

    2016-07-01

    Maps of both gravity and magnetic field anomalies offer crucial information about physical properties of the Earth's crust and upper mantle, required in understanding geological settings and tectonic structures. Density and magnetization represent independent rock properties and thus provide complementary information on compositional and structural changes. Two regions are considered: southern Africa (encompassing South Africa, Namibia and Botswana) and Germany. This twofold choice is motivated firstly by the fact that these regions represent rather diverse geological and geophysical conditions (old Archean crust with strong magnetic anomalies in southern Africa, and much younger, weakly magnetized crust in central Europe) and secondly by our intimate knowledge of the magnetic vector ground data from these two regions. We take also advantage of the recently developed satellite potential field models and compare magnetic and gravity gradient anomalies of some 200 km resolution. Comparing short and long wavelength anomalies and the correlation of rather large scale magnetic and gravity anomalies, and relating them to known lithospheric structures, we generally find a better agreement over the southern African region than the German territory. This probably indicates a stronger concordance between near-surface and deeper structures in the former area, which can be perceived to agree with a thicker lithosphere.

  7. Focal region fields of distorted reflectors

    NASA Technical Reports Server (NTRS)

    Buris, N. E.; Kauffman, J. F.

    1988-01-01

    The problem of the focal region fields scattered by an arbitrary surface reflector under uniform plane wave illumination is solved. The physical optics (PO) approximation is used to calculate the current induced on the reflector. The surface of the reflector is described by a number of triangular domain-wise 5th degree bivariate polynomials. A 2-dimensional Gaussian quadrature is employed to numerically evaluate the integral expressions of the scattered fields. No Freshnel or Fraunhofer zone approximations are made. The relation of the focal fields problem to surface compensation techniques and other applications are mentioned. Several examples of distorted parabolic reflectors are presented. The computer code developed is included, together with instructions on its usage.

  8. Estimating CH4 emission from paddy managed soils in southern guinea savanna zone of Nigeria using an integrated approach

    NASA Astrophysics Data System (ADS)

    Akpeokhai, Agatha; Menz, Gunter; Thonfeld, Frank; Akinluyi, Francis

    2016-04-01

    ESTIMATING CH4 EMISSION FROM PADDY MANAGED SOILS IN SOUTHERN GUINEA SAVANNA ZONE OF NIGERIA USING AN INTEGRATED APPROACH Akpeokhai Agatha 1, Menz Gunter 1, Thonfeld Frank 1, Akinluyi Francis 2 1 Remote Sensing Research Group (RSRG), Geography Institute, University of Bonn, Germany. 2 Department Remote Sensing and Geo-Science Information System, School of Earth and Mineral Science, Federal University of Technology, Akure Nigeria. Methane is one of the most important greenhouse gases as it has the second greatest climate forcing potential. Paddy fields have been identified to be sources of methane and Nigerian paddies are not left out. In Nigeria, the guinea savanna region is regarded as the bread basket of the nation and this area is one of the major rice producing regions in Nigeria. Its location in the food basket region of the country makes this part a very important study site. However, since Nigerian paddies contribute to methane emission by how much do these paddies contribute to the emissions? Also, so far, there limited studies on methane from rice fields in West Africa thus making this study a very important start off point. To answer this huge question, methane emission will be estimated using an integrated approach in the North Central part of Nigeria. Land use change cultivated to rice was analysed using Remote sensing techniques to determine the changes in land cultivated to rice. Methane emission from these identified rice fields will be estimated using the IPCC Tier 1 set of equations. First relevant indices (Normalized Differential Moisture Index, Normalized Differential Wetness Index and Rice Growth Vegetation Index) were generated to aid classification of rice fields using LANDSAT data from the USGS. Next the LANDSAT datasets were analyzed for land use change cultivated to rice from 1990 to 2014 to generate rice field maps. ERDAS Imagine, ARCGIS and ENVI tools were used to meet these spatial needs. Methane emissions from this region will be

  9. Novel groups of cyanobacterial podovirus DNA polymerase (pol) genes exist in paddy waters in northeast China.

    PubMed

    Wang, Xinzhen; Liu, Junjie; Yu, Zhenhua; Jin, Jian; Liu, Xiaobing; Wang, Guanghua

    2016-12-01

    In this study, we surveyed cyanopodovirus DNA polymerase (pol) sequences in paddy waters using the culture-independent PCR and Sanger sequencing methods. Four paddy waters generated from a pot experiment with different soil types collected from op E: n paddy fields in northeast China were used in this study. A total of 438 DNA pol clones were identified as cyanopodoviruses. The clones from the paddy waters formed nine unique groups of cyanopodoviruses either exclusively or with clones from East Lake in China (subclusters α-1 to α-8 and cluster β). None of the clones from open oceans or coastal waters fell into these unique groups. Additionally, the distribution proportions of the clones into different cyanopodovirus groups varied among paddy water samples, which suggested that the cyanopodovirus compositions were spatially distributed in the paddy fields. The comparison of clone libraries in different studies indicated that the diversity of cyanopodoviruses in paddy waters was comparable to the diversity in the open oceans but was less than the diversity in the coastal estuary of Chesapeake Bay. Non-metric multidimensional scaling analysis indicated that the cyanopodovirus communities in paddy waters were similar to those in lake freshwater but distinct from the communities in marine and coastal waters. PMID:27612493

  10. Understanding transitions in rice paddy extent and management in the Vietnamese Mekong River Delta using Landsat data

    NASA Astrophysics Data System (ADS)

    Kontgis, C. P.; Schneider, A.; Ozdogan, M.

    2014-12-01

    Rice is a staple food crop for the majority of the world's population, yet paddy fields are threatened by urban expansion, climate change, and degraded agricultural land. For example, Vietnam, the second largest exporter of rice globally, grows most of its rice in the Mekong River Delta at the country's southern tip, yet this low-lying and heavily populated area is proving susceptible to land cover changes in the area. To properly monitor and manage the rice crops in this region, remote sensing of satellite imagery has been particularly useful; however, most efforts to map regional paddy area utilize coarse resolution MODIS or AVHRR data since the high temporal resolution of these datasets can overcome missing data issues due to clouds. Here, we aim to map the landscape using finer-scale Landsat data by generating dense time stacks over multiple growing seasons. First, we exploit dense stacks of data for circa 2000 and circa 2010 to classify rice using vegetation trajectories (EVI and NDWI). Next, these pixel-based rice maps are combined with image-based segments (generated using the open-source Mean-shift region-growing segmentation algorithm, which has been proven to optimally identify clusters within an image) to generate a polygon-based rice map using the majority rule. Results show that this method can map rice paddy agriculture with over 90% accuracy at a much finer spatial resolution than has ever been produced. Finally, this work also aims to differentiate between double- and triple-cropped rice paddies in the region, again by exploiting EVI trajectories, in an effort to determine how management practices have changed over the decade-long study period. Increasing the number of annual cropping cycles over the area can lead to soil degradation and lower yields per harvest, albeit larger total annual yields, so monitoring these practices is vital to understanding the sustainability of these agricultural systems.

  11. Occurrence and bioaccumulation of polybrominated diphenyl ethers in sediments and paddy ecosystems of Liaohe River Basin, northeast China.

    PubMed

    Ma, Xindong; Zhang, Haijun; Yao, Wenjun; Guo, Wen; Li, Depeng; Yao, Ziwei; Chen, Jiping

    2016-05-01

    Concentrations of 16 polybrominated diphenyl ether (PBDE) congeners were measured in river sediments, paddy soils and three species of paddy-field organisms (crab, loach and carp) collected from the Liaohe River Basin, northeastern China. The total contents of PBDEs (∑16PBDEs) in sediments and paddy soils were in the ranges of 273.4-3246.3pg/g dry weight (dw), and 192.1-1783.8pg/gdw, respectively. BDE 209 was the dominant congener both in sediments and paddy soils. The concentrations of ∑16PBDEs in sediments were significantly higher than those in the adjacent paddy soils, indicating a potential transport of PBDEs from river to paddy ecosystems via river water irrigation. The biota-soil accumulation factor (BSAF) was calculated as the ratio between the lipid-normalized concentration in paddy-field organisms and the total organic carbon-normalized concentration in paddy soil. The average BSAF values of ∑15PBDEs followed the sequence of crab (3.6)>loach (3.3)>carp (2.1). BDE 154 had the highest BSAF value, and a parabolic trend between BSAF values of individual PBDE congeners and their logKOW values was observed. In view of the fact that crab had the larger BSAF value and higher lipid content, the ecological risk and health risk for crab cultivation in paddy fields should be of particular concern. PMID:27155431

  12. Evaluation of methane emissions from Taiwanese paddies.

    PubMed

    Liu, Chen-Wuing; Wu, Chung-Yi

    2004-10-15

    The main greenhouse gases are carbon dioxide, methane and nitrous oxide. Methane is the most important because the warming effect of methane is 21 times greater than that of carbon dioxide. Methane emitted from rice paddy fields is a major source of atmospheric methane. In this work, a methane emission model (MEM), which integrates climate change, plant growth and degradation of soil organic matter, was applied to estimate the emission of methane from rice paddy fields in Taiwan. The estimated results indicate that much methane is emitted during the effective tillering and booting stages in the first crop season and during the transplanting stage in the second crop season in a year. Sensitivity analysis reveals that the temperature is the most important parameter that governs the methane emission rate. The order of the strengths of the effects of the other parameters is soil pH, soil water depth (SWD) and soil organic matter content. The masses of methane emitted from rice paddy fields of Taiwan in the first and second crop seasons are 28,507 and 350,231 tons, respectively. The amount of methane emitted during the second crop season is 12.5 times higher than that emitted in the first crop season. With a 12% reduction in planted area during the second crop season, methane emission could be reduced by 21%. In addition, removal of rice straw left from the first crop season and increasing the depth of flooding to 25 cm are also strategies that could help reduce annual emission by up to 18%.

  13. A Preliminary Study to Forecast Japanese Encephalitis Vector Abundance in Paddy Growing Area, with the Aid of Radar Satellite Images.

    PubMed

    Raju, K Hari Kishan; Sabesan, Shanmugavelu; Rajavel, Aladu Ramakrishnan; Subramanian, Swaminathan; Natarajan, Ramalingam; Thenmozhi, Velayutham; Tyagi, Brij Kishore; Jambulingam, Purushothaman

    2016-02-01

    Vector mosquitoes of Japanese encephalitis (JE) breed mostly in rice fields, and human cases occur scattered over extended rural rice-growing areas. From this, one may surmise an ecological connection with the irrigation facilities and paddy cultivation. Furthermore, it has been hypothesized that a particular stage of paddy growth is a premonitory sign that can lead to a markedly increased population of the vector mosquitoes. The present study aimed to forecast the vector abundance by monitoring the paddy growth using remote sensing and geographical information systems. The abundance of the JE vector Culex tritaeniorhynchus peaked when the paddy crop was at its heading stage and dipped when the crop reached the maturing stage. A significant positive correlation was observed between paddy growth and adult density (r = 0.73, p < 0.008). The sigma naught values (σ0) derived from satellite images of paddy fields ranged from -18.3 (during transplantation stage) to approximately -10 (during the noncultivation period). A significant positive correlation was observed between σ0 and paddy growth stages (r = 0.87, p < 0.05) and adult vector density (r = 0.74, p = 0.04). The σ0 value observed during the vegetative and flowering stages of paddy growth ranged from -17.6 to -17.16, at which period the vector density started building up. This could be the spectral signature that denotes the "risk," following which a high vector abundance is expected during heading stage of the paddy.

  14. Pesticide exposure assessment in rice paddies in Europe: a comparative study of existing mathematical models.

    PubMed

    Karpouzas, Dimitrios G; Cervelli, Stefano; Watanabe, Hirozumi; Capri, Ettore; Ferrero, Aldo

    2006-07-01

    A comparative test was undertaken in order to identify the potential of existing mathematical models, including the rice water quality (RICEWQ) 1.6.4v model, the pesticide concentration in paddy field (PCPF-1) model and the surface water and groundwater (SWAGW) model, for calculating pesticide dissipation and exposure in rice paddies in Europe. Previous versions of RICEWQ and PCPF-1 models had been validated under European and Japanese conditions respectively, unlike the SWAGW model which was only recently developed as a tier-2 modelling tool. Two datasets, derived from field dissipation studies undertaken in northern Italy with the herbicides cinosulfuron and pretilachlor, were used for the modelling exercise. All models were parameterized according to field experimentations, as far as possible, considering their individual deficiencies. Models were not calibrated against field data in order to remove bias in the comparison of the results. RICEWQ 1.6.4v provided the highest agreement between measured and predicted pesticide concentrations in both paddy water and paddy soil, with modelling efficiency (EF) values ranging from 0.78 to 0.93. PCPF-1 simulated well the dissipation of herbicides in paddy water, but significantly underestimated the concentrations of pretilachlor, a chemical with high affinity for soil sorption, in paddy soil. SWAGW simulated relatively well the dissipation of both herbicides in paddy water, and especially pretilachlor, but failed to predict closely the pesticide dissipation in paddy soil. Both RICEWQ and SWAGW provided low groundwater (GW) predicted environmental concentrations (PECs), suggesting a low risk of GW contamination for the two herbicides. Overall, this modelling exercise suggested that RICEWQ 1.6.4v is currently the most reliable model for higher-tier exposure assessment in rice paddies in Europe. PCPF-1 and SWAGW showed promising results, but further adjustments are required before these models can be considered as strong

  15. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.).

    PubMed

    Colmer, T D

    2003-01-01

    The present study evaluated waterlogging tolerance, root porosity and radial O(2) loss (ROL) from the adventitious roots, of seven upland, three paddy, and two deep-water genotypes of rice (Oryza sativa L.). Upland types, with the exception of one genotype, were as tolerant of 30 d soil waterlogging as the paddy and deep-water types. In all but one of the 12 genotypes, the number of adventitious roots per stem increased for plants grown in waterlogged, compared with drained, soil. When grown in stagnant deoxygenated nutrient solution, genotypic variation was evident for root porosity and rates of ROL, but there was no overall difference between plants from the three cultural types. Adventitious root porosity increased from 20-26 % for plants grown in aerated solution to 29-41 % for plants grown in stagnant solution. Growth in stagnant solution also induced a 'tight' barrier to ROL in the basal regions of adventitious roots of five of the seven upland types, all three paddy types, and the two deep-water types. The enhanced porosity provided a low resistance pathway for O(2) movement to the root tip, and the barrier to ROL in basal zones would have further enhanced longitudinal O(2) diffusion towards the apex, by diminishing losses to the rhizosphere. The plasticity in root physiology, as described above, presumably contributes to the ability of rice to grow in diverse environments that differ markedly in soil waterlogging, such as drained upland soils as well as waterlogged paddy fields. PMID:12509350

  16. Enzyme dynamics in paddy soils of the rice district (NE Italy) under different cropping patterns

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Nadimi-Goki, Mandana; Kato, Yoichi; Fornasier, Flavio; Wahsha, Mohammad; Spiandorello, Massimo

    2014-05-01

    The recent widespread interest on soil enzymes is due to the need to develop sensitive indicators of soil quality that reflect the effects of land management on soil and assist land managers in promoting long-term sustainability of terrestrial ecosystems. The activities of six important enzymes involved in C, N, P, and S cycling were investigated in a paddy soil from the Veneto region, Italy, in four different rotation systems (rice-rice-rice: R-R-R; soya-rice-rice: S-R-R; fallow-rice: F-R; pea-soya-rice: P-S-R) with three replications in April (after field preparation, field moist condition), June (after seedling, waterlogged soil condition), August (after tillering stage of rice, waterlogged soil condition) and October (after rice harvesting, drained soil condition) over the 2012 growing season. Our results demonstrated that enzyme activities varied with rotation systems and growth stages in paddy soil. Compared with field moist soil, drained soil condition resulted in a significant increase (P < 0.05) of β-glucosidase, arylsulfatase, alkaline and acid phosphatases, leucine aminopeptidase (except of fallow-rice), and chitinase activities in all rotations, while compared with drained soil, early waterlogging (in month of June) significantly decreased (P moist soil> late waterlogged>early waterlogged. There was an inhibitory effect of waterlogging (except P-S-R rotation) for both alkaline and acid phosphatases due to high pH and redox conditions. However, the response of enzymes to waterlogging differed with the chemical species and the cropping pattern. The best rotation system for chitinase, leucine aminopeptidase and β-glucosidase activity (C and N cycles) proved R-R-R, while for arylsulfatase, alkaline and acid phosphatases (P and S cycles) it was the S-R-R. Key Words: enzyme activity, paddy soil, Crop Rotation System, Italy __ Corresponding Author: Mandana Nadimi-Goki, Tel.: +39 3891356251 E-mail address: mandy.nadimi@gmail.com

  17. Development of a method for estimating total CH4 emission from rice paddies in Japan using the DNDC-Rice model.

    PubMed

    Katayanagi, Nobuko; Fumoto, Tamon; Hayano, Michiko; Takata, Yusuke; Kuwagata, Tsuneo; Shirato, Yasuhito; Sawano, Shinji; Kajiura, Masako; Sudo, Shigeto; Ishigooka, Yasushi; Yagi, Kazuyuki

    2016-03-15

    Methane (CH4) is a greenhouse gas, and paddy fields are one of its main anthropogenic emission sources. To mitigate this emission based on effective management measures, CH4 emission from paddy fields must be quantified at a national scale. In Japan, country-specific emission factors have been applied since 2003 to estimate national CH4 emission from paddy fields. However, this method cannot account for the effects of weather conditions and temporal variability of nitrogen fertilizer and organic matter application rates; thus, the estimated emission is highly uncertain. To improve the accuracy of national-scale estimates, we calculated country-specific emission factors using the DeNitrification-DeComposition-Rice (DNDC-Rice) model. First, we calculated CH4 emission from 1981 to 2010 using 986 datasets that included soil properties, meteorological data, and field management data. Using the simulated site-specific emission, we calculated annual mean emission for each of Japan's seven administrative regions, two water management regimes (continuous flooding and conventional mid-season drainage), and three soil drainage rates (slow, moderate, and fast). The mean emission was positively correlated with organic carbon input to the field, and we developed linear regressions for the relationships among the regions, water management regimes, and drainage rates. The regression results were within the range of published observation values for site-specific relationships between CH4 emission and organic carbon input rates. This suggests that the regressions provide a simplified method for estimating CH4 emission from Japanese paddy fields, though some modifications can further improve the estimation accuracy.

  18. Development of a method for estimating total CH4 emission from rice paddies in Japan using the DNDC-Rice model.

    PubMed

    Katayanagi, Nobuko; Fumoto, Tamon; Hayano, Michiko; Takata, Yusuke; Kuwagata, Tsuneo; Shirato, Yasuhito; Sawano, Shinji; Kajiura, Masako; Sudo, Shigeto; Ishigooka, Yasushi; Yagi, Kazuyuki

    2016-03-15

    Methane (CH4) is a greenhouse gas, and paddy fields are one of its main anthropogenic emission sources. To mitigate this emission based on effective management measures, CH4 emission from paddy fields must be quantified at a national scale. In Japan, country-specific emission factors have been applied since 2003 to estimate national CH4 emission from paddy fields. However, this method cannot account for the effects of weather conditions and temporal variability of nitrogen fertilizer and organic matter application rates; thus, the estimated emission is highly uncertain. To improve the accuracy of national-scale estimates, we calculated country-specific emission factors using the DeNitrification-DeComposition-Rice (DNDC-Rice) model. First, we calculated CH4 emission from 1981 to 2010 using 986 datasets that included soil properties, meteorological data, and field management data. Using the simulated site-specific emission, we calculated annual mean emission for each of Japan's seven administrative regions, two water management regimes (continuous flooding and conventional mid-season drainage), and three soil drainage rates (slow, moderate, and fast). The mean emission was positively correlated with organic carbon input to the field, and we developed linear regressions for the relationships among the regions, water management regimes, and drainage rates. The regression results were within the range of published observation values for site-specific relationships between CH4 emission and organic carbon input rates. This suggests that the regressions provide a simplified method for estimating CH4 emission from Japanese paddy fields, though some modifications can further improve the estimation accuracy. PMID:26802630

  19. The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance, and climatic factors.

    PubMed

    Hu, Hang-Wei; Zhang, Li-Mei; Yuan, Chao-Lei; Zheng, Yong; Wang, Jun-Tao; Chen, Deli; He, Ji-Zheng

    2015-01-01

    Paddy soils distribute widely from temperate to tropical regions, and are characterized by intensive nitrogen fertilization practices in China. Mounting evidence has confirmed the functional importance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in soil nitrification, but little is known about their biogeographic distribution patterns in paddy ecosystems. Here, we used barcoded pyrosequencing to characterize the effects of climatic, geochemical and spatial factors on the distribution of ammonia oxidizers from 11 representative rice-growing regions (75-1945 km apart) of China. Potential nitrification rates varied greatly by more than three orders of magnitude, and were significantly correlated with the abundances of AOA and AOB. The community composition of ammonia oxidizer was affected by multiple factors, but changes in relative abundances of the major lineages could be best predicted by soil pH. The alpha diversity of AOA and AOB displayed contrasting trends over the gradients of latitude and atmospheric temperature, indicating a possible niche separation between AOA and AOB along the latitude. The Bray-Curtis dissimilarities in ammonia-oxidizing community structure significantly increased with increasing geographical distance, indicating that more geographically distant paddy fields tend to harbor more dissimilar ammonia oxidizers. Variation partitioning analysis revealed that spatial, geochemical and climatic factors could jointly explain majority of the data variation, and were important drivers defining the ecological niches of AOA and AOB. Our findings suggest that both AOA and AOB are of functional importance in paddy soil nitrification, and ammonia oxidizers in paddy ecosystems exhibit large-scale biogeographic patterns shaped by soil pH, geographic distance, and climatic factors.

  20. The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance, and climatic factors

    PubMed Central

    Hu, Hang-Wei; Zhang, Li-Mei; Yuan, Chao-Lei; Zheng, Yong; Wang, Jun-Tao; Chen, Deli; He, Ji-Zheng

    2015-01-01

    Paddy soils distribute widely from temperate to tropical regions, and are characterized by intensive nitrogen fertilization practices in China. Mounting evidence has confirmed the functional importance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in soil nitrification, but little is known about their biogeographic distribution patterns in paddy ecosystems. Here, we used barcoded pyrosequencing to characterize the effects of climatic, geochemical and spatial factors on the distribution of ammonia oxidizers from 11 representative rice-growing regions (75–1945 km apart) of China. Potential nitrification rates varied greatly by more than three orders of magnitude, and were significantly correlated with the abundances of AOA and AOB. The community composition of ammonia oxidizer was affected by multiple factors, but changes in relative abundances of the major lineages could be best predicted by soil pH. The alpha diversity of AOA and AOB displayed contrasting trends over the gradients of latitude and atmospheric temperature, indicating a possible niche separation between AOA and AOB along the latitude. The Bray–Curtis dissimilarities in ammonia-oxidizing community structure significantly increased with increasing geographical distance, indicating that more geographically distant paddy fields tend to harbor more dissimilar ammonia oxidizers. Variation partitioning analysis revealed that spatial, geochemical and climatic factors could jointly explain majority of the data variation, and were important drivers defining the ecological niches of AOA and AOB. Our findings suggest that both AOA and AOB are of functional importance in paddy soil nitrification, and ammonia oxidizers in paddy ecosystems exhibit large-scale biogeographic patterns shaped by soil pH, geographic distance, and climatic factors. PMID:26388866

  1. Methane and Nitrous Oxide Emissions Reduced Following Conversion of Rice Paddies to Inland Crab-Fish Aquaculture in Southeast China.

    PubMed

    Liu, Shuwei; Hu, Zhiqiang; Wu, Shuang; Li, Shuqing; Li, Zhaofu; Zou, Jianwen

    2016-01-19

    Aquaculture is an important source of atmospheric methane (CH4) and nitrous oxide (N2O), while few direct flux measurements are available for their regional and global source strength estimates. A parallel field experiment was performed to measure annual CH4 and N2O fluxes from rice paddies and rice paddy-converted inland crab-fish aquaculture wetlands in southeast China. Besides N2O fluxes dependent on water/sediment mineral N and CH4 fluxes related to water chemical oxygen demand, both CH4 and N2O fluxes from aquaculture were related to water/sediment temperature, sediment dissolved organic carbon, and water dissolved oxygen concentration. Annual CH4 and N2O fluxes from inland aquaculture averaged 0.37 mg m(-2) h(-1) and 48.1 μg m(-2) h(-1), yielding 32.57 kg ha(-1) and 2.69 kg N2O-N ha(-1), respectively. The conversion of rice paddies to aquaculture significantly reduced CH4 and N2O emissions by 48% and 56%, respectively. The emission factor for N2O was estimated to be 0.66% of total N input in the feed or 1.64 g N2O-N kg(-1) aquaculture production in aquaculture. The conversion of rice paddies to inland aquaculture would benefit for reconciling greenhouse gas mitigation and agricultural income increase as far as global warming potentials and net ecosystem economic profits are of concomitant concern. Some agricultural practices such as better aeration and feeding, and fallow season dredging would help to lower CH4 and N2O emissions from inland aquaculture. More field measurements from inland aquaculture are highly needed to gain an insight into national and global accounting of CH4 and N2O emissions. PMID:26669815

  2. Methane and Nitrous Oxide Emissions Reduced Following Conversion of Rice Paddies to Inland Crab-Fish Aquaculture in Southeast China.

    PubMed

    Liu, Shuwei; Hu, Zhiqiang; Wu, Shuang; Li, Shuqing; Li, Zhaofu; Zou, Jianwen

    2016-01-19

    Aquaculture is an important source of atmospheric methane (CH4) and nitrous oxide (N2O), while few direct flux measurements are available for their regional and global source strength estimates. A parallel field experiment was performed to measure annual CH4 and N2O fluxes from rice paddies and rice paddy-converted inland crab-fish aquaculture wetlands in southeast China. Besides N2O fluxes dependent on water/sediment mineral N and CH4 fluxes related to water chemical oxygen demand, both CH4 and N2O fluxes from aquaculture were related to water/sediment temperature, sediment dissolved organic carbon, and water dissolved oxygen concentration. Annual CH4 and N2O fluxes from inland aquaculture averaged 0.37 mg m(-2) h(-1) and 48.1 μg m(-2) h(-1), yielding 32.57 kg ha(-1) and 2.69 kg N2O-N ha(-1), respectively. The conversion of rice paddies to aquaculture significantly reduced CH4 and N2O emissions by 48% and 56%, respectively. The emission factor for N2O was estimated to be 0.66% of total N input in the feed or 1.64 g N2O-N kg(-1) aquaculture production in aquaculture. The conversion of rice paddies to inland aquaculture would benefit for reconciling greenhouse gas mitigation and agricultural income increase as far as global warming potentials and net ecosystem economic profits are of concomitant concern. Some agricultural practices such as better aeration and feeding, and fallow season dredging would help to lower CH4 and N2O emissions from inland aquaculture. More field measurements from inland aquaculture are highly needed to gain an insight into national and global accounting of CH4 and N2O emissions.

  3. Annual Changes of Paddy Rice Planting Areas in Northeastern Asia from MODIS images in 2000-2014

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Zhang, G.; Dong, J.; Menarguez, M. A.; Kou, W.; Jin, C.; Qin, Y.; Zhou, Y.; Wang, J.; Moore, B., III

    2014-12-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, estimation of greenhouse gas (methane) emissions, and understanding avian influenza virus transmission. Over the past two decades, paddy rice cultivation has expanded northward in temperate and cold temperate zones, particularly in Northeastern China. There is a need to quantify and map changes in paddy rice planting areas in Northeastern Asia (Japan, North and South Korea, and northeast China) at annual interval. We developed a pixel- and phenology-based image analysis system, MODIS-RICE, to map the paddy rice in Northeastern Asia by using multi-temporal MODIS thermal and surface reflectance imagery. Paddy rice fields during the flooding and transplanting phases have unique physical and spectral characteristics, which make it possible for the development of an automated and robust algorithm to track flooding and transplanting phases of paddy rice fields over time. In this presentation, we will show the MODIS-based annual maps of paddy rice planting area in the Northeastern Asia from 2000-2014 (500-m spatial resolution). Accuracy assessments using high-resolution images show that the resultant paddy rice map of Northeastern Asia had a comparable accuracy to the existing products, including 2010 Landsat-based National Land Cover Dataset (NLCD) of China, the 2010 RapidEye-based paddy rice map in North Korea, and the 2010 AVNIR-2-based National Land Cover Dataset in Japan in terms of both area and spatial pattern of paddy rice. This study has demonstrated that our novel MODIS-Rice system, which use both thermal and optical MODIS data over a year, are simple and robust tools to identify and map paddy rice fields in temperate and cold temperate zones.

  4. The specific role of fungal community structure on soil aggregation and carbon sequestration: results from long-term field study in a paddy soil

    NASA Astrophysics Data System (ADS)

    Murugan, Rajasekaran; Kumar, Sanjay

    2015-04-01

    Soil aggregate stability is a crucial soil property that affects soil biota, biogeochemical processes and C sequestration. The relationship between soil aggregate stability and soil C cycling is well known but the influence of specific fungal community structure on this relationship is largely unknown in paddy soils. The aim of the present study was to evaluate the long-term fertilisation (mineral fertiliser-MIN; farmyard manure-FYM; groundnut oil cake-GOC) effects on soil fungal community shifts associated with soil aggregates under rice-monoculture (RRR) and rice-legume-rice (RLR) systems. Fungal and bacterial communities were characterized using phospholipid fatty acids, and glucosamine and muramic acid were used as biomarkers for fungal and bacterial residues, respectively. Microbial biomass C and N, fungal biomass and residues were significantly higher in the organic fertiliser treatments than in the MIN treatment, for all aggregate sizes under both crop rotation systems. In general, fungal/bacterial biomass ratio and fungal residue C/bacterial residue C ratio were significantly higher in macroaggregate fractions (> 2000 and 250-2000 μm) than in microaggregate fractions (53-250 and <53 μm). In both crop rotation systems, the long-term application of FYM and GOC led to increased accumulation of saprotrophic fungi (SF) in aggregate fractions > 2000 μm. In contrast, we found that arbuscular mycorrhizal fungi (AMF) was surprisingly higher in aggregate fractions > 2000 μm than in aggregate fraction 250-2000 μm under MIN treatment. The RLR system showed significantly higher AMF biomass and fungal residue C/ bacterial residue C ratio in both macroaggregate fractions compared to the RRR system. The strong relationships between SF, AMF and water stable aggregates shows the specific contribution of fungi community on soil aggregate stability. Our results highlight the fact that changes within fungal community structure play an important role in shaping the soil

  5. Effect of rice husk gasification residue application on herbicide behavior in micro paddy lysimeter.

    PubMed

    Ok, Junghun; Pisith, Sok; Watanabe, Hirozumi; Thuyet, Dang Quoc; Boulange, Julien; Takagi, Kazuhiro

    2015-06-01

    Effects of rice husk gasification residues (RHGR) application on the fate of herbicides, butachlor and pyrazosulfuron-ethyl, in paddy water were investigated using micro paddy lysimeters (MPLs). The dissipation of both herbicides in paddy water was faster in the RHGR treated MPL than in the control MPL. The average concentrations of butachlor and pyrazosulfuron-ethyl in paddy water in the lysimeter treated with RHGR during 21 days were significantly reduced by 51% and 48%, respectively, as compared to those in the lysimeter without RHGR application. The half-lives (DT50) of butachlor in paddy water for control and treatment were 3.1 and 2.3 days respectively, and these values of pyrazosulfuron-ethyl were 3.0 and 2.2 days, respectively. Based on this study, RHGR application in rice paddy environment is an alternative method to reduce the concentration of herbicide in paddy field water and consequently to reduce potential pollution to aquatic environment. PMID:25763539

  6. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China.

