Science.gov

Sample records for regional percent crop

  1. Regional crop yield forecasting: a probabilistic approach

    NASA Astrophysics Data System (ADS)

    de Wit, A.; van Diepen, K.; Boogaard, H.

    2009-04-01

    Information on the outlook on yield and production of crops over large regions is essential for government services dealing with import and export of food crops, for agencies with a role in food relief, for international organizations with a mandate in monitoring the world food production and trade, and for commodity traders. Process-based mechanistic crop models are an important tool for providing such information, because they can integrate the effect of crop management, weather and soil on crop growth. When properly integrated in a yield forecasting system, the aggregated model output can be used to predict crop yield and production at regional, national and continental scales. Nevertheless, given the scales at which these models operate, the results are subject to large uncertainties due to poorly known weather conditions and crop management. Current yield forecasting systems are generally deterministic in nature and provide no information about the uncertainty bounds on their output. To improve on this situation we present an ensemble-based approach where uncertainty bounds can be derived from the dispersion of results in the ensemble. The probabilistic information provided by this ensemble-based system can be used to quantify uncertainties (risk) on regional crop yield forecasts and can therefore be an important support to quantitative risk analysis in a decision making process.

  2. Modeling Regional Groundwater Implications of Biofuel Crop Production in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Parish, A.; Kendall, A. D.; Basso, B.; Hyndman, D. W.

    2013-12-01

    In response to a growing call for renewable sources of energy that do not compete directly with food resources, the use of second-generation 'cellulosic' biofuel feedstocks has gained much attention in recent years. The push to advance the technologies that would make such a transformation possible is motivated by the United States Renewable Fuel Standard mandate to produce 36 billion gallons of biofuels by 2022, an increase of 334 percent from 2009. Many different crops, including maize, miscanthus, switchgrass, and poplar have shown promise as cellulosic feedstocks, and in an attempt to supply the needed biomass to meet the 2022 mandate, production of these crops have been on the rise. Yet little is known about the sustainability of large-scale conversion of land to cellulosic biofuel crop production; more research is needed to understand the effects that these crops will have on the quality and quantity of groundwater. This study presents a model scale-up approach to address three questions: What are the hydrologic and nutrient demands of the primary biofuel crops? Which biofuel crops are more water efficient in terms of demand verses energy produced? What are the types and availabilities of land to expand production of these biofuel crops? To answer these questions, we apply a point-based crop dynamics model in combination with a regional-scale hydrologic model, parameterized using stream discharge and chemistry data collected from two representative watersheds in Wisconsin. Approximately 17 stream sites in each watershed are selected for data collection for model parameterization, including stream discharge, nutrient concentrations, and basic chemical characteristics. We then use the System Approach to Land Use Sustainability (SALUS) model, which predicts crop growth under varying soil and climate conditions, to drive vegetation dynamics and groundwater transport of nutrients within the Integrated Landscape Hydrology Model (ILHM). ILHM predictions of stream

  3. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States

    NASA Astrophysics Data System (ADS)

    Prabhakara, Kusuma; Hively, W. Dean; McCarty, Gregory W.

    2015-07-01

    Winter cover crops are an essential part of managing nutrient and sediment losses from agricultural lands. Cover crops lessen sedimentation by reducing erosion, and the accumulation of nitrogen in aboveground biomass results in reduced nutrient runoff. Winter cover crops are planted in the fall and are usually terminated in early spring, making them susceptible to senescence, frost burn, and leaf yellowing due to wintertime conditions. This study sought to determine to what extent remote sensing indices are capable of accurately estimating the percent groundcover and biomass of winter cover crops, and to analyze under what critical ranges these relationships are strong and under which conditions they break down. Cover crop growth on six fields planted to barley, rye, ryegrass, triticale or wheat was measured over the 2012-2013 winter growing season. Data collection included spectral reflectance measurements, aboveground biomass, and percent groundcover. Ten vegetation indices were evaluated using surface reflectance data from a 16-band CROPSCAN sensor. Restricting analysis to sampling dates before the onset of prolonged freezing temperatures and leaf yellowing resulted in increased estimation accuracy. There was a strong relationship between the normalized difference vegetation index (NDVI) and percent groundcover (r2 = 0.93) suggesting that date restrictions effectively eliminate yellowing vegetation from analysis. The triangular vegetation index (TVI) was most accurate in estimating high ranges of biomass (r2 = 0.86), while NDVI did not experience a clustering of values in the low and medium biomass ranges but saturated in the higher range (>1500 kg/ha). The results of this study show that accounting for index saturation, senescence, and frost burn on leaves can greatly increase the accuracy of estimates of percent groundcover and biomass for winter cover crops.

  4. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States

    USGS Publications Warehouse

    Prabhakara, Kusuma; Hively, W. Dean; McCarty, Greg W.

    2015-01-01

    Winter cover crops are an essential part of managing nutrient and sediment losses from agricultural lands. Cover crops lessen sedimentation by reducing erosion, and the accumulation of nitrogen in aboveground biomass results in reduced nutrient runoff. Winter cover crops are planted in the fall and are usually terminated in early spring, making them susceptible to senescence, frost burn, and leaf yellowing due to wintertime conditions. This study sought to determine to what extent remote sensing indices are capable of accurately estimating the percent groundcover and biomass of winter cover crops, and to analyze under what critical ranges these relationships are strong and under which conditions they break down. Cover crop growth on six fields planted to barley, rye, ryegrass, triticale or wheat was measured over the 2012–2013 winter growing season. Data collection included spectral reflectance measurements, aboveground biomass, and percent groundcover. Ten vegetation indices were evaluated using surface reflectance data from a 16-band CROPSCAN sensor. Restricting analysis to sampling dates before the onset of prolonged freezing temperatures and leaf yellowing resulted in increased estimation accuracy. There was a strong relationship between the normalized difference vegetation index (NDVI) and percent groundcover (r2 = 0.93) suggesting that date restrictions effectively eliminate yellowing vegetation from analysis. The triangular vegetation index (TVI) was most accurate in estimating high ranges of biomass (r2 = 0.86), while NDVI did not experience a clustering of values in the low and medium biomass ranges but saturated in the higher range (>1500 kg/ha). The results of this study show that accounting for index saturation, senescence, and frost burn on leaves can greatly increase the accuracy of estimates of percent groundcover and biomass for winter cover crops.

  5. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting cover crops is an effective method to reduce both nitrogen leaching and sedimentation into waterways. Winter cover crops are planted post-harvest on corn and soybean fields to scavenge residual nitrogen that remains in the soil, and to meet soil erosion guidelines, providing positive water...

  6. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  7. Regional variability of environmental effects of energy crop rotations

    NASA Astrophysics Data System (ADS)

    Prescher, Anne-Katrin; Peter, Christiane; Specka, Xenia; Willms, Matthias; Glemnitz, Michael

    2014-05-01

    The use of energy crops for bioenergy production is increasingly promoted by different frameworks and policies (ECCP, UNFCCC). Energy cropping decreases greenhouse gas emissions by replacing the use of fossil fuel. However, despite this, growing in monocultures energy crop rotations has low environmental benefit. It is broadly accepted consensus that sustainable energy cropping is only realizable by crop rotations which include several energy crop species. Four crop rotations consisting of species mixtures of C3, C4 and leguminous plants and their crop positions were tested to identify the environmental effect of energy cropping systems. The experimental design included four replicates per crop rotation each covering four cultivation years. The study took place at five sites across Germany covering a considerable range of soil types (loamy sand to silt loam), temperatures (7.5 ° C - 10.0 ° C) and precipitation (559 mm - 807 mm) which allow a regional comparison of crop rotation performance. Four indicators were used to characterize the environmental conditions: (1) greenhouse gas (GHG) emissions from the management actions; (2) change in humus carbon (Chum); (3) groundwater recharge (RGW) and (4) nitrogen dynamics. The indicators were derived by balance, by an empirical model and by a dynamic model, respectively, all based and calibrated on measured values. The results show that the crop rotation impact on environmental indicators varied between plant species mixtures and the crop positions, between sites and climate. Crop rotations with 100 % energy crops (including C4 plants) had negative influence on Chum, GHG emissions per area and RGW in comparison to the rotation of 50 % energy crops and 50 % cash crops, which were mainly due to the remaining straw on the field. However, the biogas yield of the latter rotation was smaller, thus GHG emissions per product were higher, pointing out the importance to distinguish between GHG emissions per product and per area

  8. [Climatic suitability of single cropping rice planting region in China].

    PubMed

    Duan, Ju-Qi; Zhou, Guang-Sheng

    2012-02-01

    To clarify the leading climate factors affecting the distribution of single cropping rice planting region in China at national and annual temporal scales and to reveal the potential distribution and climatic suitability divisions of this planting region in China could not only provide scientific basis for optimizing the allocation of single cropping rice production, modifying planting pattern, and introducing fine varieties, but also ensure the food security of China. In this paper, the potential climate factors affecting the single cropping rice distribution in China at regional and annual scales were selected from related literatures, and the single cropping rice geographic information from the national agro-meteorological observation stations of China Meteorological Administration (CMA), together with the maximum entropy model (MaxEnt) and spatial analyst function of Arc-GIS software, were adopted to clarify the leading climate factors affecting the potential distribution of single cropping rice planting region in China, and to construct a model about the relationships between the potential distribution of the planting region and the climate. The results showed that annual precipitation, moisture index, and days of not less than 18 degrees C stably were the leading climate factors affecting the potential distribution of single cropping rice planting region in China, with their cumulative contribution rate reached 94.5% of all candidate climate factors. The model constructed in this paper could well simulate the potential distribution of single cropping rice planting region in China. According to the appearance frequency, the low, medium and high climatic suitability divisions of single cropping rice planting region in China were clarified, and the climate characteristics of the planting region in each climatic suitability division were analyzed.

  9. Random Forests for Global and Regional Crop Yield Predictions

    PubMed Central

    Jeong, Jig Han; Resop, Jonathan P.; Mueller, Nathaniel D.; Fleisher, David H.; Yun, Kyungdahm; Butler, Ethan E.; Timlin, Dennis J.; Shim, Kyo-Moon; Gerber, James S.; Reddy, Vangimalla R.

    2016-01-01

    Accurate predictions of crop yield are critical for developing effective agricultural and food policies at the regional and global scales. We evaluated a machine-learning method, Random Forests (RF), for its ability to predict crop yield responses to climate and biophysical variables at global and regional scales in wheat, maize, and potato in comparison with multiple linear regressions (MLR) serving as a benchmark. We used crop yield data from various sources and regions for model training and testing: 1) gridded global wheat grain yield, 2) maize grain yield from US counties over thirty years, and 3) potato tuber and maize silage yield from the northeastern seaboard region. RF was found highly capable of predicting crop yields and outperformed MLR benchmarks in all performance statistics that were compared. For example, the root mean square errors (RMSE) ranged between 6 and 14% of the average observed yield with RF models in all test cases whereas these values ranged from 14% to 49% for MLR models. Our results show that RF is an effective and versatile machine-learning method for crop yield predictions at regional and global scales for its high accuracy and precision, ease of use, and utility in data analysis. RF may result in a loss of accuracy when predicting the extreme ends or responses beyond the boundaries of the training data. PMID:27257967

  10. Regional climate change mitigation with crops: context and assessment.

    PubMed

    Singarayer, J S; Davies-Barnard, T

    2012-09-13

    The intention of this review is to place crop albedo biogeoengineering in the wider picture of climate manipulation. Crop biogeoengineering is considered within the context of the long-term modification of the land surface for agriculture over several thousand years. Biogeoengineering is also critiqued in relation to other geoengineering schemes in terms of mitigation power and adherence to social principles for geoengineering. Although its impact is small and regional, crop biogeoengineering could be a useful and inexpensive component of an ensemble of geoengineering schemes to provide temperature mitigation. The method should not detrimentally affect food security and there may even be positive impacts on crop productivity, although more laboratory and field research is required in this area to understand the underlying mechanisms.

  11. Deriving vulnerability indicators for crop production regions in Indonesia

    NASA Astrophysics Data System (ADS)

    Perdinan; Atmaja, Tri; Sehabuddin, Ujang; Sugiarto, Yon; Febrianti, Lina; Farysca Adi, Ryco

    2017-01-01

    Food supply is considered as one of the most vulnerable to the effects of climate change. Higher temperature and changes in rainfall patterns and intensity may adversely impact crop production, which will eventually affect the food supply. Consequently, adaptation strategies should be devised to minimize the potential adverse impacts and maximize its potential benefits. The adaptation strategies should be devised by considering factors contributed to causing vulnerability following the concept of food supply chain, starting from production to consumption. This study focuses on identifying the contributed factors to vulnerability of crop production regions in Indonesia. The contributed factors were identified by defining indicators for each component of the food supply chain using an example of crop production centers in Indonesia, the West Java Province. The identification considers existing issues of the food supply chain, covering aspects of production, post-harvest and storage, distribution, and consumption, based on the field surveys conducted in Indramayu district of the West Java, the main grower of paddy production, and Garut district of the West Java, the main grower of corn production. The selection of the vulnerability indicators was also considered the data availability for the study area. The analysis proposed a list of indicators classified into production, post-harvest and storage, distribution and consumption that are proposed to assess the regional vulnerability of crop production regions in Indonesia. This result is expected to contribute in understanding the process of devising climate change adaptation intended for enhancing food supply resilience to climate change.

  12. GUIDANCE FOR STATISTICAL DETERMINATION OF APPROPRIATE PERCENT MINORITY AND PERCENT POVERTY DISTRIBUTIONAL CUTOFF VALUES USING CENSUS DATA FOR AND EPA REGION II ENVIRONMENTAL JUSTICE PROJECT

    EPA Science Inventory

    The purpose of this report is to assist Region H by providing a statistical analysis identifying the areas with minority and below poverty populations known as "Community of Concern" (COC). The aim was to find a cutoff value as a threshold to identify a COC using demographic data...

  13. Regional percent fat and bone mineral density in Korean adolescents: the Fourth Korea National Health and Nutrition Examination Survey (KNHANES IV-3), 2009.

    PubMed

    Lee, Kayoung

    2013-01-01

    The effects of total and regional (trunk, arm, and leg) percent fat on total and regional (arm, leg, rib, thoracic spine, lumbar spine, proximal femur, and pelvis) bone mineral density (BMD) in Korean adolescents were examined using the Fourth Korea National Health and Nutrition Examination Survey, 2009. Percent fat and BMD were measured by dual energy X-ray absorptiometry in a population-based sample of 710 Korean adolescents (365 boys and 345 girls), aged 10-19 years. After adjusting for age, height, weight, serum vitamin D, dietary calcium intake, and menarche for girls in complex sampling linear regression analysis, higher total and regional percent fat were associated with low total BMD and BMD in all regions in boys aged 13-16 years, while the associations were inconsistent for early and late adolescent boys. In girls, the inverse associations were more consistent for those aged 17-19 years than for younger girls. While most of total and regional percent fat were negatively associated with BMD of thoracic and lumbar spine and femur in boys, most of these relationships were not significant in girls. The negative association with total BMD was consistent for trunk percent fat but variable for arm and leg percent fat according to age subgroup and gender. In conclusion, the unfavorable effect of regional percent fat on all regional BMD is more consistent in boys aged 13-16 years and in girls aged 17-19 years, while the relationship appears to be gender and age subgroup-specific.

  14. A Centralized Regional Database for Winter Cover Crops in Annual Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops have the potential to reduce erosion, minimize losses of nitrogen and phosphorus, and increase soil carbon in annual cropping systems in the Midwest. Public support, however, for incentives to farmers to adopt cover crops is minimal. Therefore, development of location-specific rec...

  15. [Research advances in simulating regional crop growth under water stress by remote sensing].

    PubMed

    Zhang, Li; Wang, Shili; Ma, Yuping

    2005-06-01

    It is of practical significance to simulate the regional crop growth under water stress, especially at regional scale. Combined with remote sensing information, crop growth simulation model could provide an effective way to estimate the regional crop growth, development and yield formation under water stress. In this paper, related research methods and results were summarized, and some problems needed to be further studied and resolved were discussed.

  16. Noah-MP-CROP: an integrated atmosphere-crop-soil modeling system for regional agro-climatic assessments.

    NASA Astrophysics Data System (ADS)

    Liu, X.; Barlage, M. J.; Chen, F.; Niyogi, D. S.; Zhou, G.

    2014-12-01

    Cropland plays an important role in land-atmosphere interactions. Integrating advanced regional-scale crop-growth modeling capabilities into a land surface model (LSM) is not only crucial for assessing potential impacts of climate change and climate variability on crop yields, but also can help to improve the representation of crop-atmosphere interactions in the Weather Research and Forecasting (WRF) Model. Therefore, the objectives of developing Noah-MP-CROP are: 1) provide high-spatial and high-temporal resolution regional agro-climatic related products; 2) enhance the simulations of cropland surface-fluxes in the WRF model for numerical weather prediction and regional climate modeling. Noah-MP is a new-generation of LSM that uses multiple parameterizations for land hydrology and energy processes. In this study, we couple species-specific crop phenology and carbon allocation schemes with Noah-MP-based complex simulations of canopy photosynthesis and soil moisture. The Noah-MP-CROP can be executed at field-scales or grid-scales of different spatial resolution and it also can be applied at multiple temporal scales. The major agriculture-related outputs include: grain mass, leaf mass, leaf area index, crop yield, growth primary production, growing degree days, soil temperature, soil moisture, and evapotranspiration. The model also allows us to conduct different assessments by using either historical, real-time, short-term forecast or future projected weather input data. In this study, we focus on evaluating the Noah-MP-CROP for the regional agro-climatic assessments in the U.S. Corn Belt. Model simulations are conducted at both field-scale (Bondville, IL and Mead, NE) and grid-scale (4km-resolution). At both field sites, model outputs of crop yield (grain mass), leaf area index and surface fluxes show strong agreement with observations. Also incorporating crop-growth models in Noah-MP improves the simulated latent heat and sensible heat fluxes during the crop

  17. Potential supply and cost of biomass from energy crops in the TVA region

    SciTech Connect

    Graham, R.L.; Downing, M.E.

    1995-04-01

    The economic and supply structures of energy crop markets have not been established. Establishing the likely price and supply of energy crop biomass in a region is a complex task because biomass is not an established commodity as are oil, natural gas, and coal. In this study, the cost and supply of short-rotation woody crop (SRWC) and switchgrass biomass for the Tennessee Valley Authority (TVA) region-a 276-county area that includes portions of 11 states in the southeastern United States - are projected. Projected prices and quantities of biomass are assumed to be a function of the amount and quality of crop and pasture land available in a region, expected energy crop yields and production costs on differing soils and land types, and the profit that could be obtained from current conventional crop production on these same lands. Results include the supply curves of SRWC and switchgrass biomass that are projected to be available from the entire region, the amount and location of crop and pasture land that would be used, and the conventional agricultural crops that would be displaced as a function of energy crop production. Finally, the results of sensitivity analysis on the projected cost and supply of energy crop biomass are shown. In particular, the separate impacts of varying energy crop production costs and yields, and interest rates are examined.

  18. Winter cover crops impact on corn production in semiarid regions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops have been proposed as a technique to increase soil health. This study examined the impact of winter brassica cover crop cocktails grown after wheat (Triticum aestivum) on corn yields; corn yield losses due to water and N stress; soil bacteria to fungi ratios; mycorrhizal markers; and ge...

  19. Ozone phytotoxicity evaluation and prediction of crops production in tropical regions

    NASA Astrophysics Data System (ADS)

    Mohammed, Nurul Izma; Ramli, Nor Azam; Yahya, Ahmad Shukri

    2013-04-01

    Increasing ozone concentration in the atmosphere can threaten food security due to its effects on crop production. Since the 1980s, ozone has been believed to be the most damaging air pollutant to crops. In Malaysia, there is no index to indicate the reduction of crops due to the exposure of ozone. Therefore, this study aimed to identify the accumulated exposure over a threshold of X ppb (AOTX) indexes in assessing crop reduction in Malaysia. In European countries, crop response to ozone exposure is mostly expressed as AOT40. This study was designed to evaluate and predict crop reduction in tropical regions and in particular, the Malaysian climate, by adopting the AOT40 index method and modifying it based on Malaysian air quality and crop data. Nine AOTX indexes (AOT0, AOT5, AOT10, AOT15, AOT20, AOT25, AOT30, AOT40, and AOT50) were analyzed, crop responses tested and reduction in crops predicted. The results showed that the AOT50 resulted in the highest reduction in crops and the highest R2 value between the AOT50 and the crops reduction from the linear regression analysis. Hence, this study suggests that the AOT50 index is the most suitable index to estimate the potential ozone impact on crops in tropical regions. The result showed that the critical level for AOT50 index if the estimated crop reduction is 5% was 1336 ppb h. Additionally, the results indicated that the AOT40 index in Malaysia gave a minimum percentage of 6% crop reduction; as contrasted with the European guideline of 5% (due to differences in the climate e.g., average amount of sunshine).

  20. Regional crop productivity and greenhouse gas emissions from Swiss soils under organic farming

    NASA Astrophysics Data System (ADS)

    Lee, Juhwan; Necpalova, Magdalena; Six, Johan

    2016-04-01

    There is worldwide concern about the increase in atmospheric greenhouse gases (GHG) and their impact on climate change and food security. As a sustainable alternative, organic cropping in various forms has been promoted to minimize the environmental impacts of conventional practices. However, relatively little is known about the potential to reduce GHG emissions while maintaining crop productivity through the large-scale adoption of organic practices. Therefore, we simulated and compared regional crop production, soil organic carbon status, and net soil GHG emissions under organic and conventional practices. Grid-level (2.2 km by 2.2 km) simulation was performed using previously validated DailyDayCent by considering typical crop rotations. Regional model estimates are presented and discussed specifically with the focus on Swiss organic and conventional cropping systems, which differ by type and intensity of manuring, tillage, and cover crop.

  1. Satellite-based crop coefficient and regional water use estimates for Hawaiian sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water availability is a major limiting factor for sustainable production of potential biofuel crops in Maui, Hawaii. It is essential to improve regional, near-real time estimates of crop water use to facilitate optimal water management. Satellite remote-sensing offers multiple methods to estimate w...

  2. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    SciTech Connect

    Porter, William C.; Rosenstiel, Todd N.; Guenther, Alex; Lamarque, Jean-Francois; Barsanti, Kelley

    2015-05-06

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O₃) and fine particulate matter (PM₂̣₅) levels as a result of large changes in biogenic emissions. Using the Community Earth System Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O₃ increases of 5–27 ppb in India, 1–9 ppb in China, and 1–6 ppb in the United States, with peak PM₂̣₅ increases of up to 2 μgm⁻³. We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10–100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value.

  3. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    DOE PAGES

    Porter, William C.; Rosenstiel, Todd N.; Guenther, Alex; ...

    2015-05-06

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O₃) and fine particulate matter (PM₂̣₅) levels as a result of large changes in biogenic emissions. Using the Community Earth Systemmore » Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O₃ increases of 5–27 ppb in India, 1–9 ppb in China, and 1–6 ppb in the United States, with peak PM₂̣₅ increases of up to 2 μgm⁻³. We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10–100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value.« less

  4. Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection

    NASA Astrophysics Data System (ADS)

    Porter, William C.; Rosenstiel, Todd N.; Guenther, Alex; Lamarque, Jean-Francois; Barsanti, Kelley

    2015-05-01

    An expected global increase in bioenergy-crop cultivation as an alternative to fossil fuels will have consequences on both global climate and local air quality through changes in biogenic emissions of volatile organic compounds (VOCs). While greenhouse gas emissions may be reduced through the substitution of next-generation bioenergy crops such as eucalyptus, giant reed, and switchgrass for fossil fuels, the choice of species has important ramifications for human health, potentially reducing the benefits of conversion due to increases in ozone (O3) and fine particulate matter (PM2.5) levels as a result of large changes in biogenic emissions. Using the Community Earth System Model we simulate the conversion of marginal and underutilized croplands worldwide to bioenergy crops under varying future anthropogenic emissions scenarios. A conservative global replacement using high VOC-emitting crop profiles leads to modeled population-weighted O3 increases of 5-27 ppb in India, 1-9 ppb in China, and 1-6 ppb in the United States, with peak PM2.5 increases of up to 2 μg m-3. We present a metric for the regional evaluation of candidate bioenergy crops, as well as results for the application of this metric to four representative emissions profiles using four replacement scales (10-100% maximum estimated available land). Finally, we assess the total health and climate impacts of biogenic emissions, finding that the negative consequences of using high-emitting crops could exceed 50% of the positive benefits of reduced fossil fuel emissions in value.

  5. Crop phenology feedback on climate over central US in a regional climate model

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Takle, E.; Xue, L.; Segal, M.

    2004-12-01

    The moisture and CO2 fluxes over cropland represent local climate forcing and an important component of atmospheric energy and CO2 budgets. Since observed fluxes, especially for CO2, are rarely available over extensive areas the fluxes are mainly estimated by climate models. The carbon sequestration and water consumption by crops are only crudely represented in the models. For example, most climate models use climatological or static crop growth and development that do not change from year to year, indistinguishable between flood and drought years. To improve the moisture and CO2 fluxes (i.e., photosynthesis) from crops we coupled crop models (CERES for corn and CropGro for soybean) with the regional model (MM5) along with the land surface model (LSM). This crop-climate coupled model with interactive crop phenology can simulate interannual variations in CO2 and water fluxes from the surface. The coupled model was used to simulate CO2 and moisture fluxes in the past couple of growing seasons in the central U.S. Results were compared with available CO2 flux observations at some AmeriFlux sites. It is found that the coupled model gives more realistic seasonal accumulation of CO2 fluxes and that the dynamic crop development in the coupled model has a strong feedback on regional precipitation. The typical climate models using static crop phenology significantly overestimate CO2 fluxes during early growing season because of positive biases in specifying leaf area index.

  6. Effects of double cropping on summer climate of the North China Plain and neighbouring regions

    NASA Astrophysics Data System (ADS)

    Jeong, S. J.

    2015-12-01

    The North China Plain (NCP) is one of the most important agricultural regions in Asia and produces up to 50% of the cereal consumed in China each year. To meet increasing food demands without expanding croplands, annual agricultural practice in much of the NCP has changed from single to double cropping. The impact of double cropping on the regional climate, through biophysical feedbacks caused by changes in land surface conditions, remains largely unknown. Here we show that observed surface air temperatures during the inter-cropping season (June and July) are 0.40 °C higher over double cropping regions (DCRs) than over single cropping regions (SCRs), with increases in the daily maximum temperature as large as 1.02 °C. Using regional climate modelling, we attribute the higher temperatures in DCRs to reduced evapotranspiration during the inter-cropping period. The higher surface temperatures in June and July affect low-level circulation and, in turn, rainfall associated with the East Asian monsoon over the NCP and neighbouring countries. These findings suggest that double cropping in the NCP can amplify the magnitude of summertime climate changes over East Asia.

  7. Can subsurface drip irrigation (SDI) be a competitive irrigation system in the Great Plains region for commodity crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface drip irrigation (SDI) as with all microirrigation systems is typically only used on crops with greater value. In the U.S. Great Plains region, the typical irrigated crops are the cereal and oil seed crops and cotton. These crops have less economic revenue than typical microirrigated cro...

  8. Impacts of the Future Changes in Extreme Events on the Regional Crop Yield in Turkey

    NASA Astrophysics Data System (ADS)

    An, Nazan; Turp, M. Tufan; Ozturk, Tugba; Kurnaz, M. Levent

    2016-04-01

    The changes in extreme events caused by climate change have the greatest impact on agricultural sector specifically crop yield. Therefore, it requires a clear understanding of how extreme events affect the crop yield and how it causes high economic losses. In this research, we cover the relationship between extreme events and the crop yield in Turkey for the period of 2020 - 2045 with respect to 1980 - 2005. We focus on the role of those extreme event causing natural disasters on the regional crop yield. This research comprises 2 parts. In the first part, the projection is performed according to the business as usual scenario of IPCC, RCP8.5, via the RegCM4.4 in order to obtain extreme event indices required for the crop assessment. In the second part, the crop yield and the extreme event indices are combined by applying the econometric analysis in order to see the relationship between natural disasters and crop yield. The risks for crop yield caused by the extreme events are estimated and interpreted. This study aims to assess the effect of frequency of expected extreme events on the crop yield at the cropland of Turkey. This research has been supported by Boǧaziçi University Research Fund Grant Number 10421.

  9. Energy crops: a new challenge for tropical regions

    SciTech Connect

    Alvim, P.D.T.; Alvim, R.

    1980-12-01

    Fuel production from plants on the basis of information drawn from the literature and from case studies conducted in Brazil is reviewed. Special reference is made to the production of charcoal, alcohol, and vegetable oils to replace gasoline and diesel fuel for internal-combustion engines. The potentialities and socio-economic implications of projects based on some efficient energy crops such as sugar cane, cassava, eucalyptus and oil palm are discussed. Attention is called to some plants which are considered promising sources of oil and hydrocarbons but have not yet been fully investigated from the agronomical and/or industrial point of view. 15 references.