    PubMed

    Williams, Paul N; Lei, Ming; Sun, Guoxin; Huang, Qing; Lu, Ying; Deacon, Claire; Meharg, Andrew A; Zhu, Yong-Guan

    2009-02-01

    Paddy rice has been likened to nictiana sp in its ability to scavenge cadmium (Cd) from soil, whereas arsenic (As) accumulation is commonly an order of magnitude higher than in other cereal crops. In areas such as those found in parts of Hunan province in south central China, base-metal mining activities and rice farming coexist. Therefore there is a considerable likelihood that lead (Pb), in addition to Cd and As, will accumulate in rice grown in parts of this region above levels suitable for human consumption. To test this hypothesis, a widespread provincial survey of rice from mine spoilt paddies (n = 100), in addition to a follow-up market grain survey (n = 122) conducted in mine impacted areas was undertaken to determine the safety of local rice supply networks. Furthermore, a specific Cd, As, and Pb biogeochemical survey of paddy soil and rice was conducted within southern China, targeting sites impacted by mining of varying intensities to calibrate rice metal(loid) transfer models and transfer factors that can be used to predict tissue loading. Results revealed a number of highly significant correlations between shoot, husk, bran, and endosperm rice tissue fractions and that rice from mining areas was enriched in Cd, As, and Pb. Sixty-five, 50, and 34% of all the mine-impacted field rice was predicted to fail national food standards for Cd, As, and Pb, respectively. Although, not as elevated as the grains from the mine-impacted field survey, it was demonstrated that metal(loid) tainted rice was entering food supply chains intended for direct human consumption. PMID:19244995

  7. Assessing nitrification and denitrification in a paddy soil with different water dynamics and applied liquid cattle waste using the ¹⁵N isotopic technique.

    PubMed

    Zhou, Sheng; Sakiyama, Yukina; Riya, Shohei; Song, Xiangfu; Terada, Akihiko; Hosomi, Masaaki

    2012-07-15

    Using livestock wastewater for rice production in paddy fields can remove nitrogen and supplement the use of chemical fertilizers. However, paddy fields have complicated water dynamics owing to varying characteristics and would influence nitrogen removal through nitrification followed by denitrification. Quantification of nitrification and denitrification is of great importance in assessing the influence of water dynamics on nitrogen removal in paddy fields. In this study, nitrification and nitrate reduction rates with different water dynamics after liquid cattle waste application were evaluated, and the in situ denitrification rate was determined directly using the (15)N isotopic technique in a laboratory experiment. A significant linear regression correlation between nitrification and the nitrate reduction rate was observed and showed different regression coefficients under different water dynamics. The regression coefficient in the continuously flooded paddy soil was higher than in the drained-reflooded paddy soil, suggesting that nitrate would be consumed faster in the flooded paddy soil. However, nitrification was limited and the maximum rate was only 13.3 μg Ng(-1)day(-1) in the flooded paddy soil with rice plants, which limited the supply of nitrate. In contrast, the drained-reflooded paddy soil had an enhanced nitrification rate up to 56.8 μg Ng(-1)day(-1), which was four times higher than the flooded paddy soil and further stimulated nitrate reduction rates. Correspondingly, the in situ denitrification rates determined directly in the drained-reflooded paddy soil ranged from 5 to 1035 mg Nm(-2)day(-1), which was higher than the continuously flooded paddy soil (from 5 to 318 mg Nm(-2)day(-1)) during the vegetation period. The nitrogen removal through denitrification accounted for 38.9% and 9.9% of applied nitrogen in the drained-reflooded paddy soil and continuously flooded paddy soil, respectively.

  8. Fertilization increases paddy soil organic carbon density*

    PubMed Central

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-01-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC. PMID:22467369

  9. Fertilization increases paddy soil organic carbon density.

    PubMed

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-04-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.

  10. Microbial lipids in Paddy Soils of the Yangtze Area

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, Cornelia; Bannert, Andrea; Schloter, Michael; Cao, Zhihong; Schwark, Lorenz

    2010-05-01

    Geobiochemical studies of rice paddy soils and their effect on the global carbon cycle are of paramount importance. Paddy soils comprise manmade wetlands because soil flooding is a prerequisite for lowland rice cultivation. Except for sulphate-rich substrates, rice growth is not very sensitive to soil conditions prevailing prior to conversion of marine tidal flat sediments to paddy cultivation. Thus, soil management practices, such as artificial submergence or drainage, ploughing and puddling (i.e. ploughing a submerged soil), manuring, liming, and fertilization, are the major driving factors of paddy soil development. Soil organic matter (SOM) decomposition and humification proceeds in hydromorphic soils at a slower rate than in well-drained, aerated soils. Rice paddy soils thus also represent a suitable model system to study fundamental aspects of redox sensitive soil processes. These processes are of special interest because in flooded rice fields the anaerobic fermentation of SOM leads to the release of methane and to denitrification losses of inorganic nitrogen. Here we present results from a chronosequence study of paddy soils with different and well known starting dates of cultivation, in the Zhejiang province (Yangtze River delta) by land reclamation through the building of protective dikes over the past 2000 years. We here describe the biomarker geochemistry of six paddy soils that developed on marine tidal sediments and where cultivation started 50, 100, 300, 700, 1000 or 2000 years before present. As reference substrates recent marine and lacustrine sediments were selected. The differentiation of the lipid biomass was achieved by investigating glycerol dialkyl glycerol tetraethers (GDGT). These specific organic geochemical biomarkers allow for determining the abundance of fossil microbial consortia (archaea and bacteria input) into paddy soils, justified by the diversity of the archaeal and bacterial cell membrane constituents. The dominant proportion of

  11. Fly ash application in nutrient poor agriculture soils: impact on methanotrophs population dynamics and paddy yields.

    PubMed

    Singh, Jay Shankar; Pandey, Vimal Chandra

    2013-03-01

    There are reports that the application of fly ash, compost and press mud or a combination thereof, improves plant growth, soil microbial communities etc. Also, fly ash in combination with farmyard manure or other organic amendments improves soil physico-chemical characteristics, rice yield and microbial processes in paddy fields. However, the knowledge about the impact of fly ash inputs alone or in combination with other organic amendments on soil methanotrophs number in paddy soils is almost lacking. We hypothesized that fly ash application at lower doses in paddy agriculture soil could be a potential amendment to elevate the paddy yields and methanotrophs number. Here we demonstrate the impact of fly ash and press mud inputs on number of methanotrophs, antioxidants, antioxidative enzymatic activities and paddy yields at agriculture farm. The impact of amendments was significant for methanotrophs number, heavy metal concentration, antioxidant contents, antioxidant enzymatic activities and paddy yields. A negative correlation was existed between higher doses of fly ash-treatments and methanotrophs number (R(2)=0.833). The content of antioxidants and enzymatic activities in leaves of higher doses fly ash-treated rice plants increased in response to stresses due to heavy metal toxicity, which was negatively correlated with rice grain yield (R(2)=0.944) and paddy straw yield (R(2)=0.934). A positive correlation was noted between heavy metals concentrations and different antioxidant and enzymatic activities across different fly ash treated plots.The data of this study indicate that heavy metal toxicity of fly ash may cause oxidative stress in the paddy crop and the antioxidants and related enzymes could play a defensive role against phytotoxic damages. We concluded that fly ash at lower doses with press mud seems to offer the potential amendments to improving soil methanotrophs population and paddy crop yields for the nutrient poor agriculture soils.

  12. Simulating the dissipation of two herbicides using micro paddy lysimeters.

    PubMed

    Nhung, Dang Thi Tuyet; Phong, Thai Khanh; Watanabe, Hirozumi; Iwafune, Takashi; Thuyet, Dang Quoc

    2009-11-01

    A set of packed micro paddy lysimeters, placed in a greenhouse, was used to simulate the dissipation of two herbicides, simetryn and thiobencarb, in a controlled environment. Data from a field monitoring study in 2003, including the soil condition and water balances, were used in the simulation. The herbicides were applied and monitored over a period of 21 d. The water balances under two water management scenarios, intermittent irrigation management (AI) and continuous irrigation management (CI), were simulated. In the AI scenario, the pattern of herbicide dissipation in the surface water of the field were simulated, following the first-order kinetics. In the CI scenario, similarity was observed in most lysimeter and field concentrations, but there were differences in some data points. Dissipation curves of both herbicides in the surface water of the two simulated scenarios were not significantly different (P>0.05) from the field data except for intercept of the thiobencarb curve in the CI scenario. The distribution of simetryn and thiobencarb in the soil profile after simulation were also similar to the field data. The highest concentrations of both herbicides were found on the topsoil layer at 0-2.5 cm depth. Only a small amount of herbicides moved down to the deeper soil layers. Micro paddy lysimeters are thus a good alternative for the dissipation study of pesticides in the paddy environment. PMID:19811801

  13. [Dimensional fractal of post-paddy wheat root architecture].

    PubMed

    Chen, Xin-xin; Ding, Qi-shuo; Li, Yi-nian; Xue, Jin-lin; Lu, Ming-zhou; Qiu, Wei

    2015-06-01

    To evaluate whether crop rooting system was directionally dependent, a field digitizer was used to measure post-paddy wheat root architectures. The acquired data was transferred to Pro-E, in which virtual root architecture was reconstructed and projected to a series of planes each separated in 10° apart. Fractal dimension and fractal abundance of root projections in all the 18 planes were calculated, revealing a distinctive architectural distribution of wheat root in each direction. This strongly proved that post-paddy wheat root architecture was directionally dependent. From seedling to turning green stage, fractal dimension of the 18 projections fluctuated significantly, illustrating a dynamical root developing process in the period. At the jointing stage, however, fractal indices of wheat root architecture resumed its regularity in each dimension. This wheat root architecture recovered its dimensional distinctness. The proposed method was applicable for precision modeling field state root distribution in soil.

  14. Mass absorption efficiency of light absorbing organic aerosols from source region of paddy-residue burning emissions in the Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Srinivas, B.; Rastogi, N.; Sarin, M. M.; Singh, A.; Singh, D.

    2016-01-01

    The mass absorption efficiency (MAE) of light absorbing water-soluble organics, representing a significant fraction of brown carbon (BrC), has been studied in fine mode aerosols (PM2.5) from a source region (Patiala: 30.2 °N, 76.3 °E) of biomass burning emissions (BBEs) in the Indo-Gangetic Plain (IGP). The mass absorption coefficient of BrC at 365 nm (babs-365), assessed from absorption spectra of aqueous extracts, exhibits significant linear relationship with water-soluble organic carbon (WSOC) for day (R2 = 0.37) and night time (R2 = 0.77) samples; and slope of regression lines provides a measure of MAE of BrC (daytime: ˜0.75 m2 g-1 and night time: 1.13 m2 g-1). A close similarity in the temporal variability of babs-365 (for BrC) and K+ in all samples suggests their common source from BBEs. The babs-365 of BrC follows a power law (babs-λ ≈ λ-α; where α = angstrom exponent) and averages around 5.2 ± 2.0 M m-1 (where M = 10-6). A significant decrease in the MAE of BrC from the source region (this study) to the downwind oceanic region (over Bay of Bengal, Srinivas and Sarin, 2013) could be attributed to relative increase in the contribution of non-absorbing WSOC and/or photo-bleaching of BrC during long-range atmospheric transport. The atmospheric radiative forcing due to BrC over the study site accounts for ˜40% of that from elemental carbon (EC).

  15. The Life Cycle of Active Region Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Cheung, M. C. M.; van Driel-Gesztelyi, L.; Martínez Pillet, V.; Thompson, M. J.

    2016-08-01

    We present a contemporary view of how solar active region magnetic fields are understood to be generated, transported and dispersed. Empirical trends of active region properties that guide model development are discussed. Physical principles considered important for active region evolution are introduced and advances in modeling are reviewed.

  16. Isolation and characterization of methane utilizing bacteria from wetland paddy ecosystem.

    PubMed

    Jhala, Y K; Vyas, R V; Shelat, H N; Patel, H K; Patel, H K; Patel, K T

    2014-06-01

    Methylotrophic bacteria which are known to utilize C1 compounds including methane. Research during past few decades increased the interest in finding out novel genera of methane degrading bacteria to efficiently utilize methane to decrease global warming effect. Moreover, evaluation of certain known plant growth promoting strains for their methane degrading potential may open up a new direction for multiple utility of such cultures. In this study, efficient methylotrophic cultures were isolated from wetland paddy fields of Gujarat. From the overall morphological, biochemical and molecular characterization studies, the isolates were identified and designated as Bacillus aerius AAU M 8; Rhizobium sp. AAU M 10; B. subtilis AAU M 14; Paenibacillus illinoisensis AAU M 17 and B. megaterium AAU M 29. Gene specific PCR analysis of the isolates, P. illinoisensis, B. aerius, Rhizobium sp. and B. subtilis showed presence of pmoA gene encoding α subunit particulate methane monooxygenase cluster. B. megaterium, P. illinoisensis, Rhizobium sp. and Methylobacterium extrorquens showed presence of mmoX gene encoding α subunit of the hydroxylase component of the soluble methane monooxygenase cluster. P. illinoisensis and Rhizobium sp. showed presence mxaF gene encoding α subunit region of methanol dehydrogenase gene cluster showing that both isolates are efficient utilizers of methane. To the best of our knowledge, this is the first time report showing presence of methane degradation enzymes and genes within the known PGPB group of organisms from wet land paddy agro-ecosystem, which is considered as one of the leading methane producer.

  17. Intra- versus inter-site macroscale variation in biogeochemical properties along a paddy soil chronosequence

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, C.; Bannert, A.; Schloter, M.; Lehndorff, E.; Schwark, L.

    2012-03-01

    In order to assess the intrinsic heterogeneity of paddy soils, a set of biogeochemical soil parameters was investigated in five field replicates of seven paddy fields (50, 100, 300, 500, 700, 1000, and 2000 yr of wetland rice cultivation), one flooded paddy nursery, one tidal wetland (TW), and one freshwater site (FW) from a coastal area at Hangzhou Bay, Zhejiang Province, China. All soils evolved from a marine tidal flat substrate due to land reclamation. The biogeochemical parameters based on their properties were differentiated into (i) a group behaving conservatively (TC, TOC, TN, TS, magnetic susceptibility, soil lightness and colour parameters, δ13C, δ15N, lipids and n-alkanes) and (ii) one encompassing more labile properties or fast cycling components (Nmic, Cmic, nitrate, ammonium, DON and DOC). The macroscale heterogeneity in paddy soils was assessed by evaluating intra- versus inter-site spatial variability of biogeochemical properties using statistical data analysis (descriptive, explorative and non-parametric). Results show that the intrinsic heterogeneity of paddy soil organic and minerogenic components per field is smaller than between study sites. The coefficient of variation (CV) values of conservative parameters varied in a low range (10% to 20%), decreasing from younger towards older paddy soils. This indicates a declining variability of soil biogeochemical properties in longer used cropping sites according to progress in soil evolution. A generally higher variation of CV values (>20-40%) observed for labile parameters implies a need for substantially higher sampling frequency when investigating these as compared to more conservative parameters. Since the representativeness of the sampling strategy could be sufficiently demonstrated, an investigation of long-term carbon accumulation/sequestration trends in topsoils of the 2000 yr paddy chronosequence under wetland rice cultivation restricted was conducted. Observations cannot be extrapolated to

  18. Mapping of arsenic pollution with reference to paddy cultivation in the middle Indo-Gangetic Plains.

    PubMed

    Srivastava, Pankaj Kumar; Singh, Manvi; Gupta, Manjul; Singh, Nandita; Kharwar, Ravindra Nath; Tripathi, Rudra Deo; Nautiyal, Chandra Shekhar

    2015-04-01

    A detailed field study was carried out to monitor (i) the arsenic contents in irrigation groundwater and paddy soil and (ii) the accumulation of arsenic in the roots and grains of different paddy varieties grown in the arsenic-contaminated middle Indo-Gangetic Plains of Northern India. Results showed the highest arsenic contamination in the irrigation groundwater (312 μg l(-1)) and in paddy soil (35 mg kg(-1)) values that were significantly exceeded the recommended threshold values of 100 μg l(-1) (EU) and 20 mg kg(-1) (FAO), respectively. The paddy soil arsenic content ranged from 3 to 35 mg kg(-1) with a mean value of 15 mg kg(-1). The soil arsenic content was found to be influenced by the soil texture, carbon, macronutrients, phosphorus, sulfur, hydrolases, and oxidoreductases properties of the paddy soils as revealed in the principal component analyses. Higher root accumulation (>10 mg kg(-1)) of arsenic was observed in 6 of the 17 paddy varieties grown in the study area. The range of arsenic content accumulated in the paddy roots was 4.1 to 16.2 mg kg(-1) dry weight (dw) and in the grains 0.179 to 0.932 mg kg(-1) dw. Out of 17 paddy varieties, eight had 0 > .55 mg kg(-1) grain arsenic content and were found unsafe for subsistence maximum daily tolerable dietary intake (MTDI) by human beings according to the regulatory standards. PMID:25796519

  19. Mapping of arsenic pollution with reference to paddy cultivation in the middle Indo-Gangetic Plains.

    PubMed

    Srivastava, Pankaj Kumar; Singh, Manvi; Gupta, Manjul; Singh, Nandita; Kharwar, Ravindra Nath; Tripathi, Rudra Deo; Nautiyal, Chandra Shekhar

    2015-04-01

    A detailed field study was carried out to monitor (i) the arsenic contents in irrigation groundwater and paddy soil and (ii) the accumulation of arsenic in the roots and grains of different paddy varieties grown in the arsenic-contaminated middle Indo-Gangetic Plains of Northern India. Results showed the highest arsenic contamination in the irrigation groundwater (312 μg l(-1)) and in paddy soil (35 mg kg(-1)) values that were significantly exceeded the recommended threshold values of 100 μg l(-1) (EU) and 20 mg kg(-1) (FAO), respectively. The paddy soil arsenic content ranged from 3 to 35 mg kg(-1) with a mean value of 15 mg kg(-1). The soil arsenic content was found to be influenced by the soil texture, carbon, macronutrients, phosphorus, sulfur, hydrolases, and oxidoreductases properties of the paddy soils as revealed in the principal component analyses. Higher root accumulation (>10 mg kg(-1)) of arsenic was observed in 6 of the 17 paddy varieties grown in the study area. The range of arsenic content accumulated in the paddy roots was 4.1 to 16.2 mg kg(-1) dry weight (dw) and in the grains 0.179 to 0.932 mg kg(-1) dw. Out of 17 paddy varieties, eight had 0 > .55 mg kg(-1) grain arsenic content and were found unsafe for subsistence maximum daily tolerable dietary intake (MTDI) by human beings according to the regulatory standards.

  20. Biogeochemical Typing of Paddy Field by a Data-Driven Approach Revealing Sub-Systems within a Complex Environment - A Pipeline to Filtrate, Organize and Frame Massive Dataset from Multi-Omics Analyses

    PubMed Central

    Ogawa, Diogo M. O.; Moriya, Shigeharu; Tsuboi, Yuuri; Date, Yasuhiro; Prieto-da-Silva, Álvaro R. B.; Rádis-Baptista, Gandhi; Yamane, Tetsuo; Kikuchi, Jun

    2014-01-01

    We propose the technique of biogeochemical typing (BGC typing) as a novel methodology to set forth the sub-systems of organismal communities associated to the correlated chemical profiles working within a larger complex environment. Given the intricate characteristic of both organismal and chemical consortia inherent to the nature, many environmental studies employ the holistic approach of multi-omics analyses undermining as much information as possible. Due to the massive amount of data produced applying multi-omics analyses, the results are hard to visualize and to process. The BGC typing analysis is a pipeline built using integrative statistical analysis that can treat such huge datasets filtering, organizing and framing the information based on the strength of the various mutual trends of the organismal and chemical fluctuations occurring simultaneously in the environment. To test our technique of BGC typing, we choose a rich environment abounding in chemical nutrients and organismal diversity: the surficial freshwater from Japanese paddy fields and surrounding waters. To identify the community consortia profile we employed metagenomics as high throughput sequencing (HTS) for the fragments amplified from Archaea rRNA, universal 16S rRNA and 18S rRNA; to assess the elemental content we employed ionomics by inductively coupled plasma optical emission spectroscopy (ICP-OES); and for the organic chemical profile, metabolomics employing both Fourier transformed infrared (FT-IR) spectroscopy and proton nuclear magnetic resonance (1H-NMR) all these analyses comprised our multi-omics dataset. The similar trends between the community consortia against the chemical profiles were connected through correlation. The result was then filtered, organized and framed according to correlation strengths and peculiarities. The output gave us four BGC types displaying uniqueness in community and chemical distribution, diversity and richness. We conclude therefore that the BGC typing

  1. Clomazone dissipation, adsorption and translocation in four paddy topsoils.

    PubMed

    Li, Lian-fang; Li, Guo-xue; Yang, Ren-bin; Guo, Zheng-yuan; Liao, Xiao-yong

    2004-01-01

    Laboratory experiments about the dissipation, adsorption and translocation in four paddy topsoils were conducted in this paper. From the results it can be concluded as follows: the dissipation rate of clomazone differed greatly in different paddy soil derived from different parent materials. The half-lives for clomazone degradation in paddy soils ranged from 5.7 to 22.0 d. The order of clomazone dissipation rate was reddish yellow paddy soil > alluvial sandy paddy soil > yellow clayey paddy soil > purple sandy paddy soil. Clomazone sorption quantity was significantly correlated with organic carbon (R2 = 0.62) and clay content(R2 = 0.67) in the tested paddy soils. Positive correlation was found between apparent Kd value and cation exchange content(CEC). The consequences for the adsorption of different soils were purple sandy paddy soil > yellow clayey paddy soil > reddish yellow paddy soil > alluvial sandy paddy soil. Under the simulated rainfall of 200 mm through four different unsaturated soil lysimeters over 24 h, clomazone was readily to be leached into lower surface soil and there was about 2.6%--4.2% of applied clomazone leached out of 20 cm cultivated soil layer. Translocation experiments showed that the order of clomazone leaching ability was: alluvial sandy paddy soil > reddish yellow paddy soil > yellow clayey paddy soil > purple sandy paddy soil. Simple regression results manifested that factors like CEC, organic carbon, clay, and adsorption rate constant had been negatively correlated with the percentage of clomazone loss from soil lysimeters.

  2. Wake Fields in the Super B Factory Interaction Region

    SciTech Connect

    Weathersby, Stephen; Novokhatski, Alexander; /SLAC

    2011-06-02

    The geometry of storage ring collider interaction regions present an impedance to beam fields resulting in the generation of additional electromagnetic fields (higher order modes or wake fields) which affect the beam energy and trajectory. These affects are computed for the Super B interaction region by evaluating longitudinal loss factors and averaged transverse kicks for short range wake fields. Results indicate at least a factor of 2 lower wake field power generation in comparison with the interaction region geometry of the PEP-II B-factory collider. Wake field reduction is a consderation in the Super B design. Transverse kicks are consistent with an attractive potential from the crotch nearest the beam trajectory. The longitudinal loss factor scales as the -2.5 power of the bunch length. A factor of 60 loss factor reduction is possible with crotch geometry based on an intersecting tubes model.

  3. Modeling complexity in simulating pesticide fate in a rice paddy.

    PubMed

    Luo, Yuzhou; Spurlock, Frank; Gill, Sheryl; Goh, Kean S

    2012-12-01

    Modeling approaches for pesticide regulation are required to provide generic and conservative evaluations on pesticide fate and exposure based on limited data. This study investigates the modeling approach for pesticide simulation in a rice paddy, by developing a component-based modeling system and characterizing the dependence of pesticide concentrations on individual fate processes. The developed system covers the modeling complexity from a "base model" which considers only the essential processes of water management, water-sediment exchange, and aquatic dissipation, to a "full model" for all commonly simulated processes. Model capability and performance were demonstrated by case studies with 5 pesticides in 13 rice fields of the California's Sacramento Valley. With registrant-submitted dissipation half-lives, the base model conservatively estimated dissolved pesticide concentrations within one order of magnitude of measured data. The full model simulations were calibrated to characterize the key model parameters and processes varying with chemical properties and field conditions. Metabolism in water was identified as an important process in predicting pesticide fate in all tested rice fields. Relative contributions of metabolism, hydrolysis, direct aquatic photolysis, and volatilization to the overall pesticide dissipation were significantly correlated to the model sensitivities to the corresponding physicochemical properties and half-lives. While modeling results were sensitive to metabolism half-lives in water for all fields, significances of metabolism in sediment and water-sediment exchange were only observed for pesticides with pre-flooding applications or with rapid dissipation in sediment. Results suggest that, in addition to the development of regional modeling scenarios for rice production, the registrant-submitted maximum values for the aquatic dissipation half-lives could be used for evaluating pesticide for regulatory purposes.

  4. Soil amendments and cultivar selection can improve rice yield in salt-influenced (tsunami-affected) paddy fields in Sri Lanka.

    PubMed

    Reichenauer, Thomas G; Panamulla, Sunil; Subasinghe, Siripala; Wimmer, Bernhard

    2009-10-01

    The tsunami disaster in the Indian Ocean in December 2004 caused devastation of agricultural soils by salt water over wide areas. Many rice fields located close to the coast were affected by the flood of seawater. Electric conductivity (EC) of soils in tsunami-affected rice fields was found to be higher compared to unaffected fields 2 years after the tsunami. Four soil amendments (gypsum, dolomite, cinnamon ash and rice-husk-charcoal) were tested for their influence on improving the yield parameters of rice grown in a tsunami-affected and a non-affected area. Yield parameters were compared with an untreated control of the same cultivar (AT362) and with a salt resistant rice variety (AT354). The salt resistant variety had the highest grain yield. The two amendments gypsum and rice-husk-charcoal led to an increase in grain yield compared to the untreated control, whereas dolomite and cinnamon ash had no significant effect on grain yield.

  5. Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils.

    PubMed

    Khan, K Asaduzzaman; Stroud, Jacqueline L; Zhu, Yong-Guan; McGrath, Steve P; Zhao, Fang-Jie

    2010-11-15

    Some paddy soils in the Bengal delta are contaminated with arsenic (As) due to irrigation of As-laden groundwater, which may lead to yield losses and elevated As transfer to the food chain. Whether these soils have a higher As bioavailability than other soils containing either geogenic As or contaminated by mining activities was investigated in a pot experiment. Fourteen soils varying in the source and the degree (4-138 mg As kg 1⁻¹) of As contamination were collected, 10 from Bangladeshi paddy fields (contaminated by irrigation water) and two each from China and the UK (geogenic or mining impacted), for comparison. Bangladeshi soils had higher percentages of the total As extractable by ammonium phosphate (specifically sorbed As) than other soils and also released more As into the porewater upon flooding. Porewater As concentrations increased with increasing soil As concentrations more steeply in Bangladeshi soils, with arsenite being the dominant As species. Rice growth and grain yield decreased markedly in Bangladeshi soils containing > 13 mg As kg 1⁻¹, but not in the other soils. Phosphate-extractable or porewater As was a better indicator of As bioavailability than total soil As. Rice straw As concentrations increased with increasing soil As concentrations; however, As phytotoxicity appeared to result in lower grain As concentrations. The relative proportions of inorganic As and dimethylarsinic acid (DMA) in grain varied among soils, and the percentage DMA was larger in greenhouse-grown plants than grain samples collected from the paddy fields of the same soil and the same rice cultivar, indicating a strong environmental influence on As species found in rice grain. This study shows that Bangladeshi paddy soils contaminated by irrigation had a higher As bioavailability than other soils, resulting in As phytotoxicity in rice and substantial yield losses.

  6. Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils.

    PubMed

    Khan, K Asaduzzaman; Stroud, Jacqueline L; Zhu, Yong-Guan; McGrath, Steve P; Zhao, Fang-Jie

    2010-11-15

    Some paddy soils in the Bengal delta are contaminated with arsenic (As) due to irrigation of As-laden groundwater, which may lead to yield losses and elevated As transfer to the food chain. Whether these soils have a higher As bioavailability than other soils containing either geogenic As or contaminated by mining activities was investigated in a pot experiment. Fourteen soils varying in the source and the degree (4-138 mg As kg 1⁻¹) of As contamination were collected, 10 from Bangladeshi paddy fields (contaminated by irrigation water) and two each from China and the UK (geogenic or mining impacted), for comparison. Bangladeshi soils had higher percentages of the total As extractable by ammonium phosphate (specifically sorbed As) than other soils and also released more As into the porewater upon flooding. Porewater As concentrations increased with increasing soil As concentrations more steeply in Bangladeshi soils, with arsenite being the dominant As species. Rice growth and grain yield decreased markedly in Bangladeshi soils containing > 13 mg As kg 1⁻¹, but not in the other soils. Phosphate-extractable or porewater As was a better indicator of As bioavailability than total soil As. Rice straw As concentrations increased with increasing soil As concentrations; however, As phytotoxicity appeared to result in lower grain As concentrations. The relative proportions of inorganic As and dimethylarsinic acid (DMA) in grain varied among soils, and the percentage DMA was larger in greenhouse-grown plants than grain samples collected from the paddy fields of the same soil and the same rice cultivar, indicating a strong environmental influence on As species found in rice grain. This study shows that Bangladeshi paddy soils contaminated by irrigation had a higher As bioavailability than other soils, resulting in As phytotoxicity in rice and substantial yield losses. PMID:20977268

  7. Impacts of climate change on paddy rice yield in a temperate climate.

    PubMed

    Kim, Han-Yong; Ko, Jonghan; Kang, Suchel; Tenhunen, John

    2013-02-01

    The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES-Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (-22.1% and -35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES-Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system.