  10. A generic probability based model to derive regional patterns of crops in time and space

    NASA Astrophysics Data System (ADS)

    Wattenbach, Martin; Luedtke, Stefan; Redweik, Richard; van Oijen, Marcel; Balkovic, Juraj; Reinds, Gert Jan

    2015-04-01

    Croplands are not only the key to human food supply, they also change the biophysical and biogeochemical properties of the land surface leading to changes in the water cycle, energy portioning, they influence soil erosion and substantially contribute to the amount of greenhouse gases entering the atmosphere. The effects of croplands on the environment depend on the type of crop and the associated management which both are related to the site conditions, economic boundary settings as well as preferences of individual farmers. The method described here is designed to predict the most probable crop to appear at a given location and time. The method uses statistical crop area information on NUTS2 level from EUROSTAT and the Common Agricultural Policy Regionalized Impact Model (CAPRI) as observation. These crops are then spatially disaggregated to the 1 x 1 km grid scale within the region, using the assumption that the probability of a crop appearing at a given location and a given year depends on a) the suitability of the land for the cultivation of the crop derived from the MARS Crop Yield Forecast System (MCYFS) and b) expert knowledge of agricultural practices. The latter includes knowledge concerning the feasibility of one crop following another (e.g. a late-maturing crop might leave too little time for the establishment of a winter cereal crop) and the need to combat weed infestations or crop diseases. The model is implemented in R and PostGIS. The quality of the generated crop sequences per grid cell is evaluated on the basis of the given statistics reported by the joint EU/CAPRI database. The assessment is given on NUTS2 level using per cent bias as a measure with a threshold of 15% as minimum quality. The results clearly indicates that crops with a large relative share within the administrative unit are not as error prone as crops that allocate only minor parts of the unit. However, still roughly 40% show an absolute per cent bias above the 15% threshold. This

  11. A generic probability based algorithm to derive regional patterns of crops in time and space

    NASA Astrophysics Data System (ADS)

    Wattenbach, Martin; Oijen, Marcel v.; Leip, Adrian; Hutchings, Nick; Balkovic, Juraj; Smith, Pete

    2013-04-01

    Croplands are not only the key to human food supply, they also change the biophysical and biogeochemical properties of the land surface leading to changes in the water cycle, energy partitioning, influence soil erosion and substantially contribute to the amount of greenhouse gases entering the atmosphere. The effects of croplands on the environment depend on the type of crop and the associated management which both are related to the site conditions, economic boundary settings as well as preferences of individual farmers. However, at a given point of time the pattern of crops in a landscape is not only determined by environmental and socioeconomic conditions but also by the compatibility to the crops which had been grown in the years before at the current field and its surrounding cropping area. The crop compatibility is driven by factors like pests and diseases, crop driven changes in soil structure and timing of cultivation steps. Given these effects of crops on the biochemical cycle and their interdependence with the mentioned boundary conditions, there is a demand in the regional and global modelling community to account for these regional patterns. Here we present a Bayesian crop distribution generator algorithm that is used to calculate the combined and conditional probability for a crop to appear in time and space using sparse and disparate information. The input information to define the most probable crop per year and grid cell is based on combined probabilities derived from the a crop transition matrix representing good agricultural practice, crop specific soil suitability derived from the European soil database and statistical information about harvested area from the Eurostat database. The reported Eurostat crop area also provides the target proportion to be matched by the algorithm on the level of administrative units (Nomenclature des Unités Territoriales Statistiques - NUTS). The algorithm is applied for the EU27 to derive regional spatial and

  12. Impacts of crop growth dynamics on soil quality at the regional scale

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2014-05-01

    Agricultural land use and in particular crop growth dynamics can greatly affect soil quality. Both the amount of soil lost from erosion by water and soil organic matter are key indicators for soil quality. The aim was to develop a modelling framework for quantifying the impacts of crop growth dynamics on soil quality at the regional scale with test case Flanders. A framework for modelling the impacts of crop growth on soil erosion and soil organic matter was developed by coupling the dynamic crop cover model REGCROP (Gobin, 2010) to the PESERA soil erosion model (Kirkby et al., 2009) and to the RothC carbon model (Coleman and Jenkinson, 1999). All three models are process-based, spatially distributed and intended as a regional diagnostic tool. A geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System). Crop allometric models were developed from variety trials to calculate crop residues for common crops in Flanders and subsequently derive stable organic matter fluxes to the soil. Results indicate that crop growth dynamics and crop rotations influence soil quality for a very large percentage. soil erosion mainly occurs in the southern part of Flanders, where silty to loamy soils and a hilly topography are responsible for soil loss rates of up to 40 t/ha. Parcels under maize, sugar beet and potatoes are most vulnerable to soil erosion. Crop residues of grain maize and winter wheat followed by catch crops contribute most to the total carbon sequestered in agricultural soils. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. This implies that agricultural policies that impact on agricultural land management influence soil quality for a large percentage. The coupled REGCROP-PESERA-ROTHC model allows for quantifying the impact of seasonal and year-to-year crop growth dynamics on soil quality. When coupled to a multi-annual crop

  13. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity

    NASA Astrophysics Data System (ADS)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Müller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; Khabarov, Nikolay; Olin, Stefan; Schaphoff, Sibyll; Schmid, Erwin; Yang, Hong; Rosenzweig, Cynthia

    2016-08-01

    Rising atmospheric CO2 concentrations ([CO2]) are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated [CO2] and associated climate change projected for a high-end greenhouse gas emissions scenario. We find CO2 effects increase global CWP by 10[047]%-27[737]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rainfed wheat). If realized in the fields, the effects of elevated [CO2] could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modelling the effects of rising [CO2] across crop and hydrological modelling communities.

  14. Regional Disparities in the Beneficial Effects of Rising CO2 Emissions on Crop Water Productivity

    NASA Technical Reports Server (NTRS)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Meuller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; Khabarov, Nikolay; Olin, Stefan; Schaphoff, Sibyll; Schmid, Erwin; Yang, Hong; Rosenzweig, Cynthia

    2016-01-01

    Rising atmospheric carbon dioxide concentrations are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated carbon dioxide and associated climate change projected for a high-end greenhouse gas emissions scenario. We find carbon dioxide effects increase global CWP by 10[0;47]%-27[7;37]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rain fed wheat). If realized in the fields, the effects of elevated carbon dioxide could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modeling the effects of rising carbon dioxide across crop and hydrological modeling communities.

  15. Crop growth and irrigation interact to influence surface fluxes in a regional climate-cropland model (WRF3.3-CLM4crop)

    NASA Astrophysics Data System (ADS)

    Lu, Yaqiong; Jin, Jiming; Kueppers, Lara M.

    2015-12-01

    In this study, we coupled Version 4.0 of the Community Land Model that includes crop growth and management (CLM4crop) into the Weather Research and Forecasting (WRF) model Version 3.3 to better represent interactions between climate and agriculture. We evaluated the performance of the coupled model (WRF3.3-CLM4crop) by comparing simulated crop growth and surface climate to multiple observational datasets across the continental United States. The results showed that although the model with dynamic crop growth overestimated leaf area index (LAI) and growing season length, interannual variability in peak LAI was improved relative to a model with prescribed crop LAI and growth period, which has no environmental sensitivity. Adding irrigation largely improved daily minimum temperature but the RMSE is still higher over irrigated land than non-irrigated land. Improvements in climate variables were limited by an overall model dry bias. However, with addition of an irrigation scheme, soil moisture and surface energy flux partitioning were largely improved at irrigated sites. Irrigation effects were sensitive to crop growth: the case with prescribed crop growth underestimated irrigation water use and effects on temperature and overestimated soil evaporation relative to the case with dynamic crop growth in moderately irrigated regions. We conclude that studies examining irrigation effects on weather and climate using coupled climate-land surface models should include dynamic crop growth and realistic irrigation schemes to better capture land surface effects in agricultural regions.

  16. Differential Impacts of Climate Change on Crops and Agricultural Regions in India

    NASA Astrophysics Data System (ADS)

    Sharma, A. N.

    2015-12-01

    As India's farmers and policymakers consider potential adaptation strategies to climate change, some questions loom large: - Which climate variables best explain the variability of crop yields? - How does the vulnerability of crop yields to climate vary regionally? - How are these risks likely to change in the future? While process-based crop modelling has started to answer many of these questions, we believe statistical approaches can complement these in improving our understanding of climate vulnerabilities and appropriate responses. We use yield data collected over three decades for more than ten food crops grown in India along with a variety of statistical approaches to answer the above questions. The ability of climate variables to explain yield variation varies greatly by crop and season, which is expected. Equally important, the ability of models to predict crop yields as well as their coefficients varies greatly by district even for districts which are relatively close to each other and similar in their agricultural practices. We believe these results encourage caution and nuance when making projections about climate impacts on crop yields in the future. Most studies about climate impacts on crop yields focus on a handful of major food crops. By extending our analysis to all the crops with long-term district level data in India as well as two growing seasons we gain a more comprehensive picture. Our results indicate that there is a great deal of variability even at relatively small scales, and that this must be taken into account if projections are to be made useful to policymakers.

  17. GEOGLAM best available crop masks and calendars for the four primary crop types (corn, wheat, soy and rice) within the main agricultural producing regions of the world.

    NASA Astrophysics Data System (ADS)

    Barker, B.; McGaughey, K.; Humber, M. L.; Nordling, J.; Claverie, M.; Justice, C. O.; Deshayes, M.; Becker-Reshef, I.

    2014-12-01

    The Global Agricultural Monitoring (GEOGLAM) initiative was developed by the Group on Earth Observations in order to produce and disseminate relevant, timely and accurate forecasts of agricultural production at national, regional and global scales through the use of earth observations, agro-meteorological data, field reports and national level expertise. As part of this goal GEOGLAM has developed the monthly GEOGLAM Crop Monitor, which provides coordinated global crop assessments on the four primary crop types (corn, wheat, soy and rice) within the main agricultural producing regions of the world. As a component of these assessments the GEOGLAM Crop Monitor has developed best available crop specific masks and seasonal specific calendars for each of the four primary crop types within these main producing regions of the world based on Crop Monitor partner products and inputs. These crop masks and calendars are due to be publically released in order to be of benefit to the greater agricultural research and monitoring communities. This talk will discuss the sources and development of these crop specific masks and calendars.

  18. Evaluation of the performance of SiBcrop model in predicting carbon fluxes and crop yields in the croplands of the US mid continental region

    NASA Astrophysics Data System (ADS)

    Lokupitiya, E.; Denning, S.; Paustian, K.; Corbin, K.; Baker, I.; Schaefer, K.

    2008-12-01

    The accurate representation of phenology, physiology, and major crop variables is important in the land- atmosphere carbon models being used to predict carbon and other exchanges of the man-made cropland ecosystems. We evaluated the performance of SiBcrop model (which is the Simple Biosphere model (SiB) with a new scheme for crop phenology and physiology) in predicting carbon exchanges of the US mid continental region which has several major crops. The use of the new phenology scheme within SiB remarkably improved the prediction of LAI and carbon fluxes for corn, soybean, and wheat crops as compared with the observed data at several Ameriflux eddy covariance flux tower sites with those crops. SiBcrop better predicted the onset and end of the growing season, harvest, interannual variability associated with crop rotation, day time carbon draw down, and day to day variability in the carbon exchanges. The model has been coupled with RAMS, the regional Atmospheric Modeling System (developed at Colorado State University), and the coupled SiBcrop-RAMS has predicted better carbon and other fluxes compared to the original SiB-RAMS. SiBcrop also predicted daily variation in biomass in different plant pools (i.e. roots, leaves, stems, and products). In this study, we further evaluated the performance of SiBcrop by comparing the yield estimates based on the grain/seed biomass at harvest predicted by SiBcrop for relevant major crops, against the county-level crop yields reported by the US National Agricultural Statistics Service (NASS). Initially, the model runs were based on crop maps scaled at 40 km resolution; the maps were used to derive the fraction of corn, soybean, and wheat at each grid cell across the US Mid Continental Intensive (MCI) region under the North American Carbon Program (NACP). The yield biomass carbon values (at harvest) predicted for each grid cell by SiBcrop were extrapolated to derive the county-level yield biomass carbon values, which were then

  19. [Main interspecific competition and land productivity of fruit-crop intercropping in Loess Region of West Shauxi].

    PubMed

    Yun, Lei; Bi, Hua-Xing; Tian, Xiao-Ling; Cui, Zhe-Wei; Zhou, Hui-Zi; Gao, Lu-Bo; Liu, Li-Xia

    2011-05-01

    Taking the four typical fruit-crop intercropping models, i.e., walnut-peanut, walnut-soybean, apple-peanut, and apple-soybean, in the Loess Region of western Shanxi Province as the objects, this paper analyzed the crop (peanut and soybean) photosynthetic active radiation (PAR), net photosynthetic rate (P(n)), yield, and soil moisture content. Comparing with crop monoculture, fruit-crop intercropping decreased the crop PAR and P(n). The smaller the distance from tree rows, the smaller the crop PAR and P(n). There was a significantly positive correlation between the P(n) and crop yield, suggesting that illumination was one of the key factors affecting crop yield. From the whole trend, the 0-100 cm soil moisture content had no significant differences between walnut-crop intercropping systems and corresponding monoculture cropping systems, but had significant differences between apple-crop intercropping systems and corresponding monoculture cropping systems, indicating that the competition for soil moisture was more intense in apple-crop intercropping systems than in walnut-crop intercropping systems. Comparing with monoculture, fruit-crop intercropping increased the land use efficiency and economic benefit averagely by 70% and 14%, respectively, and walnut-crop intercropping was much better than apple-crop intercropping. To increase the crop yield in fruit-crop intercropping systems, the following strategies should be taken: strengthening the management of irrigation and fertilization, increasing the distances or setting root barriers between crop and tree rows, regularly and properly pruning, and planting shade-tolerant crops in intercropping.

  20. Developing spring wheat ideotypes for India using a regional crop model

    NASA Astrophysics Data System (ADS)

    Koehler, A.; Challinor, A.

    2011-12-01

    The adaptation of food production to climate change requires knowledge of the limitations and opportunities associated with changing climates across the globe, and the manner in which this varies for different crops. This information is essential to identify the genotypic properties that are needed to maintain high yields under climate change. The development of successful adaptation options is contingent upon a degree of accuracy in the climate change projections and in the simulation of the response of crops to climate. This paper presents an ensemble of crop yield that is used to determine climatic ideotypes for spring wheat in India for the period 2020 to 2100. These ideotypes have genotypic properties that result in non-negative yield changes across a range of future projections. The study uses the Hadley Centre QUMP (Quantifying Uncertainty in Model Prediction) climate ensemble together with perturbed parameter simulations using a regional scale crop model (GLAM, the general large-area model for annual crops, Challinor et al. 2004, Agriculture and Forest Meteorology, Vol. 124, pages 99-120). The period 1966 to 1988 was used for the calibration and evaluation of the crop model. A systematic assessment of parameter sets that are consistent with observations was performed to determine parameter values. The simulated yields capture well the North-South pattern of the observed spring wheat yield in India. Projections of crop yield were developed for the period 2020 to 2100. The resulting simulations are used to determine the magnitude and spatial extent of the impact of abiotic stresses on wheat. Since the crop-climate ensemble varies both climate and crop response to climate within appropriate uncertainty ranges, the simulations can be used to identify those biophysical processes that robustly dominate across a range of climates. Crop model parameters are adjusted to represent genotypic adaptation to climatic stress and to propose crop ideotypes for spring wheat

  1. Modeling the impact of ozone x drought interactions on regional crop yields.

    PubMed

    King, D A

    1988-01-01

    The influence of soil moisture stress on crop sensitivity to O3 was evaluated for corn (Zea mays L.), cotton (Gossypium hirsutum L.), soybean (Glycine max L. Merr.), and wheat (Triticum aestivum L.) grown in the United States. This assessment was accomplished by using yield forecasting models to estimate the influence of soil moisture deficits on regional yield and a previously developed model to predict moisture stress x O3 interactions. Reduced crop sensitivity to O3 was predicted for those regions and years for which soil moisture stress reduced yield. The models predicted a drought-induced reduction in crop sensitivity to O3 of approximately 20% for the 1979 to 1983 period; i.e. a hypothetical O3-induced yield reduction of 5% for adequately watered crops would have been reduced to a 4% effect by the 1979 to 1983 distribution of soil moisture deficits. However, predicted drought effects varied between crops, regions, and years. Uncertainties in the model predictions are also discussed.

  2. Evaluation of six potential evapotranspiration models for estimating crop potential and actual evapotranspiration in arid regions

    NASA Astrophysics Data System (ADS)

    Li, Sien; Kang, Shaozhong; Zhang, Lu; Zhang, Jianhua; Du, Taisheng; Tong, Ling; Ding, Risheng

    2016-12-01

    Using potential evapotranspiration (PET) to estimate crop actual evapotranspiration (AET) is a critical approach in hydrological models. However, which PET model performs best and can be used to predict crop AET over the entire growth season in arid regions still remains unclear. The six frequently-used PET models, i.e. Blaney-Criddle (BC), Hargreaves (HA), Priestley-Taylor (PT), Dalton (DA), Penman (PE) and Shuttleworth (SW) models were considered and evaluated in the study. Five-year eddy covariance data over the maize field and vineyard in arid northwest China were used to examine the accuracy of PET models in estimating daily crop AET. Results indicate that the PE, SW and PT models underestimated daily ET by less than 6% with RMSE lower than 35 W m-2 during the four years, while the BC, HA and DA models under-predicted daily ET approximately by 10% with RMSE higher than 40 W m-2. Compared to BC, HA and DA models, PE, SW and PT models were more reliable and accurate for estimating crop PET and AET in arid regions. Thus the PE, SW and PT models were recommended for predicting crop evapotranspiration in hydrological models in arid regions.

  3. Supply evaluation of a herbaceous and woody energy crop at three midwest regions

    SciTech Connect

    English, B.C.; Dillivan, K.D.; Ojo, M.A.

    1994-12-31

    While substantial research has been conducted on the argronomic issues of biomass production and on the processes of converting biofuel crops into energy, little work has been completed analyzing the economic and physical impacts of biofuel production on an agriculturally based region. Acres currently devoted to traditional crops will be replaced by biomass crops if such a conversion proves to be economically attractive. These shifts could have impacts on local and regional levels of farm income, current farmland market values, commodity prices received, and the demand for and prices of farm level inputs. This paper examines the economic and physical ramifications of introducing biomass production to three Midwest regions centered in the following counties; Cass County, North Dakota, Olmsted County, Minnesota, and Orange County, Indiana. Using a regional linear programming model that maximizes net returns to producers subject to several constraints, a supply curve for biomass is developed for each of the three regions. The model predicts that at a plant gate price of $26, $40, and $52 per dry ton, biomass begins to enter into production in the Cass, Olmsted, and Orange Regions respectively. Prices of $28, $44, and $54 per dry ton of biomass are sufficient to supply a quantity necessary to operate a power plant requiring 5,000 dry tons per day in Cass, Olmsted, and Orange regions respectively. In the Olmsted and Orange regions, biomass production results in fertilizer being applied, however, in the Cass Region a slight increase in fertilizer use corresponds to biomass production.

  4. Drought Effects on Agricultural Yield: Comparison Across Regions and Crop Types

    NASA Astrophysics Data System (ADS)

    Daryanto, S.; Wang, L.; Jacinthe, P. A.

    2014-12-01

    Global agricultural production is dominated by rainfed agriculture, and is therefore prone to disruption from climate extreme weathers. These uncertainties become more problematic when considering the projection of increased drought frequency suggested by several climate models for various world regions. Curiously, few regional analyses of drought impact of food production have been attempted. We collated and analyzed data from the last 25 years to disentangle the effects of drought (i.e. timing, intensity and duration) on agricultural production in different eco-regions and with varying crop types. Our preliminary results suggested greater yield reduction in annual (-21.5%) than perennial plants (-16%), in C4 (-21%) compared to C3 crops (-17%), and when drought occurred during generative (i.e. flowering until maturity; -16.5%) than vegetative stage (-15.5%). Although drought caused similar amounts of yield reduction in both tropical and subtropical regions (i.e. -17%), it carries a greater food security risk in the tropics due to inherently low productivity (i.e. less than half than in the subtropical regions). Consequently, cultivating drought-resistant C3 perennial plants (e.g. sweet potato and cassava) in the tropics could prove a viable adaptive strategy to mitigate the effects of climate variability. In addition, these crops have limited input requirements, are well adapted to nutrient-poor Oxisols and Ultisols of the tropics, and generally outyield cereal crops in the region. Our analysis is ongoing and needs to take into account agronomic traits (e.g. water requirement), as well as the energy and nutritional values (e.g. protein, minerals) of alternative crops. Our results could inform the selection and development of new cultivars for the drought-prone regions of the world.

  5. Rice Crop Monitoring by Earth Observation Data in the Asian Region

    NASA Astrophysics Data System (ADS)

    Oyoshi, K.; Sobue, S.; Tomiyama, N.; Okumura, T.; Rakwatin, P.

    2012-12-01

    Food security is a critical issue for the international community. In June 2011, the meeting of G20 agriculture ministers was held to discuss global food security and they agreed on an "Action Plan on Food Price Volatility and Agriculture". This plan includes a GEO Global Agricultural Monitoring (GEO-GLAM) initiative which utilizes remote sensing to improve projections of crop production and weather forecasting. Hence, satellite remote sensing is expected to contribute national, regional and global food security through the systematic and efficient collection of food security related information such as agro-meteorological condition, crop growth or yield estimation. Food security related information is utilized to take mitigation strategies or policies to manage food shortages or trading, and ensure food security. Especially in Asia, rice is the most important cereal crop because Asian countries are responsible for approximately 90% of the world rice productions and consumptions. There- fore, Asian countries are expected to contribute GLAM through the construction of rice crop monitoring system. We demonstrated the estimation of rice production, the crop phenology monitoring by Earth Observation (EO) data. The aim of this study is to establish a prototype system designed to provide paddy rice area and yield estimation. Generally, crop yield estimation is consist of two components, cultivated area and yield per area. The cultivated areas of paddy field are detected by the seasonal pattern of SAR data over paddy field. This means paddy field is filled with water just before planting rice, then covered by dense vegetation in growing season. The paddy filed map was derived from the seasonal Advanced Land Observation Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) data with a simple threshold method. Then, to estimate rice productivity, we applied a simple rice crop model. The input data to the model are physical and chemical properties of

  6. Seventeenth century organic agriculture in China: I. Cropping systems in Jiaxing Region

    SciTech Connect

    Dazhong, W.; Pimentel, D.

    1986-03-01

    The cropping systems of seventeenth century traditional organic agriculture in the Jiaxing Region of eastern China required about 2000 hr of labor per hectare for rice production. Rice and related grain crops were produced employing only human power. The input was about 200 times that for most mechanized grain production today. The charcoal or fossil energy input to produce simple hand tools accounted for only 1-2% total energy in the crop systems. Organic wastes including manures, pond sediments, and green manure crops supplied most of the nutrients. Rice yields, ranging as high as 6700-8400 kg/ha, were similar to some of the highest yields today. The energy output/input ratio ranged from 9 for compost-fertilized rice to 12 for green manure-fertilized rice production. These ratios were 2-10 times higher than most mechanized rice production systems of today. Knowledge of the crop and soil system enabled the early Chinese farms to maintain high crop yields and sustain highly productive soils.

  7. [Prediction of winter wheat yield based on crop biomass estimation at regional scale].

    PubMed

    Ren, Jian-Qiang; Liu, Xing-Ren; Chen, Zhong-Xin; Zhou, Qing-Bo; Tang, Hua-Jun

    2009-04-01

    Based on the 2004 in situ data of crop yield, remote sensing inversed photosynthetically active radiation (PAR), fraction of photosynthetically active radiation (f(PAR)), climate, and soil moisture in 83 typical winter wheat sampling field of 45 counties in Shijiazhuang, Hengshui, and Xingtai of Hebei Province, a simplified model for calculating the light use efficiency (epsilon) of winter wheat in Huanghuaihai Plain was established. According to the crop accumulated biomass from March to May and corrected by harvest index, the quantitative relationship between crop biomass and crop yield for winter wheat was set up, and applied in the 235 counties in Huanghuaihai Plain region of Hebei Province and Shandong Province and validated by the official crop statistical data at county level in 2004. The results showed that the root mean square error (RMSE) of predicted winter wheat yield in study area was 238.5 kg x hm(-2), and the relative error was 4.28%, suggesting that it was feasible to predict winter wheat yield by crop biomass estimation based on remote sensing data.

  8. Regional modelling of nitrate leaching from Swiss organic and conventional cropping systems under climate change

    NASA Astrophysics Data System (ADS)

    Calitri, Francesca; Necpalova, Magdalena; Lee, Juhwan; Zaccone, Claudio; Spiess, Ernst; Herrera, Juan; Six, Johan

    2016-04-01

    Organic cropping systems have been promoted as a sustainable alternative to minimize the environmental impacts of conventional practices. Relatively little is known about the potential to reduce NO3-N leaching through the large-scale adoption of organic practices. Moreover, the potential to mitigate NO3-N leaching and thus the N pollution under future climate change through organic farming remain unknown and highly uncertain. Here, we compared regional NO3-N leaching from organic and conventional cropping systems in Switzerland using a terrestrial biogeochemical process-based model DayCent. The objectives of this study are 1) to calibrate and evaluate the model for NO3-N leaching measured under various management practices from three experiments at two sites in Switzerland; 2) to estimate regional NO3-N leaching patterns and their spatial uncertainty in conventional and organic cropping systems (with and without cover crops) for future climate change scenario A1B; 3) to explore the sensitivity of NO3-N leaching to changes in soil and climate variables; and 4) to assess the nitrogen use efficiency for conventional and organic cropping systems with and without cover crops under climate change. The data for model calibration/evaluation were derived from field experiments conducted in Liebefeld (canton Bern) and Eschikon (canton Zürich). These experiments evaluated effects of various cover crops and N fertilizer inputs on NO3-N leaching. The preliminary results suggest that the model was able to explain 50 to 83% of the inter-annual variability in the measured soil drainage (RMSE from 12.32 to 16.89 cm y-1). The annual NO3-N leaching was also simulated satisfactory (RMSE = 3.94 to 6.38 g N m-2 y-1), although the model had difficulty to reproduce the inter-annual variability in the NO3-N leaching losses correctly (R2 = 0.11 to 0.35). Future climate datasets (2010-2099) from the 10 regional climate models (RCM) were used in the simulations. Regional NO3-N leaching

  9. Development of Crop Yield Estimation Method by Applying Seasonal Climate Prediction in Asia-Pacific Region

    NASA Astrophysics Data System (ADS)

    Shin, Y.; Lee, E.

    2015-12-01

    Under the influence of recent climate change, abnormal weather condition such as floods and droughts has issued frequently all over the world. The occurrence of abnormal weather in major crop production areas leads to soaring world grain prices because it influence the reduction of crop yield. Development of crop yield estimation method is important means to accommodate the global food crisis caused by abnormal weather. However, due to problems with the reliability of the seasonal climate prediction, application research on agricultural productivity has not been much progress yet. In this study, it is an object to develop long-term crop yield estimation method in major crop production countries worldwide using multi seasonal climate prediction data collected by APEC Climate Center. There are 6-month lead seasonal predictions produced by six state-of-the-art global coupled ocean-atmosphere models(MSC_CANCM3, MSC_CANCM4, NASA, NCEP, PNU, POAMA). First of all, we produce a customized climate data through temporal and spatial downscaling methods for use as a climatic input data to the global scale crop model. Next, we evaluate the uncertainty of climate prediction by applying multi seasonal climate prediction in the crop model. Because rice is the most important staple food crop in the Asia-Pacific region, we assess the reliability of the rice yields using seasonal climate prediction for main rice production countries. RMSE(Root Mean Squire Error) and TCC(Temporal Correlation Coefficient) analysis is performed in Asia-Pacific countries, major 14 rice production countries, to evaluate the reliability of the rice yield according to the climate prediction models. We compare the rice yield data obtained from FAOSTAT and estimated using the seasonal climate prediction data in Asia-Pacific countries. In addition, we show that the reliability of seasonal climate prediction according to the climate models in Asia-Pacific countries where rice cultivation is being carried out.

  10. Past and present trends of agricultural production and crop residues available for removal in the Mid-American Region

    SciTech Connect

    Posselius, J.H. Jr.

    1981-09-01

    This report consists of two separate studies. Part I discusses past and present trends of agricultural production in the MASEC region, while Part II emphasizes crop residues available for removal in the MASEC region. Part I analyzes agricultural crop and livestock production levels and trends by crop and livestock type on a state level basis. The resource base is divided into three main categories: starch crops, sugar crops, and livestock. The term starch crops refers to crops which are currently grown in significant acreage in the North Central region, such as: barley, beans, corn, oats, rice, rye, grain sorghum, sunflowers, and wheat. The term sugar crops refers to; sugar beets and sweet sorghum, and the term livestock refers to; cattle, dairy, hogs, chickens, and turkeys. The states that comprise the North Central region includes; Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin. Part II estimates the amount of crop residue available for removal in the MASEC region by crop type, on a county and state level basis. Wind and water erosion are considered as are nutrient losses and the net energy aspects of residue removal.

  11. Assessment of energy crops alternative to maize for biogas production in the Greater Region.

    PubMed

    Mayer, Frédéric; Gerin, Patrick A; Noo, Anaïs; Lemaigre, Sébastien; Stilmant, Didier; Schmit, Thomas; Leclech, Nathael; Ruelle, Luc; Gennen, Jerome; von Francken-Welz, Herbert; Foucart, Guy; Flammang, Jos; Weyland, Marc; Delfosse, Philippe

    2014-08-01

    The biomethane yield of various energy crops, selected among potential alternatives to maize in the Greater Region, was assessed. The biomass yield, the volatile solids (VS) content and the biochemical methane potential (BMP) were measured to calculate the biomethane yield per hectare of all plant species. For all species, the dry matter biomass yield and the VS content were the main factors that influence, respectively, the biomethane yield and the BMP. Both values were predicted with good accuracy by linear regressions using the biomass yield and the VS as independent variable. The perennial crop miscanthus appeared to be the most promising alternative to maize when harvested as green matter in autumn and ensiled. Miscanthus reached a biomethane yield of 5.5 ± 1 × 10(3)m(3)ha(-1) during the second year after the establishment, as compared to 5.3 ± 1 × 10(3)m(3)ha(-1) for maize under similar crop conditions.

  12. The effect of crop rotation on pesticide leaching in a regional pesticide risk assessment.

    PubMed

    Balderacchi, Matteo; Di Guardo, Andrea; Vischetti, Costantino; Trevisan, Marco

    2008-11-01

    New modeling approaches that include the use of GIS are under development in order to allow a more realistic assessment of environmental contamination by pesticides. This paper reports a regional GIS-based risk assessment using a software tool able to simulate complex and real crop rotations at the regional scale. A single pesticide leaching assessment has been done. The mean annual pesticide concentration in leachate has been analyzed using both stochastic and deterministic approaches. The outputs of these simulations were mapped over the sampling locations of the regional pesticide monitoring program, demonstrating that GIS-based risk assessment can be used to establish new monitoring programs. A multiple pesticide leaching assessment for analyzing the risk related to pest control strategies in six different maize-based rotations has been carried out. Additive toxic units approach has been used. Crop rotation allows to mediate the risk related to pesticide use because forces the use of different compounds with different fate and toxicology properties.

  13. Improving plot- and regional-scale crop models for simulating impacts of climate variability and extremes

    NASA Astrophysics Data System (ADS)

    Tao, F.; Rötter, R.

    2013-12-01

    Many studies on global climate report that climate variability is increasing with more frequent and intense extreme events1. There are quite large uncertainties from both the plot- and regional-scale models in simulating impacts of climate variability and extremes on crop development, growth and productivity2,3. One key to reducing the uncertainties is better exploitation of experimental data to eliminate crop model deficiencies and develop better algorithms that more adequately capture the impacts of extreme events, such as high temperature and drought, on crop performance4,5. In the present study, in a first step, the inter-annual variability in wheat yield and climate from 1971 to 2012 in Finland was investigated. Using statistical approaches the impacts of climate variability and extremes on wheat growth and productivity were quantified. In a second step, a plot-scale model, WOFOST6, and a regional-scale crop model, MCWLA7, were calibrated and validated, and applied to simulate wheat growth and yield variability from 1971-2012. Next, the estimated impacts of high temperature stress, cold damage, and drought stress on crop growth and productivity based on the statistical approaches, and on crop simulation models WOFOST and MCWLA were compared. Then, the impact mechanisms of climate extremes on crop growth and productivity in the WOFOST model and MCWLA model were identified, and subsequently, the various algorithm and impact functions were fitted against the long-term crop trial data. Finally, the impact mechanisms, algorithms and functions in WOFOST model and MCWLA model were improved to better simulate the impacts of climate variability and extremes, particularly high temperature stress, cold damage and drought stress for location-specific and large area climate impact assessments. Our studies provide a good example of how to improve, in parallel, the plot- and regional-scale models for simulating impacts of climate variability and extremes, as needed for

  14. Effective crop evapotranspiration measurement using time-domain reflectometry technique in a sub-humid region

    NASA Astrophysics Data System (ADS)

    Srivastava, R. K.; Panda, R. K.; Halder, Debjani

    2016-06-01

    The primary objective of this study was to evaluate the performance of the time-domain reflectometry (TDR) technique for daily evapotranspiration estimation of peanut and maize crop in a sub-humid region. Four independent methods were used to estimate crop evapotranspiration (ETc), namely, soil water balance budgeting approach, energy balance approach—(Bowen ratio), empirical methods approach, and Pan evaporation method. The soil water balance budgeting approach utilized the soil moisture measurement by gravimetric and TDR method. The empirical evapotranspiration methods such as combination approach (FAO-56 Penman-Monteith and Penman), temperature-based approach (Hargreaves-Samani), and radiation-based approach (Priestley-Taylor, Turc, Abetw) were used to estimate the reference evapotranspiration (ET0). The daily ETc determined by the FAO-56 Penman-Monteith, Priestley-Taylor, Turc, Pan evaporation, and Bowen ratio were found to be at par with the ET values derived from the soil water balance budget; while the methods Abetw, Penman, and Hargreaves-Samani were not found to be ideal for the determination of ETc. The study illustrates the in situ applicability of the TDR method in order to make it possible for a user to choose the best way for the optimum water consumption for a given crop in a sub-humid region. The study suggests that the FAO-56 Penman-Monteith, Turc, and Priestley-Taylor can be used for the determination of crop ETc using TDR in comparison to soil water balance budget.

  15. Using simulation and data envelopment analysis to evaluate Iraqi regions in producing strategic crops

    NASA Astrophysics Data System (ADS)

    Chaloob, Ibrahim Z.; Ramli, Razamin; Nawawi, Mohd Kamal Mohd

    2014-12-01

    Productivity of the agriculture sector in Iraq has yet to reach an acceptable level. In this paper, we introduce a practical method to help manage Iraqi agriculture sector to control resources and increase production to meet the modern century requirements of good crops. These important resources are identified as water, fertilizer, natural fertilizer, pesticides and labour. The current agricultural patterns in Iraq affect the strategic crops cultivation in the country and lessen agricultural production to some life-threatening limits. Data Envelopment Analysis (DEA), which is a non-parametric tool, is proposed to identify solutions that can maximize farmers' net benefit making an optimal use of the five resources. This model also improves optimal mix of the resources. In reference to the production of each one of the three strategic crops in Iraq, the DEA model is used to find the efficiency of one region among four others in its agriculture sector, with the main problem being the constraint in the number of lands available in the situation. Hence, the simulation technique is used to generate additional regions to the four main regions adopted. This is to resolve the constriction of DEA when the decision making unit is less than the number of variables (outputs and inputs). The result is expected to show the efficiency of each of the evaluated region.

  16. Developing High-resolution Soil Database for Regional Crop Modeling in East Africa

    NASA Astrophysics Data System (ADS)

    Han, E.; Ines, A. V. M.

    2014-12-01

    The most readily available soil data for regional crop modeling in Africa is the World Inventory of Soil Emission potentials (WISE) dataset, which has 1125 soil profiles for the world, but does not extensively cover countries Ethiopia, Kenya, Uganda and Tanzania in East Africa. Another dataset available is the HC27 (Harvest Choice by IFPRI) in a gridded format (10km) but composed of generic soil profiles based on only three criteria (texture, rooting depth, and organic carbon content). In this paper, we present a development and application of a high-resolution (1km), gridded soil database for regional crop modeling in East Africa. Basic soil information is extracted from Africa Soil Information Service (AfSIS), which provides essential soil properties (bulk density, soil organic carbon, soil PH and percentages of sand, silt and clay) for 6 different standardized soil layers (5, 15, 30, 60, 100 and 200 cm) in 1km resolution. Soil hydraulic properties (e.g., field capacity and wilting point) are derived from the AfSIS soil dataset using well-proven pedo-transfer functions and are customized for DSSAT-CSM soil data requirements. The crop model is used to evaluate crop yield forecasts using the new high resolution soil database and compared with WISE and HC27. In this paper we will present also the results of DSSAT loosely coupled with a hydrologic model (VIC) to assimilate root-zone soil moisture. Creating a grid-based soil database, which provides a consistent soil input for two different models (DSSAT and VIC) is a critical part of this work. The created soil database is expected to contribute to future applications of DSSAT crop simulation in East Africa where food security is highly vulnerable.

  17. The interactive effects of soil transplant into colder regions and cropping on soil microbiology and biogeochemistry.

    PubMed

    Liu, Shanshan; Wang, Feng; Xue, Kai; Sun, Bo; Zhang, Yuguang; He, Zhili; Van Nostrand, Joy D; Zhou, Jizhong; Yang, Yunfeng

    2015-03-01

    Soil transplant into warmer regions has been shown to alter soil microbiology. In contrast, little is known about the effects of soil transplant into colder regions, albeit that climate cooling has solicited attention in recent years. To address this question, we transplanted bare fallow soil over large transects from southern China (subtropical climate zone) to central (warm temperate climate zone) and northern China (cold temperate climate zone). After an adaptation period of 4 years, soil nitrogen components, microbial biomass and community structures were altered. However, the effects of soil transplant on microbial communities were dampened by maize cropping, unveiling a negative interaction between cropping and transplant. Further statistical analyses with Canonical correspondence analysis and Mantel tests unveiled annual average temperature, relative humidity, aboveground biomass, soil pH and NH4 (+) -N content as environmental attributes closely correlated with microbial functional structures. In addition, average abundances of amoA-AOA (ammonia-oxidizing archaea) and amoA-AOB (ammonia-oxidizing bacteria) genes were significantly (P < 0.05) correlated with soil nitrification capacity, hence both AOA and AOB contributed to the soil functional process of nitrification. These results suggested that the soil nitrogen cycle was intimately linked with microbial community structure, and both were subjected to disturbance by soil transplant to colder regions and plant cropping.

  18. Advances in regional crop yield estimation over the United States using satellite remote sensing data

    NASA Astrophysics Data System (ADS)

    Johnson, D. M.; Dorn, M. F.; Crawford, C.

    2015-12-01

    Since the dawn of earth observation imagery, particularly from systems like Landsat and the Advanced Very High Resolution Radiometer, there has been an overarching desire to regionally estimate crop production remotely. Research efforts integrating space-based imagery into yield models to achieve this need have indeed paralleled these systems through the years, yet development of a truly useful crop production monitoring system has been arguably mediocre in coming. As a result, relatively few organizations have yet to operationalize the concept, and this is most acute in regions of the globe where there are not even alternative sources of crop production data being collected. However, the National Agricultural Statistics Service (NASS) has continued to push for this type of data source as a means to complement its long-standing, traditional crop production survey efforts which are financially costly to the government and create undue respondent burden on farmers. Corn and soybeans, the two largest field crops in the United States, have been the focus of satellite-based production monitoring by NASS for the past decade. Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) has been seen as the most pragmatic input source for modeling yields primarily based on its daily revisit capabilities and reasonable ground sample resolution. The research methods presented here will be broad but provides a summary of what is useful and adoptable with satellite imagery in terms of crop yield estimation. Corn and soybeans will be of particular focus but other major staple crops like wheat and rice will also be presented. NASS will demonstrate that while MODIS provides a slew of vegetation related products, the traditional normalized difference vegetation index (NDVI) is still ideal. Results using land surface temperature products, also generated from MODIS, will also be shown. Beyond the MODIS data itself, NASS research has also focused efforts on understanding a

  19. Exploring a water/energy trade-off in regional sourcing of livestock feed crops.

    PubMed

    Heller, Martin C; Keoleian, Gregory A

    2011-12-15

    Feed production constitutes a major portion of the energy and water resource inputs in modern livestock production. Schemes to reduce these inputs may include local sourcing of animal feed. However, in water stressed regions where irrigation of feed crops is necessary, a trade-off between local sourcing (with high water stress) and transport from less water stressed regions can occur. We demonstrate this trade-off in the U.S. by combining state-level irrigation water use and pumping energy demand from USDA surveys with fertilizer and transportation energy demands for producing major feed crops (corn grain, soybean, alfalfa hay, corn silage) in each state and delivering them to two hypothetical dairy farms located in Kersey, CO and Rosendale, WI. A back-up technology approach is employed to express freshwater resource depletion in units of energy, allowing direct comparison with other energy resource demands. Corn grain, soybean, and alfalfa hay delivered to CO demonstrate a clear trade-off between transportation energy (proportional to the distance between CO and the production state) and water stress. On the other hand, transportation burdens dominate for corn silage, making local production most attractive, even in water stressed regions. All crops delivered to WI (a region of low water stress and minimal irrigation) are dominated by transportation burdens, making local production preferable, but this is clearly not a universal principal, as other cases show. This paper quantitatively elucidates the water-energy trade-off in sourcing feed for livestock and the method is expected to be applicable in managing supply chain logistics of other farm commodities.

  20. Water Stress & Biomass Monitoring and SWAP Modeling of Irrigated Crops in Saratov Region of Russia

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2016-04-01

    results of analyzing water stress during growing season of 2012 and yielded biomass of crops three types of crops alfalfa, corn and soya irrigated by sprinkling machines at left bank of Volga River at Saratov Region of Russia are presented and analyzed. For that a combination of data received from satellite, local meteorological station and farmers as well as SWAP model was used. Analyze of data sets of monitored water deficit of each crop averaged for irrigation period was done by linear regression with yielded biomass values. Following analyze of effectiveness of irrigation water application was done by SWAP agrohydrological model.

  1. Evaluation of crop yield simulations in the SE USA using the NARCCAP regional climate models

    NASA Astrophysics Data System (ADS)

    Cocke, S.; Shin, D. W.; Baigorria, G. A.; Romero, C. C.

    2015-12-01

    We integrate climate projections, crop modeling systems and economic assessment to develop a tool for studying and assessing agricultural production in the southeast United States. This integrated framework will enable us to assess the potential impact of future climate variability and trend on the production of economically-valuable crops in the southeast United States where weather/climate has major effects on agricultural yields. Optimally weighted multi-model ensemble (MME) approaches are used in order to improve the projection of future regional crop yield. This research will enhance the current knowledge of linking climate and process models, with an economic evaluation, as a demonstration of an approach that can be applied for other settings, problems, etc. The current maize/peanut/cotton yields and the future yield projections over the southeast US were obtained using (a) observed COOP data (1971-2010), (b) a reanalysis (NCEP R2), and (c) the NARCCAP (CMIP3) ensemble data for irrigated and non-irrigated conditions with 7 to 8 different planting dates (potential adaptation options). We found that the future yield amounts over the southeast US are generally decreased in the NARCCAP runs.

  2. Viruses of cucurbit crops in the Mediterranean region: an ever-changing picture.

    PubMed

    Lecoq, Hervé; Desbiez, Cécile

    2012-01-01

    Cucurbit crops may be affected by at least 28 different viruses in the Mediterranean basin. Some of these viruses are widely distributed and cause severe yield losses while others are restricted to limited areas or specific crops, and have only a negligible economic impact. A striking feature of cucurbit viruses in the Mediterranean basin is their always increasing diversity. Indeed, new viruses are regularly isolated and over the past 35 years one "new" cucurbit virus has been reported on average every 2 years. Among these "new" viruses some were already reported in other parts of the world, but others such as Zucchini yellow mosaic virus (ZYMV), one of the most severe cucurbit viruses and Cucurbit aphid-borne yellows virus (CABYV), one of the most prevalent cucurbit viruses, were first described in the Mediterranean area. Why this region may be a potential "hot-spot" for cucurbit virus diversity is not fully known. This could be related to the diversity of cropping practices, of cultivar types but also to the important commercial exchanges that always prevailed in this part of the world. This chapter describes the major cucurbit viruses occurring in the Mediterranean basin, discusses factors involved in their emergence and presents options for developing sustainable control strategies.

  3. Comparison of Alternative Crop Phenology Detection Algorithms using MODIS NDVI Time Series Data in US Corn Belt Region

    NASA Astrophysics Data System (ADS)

    Lee, J.; Hong, S. Y.; Kang, S.

    2015-12-01

    Predicting crop phenology is important for understanding of crop development and growth processes and improving the accuracy of crop model. Remote sensing offers a feasible tool for monitoring spatio-temporal patterns of crop phenology in region and continental scales. Various methods have developed to determine the timing of crop phenological stages using spectral vegetation indices (i.e. NDVI and EVI) derived from satellite data. In our study, it was compared four alternative detection methods to identify crop phenological stages (i.e. the emergence and harvesting date) using high quality NDVI time series data derived from MODIS. In threshold method assumes the emergence and harvesting date when NDVI values exceed and decreases down to a given threshold, respectively. Two kind of threshold values were applied for NDVI and it increment for eight days. The other two methods use a logistic fitting model and inflection points on fitted curve, respectively. It was compared the four methods for corn and soybean, respectively. For validation, three kinds of datasets were utilized: AmeriFlux biological data of planting and harvest dates, and emergence date estimated from growing degree days (AGDDs) at flux tower sites, and state-level USDA Crop Progress Report (CPR). All methods showed substantial uncertainty but the threshold method showed relatively better agreement against with both site- and state-level data for soybean phenology. For better NDVI-based regional estimation of crop phenology, factors of uncertainty were examined and discussed in this study.

  4. Multistage depressed collector with efficiency of 90 to 94 percent for operation of a dual-mode traveling wave tube in the linear region

    NASA Technical Reports Server (NTRS)

    Ramins, P.; Fox, T. A.

    1980-01-01

    An axisymmetric, multistage, depressed collector of fixed geometric design was evaluated in conjunction with an octave bandwidth, dual mode traveling wave tube (TWT). The TWT was operated over a wide range of conditions to simulate different applications. The collector performance was optimized (within the constraint of fixed geometric design) over the range of TWT operating conditions covered. For operation of the TWT in the linear, low distortion range, 90 percent and greater collector efficiencies were obtained leading to TWT overall efficiencies of 20 to 35 percent, as compared with 2 to 5 percent with an undepressed collector. With collectors of this efficiency and minimized beam interception losses, it becomes practical to design dual mode TWT's such that the low mode can represent operation well below saturation. Consequently, the required pulse up in beam current can be reduced or eliminated, and this mitigates beam control and dual mode TWT circuit design problems. For operation of the dual mode TWT at saturation, average collector efficiencies in excess of 85 percent were obtained for both the low and high modes across an octave bandwidth, leading to a three to fourfold increase in the TWT overall efficiency.

  5. HISTORICAL ANALYSIS OF THE RELATIONSHIP OF STREAMFLOW FLASHINESS WITH POPULATION DENSITY, IMPERVIOUSNESS, AND PERCENT URBAN LAND COVER IN THE MID-ATLANTIC REGION (1)

    EPA Science Inventory

    Historical US Census population data was used to estimate population density for 1930-2000 and satellite imagery from circa 1973, 1992, and 2001 was used to estimate the degree of urban development and the percent imperviousness (for 1992 and 2001) for a set of 150 small (< 13...

  6. HISTORICAL ANALYSIS OF THE RELATIONSHIP OF STREAMFLOW FLASHINESS WITH POPULATION DENSITY, IMPERVIOUSNESS, AND PERCENT URBAN LAND COVER IN THE MID-ATLANTIC REGION

    EPA Science Inventory

    Methods: This study is an examination of the relationship between stream flashiness and watershed-scale estimates of percent imperviousness, degree of urban development, and population density for 150 watersheds with long-term USGS National Water Information System (NWIS) histori...

  7. Agronomic responses to late-seeded cover crops in a semiarid region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensification of cropping systems in the Great Plains beyond annual cropping practices may be limited by inadequate precipitation, short growing seasons, and highly variable climatic conditions. Inclusion of cover crops in dryland cropping systems may serve as an effective intensification strateg...

  8. Diversity of Rhizoctonia solani associated with pulse crops in different agro-ecological regions of India.

    PubMed

    Dubey, Sunil C; Tripathi, Aradhika; Upadhyay, Balendu K; Deka, Utpal K

    2014-06-01

    Four hundred seventy Rhizoctonia solani isolates from different leguminous hosts originating from 16 agro-ecological regions of India covering 21 states and 72 districts were collected. The disease incidence caused by R. solani varied from 6.8 to 22.2 % in the areas surveyed. Deccan plateau and central highlands, hot sub-humid ecoregion followed by northern plain and central highlands and hot semi-arid ecoregion showed the highest disease incidence. R. solani isolates were highly variable in growth diameter, number, size and pattern of sclerotia formation as well as hyphal width. The isolates obtained from aerial part of the infected plants showing web blight symptoms produced sclerotia of 1-2 mm in size whereas, the isolates obtained from infected root of the plants showing wet root rot symptoms produced microsclerotia (<1 mm). Majority of R. solani isolates showed <8 μm hyphal diameter. Based on morphological characters the isolates were categorized into 49 groups. Seven anastomosis groups (AGs) were identified among the populations of R. solani associated with the pulse crops. The frequency (25.6 %) of AG3 was the highest followed by AG2-3 (20.9 %) and AG5 (17.4 %). The cropping sequence of rice/sorghum/wheat-chickpea/mungbean/urdbean/cowpea/ricebean influenced the dominance of AG1 (16.3 %). Phylogenetic analysis utilizing ITS-5.8S rDNA gene sequences indicated high level of genetic similarity among isolates representing different AGs, crops and regions. ITS groups did not correspond to the morphological characters. The sequence data from this article has been deposited with NCBI data libraries with JF701707 to JF701795 accession numbers.

  9. Chat (Catha edulis): a socio economic crop in Harar Region, Eastern Ethiopia.

    PubMed

    Kandari, Laxman S; Yadav, Hiranmai R; Thakur, Ashok K; Kandari, Tripti

    2014-01-01

    Chat (Catha edulis) is an important perennial crop and its leaves are chewed for a stimulating effect. It is widely cultivated in the Ethiopian highlands of Oromia region and is figured as Ethiopia's second largest foreign exchange earner. Its cultivation accounts for about 70% of farmer's income in the study area. The common effect of its consumption leads to insomnia, a condition that the users sometimes try to overcome with sedatives or alcohol. The present study is an attempt to survey and assess the impact of crop on the community. It has been observed to implicate health problems, reduces savings and nutritional standards of the family members. The chat yields in the area ranges from 1500-1800 kg/ha through monoculture. During the study, the average monthly income of the family practicing chat cultivation was from Birr 8, 533.00 to 13, 166.00 kg/ha per year in Baate and Genede cultivating areas. When the average cost per/ha was rupees 60/kg. The present study shows that during the recent past, leaf consumption has increased significantly. Chat growers are not only producers but also traders and consumers. Its consumption has become a widespread habit from secondary schools. Highest number of consumers was found to be among drivers followed by students and shopkeepers. The consumption of the plant is not considered a taboo but on contrary a status symbol in the region. It has no legal or moral implications and is considered as a part of custom and habit of local people. High value cash crop like vegetables and orchard fruits needs to be used as a replacement for chat which could be a regular source of income to farmers. Alternative sources of income for farmers needs to be scientifically worked out and proposed keeping in view the proportion of agricultural land reserved under chat cultivation and to increase the production of food grains being produced.

  10. Perchlorate exposure from food crops produced in the lower Colorado River region.

    PubMed

    Sanchez, Charles A; Barraj, Leila M; Blount, Benjamin C; Scrafford, Carolyn G; Valentin-Blasini, Liza; Smith, Kimberly M; Krieger, Robert I

    2009-05-01

    The Colorado River shows low levels of perchlorate derived from aerospace- and defense-related fuel industries once located near the Las Vegas Wash. At sufficiently high dosages perchlorate can disrupt thyroid function by inhibiting uptake of iodide. The Colorado River is the primary source of irrigation water for most food crops grown in Southern California and Southwestern Arizona. The objective of this study was to evaluate potential perchlorate exposure from food crops produced in the lower Colorado River region (LCRR). The major food commodities produced in the region were sampled and perchlorate levels were determined by ion chromatography followed by detection using either conductivity or tandem mass spectrometry, depending on analyte levels. The Monte Carlo module of the Dietary Exposure Evaluation Model (DEEM) was used to derive an estimate of the 2-day average perchlorate intakes. Data were derived assuming that individuals residing in the LCRR get their fruits and vegetables from within the LCRR as well as from other areas in the United States, or assuming individuals living in the LCRR get their fruits and vegetables from the LCRR only. Perchlorate exposure estimates derived in this study are comparable to exploratory estimates by the US Food and Drug Administration. For infants and children, over 50% of the estimated perchlorate exposure was from milk. The relative impact of vegetables and fruit toward perchlorate exposure increased by age through adulthood. Cumulative perchlorate exposure estimates based on this hypothetical analysis could approach or exceed the NAS reference dose (RfD) for some population groups as drinking water levels exceeded 6 microg/l. However, few individuals are exposed to perchlorate in drinking water at levels above 4 microg/l in the United States and very few would be exposed to perchlorate levels exceeding the RfD, whether consuming food crops from within or outside the LCRR.

  11. Modeling interplay between regional net ecosystem carbon balance and soil erosion for a crop-pasture region

    NASA Astrophysics Data System (ADS)

    Gao, Qiong; Yu, Mei; Liu, Yinghui; Xu, Hongmei; Xu, Xia

    2007-12-01

    The balance between erosion-induced soil carbon loss and the reduction in heterotrophic respiration caused by carbon removal in semiarid ecosystems that suffer from severe soil erosion is still largely uncertain. In this paper, we revised and applied a simulation model to analyze responses of ecosystem processes in the crop-pasture belt region of northern China to impacts of soil erosion and climate shift. The revised model includes a new module that calculates runoff-induced soil erosion and soil carbon and nutrient losses. The model was validated against long-term field observations on plant productivity at several sites, and sediment yields of experiments with various vegetation covers and slopes. Simulation with historical climate data without considering erosion showed that the average net primary productivity (NPP), heterotrophic respiration (RHE), agricultural harvest (HAV), and net ecosystem carbon balance (NECB) were 210.1 ± 26.9, 169.8 ± 7.7, 35.9 ± 4.1, and 4.4 ± 22.5 gC m-2 a-1, respectively. In contrast, simulation with soil erosion gave an average erosion-induced loss of soil organic carbon (ECL) of 11.0 ± 2.8 gC m-2 a-1, and decreased average NPP, RHE, and HAV by 3.3 ± 0.7, 14.5 ± 0.3, and 0.2 ± 0.0 gC m-2 a-1, respectively. Given NPP maintained by crop fertilization and irrigation for crop fields, the erosion-induced soil carbon loss is thus counterbalanced by the decrease in heterotrophic respiration, resulting in an invariant NECB with respect to soil erosion.

  12. Towards metrics for using process-based and statistical models to project regional-scale crop responses to climate.

    NASA Astrophysics Data System (ADS)

    Watson, Jim; Challinor, Andrew

    2013-04-01

    One of the key 21st century science challenges is understanding the impacts of climate change on global food security. Analyzing regional-scale (> 100km) crop responses to climatic drivers is a critical component of efforts to project future crop production. While there is considerable experimental knowledge of the field scale response of crops to changes in mean and extremes of temperature, our inability to perform controlled regional-scale experiments results in a much more limited understanding of regionally-relevant biophysical processes, and a greater reliance on modeling studies. Two of the primary crop modeling approaches at the regional scale are statistical models and process-based models. Statistical models can help us identify regional scale interactions between climate and crop production from historical observations, but assume a level of stationarity in these relationships which may not hold for future climate scenarios. Process-based crop models explicitly simulate biophysical relationships, making them suitable for modeling the effects of a wide variety of unobserved climates. However, our limited experimental understanding of regionally-relevant processes means that the biophysical relationships assumed to be relevant are derived from field scale experiments. Consequently, the impact of errors in weather data and climate models on the skill of statistical and process-based models at the regional scale is not well understood. In this study we analyze the particular strengths and weaknesses of these two modeling approaches by comparing the crop-weather interactions extracted by a statistical hindcast model, and the processes abstracted by the GLAM process-based crop model. Both models are run in hindcast mode using the E-OBS weather dataset, and are assessed according to the impact of systematic errors introduced to the precipitation and temperature observations. Two types of errors, shuffling of existing values and biases, are simulated at

  13. Historical development of crop-related water footprints and inter-regional virtual water flows within China

    NASA Astrophysics Data System (ADS)

    Zhuo, La; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.

    2015-04-01

    China is facing water-related challenges, including an uneven distribution of water resources, both temporally and spatially, and an increasing competition over the limited water resources among different sectors. This issue has been widely researched and was finally included into the National Plan 2011 (the 2011 No. 1 Document by the State Council of China). However, there is still lack of information on how population growth and rapid urbanization have affected the water resources in China over the last decades. The current study aims at investigating (i) the intra-annual variation of green and blue water footprints (WFs) of crop production in China over the period 1978-2009 at a spatial resolution of 5 by 5 arc-minute; (ii) the yearly virtual water (VW) balances of 31 provinces within China, related water savings for the country, as well as the VW flows among eight economic regions resulting from inter-regional crop trade over the same period; and (iii) the development of the WF related to crop consumption by Chinese consumers. Results show that, over the period 1978-2009, the total WF related to crop production within China increased by only 4%), but regional changes were significant. From the 1980s to the 2000s, the shift of the cropping centre from the South to the North resulted in an increase of about 16% in the blue WF and 19% in the green WF in the North and a reduction of the blue and green WF in the South by 11% and 3%, respectively. China as a whole was a net virtual water importer related to crop trade, thus saving domestic water resources. China's inter-regional crop trade generated a blue water 'loss' annually by transferring crops from provinces with relatively low crop water productivity to provinces with relatively high productivity. Over the decades, the original VW flow from the South coastal region to the Northeast was reversed. Rice was the all-time dominant crop in the inter-regional VW flows (accounting for 34% in 2009), followed by wheat

  14. Using Different Spatial Scales of Climate Data for Regional Climate Impact Assessment: Effect on Crop Modeling Analysis

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Gallo, A.; Trabucco, A.; Montesarchio, M.; Mercogliano, P.; Spano, D.

    2015-12-01

    The high vulnerability of the agricultural sector to climate conditions causes serious concern regarding climate change impacts on crop development and production, particularly in vulnerable areas like the Mediterranean Basin. Crop simulation models are the most common tools applied for the assessment of such impacts on crop development and yields, both at local and regional scales. However, the use of these models in regional impact studies requires spatial input data for weather, soil, management, etc, whose resolution could affect simulation results. Indeed, the uncertainty in projecting climate change impacts on crop phenology and yield at the regional scale is affected not only by the uncertainty related to climate models and scenarios, but also by the downscaling methods and the resolution of climate data. The aim of this study was the evaluation of the effects of spatial resolutions of climate projections in estimating maturity date and grain yield for different varieties of durum wheat, common wheat and maize in Italy. The simulations were carried out using the CSM-CERES-Wheat and CSM-CERES-Maize crop models included in the DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, parameterized and evaluated in different experimental sites located in Italy. Dynamically downscaled climate data at different resolutions and different RCP scenarios were used as input in the crop models. A spatial platform, DSSAT-CSM based, developed in R programming language was applied to perform the simulation of maturity date and grain yield for durum wheat, common wheat and maize in each grid cell. Results, analyzed at the national and regional level, will be discussed.

  15. Diminishing returns from increased percent Bt cotton: the case of pink bollworm.

    PubMed

    Huang, Yunxin; Wan, Peng; Zhang, Huannan; Huang, Minsong; Li, Zhaohua; Gould, Fred

    2013-01-01

    Regional suppression of pests by transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) has been reported in several cropping systems, but little is known about the functional relationship between the ultimate pest population density and the pervasiveness of Bt crops. Here we address this issue by analyzing 16 years of field data on pink bollworm (Pectinophora gossypiella) population density and percentage of Bt cotton in the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We find that as the percent Bt cotton increased over the years, the cross-year growth rate of pink bollworm from the last generation of one year to the first generation of the next year decreased. However, as the percent Bt cotton increased, the within-year growth rate of pink bollworm from the first to last generation of the same year increased, with a slope approximately opposite to that of the cross-year rates. As a result, we did not find a statistically significant decline in the annual growth rate of pink bollworm as the percent Bt cotton increased over time. Consistent with the data, our modeling analyses predict that the regional average density of pink bollworm declines as the percent Bt cotton increases, but the higher the percent Bt cotton, the slower the decline in pest density. Specifically, we find that 95% Bt cotton is predicted to cause only 3% more reduction in larval density than 80% Bt cotton. The results here suggest that density dependence can act against the decline in pest density and diminish the net effects of Bt cotton on suppression of pink bollworm in the study region. The findings call for more studies of the interactions between pest density-dependence and Bt crops.

  16. Diminishing Returns from Increased Percent Bt Cotton: The Case of Pink Bollworm

    PubMed Central

    Zhang, Huannan; Huang, Minsong; Li, Zhaohua; Gould, Fred

    2013-01-01

    Regional suppression of pests by transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) has been reported in several cropping systems, but little is known about the functional relationship between the ultimate pest population density and the pervasiveness of Bt crops. Here we address this issue by analyzing 16 years of field data on pink bollworm (Pectinophora gossypiella) population density and percentage of Bt cotton in the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We find that as the percent Bt cotton increased over the years, the cross-year growth rate of pink bollworm from the last generation of one year to the first generation of the next year decreased. However, as the percent Bt cotton increased, the within-year growth rate of pink bollworm from the first to last generation of the same year increased, with a slope approximately opposite to that of the cross-year rates. As a result, we did not find a statistically significant decline in the annual growth rate of pink bollworm as the percent Bt cotton increased over time. Consistent with the data, our modeling analyses predict that the regional average density of pink bollworm declines as the percent Bt cotton increases, but the higher the percent Bt cotton, the slower the decline in pest density. Specifically, we find that 95% Bt cotton is predicted to cause only 3% more reduction in larval density than 80% Bt cotton. The results here suggest that density dependence can act against the decline in pest density and diminish the net effects of Bt cotton on suppression of pink bollworm in the study region. The findings call for more studies of the interactions between pest density-dependence and Bt crops. PMID:23874678

  17. Technology targeting for sustainable intensification of crop production in the Delta region of Bangladesh

    NASA Astrophysics Data System (ADS)

    Schulthess, U.; Krupnik, T. J.; Ahmed, Z. U.; McDonald, A. J.

    2015-04-01

    Remote sensing data are nowadays being acquired within short intervals and made available at a low cost or for free. This opens up opportunities for new remote sensing applications, such as the characterization of entire regions to identify most suitable areas for technology targeting. Increasing population growth and changing dietary habits in South Asia call for higher cereal production to ensure future food security. In the Delta area of Bangladesh, surface water is considered to be available in quantities large enough to support intensification by adding an irrigated dry season crop. Fuel-efficient, low lift axial flow pumps have shown to be suitable to carry water to fields that are within a buffer of four hundred meters of the rivers. However, information on how and where to target surface water irrigation efforts is currently lacking. We describe the opportunities and constraints encountered in developing a procedure to identify cropland for which axial flow pumps could be successfully deployed upon in a 43'000 km2 area. First, we isolated cropland and waterways using Landsat 5 and 7 scenes using image segmentation followed by classification with the random forest algorithm. Based on Landsat 7 and 8 scenes, we extracted maximum dry season enhanced vegetation index (EVI) values, which we classified into fallow, low-, and high-intensity cropland for the last three years. Last, we investigated the potential for surface water irrigation on fallow and low-intensity land by applying a cropping risk matrix to address the twin threats of soil and water salinity. Our analysis indicates that there are at least 20,000 ha of fallow land under the low-risk category, while more than 100,000 ha of low-intensity cropland can be brought into intensified production. This information will aid in technology targeting for the efficient deployment of surface water irrigation as a tool for intensification.