  8. Microbial Community and Greenhouse Gas Fluxes from Abandoned Rice Paddies with Different Vegetation.

    PubMed

    Kim, Sunghyun; Lee, Seunghoon; McCormick, Melissa; Kim, Jae Geun; Kang, Hojeong

    2016-10-01

    The area of rice paddy fields has declined continuously in East Asian countries due to abandonment of agriculture and concurrent socioeconomic changes. When they are abandoned, rice paddy fields generally transform into wetlands by natural succession. While previous studies have mainly focused on vegetation shifts in abandoned rice paddies, little information is available about how these changes may affect their contribution to wetland functions. As newly abandoned fields proceed through succession, their hydrology and plant communities often change. Moreover, the relationships between these changes, soil microbial characteristics, and emissions of greenhouse gasses are poorly understood. In this study, we examined changes over the course of secondary succession of abandoned rice paddies to wetlands and investigated their ecological functions through changes in greenhouse gas fluxes and microbial characteristics. We collected gas and soil samples in summer and winter from areas dominated by Cyperaceae, Phragmites, and Sphagnum in each site. We found that CO2 emissions in summer were significantly higher than those in winter, but CH4 and N2O emission fluxes were consistently at very low levels and were similar among seasons and locations, due to their low nutrient conditions. These results suggest that microbial activity and abundance increased in summer. Greenhouse gas flux, soil properties, and microbial abundance were not affected by plant species, although the microbial community composition was changed by plant species. This information adds to our basic understanding of the contribution of wetlands that are transformed from abandoned rice paddy systems.

  9. Microbial Community and Greenhouse Gas Fluxes from Abandoned Rice Paddies with Different Vegetation.

    PubMed

    Kim, Sunghyun; Lee, Seunghoon; McCormick, Melissa; Kim, Jae Geun; Kang, Hojeong

    2016-10-01

    The area of rice paddy fields has declined continuously in East Asian countries due to abandonment of agriculture and concurrent socioeconomic changes. When they are abandoned, rice paddy fields generally transform into wetlands by natural succession. While previous studies have mainly focused on vegetation shifts in abandoned rice paddies, little information is available about how these changes may affect their contribution to wetland functions. As newly abandoned fields proceed through succession, their hydrology and plant communities often change. Moreover, the relationships between these changes, soil microbial characteristics, and emissions of greenhouse gasses are poorly understood. In this study, we examined changes over the course of secondary succession of abandoned rice paddies to wetlands and investigated their ecological functions through changes in greenhouse gas fluxes and microbial characteristics. We collected gas and soil samples in summer and winter from areas dominated by Cyperaceae, Phragmites, and Sphagnum in each site. We found that CO2 emissions in summer were significantly higher than those in winter, but CH4 and N2O emission fluxes were consistently at very low levels and were similar among seasons and locations, due to their low nutrient conditions. These results suggest that microbial activity and abundance increased in summer. Greenhouse gas flux, soil properties, and microbial abundance were not affected by plant species, although the microbial community composition was changed by plant species. This information adds to our basic understanding of the contribution of wetlands that are transformed from abandoned rice paddy systems. PMID:27352281

  10. The estimation of rice paddy yield with GRAMI crop model and Geostationary Ocean Color Imager (GOCI) image over South Korea

    NASA Astrophysics Data System (ADS)

    Yeom, J. M.; Kim, H. O.

    2014-12-01

    In this study, we estimated the rice paddy yield with moderate geostationary satellite based vegetation products and GRAMI model over South Korea. Rice is the most popular staple food for Asian people. In addition, the effects of climate change are getting stronger especially in Asian region, where the most of rice are cultivated. Therefore, accurate and timely prediction of rice yield is one of the most important to accomplish food security and to prepare natural disasters such as crop defoliation, drought, and pest infestation. In the present study, GOCI, which is world first Geostationary Ocean Color Image, was used for estimating temporal vegetation indices of the rice paddy by adopting atmospheric correction BRDF modeling. For the atmospheric correction with LUT method based on Second Simulation of the Satellite Signal in the Solar Spectrum (6S), MODIS atmospheric products such as MOD04, MOD05, MOD07 from NASA's Earth Observing System Data and Information System (EOSDIS) were used. In order to correct the surface anisotropy effect, Ross-Thick Li-Sparse Reciprocal (RTLSR) BRDF model was performed at daily basis with 16day composite period. The estimated multi-temporal vegetation images was used for crop classification by using high resolution satellite images such as Rapideye, KOMPSAT-2 and KOMPSAT-3 to extract the proportional rice paddy area in corresponding a pixel of GOCI. In the case of GRAMI crop model, initial conditions are determined by performing every 2 weeks field works at Chonnam National University, Gwangju, Korea. The corrected GOCI vegetation products were incorporated with GRAMI model to predict rice yield estimation. The predicted rice yield was compared with field measurement of rice yield.

  11. Methanogenic Pathway and Fraction of CH4 Oxidized in Paddy Fields: Seasonal Variation and Effect of Water Management in Winter Fallow Season

    PubMed Central

    Zhang, Guangbin; Liu, Gang; Zhang, Yi; Ma, Jing; Xu, Hua; Yagi, Kazuyuki

    2013-01-01

    A 2-year field and incubation experiment was conducted to investigate δ13C during the processes of CH4 emission from the fields subjected to two water managements (flooding and drainage) in the winter fallow season, and further to estimate relative contribution of acetate to total methanogenesis (Fac) and fraction of CH4 oxidized (Fox) based on the isotopic data. Compared with flooding, drainage generally caused CH4, either anaerobically or aerobically produced, depleted in 13C. There was no obvious difference between the two in transport fractionation factor (εtransport) and δ13C-value of emitted CH4. CH4 emission was negatively related to its δ13C-value in seasonal variation (P<0.01). Acetate-dependent methanogenesis in soil was dominant (60–70%) in the late season, while drainage decreased Fac-value by 5–10%. On roots however, CH4 was mostly produced through H2/CO2 reduction (60–100%) over the season. CH4 oxidation mainly occurred in the first half of the season and roughly 10–90% of the CH4 was oxidized in the rhizosphere. Drainage increased Fox-value by 5–15%, which is possibly attributed to a significant decrease in production while no simultaneous decrease in oxidation. Around 30–70% of the CH4 was oxidized at the soil-water interface when CH4 in pore water was released into floodwater, although the amount of CH4 oxidized therein might be negligible relative to that in the rhizosphere. CH4 oxidation was also more important in the first half of the season in lab conditions and about 5–50% of the CH4 was oxidized in soil while almost 100% on roots. Drainage decreased Fox-value on roots by 15% as their CH4 oxidation potential was highly reduced. The findings suggest that water management in the winter fallow season substantially affects Fac in the soil and Fox in the rhizosphere and roots rather than Fac on roots and Fox at the soil-water interface. PMID:24069259

  12. Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China.

    PubMed

    Zhang, Si-Yu; Zhao, Fang-Jie; Sun, Guo-Xin; Su, Jian-Qiang; Yang, Xiao-Ru; Li, Hu; Zhu, Yong-Guan

    2015-04-01

    Microbe-mediated arsenic (As) biotransformation in paddy soils determines the fate of As in soils and its availability to rice plants, yet little is known about the microbial communities involved in As biotransformation. Here, we revealed wide distribution, high diversity, and abundance of arsenite (As(III)) oxidase genes (aioA), respiratory arsenate (As(V)) reductase genes (arrA), As(V) reductase genes (arsC), and As(III) S-adenosylmethionine methyltransferase genes (arsM) in 13 paddy soils collected across Southern China. Sequences grouped with As biotransformation genes are mainly from rice rhizosphere bacteria, such as some Proteobacteria, Gemmatimonadales, and Firmicutes. A significant correlation of gene abundance between arsC and arsM suggests that the two genes coexist well in the microbial As resistance system. Redundancy analysis (RDA) indicated that soil pH, EC, total C, N, As, and Fe, C/N ratio, SO4(2-)-S, NO3(-)-N, and NH4(+)-N were the key factors driving diverse microbial community compositions. This study for the first time provides an overall picture of microbial communities involved in As biotransformation in paddy soils, and considering the wide distribution of paddy fields in the world, it also provides insights into the critical role of paddy fields in the As biogeochemical cycle.

  13. Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China.

    PubMed

    Zhang, Si-Yu; Zhao, Fang-Jie; Sun, Guo-Xin; Su, Jian-Qiang; Yang, Xiao-Ru; Li, Hu; Zhu, Yong-Guan

    2015-04-01

    Microbe-mediated arsenic (As) biotransformation in paddy soils determines the fate of As in soils and its availability to rice plants, yet little is known about the microbial communities involved in As biotransformation. Here, we revealed wide distribution, high diversity, and abundance of arsenite (As(III)) oxidase genes (aioA), respiratory arsenate (As(V)) reductase genes (arrA), As(V) reductase genes (arsC), and As(III) S-adenosylmethionine methyltransferase genes (arsM) in 13 paddy soils collected across Southern China. Sequences grouped with As biotransformation genes are mainly from rice rhizosphere bacteria, such as some Proteobacteria, Gemmatimonadales, and Firmicutes. A significant correlation of gene abundance between arsC and arsM suggests that the two genes coexist well in the microbial As resistance system. Redundancy analysis (RDA) indicated that soil pH, EC, total C, N, As, and Fe, C/N ratio, SO4(2-)-S, NO3(-)-N, and NH4(+)-N were the key factors driving diverse microbial community compositions. This study for the first time provides an overall picture of microbial communities involved in As biotransformation in paddy soils, and considering the wide distribution of paddy fields in the world, it also provides insights into the critical role of paddy fields in the As biogeochemical cycle. PMID:25738639

  14. Intra-versus inter-site macroscale variation in biogeochemical properties along a paddy soil chronosequence

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, C.; Bannert, A.; Schloter, M.; Lehndorff, E.; Schwark, L.

    2011-10-01

    In order to assess the intrinsic heterogeneity of paddy soils, a set of biogeochemical soil parameters was investigated in five field replicates of seven paddy fields (50, 100, 300, 500, 700, 1000, and 2000 yr of wetland rice cultivation), one flooded paddy nursery, one tidal wetland (TW), and one freshwater site (FW) from a coastal area at Hangzhou Bay, Zhejiang Province, China. All soils evolved from a marine tidal flat substrate due to land reclamation. The biogeochemical parameters based on their properties were differentiated into (i) a group behaving conservatively (TC, TOC, TN, TS, magnetic susceptibility, soil lightness and colour parameters, δ13C, δ15N, lipids and n-alkanes) and (ii) one encompassing more labile properties or fast cycling components (Nmic, Cmic, nitrate, ammonium, DON and DOC). The macroscale heterogeneity in paddy soils was assessed by evaluating intra- versus inter-site spatial variability of biogeochemical properties using statistical data analysis (descriptive, explorative and non-parametric). Results show that the intrinsic heterogeneity of paddy soil organic and minerogenic components per field is smaller than between study sites. The coefficient of variation (CV) values of conservative parameters varied in a low range (10 % to 20 %), decreasing from younger towards older paddy soils. This indicates a declining variability of soil biogeochemical properties in longer used cropping sites according to progress in soil evolution. A generally higher variation of CV values (>20-40 %) observed for labile parameters implies a need for substantially higher sampling frequency when investigating these as compared to more conservative parameters. Since the representativeness of the sampling strategy could be sufficiently demonstrated, an investigation of long-term carbon accumulation/sequestration trends in topsoils of the 2000 year paddy chronosequence under wetland rice cultivation was conducted. The evolutionary trend showed that the

  15. Effect of no-tillage and tillage on the ecology of mite, Acarina (Oribatida) in two different farming systems of paddy field in Cachar district of Assam.

    PubMed

    Singh, Leimapokpam Amarjit; Ray, D C

    2015-01-01

    The present investigation was carried out in Cachar district of Assam over a period of one year (January 2011 - December 2011) to understand the seasonal ecology of Acarina (Oribatida) in rice (Oryza sativa L.) cultivated fields. Population of Oribatida was found to be maximum during August 2011, both in no-tillage (6.32 ± 0.66 No./m2 x 100(2)) and tillage (5.30 ± 0.71 No./M2 x 100(2)) sites in Dorgakona area whereas the peak was recorded during August 2011, both in no-tillage (5.38 ± 0.75 No./m(2) x 100(2)) and tillage (4.69 ± 0.77 No./m2 x 100(2)) in Durby area of study sites. Least population was encountered during January 2011, in both no-tillage (0.98 ± 0.28 ± No./m2 x 100(2)) and tillage (0.98 ± 0.30 No/m2 x 100(2)) sites in Dorgakona area whereas the same was found during November 2011 in no-tillage (0.57 ± 0.31 No.m/2 x 100(2)) and in February 2011 in tillage (0.45 ± 0.21 No./m2 x 100(2)) sites of Durby area. Linear regression analysis with all the environmental variables showed positive and significant influence on the population dynamics whereas relative humidity (R2 = 0.26 p > 0.05) in Dorgakona no-tillage and tillage (R2 = 0.19 P > 0.05) sites and relative humidity in tillage site (R2 = 0.27 P > 0.05) in Durby area showed no influence. Multiple regression analysis showed that the combined effect of climatic variables having a significant influence (p < 0.05) on the oribatid mite population in no-tillage and tillage systems in both the study sites. Rainfall, relative humidity and temperature facilitated the soil moisture, microbial activity and litter decomposition, which in turn may favour the reproduction and growth rate of the species. Among microclimatic conditions all the parameters showed positive and significant influence (P < 0.05) on the population in no-tillage and tillage system on both the sites except pH which showed negative correlation with the population. One way ANOVA revealed significant difference (F = 6.53, P < 0.01) of the

  16. [Effects of Water and Nitrogenous Fertilizer Coupling on CH4 and N2O Emission from Double-Season Rice Paddy Field].

    PubMed

    Fu, Zhi-qiang; Long, Pan; Liu, Yi-yi; Zhong, Juan; Long, Wen-fei

    2015-09-01

    To provide support for the efficient use of water and fertilizer technology to double-season rice cultivation, water and fertilizer coupling mode was applied in this research, including two irrigation methods and four N levels. The irrigation methods were flood irrigation and intermittent irrigation, while four N levels were high-N, middle-N, low-N and none-N. Field experiment was conducted to study the effect of water and fertilizer coupling mode on CH4 and N2O emission. The results showed that the accumulated CH4 emissions were significantly reduced by intermittent irrigation, in comparison with flood irrigation, the reduction in early rice season were from 13. 18 kg.hm-2 to 87. 90 kg.hm-2, and were from 74. 48 kg.hm-2 to 131. 07 kg.hm-2 in late rice season, with a rate of 24. 4% -67. 4% and 42. 5% -65. 5% respectively; whereas the accumulated N20 emissions were increased, the increment were from 0. 03 kg.hm-2 to 0. 24 kg.hm-2 in early rice season and from 0. 35 kg.hm-2 to 1. 53 kg.hm-2 in late rice season when compared flood irrigation, increased by 6.2% -18. 3% and 40.2% - 80.9% respectively. On the whole, intermittent irrigation reduces the warming potential of greenhouse gases (GWP), which were decreased by 18. 8% to 58. 6% in early rice season and by 34. 4% to 60. 1% in late rice season, and the reduction of total GWP were from 2 388 to 4 151 kg. hm-2 (CO2 eq), with a rate of 41% -54% . Through correlation analysis it found that CH4 emissions from soil were significantly related with soil solution Eh and solution CH4 concentration. In comparison with the flood irrigation, the application of intermittent irrigation in double-season rice cultivation was conducive to CH4 reduction, though the increase came in N2O, but the GWPs were significantly reduced. Comprehensively, intermittent irrigation matching with middle-N is more benefit to double-season rice cultivation. PMID:26717700

  17. [Effects of Water and Nitrogenous Fertilizer Coupling on CH4 and N2O Emission from Double-Season Rice Paddy Field].

    PubMed

    Fu, Zhi-qiang; Long, Pan; Liu, Yi-yi; Zhong, Juan; Long, Wen-fei

    2015-09-01

    To provide support for the efficient use of water and fertilizer technology to double-season rice cultivation, water and fertilizer coupling mode was applied in this research, including two irrigation methods and four N levels. The irrigation methods were flood irrigation and intermittent irrigation, while four N levels were high-N, middle-N, low-N and none-N. Field experiment was conducted to study the effect of water and fertilizer coupling mode on CH4 and N2O emission. The results showed that the accumulated CH4 emissions were significantly reduced by intermittent irrigation, in comparison with flood irrigation, the reduction in early rice season were from 13. 18 kg.hm-2 to 87. 90 kg.hm-2, and were from 74. 48 kg.hm-2 to 131. 07 kg.hm-2 in late rice season, with a rate of 24. 4% -67. 4% and 42. 5% -65. 5% respectively; whereas the accumulated N20 emissions were increased, the increment were from 0. 03 kg.hm-2 to 0. 24 kg.hm-2 in early rice season and from 0. 35 kg.hm-2 to 1. 53 kg.hm-2 in late rice season when compared flood irrigation, increased by 6.2% -18. 3% and 40.2% - 80.9% respectively. On the whole, intermittent irrigation reduces the warming potential of greenhouse gases (GWP), which were decreased by 18. 8% to 58. 6% in early rice season and by 34. 4% to 60. 1% in late rice season, and the reduction of total GWP were from 2 388 to 4 151 kg. hm-2 (CO2 eq), with a rate of 41% -54% . Through correlation analysis it found that CH4 emissions from soil were significantly related with soil solution Eh and solution CH4 concentration. In comparison with the flood irrigation, the application of intermittent irrigation in double-season rice cultivation was conducive to CH4 reduction, though the increase came in N2O, but the GWPs were significantly reduced. Comprehensively, intermittent irrigation matching with middle-N is more benefit to double-season rice cultivation.

  18. [Microbial metabolism in typical flooded paddy soils ].

    PubMed

    Cai, Yuanfeng; Wu, Yucheng; Wang, Shuwei; Yan, Xiaoyuan; Zhu, Yongguan; Jia, Zhongjun

    2014-09-01

    [OBJECTIVE] The object of this study is to reveal the composition of active microorganism and their metabolic activities in flooded paddy soils with long-term fertilization ( Mineral nitrogen, phosphorus, and potassium, NPK) and without fertilizer (Control check, CK) by environmental transcriptomics. [METHODS] Flooded soil microcosms were incubated in the laboratory for two weeks, then total RNA were extracted from the soil for transcriptome sequencing. Resulting fastq files were uploaded to the Metagenomics Analysis Server (MG-RAST) for taxonomic analysis, gene annotation and function classification. [RESULTS] Transcripts from diverse active microorganism, including bacteria ( > 95% ) , archaea, eukaryotes and viruses, were detected in both flooded paddy soils of CK and NPK treatments. Most of the transcripts (active genes) of bacteria and archaea were derived from Proteobacteria (more than 50% of total bacterial transcripts) and Thaumarchaaeota (about 70% of total archaeal transcripts ) respectively in both treatments. Transcriptional activity of Acidobacteria in NPK treatment paddy soil was significantly higher than that in CK treatment paddy soil. As for other phyla of bacteria and archaea, there were no significant differences of transcriptional activity of them between CK and NPK treatment paddy soils. The highest expressed gene in both CK and NPK treatment paddy soils is ABC transporter encoding gene which related to the transmembrane transport of substances. Based on gene function category of COG (Clusters of Orthologous Genes), Subsystem and KEGG (Kyoto Encyclopedia of Genes and Genomes) database, we found that the main metabolic activities of microorganisms in both CK and NPK treatment paddy soils were related to energy production and conversion, carbohydrate metabolism, protein metabolism and amino acid metabolism, and the dominant KEGG pathways were oxidative phosphorylation and aminoacyl-tRNA biosynthesis. [ CONCLUSION] Composition of active

  19. Impact of Rice Paddy Areas Decrease on Local Climate over Taiwan

    NASA Astrophysics Data System (ADS)

    Lo, M. H.; Wen, W. H.; Chen, C. C.

    2014-12-01

    Agricultural irrigation practice is one of the important anthropogenic processes in the land surface modeling. Irrigation can decrease local surface temperature with alternating surface energy partitioning. Rice paddy is the major food crop in Asian monsoon region and rice is grown under flooded conditions during the growing season; hence, the rice paddy can be considered as an open water body, which has more impacts on the surface energy budget than other cropland does. In this study, we explore how the rice paddy area changes affect Taiwan's regional climate from both observational data and numerical modeling exercise. The Weather Research and Forecasting (WRF) model is utilized to explore impacts of rice paddy area changes on the regional climate, and energy and water budget changes. In addition, temperature datasets from six automatic weather stations in the northern Taiwan and two stations in the southern Taiwan are analyzed in this study to explore how the Daily Temperature Range (DTR) changes with the decreased rice paddy areas. Previous studies show that due to the urban heat island effect, aerosol direct and indirect effects, and global warming, the DTR has decreased in the past 4 decades observed from most of the weather stations around Taiwan. However, the declined rice paddy area may increase the DTR with higher Bowen ratio during the daytime. Preliminary results show that DTR is decreased in weather stations near the urban area, but increased in weather stations near fallow areas in the past 20 years. It shows that different land use changes may have opposite impacts on local and regional climate.

  20. Linking river nutrient concentrations to land use and rainfall in a paddy agriculture-urban area gradient watershed in southeast China.

    PubMed

    Xia, Yongqiu; Ti, Chaopu; She, Dongli; Yan, Xiaoyuan

    2016-10-01

    The effects of land use and land-use changes on river nutrient concentrations are not well understood, especially in the watersheds of developing countries that have a mixed land use of rice paddy fields and developing urban surfaces. Here, we present a three-year study of a paddy agricultural-urban area gradient watershed in southeast China. The annual anthropogenic nitrogen (N) input from the agricultural region to the urban region was high, yet the results showed that the monthly nutrient concentrations in the river were low in the rainy seasons. The nutrient concentrations decreased continuously as the river water passed through the traditional agriculture region (TAR; paddy rice and wheat rotation) and increased substantially in the city region (CR). The traditional agricultural reference region exported most of the nutrient loads at high flows (>1mmd(-1)), the intensified agricultural region (IAR, aquaculture and poultry farming) exported most of the nutrient loads at moderate flows (between 0.5 and 1mmd(-1)), and the CR reference area exported most of the nutrient loads under low to moderate flows. We developed a statistical model to link variations in the nutrient concentrations to the proportion of land-use types and rainfall. The statistical results showed that impervious surfaces, which we interpret as a proxy for urban activities including sewage disposal, were the most important drivers of nutrient concentrations, whereas water surfaces accounted for a substantial proportion of the nutrient sinks. Therefore, to efficiently reduce water pollution, sewage from urban areas must be addressed as a priority, although wetland restoration could also achieve substantial pollutant removal.

  1. Linking river nutrient concentrations to land use and rainfall in a paddy agriculture-urban area gradient watershed in southeast China.

    PubMed

    Xia, Yongqiu; Ti, Chaopu; She, Dongli; Yan, Xiaoyuan

    2016-10-01

    The effects of land use and land-use changes on river nutrient concentrations are not well understood, especially in the watersheds of developing countries that have a mixed land use of rice paddy fields and developing urban surfaces. Here, we present a three-year study of a paddy agricultural-urban area gradient watershed in southeast China. The annual anthropogenic nitrogen (N) input from the agricultural region to the urban region was high, yet the results showed that the monthly nutrient concentrations in the river were low in the rainy seasons. The nutrient concentrations decreased continuously as the river water passed through the traditional agriculture region (TAR; paddy rice and wheat rotation) and increased substantially in the city region (CR). The traditional agricultural reference region exported most of the nutrient loads at high flows (>1mmd(-1)), the intensified agricultural region (IAR, aquaculture and poultry farming) exported most of the nutrient loads at moderate flows (between 0.5 and 1mmd(-1)), and the CR reference area exported most of the nutrient loads under low to moderate flows. We developed a statistical model to link variations in the nutrient concentrations to the proportion of land-use types and rainfall. The statistical results showed that impervious surfaces, which we interpret as a proxy for urban activities including sewage disposal, were the most important drivers of nutrient concentrations, whereas water surfaces accounted for a substantial proportion of the nutrient sinks. Therefore, to efficiently reduce water pollution, sewage from urban areas must be addressed as a priority, although wetland restoration could also achieve substantial pollutant removal. PMID:27289141

  2. Towards Global Simulation of Irrigation in a Land Surface Model: Multiple Cropping and Rice Paddy in Southeast Asia

    NASA Technical Reports Server (NTRS)

    Beaudoing, Hiroko Kato; Rodell, Matthew; Ozdogan, Mutlu

    2010-01-01

    Agricultural land use significantly influences the surface water and energy balances. Effects of irrigation on land surface states and fluxes include repartitioning of latent and sensible heat fluxes, an increase in net radiation, and an increase in soil moisture and runoff. We are working on representing irrigation practices in continental- to global-scale land surface simulation in NASA's Global Land Data Assimilation System (GLDAS). Because agricultural practices across the nations are diverse, and complex, we are attempting to capture the first-order reality of the regional practices before achieving a global implementation. This study focuses on two issues in Southeast Asia: multiple cropping and rice paddy irrigation systems. We first characterize agricultural practices in the region (i.e., crop types, growing seasons, and irrigation) using the Global data set of monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000) dataset. Rice paddy extent is identified using remote sensing products. Whether irrigated or rainfed, flooded fields need to be represented and treated explicitly. By incorporating these properties and processes into a physically based land surface model, we are able to quantify the impacts on the simulated states and fluxes.

  3. Rocket probe electric field measurements in PMSE and NLC regions

    NASA Astrophysics Data System (ADS)

    Bekkeng, J. K.; Pedersen, A.; Moen, J.

    2003-08-01

    Complex AC and DC electric fields are known to be associated with polar mesospheric summer echo (PMSE) density irregularities and noctilucent cloud (NLC) layers. A two-channel prototype electric field instrument based on the double probe technique was developed to measure electric fields on-board a MIDAS (Middle atmosphere Investigation of Dynamics And Structure) sounding rocket. The instrument measures electric field variations up to 4 kHz, with 8 bit resolution. The payload was launched on 2 July 2002 from Andøya Rocket Range (69°N, 16°E) in Norway, in the presence of a PMSE radar backscatter layer located between 82 and 85 km height. The AC measurements in the PMSE region are characterized by spiky waveforms with amplitudes of a few mV/m, and the AC variations were also present in the height region 81-82 km, i.e. below the PMSE and NLC layers.

  4. Relationship between Birkeland current regions, particle precipitation, and electric fields

    NASA Technical Reports Server (NTRS)

    De La Beaujardiere, O.; Watermann, J.; Newell, P.; Rich, F.

    1993-01-01

    The relationship of the large-scale dayside Birkeland currents to large-scale particle precipitation patterns, currents, and convection is examined using DMSP and Sondrestrom radar observations. It is found that the local time of the mantle currents is not limited to the longitude of the cusp proper, but covers a larger local time extent. The mantle currents flow entirely on open field lines. About half of region 1 currents flow on open field lines, consistent with the assumption that the region 1 currents are generated by the solar wind dynamo and flow within the surface that separates open and closed field lines. More than 80 percent of the Birkeland current boundaries do not correspond to particle precipitation boundaries. Region 2 currents extend beyond the plasma sheet poleward boundary; region 1 currents flow in part on open field lines; mantle currents and mantle particles are not coincident. On most passes when a triple current sheet is observed, the convection reversal is located on closed field lines.

  5. Environmental profile of paddy rice cultivation with different straw management.

    PubMed

    Fusi, Alessandra; Bacenetti, Jacopo; González-García, Sara; Vercesi, Annamaria; Bocchi, Stefano; Fiala, Marco

    2014-10-01

    Italy is the most important European country in terms of paddy rice production. North Italian districts such as Vercelli, Pavia, Novara, and Milano are known as some of the world's most advanced rice cultivation sites. In 2013 Italian rice cultivation represented about 50% of all European rice production by area, and paddy fields extended for over 216,000 ha. Cultivation of rice involves different agricultural activities which have environmental impacts mainly due to fossil fuels and agrochemical requirements as well as the methane emission associated with the fermentation of organic material in the flooded rice fields. In order to assess the environmental consequences of rice production in the District of Vercelli, the cultivation practices most frequently carried out were inventoried and evaluated. The general approach of this study was not only to gather the inventory data for rice production and quantify their environmental impacts, but also to identify the key environmental factors where special attention must be paid. Life Cycle Assessment methodology was applied in this study from a cradle-to-farm gate perspective. The environmental profile was analyzed in terms of seven different impact categories: climate change, ozone depletion, human toxicity, terrestrial acidification, freshwater eutrophication, marine eutrophication, and fossil depletion. Regarding straw management, two different scenarios (burial into the soil of the straw versus harvesting) were compared. The analysis showed that the environmental impact was mainly due to field emissions, the fuel consumption needed for the mechanization of field operations, and the drying of the paddy rice. The comparison between the two scenarios highlighted that the collection of the straw improves the environmental performance of rice production except that for freshwater eutrophication. To improve the environmental performance of rice production, solutions to save fossil fuel and reduce the emissions from

  6. Elevated ground-level O3 negatively influences paddy methanogenic archaeal community.

    PubMed

    Feng, Youzhi; Lin, Xiangui; Yu, Yongchang; Zhang, Huayong; Chu, Haiyan; Zhu, Jianguo

    2013-01-01

    The current knowledge regarding the effect of global climate change on rice-paddy methane (CH4) emissions is incomplete, partly because information is limited concerning the mechanism of the microbial response to elevated ground-level ozone (O3). A field experiment was conducted in the China Ozone Free-Air Concentration Enrichment facility in a rice-wheat rotation system to investigate the responses of methanogenic archaeal communities to elevated ground-level O3 by culture-independent and -reliant approaches. We found that elevated ground-level O3 inhibited methanogenic activity and influenced the composition of paddy methanogenic communities, reducing the abundance and diversity of paddy methanogens by adversely affecting dominant groups, such as aceticlastic Methanosaeta, especially at the rice tillering stage. Our results indicated that continuously elevated ground-level O3 would negatively influence paddy methanogenic archaeal communities and its critical ecological function. These findings will contribute to a comprehensive understanding of the responses and feedbacks of paddy ecosystems to global climate change. PMID:24217205

  7. Vector Magnetic Fields of A Solar Polar Region

    NASA Astrophysics Data System (ADS)

    Jin, Chunlan; Wang, Jingxiu

    2011-05-01

    We study the vector magnetic fields of a solar polar region (PR) based on Solar Optical Telescope/Spectro-Polarimeter measurements. To better understand the polar magnetic properties, we compare the observed polar field with that in two solar quiet regions at the limb (QRL) and the disk center (QRD), and with that in a region of a low-latitude coronal hole (CHR). The following results are discussed: (1) The average vertical flux density of PR is 16 G, while the average horizontal flux density is 91 G. If we assume that the observed polar field suffers the same amount of limb weakening in polarization measurements as the Sun's quiet region, the average unsigned flux density in the pole would be 54 G, 60% stronger than that in the CHR. (2) The kG field in the PR occupies 6.7% of the region. The magnetic filling factor in the PR is characterized by a two-peak distribution, which appears at a field strength close to 100 G and 1000 G, respectively. (3) For the network elements, a correlation holds between the vertical and horizontal flux densities, suggesting the same physical entity is manifested by the observed stronger vertical and horizontal components. (4) The ratio of the magnetic flux in the minority polarity to that in the dominant polarity is approximately 0.5, implying that only 1/3 of the magnetic flux in the PR opens to the interplanetary space. Exemplified with CHR by a quasi-linear force-free extrapolation of the observed magnetic field, we find that the photospheric open flux is not always associated with strong vertical magnetic elements.

  8. Carbon Dioxide Flux from Rice Paddy Soils in Central China: Effects of Intermittent Flooding and Draining Cycles

    PubMed Central

    Liu, Yi; Wan, Kai-yuan; Tao, Yong; Li, Zhi-guo; Zhang, Guo-shi; Li, Shuang-lai; Chen, Fang

    2013-01-01

    A field experiment was conducted to (i) examine the diurnal and seasonal soil carbon dioxide (CO2) fluxes pattern in rice paddy fields in central China and (ii) assess the role of floodwater in controlling the emissions of CO2 from soil and floodwater in intermittently draining rice paddy soil. The soil CO2 flux rates ranged from −0.45 to 8.62 µmol.m−2.s−1 during the rice-growing season. The net effluxes of CO2 from the paddy soil were lower when the paddy was flooded than when it was drained. The CO2 emissions for the drained conditions showed distinct diurnal variation with a maximum efflux observed in the afternoon. When the paddy was flooded, daytime soil CO2 fluxes reversed with a peak negative efflux just after midday. In draining/flooding alternating periods, a sudden pulse-like event of rapidly increasing CO2 efflux occured in response to re-flooding after draining. Correlation analysis showed a negative relation between soil CO2 flux and temperature under flooded conditions, but a positive relation was found under drained conditions. The results showed that draining and flooding cycles play a vital role in controlling CO2 emissions from paddy soils. PMID:23437170

  9. ABRUPT LONGITUDINAL MAGNETIC FIELD CHANGES IN FLARING ACTIVE REGIONS

    SciTech Connect

    Petrie, G. J. D.; Sudol, J. J.

    2010-12-01

    We characterize the changes in the longitudinal photospheric magnetic field during 38 X-class and 39 M-class flares within 65{sup 0} of disk center using 1 minute GONG magnetograms. In all 77 cases, we identify at least one site in the flaring active region where clear, permanent, stepwise field changes occurred. The median duration of the field changes was about 15 minutes and was approximately equal for X-class and for M-class flares. The absolute values of the field changes ranged from the detection limit of {approx}10 G to as high as {approx}450 G in two exceptional cases. The median value was 69 G. Field changes were significantly stronger for X-class than for M-class flares and for limb flares than for disk-center flares. Longitudinal field changes less than 100 G tended to decrease longitudinal field strengths, both close to disk center and close to the limb, while field changes greater than 100 G showed no such pattern. Likewise, longitudinal flux strengths tended to decrease during flares. Flux changes, particularly net flux changes near disk center, correlated better than local field changes with GOES peak X-ray flux. The strongest longitudinal field and flux changes occurred in flares observed close to the limb. We estimate the change of Lorentz force associated with each flare and find that this is large enough in some cases to power seismic waves. We find that longitudinal field decreases would likely outnumber increases at all parts of the solar disk within 65{sup 0} of disk center, as in our observations, if photospheric field tilts increase during flares as predicted by Hudson et al.

  10. Chromospheric magnetic fields of an active region filament

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Solanki, S.; Lagg, A.

    2012-06-01

    Vector magnetic fields of an active region filament are co-spatially and co-temporally mapped in photosphere and upper chromosphere, by using spectro-polarimetric observations made by Tenerife Infrared Polarimeter (TIP II) at the German Vacuum Tower Telescope (VTT). A Zeeman-based ME inversion is performed on the full Stokes vectors of both the photospheric Si I 1082.7 nm and the chromospheric He I 1083.0 nm lines. We found that the strong magnetic fields, with the field strength of 600 - 800 G in the He I line formation height, are not uncommon among AR filaments. But such strong magnetic field is not always found in AR filaments.

  11. REGIONAL-SCALE WIND FIELD CLASSIFICATION EMPLOYING CLUSTER ANALYSIS

    SciTech Connect

    Glascoe, L G; Glaser, R E; Chin, H S; Loosmore, G A

    2004-06-17

    The classification of time-varying multivariate regional-scale wind fields at a specific location can assist event planning as well as consequence and risk analysis. Further, wind field classification involves data transformation and inference techniques that effectively characterize stochastic wind field variation. Such a classification scheme is potentially useful for addressing overall atmospheric transport uncertainty and meteorological parameter sensitivity issues. Different methods to classify wind fields over a location include the principal component analysis of wind data (e.g., Hardy and Walton, 1978) and the use of cluster analysis for wind data (e.g., Green et al., 1992; Kaufmann and Weber, 1996). The goal of this study is to use a clustering method to classify the winds of a gridded data set, i.e, from meteorological simulations generated by a forecast model.

  12. Regional United States electric field and GIC hazard impacts (Invited)

    NASA Astrophysics Data System (ADS)

    Gannon, J. L.; Balch, C. C.; Trichtchenko, L.

    2013-12-01

    Geomagnetically Induced Currents (GICs) are primarily driven by impulsive geomagnetic disturbances created by the interaction between the Earth's magnetosphere and sharp velocity, density, and magnetic field enhancements in the solar wind. However, the magnitude of the induced electric field response at the ground level, and therefore the resulting hazard to the bulk power system, is determined not only by magnetic drivers, but also by the underlying geology. Convolution techniques are used to calculate surface electric fields beginning from the spectral characteristics of magnetic field drivers and the frequency response of the local geology. Using these techniques, we describe historical scenarios for regions across the United States, and the potential impact of large events on electric power infrastructure.

  13. Quasistatic electric field structures and field-aligned currents in the polar cusp region

    NASA Astrophysics Data System (ADS)

    Jacobsen, K. S.; Moen, J. I.; Pedersen, A.

    2010-10-01

    Cluster data have been examined for quasi-stationary electric field structures and field-aligned currents (FACs) in the vicinity of the dayside cusp region. We have related the measurements to the Region 1/Region 2 (R1/R2) current system and the cusp current system. It has been theoretically proposed that the dayside R1 current may be located on open field lines, and experimental evidence has been shown for R1 currents partially on open field lines. We document that R1 currents may flow entirely on open field lines. The electric field structures are found to occur at plasma density gradients in the cusp. They are associated with strong FACs with current directions that are consistent with the cusp currents. This indicates that the electric field structures are closely coupled to the cusp current system. The electric equipotential structures linking the perpendicular electric fields seen at Cluster altitudes to field-aligned electric fields at lower altitudes fall into one of two categories: S shape or U shape. Both types are found at both the equatorward edge of the cusp ion dispersion and at the equatorward edge of injection events within the cusp. Previous studies in the nightside auroral region attributed the S-shaped potential structures to the boundary transition between the low-density polar cap and the high-density plasma sheet, concluding that the shape of the electric potential structure depends on whether the plasma populations on each side of the structure can support intense currents. This explanation is not applicable for the S-shaped structures observed in the dayside cusp region.

  14. Phylogenetically Distinct Phylotypes Modulate Nitrification in a Paddy Soil

    PubMed Central

    Zhao, Jun; Wang, Baozhan

    2015-01-01

    Paddy fields represent a unique ecosystem in which regular flooding occurs, allowing for rice cultivation. However, the taxonomic identity of the microbial functional guilds that catalyze soil nitrification remains poorly understood. In this study, we provide molecular evidence for distinctly different phylotypes of nitrifying communities in a neutral paddy soil using high-throughput pyrosequencing and DNA-based stable isotope probing (SIP). Following urea addition, the levels of soil nitrate increased significantly, accompanied by an increase in the abundance of the bacterial and archaeal amoA gene in microcosms subjected to SIP (SIP microcosms) during a 56-day incubation period. High-throughput fingerprints of the total 16S rRNA genes in SIP microcosms indicated that nitrification activity positively correlated with the abundance of Nitrosospira-like ammonia-oxidizing bacteria (AOB), soil group 1.1b-like ammonia-oxidizing archaea (AOA), and Nitrospira-like nitrite-oxidizing bacteria (NOB). Pyrosequencing of 13C-labeled DNA further revealed that 13CO2 was assimilated by these functional groups to a much greater extent than by marine group 1.1a-associated AOA and Nitrobacter-like NOB. Phylogenetic analysis demonstrated that active AOB communities were closely affiliated with Nitrosospira sp. strain L115 and the Nitrosospira multiformis lineage and that the 13C-labeled AOA were related to phylogenetically distinct groups, including the moderately thermophilic “Candidatus Nitrososphaera gargensis,” uncultured fosmid 29i4, and acidophilic “Candidatus Nitrosotalea devanaterra” lineages. These results suggest that a wide variety of microorganisms were involved in soil nitrification, implying physiological diversification of soil nitrifying communities that are constantly exposed to environmental fluctuations in paddy fields. PMID:25724959

  15. Active Region Filaments Might Harbor Weak Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Díaz Baso, C. J.; Martínez González, M. J.; Asensio Ramos, A.

    2016-05-01

    Recent spectropolarimetric observations of active region filaments have revealed polarization profiles with signatures typical of the strong field Zeeman regime. The conspicuous absence in those observations of scattering polarization and Hanle effect signatures was then pointed out by some authors. This was interpreted as either a signature of mixed “turbulent” field components or as a result of optical thickness. In this article, we present a natural scenario to explain these Zeeman-only spectropolarimetric observations of active region (AR) filaments. We propose a two-component model, one on top of the other. Both components have horizontal fields, with the azimuth difference between them being close to 90°. The component that lies lower in the atmosphere is permeated by a strong field of the order of 600 G, while the upper component has much weaker fields, of the order of 10 G. The ensuing scattering polarization signatures of the individual components have opposite signs, so its combination along the line of sight reduces—and even can cancel out—the Hanle signatures, giving rise to an apparent Zeeman-only profile. This model is also applicable to other chromospheric structures seen in absorption above ARs.

  16. A comparison of methane emissions following rice paddies conversion to crab-fish farming wetlands in southeast China.

    PubMed

    Hu, Zhiqiang; Wu, Shuang; Ji, Cheng; Zou, Jianwen; Zhou, Quansuo; Liu, Shuwei

    2016-01-01

    Rice paddies and aquaculture wetlands are typical agricultural wetlands that constitute one of the important sources of atmospheric methane (CH4). Traditional transplanted rice paddies have been experiencing conversion to pond aquaculture wetlands for pursuing higher economic benefits over the past decades in southeast China. A parallel field experiment was carried out to compare CH4 emissions from a transplanted rice paddy and its converted crab-fish farming wetland in southeast China. Over the rice-growing season, CH4 fluxes averaged 1.86 mg m(-2) h(-1) from rice paddies, and 1.14 and 0.50 mg m(-2) h(-1) for the treatments with or without aquatic vegetation present in the crab-fish farming wetlands, respectively. When averaged across the treatments, seasonal CH4 emissions from crab-fish framing wetlands were 52% lower than those from rice paddies. The CH4 fluxes were negatively related to water dissolved oxygen (DO) concentration but positively related to soil/sediment dissolved organic carbon (DOC) content in crab-fish farming wetlands. Dependence of CH4 fluxes on DO or DOC was intensified by the aquatic vegetation presence. By extrapolating the present CH4 emission rate with the current rice paddy-converted aquaculture cultivation area, the seasonal CH4 emissions from inland aquaculture wetlands during the critical farming stage (20 June to 18 October) were estimated to be 33.6 Gg ha(-1) in southeast China in 2012. Rice paddies conversion to crab-fish farming wetlands might have reduced CH4 emissions by 22-54% in mainland China. Results of this study suggest that the conversion of transplanted rice paddies to crab-fish aquaculture wetlands for higher economic benefits would also lead to a lower ecosystem CH4 release rate.

  17. Mercury methylation in paddy soil: source and distribution of mercury species at a Hg mining area, Guizhou Province, China

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Anderson, Christopher W. N.; Qiu, Guangle; Meng, Bo; Wang, Dingyong; Feng, Xinbin

    2016-04-01

    Rice paddy plantation is the dominant agricultural land use throughout Asia. Rice paddy fields have been identified as important sites for methylmercury (MeHg) production in the terrestrial ecosystem and a primary pathway of MeHg exposure to humans in mercury (Hg) mining areas. We compared the source and distribution of Hg species in different compartments of the rice paddy during a complete rice-growing season at two different typical Hg-contaminated mining sites in Guizhou province, China: an abandoned site with a high Hg concentration in soil but a low concentration in the atmosphere and a current-day artisanal site with a low concentration in soil but a high concentration in the atmosphere. Our results showed that the flux of new Hg to the ecosystem from irrigation and atmospheric deposition was insignificant relative to the pool of old Hg in soil; the dominant source of MeHg to paddy soil is in situ methylation of inorganic Hg (IHg). Elevated MeHg concentrations and the high proportion of Hg as MeHg in paddy water and the surface soil layer at the artisanal site demonstrated active Hg methylation at this site only. We propose that the in situ production of MeHg in paddy water and surface soil is dependent on elevated Hg in the atmosphere and the consequential deposition of new Hg into a low-pH anoxic geochemical system. The absence of depth-dependent variability in the MeHg concentration in soil cores collected from the abandoned Hg mining site, consistent with the low concentration of Hg in the atmosphere and high pH of the paddy water and irrigation water, suggested that net production of MeHg at this site was limited. We propose that the concentration of Hg in ambient air is an indicator for the risk of MeHg accumulation in paddy rice.

  18. A comparison of methane emissions following rice paddies conversion to crab-fish farming wetlands in southeast China.

    PubMed

    Hu, Zhiqiang; Wu, Shuang; Ji, Cheng; Zou, Jianwen; Zhou, Quansuo; Liu, Shuwei

    2016-01-01

    Rice paddies and aquaculture wetlands are typical agricultural wetlands that constitute one of the important sources of atmospheric methane (CH4). Traditional transplanted rice paddies have been experiencing conversion to pond aquaculture wetlands for pursuing higher economic benefits over the past decades in southeast China. A parallel field experiment was carried out to compare CH4 emissions from a transplanted rice paddy and its converted crab-fish farming wetland in southeast China. Over the rice-growing season, CH4 fluxes averaged 1.86 mg m(-2) h(-1) from rice paddies, and 1.14 and 0.50 mg m(-2) h(-1) for the treatments with or without aquatic vegetation present in the crab-fish farming wetlands, respectively. When averaged across the treatments, seasonal CH4 emissions from crab-fish framing wetlands were 52% lower than those from rice paddies. The CH4 fluxes were negatively related to water dissolved oxygen (DO) concentration but positively related to soil/sediment dissolved organic carbon (DOC) content in crab-fish farming wetlands. Dependence of CH4 fluxes on DO or DOC was intensified by the aquatic vegetation presence. By extrapolating the present CH4 emission rate with the current rice paddy-converted aquaculture cultivation area, the seasonal CH4 emissions from inland aquaculture wetlands during the critical farming stage (20 June to 18 October) were estimated to be 33.6 Gg ha(-1) in southeast China in 2012. Rice paddies conversion to crab-fish farming wetlands might have reduced CH4 emissions by 22-54% in mainland China. Results of this study suggest that the conversion of transplanted rice paddies to crab-fish aquaculture wetlands for higher economic benefits would also lead to a lower ecosystem CH4 release rate. PMID:26374545

  19. Radiocesium sorption in relation to clay mineralogy of paddy soils in Fukushima, Japan.

    PubMed

    Nakao, Atsushi; Ogasawara, Sho; Sano, Oki; Ito, Toyoaki; Yanai, Junta

    2014-01-15

    Relationships between Radiocesium Interception Potential (RIP) and mineralogical characteristics of the clay fraction isolated from 97 paddy soils (Hama-dori, n = 25; Naka-dori, n = 36; Aizu, n = 36) in Fukushima Prefecture, Japan were investigated to clarify the mineralogical factors controlling the (137)Cs retention ability of soils (half-life 30.1 y). Of all the fission products released by the Fukushima accident, (137)Cs is the most important long-term contributor to the environmental contamination. The RIP, a quantitative index of the (137)Cs retention ability, was determined for the soil clays. The composition of clay minerals in the soil clays was estimated from peak areas obtained using X-ray diffraction (XRD) analyses. The predominant clay mineral was smectite in soils from Hama-dori and Aizu, while this was variable for those from Naka-dori. Native K content of the soil clays was found to be an indicator of the amount of micaceous minerals. The average RIP for the 97 soil clays was 7.8 mol kg(-1), and ranged from 2.4 mol kg(-1) to 19.4 mol kg(-1). The RIP was significantly and positively correlated with native K content for each of the geographical regions, Hama-dori (r = 0.76, p < 0.001), Naka-dori (r = 0.43, p < 0.05), and Aizu (r = 0.76, P < 0.001), while it was not related to the relative abundance of smectite. The linear relationship between RIP and native K content not only indicate a large contribution of micaceous minerals to the (137)Cs retention ability of the soil clays, but also could be used to predict the (137)Cs retention ability of soil clays for other paddy fields in Fukushima and other areas.

  20. Automated detection of open magnetic field regions in EUV images

    NASA Astrophysics Data System (ADS)

    Krista, Larisza Diana; Reinard, Alysha

    2016-05-01

    Open magnetic regions on the Sun are either long-lived (coronal holes) or transient (dimmings) in nature, but both appear as dark regions in EUV images. For this reason their detection can be done in a similar way. As coronal holes are often large and long-lived in comparison to dimmings, their detection is more straightforward. The Coronal Hole Automated Recognition and Monitoring (CHARM) algorithm detects coronal holes using EUV images and a magnetogram. The EUV images are used to identify dark regions, and the magnetogam allows us to determine if the dark region is unipolar - a characteristic of coronal holes. There is no temporal sensitivity in this process, since coronal hole lifetimes span days to months. Dimming regions, however, emerge and disappear within hours. Hence, the time and location of a dimming emergence need to be known to successfully identify them and distinguish them from regular coronal holes. Currently, the Coronal Dimming Tracker (CoDiT) algorithm is semi-automated - it requires the dimming emergence time and location as an input. With those inputs we can identify the dimming and track it through its lifetime. CoDIT has also been developed to allow the tracking of dimmings that split or merge - a typical feature of dimmings.The advantage of these particular algorithms is their ability to adapt to detecting different types of open field regions. For coronal hole detection, each full-disk solar image is processed individually to determine a threshold for the image, hence, we are not limited to a single pre-determined threshold. For dimming regions we also allow individual thresholds for each dimming, as they can differ substantially. This flexibility is necessary for a subjective analysis of the studied regions. These algorithms were developed with the goal to allow us better understand the processes that give rise to eruptive and non-eruptive open field regions. We aim to study how these regions evolve over time and what environmental

  1. Large scale photospheric magnetic field: The diffusion of active region fields

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.; Leighton, R. B.; Howard, R.; Wilcox, J. M.

    1972-01-01

    The large-scale phototospheric magnetic field was computed by allowing observed active region fields to diffuse and to be sheared by differential rotation in accordance with the Leighton (1969) magneto-kinematic model of the solar cycle. The differential rotation of the computed field patterns as determined by autocorrelation curves is similar to that of the observed photospheric field, and poleward of 20 deg. latitude both are significantly different from the differential rotation of the long-lived sunspots (Newton and Nunn, 1951) used as an input into the computations.

  2. Phase unwrapping using region-based markov random field model.

    PubMed

    Dong, Ying; Ji, Jim

    2010-01-01

    Phase unwrapping is a classical problem in Magnetic Resonance Imaging (MRI), Interferometric Synthetic Aperture Radar and Sonar (InSAR/InSAS), fringe pattern analysis, and spectroscopy. Although many methods have been proposed to address this problem, robust and effective phase unwrapping remains a challenge. This paper presents a novel phase unwrapping method using a region-based Markov Random Field (MRF) model. Specifically, the phase image is segmented into regions within which the phase is not wrapped. Then, the phase image is unwrapped between different regions using an improved Highest Confidence First (HCF) algorithm to optimize the MRF model. The proposed method has desirable theoretical properties as well as an efficient implementation. Simulations and experimental results on MRI images show that the proposed method provides similar or improved phase unwrapping than Phase Unwrapping MAx-flow/min-cut (PUMA) method and ZpM method.

  3. Phase unwrapping using region-based markov random field model.

    PubMed

    Dong, Ying; Ji, Jim

    2010-01-01

    Phase unwrapping is a classical problem in Magnetic Resonance Imaging (MRI), Interferometric Synthetic Aperture Radar and Sonar (InSAR/InSAS), fringe pattern analysis, and spectroscopy. Although many methods have been proposed to address this problem, robust and effective phase unwrapping remains a challenge. This paper presents a novel phase unwrapping method using a region-based Markov Random Field (MRF) model. Specifically, the phase image is segmented into regions within which the phase is not wrapped. Then, the phase image is unwrapped between different regions using an improved Highest Confidence First (HCF) algorithm to optimize the MRF model. The proposed method has desirable theoretical properties as well as an efficient implementation. Simulations and experimental results on MRI images show that the proposed method provides similar or improved phase unwrapping than Phase Unwrapping MAx-flow/min-cut (PUMA) method and ZpM method. PMID:21096819

  4. Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data

    NASA Astrophysics Data System (ADS)

    Salmon, J. Meghan; Friedl, Mark A.; Frolking, Steve; Wisser, Dominik; Douglas, Ellen M.

    2015-06-01

    Irrigation accounts for 70% of global water use by humans and 33-40% of global food production comes from irrigated croplands. Accurate and timely information related to global irrigation is therefore needed to manage increasingly scarce water resources and to improve food security in the face of yield gaps, climate change and extreme events such as droughts, floods, and heat waves. Unfortunately, this information is not available for many regions of the world. This study aims to improve characterization of global rain-fed, irrigated and paddy croplands by integrating information from national and sub-national surveys, remote sensing, and gridded climate data sets. To achieve this goal, we used supervised classification of remote sensing, climate, and agricultural inventory data to generate a global map of irrigated, rain-fed, and paddy croplands. We estimate that 314 million hectares (Mha) worldwide were irrigated circa 2005. This includes 66 Mha of irrigated paddy cropland and 249 Mha of irrigated non-paddy cropland. Additionally, we estimate that 1047 Mha of cropland are managed under rain-fed conditions, including 63 Mha of rain-fed paddy cropland and 985 Mha of rain-fed non-paddy cropland. More generally, our results show that global mapping of irrigated, rain-fed, and paddy croplands is possible by combining information from multiple data sources. However, regions with rapidly changing irrigation or complex mixtures of irrigated and non-irrigated crops present significant challenges and require more and better data to support high quality mapping of irrigation.

  5. Measuring Magnetic Fields in Photoionized Interstellar Plasmas (HII Regions)

    NASA Astrophysics Data System (ADS)

    Spangler, Steven; Costa, Allison

    2015-11-01

    Hot luminous stars photoionize the interstellar gas around them, creating plasmas with a very high ionization fraction. In astronomical terminology, these are called HII regions. They are dynamic plasmas, expanding due to overpressure with respect to the interstellar medium. We are making diagnostic measurements to determine the strength and structure of magnetic fields in these objects. This paper presents our results on the Rosette Nebula. We diagnose the magnetic field in the Rosette by measurements of Faraday rotation on lines of sight passing through the nebula. These measurements are made with the Very Large Array radio telescope of the National Radio Astronomy Observatory. We have measurements of the rotation measure for 18 lines of sight. Values of the mean, line of sight component of the magnetic field range from about 3 to 5 microGauss. We will discuss comparison of these measurements with models for modification of the interstellar magnetic field by an HII region. This work was supported by grants AST09-07911 and ATM09-56901 from the National Science Foundation.

  6. Regional Geomagnetic Field Model for Croatia at 2009.5

    NASA Astrophysics Data System (ADS)

    Vujić, Eugen; Brkić, Mario; Kovács, Peter

    2016-02-01

    Geomagnetic data of north, east, and vertical components at Croatian repeat stations and ground survey sites, as well as European geomagnetic observatories and repeat stations, were used to obtain a regional geomagnetic model over Croatia at 2009.5 epoch. Different models were derived, depending on input data, and three modelling techniques were used: Taylor Polynomial, Adjusted Spherical Harmonic Analysis, and Spherical Harmonic Analysis. It was derived that the most accurate model over Croatia was the one when only Croatian data were used, and by using the Adjusted Spherical Harmonic Analysis. Based on Croatian repeat stations' data in the interval 2007.5-2010.5, and a global Enhanced Magnetic Model, it was possible to estimate the crustal field at those sites. It was also done by taking into account the empirical adjustment for long-term external field variations. The higher crustal field values were found at those stations which are on or close to the Adriatic anomaly.

  7. Regional and local geologic structure of the Momotombo field, Nicaragua

    SciTech Connect

    Goldsmith, L.H.

    1980-09-01

    The regional geologic-tectonic setting of northwestern Nicaragua is the result of subduction. Differential plate margin movement and segmentation formed a deep rift paralleling the Middle American Trench. Deep-seated shear faults provided access to sublithospheric magmas to create the Nicaraguan volcanic chain. Volcan Momotombo is the southernmost volcano of the Marabios Range of northern Nicaragua. It hosts a proven geothermal resource known as the Momotombo field, located within a small graben structure and measuring less than one square kilometer. This geothermally productive area appears not to be a geothermal reservoir, but rather part of a thermal convection system. Wells in the central and eastern part of the field have diminished in output and temperature. The presence of a temperature inversion zone, clearly distinguishable in the eastern end of the field, indicates that no conductive heating of the productive zone is taking place.

  8. Microbial phototrophic fixation of atmospheric CO2 in China subtropical upland and paddy soils

    NASA Astrophysics Data System (ADS)

    Ge, Tida; Wu, Xiaohong; Chen, Xiaojuan; Yuan, Hongzhao; Zou, Ziying; Li, Baozhen; Zhou, Ping; Liu, Shoulong; Tong, Chengli; Brookes, Phil; Wu, Jinshui

    2013-07-01

    Autotrophic microorganisms, which can fix atmospheric CO2 to synthesize organic carbon, are numerous and widespread in soils. However, the extent and the mechanism of CO2 fixation in soils remain poorly understood. We incubated five upland and five paddy soils from subtropical China in an enclosed, continuously 14CO2-labeled, atmosphere and measured 14CO2 incorporated into soil organic matter (SOC14) and microbial biomass (MBC14) after 110 days. The five upland soils supported dominant crops soils (maize, wheat, sweet potato, and rapeseed) in the region, while all paddy soils were cultivated in a regime consisting of permanently-flooded double-cropping rice cultivation. The upland and paddy soils represented typical soil types (fluvisols and ultisols) and three landforms (upland, hill, and low mountain), ranging in total carbon from low (<10 g kg-1 soil organic carbon) to medium (10-20 g kg-1) to high (>20 g kg-1). Substantial amounts of 14CO2 were fixed into SOC14 (mean 20.1 ± 7.1 mg C kg-1 in upland soil, 121.1 ± 6.4 mg C kg-1 in paddy soil) in illuminated soils (12 h light/12 h dark), whereas no 14C was fixed in soils incubated in continuous darkness. We concluded that the microbial CO2 fixation was almost entirely phototrophic rather than chemotrophic. The rate of SOC14 synthesis was significantly higher in paddy soils than in upland soils. The SOC14 comprised means of 0.15 ± 0.01% (upland) and 0.65 ± 0.03% (paddy) of SOC. The extent of 14C immobilized as MBC14 and that present as dissolved organic C (DOC14) differed between soil types, accounting for 15.69-38.76% and 5.54-18.37% in upland soils and 15.57-40.03% and 3.67-7.17% of SOC14 in paddy soils, respectively. The MBC14/MBC and DOC14/DOC were 1.76-5.70% and 1.69-5.17% in the upland soils and 4.23-28.73% and 5.65-14.30% in the paddy soils, respectively. Thus, the newly-incorporated C stimulated the dynamics of DOC and MBC more than the dynamics of SOC. The SOC14 and MBC14 concentrations were highly

  9. Magnetic field configuration in a flaring active region

    NASA Astrophysics Data System (ADS)

    Palacios, J.; Balmaceda, L. A.; Vieira, L. E.

    2015-10-01

    The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) provides continuous monitoring of the Sun's vector magnetic field through full-disk photospheric data with both high cadence and high spatial resolution. Here we investigate the evolution of AR 11249 from March 6 to March 7, 2012. We make use of HMI Stokes imaging, SDO/SHARPs, the HMI magnetic field line-of-sight (LOS) maps and the transverse components of the magnetic field as well as LOS velocity maps in order to detect regions with significant flux emergence and/or cancellation. In addition, we apply the Local Correlation Tracking (LCT) technique to the total and signed magnetic flux data and derive maps of horizontal velocity. From this analysis, we were able to pinpoint localized shear regions (and a shear channel) where penumbrae and pore formation areas, with strong linear polarization signals, are stretched and squeezed, showing also important downflows and upflows. We have also utilized Hinode/SP data and compared them to the HMI-SHARPs and the HMI-Stokes spectrograms. The aforementioned shear channel seems to correspond well with the X-class flare main channel of March 7 2012, as observed in AIA/SDO 171, 304 and 1600 Å.

  10. Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils.