  18. Regional-scale yield simulations using crop and climate models: assessing uncertainties, sensitivity to temperature and adaptation options

    NASA Astrophysics Data System (ADS)

    Challinor, A. J.

    2010-12-01

    Recent progress in assessing the impacts of climate variability and change on crops using multiple regional-scale simulations of crop and climate (i.e. ensembles) is presented. Simulations for India and China used perturbed responses to elevated carbon dioxide constrained using observations from FACE studies and controlled environments. Simulations with crop parameter sets representing existing and potential future adapted varieties were also carried out. The results for India are compared to sensitivity tests on two other crop models. For China, a parallel approach used socio-economic data to account for autonomous farmer adaptation. Results for the USA analysed cardinal temperatures under a range of local warming scenarios for 2711 varieties of spring wheat. The results are as follows: 1. Quantifying and reducing uncertainty. The relative contribution of uncertainty in crop and climate simulation to the total uncertainty in projected yield changes is examined. The observational constraints from FACE and controlled environment studies are shown to be the likely critical factor in maintaining relatively low crop parameter uncertainty. Without these constraints, crop simulation uncertainty in a doubled CO2 environment would likely be greater than uncertainty in simulating climate. However, consensus across crop models in India varied across different biophysical processes. 2. The response of yield to changes in local mean temperature was examined and compared to that found in the literature. No consistent response to temperature change was found across studies. 3. Implications for adaptation. China. The simulations of spring wheat in China show the relative importance of tolerance to water and heat stress in avoiding future crop failures. The greatest potential for reducing the number of harvests less than one standard deviation below the baseline mean yield value comes from alleviating water stress; the greatest potential for reducing harvests less than two

  19. Crop identification for the delineation of irrigated regions under scarce data conditions: a new approach based on chaos theory

    NASA Astrophysics Data System (ADS)

    Mangiarotti, S.; Muddu, S.; Sharma, A. K.; Corgne, S.; Ruiz, L.; Hubert-Moy, L.

    2015-12-01

    Groundwater is one of the main water reservoirs used for irrigation in regions of scarce water resources. For this reason, crop irrigation is expected to have a direct influence on this reservoir. To understand the time evolution of the groundwater table and its storage changes, it is important to delineate irrigated crops, whose evaporative demand is relatively higher. Such delineation may be performed based on classical classification approaches using optical remote sensing. However, it remains a difficult problem in regions where plots do not exceed a few hectares and exhibit a very heterogeneous pattern with multiple crops. This difficulty is emphasized in South India where two or three months of cloudy conditions during the monsoon period can hide crop growth during the year. An alternative approach is introduced here that takes advantage of such scarce signal. Ten different crops are considered in the present study. A bank of crop models is first established based on the global modeling technique [1]. These models are then tested using original time series (from which models were obtained) in order to evaluate the information that can be deduced from these models in an inverse approach. The approach is then tested on an independent data set and is finally applied to a large ensemble of 10,000 time series of plot data extracted from the Berambadi catchment (AMBHAS site) part of the Kabini River basin CZO, South India. Results show that despite the important two-month gap in satellite observations in the visible band, interpolated vegetation index remains an interesting indicator for identification of crops in South India. [1] S. Mangiarotti, R. Coudret, L. Drapeau, & L. Jarlan, Polynomial search and global modeling: Two algorithms for modeling chaos, Phys. Rev. E, 86(4), 046205 (2012).

  20. Quantifying climate and management effects on regional crop yield and nitrogen leaching in the north china plain.

    PubMed

    Fang, Q X; Ma, L; Yu, Q; Hu, C S; Li, X X; Malone, R W; Ahuja, L R

    2013-09-01

    Better water and nitrogen (N) management requires better understanding of soil water and N balances and their effects on crop yield under various climate and soil conditions. In this study, the calibrated Root Zone Water Quality Model (RZWQM2) was used to assess crop yield and N leaching under current and alternative management practices in a double-cropped wheat ( L.) and maize ( L.) system under long-term weather conditions (1970-2009) for dominant soil types at 15 locations in the North China Plain. The results provided quantitative long-term variation of deep seepage and N leaching at these locations, which strengthened the existing qualitative knowledge for site-specific management of water and N. In general, the current management practices showed high residual soil N and N leaching in the region, with the amounts varying between crops and from location to location and from year to year. Seasonal rainfall explained 39 to 84% of the variability in N leaching (1970-2009) in maize across locations, while for wheat, its relationship with N leaching was significant ( < 0.01) only at five locations. When N and/or irrigation inputs were reduced to 40 to 80% of their current levels, N leaching generally responded more to N rate than to irrigation, while the reverse was true for crop yield at most locations. Matching N input with crop requirements under limited water conditions helped achieve lower N leaching without considerable soil N accumulation. Based on the long-term simulation results and water resources availability in the region, it is recommended to irrigate at 60 to 80% of the current water levels and fertilize only at 40 to 60% of the current N rate to minimizing N leaching without compromising crop yield.

  1. Regional hybrid broccoli trials provide a means to further breeding efforts of this increasingly important vegetable crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Coordinated Agricultural Project (CAP) entitled “Establishing an Eastern Broccoli Industry” is funded under the Specialty Crop Research Initiative (SCRI), and a primary component of the project is a system of regional hybrid broccoli trials conducted along the eastern seaboard. Hybrids currently ...

  2. Eight Years of Annual No-Till Cropping in Washington's Winter Wheat- Summer Fallow Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tillage-based winter wheat – summer fallow (WW-SF) cropping system has dominated dryland farming in the Pacific Northwest for 125 years. We conducted a large-scale multidisciplinary 8-year study of annual no-till cropping systems as an alternative to WW-SF. Soft white and hard white classes of w...

  3. [Spatiotemporal characteristics of reference crop evapotranspiration in inland river basins of Hexi region].

    PubMed

    Lü, Xiao-Dong; Wang, He-ling; Ma, Zhong-ming

    2010-12-01

    Based on the 1961-2008 daily observation data from 17 meteorological stations in the inland river basins in Hexi region, the daily reference crop evapotranspiration (ET0) in the basins was computed by Penman-Monteith equation, and the spatiotemporal characteristics of seasonal and annual ET0 were studied by GIS and IDW inverse-distance spatial interpolation. In 1961-2008, the mean annual ET0 (700-1330 mm) increased gradually from southeast to northwest across the basins. The high value of mean annual ET0 in Shule River basin and Heihe River basin declined significantly (P < 0.05), with the climatic trend rate ranged from -53 to -10 mm (10 a)(-1), while the low value of mean annual ET0 in Shiyang River basin ascended slightly. The ET0 in the basins had a significant annual fluctuation, which centralized in Linze and decreased toward northwest and southeast. The ET0 in summer and autumn contributed most of a year, and the highest value of ET0 all the year round always appeared in Shule River basin. The climatic trend rate was in the order of summer > spring > autumn > winter. Wind speed and maximum temperature were the primary factors affecting the ET0 in the basins. Furthermore, wind speed was the predominant factor of downward trend of ET0 in Shule and Heihe basins, while maximum temperature and sunshine hours played an important role in the upward trend of ET0 in Shiyang basin.

  4. Can Crop Models Simulate the ENSO Impacts on Regional Corn Yield in U.s. Corn Belt?

    NASA Astrophysics Data System (ADS)

    Niyogi, D. S.; Liu, X.; Andresen, J.; Jain, A. K.; Kumar, A.; Kellner, O.; Elias, A.

    2013-12-01

    In this paper, we seek to answer two questions: 1. Whether climate variability/ ENSO events impact the corn yield in U.S. Corn Belt?; and 2.Can crop models capture these impacts?. First, we evaluated the relationships between ENSO events and regional corn yield in the U.S Corn Belt, by taking data from 18 representative crop reporting districts for a 30 year period (1981-2010). These data were compiled as part of a large multiscale NIFA project titled U2U that aims at making Climate Information Useful to Usable. We clustered the data for different ENSO phases and performed statistical analysis to understand the impacts on corn yield. The detrended observed data indicate that El Niño events have positive impact on corn yields while La Niña events have slightly negative impact. These results are statistically significant at 0.05 level. To investigate whether crop models can capture the impacts of El Niño / La Niña; we compared the yields from three different crop models of varying complexity (Hybrid Maize; DSSAT; and ISAM) with default/ common agronomic and onsite meteorological input. Simulated yields show similar pattern as seen in the observed data: higher yield for El Niño years, and lower yields for the La Niña years. However, we also found MAE (Mean absolute error) of simulations in El Niño years are higher than for the La Niña years and Neutral years. To understand whether the performance can be enhanced by providing regional climatology, hydroclimatological, or agronomic information - we conducted additional experiments with the Hybrid Maize models involving- (i) use of onsite versus regional reanalysis data - the hypothesis being that even if the onsite data may have limited ENSO signature; the reanalysis data will have a much stronger ENSO feedback embedded within; (ii) use of actual planting date versus the default value used in the crop models - to understand if the year to year agronomic practice might influence or improve the response to capture

  5. Emissions of oxygenated volatile organic compounds from open crop burning in Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Tanimoto, H.; Kudo, S.; Pan, X.; Inomata, S.; Saito, S.; Kanaya, Y.; Wang, Z.

    2013-12-01

    Measurements of volatile organic compounds (VOCs) were made by gas chromatography/flame ionization detection/mass spectrometry (GC/FID/MS) and proton transfer reaction-mass spectrometry (PTR-MS) at Rudong, a rural area of Central East China in June 2010. During the campaign we identified several plumes originated from open biomass burning by the simultaneous enhancements of carbon monoxide and acetonitrile. Based on positive matrix factorization (PMF) analysis, the contribution of biomass burning was in the range from 60 to 80% for the plumes. We found that oxygenated VOCs were predominant for these events. The emission ratios of OVOCs to CO for open crop burnings derived in this work were found to be high. Combined with the updated CO emissions of 12.7 Tg per year from crop burning, we estimated OVOC emissions from crop burning can be about 1.2 Tg per year, accounting for substantial amount of VOCs emitted from crop burning.

  6. Sunflower: a potential alternate crop for the cooler regions of Idaho

    SciTech Connect

    Auld, D.L.; Murray, G.A.; O'Keeffe, L.E.; Lee, G.A.

    1981-02-01

    The first commercial production of the dark hulled, oil bearing sunflower was in 1968. By 1979, more than seven million acres of this crop were grown in the United States. The availability of large export markets for both the unprocessed seed and the refined oil has encouraged this rapid expansion. This article gives the latest research information on sunflower production in the cooler crop production areas of Idaho.

  7. Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments

    NASA Astrophysics Data System (ADS)

    Cooter, E. J.; Bash, J. O.; Benson, V.; Ran, L.

    2012-05-01

    While nitrogen (N) is an essential element for life, human population growth and demands for energy, transportation and food can lead to excess nitrogen in the environment. A modeling framework is described and implemented, to promote a more integrated, process-based and system-level approach to the estimation of ammonia (NH3) emissions resulting from the application of inorganic nitrogen fertilizers to agricultural soils in the United States. The United States Department of Agriculture (USDA) Environmental Policy Integrated Climate (EPIC) model is used to simulate plant demand-driven fertilizer applications to commercial cropland throughout the continental US. This information is coupled with a process-based air quality model to produce continental-scale NH3 emission estimates. Regional cropland NH3 emissions are driven by the timing and amount of fertilizer applied, local meteorology, and ambient air concentrations. An evaluation of EPIC-simulated crop management activities associated with fertilizer application at planting compared with similar USDA state-level event estimates shows temporally progressive spatial patterns that agree well with one another. EPIC annual inorganic fertilizer application amounts also agree well with reported spatial patterns produced by others, but domain-wide the EPIC values are biased about 6 % low. Preliminary application of the integrated fertilizer application and air quality modeling system produces a modified geospatial pattern of seasonal NH3 emissions that improves current simulations of observed atmospheric nitrate concentrations. This modeling framework provides a more dynamic, flexible, and spatially and temporally resolved estimate of NH3 emissions than previous factor-based NH3 inventories, and will facilitate evaluation of alternative nitrogen and air quality policy and adaptation strategies associated with future climate and land use changes.

  8. Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments

    NASA Astrophysics Data System (ADS)

    Cooter, E. J.; Bash, J. O.; Benson, V.; Ran, L.

    2012-10-01

    While nitrogen (N) is an essential element for life, human population growth and demands for energy, transportation and food can lead to excess nitrogen in the environment. A modeling framework is described and implemented to promote a more integrated, process-based and system-level approach to the estimation of ammonia (NH3) emissions which result from the application of inorganic nitrogen fertilizers to agricultural soils in the United States. The United States Department of Agriculture (USDA) Environmental Policy Integrated Climate (EPIC) model is used to simulate plant demand-driven fertilizer applications to commercial cropland throughout the continental US. This information is coupled with a process-based air quality model to produce continental-scale NH3 emission estimates. Regional cropland NH3 emissions are driven by the timing and amount of inorganic NH3 fertilizer applied, soil processes, local meteorology, and ambient air concentrations. Initial fertilizer application often occurs when crops are planted. A state-level evaluation of EPIC-simulated, cumulative planted area compares well with similar USDA reported estimates. EPIC-annual, inorganic fertilizer application amounts also agree well with reported spatial patterns produced by others, but domain-wide the EPIC values are biased about 6% low. Preliminary application of the integrated fertilizer application and air quality modeling system produces a modified geospatial pattern of seasonal NH3 emissions that improves current simulations of observed atmospheric particle nitrate concentrations. This modeling framework provides a more dynamic, flexible, and spatially and temporally resolved estimate of NH3 emissions than previous factor-based NH3 inventories, and will facilitate evaluation of alternative nitrogen and air quality policy and adaptation strategies associated with future climate and land use changes.

  9. National and Regional Scale Rice Crop Monitoring in Asia with the RIICE and PRISM Projects: From Research to Operation

    NASA Astrophysics Data System (ADS)

    Nelson, A.; Quicho, E. D.; Maunahan, A. A.; Setiyono, T. D.; Raviz, J. V.; Rala, A. B.; Laborte, A. G.; Holecz, F.; Collivignarelli, F.; Gatti, L.; Barbieri, M.; Mabalay, M. R. O.; De Dios, J. L.; Quilang, E. J. P.

    2015-12-01

    In recent years, remote sensing based mapping and monitoring of the rice crop have been demonstrated in many pilot studies and research sites - mainly in Asia - using both optical and SAR sensors and ground based observations. These efforts have been partly driven by the high demand for more timely, more detailed and more accurate information on the rice crop for applications in both public and private sector, such as food security policy, crop and land management, infrastructure investment and crop insurance. The basic premise being that better access to better information leads to eventual benefits for both producers and consumers through better investment and management at all levels. To realise these benefits means scaling up this work to national and regional levels. This presentation summarises the progress of two related projects in Asia: RIICE (Remote Sensing-based Information and Insurance in emerging Economies) and PRISM (Philippine Rice Information SysteM) that are making the transition from research to operation with the support of national governments and international donors. The presentation focuses on the technology, the partnerships, the achievements and the challenges in embedding both the capacity and the technology for remote sensing based monitoring of rice in countries in South and South East Asia. We highlight several aspects which are essential for a successful transition to a sustainable operational status and lessons learned in each country where the two projects have been operating.

  10. Characteristics of heavy metal transfer and their influencing factors in different soil-crop systems of the industrialization region, China.

    PubMed

    Chen, Hongyan; Yuan, Xuyin; Li, Tianyuan; Hu, Sun; Ji, Junfeng; Wang, Cheng

    2016-04-01

    Soil heavy metals and their bioaccumulation in agricultural products have attracted widespread concerns, yet the transfer and accumulation characteristics of heavy metals in different soil-crop systems was rarely investigated. Soil and crop samples were collected from the typical agricultural areas in the Yangtze River Delta region, China. The concentrations of Cu, Pb, Zn, Cd and Hg in the soils, roots and grains of rice (Oryza Sativa L.), wheat (Triticum L.) and canola (Brassica napus L.) were determined in this study. Transfer ability of heavy metals in soil-rice system was stronger than those in soil-wheat and soil-canola systems. The wheat showed a strong capacity to transfer Zn, Cu and Cd from root to the grain while canola presented a restricting effect to the intake of Cu and Cd. Soil pH and total organic matter were major factors influencing metal transfer from soil to rice, whereas soil Al2O3 contents presented a negative effect on heavy metal mobility in wheat and canola cultivation systems. The concentration of Zn and Cd in crop grains could well predicted according to the stepwise multiple linear regression models, which could help to quantitatively evaluate the ecologic risk of heavy metal accumulation in crops in the study area.

  11. Regional and national significance of biological nitrogen fixation by crops in the United States

    EPA Science Inventory

    Background/Questions/Methods Biological nitrogen fixation by crops (C-BNF) represents one of the largest anthropogenic inputs of reactive nitrogen (N) to land surfaces around the world. In the United States (US), existing estimates of C-BNF are uncertain because of incomplete o...

  12. Conservation of Socioculturally Important Local Crop Biodiversity in the Oromia Region of Ethiopia: A Case Study

    NASA Astrophysics Data System (ADS)

    Balemie, Kebu; Singh, Ranjay K.

    2012-09-01

    In this study, we surveyed diversity in a range of local crops in the Lume and Gimbichu districts of Ethiopia, together with the knowledge of local people regarding crop uses, socio-economic importance, conservation, management and existing threats. Data were collected using semistructured interviews and participant observation. The study identified 28 farmers' varieties of 12 crop species. Among these, wheat ( Triticum turgidum) and tef ( Eragrostis tef) have high intra-specific diversity, with 9 and 6 varieties respectively. Self-seed supply or seed saving was the main (80 %) source of seeds for replanting. Agronomic performance (yield and pest resistance), market demand, nutritional and use diversity attributes of the crop varieties were highlighted as important criteria for making decisions regarding planting and maintenance. Over 74 % of the informants grow a combination of "improved" and farmers' varieties. Of the farmers' varieties, the most obvious decline and/or loss was reported for wheat varieties. Introduction of improved wheat varieties, pest infestation, shortage of land, low yield performance and climate variability were identified as the principal factors contributing to this loss or decline. Appropriate interventions for future conservation and sustainable use of farmers' varieties were suggested.

  13. Carbon Dynamics of Bioenergy Cropping Systems Compared to Conventional Cotton Cropping Systems in the Southern Cotton Belt Region of the U.S.

    NASA Astrophysics Data System (ADS)

    Rajan, N.; Sharma, S.; Casey, K.; Maas, S. J.

    2015-12-01

    We are facing an unprecedented challenge in securing America's energy future. To address this challenge, increased biofuel crop production is needed. Second-generation biofuels are made from the by-products of intensive agriculture or from less-intensive agriculture on more marginal lands. The Southwestern U.S. Cotton Belt can play a significant role in this effort through a change from more conventional crops (like continuous cotton) to second-generation biofuel feedstocks (biomass sorghum and perennial grasses). We have established eddy covariance flux towers in producer fields in the Southern High Plains region. Among the four land uses compared, the net carbon uptake was the highest for the biomass sorghum field. During the year 2014, the biomass sorghum field gained approximately 672 gC m-2y-1. The next highest carbon uptake was recorded for the Old World Bluestem grass field, which was approximately 301 gC m-2y-1. The dominant land use in the region is cotton. While the forage sorghum and grass fields acted as net carbon sinks, the irrigated cotton field acted as a net carbon source to the atmosphere during the same period. The irrigated cotton field exhibited a net carbon loss of approximately 246 gC m-2y-1. In contrast, the dryland cotton field acted as a net carbon sink, with a total uptake of approximately 58 g C m-2y-1. The net primary production of the irrigated cotton field was higher than that of the dryland cotton field, yet the irrigated field was a significant carbon source to the atmosphere. This was due to conventional tillage practices combined with irrigation which enhanced the ecosystem respiration significantly compared to the dryland field. In 2014, an early spring cold front caused poor germination of seeds in the majority of the cotton fields in the region, including the eddy covariance site. This site was re-planted on 9 June, which shortened the growing season for cotton. This was also a contributing factor to this field being a net

  14. Modeling of groundwater draft based on satellite-derived crop acreage estimation over an arid region of northwest India

    NASA Astrophysics Data System (ADS)

    Bhadra, Bidyut Kumar; Kumar, Sanjay; Paliwal, Rakesh; Jeyaseelan, A. T.

    2016-11-01

    Over-exploitation of groundwater for agricultural crops puts stress on the sustainability of natural resources in the arid region of Rajasthan state, India. Hydrogeological study of groundwater levels of the study area during the pre-monsoon (May to June), post-monsoon (October to November) and post-irrigation (February to March) seasons of 2004-2005 to 2011-2012 shows a steady decline of groundwater levels at the rate of 1.28-1.68 m/year, mainly due to excessive groundwater draft for irrigation. Due to the low density of the groundwater observation-well network in the study area, assessment of groundwater draft, and thus groundwater resource management, becomes a difficult task. To overcome the situation, a linear groundwater draft model (LGDM) has been developed based on the empirical relationship between satellite-derived crop acreage and the observed groundwater draft for the year 2003-2004. The model has been validated for a decade, during three year-long intervals (2005-2006, 2008-2009 and 2011-2012) using groundwater draft, estimated through a discharge factor method. Further, the estimated draft was validated through observed pumping data from random sampled villages (2011-2012). The results suggest that the developed LGDM model provides a good alternative to the estimation of groundwater draft based on satellite-based crop area in the absence of groundwater observation wells in arid regions of northwest India.

  15. Percents Are Not Natural Numbers

    ERIC Educational Resources Information Center

    Jacobs, Jennifer A.

    2013-01-01

    Adults are prone to treating percents, one representational format of rational numbers, as novel cases of natural number. This suggests that percent values are not differentiated from natural numbers; a conceptual shift from the natural numbers to the rational numbers has not yet occurred. This is most surprising, considering people are inundated…

  16. Inspiration: One Percent and Rising

    ERIC Educational Resources Information Center

    Walling, Donovan R.

    2009-01-01

    Inventor Thomas Edison once famously declared, "Genius is one percent inspiration and ninety-nine percent perspiration." If that's the case, then the students the author witnessed at the International Student Media Festival (ISMF) last November in Orlando, Florida, are geniuses and more. The students in the ISMF pre-conference workshop…

  17. Energy balances of bioenergy crops (Miscanthus, maize, rapeseed) and their CO2-mitigation potential on a regional farm scale

    NASA Astrophysics Data System (ADS)

    Felten, D.; Emmerling, C.

    2012-04-01

    Increasing cultivation of energy crops in agriculture reveals the progressive substitution of fossil fuels, such as crude oil or brown coal. For the future development of renewable resources, the efficiency of different cropping systems will be crucial, as energy crops differ in terms of the energy needed for crop cultivation and refinement and the respective energy yield, e.g. per area. Here, balancing is certainly the most suitable method for the assessment of cropping system efficiency, contrasting energy inputs with energy outputs and the related CO2 emissions with potential CO2 credits due to substitution of fossil fuels, respectively. The aim of the present study was to calculate both energy and CO2 balances for rapeseed and maize, representing the recently most often cultivated energy crops in Germany, on a regional farm scale. Furthermore, special emphasis was made on perennial Miscanthus x giganteus, which is commonly used as a solid fuel for combustion. This C4-grass is of increasing interest due to its high yield potential accompanied by low requirements for soil tillage, weed control, and fertilization as well as long cultivation periods up to 25 years. In contrast to more general approaches, balances were calculated with local data from commercial farms. The site-specific consumption of diesel fuel was calculated using an online-based calculator, developed by the German Association for Technology and Structures in Agriculture (KTBL). By balancing each of the aforementioned cropping systems, our research focused on (i) the quantification of energy gains and CO2 savings due to fossil fuel substitution and (ii) the assessment of energy efficiency, expressed as the ratio of energy output to input. The energy input was highest for maize sites (33.8 GJ ha-1 yr-1), followed by rapeseed (18.2 GJ ha-1 yr-1), and Miscanthus (1.1 GJ ha-1 yr-1); corresponding energy yields were 129.5 GJ ha-1 yr-1 (maize), 83.6 GJ ha-1 yr-1 (rapeseed), and 259.7 GJ ha-1 yr-1

  18. Determination of Winter Wheat Phenology in Bavaria- A Contribution to Regional Crop Health Monitoring from Space

    NASA Astrophysics Data System (ADS)

    Bruggemann, Lena; Bach, Heike; Ruf, Tobias; Appel, Florian; Migdall, Silke; Hank, Tobias; Mauser, Wolfram; Eiblmeier, Peter

    2016-08-01

    The central topic of this study is the monitoring of winter wheat phenology and the detection of anthesis (flowering) using remotely sensed data as well as crop growth modeling. It is not possible to directly observe the flowering of wheat with optical satellite sensors. Thus, an approach that combines crop growth modeling with remote sensing data covering optical and microwave spectral ranges was developed. This was done in three steps: The hydro-agroecological land surface model PROMET was first run in a stand-alone version for selected sites distributed throughout Bavaria using only static input parameters (e.g. soil map) and current meteorological data as driving factors. Thus, multitemporal information from optical remote sensing data was assimilated into the model runs in a second step to improve the accuracy of the results. Finally, the use of radar data for anthesis detection in winter wheat was tested using Sentinel-1 data of 2015 in dual polarization mode (VV+VH).

  19. Modeling the Climate Change Adaptation of Crop Production using Irrigation over Water-Limited Region

    NASA Astrophysics Data System (ADS)

    Okada, M.; Iizumi, T.; Sakurai, G.; Sakai, T.; Yokozawa, M.

    2014-12-01

    Replacing rainfed cropping system by irrigated one is assumed to be an effective measure for climate change adaptation in agriculture. However, in many agricultural impact assessments, future irrigation scenarios are externally given and do not consider the space-time varying available agricultural water under changing climate and land use. For these reason, this study aimed to (1) develop a crop-river coupled model that can simultaneously simulate crop growth and yield over a river watershed, river discharge and their dynamic interactions by embedded a large-area crop model, PRYSBI-2 [Sakurai et al., 2014] into a hydrologic model, H08 [Hanasaki et al., 2008]; (2) apply the developed coupled model to the Songhua River watershed in Northeast China and evaluate the model's performance by comparing the historical model simulations outputs; (3) assess the effects of adaption measure expanding irrigated area under climate change. The modeled year-to-year variations in soil moisture were comparable to the reference with the Pearson's correlation coefficient (r) of 0.75 (p<0.001) and root-mean-square error (RMSE) of 13 %. The modeled river discharge accurately matched with the observation data with the r of 0.83 (p<0.01) and RMSE of 22 %. And the modeled soybean yields were quantitatively comparable to the reference with the r of 0.66 (p<0.001) and RMSE of 21 %. We made simulations to project the changes of potential soybean production under climate change scenarios and irrigation area expanding scenarios. It was projected that the soybean production effectively increase until the irrigated area has been increased 5 times compared to around the year 2000. However, the more increase in the irrigated area would bring significant reduction of the increase rate in soybean production due to depletion of available agricultural water resources.

  20. Assessment of crop productivity over intensively managed agriculture regions in India and Australia using solar-induced fluorescence remote sensing data

    NASA Astrophysics Data System (ADS)

    Devadas, R.; Huete, A. R.; Patel, N. R.; Padalia, H.; Restrepo-Coupe, N.; Kuruvilla, A.

    2015-12-01

    Satellite based estimation of solar-induced terrestrial fluorescence (SIF) is considered to be a direct measure of photosynthetic functional status of the vegetation. Prior studies have shown SIF to more accurately retrieve the productivity of intensively managed croplands, as in the U.S. corn belt. In this study, we assessed and compared agricultural productivity over two intensive crop production regions in Australia and India using SIF data, traditional spectral measures, and crop yield data. Regional level wheat yield data were obtained for the Indo-Gangetic Plains (IGP) in India and the Murray Darling Basin (MDB) in Australia for analyses with GOME-2 SIF satellite and MODIS VI measurements, and gross primary productivity from flux towers. We investigated the importance of integrating traditional meteorological parameters and ground based data with time-series vegetation indices for scaling of SIF to obtain robust yield prediction models for application across years and continents. This study further explored the relationship of inter annual variations in crop phenology metrics through SIF retrievals and its relationship with crop yields. The IGP study region showed systematic cycles of double cropping. MDB region on the other hand showed cycles of pronounced winter cropping and a weaker and variable second cropping over the analysis period. For various winter wheat crop seasons in IGP, from 2007 to 2012, SIF explained and accounted between 48 to 74 per cent of the variations in regional wheat yields. Similar results were obtained in the case of MDB also, however, the relationship between SIF and yield estimates was weaker (R2 = 0.44). SIF measurements, as a surrogate of crop productivity, were considerably higher over the highly productive IGP region in almost all the years considered. The SIF data shows immense potential for modelling agricultural productivity, particularly as the resolution of SIF retrievals continues to improve.

  1. 7 CFR 1416.302 - Eligible crops and producers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... determine payment rates are as follows: Tier I—75 percent or greater crop loss and associated tree damage. Tier II—50 to 74 percent crop loss and associated tree damage/loss. Tier III—35 to 49 percent crop loss and associated tree damage/loss. Tier IV —15 percent and greater associated tree damage only....

  2. Molecular diversity analysis of Rhizoctonia solani isolates infecting various pulse crops in different agro-ecological regions of India.

    PubMed

    Dubey, Sunil C; Tripathi, Aradhika; Upadhyay, B K

    2012-11-01

    Genetic diversity of 89 isolates of Rhizoctonia solani isolated from different pulse crops representing 21 states from 16 agro-ecological regions of India, 49 morphological, and 7 anastomosis groups (AGs) was analyzed using 12 universal rice primers (URPs), 22 random amplified polymorphic DNA (RAPD), and 23 inter-simple sequence repeats (ISSR) markers. Both URPs and RAPD markers provided 100 % polymorphism with the bands ranging from 0.1 to 5 kb in size, whereas ISSR markers gave 99.7 % polymorphism with the bands sizes ranging from 0.1 to 3 kb. The marker URP 38F followed by URP13R, URP25F, and URP30F, RAPD marker R1 followed by OPM6, A3 and OPA12 and ISSR3 followed by ISSR1, ISSR4, and ISSR20 produced the highest number of amplicons. R. solani isolates showed a high level of genetic diversity. Unweighted pair group method with an arithmetic average (UPGMA) analysis grouped the isolates into 7 major clusters at 35 % genetic similarity using the three sets of markers evaluated. In spite of using three different types of markers, about 95 % isolates shared common grouping patterns. The majority of the isolates representing various AGs were grouped together into different sub-clusters using all three types of markers. Molecular groups of the isolates did not correspond to agro-ecological regions or states and crops of the origin. An attempt was made for the first time in the present study to determine the genetic diversity of R. solani populations isolated from different pulse crops representing various AGs and agro-ecological regions.