    PubMed

    Long, Xi-En; Yao, Huaiying; Wang, Juan; Huang, Ying; Singh, Brajesh K; Zhu, Yong-Guan

    2015-06-16

    Previous studies suggested that microbial photosynthesis plays a potential role in paddy fields, but little is known about chemoautotrophic carbon fixers in drained paddy soils. We conducted a microcosm study using soil samples from five paddy fields to determine the environmental factors and quantify key functional microbial taxa involved in chemoautotrophic carbon fixation. We used stable isotope probing in combination with phospholipid fatty acid (PLFA) and molecular approaches. The amount of microbial (13)CO2 fixation was determined by quantification of (13)C-enriched fatty acid methyl esters and ranged from 21.28 to 72.48 ng of (13)C (g of dry soil)(-1), and the corresponding ratio (labeled PLFA-C:total PLFA-C) ranged from 0.06 to 0.49%. The amount of incorporationof (13)CO2 into PLFAs significantly increased with soil pH except at pH 7.8. PLFA and high-throughput sequencing results indicated a dominant role of Gram-negative bacteria or proteobacteria in (13)CO2 fixation. Correlation analysis indicated a significant association between microbial community structure and carbon fixation. We provide direct evidence of chemoautotrophic C fixation in soils with statistical evidence of microbial community structure regulation of inorganic carbon fixation in the paddy soil ecosystem.

  11. Phylogenetic Distribution of the Capsid Assembly Protein Gene (g20) of Cyanophages in Paddy Floodwaters in Northeast China

    PubMed Central

    Jing, Ruiyong; Liu, Junjie; Yu, Zhenhua; Liu, Xiaobing; Wang, Guanghua

    2014-01-01

    Numerous studies have revealed the high diversity of cyanophages in marine and freshwater environments, but little is currently known about the diversity of cyanophages in paddy fields, particularly in Northeast (NE) China. To elucidate the genetic diversity of cyanophages in paddy floodwaters in NE China, viral capsid assembly protein gene (g20) sequences from five floodwater samples were amplified with the primers CPS1 and CPS8. Denaturing gradient gel electrophoresis (DGGE) was applied to distinguish different g20 clones. In total, 54 clones differing in g20 nucleotide sequences were obtained in this study. Phylogenetic analysis showed that the distribution of g20 sequences in this study was different from that in Japanese paddy fields, and all the sequences were grouped into Clusters α, β, γ and ε. Within Clusters α and β, three new small clusters (PFW-VII∼-IX) were identified. UniFrac analysis of g20 clone assemblages demonstrated that the community compositions of cyanophage varied among marine, lake and paddy field environments. In paddy floodwater, community compositions of cyanophage were also different between NE China and Japan. PMID:24533125

  12. Quasistatic electric field structures and field-aligned currents in the polar cusp region

    NASA Astrophysics Data System (ADS)

    Jacobsen, Knut; Moen, Joran; Pedersen, Arne

    2010-05-01

    Quasistatic electric field structures in the vicinity of the cusp have been studied using Cluster data. There are two categories of electric potential structures, S-shaped and U-shaped. In previous studies in the nightside auroral region, the S-shaped potential was uniquely related to the boundary transition between low density and high density plasma regimes, leading to the conclusion that the electric field profile depends on whether the plasma populations on each side of the boundary can support intense field-aligned and Pedersen currents. In this study in the dayside cusp this is not the case, and a different explanation has to be sought. Most electric field structures are associated with the start of the cusp ion dispersion or with injection signatures within the cusp, and the field-aligned currents associated with these structures are found to be consistent with the cusp currents expected for the IMF By polarity at the time. This indicates that the electric field structures are generated by the cusp current system, or modified by the cusp current system to be consistent with the required currents. Furthermore, we provide firm evidence for the dayside Region 1 current to be located on open field lines, which have been postulated but to our knowledge heretofore not experimentally verified.

  13. Ground cover rice production systems increase soil carbon and nitrogen stocks at regional scale

    NASA Astrophysics Data System (ADS)

    Liu, M.; Dannenmann, M.; Lin, S.; Saiz, G.; Yan, G.; Yao, Z.; Pelster, D. E.; Tao, H.; Sippel, S.; Tao, Y.; Zhang, Y.; Zheng, X.; Zuo, Q.; Butterbach-Bahl, K.

    2015-08-01

    Rice production is increasingly limited by water scarcity. Covering paddy rice soils with films (so-called ground cover rice production system: GCRPS) can significantly reduce water demand as well as overcome temperature limitations at the beginning of the growing season, which results in greater grain yields in relatively cold regions and also in those suffering from seasonal water shortages. However, it has been speculated that both increased soil aeration and temperature under GCRPS result in lower soil organic carbon and nitrogen stocks. Here we report on a regional-scale experiment conducted in Shiyan, a typical rice-producing mountainous area of China. We sampled paired adjacent paddy and GCRPS fields at 49 representative sites. Measured parameters included soil carbon (C) and nitrogen (N) stocks (to 1 m depth), soil physical and chemical properties, δ15N composition of plants and soils, potential C mineralization rates, and soil organic carbon (SOC) fractions at all sampling sites. Root biomass was also quantified at one intensively monitored site. The study showed that: (1) GCRPS increased SOC and N stocks 5-20 years following conversion from traditional paddy systems; (2) there were no differences between GCRPS and paddy systems in soil physical and chemical properties for the various soil depths, with the exception of soil bulk density; (3) GCRPS increased above-ground and root biomass in all soil layers down to a 40 cm depth; (4) δ15N values were lower in soils and plant leaves indicating lower NH3 volatilization losses from GCRPS than in paddy systems; and (5) GCRPS had lower C mineralization potential than that observed in paddy systems over a 200-day incubation period. Our results suggest that GCRPS is an innovative production technique that not only increases rice yields using less irrigation water, but that it also increases SOC and N stocks.

  14. Arsenic release from paddy soils during monsoon flooding

    NASA Astrophysics Data System (ADS)

    Roberts, Linda C.; Hug, Stephan J.; Dittmar, Jessica; Voegelin, Andreas; Kretzschmar, Ruben; Wehrli, Bernhard; Cirpka, Olaf A.; Saha, Ganesh C.; Ashraf Ali, M.; Badruzzaman, A. Borhan M.

    2010-01-01

    Bangladesh relies heavily on groundwater for the irrigation of dry-season rice. However, the groundwater used for irrigation often contains high concentrations of arsenic, potentially jeopardizing the future of rice production in the country. In seasonally flooded fields, topsoil arsenic concentrations decrease during the monsoon season, suggesting that flooding attenuates arsenic accumulation in the soils. Here we examine the chemistry of soil porewater and floodwater during the monsoon season in rice paddies in Munshiganj, Bangladesh, to assess whether flooding releases significant quantities of arsenic from the soils. We estimate that between 51 and 250mgm-2 of soil arsenic is released into floodwater during the monsoon season. This corresponds to a loss of 13-62% of the arsenic added to soils through irrigation each year. The arsenic was distributed throughout the entire floodwater column by vertical mixing and was laterally removed when the floodwater receded. We conclude that monsoon floodwater removes a large amount of the arsenic added to paddy soils through irrigation, and suggest that non-flooded soils are particularly at risk of arsenic accumulation.

  15. [Diversity of microbial genes in paddy soil stressed by cadmium using DGGE].

    PubMed

    Duan, Xue-jun; Min, Hang

    2004-09-01

    Variations of diversity of microbial genes in submerged paddy soil stressed by heavy metal cadmium were studied using modern molecular biotechnology which includes directly extracting total DNA from paddy soil, amplifying 16S rDNA and their V3 variable region by PCR, the denaturing gradient gel electrophoresis (DGGE). Two methods for extraction and purification of microbial DNA were compared. Bacterial communities were quantified by analyzing the DGGE band patterns. The genetic clusters and correlative comparison of bacterial communities were analyzed based on the DGGE finger-print. The results showed that there are some significant differences between bacterial communities in paddy soils treated with different concentrations of cadmium. The information about effect of cadium on microbial population based on molecular biological techniques are conformed with that from traditional methods, but that obtained about variations of microbial genes in paddy soil is much more than results based on the latter methods. It could provide a new way and foundation to research microbial gene diversity in contaminated environment.

  16. Quantifying solar superactive regions with vector magnetic field observations

    NASA Astrophysics Data System (ADS)

    Chen, A. Q.; Wang, J. X.

    2012-07-01

    Context. The vector magnetic field characteristics of superactive regions (SARs) hold the key for understanding why SARs are extremely active and provide the guidance in space weather prediction. Aims: We aim to quantify the characteristics of SARs using the vector magnetograms taken by the Solar Magnetic Field Telescope at Huairou Solar Observatory Station. Methods: The vector magnetic field characteristics of 14 SARs in solar cycles 22 and 23 were analyzed using the following four parameters: 1) the magnetic flux imbalance between opposite polarities; 2) the total photospheric free magnetic energy; 3) the length of the magnetic neutral line with its steep horizontal magnetic gradient; and 4) the area with strong magnetic shear. Furthermore, we selected another eight large and inactive active regions (ARs), which are called fallow ARs (FARs), to compare them with the SARs. Results: We found that most of the SARs have a net magnetic flux higher than 7.0 × 1021 Mx, a total photospheric free magnetic energy higher than 1.0 × 1024 erg cm-1, a magnetic neutral line with a steep horizontal magnetic gradient (≥300 G Mm-1) longer than 30 Mm, and an area with strong magnetic shear (shear angle ≥ 80°) greater than 100 Mm2. In contrast, the values of these parameters for the FARs are mostly very low. The Pearson χ2 test was used to examine the significance of the difference between the SARs and FARs, and the results indicate that these two types of ARs can be fairly distinguished by each of these parameters. The significance levels are 99.55%, 99.98%, 99.98%, and 99.96%, respectively. However, no single parameter can distinguish them perfectly. Therefore we propose a composite index based on these parameters, and find that the distinction between the two types of ARs is also significant with a significance level of 99.96%. These results are useful for a better physical understanding of the SAR and FAR.

  17. Geographical Distribution of Methanogenic Archaea in Nine Representative Paddy Soils in China.

    PubMed

    Zu, Qianhui; Zhong, Linghao; Deng, Ye; Shi, Yu; Wang, Baozhan; Jia, Zhongjun; Lin, Xiangui; Feng, Youzhi

    2016-01-01

    Paddy field methanogenic archaea are responsible for methane (CH4) production and contribute significantly to climate change. The information regarding the spatial variations in the abundance, the diversity and the composition of such ecologically important microbes, however, is quite limited at large scale. In this investigation, we studied the abundance, alpha diversity and geographical distribution of methanogenic archaeal communities in nine representative paddy sites, along a large latitudinal gradient in China, using pyrosequencing and real-time quantitative PCR. It is found that all paddy soils harbor constant methanogenic archaeal constituents, which is dominated by family Methanocellaceae (37.3%), Methanobacteriaceae (22.1%), Methanosaetaceae (17.2%), and Methanosarcinaceae (9.8%). Methanogenic archaeal abundance is primarily influenced by soil C (R = 0.612, P = 0.001) and N (R = 0.673, P = 0.001) contents, as well as alpha diversity by soil pH (PD: R = -0.552, P = 0.006; Chao1: R = -0.615, P = 0.002). Further exploration revealed that both spatial distance (R = 0.3469, P = 0.001, partial mental test) and soil chemical variables mainly about soil C and N (R = 0.2847, P = 0.001) are the two major factors affecting methanogenic archaeal community composition distribution in paddy soils. This finding will allow us to develop a better picture of the biogeographic ranges of these ecologically important microbes and get deeper insights into their ecology. PMID:27679621

  18. Are Symbiotic Methanotrophs Key Microbes for N Acquisition in Paddy Rice Root?

    PubMed

    Minamisawa, Kiwamu; Imaizumi-Anraku, Haruko; Bao, Zhihua; Shinoda, Ryo; Okubo, Takashi; Ikeda, Seishi

    2016-01-01

    The relationships between biogeochemical processes and microbial functions in rice (Oryza sativa) paddies have been the focus of a large number of studies. A mechanistic understanding of methane-nitrogen (CH4-N) cycle interactions is a key unresolved issue in research on rice paddies. This minireview is an opinion paper for highlighting the mechanisms underlying the interactions between biogeochemical processes and plant-associated microbes based on recent metagenomic, metaproteomic, and isotope analyses. A rice symbiotic gene, relevant to rhizobial nodulation and mycorrhization in plants, likely accommodates diazotrophic methanotrophs or the associated bacterial community in root tissues under low-N fertilizer management, which may permit rice plants to acquire N via N2 fixation. The amount of N fixed in rice roots was previously estimated to be approximately 12% of plant N based on measurements of (15)N natural abundance in a paddy field experiment. Community analyses also indicate that methanotroph populations in rice roots are susceptible to environmental conditions such as the microclimate of rice paddies. Therefore, CH4 oxidation by methanotrophs is a driving force in shaping bacterial communities in rice roots grown in CH4-rich environments. Based on these findings, we propose a hypothesis with unanswered questions to describe the interplay between rice plants, root microbiomes, and their biogeochemical functions (CH4 oxidation and N2 fixation). PMID:26960961

  19. Are Symbiotic Methanotrophs Key Microbes for N Acquisition in Paddy Rice Root?

    PubMed Central

    Minamisawa, Kiwamu; Imaizumi-Anraku, Haruko; Bao, Zhihua; Shinoda, Ryo; Okubo, Takashi; Ikeda, Seishi

    2016-01-01

    The relationships between biogeochemical processes and microbial functions in rice (Oryza sativa) paddies have been the focus of a large number of studies. A mechanistic understanding of methane–nitrogen (CH4–N) cycle interactions is a key unresolved issue in research on rice paddies. This minireview is an opinion paper for highlighting the mechanisms underlying the interactions between biogeochemical processes and plant-associated microbes based on recent metagenomic, metaproteomic, and isotope analyses. A rice symbiotic gene, relevant to rhizobial nodulation and mycorrhization in plants, likely accommodates diazotrophic methanotrophs or the associated bacterial community in root tissues under low-N fertilizer management, which may permit rice plants to acquire N via N2 fixation. The amount of N fixed in rice roots was previously estimated to be approximately 12% of plant N based on measurements of 15N natural abundance in a paddy field experiment. Community analyses also indicate that methanotroph populations in rice roots are susceptible to environmental conditions such as the microclimate of rice paddies. Therefore, CH4 oxidation by methanotrophs is a driving force in shaping bacterial communities in rice roots grown in CH4-rich environments. Based on these findings, we propose a hypothesis with unanswered questions to describe the interplay between rice plants, root microbiomes, and their biogeochemical functions (CH4 oxidation and N2 fixation). PMID:26960961

  20. Microprofiling of nitrogen patches in paddy soil: Analysis of spatiotemporal nutrient heterogeneity at the microscale.

    PubMed

    Li, Yilin; Kronzucker, Herbert J; Shi, Weiming

    2016-01-01

    Flooded paddy soil ecosystems in the tropics support the cultivation of the majority of the world's leading crop, rice, and nitrogen (N) availability in the paddy-soil rooting zone limits rice production more than any other nutritional factor. Yet, little is known about the dynamic response of paddy soil to N-fertiliser application, in terms of horizontal and vertical patchiness in N distribution and transformation. Here, we present a microscale analysis of the profile of ammonium (NH4(+)) and nitrate (NO3(-)), nitrification, oxygen (O2water and O2soil), and pH (pHwater and pHsoil) in paddy soils, collected from two representative rice-production areas in subtropical China. NH4(+) and NO3(-) exhibited dramatic spatiotemporal profiles within N patches on the microscale. We show that pHsoil became constant at 1.0-3.5 mm depth, and O2soil became undetectable at 1.7-4.0 mm. Fertiliser application significantly increased pH, and decreased O2, within N patches. Path analysis showed that the factors governing nitrification scaled in the order: pHwater > pHsoil > NH4(+) > O2water > NO3(-) > O2soil. We discuss the soil properties that decide the degree of nutrient patchiness within them and argue that such knowledge is critical to intelligent appraisals of nutrient-use efficiencies in the field. PMID:27265522

  1. Fate of pesticides in combined paddy rice-fish pond farming systems in northern Vietnam.

    PubMed

    Anyusheva, Maria; Lamers, Marc; La, Nguyen; Nguyen, Van Vien; Streck, Thilo

    2012-01-01

    During the last decades, high population growth and export-oriented economics in Vietnam have led to a tremendous intensification of rice production, which in turn has significantly increased the amount of pesticides applied in rice cropping systems. Since pesticides are toxic by design, there is a natural concern on the impact of their presence in the environment on human health and environmental quality. The present study was designed to examine the water regime and fate of pesticides (fenitrothion, dimethoate) during two consecutive rice crop seasons in combined paddy rice-fish pond farming systems in northern Vietnam. Major results revealed that 5 and 41% (dimethoate), and 1 and 17% (fenitrothion) of the applied mass of pesticides were lost from the paddy field to the adjacent fish pond during spring and summer crop seasons, respectively. The decrease of pesticide concentration in paddy surface water was very rapid with dissipation half-life values of 0.3 to 0.8 and 0.2 d for dimethoate and fenitrothion, respectively. Key factors controlling the transport of pesticides were water solubility and paddy water management parameters, such as hydraulic residence time and water holding period. Risk assessment indicates that the exposure to toxic levels of pesticides for aquaculture (, ) is significant, at least shortly after pesticide application.

  2. Geographical Distribution of Methanogenic Archaea in Nine Representative Paddy Soils in China

    PubMed Central

    Zu, Qianhui; Zhong, Linghao; Deng, Ye; Shi, Yu; Wang, Baozhan; Jia, Zhongjun; Lin, Xiangui; Feng, Youzhi

    2016-01-01

    Paddy field methanogenic archaea are responsible for methane (CH4) production and contribute significantly to climate change. The information regarding the spatial variations in the abundance, the diversity and the composition of such ecologically important microbes, however, is quite limited at large scale. In this investigation, we studied the abundance, alpha diversity and geographical distribution of methanogenic archaeal communities in nine representative paddy sites, along a large latitudinal gradient in China, using pyrosequencing and real-time quantitative PCR. It is found that all paddy soils harbor constant methanogenic archaeal constituents, which is dominated by family Methanocellaceae (37.3%), Methanobacteriaceae (22.1%), Methanosaetaceae (17.2%), and Methanosarcinaceae (9.8%). Methanogenic archaeal abundance is primarily influenced by soil C (R = 0.612, P = 0.001) and N (R = 0.673, P = 0.001) contents, as well as alpha diversity by soil pH (PD: R = -0.552, P = 0.006; Chao1: R = -0.615, P = 0.002). Further exploration revealed that both spatial distance (R = 0.3469, P = 0.001, partial mental test) and soil chemical variables mainly about soil C and N (R = 0.2847, P = 0.001) are the two major factors affecting methanogenic archaeal community composition distribution in paddy soils. This finding will allow us to develop a better picture of the biogeographic ranges of these ecologically important microbes and get deeper insights into their ecology. PMID:27679621

  3. Influence of the nonexchangeable potassium of mica on radiocesium uptake by paddy rice.

    PubMed

    Eguchi, Tetsuya; Ohta, Takeshi; Ishikawa, Tetsuya; Matsunami, Hisaya; Takahashi, Yoshihiko; Kubo, Katashi; Yamaguchi, Noriko; Kihou, Nobuharu; Shinano, Takuro

    2015-09-01

    A pot cultivation experiment was conducted to elucidate the influence of the nonexchangeable potassium (K) of mica on radiocesium ((137)Cs) uptake by paddy rice (Oryza sativa L. cv. Koshihikari), and to evaluate the potential of mica application as a countermeasure to reduce radiocesium transfer from soil to paddy rice. The increase in the exchangeable K concentrations of soils, measured before planting, due to mica (muscovite, biotite, and phlogopite) application was negligible. However, in trioctahedral mica (biotite and phlogopite)-treated soil, the release of nonexchangeable K from the mica interlayer maintained the soil-solution K at a higher level during the growing season in comparison to the control, and consequently decreased the (137)Cs transfer factor for brown rice (TF). The sodium tetraphenylboron (TPB)-extractable K concentration of the soils, measured before planting, was strongly negatively correlated with the TF, whereas the exchangeable K concentration of the soils, also measured before planting, was not correlated with the TF. Therefore, we conclude that TPB-extractable K is more reliable than exchangeable K as a basis of fertilizer recommendations for radiocesium-contaminated paddy fields. Phlogopite-treated soils exhibited higher TPB-extractable K concentrations and lower TF values than biotite-treated soils. We thus conclude that phlogopite application is an effective countermeasure to reduce radiocesium uptake in paddy rice.

  4. Geographical Distribution of Methanogenic Archaea in Nine Representative Paddy Soils in China

    PubMed Central

    Zu, Qianhui; Zhong, Linghao; Deng, Ye; Shi, Yu; Wang, Baozhan; Jia, Zhongjun; Lin, Xiangui; Feng, Youzhi

    2016-01-01

    Paddy field methanogenic archaea are responsible for methane (CH4) production and contribute significantly to climate change. The information regarding the spatial variations in the abundance, the diversity and the composition of such ecologically important microbes, however, is quite limited at large scale. In this investigation, we studied the abundance, alpha diversity and geographical distribution of methanogenic archaeal communities in nine representative paddy sites, along a large latitudinal gradient in China, using pyrosequencing and real-time quantitative PCR. It is found that all paddy soils harbor constant methanogenic archaeal constituents, which is dominated by family Methanocellaceae (37.3%), Methanobacteriaceae (22.1%), Methanosaetaceae (17.2%), and Methanosarcinaceae (9.8%). Methanogenic archaeal abundance is primarily influenced by soil C (R = 0.612, P = 0.001) and N (R = 0.673, P = 0.001) contents, as well as alpha diversity by soil pH (PD: R = -0.552, P = 0.006; Chao1: R = -0.615, P = 0.002). Further exploration revealed that both spatial distance (R = 0.3469, P = 0.001, partial mental test) and soil chemical variables mainly about soil C and N (R = 0.2847, P = 0.001) are the two major factors affecting methanogenic archaeal community composition distribution in paddy soils. This finding will allow us to develop a better picture of the biogeographic ranges of these ecologically important microbes and get deeper insights into their ecology.

  5. Effect of Drying on Heavy Metal Fraction Distribution in Rice Paddy Soil

    PubMed Central

    Qi, Yanbing; Huang, Biao; Darilek, Jeremy Landon

    2014-01-01

    An understanding of how redox conditions affect soil heavy metal fractions in rice paddies is important due to its implications for heavy metal mobility and plant uptake. Rice paddy soil samples routinely undergo oxidation prior to heavy metal analysis. Fraction distribution of Cu, Pb, Ni, and Cd from paddy soil with a wide pH range was investigated. Samples were both dried according to standard protocols and also preserved under anaerobic conditions through the sampling and analysis process and heavy metals were then sequentially extracted for the exchangeable and carbonate bound fraction (acid soluble fraction), iron and manganese oxide bound fraction (reducible fraction), organic bound fraction (oxidizable fraction), and residual fraction. Fractions were affected by redox conditions across all pH ranges. Drying decreased reducible fraction of all heavy metals. Curesidual fraction, Pboxidizable fraction, Cdresidual fraction, and Niresidual fraction increased by 25%, 33%, 35%, and >60%, respectively. Pbresidual fraction, Niacid soluble fraction, and Cdoxidizable fraction decreased 33%, 25%, and 15%, respectively. Drying paddy soil prior to heavy metal analysis overestimated Pb and underestimated Cu, Ni, and Cd. In future studies, samples should be stored after injecting N2 gas to maintain the redox potential of soil prior to heavy metal analysis, and investigate the correlation between heavy metal fraction distribution under field conditions and air-dried samples. PMID:24823670

  6. The economics of irrigated paddy in Usangu Basin in Tanzania: water utilization, productivity, income and livelihood implications

    NASA Astrophysics Data System (ADS)

    Kadigi, Reuben M. J.; Kashaigili, Japhet J.; Mdoe, Ntengua S.

    Globally, there is a general lack of consensus on how the available water resources can be allocated efficiently and equitably among its competing uses. In irrigated agriculture, this decodes to the central question of how this sector can be balanced in the manner that it produces more ‘crops per drop’ using less water and releasing adequate water for use by other sectors while concurrently enhancing rural income and livelihoods. This requires that the values and costs of irrigated agriculture, at all levels, are well understood and appropriate interventions made. Based on this ground, this paper presents an economic analysis of the value of irrigated paddy in Usangu basin. It attempts to answer the question of what will be the effects if farmers in Usangu stop producing irrigated paddy. The analysis shows that: (a) about 576 mm 3 of water--currently consumed in paddy irrigation, or 345.6 mm 3--traded inter-regionally as “virtual water” would be utilized in alternative ways, either as evaporation from seasonal swamps within the basin or made available for other intersectoral uses, (b) there will be a shrinkage in the annual paddy supply (both at the local and national levels) of about 105,000 t of paddy (66,000 t of rice)-equivalent to 14.4% of the total annual paddy production in Tanzania, (c) an opportunity cost of about US15.9 million will be incurred annually (equivalent to US530.95 per annum per household practicing irrigated paddy in Usangu), and d) the country’s current account of the balance of payments will be affected by an average of US$15.9 million per annum. The effect will either be in form of annual decline in rice exports or increase in imports depending on the country’s supply and demand for rice.

  7. 5 CFR Appendix II to Part 1201 - Appropriate Regional or Field Office for Filing Appeals

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Appropriate Regional or Field Office for... Regional or Field Office for Filing Appeals All submissions shall be addressed to the Regional Director, if submitted to a regional office, or the Chief Administrative Judge, if submitted to a field office,...

  8. 5 CFR Appendix II to Part 1201 - Appropriate Regional or Field Office for Filing Appeals

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Appropriate Regional or Field Office for... Regional or Field Office for Filing Appeals All submissions shall be addressed to the Regional Director, if submitted to a regional office, or the Chief Administrative Judge, if submitted to a field office,...

  9. An analysis of the flow field in the region of the ASRM field joints

    NASA Technical Reports Server (NTRS)

    Dill, Richard A.; Whitesides, Harold R.

    1992-01-01

    The flow field in the region of a solid rocket motor field joint is very important since fluid dynamic and mechanical propellant stresses can couple to cause a motor failure at a joint. Presented here is an examination of the flow field in the region of the Advanced Solid Rocket Motor (ASRM) field joints. The analyses were performed as a first step in assessing the design of the ASRM forward and aft field joints in order to assure the proper operation of the motor prior to further development of test firing. The analyses presented here were performed by employing a two-dimensional axisymmetric assumption. Fluent/BFC, a three dimensional full Navier-Stokes flow field code, was used to make the numerical calculations. This code utilizes a staggered grid formulation along with the SIMPLER numerical algorithm. Wall functions are used to determine the character of the laminar sublayer, and a standard kappa-epsilon turbulence model is used to close the fluid dynamic equations. The analyses performed to this date verify that the ASRM field joint design operates properly. The fluid dynamic stresses at the field joints are small due to the inherent design of the field joints. A problem observed in some other solid rocket motors is that large fluid dynamic stresses are generated at the motor joint on the downstream propellant grain due to forward facing step geometries. The design of the ASRM field joints are such that this is not a problem as shown by the analyses. Also, the analyses of the inhibitor stub left protruding into the port flow from normal propellant burn back show that more information is necessary to complete these analyses. These analyses were performed as parametric analyses in relation to the height of the inhibitor stub left protruding into the motor port. A better estimate of the amount of the inhibitor stub remaining at later burn times must be determined since the height which the inhibitor stub protrudes into the port flow drastically affects the fluid

  10. An analysis of the flow field in the region of the ASRM field joints

    NASA Astrophysics Data System (ADS)

    Dill, Richard A.; Whitesides, Harold R.

    1992-07-01

    The flow field in the region of a solid rocket motor field joint is very important since fluid dynamic and mechanical propellant stresses can couple to cause a motor failure at a joint. Presented here is an examination of the flow field in the region of the Advanced Solid Rocket Motor (ASRM) field joints. The analyses were performed as a first step in assessing the design of the ASRM forward and aft field joints in order to assure the proper operation of the motor prior to further development of test firing. The analyses presented here were performed by employing a two-dimensional axisymmetric assumption. Fluent/BFC, a three dimensional full Navier-Stokes flow field code, was used to make the numerical calculations. This code utilizes a staggered grid formulation along with the SIMPLER numerical algorithm. Wall functions are used to determine the character of the laminar sublayer, and a standard kappa-epsilon turbulence model is used to close the fluid dynamic equations. The analyses performed to this date verify that the ASRM field joint design operates properly. The fluid dynamic stresses at the field joints are small due to the inherent design of the field joints. A problem observed in some other solid rocket motors is that large fluid dynamic stresses are generated at the motor joint on the downstream propellant grain due to forward facing step geometries. The design of the ASRM field joints are such that this is not a problem as shown by the analyses. Also, the analyses of the inhibitor stub left protruding into the port flow from normal propellant burn back show that more information is necessary to complete these analyses. These analyses were performed as parametric analyses in relation to the height of the inhibitor stub left protruding into the motor port. A better estimate of the amount of the inhibitor stub remaining at later burn times must be determined since the height which the inhibitor stub protrudes into the port flow drastically affects the fluid

  11. A Case Study for Salt Injury on Paddy Rice due to Ground Liquefaction Caused by the 2011 off the Pacific Coast of Tohoku Earthquake in Japan

    NASA Astrophysics Data System (ADS)

    Zukemura, C.; Kitagawa, I.; Wakasugi, K.; Haraguchi, N.

    2012-12-01

    About 24000 ha of farmlands were heavily damaged by the 2011 off the Pacific Coast of Tohoku Earthquake in the following two patterns; (i) an invasion of the sea water caused by tsunami in the coastal agricultural areas, (ii) a ground liquefaction around inland rivers. In the past case, ground liquefaction caused damage, for example, cracks or mixing sand boil into topsoil. This is the first report on a case of salt injury to paddy rice due to ground liquefaction. Rice paddies along the downstream of the Tone River were suffered from a large amount of sand boils due to the ground liquefaction. At one paddy fields at 50 km from mouth of the Tone River, farmers temporarily repaired their paddy fields and planted rice in may, 2011. The surface of the rice paddy field was speckled with sand boils. A week after planting, the authors incidentally found salt injury on the growth of rice plant at the paddy fields. Sand boil contained much more chlorine ion, sodium, sulfide ion than preexisting top soil. This data suggested that sand boil contained salt moved from underground to the surface of paddy fields. During May and September in 2011, the salt injury paddy fields was supplied irrigation water pumping from drainage canal, because irrigation facilities was destroyed by ground liquefaction. The electrical conductivity (EC) of water in the drainage canal ranged from 2 to 8, much higher than the salt-tolerant limit for rice. Consequently, the yield of the rice in the salt injury rice field due to ground liquefaction ranged from 55 to 107 kg/10a, much lower than the usual (about 450 kg/10a). The result of the yield was 55 kg/10a got around sand boil, on the other hand, the yield was 107 kg/10a got preexisting top soil area using drainage water contained salt. The yield of the whole paddy fields which size was 50 a was bad, but the yield around sand boil area was much worse. This case reported that chemical components in the boiled materials should be paid more attention if

  12. Magnetic field measurements in and above a limb active region

    NASA Astrophysics Data System (ADS)

    Philip, Judge

    2013-07-01

    We analyze spectropolarimetric data of a limb active region (NOAA 11302) obtained on September 22nd 2011 using the Facility Infrared Spectrometer (FIRS) at the Dunn Solar Telescope (DST). Stokes profiles including lines of Si I 1028.7 nm and He I 1083 nm were obtained in three scans over a 45"x75" area. Simultaneous narrow band Ca II K and G-band intensity data were acquired with a cadence of 5s at the DST. The He I data show not only typical active region polarization signatures, but also signatures in plumes -- cool post flare loops -- which extend many Mm into the corona across the visible limb. The plumes have remarkably uniform brightness, and the plume plasma is significantly Doppler shifted as it drains from the corona. Using carefully constructed observing and calibration sequences and applying Principal Component Analysis to remove instrumental artifacts, we achieved a polarization sensitivity approaching 0.02%. With this sensitivity we attempt to diagnose the vector magnetic fields and plasma properties of chromospheric and cool coronal material in and above NOAA 11302. Inversions using various radiative transfer models in the HAZEL code are remarkably consistent with the idea that plume spectra are formed in a simple, slab-like geometry, but that the ``disk'' spectra are formed under more traditional models (Milne-Eddington). The inverted magnetic data of He I lines are compared with photospheric inversions of DST Si I and Fe I data from the Solar Dynamics Observatory.

  13. Generation and Suppression of E Region Artificial Field Aligned Irregularities

    NASA Astrophysics Data System (ADS)

    Miceli, R. J.; Hysell, D. L.; Munk, J.; Han, S.

    2012-12-01

    Artificial field-aligned plasma density irregularities (FAIs) were generated in the E region of the ionosphere above the High Frequency Active Auroral Research Program (HAARP) facility during campaigns in May and August of 2012 and were quantified using a 30 MHz coherent scatter radar in Homer, Alaska. The purpose of the experiment was to analyze the X-mode suppression of FAIs generated from O-mode heating and to measure the threshold required to excite thermal parametric instabilities. The irregularities were excited by gradually increasing the power of a zenith pointing O-mode emission transmitted at a frequency of 2.75 MHz. To suppress the irregularities, a second X-mode emission at a higher frequency was added on alternating power cycles. The Homer radar measured the signal-to-noise ratio, Doppler shift, and spectral width of echoes reflected from the irregularities. We will calculate the threshold electric field required to excite the irregularities and compare with similar experiments in order to better understand the thermal parametric instability.

  14. The effects of magnetic field in plume region on the performance of multi-cusped field thruster

    SciTech Connect

    Hu, Peng Liu, Hui Yu, Daren; Gao, Yuanyuan; Mao, Wei

    2015-10-15

    The performance characteristics of a Multi-cusped Field Thruster depending on the magnetic field in the plume region were investigated. Five magnetic field shielding rings were separately mounted near the exit of discharge channel to decrease the strength of magnetic field in the plume region in different levels, while the magnetic field in the upstream was well maintained. The test results show that the electron current increases with the decrease of magnetic field strength in the plume region, which gives rise to higher propellant utilization and lower current utilization. On the other hand, the stronger magnetic field in the plume region improves the performance at low voltages (high current mode) while lower magnetic field improves the performance at high voltages (low current mode). This work can provide some optimal design ideas of the magnetic strength in the plume region to improve the performance of thruster.

  15. Investigating Arsenic Mobilization Mechanisms as well as Complexation Between Arsenic and Polysulfides Associated With a Bangladeshi Rice Paddy

    NASA Astrophysics Data System (ADS)

    Lin, T.; Kampalath, R.; Jay, J.

    2009-12-01

    The presence of arsenic in the groundwater has led to the largest environmental poisoning in history. Although it is a worldwide issue that affects numerous countries, including Taiwan, Bangladesh, India, China, Mexico, Peru, Australia, and the United States, the issue is of greatest concern in the West Bengal region. In the Ganges Delta, as many as 2 million people are diagnosed with arsenicosis each year. The World Health Organization (WHO) estimates 200,000 to 270,000 arsenic-induced cancer-related deaths in Bangladesh alone. More than 100 million people in the country consume groundwater that exceeds the WHO limit as 50% of the 8 million wells contain groundwater with more than 10 μg/L. Despite the tragic public health implications of this problem, we do not yet have a complete answer to the question of why dissolved arsenic concentrations are so high in the groundwater of the Ganges Delta. Since 1999, we have been intensively studying a field site in Munshiganj, Bangladesh with extremely high levels of arsenic in groundwater (up to 1.2 mg/L). Sediment cores were collected from two locations at the field site: 1) the rice paddy and 2) edge of a nearby irrigation pond. Recharge from irrigation ponds have recently been hypothesized to be an important site of arsenic mobilization. Recent work has proposed mineral dissolution under phosphorus-limited conditions as an important mechanism for arsenic mobilization. Using microcosms with paddy and pond sediment, we are comparing arsenic release via this mechanism with that resulting from reduction of iron hydroxides at our site. Concurrently, we are looking at enhanced solubility of As in the presence of polysulfides as the effects of elemental sulfur on As solubility have not been well researched. We hypothesize that the presence of elemental sulfur, and consequent formation of polysulfides, will substantially increase the solubility of orpiment in sulfidic water and that sorption of these complexes will

  16. Modeling the effect of rainfall intensity on soil-water nutrient exchange in flooded rice paddies and implications for nitrate fertilizer runoff to the Oita River in Japan

    NASA Astrophysics Data System (ADS)

    Higashino, Makoto; Stefan, Heinz G.

    2014-11-01

    This paper examines the effect of rainfall intensity on nutrient exchange at the soil-water interface of rice paddy fields and the implications to nitrate runoff to the Oita River. The Oita River Basin on Kyushu Island in Japan covers 650 km2 of which 11% are used for agriculture (rice). During the monsoon season in June/July, the heavily fertilized paddy fields are flooded and large amounts of NO3-N are discharged to the Oita River. A model has been developed for the NO3-N release in the rice paddy fields. The model focuses on the effect of rainfall intensity. It assumes that in addition to increased surface runoff and infiltration, the monsoon rain enhances pore water flow and causes nitrate release from the soil by dynamic pressure fluctuations at the soil/water interface. The magnitude of NO3-N release from paddy fields is described by the simulated soil/water exchange velocity (W) which increases with rising rainfall intensity and hydraulic conductivity, and is on the order of 10-2 to 10-6 cm/s. When the river flow rises due to precipitation (monsoon), the NO3-N load rises almost proportionately to the river discharge, and with little delay. Measured unit NO3-N loads in the Oita River per day and m2 of paddy fields were nearly proportional to precipitation intensity R (R1.042) and so were modeled unit NO3-N release rates in the paddy fields (R1.095). This result suggests that raindrop-induced pumping is an important if not crucial process that enhances NO3-N runoff from rice paddy fields. An implication is that the nutrient loading of surface water bodies may grow as the occurrence of extreme rainfall events increases with climate change.

  17. Efficiency evaluation for remediating paddy soil contaminated with cadmium and arsenic using water management, variety screening and foliage dressing technologies.

    PubMed

    Liao, Guojian; Wu, Qianhua; Feng, Renwei; Guo, Junkang; Wang, Ruigang; Xu, Yingming; Ding, Yongzhen; Fan, Zhilian; Mo, Liangyu

    2016-04-01

    Paddy soils in many regions of China have been seriously polluted by multiple heavy metals or metalloids, such as arsenic (As), cadmium (Cd) and lead (Pb). In order to ensure the safety of food and take full advantage of the limited farmland resources of China, exploring an effective technology to repair contaminated soils is urgent and necessary. In this study, three technologies were employed, including variety screening, water management and foliage dressing, to assess their abilities to reduce the accumulation of Cd and As in the grains of different rice varieties, and meanwhile monitor the related yields. The results of variety screening under insufficient field drying condition showed that the As and Cd contents in the grains of only four varieties [Fengliangyouxiang 1 (P6), Zhongzheyou 8 (P7), Guangliangyou 1128 (P10), Y-liangyou 696 (P11)] did not exceed their individual national standard. P6 gained a relatively high grain yield but accumulated less As and Cd in the grains despite of the relatively high As and Cd concentrations in the rhizosphere soil. However, long-playing field drying in water management trial significantly increased Cd but decreased As content in the grains of all tested three varieties including P6, suggesting an important role of water supply in controlling the accumulation of grain As and Cd. Selenium (Se) showed a stronger ability than silicon (Si) to reduce As and Cd accumulation in the grains of Fengliangyou 4 (P2) and Teyou 524 (P13), and keep the yields. The results of this study suggest that combined application of water management and foliage dressing may be an efficient way to control As and Cd accumulation in the grains of paddy rice exposing to As- and Cd-contaminated soils. PMID:26807822

  18. Efficiency evaluation for remediating paddy soil contaminated with cadmium and arsenic using water management, variety screening and foliage dressing technologies.

    PubMed

    Liao, Guojian; Wu, Qianhua; Feng, Renwei; Guo, Junkang; Wang, Ruigang; Xu, Yingming; Ding, Yongzhen; Fan, Zhilian; Mo, Liangyu

    2016-04-01

    Paddy soils in many regions of China have been seriously polluted by multiple heavy metals or metalloids, such as arsenic (As), cadmium (Cd) and lead (Pb). In order to ensure the safety of food and take full advantage of the limited farmland resources of China, exploring an effective technology to repair contaminated soils is urgent and necessary. In this study, three technologies were employed, including variety screening, water management and foliage dressing, to assess their abilities to reduce the accumulation of Cd and As in the grains of different rice varieties, and meanwhile monitor the related yields. The results of variety screening under insufficient field drying condition showed that the As and Cd contents in the grains of only four varieties [Fengliangyouxiang 1 (P6), Zhongzheyou 8 (P7), Guangliangyou 1128 (P10), Y-liangyou 696 (P11)] did not exceed their individual national standard. P6 gained a relatively high grain yield but accumulated less As and Cd in the grains despite of the relatively high As and Cd concentrations in the rhizosphere soil. However, long-playing field drying in water management trial significantly increased Cd but decreased As content in the grains of all tested three varieties including P6, suggesting an important role of water supply in controlling the accumulation of grain As and Cd. Selenium (Se) showed a stronger ability than silicon (Si) to reduce As and Cd accumulation in the grains of Fengliangyou 4 (P2) and Teyou 524 (P13), and keep the yields. The results of this study suggest that combined application of water management and foliage dressing may be an efficient way to control As and Cd accumulation in the grains of paddy rice exposing to As- and Cd-contaminated soils.

  19. Forecasting auroras from regional and global magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Kauristie, Kirsti; Myllys, Minna; Partamies, Noora; Viljanen, Ari; Peitso, Pyry; Juusola, Liisa; Ahmadzai, Shabana; Singh, Vikramjit; Keil, Ralf; Martinez, Unai; Luginin, Alexej; Glover, Alexi; Navarro, Vicente; Raita, Tero

    2016-06-01

    We use the connection between auroral sightings and rapid geomagnetic field variations in a concept for a Regional Auroral Forecast (RAF) service. The service is based on statistical relationships between near-real-time alerts issued by the NOAA Space Weather Prediction Center and magnetic time derivative (dB/dt) values measured by five MIRACLE magnetometer stations located in Finland at auroral and sub-auroral latitudes. Our database contains NOAA alerts and dB/dt observations from the years 2002-2012. These data are used to create a set of conditional probabilities, which tell the service user when the probability of seeing auroras exceeds the average conditions in Fennoscandia during the coming 0-12 h. Favourable conditions for auroral displays are associated with ground magnetic field time derivative values (dB/dt) exceeding certain latitude-dependent threshold values. Our statistical analyses reveal that the probabilities of recording dB/dt exceeding the thresholds stay below 50 % after NOAA alerts on X-ray bursts or on energetic particle flux enhancements. Therefore, those alerts are not very useful for auroral forecasts if we want to keep the number of false alarms low. However, NOAA alerts on global geomagnetic storms (characterized with Kp values > 4) enable probability estimates of > 50 % with lead times of 3-12 h. RAF forecasts thus rely heavily on the well-known fact that bright auroras appear during geomagnetic storms. The additional new piece of information which RAF brings to the previous picture is the knowledge on typical storm durations at different latitudes. For example, the service users south of the Arctic Circle will learn that after a NOAA ALTK06 issuance in night, auroral spotting should be done within 12 h after the alert, while at higher latitudes conditions can remain favourable during the next night.

  20. Ground cover rice production system facilitates soil carbon and nitrogen stocks at regional scale

    NASA Astrophysics Data System (ADS)

    Liu, M.; Dannenmann, M.; Lin, S.; Saiz, G.; Yan, G.; Yao, Z.; Pelster, D.; Tao, H.; Sippel, S.; Tao, Y.; Zhang, Y.; Zheng, X.; Zuo, Q.; Butterbach-Bahl, K.

    2015-02-01

    Rice production is increasingly challenged by irrigation water scarcity, however covering paddy rice soils with films (ground cover rice production system: GCRPS) can significantly reduce water demand as well as overcome temperature limitations at the beginning of the vegetation period resulting in increased grain yields in colder regions of rice production with seasonal water shortages. It has been speculated that the increased soil aeration and temperature under GCRPS may result in losses of soil organic carbon and nitrogen stocks. Here we report on a regional scale experiment, conducted by sampling paired adjacent Paddy and GCRPS fields at 49 representative sites in the Shiyan region, which is typical for many mountainous areas across China. Parameters evaluated included soil C and N stocks, soil physical and chemical properties, potential carbon mineralization rates, fractions of soil organic carbon and stable carbon isotopic composition of plant leaves. Furthermore, root biomass was quantified at maximum tillering stage at one of our paired sites. Against expectations the study showed that: (1) GCRPS significantly increased soil organic C and N stocks 5-20 years following conversion of production systems, (2) there were no differences between GCRPS and Paddy in soil physical and chemical properties for the various soil depths with the exception of soil bulk density, (3) GCRPS had lower mineralization potential for soil organic C compared with Paddy over the incubation period, (4) GCRPS showed lower δ15N in the soils and plant leafs indicating less NH3 volatilization in GCRPS than in Paddy; and (5) GCRPS increased yields and root biomass in all soil layers down to 40 cm depth. Our results suggest that GCRPS is an innovative rice production technique that not only increases yields using less irrigation water, but that it also is environmentally beneficial due to increased soil C and N stocks at regional scale.

  1. Wide Field Imaging of the Hubble Deep Field-South Region III: Catalog

    NASA Technical Reports Server (NTRS)

    Palunas, Povilas; Collins, Nicholas R.; Gardner, Jonathan P.; Hill, Robert S.; Malumuth, Eliot M.; Rhodes, Jason; Teplitz, Harry I.; Woodgate, Bruce E.

    2002-01-01

    We present 1/2 square degree uBVRI imaging around the Hubble Deep Field - South. These data have been used in earlier papers to examine the QSO population and the evolution of the correlation function in the region around the HDF-S. The images were obtained with the Big Throughput Camera at CTIO in September 1998. The images reach 5 sigma limits of u approx. 24.4, B approx. 25.6, V approx. 25.3, R approx. 24.9 and I approx. 23.9. We present a catalog of approx. 22,000 galaxies. We also present number-magnitude counts and a comparison with other observations of the same field. The data presented here are available over the world wide web.

  2. Carbon isotope fractionation reveals distinct process of CH4 emission from different compartments of paddy ecosystem

    PubMed Central

    Zhang, Guangbin; Yu, Haiyang; Fan, Xianfang; Ma, Jing; Xu, Hua

    2016-01-01

    Carbon isotopic fractionations in the processes of CH4 emission from paddy field remain poorly understood. The δ13C-values of CH4 in association with production, oxidation and transport of CH4 in different pools of a paddy field were determined, and the stable carbon isotope fractionations were calibrated to assess relative contribution of acetate to CH4 production (fac) and fraction of CH4 oxidized (fox) by different pathways. The apparent isotope fractionation for CO2 conversion to CH4 (αapp) was 1.041–1.056 in the soil and 1.046–1.080 on the roots, indicating that fac was 10–60% and 0–50%, respectively. Isotope fractionation associated with CH4 oxidation (αox) was 1.021 ± 0.007 in the soil and 1.013 ± 0.005 on the roots, and the transport fractionation (εtransport) by rice plants was estimated to be −16.7‰ ~ −11.1‰. Rhizospheric fox was about 30–100%, and it was more important at the beginning but decreased fast towards the end of season. Large value of fox was also observed at the soil-water interface and soil and roots surfaces, respectively. The results demonstrate that carbon isotopic fractionations which might be different in different conditions were sensitive to the estimations of fac and fox in paddy field. PMID:27251886

  3. Carbon isotope fractionation reveals distinct process of CH4 emission from different compartments of paddy ecosystem

    NASA Astrophysics Data System (ADS)

    Zhang, Guangbin; Yu, Haiyang; Fan, Xianfang; Ma, Jing; Xu, Hua

    2016-06-01

    Carbon isotopic fractionations in the processes of CH4 emission from paddy field remain poorly understood. The δ13C-values of CH4 in association with production, oxidation and transport of CH4 in different pools of a paddy field were determined, and the stable carbon isotope fractionations were calibrated to assess relative contribution of acetate to CH4 production (fac) and fraction of CH4 oxidized (fox) by different pathways. The apparent isotope fractionation for CO2 conversion to CH4 (αapp) was 1.041–1.056 in the soil and 1.046–1.080 on the roots, indicating that fac was 10–60% and 0–50%, respectively. Isotope fractionation associated with CH4 oxidation (αox) was 1.021 ± 0.007 in the soil and 1.013 ± 0.005 on the roots, and the transport fractionation (εtransport) by rice plants was estimated to be ‑16.7‰ ~ ‑11.1‰. Rhizospheric fox was about 30–100%, and it was more important at the beginning but decreased fast towards the end of season. Large value of fox was also observed at the soil-water interface and soil and roots surfaces, respectively. The results demonstrate that carbon isotopic fractionations which might be different in different conditions were sensitive to the estimations of fac and fox in paddy field.

  4. [Effects of heavy metals pollution on paddy soil aggregates composition and heavy metals distribution].

    PubMed

    Zhang, Liang-Yun; Li, Lian-Qing; Pan, Gen-Xing; Cui, Li-Qiang; Li, Hong-Lei; Wu, Xiao-Yan; Shao, Jie-Qi

    2009-11-01

    Topsoil samples were collected from a polluted and an adjacent non-polluted paddy field in the Taihu Lake region of China. Different particle size fractions of soil aggregates were separated by low-energy dispersion procedure, and their mass composition and Pb, Cd, Hg, and As concentrations were determined. Under heavy metals pollution, the mass composition of sand-sized fractions reduced, while that of clay-sized fractions increased. The concentrations of test metals in different particle size fractions differed, with the highest in < 0.002 mm fraction, followed by in 2-0.2 mm fraction. In 0.02-0.002 mm and 0.2-0.02 mm fractions, all the test metals were relatively deficient, with an enrichment index of 0.56-0.96. The present study showed that the aggregation of fine particles could be depressed by heavy metals pollution, which in turn, led to a relative increase in the mass composition of fine particles and the associated allocation of heavy metals in weakly aggregated silt particles, and further, increased the risks of heavy metals translocation from polluted farmland into water and atmosphere. Further studies should be made on the impacts of heavy metals pollution on soil biophysical and biochemical processes and related mechanisms.

  5. [Humus composition and stable carbon isotope natural abundance in paddy soil under long-term fertilization].

    PubMed

    Ma, Li; Yang, Lin-Zhang; Ci, En; Wang, Yan; Yin, Shi-Xue; Shen, Ming-Xing

    2008-09-01

    Soil samples were collected from an experimental paddy field with long-term (26 years) fertilization in Taihu Lake region of Jiangsu Province to study the effects of different fertilization on the organic carbon distribution and stable carbon isotope natural abundance (delta 13C) in the soil profile, and on the humus composition. The results showed that long-term fertilization increased the organic carbon content in top soil significantly, and there was a significantly negative exponential correlation between soil organic carbon content and soil depth (P < 0.01). The organic carbon content in 10-30 cm soil layer under chemical fertilizations and in 20-40 cm soil layer under organic fertilizations was relatively stable. Soil delta 13C increased gradually with soil depth, its variation range being from -24% per thousand to -28 per thousand, and had a significantly negative linear correlation with soil organic carbon content (P < 0.05). In 0-20 cm soil layer, the delta 13C in treatments organic manure (M), M + NP, M + NPK, M + straw (R) + N, and R + N decreased significantly; while in 30-50 cm soil layer, the delta 13C in all organic fertilization treatments except R + N increased significantly. Tightly combined humus (humin) was the main humus composition in the soil, occupying 50% or more, and the rest were loosely and stably combined humus. Long-term fertilization increased the content of loosely combined humus and the ratio of humic acid (HA) to fulvic acid (FA).

  6. Transformation of marine sediment to paddy soil: Primary marine, lacustrine, and land plant lipids

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, Cornelia; Cao, Zhihong; Schwark, Lorenz

    2010-05-01

    More than fifty percent of the world's population feeds on rice. The continuous population increase and urban sprawl leads to an ever-increasing demand for new rice cultivation area, in particular China. For centuries suitable coastal areas in China have been exploited for land reclamation, i.e. conversion of coastal marine and lacustrine marshlands into rice paddy fields. Flooded rice paddies are considered one of the major biogenic sources of methane into the atmospheric. Methane is thought to be about 30 times more efficient as greenhouse gas, when compared to carbon dioxide. Overall, rice fields are assumed to contribute app. 10-25% to global CH4 production. It is thus paramount importance to study the effects of increasing rice cultivation and land reclamation in China. For global carbon cycle investigation, it is crucial whether paddy soils, due to their large extent and higher carbon turnover, serve as carbon (CO2) sinks or sources. Here we present results from a chronosequence study of paddy soils with different and well known starting dates of cultivation, in the Zhejiang province (Yangtze River delta) by land reclamation through the building of protective dikes over the past 2000 years. Two end members of natural sediments subjected to land reclamation, a marine tidal mudflat in the Yangtze delta and a coastal lake, represent the substrate on which the paddy soil evolution started. Dike systems were constructed 2000, 1000, 700, 300, 100, and 50 years before present. We are thus able to follow the evolution of rice paddy soils developed on marine sediments using eight well defined tie-points. This chronosequence is then used for assessing the relative proportion of primary marine or lacustrine organic matter preserved in present day soils and to identify the amount and composition of organic matter added since cultivation started. Paddy soil management introduces rice plants debris and exudates as well as rice-associated microbial biomass (covered in a

  7. Regional Ecorisk Field investigation, upper Clark Fork River Basin

    SciTech Connect

    Pastorok, R.; LaTier, A.; Ginn, T.

    1995-12-31

    The Regional Ecorisk Field Investigation was conducted at the Clark Fork River Superfund Site (Montana) to evaluate the relationships between plant communities and tailings deposits in riparian habitats and to evaluate food-chain transfer of trace elements to selected wildlife species. Stations were selected to represent a range of vegetation biomass (or cover) values and apparent impact of trace elements, with some areas of lush vegetation, some areas of mostly unvegetated soil (e.g., < 30 percent plant cover), and a gradient in between. For the evaluation of risk to wildlife, bioaccumulation of metals was evaluated in native or naturalized plants, terrestrial invertebrates, and the deer mouse (Peromyscus maniculatus). Potential reproductive effects in the deer mouse were evaluated by direct measurements. For other wildlife species, bioaccumulation data were interpreted in the context of food web exposure models. Total biomass and species richness of riparian plant communities are related to tailings content of soil as indicated by pH and metals concentrations. Risk to populations of omnivorous small mammals such as the deer mouse was not significant. Relative abundance and reproductive condition of the deer mouse were normal, even in areas of high metals enrichment. Based on exposure models and site-specific tissue residue data for dietary species, risk to local populations of predators such as red fox and American kestrel that feed on deer mice and terrestrial invertebrates is not significant. Risk to herbivores related to metals bioaccumulation in plant tissues is not significant. Population level effects in deer and other large wildlife are not expected because of the large home ranges of such species and compensatory demographic factors.

  8. Time Dependence of the (137)Cs Concentration in Particles Discharged from Rice Paddies to Freshwater Bodies after the Fukushima Daiichi NPP Accident.

    PubMed

    Yoshimura, Kazuya; Onda, Yuichi; Wakahara, Taeko

    2016-04-19

    The concentration of particulate (137)Cs in paddy fields, which can be a major source of (137)Cs entering the water system, was studied following the Fukushima Daiichi Nuclear Power Plant accident. To parametrize the concentration and to estimate the time dependence, paddy fields covering various levels of (137)Cs deposition were investigated over the period 2011-2013 (n = 121). The particulate (137)Cs concentration (kBq kg-SS(-1)) showed a significant correlation with the initial surface deposition density (kBq m(-2)). This suggests that the entrainment coefficient (m(2) kg-SS(-1)), defined as the ratio between the particulate (137)Cs concentration and the initial surface deposition density, is an important parameter when modeling (137)Cs wash-off from paddy fields. The entrainment coefficient decreased with time following a double exponential function. The decrease rate constant of the entrainment coefficient was clearly higher than that reported for other land uses and for river water. The difference in the decrease rates of the entrainment coefficient suggests that paddy fields play a major role in radiocesium migration through the water system. An understanding of the decrease rate of the entrainment coefficient of paddy fields is therefore crucial to understand the migration of radiocesium in the water system. PMID:26999252

  9. Prediction of future methane emission from irrigated rice paddies in central Thailand under different water management practices.

    PubMed

    Minamikawa, Kazunori; Fumoto, Tamon; Iizumi, Toshichika; Cha-Un, Nittaya; Pimple, Uday; Nishimori, Motoki; Ishigooka, Yasushi; Kuwagata, Tsuneo

    2016-10-01

    There is concern about positive feedbacks between climate change and methane (CH4) emission from rice paddies. However, appropriate water management may mitigate the problem. We tested this hypothesis at six field sites in central Thailand, where the irrigated area is rapidly increasing. We used DNDC-Rice, a process-based biogeochemistry model adjusted based on rice growth data at each site to simulate CH4 emission from a rice-rice double cropping system from 2001 to 2060. Future climate change scenarios consisting of four representative concentration pathways (RCPs) and seven global climate models were generated by statistical downscaling. We then simulated CH4 emission in three water management practices: continuous flooding (CF), single aeration (SA), and multiple aeration (MA). The adjusted model reproduced the observed rice yield and CH4 emission well at each site. The simulated CH4 emissions in CF from 2051 to 2060 were 5.3 to 7.8%, 9.6 to 16.0%, 7.3 to 18.0%, and 13.6 to 19.0% higher than those from 2001 to 2010 in RCPs 2.6, 4.5, 6.0, and 8.5, respectively, at the six sites. Regionally, SA and MA mitigated CH4 emission by 21.9 to 22.9% and 53.5 to 55.2%, respectively, relative to CF among the four RCPs. These mitigation potentials by SA and MA were comparable to those from 2001 to 2010. Our results indicate that climate change in the next several decades will not attenuate the quantitative effect of water management practices on mitigating CH4 emission from irrigated rice paddies in central Thailand.

  10. Prediction of future methane emission from irrigated rice paddies in central Thailand under different water management practices.

    PubMed

    Minamikawa, Kazunori; Fumoto, Tamon; Iizumi, Toshichika; Cha-Un, Nittaya; Pimple, Uday; Nishimori, Motoki; Ishigooka, Yasushi; Kuwagata, Tsuneo

    2016-10-01

    There is concern about positive feedbacks between climate change and methane (CH4) emission from rice paddies. However, appropriate water management may mitigate the problem. We tested this hypothesis at six field sites in central Thailand, where the irrigated area is rapidly increasing. We used DNDC-Rice, a process-based biogeochemistry model adjusted based on rice growth data at each site to simulate CH4 emission from a rice-rice double cropping system from 2001 to 2060. Future climate change scenarios consisting of four representative concentration pathways (RCPs) and seven global climate models were generated by statistical downscaling. We then simulated CH4 emission in three water management practices: continuous flooding (CF), single aeration (SA), and multiple aeration (MA). The adjusted model reproduced the observed rice yield and CH4 emission well at each site. The simulated CH4 emissions in CF from 2051 to 2060 were 5.3 to 7.8%, 9.6 to 16.0%, 7.3 to 18.0%, and 13.6 to 19.0% higher than those from 2001 to 2010 in RCPs 2.6, 4.5, 6.0, and 8.5, respectively, at the six sites. Regionally, SA and MA mitigated CH4 emission by 21.9 to 22.9% and 53.5 to 55.2%, respectively, relative to CF among the four RCPs. These mitigation potentials by SA and MA were comparable to those from 2001 to 2010. Our results indicate that climate change in the next several decades will not attenuate the quantitative effect of water management practices on mitigating CH4 emission from irrigated rice paddies in central Thailand. PMID:27239710

  11. Differential Assemblage of Functional Units in Paddy Soil Microbiomes

    PubMed Central

    Kim, Yongkyu; Liesack, Werner

    2015-01-01

    Flooded rice fields are not only a global food source but also a major biogenic source of atmospheric methane. Using metatranscriptomics, we comparatively explored structural and functional succession of paddy soil microbiomes in the oxic surface layer and anoxic bulk soil. Cyanobacteria, Fungi, Xanthomonadales, Myxococcales, and Methylococcales were the most abundant and metabolically active groups in the oxic zone, while Clostridia, Actinobacteria, Geobacter, Anaeromyxobacter, Anaerolineae, and methanogenic archaea dominated the anoxic zone. The protein synthesis potential of these groups was about 75% and 50% of the entire community capacity, respectively. Their structure-function relationships in microbiome succession were revealed by classifying the protein-coding transcripts into core, non-core, and taxon-specific transcripts based on homologous gene distribution. The differential expression of core transcripts between the two microbiomes indicated that structural succession is primarily governed by the cellular ability to adapt to the given oxygen condition, involving oxidative stress, nitrogen/phosphorus metabolism, and fermentation. By contrast, the non-core transcripts were expressed from genes involved in the metabolism of various carbon sources. Among those, taxon-specific transcripts revealed highly specialized roles of the dominant groups in community-wide functioning. For instance, taxon-specific transcripts involved in photosynthesis and methane oxidation were a characteristic of the oxic zone, while those related to methane production and aromatic compound degradation were specific to the anoxic zone. Degradation of organic matters, antibiotics resistance, and secondary metabolite production were detected to be expressed in both the oxic and anoxic zones, but by different taxonomic groups. Cross-feeding of methanol between members of the Methylococcales and Xanthomonadales was suggested by the observation that in the oxic zone, they both

  12. Incorporating rice residues into paddy soils affects methylmercury accumulation in rice.

    PubMed

    Zhu, Huike; Zhong, Huan; Wu, Jialu

    2016-06-01

    Paddy fields are characterized by frequent organic input (e.g., fertilization and rice residue amendment), which may affect mercury biogeochemistry and bioaccumulation. To explore potential effects of rice residue amendment on methylmercury (MMHg) accumulation in rice, a mercury-contaminated paddy soil was amended with rice root (RR), rice straw (RS) or composted rice straw (CS), and planted with rice. Incorporating RS or CS increased grain MMHg concentration by 14% or 11%. The observed increases could be attributed to the elevated porewater MMHg levels and thus enhanced MMHg uptake by plants, as well as increased MMHg translocation to grain within plants. Our results indicated for the first time that rice residue amendment could significantly affect MMHg accumulation in rice grain, which should be considered in risk assessment of MMHg in contaminated areas. PMID:26974480

  13. Sources of atmospheric methane - Measurements in rice paddies and a discussion

    NASA Technical Reports Server (NTRS)

    Cicerone, R. J.; Shetter, J. D.