  3. DNA Barcoding Simplifies Environmental Risk Assessment of Genetically Modified Crops in Biodiverse Regions

    PubMed Central

    Nzeduru, Chinyere V.; Ronca, Sandra; Wilkinson, Mike J.

    2012-01-01

    Transgenes encoding for insecticidal crystal (Cry) proteins from the soil-dwelling bacterium Bacillus Thuringiensis have been widely introduced into Genetically Modified (GM) crops to confer protection against insect pests. Concern that these transgenes may also harm beneficial or otherwise valued insects (so-called Non Target Organisms, NTOs) represents a major element of the Environmental Risk Assessments (ERAs) used by all countries prior to commercial release. Compiling a comprehensive list of potentially susceptible NTOs is therefore a necessary part of an ERA for any Cry toxin-containing GM crop. In partly-characterised and biodiverse countries, NTO identification is slowed by the need for taxonomic expertise and time to enable morphological identifications. This limitation represents a potentially serious barrier to timely adoption of GM technology in some developing countries. We consider Bt Cry1A cowpea (Vigna unguiculata) in Nigeria as an exemplar to demonstrate how COI barcoding can provide a simple and cost-effective means of addressing this problem. Over a period of eight weeks, we collected 163 insects from cowpea flowers across the agroecological and geographic range of the crop in Nigeria. These individuals included 32 Operational Taxonomic Units (OTUs) spanning four Orders and that could mostly be assigned to genus or species level. They included 12 Lepidopterans and two Coleopterans (both potentially sensitive to different groups of Cry proteins). Thus, barcode-assisted diagnoses were highly harmonised across groups (typically to genus or species level) and so were insensitive to expertise or knowledge gaps. Decisively, the entire study was completed within four months at a cost of less than 10,000 US$. The broader implications of the findings for food security and the capacity for safe adoption of GM technology are briefly explored. PMID:22567120

  4. DNA barcoding simplifies environmental risk assessment of genetically modified crops in biodiverse regions.

    PubMed

    Nzeduru, Chinyere V; Ronca, Sandra; Wilkinson, Mike J

    2012-01-01

    Transgenes encoding for insecticidal crystal (Cry) proteins from the soil-dwelling bacterium Bacillus Thuringiensis have been widely introduced into Genetically Modified (GM) crops to confer protection against insect pests. Concern that these transgenes may also harm beneficial or otherwise valued insects (so-called Non Target Organisms, NTOs) represents a major element of the Environmental Risk Assessments (ERAs) used by all countries prior to commercial release. Compiling a comprehensive list of potentially susceptible NTOs is therefore a necessary part of an ERA for any Cry toxin-containing GM crop. In partly-characterised and biodiverse countries, NTO identification is slowed by the need for taxonomic expertise and time to enable morphological identifications. This limitation represents a potentially serious barrier to timely adoption of GM technology in some developing countries. We consider Bt Cry1A cowpea (Vigna unguiculata) in Nigeria as an exemplar to demonstrate how COI barcoding can provide a simple and cost-effective means of addressing this problem. Over a period of eight weeks, we collected 163 insects from cowpea flowers across the agroecological and geographic range of the crop in Nigeria. These individuals included 32 Operational Taxonomic Units (OTUs) spanning four Orders and that could mostly be assigned to genus or species level. They included 12 Lepidopterans and two Coleopterans (both potentially sensitive to different groups of Cry proteins). Thus, barcode-assisted diagnoses were highly harmonised across groups (typically to genus or species level) and so were insensitive to expertise or knowledge gaps. Decisively, the entire study was completed within four months at a cost of less than 10,000 US$. The broader implications of the findings for food security and the capacity for safe adoption of GM technology are briefly explored.

  5. Analyses of rainfall using probability distribution and Markov chain models for crop planning in Daspalla region in Odisha, India

    NASA Astrophysics Data System (ADS)

    Mandal, K. G.; Padhi, J.; Kumar, A.; Ghosh, S.; Panda, D. K.; Mohanty, R. K.; Raychaudhuri, M.

    2015-08-01

    Rainfed agriculture plays and will continue to play a dominant role in providing food and livelihoods for an increasing world population. Rainfall analyses are helpful for proper crop planning under changing environment in any region. Therefore, in this paper, an attempt has been made to analyse 16 years of rainfall (1995-2010) at the Daspalla region in Odisha, eastern India for prediction using six probability distribution functions, forecasting the probable date of onset and withdrawal of monsoon, occurrence of dry spells by using Markov chain model and finally crop planning for the region. For prediction of monsoon and post-monsoon rainfall, log Pearson type III and Gumbel distribution were the best-fit probability distribution functions. The earliest and most delayed week of the onset of rainy season was the 20th standard meteorological week (SMW) (14th-20th May) and 25th SMW (18th-24th June), respectively. Similarly, the earliest and most delayed week of withdrawal of rainfall was the 39th SMW (24th-30th September) and 47th SMW (19th-25th November), respectively. The longest and shortest length of rainy season was 26 and 17 weeks, respectively. The chances of occurrence of dry spells are high from the 1st-22nd SMW and again the 42nd SMW to the end of the year. The probability of weeks (23rd-40th SMW) remaining wet varies between 62 and 100 % for the region. Results obtained through this analysis would be utilised for agricultural planning and mitigation of dry spells at the Daspalla region in Odisha, India.

  6. Soil organic carbon dynamics and crop yield for different crop rotations in a degraded ferruginous tropical soil in a semi-arid region: a simulation approach.

    PubMed

    Soler, C M Tojo; Bado, V B; Traore, K; Bostick, W McNair; Jones, J W; Hoogenboom, G

    2011-10-01

    In recent years, simulation models have been used as a complementary tool for research and for quantifying soil carbon sequestration under widely varying conditions. This has improved the understanding and prediction of soil organic carbon (SOC) dynamics and crop yield responses to soil and climate conditions and crop management scenarios. The goal of the present study was to estimate the changes in SOC for different cropping systems in West Africa using a simulation model. A crop rotation experiment conducted in Farakô-Ba, Burkina Faso was used to evaluate the performance of the cropping system model (CSM) of the Decision Support System for Agrotechnology Transfer (DSSAT) for simulating yield of different crops. Eight crop rotations that included cotton, sorghum, peanut, maize and fallow, and three different management scenarios, one without N (control), one with chemical fertilizer (N) and one with manure applications, were studied. The CSM was able to simulate the yield trends of various crops, with inconsistencies for a few years. The simulated SOC increased slightly across the years for the sorghum-fallow rotation with manure application. However, SOC decreased for all other rotations except for the continuous fallow (native grassland), in which the SOC remained stable. The model simulated SOC for the continuous fallow system with a high degree of accuracy normalized root mean square error (RMSE)=0·001, while for the other crop rotations the simulated SOC values were generally within the standard deviation (s.d.) range of the observed data. The crop rotations that included a supplemental N-fertilizer or manure application showed an increase in the average simulated aboveground biomass for all crops. The incorporation of this biomass into the soil after harvest reduced the loss of SOC. In the present study, the observed SOC data were used for characterization of production systems with different SOC dynamics. Following careful evaluation of the CSM with

  7. Consistent rainy season changes predicted from Regional Climate Models ensembles indicate threats to crop production in West Africa

    NASA Astrophysics Data System (ADS)

    Wisser, D.; Sylla, M. B.; Ibrahim, B.

    2014-12-01

    Agricultural production in West Africa is extremely vulnerable to precipitation change and variability. Designing adaptation options to anticipate these changes in precipitation requires robust predicting future climate conditions. Output from Global Circulation Models (GCMs) is too coarse to be used directly to assess regional and high order statistics changes. We use output from a set of Regional Climate Models that dynamically downscale CMIP5 GCMs and analyze mid-century changes in the characteristics of precipitation in West Africa over cropland areas. For each RCM/GCM combinations, we compared predicted precipitation for the period 2035-2065 under the RCP 8.5 scenario with its historical reconstruction of 1975-2005. The mean changes emerging from an analysis of the ensemble of 15 RCM/GCM combinations suggest moderate (~3%) increases in annual precipitation,a very consistent delay in the onset of the rainy season (1 to 4 days from South to North) and no consistent change in the ending of the rainy season. This illustrates a general shortening of the rainy season. An analysis of dry spells (periods of consecutive days with less than 5 mm) for a durations of between 5 and 15 days revealed an increased probability of experiencing longer dry spells during the rainy season in the future climate, coupled with a general intensification of precipitation. This finding was consistent across all models. Our analysis promotes regional prioritization of adaptation measures to the changes in precipitation characteristics that could potentially have detrimental effects on crop yields while also affecting water resources management, species distribution, and others sectors. Increased storage of water, in combination with supplemental irrigation can be an important mechanism for adapting to the effects for regional precipitation changes on crop yield.

  8. Increased number of crop types over France in the ISBA-A-gs land surface model : does it improve the regional simulation of LAI ?

    NASA Astrophysics Data System (ADS)

    lafont, Sebastien; Calvet, Alina; Carrer, Dominque; Delire, Christine; Calvet, Jean-Christophe; Alkama, ramdane

    2013-04-01

    Land surface models have at first been designed to represent natural vegetation classified in broad Plant Functional Type (PFT). A better description of the agricultural land is needed to enlarge the accuracy of the model (especially at high resolution) and their range of application (land use studies, climate change...). For example in temperate region, the C3 crops have two different seasonal cycles with a peak LAI in spring or in summer depending on sowing date. A larger number of agricultural PFT have been recently introduced in the ISBA-A-gs land surface model within the SURFEX modelling platform. The SURFEX modelling platform is used in a wide range of applications either in coupled mode or in off-line mode (driven by meteorological forcing). The number of agricultural PFT have been increased from 3 (C3 crops, C4 crops, irrigated C4 crops) to 8 (C3 winter crops, and C3 summer crops both irrigated or not; C4 crops; C4 irrigated crops). The objective is not to implement a full agronomic model but to introduce simple parametrisation which account for the broad differences between these classes. For example summer C3 crops have a prescribed emergence date parameter that differentiate them from winter C3 crops. The irrigation introduced in an earlier version of ISBA-A-gs is based on a simple empirical model based on threshold of soil moisture. We will test the new version of the model over France in a configuration close to the one used by the GEOLAND2 Land Carbon project. The simulations are performed with the high resolution meteorological forcing (8km) SAFRAN over a period of 20 years. We compare the simulated LAI over France with the GEOLAND2 LAI product derived project from the SPOT/VEGETATION sensor. Finally, we discuss the improvement in seasonal cycle and inter-annual variability bring by the new PFTs.

  9. Using Landsat 8 Image Time Series for Crop Mapping in a Region of Cerrado, Brazil

    NASA Astrophysics Data System (ADS)

    Bendini, H.; Sanches, I. D.; Körting, T. S.; Fonseca, L. M. G.; Luiz, A. J. B.; Formaggio, A. R.

    2016-06-01

    The objective of this research is to classify agricultural land use in a region of the Cerrado (Brazilian Savanna) biome using a time series of Enhanced Vegetation Index (EVI) from Landsat 8 OLI. Phenological metrics extracted from EVI time series, a Random Forest algorithm and data mining techniques are used in the process of classification. The area of study is a region in the Cerrado in a region of the municipality of Casa Branca, São Paulo state, Brazil. The results are encouraging and demonstrate the potential of phenological parameters obtained from time series of OLI vegetation indices for agricultural land use classification.

  10. Assessing regional crop water demand using a satellite-based combination equation with a land surface temperature component

    NASA Astrophysics Data System (ADS)

    Moyano, Maria Carmen; Garcia, Monica; Tornos, Lucia; Recuero, Laura; Palacios-Orueta, Alicia; Juana, Luis

    2015-04-01

    Quantification of daily evapotranspiration at regional levels is fundamental for improving agricultural and hydrological management, especially in water-scarce and climatic change vulnerable regions, like the Mediterranean basin. Regional estimates of daily crop evapotranspiration (ET) have been historically based on combination equations, such as Penman-Monteith or Priestley-Taylor, forced with weather-data inputs. However, the requirements for long term in-situ data, limit the application of such traditional approaches and algorithms using satellite-data without field calibrations bridge this gap by estimating long-term ET at the pixel level from local to global scales. Land surface temperature is a key variable tracking land surface moisture status. However, it has not been included in satellite ET approaches based on combination equations. In this study, a land surface temperature component was used to estimate soil surface conductance based on an apparent thermal inertia index. A process-based model was applied to estimate surface energy fluxes including daily ET based on a modified version of the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model at 1km pixel resolution during a chrono-sequence spanning for more than a decade (2002-2013). The thermal-PT-JPL model was forced with vegetation, albedo, reflectance and temperature products from the Moderate-resolution Imaging Spectroradiometer (MODIS) from both Aqua and Terra satellites. The study region, B-XII Irrigation District of the Lower Guadalquivir, is one of the largest irrigated areas in Spain but it has scarce in-situ micrometeorological or eddy covariance data. The final aim of this study is to evaluate the thermal version of PT-JPL model versus a lumped hydrological model to assess crop evapotranspiration deficits and long-term water consumption trends in the area. The results showed that the thermal-PT-JPL model is a suitable and simple tool requiring only air temperature and incoming solar

  11. Mapping rice cropping systems using Landsat-derived Renormalized Index of Normalized Difference Vegetation Index (RNDVI) in the Poyang Lake Region, China

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jiang, Luguang; Feng, Zhiming; Sheldon, Sage; Xiao, Xiangming

    2016-06-01

    Mapping rice cropping systems with optical imagery in multiple cropping regions is challenging due to cloud contamination and data availability; development of a phenology-based algorithm with a reduced data demand is essential. In this study, the Landsat-derived Renormalized Index of Normalized Difference Vegetation Index (RNDVI) was proposed based on two temporal windows in which the NDVI values of single and early (or late) rice display inverse changes, and then applied to discriminate rice cropping systems. The Poyang Lake Region (PLR), characterized by a typical cropping system of single cropping rice (SCR, or single rice) and double cropping rice (DCR, including early rice and late rice), was selected as a testing area. The results showed that NDVI data derived from Landsat time-series at eight to sixteen days captures the temporal development of paddy rice. There are two key phenological stages during the overlapping growth period in which the NDVI values of SCR and DCR change inversely, namely the ripening phase of early rice and the growing phase of single rice as well as the ripening stage of single rice and the growing stage of late rice. NDVI derived from scenes in two temporal windows, specifically early August and early October, was used to construct the RNDVI for discriminating rice cropping systems in the polder area of the PLR, China. Comparison with ground truth data indicates high classification accuracy. The RNDVI approach highlights the inverse variations of NDVI values due to the difference of rice growth between two temporal windows. This makes the discrimination of rice cropping systems straightforward as it only needs to distinguish whether the candidate rice type is in the period of growth (RNDVI<0) or senescence (RNDVI>0).

  12. Incorporating Medium-Range Weather Forecasts in Seasonal Crop Scenarios over the Greater Horn of Africa to Support National/Regional/Local Decision Makers

    NASA Astrophysics Data System (ADS)

    Shukla, S.; Husak, G. J.; Funk, C. C.; Verdin, J. P.

    2015-12-01

    The USAID's Famine Early Warning Systems Network (FEWS NET) provides seasonal assessments of crop conditions over the Greater Horn of Africa (GHA) and other food insecure regions. These assessments and current livelihood, nutrition, market conditions and conflicts are used to generate food security scenarios that help national, regional and local decision makers target their resources and mitigate socio-economic losses. Among the various tools that FEWS NET uses is the FAO's Water Requirement Satisfaction Index (WRSI). The WRSI is a simple yet powerful crop assessment model that incorporates current moisture conditions (at the time of the issuance of forecast), precipitation scenarios, potential evapotranspiration and crop parameters to categorize crop conditions into different classes ranging from "failure" to "very good". The WRSI tool has been shown to have a good agreement with local crop yields in the GHA region. At present, the precipitation scenarios used to drive the WRSI are based on either a climatological forecast (that assigns equal chances of occurrence to all possible scenarios and has no skill over the forecast period) or a sea-surface temperature anomaly based scenario (which at best have skill at the seasonal scale). In both cases, the scenarios fail to capture the skill that can be attained by initial atmospheric conditions (i.e., medium-range weather forecasts). During the middle of a cropping season, when a week or two of poor rains can have a devastating effect, two weeks worth of skillful precipitation forecasts could improve the skill of the crop scenarios. With this working hypothesis, we examine the value of incorporating medium-range weather forecasts in improving the skill of crop scenarios in the GHA region. We use the NCEP's Global Ensemble Forecast system (GEFS) weather forecasts and examine the skill of crop scenarios generated using the GEFS weather forecasts with respect to the scenarios based solely on the climatological forecast

  13. Actual evapotranspiration for a reference crop within measured and future changing climate periods in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Katerji, Nader; Rana, Gianfranco; Ferrara, Rossana Monica

    2016-05-01

    The study compares two formulas for calculating the daily evapotranspiration ET0 for a reference crop. The first formula was proposed by Allen et al. (AL), while the second one was proposed by Katerji and Perrier with the addition of the carbon dioxide (CO2) effect on evapotranspiration (KP). The study analyses the impact of the calculation by the two formulas on the irrigation requirement (IR). Both formulas are based on the Penman-Monteith equation but adopt different approaches for parameterising the canopy resistance r c . In the AL formula, r c is assumed constant and not sensitive to climate change, whereas in the KP formula, r c is first parameterised as a function of climatic variables, then ET0 is corrected for the air CO2 concentration. The two formulas were compared in two periods. The first period involves data from two sites in the Mediterranean region within a measured climate change period (1981-2006) when all the input climatic variables were measured. The second period (2070-2100) involves data from a future climate change period at one site when the input climatic variables were forecasted for two future climate scenarios (A2 and B2). The annual cumulated values of ET0 calculated by the AL formula are systematically lower than those determined by the KP formula. The differences between the ET0 estimation with the AL and KP formulas have a strong impact on the determination of the IR for the reference crop. In fact, for the two periods, the annual values of IR when ET0 is calculated by the AL formula are systematically lower than those calculated by the KP formula. For the actual measured climate change period, this reduction varied from 26 to 28 %, while for the future climate change period, it varied based on the scenario from 16 % (A2) to 20 % (B2).

  14. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region

    PubMed Central

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, W. Dean; Lang, Megan W.

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  15. Crop and agrotechnology influence on CO2 emission in case of representative agrolandscapes of Moscow region, RF

    NASA Astrophysics Data System (ADS)

    Mazirov, Ilya; Vasenev, Ivan; Valentini, Riccardo

    2013-04-01

    Agroecosystems have a very important role in the regional balance of greenhouse gases (GHG). However, the volume of existing data on the different crops and agrotechnologies influence on the GHG emission sharply varies. The European territory of Russia (ETR) is one of regions with strong deficit of this information. At the same time ETR is characterized by high heterogeneity of soil cover patterns, land-use technologies and land agroecological quality. Our research has been done in the fields of Precision farming experiment of Russian Timiryazev State Agrarian University (RTSAU) that soil cover and landscape patterns are typical for Moscow region of RF. The investigated fields include four 1-ha plots with winter wheat and potatoes with versions of traditional tillage and no-till. Each key plot comprises the representative sites for analysis the autotrophic and heterotrophic respiration, and control ones. Carbon dioxide fluxes have been weekly measured in June - September 2012, by the portable infrared system gas analyzer LI-COR LI-6400XT. The carried out research has shown the crop strong influence on the soil CO2 emission. In case of field with winter wheat in June - August it was in 1.5-2.5 times higher (2,93 μmol m-2 s-1) than in potatoes one. The maximum difference has been fixed at the first half of August after the wheat harvest. July is characterize by gradual decrease soil carbon dioxide emission from 1.56 μmol m-2 s-1 to 1.06 μmol m-2 s-1. Comparative analysis of the model sites with differentiation of the autotrophic and heterotrophic respiration showed the absolute dominance of microorganism contribution: 1.56 μmol m-2 s-1 (76.3% of the total respiration). It is especially important that no-till sites have CO2 "microbial" emission in 24.8% less the traditional tillage ones. The carried out in June-September comparative analysis of investigated sites with forest control ones has shown the following set with increasing soil CO2 emission: "winter wheat

  16. Assessing Biofuel Crop Invasiveness: A Case Study

    PubMed Central

    Buddenhagen, Christopher Evan; Chimera, Charles; Clifford, Patti

    2009-01-01

    Background There is widespread interest in biofuel crops as a solution to the world's energy needs, particularly in light of concerns over greenhouse-gas emissions. Despite reservations about their adverse environmental impacts, no attempt has been made to quantify actual, relative or potential invasiveness of terrestrial biofuel crops at an appropriate regional or international scale, and their planting continues to be largely unregulated. Methodology/Principal Findings Using a widely accepted weed risk assessment system, we analyzed a comprehensive list of regionally suitable biofuel crops to show that seventy percent have a high risk of becoming invasive versus one-quarter of non-biofuel plant species and are two to four times more likely to establish wild populations locally or be invasive in Hawaii or in other locations with a similar climate. Conclusions/Significance Because of climatic and ecological similarities, predictions of biofuel crop invasiveness in Hawaii are applicable to other vulnerable island and subtropical ecosystems worldwide. We demonstrate the utility of an accessible and scientifically proven risk assessment protocol that allows users to predict if introduced species will become invasive in their region of interest. Other evidence supports the contention that propagule pressure created by extensive plantings will exacerbate invasions, a scenario expected with large-scale biofuel crop cultivation. Proactive measures, such as risk assessments, should be employed to predict invasion risks, which could then be mitigated via implementation of appropriate planting policies and adoption of the “polluter-pays” principle. PMID:19384412

  17. Illicit crops and armed conflict as constraints on biodiversity conservation in the Andes region.

    PubMed

    Fjeldså, Jon; Alvarez, María D; Lazcano, Juan Mario; León, Blanca

    2005-05-01

    Coca, once grown for local consumption in the Andes, is now produced for external markets, often in areas with armed conflict. Internationally financed eradication campaigns force traffickers and growers to constantly relocate, making drug-related activities a principal cause of forest loss. The impact on biodiversity is known only in general terms, and this article presents the first regional analysis to identify areas of special concern, using bird data as proxy. The aim of conserving all species may be significantly constrained in the Santa Marta and Perijá mountains, Darién, some parts of the Central Andes in Colombia, and between the middle Marañón and middle Huallaga valleys in Peru. Solutions to the problem must address the root causes: international drug markets, long-lasting armed conflict, and lack of alternative income for the rural poor.

  18. Development of estimation method for crop yield using MODIS satellite imagery data and process-based model for corn and soybean in US Corn-Belt region

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kang, S.; Jang, K.; Ko, J.; Hong, S.

    2012-12-01

    . For the case of 280 DOY, Crop yield estimation showed better accuracy for soybean at county level. Though the case of 200 DOY resulted in less accuracy (i.e. 20% mean bias), it provides a useful tool for early forecasting of crop yield. We improved the spatial accuracy of estimated crop yield at county level by developing county-specific crop conversion coefficient. Our results indicate that the aboveground crop biomass can be estimated successfully with the simple LUE and respiration models combined with MODIS data and then, county-specific conversion coefficient can be different with each other across different counties. Hence, applying region-specific conversion coefficient is necessary to estimate crop yield with better accuracy.

  19. Long-term soil microbial community and enzyme activity responses to an integrated cropping-livestock system in a semi-arid region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water availability is a significant factor limiting agriculture in many semiarid or arid regions of the world. This study is part of a larger project to develop and evaluate integrated crop and livestock systems that reduce dependence on underground water while optimizing cotton (Gossypium hirsutum)...

  20. A methodological approach for deriving regional crop rotations as basis for the assessment of the impact of agricultural strategies using soil erosion as example.

    PubMed

    Lorenz, Marco; Fürst, Christine; Thiel, Enrico

    2013-09-01

    Regarding increasing pressures by global societal and climate change, the assessment of the impact of land use and land management practices on land degradation and the related decrease in sustainable provision of ecosystem services gains increasing interest. Existing approaches to assess agricultural practices focus on the assessment of single crops or statistical data because spatially explicit information on practically applied crop rotations is mostly not available. This provokes considerable uncertainties in crop production models as regional specifics have to be neglected or cannot be considered in an appropriate way. In a case study in Saxony, we developed an approach to (i) derive representative regional crop rotations by combining different data sources and expert knowledge. This includes the integration of innovative crop sequences related to bio-energy production or organic farming and different soil tillage, soil management and soil protection techniques. Furthermore, (ii) we developed a regionalization approach for transferring crop rotations and related soil management strategies on the basis of statistical data and spatially explicit data taken from so called field blocks. These field blocks are the smallest spatial entity for which agricultural practices must be reported to apply for agricultural funding within the frame of the European Agricultural Fund for Rural Development (EAFRD) program. The information was finally integrated into the spatial decision support tool GISCAME to assess and visualize in spatially explicit manner the impact of alternative agricultural land use strategies on soil erosion risk and ecosystem services provision. Objective of this paper is to present the approach how to create spatially explicit information on agricultural management practices for a study area around Dresden, the capital of the German Federal State Saxony.

  1. Long-term Annual No-Till Cropping in Washington’s Winter Wheat – Summer Fallow Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tillage-based winter wheat – summer fallow (WW-SF) cropping system has dominated dryland farming in the Pacific Northwest for 125 years. We conducted a large-scale multidisciplinary 8-year study of annual no-till cropping systems as an alternative to WW-SF. Soft white and hard white classes of w...

  2. Regional estimation of soil C stocks and CO2 emissions as influenced by cropping systems and soil type

    NASA Astrophysics Data System (ADS)

    Farina, Roberta; Marchetti, Alessandro; Di Bene, Claudia

    2015-04-01

    Soil organic matter (SOM) is of crucial importance for agricultural soil quality and fertility. At global level soil contains about three times the carbon stored in the vegetation and about twice that present in the atmosphere. Soil could act as source and sink of carbon, influencing the balance of CO2 concentration and consequently the global climate. The sink/source ratio depends on many factors that encompass climate, soil characteristics and different land management practices. Thus, the relatively large gross exchange of GHGs between atmosphere and soils and the significant stocks of carbon in soils, may have significant impact on climate and on soil quality. To quantify the dynamics of C induced by land cover change and the spatial and temporal dynamics of C sources and sinks at regional and, potentially, at national and global scales, we propose a methodology, based on a bio-physical model combined with a spatial explicit database to estimate C stock changes and emissions/removals. The study has been conducted in a pilot region in Italy (Apulia, Foggia province), considering the typical cropping systems of the area, namely rainfed cereals, tomato, vineyard and olives. For this purpose, the model RothC10N (Farina et al., 2013), that simulates soil C dynamics, has been modified to work directly in batch using data of climate, soil (over 290 georeferenced soil profiles), annual agriculture land use (1200 observations) The C inputs from crops have been estimated using statistics and data from literature. The model was run to equilibrium for each point of soil, in order to make all the data homogeneous in terms of time. The obtained data were interpolate with geostatisical procedures, obtaining a set of 30x30 km grid with the initial soil C. The new layer produced, together with soil and land use layers, were used for a long-term run (12 years). Results showed that olive groves and vineyards were able to stock a considerable amount of C (from 0.4 to 1.5 t ha-1 y

  3. Assessing the Potentialities of FORMOSAT-2 Data for Water and Crop Monitoring at Small Regional Scale in South-Eastern France

    PubMed Central

    Courault, Dominique; Bsaibes, Aline; Kpemlie, Emmanuel; Hadria, Rachid; Hagolle, Olivier; Marloie, Olivier; Hanocq, Jean-F.; Olioso, Albert; Bertrand, Nadine; Desfonds, Véronique

    2008-01-01

    Water monitoring at the scale of a small agricultural region is a key point to insure a good crop development particularly in South-Eastern France, where extreme climatic conditions result in long dry periods in spring and summer with very sparse precipitation events, corresponding to a crucial period of crop development. Remote sensing with the increasing imagery resolution is a useful tool to provide information on plant water status over various temporal and spatial scales. The current study focussed on assessing the potentialities of FORMOSAT-2 data, characterized by high spatial (8m pixel) and temporal resolutions (1-3 day/time revisit), to improve crop modeling and spatial estimation of the main land properties. Thirty cloud free images were acquired from March to October 2006 over a small region called Crau-Camargue in SE France, while numerous ground measurements were performed simultaneously over various crop types. We have compared two models simulating energy transfers between soil, vegetation and atmosphere: SEBAL and PBLs. Maps of evapotranspiration were analyzed according to the agricultural practices at field scale. These practices were well identified from FORMOSAT-2 images, which provided accurate input surface parameters to the SVAT models. PMID:27879889

  4. Rapid Prototyping of NASA's Solar and Meteorological Data For Regional Level Modeling of Agricultural and Bio-fuel Crop Phenology and Yield Potential

    NASA Astrophysics Data System (ADS)

    Hoell, J. M.; Stackhouse, P. W.; Eckman, R. S.

    2006-12-01

    Global demand for food, feedstock and bio-fuel crops is expanding rapidly due to population growth, increasing consumption of these products (especially in developing countries), and more recently skyrocketing use of these crops to produce ethanol as a bio-fuel. As a result, there are growing concerns, both in the US and world wide, about the ability to meet the projected demand for agricultural/bio-fuel crops without expanding production areas into environmentally sensitive regions. Concurrently, there are increasing concerns over the negative impact of global warming on crop yields. Accurate ecophysiological crop models have been developed for many of the food and bio-fuel crops and serve as the back-bone in sophisticated Decision Support Systems (DSS). These DSS's are increasingly being used to address the balance between the need to increase production/efficiency and environmental concerns, as well as the impact of global warming on crop production. Realistic application of these agricultural DSS's requires accurate environmental data on time scales ranging from hours to decades. To date only sparse surface measurements are used that typically do not measure solar irradiance. NASA's Prediction of Worldwide Energy Resource (POWER) project, which has as one of its objectives the development of data products for agricultural applications, currently provides a climatological data base of meteorological parameters and surface solar energy fluxes on a global 1-degree latitude by 1- degree longitude grid. NASA is also developing capabilities to produce near-real time data sets specifically designed for application by agricultural DSS's. In this presentation, we discuss the development of 1-degree global data products which combine the climatological data in the POWER project archive (http://earth-www.larc.nasa.gov/power), near real time (2 to 3 day lag) meteorological data from the Goddard Earth Observing System (GEOS) quick-look products, and global solar energy

  5. The Algebra of the Cumulative Percent Operation.

    ERIC Educational Resources Information Center

    Berry, Andrew J.

    2002-01-01

    Discusses how to help students avoid some pervasive reasoning errors in solving cumulative percent problems. Discusses the meaning of ."%+b%." the additive inverse of ."%." and other useful applications. Emphasizes the operational aspect of the cumulative percent concept. (KHR)

  6. Crop Identification Using Time Series of Landsat-8 and Radarsat-2 Images: Application in a Groundwater Irrigated Region, South India

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Hubert-Moy, L.; Betbederet, J.; Ruiz, L.; Sekhar, M.; Corgne, S.