    1981-01-01

    Field measurements of methane fluxes from rice paddies, fresh water lakes, and saltwater marshes have been made to infer estimates of the size of these sources of atmospheric methane. The rice-paddy measurements, the first of their kind, show that the principal means of methane escape is through the plants themselves as opposed to transport across the water-air interface via bubbles or molecular diffusion. Nitrogen-fertilized plants release much more methane than unfertilized plants but even these measured rates are only one fourth as large as those inferred earlier by Koyama (1963, 1964) and on which all global extrapolations have been based to date. Measured methane fluxes from lakes and marshes are also compared to similar earlier data and it is found that extant data and flux-measurement methods are insufficient for reliable global extrapolations.

  14. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils.

    PubMed

    Wang, Baozhan; Zhao, Jun; Guo, Zhiying; Ma, Jing; Xu, Hua; Jia, Zhongjun

    2015-05-01

    Rice paddy fields are characterized by regular flooding and nitrogen fertilization, but the functional importance of aerobic ammonia oxidizers and nitrite oxidizers under unique agricultural management is poorly understood. In this study, we report the differential contributions of ammonia-oxidizing archaea (AOA), bacteria (AOB) and nitrite-oxidizing bacteria (NOB) to nitrification in four paddy soils from different geographic regions (Zi-Yang (ZY), Jiang-Du (JD), Lei-Zhou (LZ) and Jia-Xing (JX)) that are representative of the rice ecosystems in China. In urea-amended microcosms, nitrification activity varied greatly with 11.9, 9.46, 3.03 and 1.43 μg NO3(-)-N g(-1) dry weight of soil per day in the ZY, JD, LZ and JX soils, respectively, over the course of a 56-day incubation period. Real-time quantitative PCR of amoA genes and pyrosequencing of 16S rRNA genes revealed significant increases in the AOA population to various extents, suggesting that their relative contributions to ammonia oxidation activity decreased from ZY to JD to LZ. The opposite trend was observed for AOB, and the JX soil stimulated only the AOB populations. DNA-based stable-isotope probing further demonstrated that active AOA numerically outcompeted their bacterial counterparts by 37.0-, 10.5- and 1.91-fold in (13)C-DNA from ZY, JD and LZ soils, respectively, whereas AOB, but not AOA, were labeled in the JX soil during active nitrification. NOB were labeled to a much greater extent than AOA and AOB, and the addition of acetylene completely abolished the assimilation of (13)CO2 by nitrifying populations. Phylogenetic analysis suggested that archaeal ammonia oxidation was predominantly catalyzed by soil fosmid 29i4-related AOA within the soil group 1.1b lineage. Nitrosospira cluster 3-like AOB performed most bacterial ammonia oxidation in the ZY, LZ and JX soils, whereas the majority of the (13)C-AOB in the JD soil was affiliated with the Nitrosomona communis lineage. The (13)C-NOB was

  15. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils

    PubMed Central

    Wang, Baozhan; Zhao, Jun; Guo, Zhiying; Ma, Jing; Xu, Hua; Jia, Zhongjun

    2015-01-01

    Rice paddy fields are characterized by regular flooding and nitrogen fertilization, but the functional importance of aerobic ammonia oxidizers and nitrite oxidizers under unique agricultural management is poorly understood. In this study, we report the differential contributions of ammonia-oxidizing archaea (AOA), bacteria (AOB) and nitrite-oxidizing bacteria (NOB) to nitrification in four paddy soils from different geographic regions (Zi-Yang (ZY), Jiang-Du (JD), Lei-Zhou (LZ) and Jia-Xing (JX)) that are representative of the rice ecosystems in China. In urea-amended microcosms, nitrification activity varied greatly with 11.9, 9.46, 3.03 and 1.43 μg NO3−-N g−1 dry weight of soil per day in the ZY, JD, LZ and JX soils, respectively, over the course of a 56-day incubation period. Real-time quantitative PCR of amoA genes and pyrosequencing of 16S rRNA genes revealed significant increases in the AOA population to various extents, suggesting that their relative contributions to ammonia oxidation activity decreased from ZY to JD to LZ. The opposite trend was observed for AOB, and the JX soil stimulated only the AOB populations. DNA-based stable-isotope probing further demonstrated that active AOA numerically outcompeted their bacterial counterparts by 37.0-, 10.5- and 1.91-fold in 13C-DNA from ZY, JD and LZ soils, respectively, whereas AOB, but not AOA, were labeled in the JX soil during active nitrification. NOB were labeled to a much greater extent than AOA and AOB, and the addition of acetylene completely abolished the assimilation of 13CO2 by nitrifying populations. Phylogenetic analysis suggested that archaeal ammonia oxidation was predominantly catalyzed by soil fosmid 29i4-related AOA within the soil group 1.1b lineage. Nitrosospira cluster 3-like AOB performed most bacterial ammonia oxidation in the ZY, LZ and JX soils, whereas the majority of the 13C-AOB in the JD soil was affiliated with the Nitrosomona communis lineage. The 13C-NOB was overwhelmingly

  16. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.

    PubMed

    Wang, Yong-Jie; Dang, Fei; Zhao, Jia-Ting; Zhong, Huan

    2016-06-01

    There is increasing interest in understanding factors controlling methylmercury (MeHg) production in mercury-contaminated rice paddy soil. Sulfate has been reported to affect MeHg biogeochemistry under anoxic conditions, and recent studies revealed that selenium (Se) could evidently reduce MeHg production in paddy soil. However, the controls of sulfate and Se on net MeHg production in paddy soil under fluctuating redox conditions remain largely unknown. Microcosm experiments were conducted to explore the effects of sulfate and Se on net MeHg production in rice paddy soil. Soil was added with 0-960 mg/kg sulfate, in the presence or absence of 3.0 mg/kg selenium (selenite or selenate), and incubated under anoxic (40 days) or suboxic conditions (5 days), simulating fluctuating redox conditions in rice paddy field. Sulfate addition moderately affected soil MeHg concentrations under anoxic conditions, while reoxidation resulted in evidently higher (18-40%) MeHg levels in sulfate amended soils than the control. The observed changes in net MeHg production were related to dynamics of sulfate and iron. However, Se could inhibit sulfate-mediated MeHg production in the soils: Se addition largely reduced net MeHg production in the soils (23-86%, compared to the control), despite of sulfate addition. Similarly, results of the pot experiments (i.e., rice cultivation in amended soils) indicated that soil MeHg levels were rather comparable in Se-amended soils during rice growth period, irrespective of added sulfate doses. The more important role of Se than sulfate in controlling MeHg production was explained by the formation of HgSe nanoparticles irrespective of the presence of sulfate, confirmed by TEM-EDX and XANES analysis. Our findings regarding the effects of sulfate and Se on net MeHg production in rice paddy soil together with the mechanistic explanation of the processes advance our understanding of MeHg dynamics and risk in soil-rice systems. PMID:26901075

  17. Efficacy of Aquatain, a Monomolecular Film, for the Control of Malaria Vectors in Rice Paddies

    PubMed Central

    Bukhari, Tullu; Takken, Willem; Githeko, Andrew K.; Koenraadt, Constantianus J. M.

    2011-01-01

    Background Rice paddies harbour a large variety of organisms including larvae of malaria mosquitoes. These paddies are challenging for mosquito control because their large size, slurry and vegetation make it difficult to effectively apply a control agent. Aquatain, a monomolecular surface film, can be considered a suitable mosquito control agent for such breeding habitats due to its physical properties. The properties allow Aquatain to self-spread over a water surface and affect multiple stages of the mosquito life cycle. Methodology/Principal Findings A trial based on a pre-test/post-test control group design evaluated the potential of Aquatain as a mosquito control agent at Ahero rice irrigation scheme in Kenya. After Aquatain application at a dose of 2 ml/m2 on rice paddies, early stage anopheline larvae were reduced by 36%, and late stage anopheline larvae by 16%. However, even at a lower dose of 1 ml/m2 there was a 93.2% reduction in emergence of anopheline adults and 69.5% reduction in emergence of culicine adults. No pupation was observed in treated buckets that were part of a field bio-assay carried out parallel to the trial. Aquatain application saved nearly 1.7 L of water in six days from a water surface of 0.2 m2 under field conditions. Aquatain had no negative effect on rice plants as well as on a variety of non-target organisms, except backswimmers. Conclusions/Significance We demonstrated that Aquatain is an effective agent for the control of anopheline and culicine mosquitoes in irrigated rice paddies. The agent reduced densities of aquatic larval stages and, more importantly, strongly impacted the emergence of adult mosquitoes. Aquatain also reduced water loss due to evaporation. No negative impacts were found on either abundance of non-target organisms, or growth and development of rice plants. Aquatain, therefore, appears a suitable mosquito control tool for use in rice agro-ecosystems. PMID:21738774

  18. Regional assemblages of Lygus (Heteroptera: Miridae) in Montana canola fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweep net sampling of canola (Brassica napus L.) was conducted in 2002 and 2003 to determine Lygus (Heteroptera: Miridae) species composition and parasitism levels in four regions of Montana. Regardless of region or seasonal change, Lygus elisus (Van Duzee) was the dominant species in all canola fi...

  19. Mapping Magnetic Fields in Star Forming Regions with BLASTPol

    NASA Astrophysics Data System (ADS)

    Fissel, Laura M.; Ade, Peter; Angilè, Francesco E.; Ashton, Peter; Benton, Steven J.; Devlin, Mark J.; Dober, Bradley; Fukui, Yasuo; Galitzki, Nicholas B.; Gandilo, Natalie; Klein, J. R.; Li, Zhi-Yun; Korotkov, Andrei; Martin, Peter G.; Matthews, Tristan; Moncelsi, Lorenzo; nakamura, fumitaka; Barth Netterfield, Calvin; Novak, Giles; Pascale, Enzo; Poidevin, Frédérick; Pereira Santos, Fábio; Savini, Giorgio; Scott, Douglas; Shariff, Jamil; Soler, Juan D.; Thomas, Nicholas; tucker, carole; Tucker, Gregory S.; Ward-Thompson, Derek

    2016-01-01

    A key outstanding question in our understanding of star formation is whether magnetic fields provide support against the gravitational collapse of their parent molecular clouds and cores. Direct measurement of magnetic field strength is observationally challenging, however observations of polarized thermal emission from dust grains aligned with respect to the local cloud magnetic field can be used to map out the magnetic field orientation in molecular clouds. Statistical comparisons between these submillimeter polarization maps and three-dimensional numerical simulations of magnetized star-forming clouds provide a promising method for constraining magnetic field strength. We present early results from a BLASTPol study of the nearby giant molecular cloud (GMC) Vela C, using data collected during a 2012 Antarctic flight. This sensitive balloon-borne polarimeter observed Vela C for 57 hours, yielding the most detailed submillimeter polarization map ever made of a GMC forming high mass stars. We find that most of the structure in p can be modeled by a power-law dependence on two quantities: the hydrogen column density and the local dispersion in magnetic field orientation. Our power-law model for p(N,S) provides new constraints for models of magnetized star-forming clouds and an important first step in the interpretation of the BLASTPol 2012 data set.

  20. Correlation between magnetic and electric field perturbations in the field-aligned current regions deduced from DE 2 observations

    NASA Technical Reports Server (NTRS)

    Ishii, M.; Sugiura, M.; Iyemori, T.; Slavin, J. A.

    1992-01-01

    The satellite-observed high correlations between magnetic and electric field perturbations in the high-latitude field-aligned current regions are investigated by examining the dependence of the relationship between Delta-B and E on spatial scale, using the electric and magnetic field data obtained by DE 2 in the polar regions. The results are compared with the Pedersen conductivity inferred from the international reference ionosphere model and the Alfven wave velocity calculated from the in situ ion density and magnetic field measurements.

  1. A Simple Evaluation of Soil Quality of Waterlogged Purple Paddy Soils with Different Productivities

    PubMed Central

    Liu, Zhanjun; Zhou, Wei; Lv, Jialong; He, Ping; Liang, Guoqing; Jin, Hui

    2015-01-01

    Evaluation of soil quality can be crucial for designing efficient farming systems and ensuring sustainable agriculture. The present study aimed at evaluating the quality of waterlogged purple paddy soils with different productivities in Sichuan Basin. The approach involved comprehensive analyses of soil physical and chemical properties, as well as enzyme activities and microbial community structure measured by phospholipid fatty acid analysis (PLFA). A total of 36 soil samples were collected from four typical locations, with 12 samples representing high productivity purple paddy soil (HPPS), medium productivity purple paddy soil (MPPS) and low productivity purple paddy soil (LPPS), respectively. Most measured soil properties showed significant differences (P ≤ 0.05) among HPPS, MPPS and LPPS. Pearson correlation analysis and principal component analysis were used to identify appropriate soil quality indicators. A minimum data set (MDS) including total nitrogen (TN), available phosphorus (AP), acid phosphatase (ACP), total bacteria (TB) and arbuscular mycorrhizal fungi was established and accounted for 82.1% of the quality variation among soils. A soil quality index (SQI) was developed based on the MDS method, whilst HPPS, MPPS and LPPS received mean SQI scores of 0.725, 0.536 and 0.425, respectively, with a ranking of HPPS > MPPS > LPPS. HPPS showed relatively good soil quality characterized by optimal nutrient availability, enzymatic and microbial activities, but the opposite was true of LPPS. Low levels of TN, AP and soil microbial activities were considered to be the major constraints limiting the productivity in LPPS. All soil samples collected were rich in available N, K, Si and Zn, but deficient in available P, which may be the major constraint for the studied regions. Managers in our study area should employ more appropriate management in the LPPS to improve its rice productivity, and particularly to any potential limiting factor. PMID:25997107

  2. Soil physicochemical and biological properties of paddy-upland rotation: a review.

    PubMed

    Zhou, Wei; Lv, Teng-Fei; Chen, Yong; Westby, Anthony P; Ren, Wan-Jun

    2014-01-01

    Paddy-upland rotation is an unavoidable cropping system for Asia to meet the increasing demand for food. The reduction in grain yields has increased the research interest on the soil properties of rice-based cropping systems. Paddy-upland rotation fields are unique from other wetland or upland soils, because they are associated with frequent cycling between wetting and drying under anaerobic and aerobic conditions; such rotations affect the soil C and N cycles, make the chemical speciation and biological effectiveness of soil nutrient elements varied with seasons, increase the diversity of soil organisms, and make the soil physical properties more difficult to analyze. Consequently, maintaining or improving soil quality at a desirable level has become a complicated issue. Therefore, fully understanding the soil characteristics of paddy-upland rotation is necessary for the sustainable development of the system. In this paper, we offer helpful insight into the effect of rice-upland combinations on the soil chemical, physical, and biological properties, which could provide guidance for reasonable cultivation management measures and contribute to the improvement of soil quality and crop yield. PMID:24995366

  3. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils.

  4. Effects of four rice paddy herbicides on algal cell viability and the relationship with population recovery.

    PubMed

    Nagai, Takashi; Ishihara, Satoru; Yokoyama, Atsushi; Iwafune, Takashi

    2011-08-01

    Paddy herbicides are a high-risk concern for aquatic plants, including algae, because they easily flow out from paddy fields into rivers, with toxic effects. The effect on algal population dynamics, including population recovery after timed exposure, must be assessed. Therefore, we demonstrated concentration-response relationships of four paddy herbicides for algal growth inhibition and mortality, and the relationship between the effect on algal cell viability and population recovery following exposure. We used SYTOX Green dye assay and flow cytometry to assess cell viability of the alga Pseudokirchneriella subcapitata. Live cells could be clearly distinguished from dead cells during herbicide exposure. Our results showed that pretilachlor and quinoclamine had both algicidal and algistatic effects, whereas bensulfuron-methyl only had an algistatic effect, and pentoxazone only had an algicidal effect. Then, a population recovery test following a 72-h exposure was conducted. The algal population recovered in all tests, but the periods required for recovery differed among exposure concentrations and herbicides. The periods required for recovery were inconsistent with the dead cell ratio at the beginning of the recovery test; that is, population recovery could not be described only by cell viability. Consequently, the temporal effect of herbicides and subsequent recovery of the algal population could be described not only by the toxicity characteristics but also by toxicokinetics, such as rate of uptake, transport to the target site, and elimination of the substance from algal cells. PMID:21590715

  5. Dissimilatory Nitrate Reduction Processes in Typical Chinese Paddy Soils: Rates, Relative Contributions, and Influencing Factors.

    PubMed

    Shan, Jun; Zhao, Xu; Sheng, Rong; Xia, Yongqiu; Ti, Chaopu; Quan, Xiaofei; Wang, Shuwei; Wei, Wenxue; Yan, Xiaoyuan

    2016-09-20

    Using soil slurry-based (15)N tracer combined with N2/Ar technique, the potential rates of denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA), and their respective contributions to total nitrate reduction were investigated in 11 typical paddy soils across China. The measured rates of denitrification, anammox, and DNRA varied from 2.37 to 8.31 nmol N g(-1) h(-1), 0.15 to 0.77 nmol N g(-1) h(-1) and 0.03 to 0.54 nmol N g(-1) h(-1), respectively. The denitrification and anammox rates were significantly correlated with the soil organic carbon content, nitrate concentration, and the abundance of nosZ genes. The DNRA rates were significantly correlated with the soil C/N, extractable organic carbon (EOC)/NO3(-) ratio, and sulfate concentration. Denitrification was the dominant pathway (76.75-92.47%), and anammox (4.48-9.23%) and DNRA (0.54-17.63%) also contributed substantially to total nitrate reduction. The N loss or N conservation attributed to anammox and DNRA was 4.06-21.24 and 0.89-15.01 g N m(-2) y(-1), respectively. This study reports the first simultaneous investigation of the dissimilatory nitrate reduction processes in paddy soils, highlighting that anammox and DNRA play important roles in removing nitrate and should be considered when evaluating N transformation processes in paddy fields. PMID:27499451

  6. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    PubMed Central

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils. PMID:26739424

  7. Soil Physicochemical and Biological Properties of Paddy-Upland Rotation: A Review

    PubMed Central

    Lv, Teng-Fei; Chen, Yong; Westby, Anthony P.; Ren, Wan-Jun

    2014-01-01

    Paddy-upland rotation is an unavoidable cropping system for Asia to meet the increasing demand for food. The reduction in grain yields has increased the research interest on the soil properties of rice-based cropping systems. Paddy-upland rotation fields are unique from other wetland or upland soils, because they are associated with frequent cycling between wetting and drying under anaerobic and aerobic conditions; such rotations affect the soil C and N cycles, make the chemical speciation and biological effectiveness of soil nutrient elements varied with seasons, increase the diversity of soil organisms, and make the soil physical properties more difficult to analyze. Consequently, maintaining or improving soil quality at a desirable level has become a complicated issue. Therefore, fully understanding the soil characteristics of paddy-upland rotation is necessary for the sustainable development of the system. In this paper, we offer helpful insight into the effect of rice-upland combinations on the soil chemical, physical, and biological properties, which could provide guidance for reasonable cultivation management measures and contribute to the improvement of soil quality and crop yield. PMID:24995366

  8. Fly ash effect on improving soil properties and rice productivity in Korean paddy soils.

    PubMed

    Lee, Hyup; Ha, Ho Sung; Lee, Chang Hoon; Lee, Yong Bok; Kim, Pil Joo

    2006-09-01

    Paddy soils in Korea generally require the addition of Si to enhance rice productivity. Coal combustion fly ash, which has a high available Si content and alkaline pH, was selected as a potential source of Si in this study. Two field experiments were carried out to evaluate rice (Oryza sativa) productivity in silt loam and loamy sand soils to which 0, 40, 80, and 120 Mg ha(-1) of fly ash were added with 2 Mg ha(-1) Si as a control. Fly ash increased the soil pH and available Si and P contents of both soils. The amount of available B increased to a maximum of 2.57 mg kg(-1), and the B content of the rice plants increased to a maximum of 52-53 mg kg(-1) following the addition of 120 Mg ha(-1) fly ash. The rice plants did not show toxicity effects. The highest rice yields were achieved following the addition of around 90 Mg ha(-1) fly ash. The application of fly ash increased Si, P and K uptake by the rice plants, but did not result in an excessive uptake of heavy metals in the submerged paddy soil. In conclusion, fly ash could be a good supplement to other inorganic soil amendments to improve the nutrient balance in paddy soils.

  9. Microprofiling of nitrogen patches in paddy soil: Analysis of spatiotemporal nutrient heterogeneity at the microscale

    PubMed Central

    Li, Yilin; Kronzucker, Herbert J.; Shi, Weiming

    2016-01-01

    Flooded paddy soil ecosystems in the tropics support the cultivation of the majority of the world’s leading crop, rice, and nitrogen (N) availability in the paddy-soil rooting zone limits rice production more than any other nutritional factor. Yet, little is known about the dynamic response of paddy soil to N-fertiliser application, in terms of horizontal and vertical patchiness in N distribution and transformation. Here, we present a microscale analysis of the profile of ammonium (NH4+) and nitrate (NO3−), nitrification, oxygen (O2water and O2soil), and pH (pHwater and pHsoil) in paddy soils, collected from two representative rice-production areas in subtropical China. NH4+ and NO3− exhibited dramatic spatiotemporal profiles within N patches on the microscale. We show that pHsoil became constant at 1.0–3.5 mm depth, and O2soil became undetectable at 1.7–4.0 mm. Fertiliser application significantly increased pH, and decreased O2, within N patches. Path analysis showed that the factors governing nitrification scaled in the order: pHwater > pHsoil > NH4+ > O2water > NO3− > O2soil. We discuss the soil properties that decide the degree of nutrient patchiness within them and argue that such knowledge is critical to intelligent appraisals of nutrient-use efficiencies in the field. PMID:27265522

  10. [Effects of different fertilizer species on carbon and nitrogen leaching in a reddish paddy soil].

    PubMed

    Liu, Xi-Yu; Zou, Jing-Dong; Xu, Li-Li; Zhang, Xin-Yu; Yang, Feng-Ting; Dai, Xiao-Qin; Wang, Zhong-Qiang; Sun, Xiao-Min

    2014-08-01

    Enhanced fertilization could decrease nitrogen utilization rate and increase carbon and nitrogen leaching, leading to water pollution in agricultural ecosystem. A long-term field experiment had been established on a reddish paddy soil of Qianyanzhou Ecological Experimental Station (114 degrees 53'E, 26 degrees 48'N) in Jiangxi Province in 1998. Soil solution samples were collected by clay tube and vacuum pump. Four fertilizer species treatments were selected: control with no fertilizer (CK), straw return (ST), nitrogen, phosphorus and potassium mineral fertilizers (NPK) and pig manure (OM), aiming to evaluate the effects of different species of fertilizer on carbon and nitrogen leaching in a double rice cropping system. The results showed that: (1) ammonium nitrogen (NH4(+) -N) was the major type of N in soil leachate in reddish paddy soil. The application of NPK could significantly increase the ammonium nitrogen concentration (1.2 mg x L(-1) +/- 0.1 mg x L(-1)) compared with the CK, ST and OM treatments, and the application of OM could significantly increase the dissolved organic carbon (DOC) concentration (27.3 mg x L(-1) +/- 1.6 mg x L(-1)) in soil leachate. The carbon and nitrogen leaching were more notable in the vegetative growth stage than the reproductive growth stage of rice (P < 0.05); (2) the long-term application of NPK and OM increased the NH4(+) -N, DOC, soil organic carbon (SOC) and total nitrogen (TN) contents. The NPK was best beneficial to improve TN contents and OM to improve SOC contents. (3) The DOC contents in soil leachate and SOC in paddy soil had a positive correlation (P < 0.01), while NH4(+) -N contents in soil leachate and TN contents in paddy soil had a positive correlation (P < 0.01). PMID:25338383

  11. Microprofiling of nitrogen patches in paddy soil: Analysis of spatiotemporal nutrient heterogeneity at the microscale

    NASA Astrophysics Data System (ADS)

    Li, Yilin; Kronzucker, Herbert J.; Shi, Weiming

    2016-06-01

    Flooded paddy soil ecosystems in the tropics support the cultivation of the majority of the world’s leading crop, rice, and nitrogen (N) availability in the paddy-soil rooting zone limits rice production more than any other nutritional factor. Yet, little is known about the dynamic response of paddy soil to N-fertiliser application, in terms of horizontal and vertical patchiness in N distribution and transformation. Here, we present a microscale analysis of the profile of ammonium (NH4+) and nitrate (NO3‑), nitrification, oxygen (O2water and O2soil), and pH (pHwater and pHsoil) in paddy soils, collected from two representative rice-production areas in subtropical China. NH4+ and NO3‑ exhibited dramatic spatiotemporal profiles within N patches on the microscale. We show that pHsoil became constant at 1.0–3.5 mm depth, and O2soil became undetectable at 1.7–4.0 mm. Fertiliser application significantly increased pH, and decreased O2, within N patches. Path analysis showed that the factors governing nitrification scaled in the order: pHwater > pHsoil > NH4+ > O2water > NO3‑ > O2soil. We discuss the soil properties that decide the degree of nutrient patchiness within them and argue that such knowledge is critical to intelligent appraisals of nutrient-use efficiencies in the field.

  12. Potential Contribution of Anammox to Nitrogen Loss from Paddy Soils in Southern China

    PubMed Central

    Yang, Xiao-Ru; Li, Hu; Nie, San-An; Su, Jian-Qiang; Weng, Bo-Sen; Zhu, Gui-Bing; Yao, Huai-Ying; Gilbert, Jack A.

    2014-01-01

    The anaerobic oxidation of ammonium (anammox) process has been observed in diverse terrestrial ecosystems, while the contribution of anammox to N2 production in paddy soils is not well documented. In this study, the anammox activity and the abundance and diversity of anammox bacteria were investigated to assess the anammox potential of 12 typical paddy soils collected in southern China. Anammox bacteria related to “Candidatus Brocadia” and “Candidatus Kuenenia” and two novel unidentified clusters were detected, with “Candidatus Brocadia” comprising 50% of the anammox population. The prevalence of the anammox was confirmed by the quantitative PCR results based on hydrazine synthase (hzsB) genes, which showed that the abundance ranged from 1.16 × 104 to 9.65 × 104 copies per gram of dry weight. The anammox rates measured by the isotope-pairing technique ranged from 0.27 to 5.25 nmol N per gram of soil per hour in these paddy soils, which contributed 0.6 to 15% to soil N2 production. It is estimated that a total loss of 2.50 × 106 Mg N per year is linked to anammox in the paddy fields in southern China, which implied that ca. 10% of the applied ammonia fertilizers is lost via the anammox process. Anammox activity was significantly correlated with the abundance of hzsB genes, soil nitrate concentration, and C/N ratio. Additionally, ammonia concentration and pH were found to be significantly correlated with the anammox bacterial structure. PMID:25416768

  13. [Effects of different fertilizer species on carbon and nitrogen leaching in a reddish paddy soil].

    PubMed

    Liu, Xi-Yu; Zou, Jing-Dong; Xu, Li-Li; Zhang, Xin-Yu; Yang, Feng-Ting; Dai, Xiao-Qin; Wang, Zhong-Qiang; Sun, Xiao-Min

    2014-08-01

    Enhanced fertilization could decrease nitrogen utilization rate and increase carbon and nitrogen leaching, leading to water pollution in agricultural ecosystem. A long-term field experiment had been established on a reddish paddy soil of Qianyanzhou Ecological Experimental Station (114 degrees 53'E, 26 degrees 48'N) in Jiangxi Province in 1998. Soil solution samples were collected by clay tube and vacuum pump. Four fertilizer species treatments were selected: control with no fertilizer (CK), straw return (ST), nitrogen, phosphorus and potassium mineral fertilizers (NPK) and pig manure (OM), aiming to evaluate the effects of different species of fertilizer on carbon and nitrogen leaching in a double rice cropping system. The results showed that: (1) ammonium nitrogen (NH4(+) -N) was the major type of N in soil leachate in reddish paddy soil. The application of NPK could significantly increase the ammonium nitrogen concentration (1.2 mg x L(-1) +/- 0.1 mg x L(-1)) compared with the CK, ST and OM treatments, and the application of OM could significantly increase the dissolved organic carbon (DOC) concentration (27.3 mg x L(-1) +/- 1.6 mg x L(-1)) in soil leachate. The carbon and nitrogen leaching were more notable in the vegetative growth stage than the reproductive growth stage of rice (P < 0.05); (2) the long-term application of NPK and OM increased the NH4(+) -N, DOC, soil organic carbon (SOC) and total nitrogen (TN) contents. The NPK was best beneficial to improve TN contents and OM to improve SOC contents. (3) The DOC contents in soil leachate and SOC in paddy soil had a positive correlation (P < 0.01), while NH4(+) -N contents in soil leachate and TN contents in paddy soil had a positive correlation (P < 0.01).

  14. Role of water flow in modeling methane emissions from flooded paddy soils

    NASA Astrophysics Data System (ADS)

    Rizzo, A.; Boano, F.; Revelli, R.; Ridolfi, L.

    2013-02-01

    Methane (CH4) is a potent greenhouse gas that is emitted from paddy fields, and the large CH4 fluxes represent a worldwide issue for the rice production eco-compatibility. In this work a model is proposed to investigate the role of water flows on CH4 emissions from flooded paddy soils. The model is based on a system of partial differential mass balance equations of the chemical species affecting CH4 fate, and water flows are modeled by the Darcy equation. Moreover, in order to properly model the dynamics of CH4, a number of physico-chemical processes and features not included in currently available CH4 emission models are considered: paddy soil stratigraphy; nutrient adsorption and root water uptake; gas transport and respiration within root aerenchyma compartment. The proposed model allows to simulate the spatio-temporal dynamics of chemical compounds within paddy soil as well as to quantify the influence of different processes on nutrient input/output budgets. Simulations without water flow have shown a considerable overestimation of CH4 emissions due to a different spatio-temporal dynamics of dissolved organic matter (DOC - source of energy for CH4 production). In particular, when water fluxes have not been modeled the overestimation can reach 54%, 41% and 67% of daily minimum, daily maximum, and total over the whole growing season CH4 emission, respectively. Moreover, the model results suggest that roots influence CH4 dynamics principally due to their nutrient uptake, while root effect on advective flow plays a minor role. Finally, the analysis of CH4 transport fluxes has shown the limiting effect of upward dispersive transport fluxes on the downward CH4 percolation.

  15. Stability of soil organic matter accumulated under long-term use as a rice paddy

    NASA Astrophysics Data System (ADS)

    Nakahara, Shiko; Zou, Ping; Ando, Ho; Fu, Jianrong; Cao, Zhihong; Nakamura, Toshio; Sugiura, Yuki; Watanabe, Akira

    2016-01-01

    To understand the mechanism responsible for the enhanced accumulation of soil organic matter (SOM) under long-term use as a rice paddy, soil samples from the plow layer from 16 fields that have been used for irrigated rice production from 5 to 2000 years in the Hangzhou Bay, China, were analyzed. The humin in silt/clay particles was isolated as a representative relatively stable SOM pool, and isotopic signatures (δ13C, δ15N, and 14C concentration), 13C nuclear magnetic resonance (NMR) spectra, and biodegradability in an incubation were examined. The amounts of C and N in the bulk soil, silt/clay, and silt/clay-humin increased with increasing period of use as a rice paddy within the east and west zones, respectively. The degree of humification determined for humic acids indicated that the progression of humification did not contribute to the accumulation of C beyond 100 years. The δ15N of silt/clay-humin suggested an increase in organic N derived from chemical fertilizer or recent biological fixation with increasing amount of this fraction. The 14C concentration showed a negative correlation with the amount of silt/clay-humin C. The structural property with regard to 13C NMR spectra and biodegradability of the silt/clay-humin remained constant with the length of use as a rice paddy or 14C concentration. These results suggest that the larger C or N accumulation in the soils with a longer rice paddy history can be attributed to an enhancement in the accumulation of recently generated SOM rather than the stable accumulation of humus over the years.

  16. Nitrate leaching in californian rice fields: a field- and regional-scale assessment.

    PubMed

    Liang, X Q; Harter, T; Porta, L; van Kessel, C; Linquist, B A

    2014-05-01

    Irrigated croplands can be a major source of nitrate-N (NO-N) in groundwater due to leaching. In California, where high NO-N levels have been found in some areas of the Central Valley aquifer, the contribution from rice systems has not been determined. Nitrate leaching from rice systems was evaluated from soil cores (0-2 m), from the fate of N fertilizer in replicated microplots, and from about 145 regional groundwater wells. Soil NO-N concentrations were ≤3.3 mg kg (usually <1 mg kg) below the root zone (below 33 cm depth). In pore-water samples, NO-N was observed only below the root zone during the first 2 wk after the onset of flooding in either the growing season or the winter fallow period and was always ≤8.4 mg L. Fertilizer N accounted for 0 to 11.8% of NO-N in pore-water samples below the root zone. One year after application, based on an analysis of soil core samples, on average 2.5% of fertilizer N was recovered as N below the root zone (33-100 cm), possibly due to leaching in permeable soils or via preferential flow through cracks in heavy clay soils. Based on a regional assessment, groundwater samples from wells that are located in proximity to rice fields all had measured median NO-N and NO-N levels below 1 mg L. These results indicate that NO-N leaching from the majority of California rice systems poses little risk to groundwater under current crop management practices. PMID:25602817

  17. Nitrate leaching in californian rice fields: a field- and regional-scale assessment.

    PubMed

    Liang, X Q; Harter, T; Porta, L; van Kessel, C; Linquist, B A

    2014-05-01

    Irrigated croplands can be a major source of nitrate-N (NO-N) in groundwater due to leaching. In California, where high NO-N levels have been found in some areas of the Central Valley aquifer, the contribution from rice systems has not been determined. Nitrate leaching from rice systems was evaluated from soil cores (0-2 m), from the fate of N fertilizer in replicated microplots, and from about 145 regional groundwater wells. Soil NO-N concentrations were ≤3.3 mg kg (usually <1 mg kg) below the root zone (below 33 cm depth). In pore-water samples, NO-N was observed only below the root zone during the first 2 wk after the onset of flooding in either the growing season or the winter fallow period and was always ≤8.4 mg L. Fertilizer N accounted for 0 to 11.8% of NO-N in pore-water samples below the root zone. One year after application, based on an analysis of soil core samples, on average 2.5% of fertilizer N was recovered as N below the root zone (33-100 cm), possibly due to leaching in permeable soils or via preferential flow through cracks in heavy clay soils. Based on a regional assessment, groundwater samples from wells that are located in proximity to rice fields all had measured median NO-N and NO-N levels below 1 mg L. These results indicate that NO-N leaching from the majority of California rice systems poses little risk to groundwater under current crop management practices.

  18. Effects of sulfate and selenite on mercury methylation in a mercury-contaminated rice paddy soil under anoxic conditions.

    PubMed

    Wang, Yongjie; Dang, Fei; Zhong, Huan; Wei, Zhongbo; Li, Ping

    2016-03-01

    Biogeochemical cycling of sulfur and selenium (Se) could play an important role in methylmercury (MeHg) dynamics in soil, while their potential effects on MeHg production in rice paddy soil are less understood. The main objective of this study was to explore the effects of sulfate and selenite on net MeHg production in contaminated rice paddy soil, characterized with massive MeHg production and thus MeHg accumulation in rice. A series of microcosm incubation experiments were conducted using a contaminated paddy soil amended with sulfate and/or selenite, in which sulfate-reducing bacteria were mainly responsible for MeHg production. Our results demonstrated that sulfate addition reduced solid and dissolved MeHg levels in soils by ≤18 and ≤25 %, respectively. Compared to sulfate, selenite was more effective in inhibiting net MeHg production, and the inhibitory effect depended largely on amended selenite doses. Moreover, sulfate input played a dual role in affecting Hg-Se interactions in soil, which could be explained by the dynamics of sulfate under anoxic conditions. Therefore, the effects of sulfate and selenium input should be carefully considered when assessing risk of Hg in anoxic environments (e.g., rice paddy field and wetland).

  19. [Microbial anaerobic dechlorination of polychlorinated biphenyls in paddy soil slurry].

    PubMed

    Yang, Kai; Yao, Xiao-yan; Chen, Chen; Shen, Chao-feng; Qin, Zhi-hui; Huang, Rong-lang

    2015-10-01

    We studied the dechlorination process of Aroclor1260, a high-chlorinated polychlorinated biphenyls (PCBs) mixture in an anaerobic paddy soil slurry, and further analyzed the related microbial community structures. The Aroclor1260 was reduced up to 55.5% in the natural paddy soil slurry in 128 days, and the reduction percentage dropped to 46.9% after incoculating the paddy soil slurry with a PCBs-dechlorination enrichment culture. The dechlorination mainly occurred in congeners of pentachlorobiphenyl, hexachlorobiphenyl, and specially, the heptachlorobiphenyl, with pentachlorobiphenyl accumulated as dechlorination intermediate. Hydrogen gas produced from fermentation of organic matters was maintained at a lower partial pressure due to its consumption during the dechlorination process, so that the methanogens was suppressed as well. The microbial community structure was significantly different between natural and inoculated paddy soils. Introducing the PCBs-dechlorination enrichment culture changed the local microbial community by the competition between the exogenetic dchlorinators and the indigenous bacteria, overall decreasing the dechlorination activity.

  20. Plant available silicon in South-east Asian rice paddy soils - relevance of agricultural practice and of abiotic factors

    NASA Astrophysics Data System (ADS)

    Marxen, A.; Klotzbücher, T.; Vetterlein, D.; Jahn, R.

    2012-12-01

    Background Silicon (Si) plays a crucial role in rice production. Si content of rice plants exceeds the content of other major nutrients such as nitrogen, phosphorous or potassium. Recent studies showed that in some environments external supply of Si can enhance the growth of rice plants. Rice plants express specific Si transporters to absorb Si from soil solutions in form of silicic acid, which precipitates in tissue cells forming amorphous silica bodies, called phytoliths. The phytoliths are returned to soils with plant residues. They might be a main source of plant available silicic acid in soils. Aims In this study we assess the effects of rice paddy cultivation on the stocks of `reactive` Si fractions in mineral topsoils of rice paddy fields in contrasting landscapes. The `reactive` Si fractions are presumed to determine the release of plant-available silicic acid in soils. We consider the relevance of abiotic factors (mineral assemblage; soil weathering status) and agricultural practice for these fractions. Agricultural practices, which were assumed to affect the stocks of `reactive` Si were (i) the usage of different rice varieties (which might differ in Si demand), (ii) straw residue management (i.e., whether straw residues are returned to the fields or removed and used e.g. as fodder), and (iii) yield level and number of crops per year. Material and methods Soils (top horizon of about 0-20 cm depth) were sampled from rice paddy fields in 2 mountainous and 5 lowland landscapes of contrasting geologic conditions in Vietnam and the Philippines. Ten paddy fields were sampled per landscape. The rice paddy management within landscapes differed when different farmers and/or communities managed the fields. We analysed the following fractions of `reactive` Si in the soils: acetate-extractable Si (dissolved and easily exchangeable Si), phosphate-extractable Si (adsorbed Si), oxalate extractable Si (Si associated with poorly-ordered sesquioxides), NaOH extractable Si

  1. Backscattering and vegetation water content response of paddy crop at C-band using RISAT-1 satellite data

    NASA Astrophysics Data System (ADS)

    Kumar, Pradeep; Prasad, Rajendra; Choudhary, Arti; Gupta, Dileep Kumar; Narayan Mishra, Varun; Srivastava, Prashant K.

    2016-04-01

    ripening stage at HH- and HV- polarizations. It is concluded that HH- polarized backscattering coefficients using RISAT-1 data are more sensitive in comparison to HV- polarized backscattering coefficients. The C-band, RISAT-1 backscattering coefficients may be useful for the retrieval of VWC of paddy crop to monitor its growth stages. Keywords: SAR, C-band, dual polarimetric, RISAT-1, VWC, paddy References: Penuelas, J., Filella, I., Biel, C., Serrano, L., & Save, R. (1993). The reflectance at the 950-970 mm region as an indicator of plant water status. International Journal of Remote Sensing, 14:1887-1905. Srivastava , P. K., Han, D., Rico-Ramirez, M. A., O'Neill, P., Islam, T., & Gupta, M. (2014). Assessment of SMOS soil moisture retrieval parameters using tau-omega algorithms for soil moisture deficit estimation. Journal of Hydrology 519:574-587

  2. Eco-stoichiometric alterations in paddy soil ecosystem driven by phosphorus application.

    PubMed

    Li, Xia; Wang, Hang; Gan, Shaohua; Jiang, Daqian; Tian, Guangming; Zhang, Zhijian

    2013-01-01

    Agricultural fertilization may change processes of elemental biogeochemical cycles and alter the ecological function. Ecoenzymatic stoichiometric feature plays a critical role in global soil carbon (C) metabolism, driving element cycles, and mediating atmospheric composition in response to agricultural nutrient management. Despite the importance on crop growth, the role of phosphorous (P) in compliance with eco-stoichiometry on soil C and nitrogen (N) sequestration in the paddy field remains poorly understood in the context of climate change. Here, we collected soil samples from a field experiment after 6 years of chemical P application at a gradient of 0 (P-0), 30 (P-30), 60 (P-60), and 90 (P-90) kg ha(-1) in order to evaluate the role of P on stoichiometric properties in terms of soil chemical, microbial biomass, and eco-enzyme activities as well as greenhouse gas (GHG: CO2, N2O and CH4) emissions. Continuous P input increased soil total organic C and N by 1.3-9.2% and 3%-13%, respectively. P input induced C and N limitations as indicated by the decreased ratio of C:P and N:P in the soil and microbial biomass. A synergistic mechanism among the ecoenzymatic stoichiometry, which regulated the ecological function of microbial C and N acquisition and were stoichiometrically related to P input, stimulated soil C and N sequestration in the paddy field. The lower emissions of N2O and CH4 under the higher P application (P-60 and P-90) in July and the insignificant difference in N2O emission in August compared to P-30; however, continuous P input enhanced CO2 fluxes for both samplings. There is a technical conflict for simultaneously regulating three types of GHGs in terms of the eco-stoichiometry mechanism under P fertilization. Thus, it is recommended that the P input in paddy fields not exceed 60 kg ha(-1) may maximize soil C sequestration, minimize P export, and guarantee grain yields.

  3. Laboratory study of diffusion region with electron energization during high guide field reconnection

    NASA Astrophysics Data System (ADS)

    Yamasaki, K.; Inoue, S.; Kamio, S.; Watanabe, T. G.; Ushiki, T.; Guo, X.; Sugawara, T.; Matsuyama, K.; Kawakami, N.; Yamada, T.; Inomoto, M.; Ono, Y.

    2015-10-01

    Floating potential profile was measured around the X-point during high guide field reconnection in UTST merging experiment where the ratio of guide field ( Bg ) to reconnecting magnetic field ( Brec ) is Bg/Brec>10 . Floating potential measurement revealed that a quadrupole structure of electric potential is formed around the X-point during the fast reconnection phase due to the polarization by inductive electric field. Also, our floating potential measurement revealed the existence of parallel electric field in the vicinity of the X-point. While field-aligned components of inductive electric field ( E∥ind ) and electrostatic electric field ( E∥es ) cancel out with each other away from the X-point, E∥ind exceeds E∥es around the X-point, indicating the deviation from ideal MHD criterion within the region. The diffusion region extends in the outflow region and the scale length of region is an order of ion skin depth, which is quite different from the VTF experiment result. Based on the measured magnetic field and electric field profile, our particle trajectory analysis indicates that fast electrons with energies over 300 eV are produced within 1 μs around the X-point in the non-ideal MHD region. These results indicate that production of fast electrons or electron heating are expected to be observed in the vicinity of the X-point.

  4. Modelling the fate of pesticides in paddy rice-fish pond farming system in Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Lamers, M.; Nguyen, N.; Streck, T.

    2012-04-01

    During the last decade rice production in Vietnam has tremendously increased due to the introduction of new high yield, short duration rice varieties and an increased application of pesticides. Since pesticides are toxic by design, there is a natural concern on the possible impacts of their presence in the environment on human health and environment quality. In North Vietnam, lowland and upland rice fields were identified to be a major non-point source of agrochemical pollution to surface and ground water, which are often directly used for domestic purposes. Field measurements, however, are time consuming, costly and logistical demanding. Hence, quantification, forecast and risk assessment studies are hampered by a limited amount of field data. One potential way to cope with this shortcoming is the use of process-based models. In the present study we developed a model for simulating short-term pesticide dynamics in combined paddy rice field - fish pond farming systems under the specific environmental conditions of south-east Asia. Basic approaches and algorithms to describe the key underlying biogeochemical processes were mainly adopted from the literature to assure that the model reflects the current standard of scientific knowledge and commonly accepted theoretical background. The model was calibrated by means of the Gauss-Marquardt-Levenberg algorithm and validated against measured pesticide concentrations (dimethoate and fenitrothion) during spring and summer rice crop season 2008, respectively, of a paddy field - fish pond system typical for northern Vietnam. First simulation results indicate that our model is capable to simulate the fate of pesticides in such paddy - fish pond farming systems. The model efficiency for the period of calibration, for example, was 0.97 and 0.95 for dimethoate and fenitrothion, respectively. For the period of validation, however, the modeling efficiency slightly decreased to 0.96 and 0.81 for dimethoate and fenitrothion

  5. Baseline soil variation is a major factor in arsenic accumulation in Bengal Delta paddy rice.

    PubMed

    Lu, Ying; Adomako, Eureka E; Solaiman, A R M; Islam, M Rafiqul; Deacon, Claire; Williams, P N; Rahman, G K M M; Meharg, Andrew A

    2009-03-15

    Factors responsible for paddy soil arsenic accumulation in the tubewell irrigated systems of the Bengal Delta were investigated. Baseline (i.e., nonirrigated) and paddy soils were collected from 30 field systems across Bangladesh. For each field, soil sampled at dry season (Boro) harvest i.e., the crop cycle irrigated with tubewell water, was collected along a 90 m transect away from the tubewell irrigation source. Baseline soil arsenic levels ranged from 0.8 to 21. mg/kg, with lower values found on the Pliestocene Terrace around Gazipur (average, 1.6 +/- 0.2 mg/kg), and higher levels found in Holecene sediment tracts of Jessore and Faridpur (average, 6.6 +/- 1.0 mg/kg). Two independent approaches were used to assess the extent of arsenic build-up in irrigated paddy soils. First, arsenic build-up in paddy soil at the end of dry season production (irrigated - baseline soil arsenic) was regressed against number of years irrigated and tubewell arsenic concentration. Years of irrigation was not significant (P = 0.711), indicating no year-on-year arsenic build-up, whereas tubewell As concentration was significant (P = 0.008). The second approach was analysis of irrigated soils for 20 fields over 2 successive years. For nine of the fields there was a significant (P < 0.05) decrease in soil arsenic from year 1 to 2, one field had a significant increase, whereas there was no change for the remaining 10. Over the dry season irrigation cycle, soil arsenic built-up in soils at a rate dependent on irrigation tubewell water, 35* (tubewell water concentration in mg/kg, triple bond mg/L). Grain arsenic rises steeply at low soil/shoot arsenic levels, plateauing out at concentratations. Baseline soil arsenic at Faridpur sites corresponded to grain arsenic levels at the start of this saturation phase. Therefore, variation in baseline levels of soil arsenic leads to a large range in grain arsenic. Where sites have high baseline soil arsenic, further additional arsenic from irrigation

  6. Microbial communities play important roles in modulating paddy soil fertility

    PubMed Central

    Luo, Xuesong; Fu, Xiaoqian; Yang, Yun; Cai, Peng; Peng, Shaobing; Chen, Wenli; Huang, Qiaoyun

    2016-01-01

    We studied microbial communities in two paddy soils, which did not receive nitrogen fertilization and were distinguished by the soil properties. The two microbial communities differed in the relative abundance of gram-negative bacteria and total microbial biomass. Variability in microbial communities between the two fields was related to the levels of phosphorus and soil moisture. Redundancy analysis for individual soils showed that the bacterial community dynamics in the high-yield soil were significantly correlated with total carbon, moisture, available potassium, and pH, and those in the low-yield cores were shaped by pH, and nitrogen factors. Biolog Eco-plate data showed a more active microbial community in the high yield soil. The variations of enzymatic activities in the two soils were significantly explained by total nitrogen, total potassium, and moisture. The enzymatic variability in the low-yield soil was significantly explained by potassium, available nitrogen, pH, and total carbon, and that in the high-yield soil was partially explained by potassium and moisture. We found the relative abundances of Gram-negative bacteria and Actinomycetes partially explained the spatial and temporal variations of soil enzymatic activities, respectively. The high-yield soil microbes are probably more active to modulate soil fertility for rice production. PMID:26841839

  7. Microbial communities play important roles in modulating paddy soil fertility

    NASA Astrophysics Data System (ADS)

    Luo, Xuesong; Fu, Xiaoqian; Yang, Yun; Cai, Peng; Peng, Shaobing; Chen, Wenli; Huang, Qiaoyun

    2016-02-01

    We studied microbial communities in two paddy soils, which did not receive nitrogen fertilization and were distinguished by the soil properties. The two microbial communities differed in the relative abundance of gram-negative bacteria and total microbial biomass. Variability in microbial communities between the two fields was related to the levels of phosphorus and soil moisture. Redundancy analysis for individual soils showed that the bacterial community dynamics in the high-yield soil were significantly correlated with total carbon, moisture, available potassium, and pH, and those in the low-yield cores were shaped by pH, and nitrogen factors. Biolog Eco-plate data showed a more active microbial community in the high yield soil. The variations of enzymatic activities in the two soils were significantly explained by total nitrogen, total potassium, and moisture. The enzymatic variability in the low-yield soil was significantly explained by potassium, available nitrogen, pH, and total carbon, and that in the high-yield soil was partially explained by potassium and moisture. We found the relative abundances of Gram-negative bacteria and Actinomycetes partially explained the spatial and temporal variations of soil enzymatic activities, respectively. The high-yield soil microbes are probably more active to modulate soil fertility for rice production.

  8. H II REGION DRIVEN GALACTIC BUBBLES AND THEIR RELATIONSHIP TO THE GALACTIC MAGNETIC FIELD

    SciTech Connect

    Pavel, Michael D.; Clemens, D. P. E-mail: clemens@bu.edu

    2012-12-01

    The relative alignments of mid-infrared traced Galactic bubbles are compared to the orientation of the mean Galactic magnetic field in the disk. The orientations of bubbles in the northern Galactic plane were measured and are consistent with random orientations-no preferential alignment with respect to the Galactic disk was found. A subsample of H II region driven Galactic bubbles was identified, and as a single population they show random orientations. When this subsample was further divided into subthermal and suprathermal H II regions, based on hydrogen radio recombination linewidths, the subthermal H II regions showed a marginal deviation from random orientations, but the suprathermal H II regions showed significant alignment with the Galactic plane. The mean orientation of the Galactic disk magnetic field was characterized using new near-infrared starlight polarimetry and the suprathermal H II regions were found to preferentially align with the disk magnetic field. If suprathermal linewidths are associated with younger H II regions, then the evolution of young H II regions is significantly affected by the Galactic magnetic field. As H II regions age, they cease to be strongly linked to the Galactic magnetic field, as surrounding density variations come to dominate their morphological evolution. From the new observations, the ratios of magnetic-to-ram pressures in the expanding ionization fronts were estimated for younger H II regions.

  9. Do microorganism stoichiometric alterations affect carbon sequestration in paddy soil subjected to phosphorus input?

    PubMed

    Zhang, ZhiJian; Li, HongYi; Hu, Jiao; Li, Xia; He, Qiang; Tian, GuangMing; Wang, Hang; Wang, ShunYao; Wang, Bei

    2015-04-01

    Ecological stoichiometry provides a powerful tool for integrating microbial biomass stoichiometry with ecosystem processes, opening far-reaching possibilities for linking microbial dynamics to soil carbon (C) metabolism in response to agricultural nutrient management. Despite its importance to crop yield, the role of phosphorus (P) with respect to ecological stoichiometry and soil C sequestration in paddy fields remains poorly understood, which limits our ability to predict nutrient-related soil C cycling. Here, we collected soil samples from a paddy field experiment after seven years of superphosphate application along a gradient of 0, 30, 60, and 90 (P-0 through P-90, respectively) kg.ha-1.yr-1 in order to evaluate the role of exogenous P on soil C sequestration through regulating microbial stoichiometry. P fertilization increased soil total organic C and labile organic C by 1-14% and 4-96%, respectively, while rice yield is a function of the activities of soil β-1,4-glucosidase (BG), acid phosphatase (AP), and the level of available soil P through a stepwise linear regression model. P input induced C limitation, as reflected by decreases in the ratios of C:P in soil and microbial biomass. An eco-enzymatic ratio indicating microbial investment in C vs. P acquisition, i.e., ln(BG): ln(AP), changed the ecological function of microbial C acquisition, and was stoichiometrically related to P input. This mechanism drove a shift in soil resource availability by increasing bacterial community richness and diversity, and stimulated soil C sequestration in the paddy field by enhancing C-degradation-related bacteria for the breakdown of plant-derived carbon sources. Therefore, the decline in the C:P stoichiometric ratio of soil microorganism biomass under P input was beneficial for soil C sequestration, which offered a "win-win" relationship for the maximum balance point between C sequestration and P availability for rice production in the face of climate change. PMID

  10. Do microorganism stoichiometric alterations affect carbon sequestration in paddy soil subjected to phosphorus input?

    PubMed

    Zhang, ZhiJian; Li, HongYi; Hu, Jiao; Li, Xia; He, Qiang; Tian, GuangMing; Wang, Hang; Wang, ShunYao; Wang, Bei

    2015-04-01

    Ecological stoichiometry provides a powerful tool for integrating microbial biomass stoichiometry with ecosystem processes, opening far-reaching possibilities for linking microbial dynamics to soil carbon (C) metabolism in response to agricultural nutrient management. Despite its importance to crop yield, the role of phosphorus (P) with respect to ecological stoichiometry and soil C sequestration in paddy fields remains poorly understood, which limits our ability to predict nutrient-related soil C cycling. Here, we collected soil samples from a paddy field experiment after seven years of superphosphate application along a gradient of 0, 30, 60, and 90 (P-0 through P-90, respectively) kg.ha-1.yr-1 in order to evaluate the role of exogenous P on soil C sequestration through regulating microbial stoichiometry. P fertilization increased soil total organic C and labile organic C by 1-14% and 4-96%, respectively, while rice yield is a function of the activities of soil β-1,4-glucosidase (BG), acid phosphatase (AP), and the level of available soil P through a stepwise linear regression model. P input induced C limitation, as reflected by decreases in the ratios of C:P in soil and microbial biomass. An eco-enzymatic ratio indicating microbial investment in C vs. P acquisition, i.e., ln(BG): ln(AP), changed the ecological function of microbial C acquisition, and was stoichiometrically related to P input. This mechanism drove a shift in soil resource availability by increasing bacterial community richness and diversity, and stimulated soil C sequestration in the paddy field by enhancing C-degradation-related bacteria for the breakdown of plant-derived carbon sources. Therefore, the decline in the C:P stoichiometric ratio of soil microorganism biomass under P input was beneficial for soil C sequestration, which offered a "win-win" relationship for the maximum balance point between C sequestration and P availability for rice production in the face of climate change.

  11. Fate and behavior of Benthiocarb--a herbicide in transplanted paddy under East-Indian climatic condition.

    PubMed

    Aktar, Md Wasim; Gupta, A; Gade, V; Bhattacharyya, Anjan

    2007-12-01

    A two season field experiment was conducted to study the magnitude of Benthiocarb residue in transplanted paddy field soil of plough layer (6''), beyond the plough layer (12'') as well as in harvested straw, grain and husk. Transplanted paddy fields were treated once with Benthiocarb (Saturn 50 EC) @1500 g.a.i., 2500 g.a.i. and 3000 g.a.i.ha(-1). Irrespective of any season, the initial deposits (4 h after spraying) of Benthiocarb in 6'' soil layer were found in varying range of 4.01-4.22 ppm, 5.98-6.56 ppm and 7.47-8.19 ppm at recommended (T(1)), intermediate (T(2)) and double the recommended doses (T(3)) respectively. In paddy field soil Benthiocarb residue dissipated 70% and 90% within 3 and 30 days respectively. Irrespective of any dose and season no residues were detected in 12'' soil layer as well as in straw, grain and husk samples at harvest. PMID:17999020

  12. A Distributed Water Circulation Model Incorporating Large Irrigation Schemes for Paddy Areas

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Masumoto, T.; Kudo, R.; Horikawa, N.

    2010-12-01

    Water intake for paddy irrigation in Japan accounts for approximately 70% of total intake. Spatial and temporal variation of precipitation and river flow changes, likely to be caused by climate changes, directly affect paddy irrigation and its management schemes. Previous studies show that potential water stresses were estimated in the framework of grid-based distributed water circulation models, in which water availability and demand were roughly compared in large-scale grids of 10~100km. However, in mid and small-scale basins, where we carry out impact assessment studies of 1~10km grids, we need schemes to couple the irrigation intake and its allocation, because agricultural water is highly dependent on human decision making processes. Then, we have developed a model that couples natural hydrological behaviors of a basin and artificial irrigation systems. A distributed water circulation model, which explains natural hydrological behaviors of a basin, consists of approximately 1km square gridded meshes. Infiltration and saturation-excess flow and water requirements of irrigated paddy fields on any grid are calculated. The generated surface flow is routed by a kinematic wave equation so that daily flow rate can be calculated at any point of interest. The core of the model is water allocation and management scheme that exploit the spatial database of irrigation facilities and beneficiary areas. This analysis consists of new modeled plane for irrigation, which is calculated independently from the surface plain of the distributed water circulation model. Following the configuration of the water allocation and management schemes, the model is coupled with the distributed water circulation model. The reservoir operation scheme is an algorithm to determine the reservoir releases for irrigation based on requirement and flow rate at downstream diversion weirs. Diversion weirs intake water from associated rivers at the maximum rate, if water is available. The integrated

  13. Scaling up from field to region for wind erosion prediction using a field-scale wind erosion model and GIS

    USGS Publications Warehouse

    Zobeck, T.M.; Parker, N.C.; Haskell, S.; Guoding, K.

    2000-01-01

    Factors that affect wind erosion such as surface vegetative and other cover, soil properties and surface roughness usually change spatially and temporally at the field-scale to produce important field-scale variations in wind erosion. Accurate estimation of wind erosion when scaling up from fields to regions, while maintaining meaningful field-scale process details, remains a challenge. The objectives of this study were to evaluate the feasibility of using a field-scale wind erosion model with a geographic information system (GIS) to scale up to regional levels and to quantify the differences in wind erosion estimates produced by different scales of soil mapping used as a data layer in the model. A GIS was used in combination with the revised wind erosion equation (RWEQ), a field-scale wind erosion model, to estimate wind erosion for two 50 km2 areas. Landsat Thematic Mapper satellite imagery from 1993 with 30 m resolution was used as a base map. The GIS database layers included land use, soils, and other features such as roads. The major land use was agricultural fields. Data on 1993 crop management for selected fields of each crop type were collected from local government agency offices and used to 'train' the computer to classify land areas by crop and type of irrigation (agroecosystem) using commercially available