    2016-08-01

    Monitoring land use and land cover and more particularly irrigated cropland dynamics is of great importance for water resources management and land use planning. The objective of this study was to evaluate the combined use of multi-temporal optical and radar data with a high spatial resolution in order to improve the precision of irrigated crop identification by taking into account information on crop phenological stages. SAR and optical parameters were derived from time- series of seven quad-pol RADARSAT-2 and four Landsat-8 images which were acquired on the Berambadi catchment, South India, during the monsoon crop season at the growth stages of turmeric crop. To select the best parameter to discriminate turmeric crops, an analysis of covariance (ANCOVA) was applied on all the time-series parameters and the most discriminant ones were classified using the Support Vector Machine (SVM) technique. Results show that in absence of optical images, polarimetric parameters derived from SAR time-series can be used for the turmeric area estimates and that the combined use of SAR and optical parameters can improve the classification accuracy to identify turmeric.

  7. Beyond Marbles: Percent Change and Social Justice

    ERIC Educational Resources Information Center

    Denny, Flannery

    2013-01-01

    In the author's eighth year of teaching, she hit a wall teaching percent change. Percent change is one of the few calculations taught in math classes that shows up regularly in the media, and one that she often does in her head to make sense of the world around her. Despite this, she had been teaching percent change using textbook problems about…

  8. Case study of the effects of atmospheric aerosols and regional haze on agriculture: An opportunity to enhance crop yields in China through emission controls?

    PubMed Central

    Chameides, W. L.; Yu, H.; Liu, S. C.; Bergin, M.; Zhou, X.; Mearns, L.; Wang, G.; Kiang, C. S.; Saylor, R. D.; Luo, C.; Huang, Y.; Steiner, A.; Giorgi, F.

    1999-01-01

    The effect of atmospheric aerosols and regional haze from air pollution on the yields of rice and winter wheat grown in China is assessed. The assessment is based on estimates of aerosol optical depths over China, the effect of these optical depths on the solar irradiance reaching the earth’s surface, and the response of rice and winter wheat grown in Nanjing to the change in solar irradiance. Two sets of aerosol optical depths are presented: one based on a coupled, regional climate/air quality model simulation and the other inferred from solar radiation measurements made over a 12-year period at meteorological stations in China. The model-estimated optical depths are significantly smaller than those derived from observations, perhaps because of errors in one or both sets of optical depths or because the data from the meteorological stations has been affected by local pollution. Radiative transfer calculations using the smaller, model-estimated aerosol optical depths indicate that the so-called “direct effect” of regional haze results in an ≈5–30% reduction in the solar irradiance reaching some of China’s most productive agricultural regions. Crop-response model simulations suggest an ≈1:1 relationship between a percentage increase (decrease) in total surface solar irradiance and a percentage increase (decrease) in the yields of rice and wheat. Collectively, these calculations suggest that regional haze in China is currently depressing optimal yields of ≈70% of the crops grown in China by at least 5–30%. Reducing the severity of regional haze in China through air pollution control could potentially result in a significant increase in crop yields and help the nation meet its growing food demands in the coming decades. PMID:10570123

  9. A thermal-based remote sensing modelling system for estimating crop water use and stress from field to regional scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal-infrared remote sensing of land surface temperature provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition. A thermal-based scheme, called the Two-Source Energy Balance (TSEB) model, solves for the soil/substrate and canopy temp...

  10. Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since its first detection in 2008, the spotted wing drosophila (SWD), Drosophila suzukii, has emerged as an important invasive insect pest in North America and Europe. The highly polyphagous fly is a major threat to many economically important small fruit crops including cherries and berries. It i...

  11. Early-season crop area estimates for winter crops in NE Australia using MODIS satellite imagery

    NASA Astrophysics Data System (ADS)

    Potgieter, A. B.; Apan, A.; Hammer, G.; Dunn, P.

    To date, industry and crop forecasters have had a good idea of the potential crop yield for a specific season, but early-season information on crop area for a shire or region has been mostly unavailable. The question of "how early and with what accuracy?" area estimates can be determined using multi-temporal Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) imagery was investigated in this paper. The study was conducted for two shires in Queensland, Australia for the 2003 and 2004 seasons, and focused on deriving total winter crop area estimates (including wheat, barley and chickpea). A simple metric ( ΔE), which measures the green-up rate of the crop canopy, was derived. Using the unsupervised k-means classification algorithm, the accumulated difference of two consecutive images (one month apart) for three EVI threshold cut-offs ( ΔEi, where i=250, 500 and 750) at monthly intervals from April to October was calculated. July showed the highest pixel accuracy with percent correctly classified for all thresholds of 94% and 98% for 2003 and 2004, respectively. The differences in accuracy between the three cut-offs were minimal and the T500 threshold was selected as the preferred cut-off to avoid measuring too small or too large fluctuations in the differential EVI values. When compared to the aggregated shire data (surveyed) on crop area across shires and seasons, average percent differences for the ΔE for July and August ranged from -19% to 9%. To capture most of the variability in green-up within a region, the average ΔE of July and August was used for the early-season prediction of total winter crop area estimates. This resulted in high accuracy (R 2=0.96; RMSE = 3157 ha) for predicting the total winter crop from 2000 to 2004 across both shires. This result indicated that this simple multi-temporal remote sensing approach could be used with confidence in early-season crop area prediction at least one to two months ahead of

  12. Crop Coefficients of Some Selected Crops of Andhra Pradesh

    NASA Astrophysics Data System (ADS)

    Reddy, K. Chandrasekhar; Arunajyothy, S.; Mallikarjuna, P.

    2015-06-01

    Precise information on crop coefficients for estimating crop evapotranspiration (ETc) for regional scale irrigation planning is a major impediment in many regions. Crop coefficients suggested based on lysimeter data by earlier investigators have to be locally calibrated to account for the differences in the crop canopy under given climatic conditions. In the present study crop coefficients were derived based on reference crop evapotranspiration (ET0) estimated from Penman-Monteith equation and lysimeter measured ETc for groundnut, paddy, tobacco, sugarcane and castor crops at Tirupati, Nellore, Rajahmundry, Anakapalli and Rajendranagar centers of Andhra Pradesh respectively. Crop coefficients derived were compared with those recommended by FAO-56. The mean crop coefficients at different stages of growth were significantly different from those of FAO-56 curve though a similar trend was observed. A third order polynomial crop coefficient model has therefore been developed as a function of time (days after sowing the crop) for deriving suitable crop coefficients. The crop coefficient models suggested may be adopted to estimate crop evapotranspiration in the study area with reasonable degree of accuracy.

  13. [Effects of long-term fertilization on reddish paddy soil quality and its evaluation in a typical double-rice cropping region of China].

    PubMed

    Nie, Jun; Yang, Zeng-Ping; Zheng, Sheng-Xian; Liao, Yu-Lin; Xie, Jian; Xiang, Yan-Wen

    2010-06-01

    In order to quantify the effects of 27 years application of chemical fertilizers, pig manure, and rice straw on the reddish paddy soil quality in double rice cropping region, the indices of soil bulk density, porosity, maximum water holding capacity, normalized mean weight diameter, pH, cation exchange capacity, available nutrients, organic matter, microbial biomass C, enzyme activities, and rice yield were selected as the evaluation indicators, and classified into four functional groups, i. e., resistance to physical degradation, plant nutrients supply and storage, resistance to biochemical degradation, and sustaining of crop productivity. The soil quality index (SQI) was calculated based on the four functional groups. The results showed that the SQI ranged from 0.544 in treatment CK to 0.729 in treatment NPK plus rice straw. Treatments PK, NP, and NK induced soil degradation, compared to treatment NPK. The deficiencies of soil P and K were the main limiting factors for the double rice productivity in reddish paddy soil area. Even though 30 t x hm(-2) x a(-1) of pig manure and 4.2 t x hm(-2) x a(-1) of rice straw were applied, the soil P and K were still not adequate for the requirement of rice growth. There was no obvious effect of long-term application of lime on the reddish paddy soil quality. The combined application of NPK with organic manure was an important and effective measure in improving soil quality in double rice cropping regions of Southern China.

  14. Tracing organic and inorganic pollution sources of agricultural crops and water resources in Güzelhisar Basin of the Aegean Region - Turkey

    NASA Astrophysics Data System (ADS)

    Czarnecki, Sezin; Colak Esetlili, Bihter; Esetlili, Tolga; Tepecik, Mahmut; Anac, Dilek; Düring, Rolf-Alexander

    2014-05-01

    The study area Güzelhisar Basin is 6 km far from the city Aliaga, Aegean Region in Turkey which represents a rather industrialized area having five large iron and steel factories, but also areas of agriculture. Steel industry in Aliaga is causing metal pollution. Around Güzelhisar Basin and nearby, the dominant crop fields are cotton, maize, vegetables, olive trees and vineyards. Güzelhisar stream and dam water is used for irrigation of the agricultural land. Due to contamination from metal industry in Aliaga, organic farming is not allowed in this region. Industrial activities in the region present a threat on sustainable agriculture. The region is a multi-impacted area in terms of several pollutant sources affecting soil and water quality. The overall objective of the project is to trace back plant nutrients (N, P, K, Ca, Mg, Na, Fe, Mn, Zn, Cu, and B), hazardous substances (i. e. persistent organic pollutants), radionuclides (40K, 232Th, 226Ra/238U), and metal contents (As, Cd, Cr, Co, Cu, Hg, Mn, Ni, Pb, and Zn) by examining the soils, agricultural crops and natural plants from Güzelhisar Basin and water and sediments from Güzelhisar stream and dam. Spatial distribution of pollution will be evaluated by regionalization methods. For this, an advanced analytical methodology will be applied which provides an understanding of sources and occurrence of the respective substances of concern. An innovative multi-tracer approach comprising organic and inorganic marker substances, will identify and quantitatively assess sources and their impact on water pollution and the pollutant pathways in this agricultural crop production system.

  15. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978-2008).

    PubMed

    Zhuo, La; Mekonnen, Mesfin M; Hoekstra, Arjen Y

    2016-05-01

    Previous studies into the relation between human consumption and indirect water resources use have unveiled the remote connections in virtual water (VW) trade networks, which show how communities externalize their water footprint (WF) to places far beyond their own region, but little has been done to understand variability in time. This study quantifies the effect of inter-annual variability of consumption, production, trade and climate on WF and VW trade, using China over the period 1978-2008 as a case study. Evapotranspiration, crop yields and green and blue WFs of crops are estimated at a 5 × 5 arc-minute resolution for 22 crops, for each year in the study period, thus accounting for climate variability. The results show that crop yield improvements during the study period helped to reduce the national average WF of crop consumption per capita by 23%, with a decreasing contribution to the total from cereals and increasing contribution from oil crops. The total consumptive WFs of national crop consumption and crop production, however, grew by 6% and 7%, respectively. By 2008, 28% of total water consumption in crop fields in China served the production of crops for export to other regions and, on average, 35% of the crop-related WF of a Chinese consumer was outside its own province. Historically, the net VW within China was from the water-rich South to the water-scarce North, but intensifying North-to-South crop trade reversed the net VW flow since 2000, which amounted 6% of North's WF of crop production in 2008. South China thus gradually became dependent on food supply from the water-scarce North. Besides, during the whole study period, China's domestic inter-regional VW flows went dominantly from areas with a relatively large to areas with a relatively small blue WF per unit of crop, which in 2008 resulted in a trade-related blue water loss of 7% of the national total blue WF of crop production. The case of China shows that domestic trade, as governed by

  16. Regional heavy metal pollution in crops by integrating physiological function variability with spatio-temporal stability using multi-temporal thermal remote sensing

    NASA Astrophysics Data System (ADS)

    Liu, Meiling; Liu, Xiangnan; Zhang, Biyao; Ding, Chao

    2016-09-01

    Heavy metal stress in crops is characterized by stability in space and time, which differs from other stressors that are typically more transient (e.g., drought, pests/diseases, and mismanagement). The objective of this study is to assess regional heavy metal stress in rice by integrating physiological function variability with spatio-temporal stability based on multi-temporal thermal infrared (TIR) remote sensing images. The field in which the experiment was conducted is located in Zhuzhou City, Hunan Province, China. HJ-1B images and in-situ measured data were collected from rice growing in heavy metal contaminated soils. A stress index (SI) was devised as an indicator for the degree of heavy metal stress of the rice in different growth stages, and a time-spectrum feature space (TSFS) model was used to determine rice heavy metal stress levels. The results indicate that (i) SI is a good indicator of rice damage caused by heavy metal stress. Minimum values of SI occur in rice subject to high pollution, followed by larger SI with medium pollution and maximum SI for low pollution, for the same growth stage. (ii) SI shows some variation for different growth stages of rice, and the minimum SI occurs at the flowering stage. (iii) The TSFS model is successful at identifying rice heavy metal stress, and stress levels in rice stabilized regardless of the model being applied in the two different years. This study suggests that regional heavy metal stress in crops can be accurately detected using TIR technology, if a sensitive indicator of crop physiological function impairment is used and an effective model is selected. A combination of spectrum and spatio-temporal information appears to be a very promising method for monitoring crops with various stressors.

  17. Using Imaging Spectrometry to Identify Crops in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Shivers, S.; Roberts, D. A.

    2015-12-01

    With a growing global population, limited resources and a changing climate, understanding and monitoring the distribution of our food and water resources is essential to their sustainability. Regional food yield estimates and water resource accounting are dependent upon accurate agricultural records. Crop mapping provides farmers, managers, and policymakers the information necessary to anticipate annual food supplies and water demands by better understanding the distribution of species. While on the ground crop accounting usually happens yearly at the county level and requires significant time and labor inputs, remote sensing has the potential to map crops and monitor their health over a greater spatial area with more frequent time intervals. Specifically, imaging spectrometers have the capability to produce imagery at high spectral and spatial resolutions, which may allow for differentiation of crops at the field-level scale. In this research 14 crop species and soil were classified in Kern County, California using canonical discriminant analysis (CDA) and Multiple Endmember Spectral Mixture Analysis (MESMA) on airborne visible/infrared imaging spectrometer (AVIRIS) imagery from June 2013. Imagery was then degraded to Landsat spectral resolution and reclassified for comparison. Results with the AVIRIS imagery show an overall accuracy of 69.0% using MESMA and 89.4% using CDA with nine out of fourteen crop species showing user and producer errors under ten percent. Lower accuracy was found for OLI data. This research illustrates great potential for field-level crop mapping with imaging spectrometry.

  18. Simulation of crop evapotranspiration and crop coefficient with data in weighing lysimeters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate quantification of crop evapotranspiration (ET) is critical in optimizing irrigation water productivity, especially, in the semiarid regions of the world where limited rainfall is supplemented by irrigation for profitable crop production. In this context, cropping system models are potential...

  19. Annual crop type classification of the U.S. Great Plains for 2000 to 2011

    USGS Publications Warehouse

    Howard, Daniel M.; Wylie, Bruce K.

    2014-01-01

    The purpose of this study was to increase the spatial and temporal availability of crop classification data. In this study, nearly 16.2 million crop observation points were used in the training of the US Great Plains classification tree crop type model (CTM). Each observation point was further defined by weekly Normalized Difference Vegetation Index, annual climate, and a number of other biogeophysical environmental characteristics. This study accounted for the most prevalent crop types in the region, including, corn, soybeans, winter wheat, spring wheat, cotton, sorghum, and alfalfa. Annual CTM crop maps of the US Great Plains were created for 2000 to 2011 at a spatial resolution of 250 meters. The CTM achieved an 87 percent classification success rate on 1.8 million observation points that were withheld from model training. Product validation was performed on greater than 15,000 county records with a coefficient of determination of R2 = 0.76.

  20. [Effects of inter-row economic crop planting on soil moisture in a rain-fed jujube orchard in loess hilly region, China].

    PubMed

    Ling, Qiang; Zhao, Xi-ning; Gao, Xiao-dong; Li, Lu-sheng; Li, Hong-chen; Sun, Wen-hao

    2016-02-01

    Soil moisture variation in dryland sloping jujube. orchard was investigated after introducing two economic crops, i.e., feed Brassica napus (JR) and Hemerocallis fulva (JH) planted between jujube rows. Jujube tree without inter-row crop was set as control (CK). The results showed that mean soil moisture for JR and JH in the 0-180 cm soil layer increased by 6.2% and 10.1% compared with CK, respectively. Soil moisture changed mainly in the 0-60 cm soil layer in growth stage of Jujube trees. Soil moisture in JR and JH treatments significantly increased in the 0-60 cm soil layer, which could meet the demand in water resource of jujube plantation. The water consumption of jujube trees also mainly concentrated in the 0-60 cm soil layer. There was a significant decay exponential relationship between the soil moisture in the 0-20 cm layer and the drought duration after rainfall. During the 18-day dry period after rain, the soil moisture contents of JR and JH were apparently higher than that of CK. In conclusion, the jujube-crop intercropping system improved the soil moisture condition. It was an effective measure to overcome the seasonal drought in jujube orchards on the loess hilly region.

  1. Cover Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are great tools to improve soil quality and health, and great tools to increase carbon sequestration. They are nutrient management tools that can help scavenge nitrate, cycle nitrogen to the following crop, mine NO3 from groundwater, and increase nitrogen use efficiency of cropping syste...

  2. Topological and geometrical analysis of a low-dimensional chaotic model obtained for the dynamics of cereal crops cycles observed from satellite in semi-arid region

    NASA Astrophysics Data System (ADS)

    Mangiarotti, Sylvain

    2014-05-01

    A low-dimensional chaotic model was recently obtained for the dynamics of cereal crops cycles in semi-arid region [1]. This model was obtained from one single time series of vegetation index measured from space. The global modeling approach [2] was used based on powerful algorithms recently developed for this purpose [3]. The resulting model could be validated by comparing its predictability (a data assimilation scheme was used for this purpose) with a statistical prediction approach based on the search of analogous states in the phase space [4]. The cereal crops model exhibits a weakly dissipative chaos (DKY = 2.68) and a toroidal-like structure. At present, quite few cases of such chaos are known and these are exclusively theoretical. The first case was introduced by Lorenz in 1984 to model the global circulation dynamics [5], which attractor's structure is remained poorly understood. Indeed, one very powerful way to characterize low-dimensional chaos is based on the topological analysis of the attractors' flow [6]. Unfortunately, such approach does not apply to weakly dissipative chaos. In this work, a color tracer method is introduced and used to perform a complete topological analysis of both the Lorenz-84 system and the cereal crops model. The usual stretching and squeezing mechanisms are easily detected in the attractors' structure. A stretching taking place in the globally contracting direction of the flow is also found in both attractors. Such stretching is unexpected and was not reported previously. The analysis also confirms the toroidal type of chaos and allows producing both the skeleton and algebraic descriptions of the two attractors. Their comparison shows that the cereal crops attractor is a new attractor. References [1] Mangiarotti S., Drapreau L., Letellier C., 2014. Two chaotic global models for cereal crops cycles observed from satellite in Northern Morocco. revision submitted. [2] Letellier C., Aguirre L.A., Freitas U.S., 2009. Frequently

  3. Global crop production forecasting: An analysis of the data system problems and their solutions

    NASA Technical Reports Server (NTRS)

    Neiers, J.; Graf, H.

    1978-01-01

    Data related problems in the acquisition and use of satellite data necessary for operational forecasting of global crop production are considered for the purpose of establishing a measurable baseline. For data acquisition the world was divided into 37 crop regions in 22 countries. These regions represent approximately 95 percent of the total world production of the selected crops of interest, i.e., wheat, corn, soybeans, and rice. Targets were assigned to each region. Limited time periods during which data could be taken (windows) were assigned to each target. Each target was assigned to a cloud region. The DSDS was used to measure the success of obtaining data for each target during the specified windows for the regional cloud conditions and the specific alternatives being analyzed. The results of this study suggest several approaches for an operational system that will perform satisfactorily with two LANDSAT type satellites.

  4. Breathing 100 percent oxygen compared with 50 percent oxygen:50 percent nitrogen reduces altitude-induced venous gas emboli

    NASA Technical Reports Server (NTRS)

    Webb, James T.; Pilmanis, Andrew A.

    1993-01-01

    The study investigates effects of 40 zero-prebreathe decompressions of male subjects to 8.3-6.8 psia for 6 h while they were breathing 100 percent oxygen and performing moderate exercise. No decompression sickness (DCS) symptoms were observed. Severe venous gas emboli (VGE) were not detected at 8.3 psia, but were present during 10, 20, and 40 percent of the exposures at 7.8, 7.3, and 6.8 psia, respectively. Zero-prebreathe decompression while breathing 100 percent oxygen results in significantly lower VGE and DCS risk levels than while breathing a 50:50 mix. It is shown that 7.3 psia EVA pressure suits with 100 percent oxygen should be safer than 8.3 psia suits with a 50:50 mix.

  5. Impact of the spatial resolution of climatic data and soil physical properties on regional corn yield predictions using the STICS crop model

    NASA Astrophysics Data System (ADS)

    Jégo, Guillaume; Pattey, Elizabeth; Mesbah, S. Morteza; Liu, Jiangui; Duchesne, Isabelle

    2015-09-01

    The assimilation of Earth observation (EO) data into crop models has proven to be an efficient way to improve yield prediction at a regional scale by estimating key unknown crop management practices. However, the efficiency of prediction depends on the uncertainty associated with the data provided to crop models, particularly climatic data and soil physical properties. In this study, the performance of the STICS (Simulateur mulTIdisciplinaire pour les Cultures Standard) crop model for predicting corn yield after assimilation of leaf area index derived from EO data was evaluated under different scenarios. The scenarios were designed to examine the impact of using fine-resolution soil physical properties, as well as the impact of using climatic data from either one or four weather stations across the region of interest. The results indicate that when only one weather station was used, the average annual yield by producer was predicted well (absolute error <5%), but the spatial variability lacked accuracy (root mean square error = 1.3 t ha-1). The model root mean square error for yield prediction was highly correlated with the distance between the weather stations and the fields, for distances smaller than 10 km, and reached 0.5 t ha-1 for a 5-km distance when fine-resolution soil properties were used. When four weather stations were used, no significant improvement in model performance was observed. This was because of a marginal decrease (30%) in the average distance between fields and weather stations (from 10 to 7 km). However, the yield predictions were improved by approximately 15% with fine-resolution soil properties regardless of the number of weather stations used. The impact of the uncertainty associated with the EO-derived soil textures and the impact of alterations in rainfall distribution were also evaluated. A variation of about 10% in any of the soil physical textures resulted in a change in dry yield of 0.4 t ha-1. Changes in rainfall distribution

  6. Assessment of RCM output from the ENSEMBLES RT3 project in AMMA-region: focus on Senegal actual climate reproduction and effects on simulated crop yields

    NASA Astrophysics Data System (ADS)

    Oettli, Pascal; Sultan, Benjamin; Baron, Christian; Vrac, Mathieu

    2010-05-01

    In West-Africa countries, most economies and people depend on rainfed agriculture. In this area, rainfall is highly variable and, from the period 1931-1960 to 1968-1990, the annual rainfall has decreased 15 to 40%. Since the mid 1990's, an increase in rainfall is detected, but only to reach the level of 1970's rainfall. The aim of this study is to determine if large-scale fields, interpolated at local-scale are able (i) to reproduce observed climate at station and (ii) to simulate observed crop yields. Another objective of this study is to see if a combination of dynamical and statistical downscaling methods is useful to correct biases due to scale change. For that, we use data from some synoptic stations in Senegal and simulated data provided by the European project ENSEMBLES. Among research themes (RT) of this project, one (RT3) had the responsibility for providing improved climate model tools developed in the context of regional climate models (RCMs), at spatial scales of 50km at AMMA-region. RT3 provides 15-year experiments over West Africa driven by the ERA-INTERIM reanalysis of the ECMWF. A statistical method (CDF-transform), developed to generate local cumulative distribution functions of surface climate variables from large-scale fields is used to correct biases in RCM output, due to large-scale information basically interpolated at local-scale. In the present study, a deterministic crop model, SARRA-H, is used to simulate sorghum yields for the actual period, at local scale. This crop model simulates yield attainable under water-limited conditions by simulating the soil water balance, potential and actual evapotranspiration, phenology, potential and water-limited carbon assimilation, and biomass partitioning. SARRA-H model is driven by 4 meteorological datasets, at synoptic station scale: - observations, - ERA-INTERIM, - original RCM output, - corrected RCM output.

  7. Errors and uncertainties introduced by a regional climate model in climate impact assessments: example of crop yield simulations in West Africa

    NASA Astrophysics Data System (ADS)

    Ramarohetra, Johanna; Pohl, Benjamin; Sultan, Benjamin

    2015-12-01

    The challenge of estimating the potential impacts of climate change has led to an increasing use of dynamical downscaling to produce fine spatial-scale climate projections for impact assessments. In this work, we analyze if and to what extent the bias in the simulated crop yield can be reduced by using the Weather Research and Forecasting (WRF) regional climate model to downscale ERA-Interim (European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis) rainfall and radiation data. Then, we evaluate the uncertainties resulting from both the choice of the physical parameterizations of the WRF model and its internal variability. Impact assessments were performed at two sites in Sub-Saharan Africa and by using two crop models to simulate Niger pearl millet and Benin maize yields. We find that the use of the WRF model to downscale ERA-Interim climate data generally reduces the bias in the simulated crop yield, yet this reduction in bias strongly depends on the choices in the model setup. Among the physical parameterizations considered, we show that the choice of the land surface model (LSM) is of primary importance. When there is no coupling with a LSM, or when the LSM is too simplistic, the simulated precipitation and then the simulated yield are null, or respectively very low; therefore, coupling with a LSM is necessary. The convective scheme is the second most influential scheme for yield simulation, followed by the shortwave radiation scheme. The uncertainties related to the internal variability of the WRF model are also significant and reach up to 30% of the simulated yields. These results suggest that regional models need to be used more carefully in order to improve the reliability of impact assessments.

  8. Crop kites: Determining crop-water production functions using crop coefficients and sensitivity indices

    NASA Astrophysics Data System (ADS)

    Smilovic, Mikhail; Gleeson, Tom; Adamowski, Jan

    2016-11-01

    The crop-water production function quantitatively evaluates the relationship between seasonal water use and crop yield and is used to evaluate optimal irrigation depth and assess the potential of deficit and supplemental irrigation. A simple and easily applicable methodology to develop crop- and region-specific crop-water production functions using crop coefficients and sensitivity-indices is presented. Previous efforts to describe the crop-water production function have not accounted for the effects of the temporal distribution of water use and trivialize the associated variability in yields by assuming an optimized or arbitrary temporal distribution. The temporal distribution of water use throughout the growing season can significantly influence crop yield, and the ability of farmers to manage both the timing and amount of irrigation water may result in higher yields. We propose crop kites, a tool that explicitly acknowledges crop yield as a function of the temporal distribution of water use to both evaluate the complete space of water use and crop yield relationships, and extract from this space specific crop-water production functions. An example for winter wheat is presented using previously validated crop-specific sensitivity indices. Crop-water production functions are extracted from the crop kite related to specific irrigation schedules and temporal distributions of water use. Crop-water production functions associated with maximizing agricultural production agree with previous efforts characterizing the shape as a diminishing curvilinear function. Crop kites provide the tools for water managers and policy makers to evaluate crop- and region-specific agricultural production as it relates to water management and the associated economics, and to determine appropriate policies for developing and supporting the infrastructure to increase water productivity.

  9. Salicornia as a crop plant in temperate regions: selection of genetically characterized ecotypes and optimization of their cultivation conditions

    PubMed Central

    Singh, Devesh; Buhmann, Anne K.; Flowers, Tim J.; Seal, Charlotte E.; Papenbrock, Jutta

    2014-01-01

    Rising sea levels and salinization of groundwater due to global climate change result in fast-dwindling sources of freshwater. Therefore, it is important to find alternatives to grow food crops and vegetables. Halophytes are naturally evolved salt-tolerant plants that are adapted to grow in environments that inhibit the growth of most glycophytic crop plants substantially. Members of the Salicornioideae are promising candidates for saline agriculture due to their high tolerance to salinity. Our aim was to develop genetically characterized lines of Salicornia and Sarcocornia for further breeding and to determine optimal cultivation conditions. To obtain a large and diverse genetic pool, seeds were collected from different countries and ecological conditions. The external transcribed spacer (ETS) sequence of 62 Salicornia and Sarcocornia accessions was analysed: ETS sequence data showed a clear distinction between the two genera and between different Salicornia taxa. However, in some cases the ETS was not sufficiently variable to resolve morphologically distinct species. For the determination of optimal cultivation conditions, experiments on germination, seedling establishment and growth to a harvestable size were performed using different accessions of Salicornia spp. Experiments revealed that the percentage germination was greatest at lower salinities and with temperatures of 20/10 °C (day/night). Salicornia spp. produced more harvestable biomass in hydroponic culture than in sand culture, but the nutrient concentration requires optimization as hydroponically grown plants showed symptoms of stress. Salicornia ramosissima produced more harvestable biomass than Salicornia dolichostachya in artificial sea water containing 257 mM NaCl. Based on preliminary tests on ease of cultivation, gain in biomass, morphology and taste, S. dolichostachya was investigated in more detail, and the optimal salinity for seedling establishment was found to be 100 mM. Harvesting of S

  10. Microbial contamination of vegetable crop and soil profile in arid regions under controlled application of domestic wastewater

    PubMed Central

    Balkhair, Khaled S.

    2015-01-01

    Increasing lack of potable water in arid countries leads to the use of treated wastewater for crop production. However, the use of inappropriate irrigation practices could result in a serious contamination risk to plants, soils, and groundwater with sewage water. This research was initiated in view to the increasing danger of vegetable crops and groundwater contamination with pathogenic bacteria due to wastewater land application. The research was designed to study: (1) the effect of treated wastewater irrigation on the yield and microbial contamination of the radish plant under field conditions; (2) contamination of the agricultural soil profile with fecal coliform bacteria. Effluent from a domestic wastewater treatment plant (100%) in Jeddah city, Saudi Arabia, was diluted to 80% and 40% with the groundwater of the experimental site constituting three different water qualities plus groundwater as control. Radish plant was grown in two consecutive seasons under two drip irrigation systems and four irrigation water qualities. Upon harvesting, plant weight per ha, total bacterial, fecal coliform, fecal streptococci were detected per 100 g of dry matter and compared with the control. The soil profile was also sampled at an equal distance of 3 cm from soil surface for fecal coliform detection. The results indicated that the yield increased significantly under the subsurface irrigation system and the control water quality compared to surface irrigation system and other water qualities. There was a considerable drop in the count of all bacteria species under the subsurface irrigation system compared to surface irrigation. The bacterial count/g of the plant shoot system increased as the percentage of wastewater in the irrigation water increased. Most of the fecal coliform bacteria were deposited in the first few centimeters below the column inlet and the profile exponentially decreased with increasing depth. PMID:26858571

  11. Microbial contamination of vegetable crop and soil profile in arid regions under controlled application of domestic wastewater.

    PubMed

    Balkhair, Khaled S

    2016-01-01

    Increasing lack of potable water in arid countries leads to the use of treated wastewater for crop production. However, the use of inappropriate irrigation practices could result in a serious contamination risk to plants, soils, and groundwater with sewage water. This research was initiated in view to the increasing danger of vegetable crops and groundwater contamination with pathogenic bacteria due to wastewater land application. The research was designed to study: (1) the effect of treated wastewater irrigation on the yield and microbial contamination of the radish plant under field conditions; (2) contamination of the agricultural soil profile with fecal coliform bacteria. Effluent from a domestic wastewater treatment plant (100%) in Jeddah city, Saudi Arabia, was diluted to 80% and 40% with the groundwater of the experimental site constituting three different water qualities plus groundwater as control. Radish plant was grown in two consecutive seasons under two drip irrigation systems and four irrigation water qualities. Upon harvesting, plant weight per ha, total bacterial, fecal coliform, fecal streptococci were detected per 100 g of dry matter and compared with the control. The soil profile was also sampled at an equal distance of 3 cm from soil surface for fecal coliform detection. The results indicated that the yield increased significantly under the subsurface irrigation system and the control water quality compared to surface irrigation system and other water qualities. There was a considerable drop in the count of all bacteria species under the subsurface irrigation system compared to surface irrigation. The bacterial count/g of the plant shoot system increased as the percentage of wastewater in the irrigation water increased. Most of the fecal coliform bacteria were deposited in the first few centimeters below the column inlet and the profile exponentially decreased with increasing depth.

  12. Salicornia as a crop plant in temperate regions: selection of genetically characterized ecotypes and optimization of their cultivation conditions.

    PubMed

    Singh, Devesh; Buhmann, Anne K; Flowers, Tim J; Seal, Charlotte E; Papenbrock, Jutta

    2014-11-10

    Rising sea levels and salinization of groundwater due to global climate change result in fast-dwindling sources of freshwater. Therefore, it is important to find alternatives to grow food crops and vegetables. Halophytes are naturally evolved salt-tolerant plants that are adapted to grow in environments that inhibit the growth of most glycophytic crop plants substantially. Members of the Salicornioideae are promising candidates for saline agriculture due to their high tolerance to salinity. Our aim was to develop genetically characterized lines of Salicornia and Sarcocornia for further breeding and to determine optimal cultivation conditions. To obtain a large and diverse genetic pool, seeds were collected from different countries and ecological conditions. The external transcribed spacer (ETS) sequence of 62 Salicornia and Sarcocornia accessions was analysed: ETS sequence data showed a clear distinction between the two genera and between different Salicornia taxa. However, in some cases the ETS was not sufficiently variable to resolve morphologically distinct species. For the determination of optimal cultivation conditions, experiments on germination, seedling establishment and growth to a harvestable size were performed using different accessions of Salicornia spp. Experiments revealed that the percentage germination was greatest at lower salinities and with temperatures of 20/10 °C (day/night). Salicornia spp. produced more harvestable biomass in hydroponic culture than in sand culture, but the nutrient concentration requires optimization as hydroponically grown plants showed symptoms of stress. Salicornia ramosissima produced more harvestable biomass than Salicornia dolichostachya in artificial sea water containing 257 mM NaCl. Based on preliminary tests on ease of cultivation, gain in biomass, morphology and taste, S. dolichostachya was investigated in more detail, and the optimal salinity for seedling establishment was found to be 100 mM. Harvesting of S

  13. Crop evapotranspiration-based irrigation management during the growing season in the arid region of northwestern China.

    PubMed

    Chang, Xuexiang; Zhao, Wenzhi; Zeng, Fanjiang

    2015-11-01

    In arid northwestern China, water shortages have triggered recent regulations affecting irrigation water use in desert-oasis agricultural systems. In order to determine the actual water demand of various crops and to develop standards for the rational use of water resources, we analyzed meteorological data from the Fukang desert ecosystem observation and experiment station (FKD), the Cele desert-grassland ecosystem observation and research station (CLD), and the Linze Inland River Basin Comprehensive Research Station (LZD), which all belong to the Chinese Ecosystem Research Network. We researched crop evapotranspiration (ETc) using the water balance method, the FAO-56 Penman-Monteith method, the Priestley-Taylor method, and the Hargreaves method, during the growing seasons of 2005 through 2009. Results indicate substantial differences in ETc, depending on the method used. At the CLD, the ETc from the soil water balance, FAO-56 Penman-Monteith, Priestley-Taylor, and Hargreaves methods were 1150.3±380.8, 783.7±33.6, 1018.3±22.1, and 611.2±23.3 mm, respectively; at the FKD, the corresponding results were 861.0±67.0, 834.2±83.9, 1453.5±47.1, and 1061.0±38.2 mm, respectively; and at the LZD, 823.4±110.4, 726.0±0.4, 722.3±29.4, and 1208.6±79.1 mm, respectively. The FAO-56 Penman-Monteith method provided a fairly good estimation of E Tc compared with the Priestley-Taylor and Hargreaves methods.

  14. Association of Shifting Populations in the Root Zone Microbiome of Millet with Enhanced Crop Productivity in the Sahel Region (Africa)

    PubMed Central

    Assigbetse, Komi; Bayala, Roger; Chapuis-Lardy, Lydie; Dick, Richard P.; McSpadden Gardener, Brian B.

    2015-01-01

    This study characterized specific changes in the millet root zone microbiome stimulated by long-term woody-shrub intercropping at different sites in Senegal. At the two study sites, intercropping with woody shrubs and shrub residue resulted in a significant increase in millet [Pennisetum glaucum (L.) R. Br.] yield (P < 0.05) and associated patterns of increased diversity in both bacterial and fungal communities in the root zone of the crop. Across four experiments, operational taxonomic units (OTUs) belonging to Chitinophaga were consistently significantly (P < 0.001) enriched in the intercropped samples, and “Candidatus Koribacter” was consistently significantly enriched in samples where millet was grown alone. Those OTUs belonging to Chitinophaga were enriched more than 30-fold in residue-amended samples and formed a distinct subgroup from all OTUs detected in the genus. Additionally, OTUs belonging to 8 fungal genera (Aspergillus, Coniella, Epicoccum, Fusarium, Gibberella, Lasiodiplodia, Penicillium, and Phoma) were significantly (P < 0.005) enriched in all experiments at all sites in intercropped samples. The OTUs of four genera (Epicoccum, Fusarium, Gibberella, and Haematonectria) were consistently enriched at sites where millet was grown alone. Those enriched OTUs in intercropped samples showed consistently large-magnitude differences, ranging from 30- to 1,000-fold increases in abundance. Consistently enriched OTUs in intercropped samples in the genera Aspergillus, Fusarium, and Penicillium also formed phylogenetically distinct subgroups. These results suggest that the intercropping system used here can influence the recruitment of potentially beneficial microorganisms to the root zone of millet and aid subsistence farmers in producing higher-yielding crops. PMID:25681183

  15. Inoculation with arbuscular mycorrhizae does not improve 137Cs uptake in crops grown in the Chernobyl region.

    PubMed

    Vinichuk, M; Mårtensson, A; Rosén, K

    2013-12-01

    Methods for cleaning up radioactive contaminated soils are urgently needed. In this study we investigated whether the use of arbuscular mycorrhizal (AM) fungi can improve (137)Cs uptake by crops. Barley, cucumber, perennial ryegrass, and sunflower were inoculated with AM fungi and grown in low-level radionuclide contaminated soils in a field experiment 70 km southwest of Chernobyl, Ukraine, during two successive years (2009-2010). Roots of barley, cucumber and sunflower plants were slightly or moderately infected with AM fungus and root infection frequency was negatively or non-correlated with (137)Cs uptake by plants. Roots of ryegrass were moderately infected with AM fungus and infection frequency was moderately correlated with (137)Cs uptake by ryegrass. The application of AM fungi to soil in situ did not enhance radionuclide plant uptake or biomass. The responsiveness of host plants and AM fungus combination to (137)Cs uptake varied depending on the soil, although mycorrhization of soil in the field was conditional and did not facilitate the uptake of radiocesium. The total amount of (137)Cs uptake by plants growing on inoculated soil was equal to amounts in plant cultivated on non-inoculated soil. Thus, the use of AM fungi in situ for bioremediation of soil contaminated with a low concentration of (137)Cs could not be recommended.

  16. Predicting Percent Body Fat from Circumference Measurements

    DTIC Science & Technology

    1993-01-01

    A268 695 DTIC ELECTE AUG 3 0 1993 dI I Public . MILITARY MEDICINE, 158, 1:026, 1993 A Predicting Percent Body Fat from Circumference Measurements LT...are required to meet percent Introduction body fat (%BF) standards as a condition of military service. Naval personnel who exceed standards for %BF...or 31-35.9% body fat (%BF), and with 22%BF or greater and women with 30%BF or greater. Val- obese as 26 or 36%BF or greater for men and women, respec

  17. Assimilation of MODIS-derived LAI by radiative transfer modelling to crop growth simulation model for rice crop monitoring and yield estimation in the Mekong delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Nguyen, H.; de Bie, K.; Verhoef, W.

    2014-12-01

    Successful monitoring of rice crops and estimation of its yields in Mekong delta provide vital information to government agencies, rice production stakeholders and insurance companies in making their decisions and plans to establish solutions to protect rice smallholders from the risks involved. Remote sensing-based information promises a cost-effective way to observe rice crop growth in the largest rice producing region of Vietnam. For an extensive rice cultivation region as the Mekong delta, the use of divergence statistic to extract information from long-term or hypertemporal optical remote sensing NDVI profile to map rice cropping patterns has shown a high degree of success. The result map provides accurate information on where rice grew, when it was seeded and harvested, how many time it was cultivated every year. In addition, by using 8-day MODIS TERRA surface reflectance in Soil-Leaf-Canopy (SLC) radiative transfer model, 70 percent variation of seasonal rice LAI values was able to capture, making it useful to be assimilated into a rice crop growth simulation model (ORYZA 2000) to estimate the regional rice production in the season of 2008-2009. Tested results from 56 rice fields located in different rice cropping patterns showed that yields estimated using ORYZA2000 can explain 83 percent variation of field measured yields. However, simulated yields by ORYZA 2000 were used to overestimate by the model since some of model parameters could not be recalibrated due to the lack of field experiment data. This suggest that in the future, in order to gain a better results of rice crop monitoring and yield estimation, apart from improving the estimation of MODIS -derived LAIs by using SLC, calibrating crop growth simulation's parameter have to be taken into account.

  18. United States benefits of improved worldwide wheat crop information from a LANDSAT system

    NASA Technical Reports Server (NTRS)

    Heiss, K. P.; Sand, F.; Seidel, A.; Warner, D.; Sheflin, N.; Bhattacharyya, R.; Andrews, J.

    1975-01-01

    The value of worldwide information improvements on wheat crops, promised by LANDSAT, is measured in the context of world wheat markets. These benefits are based on current LANDSAT technical goals and assume that information is made available to all (United States and other countries) at the same time. A detailed empirical sample demonstration of the effect of improved information is given; the history of wheat commodity prices for 1971-72 is reconstructed and the price changes from improved vs. historical information are compared. The improved crop forecasting from a LANDSAT system assumed include wheat crop estimates of 90 percent accuracy for each major wheat producing region. Accurate, objective worldwide wheat crop information using space systems may have a very stabilizing influence on world commodity markets, in part making possible the establishment of long-term, stable trade relationships.

  19. Replacing fallow with continuous cropping reduces crop water productivity of semiarid wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water supply frequently limits crop yield in semiarid cropping systems; water deficits can restrict yields in drought-affected subhumid regions. In semiarid wheat (Triticum aestivumL.)-based cropping systems, replacing an uncropped fallow period with a crop can increase precipitation use efficiency ...

  20. 13 percent remain AIDS-free.

    PubMed

    1995-01-01

    Researchers predict that approximately thirteen percent of homosexual/bisexual men infected with HIV at an early age will be long-term survivors, remaining free of disease for more than twenty years. Researchers with the Multicenter AIDS Cohort Study based their predictions on data from the ongoing study of 1,809 HIV-positive men. Stable immune markers and no use of antiretrovirals were the criteria used to define long-term.

  1. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia

    PubMed Central

    Balkhair, Khaled S.; Ashraf, Muhammad Aqeel

    2015-01-01

    Wastewater irrigated fields can cause potential contamination with heavy metals to soil and groundwater, thus pose a threat to human beings . The current study was designed to investigate the potential human health risks associated with the consumption of okra vegetable crop contaminated with toxic heavy metals. The crop was grown on a soil irrigated with treated wastewater in the western region of Saudi Arabia during 2010 and 2011. The monitored heavy metals included Cd, Cr, Cu, Pb and Zn for their bioaccumulation factors to provide baseline data regarding environmental safety and the suitability of sewage irrigation in the future. The pollution load index (PLI), enrichment factor (EF) and contamination factor (CF) of these metals were calculated. The pollution load index of the studied soils indicated their level of metal contamination. The concentrations of Ni, Pb, Cd and Cr in the edible portions were above the safe limit in 90%, 28%, 83% and 63% of the samples, respectively. The heavy metals in the edible portions were as follows: Cr > Zn > Ni > Cd > Mn > Pb > Cu > Fe. The Health Risk Index (HRI) was >1 indicating a potential health risk. The EF values designated an enhanced bio-contamination compared to other reports from Saudi Arabia and other countries around the world. The results indicated a potential pathway of human exposure to slow poisoning by heavy metals due to the indirect utilization of vegetables grown on heavy metal-contaminated soil that was irrigated by contaminated water sources. The okra tested was not safe for human use, especially for direct consumption by human beings. The irrigation source was identified as the source of the soil pollution in this study. PMID:26858563

  2. Crop yield response to climate change varies with cropping intensity.

    PubMed

    Challinor, Andrew J; Parkes, Ben; Ramirez-Villegas, Julian

    2015-04-01

    Projections of the response of crop yield to climate change at different spatial scales are known to vary. However, understanding of the causes of systematic differences across scale is limited. Here, we hypothesize that heterogeneous cropping intensity is one source of scale dependency. Analysis of observed global data and regional crop modelling demonstrate that areas of high vs. low cropping intensity can have systematically different yields, in both observations and simulations. Analysis of global crop data suggests that heterogeneity in cropping intensity is a likely source of scale dependency for a number of crops across the globe. Further crop modelling and a meta-analysis of projected tropical maize yields are used to assess the implications for climate change assessments. The results show that scale dependency is a potential source of systematic bias. We conclude that spatially comprehensive assessments of climate impacts based on yield alone, without accounting for cropping intensity, are prone to systematic overestimation of climate impacts. The findings therefore suggest a need for greater attention to crop suitability and land use change when assessing the impacts of climate change.

  3. Economic optimal nitrogen application rates for rice cropping in the Taihu Lake region of China: taking account of negative externalities

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Yan, X.

    2011-07-01

    Nitrogen application rates (NARs) is often overestimated over the rice (Oryza sativa L.) growing season in the Taihu Lake region of China. This is largely because only individual nitrogen (N) losses are taken into account, or the inventory flows of reactive N have been limited solely to the farming process when evaluating environmental and economic effects of N fertilizer. Since N can permeate the ecosystem in numerous forms commencing from the acquisition of raw material, through manufacturing and use, to final losses in the farming process (e.g., N2O, NH3, NO3- leaching, etc.), the costs incurred also accumulate and should be taken into account if economically-optimal N rates (EONRs) are to be established. This study integrates important material and energy flows resulting from N use into a rice agricultural inventory that constitutes the hub of the life-cycle assessment (LCA) method. An economic evaluation is used to determine an environmental and economic NAR for the Taihu Lake region. The analysis reveals that production and exploitation processes consume the largest proportion of resources, accounting for 77.2 % and 22.3 % of total resources, respectively. Regarding environmental impact, global warming creates the highest cost with contributions stemming mostly from fertilizer production and raw material exploitation processes. Farming process incurs the biggest environmental impact of the three environmental impact categories considered, whereas transportation has a much smaller effect. When taking account of resource consumption and environmental cost, the marginal benefit of 1 kg rice would decrease from 2.4 to only 1.01 yuan. Accordingly, our current EONR has been evaluated at 185 kg N ha-1 for a single rice-growing season. This could enhance profitability, as well as reduce the N losses associated with rice growing.

  4. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    NASA Astrophysics Data System (ADS)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  5. Generating a Crop Rotation Dataset for the U.S and its Application in Inferring Land Use Change Induced Wetland Losses in the Prairie Pothole Region

    NASA Astrophysics Data System (ADS)

    Sahajpal, R.; Zhang, X.; Izaurralde, R. C.; Hurtt, G. C.

    2013-12-01

    Agricultural management practices plays a major role in the global fluxes of greenhouse gases, soil carbon sequestration and production of ecosystem services. A key component of these practices are the crop rotations selected by the farmer. Here, we present an algorithm to create a crop rotation dataset for the U.S and demonstrate the tradeoffs between the number and accuracy of rotations comprising a state. To generate the rotations, we use the USDA Cropland Data Layer (CDL) available for the entire U.S at a resolution of 30 m from 2010 to 2012. Several studies have generated rotations simply by merging several years of CDL data, resulting in thousands of rotations per state. Alternatively, they tend to aggregate the rotations into a few predefined categories. This over simplification can lead to erroneous acreage values impacting both biogeochemical model estimates and land use change studies. Our algorithm uses the edit distance metric to combine similar rotations to obtain a product which retains the accuracy of CDL while minimizing the number of rotations. We find that 180 unique rotations are needed to represent the entire U.S with an accuracy exceeding 80% when compared to the underlying CDL datasets for rotations from 2010 to 2012. For the agriculturally important and diverse Western corn belt, the number of rotations needed to represent each state with an accuracy exceeding 90% when compared to the CDL dataset, ranges from 3 unique rotations for Iowa to more than 50 for North Dakota. As an application of the dataset, we examine the findings of Wright and Wimberly (1), who reported in a recent issue of PNAS that recent grassland conversion to corn and soybean cropping (GRCS) from 2006 to 2011 in the Prairie Pothole Region (PPR) is concentrated in the vicinity of wetlands. Their analysis implicitly assumes that all wetlands affected by GRCS in the PPR existed in or after 2006. However, the areal extent of wetlands was based on National Wetland Inventory maps

  6. Percent Agricultural Land Cover on Steep Slopes

    EPA Pesticide Factsheets

    Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type. High amounts of agriculture on steep slopes can increase the amount of soil erosion leading to increased sediment in surface water. Agricultural land cover on steep slopes (AGSL) is the percent of agriculture on slopes greater than or equal to 9%. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  7. Agricultural crops and soil treatment impacts on the daily and seasonal dynamics of CO2 fluxes in the field agroecosystems at the Central region of Russia

    NASA Astrophysics Data System (ADS)

    Mazirov, Ilya; Vasenev, Ivan; Meshalkina, Joulia; Yaroslavtsev, Alexis; Berezovskiy, Egor; Djancharov, Turmusbek

    2015-04-01

    very useful for verification the current regional assessments of the organic C balances, investigated crops' C-footprint calculations and better understanding the soil organic matter dynamics in these soils with different crops and farming practices.

  8. 40 CFR 264.276 - Food-chain crops.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Food-chain crops. 264.276 Section 264... Treatment § 264.276 Food-chain crops. The Regional Administrator may allow the growth of food-chain crops in... Regional Administrator will specify in the facility permit the specific food-chain crops which may be...

  9. 40 CFR 264.276 - Food-chain crops.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Food-chain crops. 264.276 Section 264... Treatment § 264.276 Food-chain crops. The Regional Administrator may allow the growth of food-chain crops in... Regional Administrator will specify in the facility permit the specific food-chain crops which may be...

  10. 40 CFR 264.276 - Food-chain crops.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Food-chain crops. 264.276 Section 264... Treatment § 264.276 Food-chain crops. The Regional Administrator may allow the growth of food-chain crops in... Regional Administrator will specify in the facility permit the specific food-chain crops which may be...

  11. 40 CFR 264.276 - Food-chain crops.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Food-chain crops. 264.276 Section 264... Treatment § 264.276 Food-chain crops. The Regional Administrator may allow the growth of food-chain crops in... Regional Administrator will specify in the facility permit the specific food-chain crops which may be...

  12. 40 CFR 264.276 - Food-chain crops.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Food-chain crops. 264.276 Section 264... Treatment § 264.276 Food-chain crops. The Regional Administrator may allow the growth of food-chain crops in... Regional Administrator will specify in the facility permit the specific food-chain crops which may be...

  13. Sunflower crop

    SciTech Connect

    Beard, B.H.

    1981-05-01

    A review of the sunflower as a major commercial crop, including its history, cultivation, hybridization and uses. It is grown principally for its oil which is high in polyunsaturated fatty acids and used in a variety of foods. Recently it has been tested in diesel engines and a high protein meal is produced from the seed residues.

  14. How I Love My 80 Percenters

    NASA Technical Reports Server (NTRS)

    Maturo, Anthony J.

    2002-01-01

    Don't ever take your support staff for granted. By support staff, I mean the people in personnel, logistics, and finance; the ones who can make things happen with a phone call or a signature, or by the same token frustrate you to no end by their inaction; these are people you must depend on. I've spent a lot of time thinking about how to cultivate relationships with my support staff that work to the advantage of both of us. The most important thing that have learned working with people, any people--and I will tell you how I learned this in a minute--is there are some folks you just can't motivate, so forget it, don't try; others you certainly can with a little psychology and some effort; and the best of the bunch, what I call the 80 percenters, you don't need to motivate because they're already on the team and performing beautifully. The ones you can't change are rocks. Face up to it, and just kick them out of your way. I have a reputation with the people who don't want to perform or be part of the team. They don't come near me. If someone's a rock, I pick up on it right away, and I will walk around him or her to find someone better. The ones who can be motivated I take time to nurture. I consider them my projects. A lot of times these wannabes are people who want to help but don't know how. Listen, you can work with them. Lots of people in organizations have the mindset that all that matters are the regulations. God forbid if you ever work outside those regulations. They've got one foot on that regulation and they're holding it tight like a baby holds a blanket. What you're looking for is that first sign that their minds are opening. Usually you hear it in their vocabulary. What used to sound like "We can't do that ... the regulations won't allow it ... we have never done this before," well, suddenly that changes to "We have options ... let's take a look at the options ... let me research this and get back to you." The 80 percenters you want to nurture too, but

  15. 18-percent efficient terrestrial silicon solar cells

    NASA Technical Reports Server (NTRS)

    Blakers, A. W.; Green, M. A.; Jiqun, S.; Keller, E. M.; Wenham, S. R.; Godfrey, R. B.; Szpitalak, T.; Willison, M. R.

    1984-01-01

    Silicon solar cells are described which operate at energy conversion efficiencies in excess of 18 percent under standard terrestrial test conditions (AM1.5, 100 mW/sq cm, 28 C). These are believed to be the most efficient silicon cells reported to date. The high efficiency is a result of the combination of high open-circuit voltage due to the careful attention paid to passivation of the top surface of the cell; high fill factors due to the high open-circuit voltage and low parasitic resistance losses; and high short-circuit current due to the use of shallow diffusions, a low grid coverage, and an optimized double-layer antireflection coating.

  16. Emission ratio of carbonaceous aerosols observed near crop residual burning sources in a rural area of the Yangtze River Delta Region, China

    NASA Astrophysics Data System (ADS)

    Pan, X. L.; Kanaya, Y.; Wang, Z. F.; Taketani, F.; Tanimoto, H.; Irie, H.; Takashima, H.; Inomata, S.

    2012-11-01

    Intensive open crop residue burning (OCRB) has a great impact on regional air quality and climate. A field observation campaign in a rural area of the Yangtze River Delta Region (YRDR) was performed during the harvest season, and Elemental carbon (ECa), organic carbon (OC), black carbon (BCe), carbon monoxide (CO), carbon dioxide (CO2) and PM2.5mass were concurrently measured. During the observation period, urban pollution and OCRB-impact episodes were classified. The emission ratio of ECa mass (defined as the ΔECa/ΔCO ratio) from OCRB was estimated to be 18.2 ± 4.6 ng/m3/ppbv, much higher than that (3.0 ± 0.3 ng/m3/ppbv) of urban pollution from the YRDR. A significant amount of OC was emitted from OCRB with ΔOC/ΔCO ratio of 101.3 ± 41.6 ng/m3/ppbv. The value found in the present study was near the upper limit of OC emission ratios in the literature, implying great impacts from combustion conditions, types of biomass burned and subsequent evolution. Regarding urban pollution episodes, the ΔOC/ΔCO ratio was found to be 23.7 ± 2.4 ng/m3/ppbv, and secondary organics accounted for the major fraction of OC mass. Combustions phases of OCRB were classified according to a modified combustion efficiency (MCE, defined as ΔCO2/(ΔCO + ΔCO2)). Our results support the view that ECa tend to be produced in flaming combustions (MCE > 0.95) than in smoldering combustions (MCE < 0.95), whereas OC is emitted preferentially from smoldering combustions. Based on our observed carbonaceous aerosol correlations, we estimate that the ECa and OC emissions from OCRB in East Asia might be underestimated by at least 50%.

  17. Tracing back seed and pollen flow within the crop-wild Beta vulgaris complex: genetic distinctiveness vs. hot spots of hybridization over a regional scale.

    PubMed

    Viard, Frédérique; Arnaud, Jean-François; Delescluse, Maxime; Cuguen, Joël

    2004-06-01

    Hybrids between transgenic crops and wild relatives have been documented successfully in a wide range of cultivated species, having implications on conservation and biosafety management. Nonetheless, the magnitude and frequency of hybridization in the wild is still an open question, in particular when considering several populations at the landscape level. The Beta vulgaris complex provides an excellent biological model to tackle this issue. Weed beets contaminating sugar beet fields are expected to act as a relay between wild populations and crops and from crops-to-crops. In one major European sugar beet production area, nine wild populations and 12 weed populations were genetically characterized using cytoplasmic markers specific to the cultivated lines and nuclear microsatellite loci. A tremendous overall genetic differentiation between neighbouring wild and weed populations was depicted. However, genetic admixture analyses at the individual level revealed clear evidence for gene flow between wild and weed populations. In particular, one wild population displayed a high magnitude of nuclear genetic admixture, reinforced by direct seed flow as evidenced by cytoplasmic markers. Altogether, weed beets were shown to act as relay for gene flow between crops to wild populations and crops to crops by pollen and seeds at a landscape level.

  18. Food security: crops for people not for cars.

    PubMed

    Kullander, Sven

    2010-05-01

    Humankind is currently faced with the huge challenge of securing a sustainable energy supply and biofuels constitute one of the major options. However, the commercially traded edible crops are barely sufficient to meet food demand of the present world population. Certain regions, for example EU-27, do not even have a sufficient indigenous crop production. Of this follows that motor biofuels based on edible crops should be avoided. To replace more than some percent of the fossil motor fuels, non-edible biomass-rest products and wastes-should instead be considered for conversion to biofuels. In this way, about 10% of the current fossil fuels can be replaced. Feeding a world population expected to grow by some 50% during the next 50 years will be a major challenge. For environmental reasons it seems that agricultural land cannot be expanded very much, maybe not at all. The solution to the increasing food demand seems therefore to be using the present crop production more efficiently and increasing output from present agricultural land, maintaining biodiversity and climate stability within reasonable limits. In the future, agriculture will need more energy and more water irrigation. Food production is, however, already very energy demanding, requiring several times more externally provided energy than the energy content of the food itself. A sufficient energy supply will be a key issue for the future farming!

  19. Percent area coverage through image analysis

    NASA Astrophysics Data System (ADS)

    Wong, Chung M.; Hong, Sung M.; Liu, De-Ling

    2016-09-01

    The notion of percent area coverage (PAC) has been used to characterize surface cleanliness levels in the spacecraft contamination control community. Due to the lack of detailed particle data, PAC has been conventionally calculated by multiplying the particle surface density in predetermined particle size bins by a set of coefficients per MIL-STD-1246C. In deriving the set of coefficients, the surface particle size distribution is assumed to follow a log-normal relation between particle density and particle size, while the cross-sectional area function is given as a combination of regular geometric shapes. For particles with irregular shapes, the cross-sectional area function cannot describe the true particle area and, therefore, may introduce error in the PAC calculation. Other errors may also be introduced by using the lognormal surface particle size distribution function that highly depends on the environmental cleanliness and cleaning process. In this paper, we present PAC measurements from silicon witness wafers that collected fallouts from a fabric material after vibration testing. PAC calculations were performed through analysis of microscope images and compare them to values derived through the MIL-STD-1246C method. Our results showed that the MIL-STD-1246C method does provide a reasonable upper bound to the PAC values determined through image analysis, in particular for PAC values below 0.1.

  20. Ammonia volatilization from crop residues and frozen green manure crops

    NASA Astrophysics Data System (ADS)

    de Ruijter, F. J.; Huijsmans, J. F. M.; Rutgers, B.

    2010-09-01

    Agricultural systems can lose substantial amounts of nitrogen (N). To protect the environment, the European Union (EU) has adopted several directives that set goals to limit N losses. National Emission Ceilings (NEC) are prescribed in the NEC directive for nitrogen oxides and ammonia. Crop residues may contribute to ammonia volatilization, but sufficient information on their contribution to the national ammonia volatilization is lacking. Experiments were carried out with the aim to assess the ammonia volatilization of crop residues left on the soil surface or incorporated into the soil under the conditions met in practice in the Netherlands during late autumn and winter. Ammonia emission from residues of broccoli, leek, sugar beet, cut grass, fodder radish (fresh and frozen) and yellow mustard (frozen) was studied during two winter seasons using volatilization chambers. Residues were either placed on top of soil or mixed with soil. Mixing residues with soil gave insignificant ammonia volatilization, whereas volatilization was 5-16 percent of the N content of residues when placed on top of soil. Ammonia volatilization started after at least 4 days. Total ammonia volatilization was related to C/N-ratio and N concentration of the plant material. After 37 days, cumulative ammonia volatilization was negligible from plant material with N concentration below 2 percent, and was 10 percent of the N content of plant material with 4 percent N. These observations can be explained by decomposition of plant material by micro-organisms. After an initial built up of the microbial population, NH 4+ that is not needed for their own growth is released and can easily emit as NH 3 at the soil surface. The results of the experiments were used to estimate the contribution of crop residues to ammonia volatilization in the Netherlands. Crop residues of arable crops and residues of pasture topping may contribute more than 3 million kg NH 3-N to the national ammonia volatilization of the

  1. Investigation of Effectiveness of a Wing Equipped with a 50-percent-chord Sliding Flap, a 30-percent-chord Slotted Flap, and a 30-percent-chord Slat in Deflecting Propeller Slipstreams Downward for Vertical Take-off

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E

    1957-01-01

    Results are presented of an investigation of the effectiveness of a wing equipped with a 50-percent-chord sliding flap and a 30-percent-chord slotted flap in deflecting a propeller slipstream downward for vertical take-off. Tests were conducted at zero forward speed in a large room and included the effects of flap deflection, proximity to the ground, a leading-edge slat, and end plates. A turning angle of about 70 degrees and a resultant force of about 100 percent of the thrust were achieved near the ground. Out of the ground-effect region, the turning angle was also about 70 degrees but the resultant force was reduced to about 86 percent of the thrust.

  2. Miscanthus Establishment and Overwintering in the Midwest USA: A Regional Modeling Study of Crop Residue Management on Critical Minimum Soil Temperatures

    PubMed Central

    Kucharik, Christopher J.; VanLoocke, Andy; Lenters, John D.; Motew, Melissa M.

    2013-01-01

    Miscanthus is an intriguing cellulosic bioenergy feedstock because its aboveground productivity is high for low amounts of agrochemical inputs, but soil temperatures below −3.5°C could threaten successful cultivation in temperate regions. We used a combination of observed soil temperatures and the Agro-IBIS model to investigate how strategic residue management could reduce the risk of rhizome threatening soil temperatures. This objective was addressed using a historical (1978–2007) reconstruction of extreme minimum 10 cm soil temperatures experienced across the Midwest US and model sensitivity studies that quantified the impact of crop residue on soil temperatures. At observation sites and for simulations that had bare soil, two critical soil temperature thresholds (50% rhizome winterkill at −3.5°C and −6.0°C for different Miscanthus genotypes) were reached at rhizome planting depth (10 cm) over large geographic areas. The coldest average annual extreme 10 cm soil temperatures were between −8°C to −11°C across North Dakota, South Dakota, and Minnesota. Large portions of the region experienced 10 cm soil temperatures below −3.5°C in 75% or greater for all years, and portions of North and South Dakota, Minnesota, and Wisconsin experienced soil temperatures below −6.0°C in 50–60% of all years. For simulated management options that established varied thicknesses (1–5 cm) of miscanthus straw following harvest, extreme minimum soil temperatures increased by 2.5°C to 6°C compared to bare soil, with the greatest warming associated with thicker residue layers. While the likelihood of 10 cm soil temperatures reaching −3.5°C was greatly reduced with 2–5 cm of surface residue, portions of the Dakotas, Nebraska, Minnesota, and Wisconsin still experienced temperatures colder than −3.5°C in 50–80% of all years. Nonetheless, strategic residue management could help increase the likelihood of overwintering of miscanthus rhizomes in the first

  3. Biomass energy from crop and forest residues.

    PubMed

    Pimentel, D; Moran, M A; Fast, S; Weber, G; Bukantis, R; Balliett, L; Boveng, P; Cleveland, C; Hindman, S; Young, M

    1981-06-05

    Residues remaining after the harvest of crop and forestry products are being proposed as a substantial energy source for the nation. An estimated 22 percent of the residues might be utilized, providing a renewable source of high-grade energy with the potential of supplying 1 percent of the current U.S. gasoline consumption as ethanol or 4 percent of the total electrical energy used. These net energy benefits are limited by high energy costs to collect, transport, and process the residues. Environmental threats include soil erosion, water runoff, and nutrient loss.

  4. Long-term soil microbial community and enzyme activity responses to an integrated cropping-livestock system in a semi-arid region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study is part of a larger long-term project to develop and evaluate integrated crop and livestock systems in order to reduce dependence on underground water sources by optimizing cotton (Gossypium hirsutum) production in the Texas High Plains of U.S. Microbial communities and activities were e...

  5. Spatial Relationships of Soil Texture and Crop Rotation to Aspergillus flavus Community Structure in South Texas.

    PubMed

    Jaime-Garcia, Ramon; Cotty, Peter J

    2006-06-01

    ABSTRACT Aspergillus flavus, the causal agent of aflatoxin contamination of cottonseed, is a natural inhabitant of soils. A. flavus can be divided into the S and L strains, of which the S-strain isolates, on average, produce greater quantities of aflatoxins than the L-strain isolates. Aflatoxin contamination can be severe in several crops in South Texas. The structure of A. flavus communities residing in soils of South Texas was determined from 326 soil samples collected from 152 fields located from the Rio Grande Valley in the south to Fort Bend County in the north from 2001 through 2003. Analysis of variance indicated significant differences in the incidence of A. flavus isolates belonging to the S strain (percent S) among regions. The Coastal Bend (30.7%) and Upper Coast (25.5%) regions had significantly higher percent S incidence than the Rio Grande Valley (4.8%). No significant differences in percent S among years were detected. The CFU per gram of soil were not significantly different among regions. Strain S incidence was positively correlated with clay content and negatively correlated with sand content. Fields cropped to cotton the previous year had a higher S-strain incidence, whereas fields cropped to corn had greater total quantities of A. flavus propagules. Maps of S-strain patterns show that the S strain constitutes >30% of the overall A. flavus community in the area extending from the central Coastal Bend region to the central Upper Coast region. The west Rio Grande Valley had the lowest S-strain incidence (<10%). Geographic variation in S-strain incidence may influence the distribution of aflatoxin contamination in South Texas.

  6. Origins of food crops connect countries worldwide

    PubMed Central

    Achicanoy, Harold A.; Bjorkman, Anne D.; Navarro-Racines, Carlos; Guarino, Luigi; Flores-Palacios, Ximena; Engels, Johannes M. M.; Wiersema, John H.; Dempewolf, Hannes; Sotelo, Steven; Ramírez-Villegas, Julian; Castañeda-Álvarez, Nora P.; Fowler, Cary; Jarvis, Andy; Rieseberg, Loren H.; Struik, Paul C.

    2016-01-01

    Research into the origins of food plants has led to the recognition that specific geographical regions around the world have been of particular importance to the development of agricultural crops. Yet the relative contributions of these different regions in the context of current food systems have not been quantified. Here we determine the origins (‘primary regions of diversity’) of the crops comprising the food supplies and agricultural production of countries worldwide. We estimate the degree to which countries use crops from regions of diversity other than their own (‘foreign crops’), and quantify changes in this usage over the past 50 years. Countries are highly interconnected with regard to primary regions of diversity of the crops they cultivate and/or consume. Foreign crops are extensively used in food supplies (68.7% of national food supplies as a global mean are derived from foreign crops) and production systems (69.3% of crops grown are foreign). Foreign crop usage has increased significantly over the past 50 years, including in countries with high indigenous crop diversity. The results provide a novel perspective on the ongoing globalization of food systems worldwide, and bolster evidence for the importance of international collaboration on genetic resource conservation and exchange.

  7. 7 CFR 457.108 - Sunflower seed crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... measures; (e) Wildlife; (f) Earthquake; (g) Volcanic eruption; (h) Failure of the irrigation water supply... in the insured crop may be counted as production of the insured crop on a weight basis. 12. Prevented Planting Your prevented planting coverage will be 60 percent of your production guarantee for...

  8. 7 CFR 457.108 - Sunflower seed crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... measures; (e) Wildlife; (f) Earthquake; (g) Volcanic eruption; (h) Failure of the irrigation water supply... in the insured crop may be counted as production of the insured crop on a weight basis. 12. Prevented Planting Your prevented planting coverage will be 60 percent of your production guarantee for...

  9. 7 CFR 457.141 - Rice crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; (5) Wildlife; (6) Earthquake; (7) Volcanic eruption; (8) Failure of the irrigation water supply if... in the insured crop may be counted as production of the insured crop on a weight basis. 13. Prevented Planting Your prevented planting coverage will be 45 percent of your production guarantee for...

  10. 7 CFR 457.141 - Rice crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; (5) Wildlife; (6) Earthquake; (7) Volcanic eruption; (8) Failure of the irrigation water supply if... in the insured crop may be counted as production of the insured crop on a weight basis. 13. Prevented Planting Your prevented planting coverage will be 45 percent of your production guarantee for...

  11. 7 CFR 457.108 - Sunflower seed crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... measures; (e) Wildlife; (f) Earthquake; (g) Volcanic eruption; (h) Failure of the irrigation water supply... in the insured crop may be counted as production of the insured crop on a weight basis. 12. Prevented Planting Your prevented planting coverage will be 60 percent of your production guarantee for...

  12. 7 CFR 457.108 - Sunflower seed crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... measures; (e) Wildlife; (f) Earthquake; (g) Volcanic eruption; (h) Failure of the irrigation water supply... in the insured crop may be counted as production of the insured crop on a weight basis. 12. Prevented Planting Your prevented planting coverage will be 60 percent of your production guarantee for...

  13. 7 CFR 457.113 - Coarse grains crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; (e) Wildlife; (f) Earthquake; (g) Volcanic eruption; (h) Failure of the irrigation water supply due... the insured crop may be counted as production of the insured crop on a weight basis. 12. Prevented Planting Your prevented planting coverage will be 60 percent of your production guarantee for...

  14. 7 CFR 457.113 - Coarse grains crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... insufficient or improper application of disease control measures; (e) Wildlife; (f) Earthquake; (g) Volcanic... the insured crop may be counted as production of the insured crop on a weight basis. 12. Prevented Planting Your prevented planting coverage will be 60 percent of your production guarantee for...

  15. 7 CFR 457.113 - Coarse grains crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; (e) Wildlife; (f) Earthquake; (g) Volcanic eruption; (h) Failure of the irrigation water supply due... the insured crop may be counted as production of the insured crop on a weight basis. 12. Prevented Planting Your prevented planting coverage will be 60 percent of your production guarantee for...

  16. 7 CFR 457.141 - Rice crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; (5) Wildlife; (6) Earthquake; (7) Volcanic eruption; (8) Failure of the irrigation water supply if... in the insured crop may be counted as production of the insured crop on a weight basis. 13. Prevented Planting Your prevented planting coverage will be 45 percent of your production guarantee for...

  17. 7 CFR 457.141 - Rice crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; (5) Wildlife; (6) Earthquake; (7) Volcanic eruption; (8) Failure of the irrigation water supply if... in the insured crop may be counted as production of the insured crop on a weight basis. 13. Prevented Planting Your prevented planting coverage will be 45 percent of your production guarantee for...

  18. 7 CFR 457.113 - Coarse grains crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; (e) Wildlife; (f) Earthquake; (g) Volcanic eruption; (h) Failure of the irrigation water supply due... the insured crop may be counted as production of the insured crop on a weight basis. 12. Prevented Planting Your prevented planting coverage will be 60 percent of your production guarantee for...

  19. 7 CFR 457.113 - Coarse grains crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; (e) Wildlife; (f) Earthquake; (g) Volcanic eruption; (h) Failure of the irrigation water supply due... the insured crop may be counted as production of the insured crop on a weight basis. 12. Prevented Planting Your prevented planting coverage will be 60 percent of your production guarantee for...

  20. Automatic image cropping for republishing

    NASA Astrophysics Data System (ADS)

    Cheatle, Phil

    2010-02-01

    Image cropping is an important aspect of creating aesthetically pleasing web pages and repurposing content for different web or printed output layouts. Cropping provides both the possibility of improving the composition of the image, and also the ability to change the aspect ratio of the image to suit the layout design needs of different document or web page formats. This paper presents a method for aesthetically cropping images on the basis of their content. Underlying the approach is a novel segmentation-based saliency method which identifies some regions as "distractions", as an alternative to the conventional "foreground" and "background" classifications. Distractions are a particular problem with typical consumer photos found on social networking websites such as FaceBook, Flickr etc. Automatic cropping is achieved by identifying the main subject area of the image and then using an optimization search to expand this to form an aesthetically pleasing crop. Evaluation of aesthetic functions like auto-crop is difficult as there is no single correct solution. A further contribution of this paper is an automated evaluation method which goes some way towards handling the complexity of aesthetic assessment. This allows crop algorithms to be easily evaluated against a large test set.

  1. 48 CFR 1852.219-76 - NASA 8 percent goal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false NASA 8 percent goal. 1852... 1852.219-76 NASA 8 percent goal. As prescribed in 1819.7003 insert the following clause: NASA 8 Percent... and daily business operations are controlled by one or more women. (b) The NASA Administrator...

  2. 48 CFR 1852.219-76 - NASA 8 percent goal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false NASA 8 percent goal. 1852... 1852.219-76 NASA 8 percent goal. As prescribed in 1819.7003 insert the following clause: NASA 8 Percent... and daily business operations are controlled by one or more women. (b) The NASA Administrator...

  3. 48 CFR 1852.219-76 - NASA 8 percent goal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false NASA 8 percent goal. 1852... 1852.219-76 NASA 8 percent goal. As prescribed in 1819.7003 insert the following clause: NASA 8 Percent... and daily business operations are controlled by one or more women. (b) The NASA Administrator...

  4. 48 CFR 1852.219-76 - NASA 8 percent goal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false NASA 8 percent goal. 1852... 1852.219-76 NASA 8 percent goal. As prescribed in 1819.7003 insert the following clause: NASA 8 Percent... and daily business operations are controlled by one or more women. (b) The NASA Administrator...

  5. 48 CFR 1852.219-76 - NASA 8 percent goal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true NASA 8 percent goal. 1852... 1852.219-76 NASA 8 percent goal. As prescribed in 1819.7003 insert the following clause: NASA 8 Percent... and daily business operations are controlled by one or more women. (b) The NASA Administrator...

  6. Impact of climate change and adaptation strategies on crop production in Nigeria

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.

    2012-04-01

    The vulnerability of agricultural to climate change is of particular interest to policy makers because the high social and economical importance of agriculture sector in Nigeria, which contributes approximately 40 percent to total GDP and support 70 percent of the population. It is necessary to investigate the potential climate change impacts in order to identify specific agricultural sectors and Agro-Ecological Zones that will be more vulnerable to changes in climatic conditions and implement and develop the most appropriate policies to cope with these changes. In this framework, this study aimed to assess the climate change impacts on Nigerian agricultural sector and to explore some of potential adaptation strategies for the most important crops in the food basket of the Country. The analysis was made using the DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5. Crop simulation models included in DSSAT are tools that allows to simulate physiological process of crop growth, development and production, by combining genetic crop characteristics and environmental (soil and weather) conditions. In this analysis, for each selected crop, the models included into DSSAT-CSM software were ran, after a calibration phase, to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output were "perturbed" with 10 Global Climate Models in order to have a wide variety of possible climate projections for impact analysis. Multiple combinations of soils and climate conditions, crop management and varieties were considered for each Agro-Ecological Zone of Nigeria. The climate impact assessment was made by comparing the yield obtained with the climate data for the present period and the yield obtainable under future changed climate conditions. The models ran by keeping

  7. 75 FR 59057 - Common Crop Insurance Regulations, Cotton Crop Insurance Provisions and Macadamia Nut Crop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... Provisions and Macadamia Nut Crop Insurance Provisions; Correction AGENCY: Federal Crop Insurance Corporation... Provisions and applicable Crop Provisions, including the Cotton Crop Insurance Provisions. In addition, FCIC revised various Crop Provisions, including the Macadamia Nut Crop Insurance Provisions, to...

  8. Guidance on Compatibility of UST Systems with Ethanol Blends Greater Than 10 Percent and Biodiesel Blends Greater Than 20 Percent

    EPA Pesticide Factsheets

    EPA guidance on complying with the federal compatibility requirement for underground storage tank (UST) systems storing gasoline containing greater than 10 percent ethanol or diesel containing greater than 20 percent biodiesel.

  9. Relating United States crop land use to natural resources and climate change

    SciTech Connect

    Flores-Mendoza, F.J.; Hubbard, K.G.

    1995-02-01

    Crop production depends not only on the yield but also on the area harvested. The yield response to climate change has been widely examined, but the sensitivity of crop land use to hypothetical climate change has not been examined directly. Crop land-use regression models for estimating crop area indices (CAIs)-the percent of land used for corn, soybean, wheat, and sorghum production-are presented. Inputs to the models include available water-holding capacity of the soil, percent of land available for rain-fed agricultural production, annual precipitation, and annual temperature. The total variance of CAI explained by the models ranged from 78% from wheat to 87% for sorghum, and the root-mean-square errors ranged from 1.74% for sorghum to 4.24% for corn. The introduction of additional climatic variables to the models did not significantly improve their performance. The crop land-use models were used to predict the CAI for every crop reporting district in the United States for the current climatic condition and for possible future climate change scenarios (various combinations of temperature and precipitation changes over a range of -3{degrees} to +6{degrees}C and -20% to +20% respectively). The magnitude of climatic warming suggested by GCMs (GISS and GFDL) is from 3.5{degrees} to 5.9{degrees}C for regions of the United States. For this magnitude of warming, the model suggests corn and soybean production areas may decline while wheat and sorghum production areas may expand. If the warming is accompanied by a decrease in annual precipitation from 1% to 10%, then the areas used for corn and soybean production could decrease by as much as 20% and 40%, respectively. The area for sorghum and wheat under these conditions would increase by as much as 80% and 70%, respectively; the exact amount depending strongly on the change in precipitation. 15 refs., 6 figs.

  10. Simulating Stochastic Crop Management in Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction -- Crop simulation models are uniquely suitable for examining long term crop responses to environmental variability due to changes in climate or other factors. Long-term studies typically emphasize variability related to weather conditions; certain weather-dependent cropping practices m...

  11. Hydroponic Crop Production using Recycled Nutrients from Inedible Crop Residues

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.; Mackowiak, Cheryl L.; Sager, John C.

    1993-01-01

    The coupling of plant growth and waste recycling systems is an important step toward the development of bioregenerative life support systems. This research examined the effectiveness of two alternative methods for recycling nutrients from the inedible fraction (residue) of candidate crops in a bioregenerative system as follows: (1) extraction in water, or leaching, and (2) combustion at 550 C, with subsequent reconstitution of the ash in acid. The effectiveness of the different methods was evaluated by (1) comparing the percent recovery of nutrients, and (2) measuring short- and long-term plant growth in hydroponic solutions, based on recycled nutrients.

  12. Low-dimensional models for cereal crop cycles observed from space in semi-arid region at different geographic locations and scales

    NASA Astrophysics Data System (ADS)

    Mangiarotti, Sylvain; Le Jean, Flavie; Jarlan, Lionel; Drapeau, Laurent

    2015-04-01

    A low dimensional model (three variables) was recently obtained for the cycle of cereal crops in north Morocco [1, 2]. This model is chaotic, toroidal and weakly dissipative. These characteristics were unexpected since such systems were previously found only in few theoretical cases. A detailed analysis of the model's flow also reveals that a double direction extension can occur locally in the flow of the cereal crops attractor resulting from this model. Such behavior of the flow was not reported before. In order to investigate the generality of these results, it was tried to obtain models for other sites. Several models presenting similar properties were obtained in other provinces, providing a strong argument for the existence of weakly dissipative chaos in nature. One four-dimensional model could be also obtained. This model was conservative, but it could be transformed into a chaotic model by adding dissipative terms. [1] Mangiarotti S., Coudret R., Drapeau L. & Jarlan L., 2012. Polynomial search and Global modelling: two algorithms for modeling chaos. Physical Review E, 86(4), 046205. [2] Mangiarotti S., Drapeau L. & Letellier C., 2014. Two chaotic global models for cereal crops cycles observed from satellite in Northern Morocco. Chaos, 24, 023130.

  13. Uncertainties in Predicting Rice Yield by Current Crop Models Under a Wide Range of Climatic Conditions

    NASA Technical Reports Server (NTRS)

    Li, Tao; Hasegawa, Toshihiro; Yin, Xinyou; Zhu, Yan; Boote, Kenneth; Adam, Myriam; Bregaglio, Simone; Buis, Samuel; Confalonieri, Roberto; Fumoto, Tamon; Gaydon, Donald; Marcaida, Manuel, III; Nakagawa, Hiroshi; Oriol, Philippe; Ruane, Alex C.; Ruget, Francoise; Singh, Balwinder; Singh, Upendra; Tang, Liang; Tao, Fulu; Wilkens, Paul; Yoshida, Hiroe; Zhang, Zhao; Bouman, Bas

    2014-01-01

    Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We evaluated 13 rice models against multi-year experimental yield data at four sites with diverse climatic conditions in Asia and examined whether different modeling approaches on major physiological processes attribute to the uncertainties of prediction to field measured yields and to the uncertainties of sensitivity to changes in temperature and CO2 concentration [CO2]. We also examined whether a use of an ensemble of crop models can reduce the uncertainties. Individual models did not consistently reproduce both experimental and regional yields well, and uncertainty was larger at the warmest and coolest sites. The variation in yield projections was larger among crop models than variation resulting from 16 global climate model-based scenarios. However, the mean of predictions of all crop models reproduced experimental data, with an uncertainty of less than 10 percent of measured yields. Using an ensemble of eight models calibrated only for phenology or five models calibrated in detail resulted in the uncertainty equivalent to that of the measured yield in well-controlled agronomic field experiments. Sensitivity analysis indicates the necessity to improve the accuracy in predicting both biomass and harvest index in response to increasing [CO2] and temperature.

  14. Cover crop water use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are being widely promoted because of soil health benefits. However, semi-arid dryland production systems, chronically short of water for crop production, may not be able to profitably withstand the yield reduction that follows cover crops because of cover crop water use. Some studies sug...

  15. Water Quality Effects of Miscanthus as a Bioenergy Crop

    NASA Astrophysics Data System (ADS)

    Ng, T.; Eheart, J. W.; Cai, X.

    2009-12-01

    There is increasing interest in perennial grasses as a renewable source of bioenergy and biofuels. Under the right conditions, environmental advantages of cultivating such crops, relative to conventional row crops, include reductions in greenhouse gas emissions and waterborne pollutants, increased biodiversity and improved soil properties. This study focuses on the riverine nitrate load of cultivating miscanthus in lieu of conventional crops. Miscanthus has been identified as a high-yielding, low-input perennial grass suitable as a feedstock for cellulosic ethanol production and power generation by biomass combustion. To achieve the objective of this study, the Soil and Water Assessment Tool (SWAT) is used to model runoff and stream water quality in the Salt Creek watershed in East-Central Illinois. The watershed is agricultural and its nitrogen export, like that of most other agricultural watersheds in the region, is a major contributor to hypoxia in the Gulf of Mexico. SWAT is a hydrologic model with a built-in crop growth component. However, as miscanthus is relatively new as a crop of interest, data for the SWAT crop growth parameters for it are lacking. This study reports an evaluation of those parameters and an application of them to estimate the potential reduction in nitrate load from miscanthus cultivation under various scenarios. The miscanthus growth parameters are divided into three subsets. The first subset contains those parameters describing optimal growth under zero stress conditions, while the second contains those used to estimate nitrogen stress. Those parameters that are remaining (namely, maximum root depth and phosphorus and temperature stress parameters) are included in the third subset. To calibrate for the parameters in the first subset, simulated data from another miscanthus growth model are used. That other model is highly mechanistic and has been validated (no calibration is necessary because of its degree of mechanisticity) using

  16. Priorities for worldwide remote sensing of agricultural crops

    NASA Technical Reports Server (NTRS)

    Bowker, D. E.

    1985-01-01

    The world's crops are ranked according to total harvested area, and comparisons are made among major world regions of differences in crops produced. The eight leading world crops are wheat, rice, corn, barley, millet, soybeans, sorghum, and cotton. Regionally, millet and sorghum are most important in Africa, wheat is the most extensively grown crop in north-central America, Europe, USSR, and Oceania; corn is the dominant crop in South America; and rice is the most extensively grown crop in Asia. Agriculture in the USA is considered in more detail to show the national economic impact of variations in value per hectare among crops. On the world scene, the cereals are the most important crops, but locally, such crops as tobacco can play a dominant role.

  17. Origins of food crops connect countries worldwide.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop genetic diversity is concentrated within specific geographic regions worldwide. While access to this diversity is critical to continued increases in agricultural productivity, the geopolitical significance of the geography of crop diversity has not been quantified. We assess the degree to which...

  18. Adverse weather impacts on arable cropping systems

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p < 0.001) and has a higher variability before 1988 than after 1988. Distribution patterns of VPD and ET0 have relevant impacts on crop yields. The response to rising temperatures depends on the crop's capability to condition its microenvironment. Crops short of water close their stomata, lose their evaporative cooling potential and ultimately become susceptible to heat stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining

  19. Crop emergence date determination from spectral data

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.

    1980-01-01

    Estimating the emergence of a given crop, such as wheat or barley, is proposed using an analytic method which relies on the hypothesis that in the region (lambda = 0.70-1.35 microns) a given crop, after emergence, has a unique spectral profile in time. If the crop emerges early or late, relative to a reference standard determined for a given segment, the profile is displaced but has the same shape. Therefore, given the crop specific constants of the reference profile and a sufficient number of Landsat observations of reflectivity at specific times, the emergence date of a field can be determined.

  20. Environmental enhancement using short-rotation woody crops and perennial grasses as alternative agricultural crops

    SciTech Connect

    Tolbert, V.R.; Schiller, A.

    1995-12-31

    Short-rotation woody crops and perennial grasses are grown as biomass feedstocks for energy and fiber. When replacing traditional row crops on similar lands, these alternative crops can provide multiple environmental benefits in addition to enhancing rural economies and providing valuable feedstock resources. The Department of Energy is supporting research to address how these crops can provide environmental benefits to soil, water and native wildlife species in addition to providing bioenergy feedstocks. Research is underway to address the potential for biomass crops to provide soil conservation and water quality improvements in crop settings. Replacement of traditional erosive row crops with biomass crops on marginal lands and establishment of biomass plantations as filter strips adjacent to streams and wetlands are being studied. The habitat value of different biomass crops for selected wildlife species is also under study. To date, these studies have shown that in comparison with row crops biomass plantings of both grass and tree crops increased biodiversity of birds; however, the habitat value of tree plantations is not equivalent to natural forests. The effects on native wildlife of establishing multiple plantations across a landscape are being studied. Combining findings on wildlife use of individual plantations with information on the cumulative effects of multiple plantations on wildlife populations can provide guidance for establishing and managing biomass crops to enhance biodiversity while providing biomass feedstocks. Data from site-specific environmental studies can provide input for evaluation of the probable effects of large-scale plantings at both landscape and regional levels of resolution.

  1. Four Percent Fallacy Revisited: Urban and Rural Differences.

    ERIC Educational Resources Information Center

    Haas, William H., III; Haas, Marilyn L.

    Cross sectional data indicate that about four percent of elderly persons reside in nursing homes. Yet many studies, some using death certificates, show actual risk of institutionalization is upwards of 25 percent. This paper presents a death registration study that examined all deaths in North Carolina and analyzed rural and urban differences. The…

  2. Decomposing global crop yield variability

    NASA Astrophysics Data System (ADS)

    Ben-Ari, Tamara; Makowski, David

    2014-11-01

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961-2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  3. Tazarotene 0.1 percent cream plus clindamycin 1 percent gel versus tretinoin 0.025 percent gel plus clindamycin 1 percent gel in the treatment of facial acne vulgaris.

    PubMed

    Tanghetti, Emil; Dhawan, Sunil; Torok, Helen; Kircik, Leon

    2007-07-13

    Topical retinoids are the cornerstone of therapy for acne vulgaris. Nevertheless, the adjunctive use of other anti-acne agents can help enhance the efficacy of topical retinoids still further. Given that tazarotene 0.1 percent gel has previously shown significantly greater efficacy than tretinoin 0.025 percent gel, it is likely that tazarotene plus clindamycin offers superior efficacy to tretinoin plus clindamycin, which has recently become available as a combination product. A total of 150 patients with facial acne vulgaris were randomly assigned to receive either tazarotene 0.1 percent cream plus clindamycin 1 percent gel, or tretinoin 0.025 percent gel plus clindamycin 1 percent gel. Each medication was applied once daily in the evening (clindamycin followed by the retinoid 5-10 minutes later) for up to 12 weeks. At week 12, the reduction from baseline in lesion counts was greater with tazarotene/clindamycin than tretinoin/clindamycin for both the non-inflammatory lesion count (71% vs. 52%, p< or =.01) and the inflammatory lesion count (77% vs. 67%, P=.053). Tazarotene/clindamycin also resulted in a significantly higher incidence of patients achieving > or = 50 percent global improvement (incidence of 88% vs. 75% at week 12; p< or =.05). Both regimens were similarly well tolerated. In the treatment of facial acne vulgaris, tazarotene plus clindamycin offers significantly greater efficacy than tretinoin plus clindamycin and has comparable tolerability.

  4. Integrated forage crop refinery system

    SciTech Connect

    Barrier, J.W.; Broder, J.D.; Madewell, C.E.; Mays, D.A.

    1985-04-01

    The proposed program involves the development of an integrated agricultural-chemical refining system for converting forage crops to useful foods, feeds, fuels, and chemicals. TVA has facilities and resources available to support extensive research and development activities. Modification can easily be made in the existing experimental facility being used to develop acid hydrolysis of corn stover, to include production of products other than fuel ethanol from forages. These products include protein, lignin-derived products, chemicals, single-cell protein, methane, aquaculture feed, and distillers solids. Refining forage crops in this manner has potential to increase the value of that crop and produce an economical integrated system. The results of the program will also be directly applicable to other areas and regions of the US. 11 refs., 7 figs., 9 tabs.

  5. Selected fretting-wear-resistant coatings for titanium - 6-percent-aluminum - 4-percent-vanadium alloy

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1976-01-01

    A titanium - 6-percent-aluminum - 4-percent-vanadium alloy (Ti-6Al-4V) was subjected to fretting-wear exposures against uncoated Ti-6Al-4V as a baseline and against various coatings and surface treatments applied to Ti-6Al-4V. The coatings evaluated included plasma-sprayed tungsten carbide with 12 percent cobalt, aluminum oxide with 13 percent titanium oxide, chromium oxide, and aluminum bronze with 10 percent aromatic polyester; polymer-bonded polyimide, polyimide with graphite fluoride, polyimide with molybdenum disulfide (MoS2), and methyl phenyl silicone bonded MoS2, preoxidation surface treatment, a nitride surface treatment, and a sputtered MoS2 coating. Results of wear measurements on both the coated and uncoated surfaces after 300,000 fretting cycles indicated that the polyimide coating was the most wear resistant and caused the least wear to the uncoated mating surface.

  6. Improving crop classification through attention to the timing of airborne radar acquisitions

    NASA Technical Reports Server (NTRS)

    Brisco, B.; Ulaby, F. T.; Protz, R.

    1984-01-01

    Radar remote sensors may provide valuable input to crop classification procedures because of (1) their independence of weather conditions and solar illumination, and (2) their ability to respond to differences in crop type. Manual classification of multidate synthetic aperture radar (SAR) imagery resulted in an overall accuracy of 83 percent for corn, forest, grain, and 'other' cover types. Forests and corn fields were identified with accuracies approaching or exceeding 90 percent. Grain fields and 'other' fields were often confused with each other, resulting in classification accuracies of 51 and 66 percent, respectively. The 83 percent correct classification represents a 10 percent improvement when compared to similar SAR data for the same area collected at alternate time periods in 1978. These results demonstrate that improvements in crop classification accuracy can be achieved with SAR data by synchronizing data collection times with crop growth stages in order to maximize differences in the geometric and dielectric properties of the cover types of interest.

  7. Winter safflower, a potential alternative crop for the Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dryland cropping system in the Pacific Northwest is dominated by a winter wheat-summer fallow cropping system that occupies more than 90% of the dryland hectares. Success in finding a viable alternative crop has been limited because the annual precipitation in this region varies from less than 1...

  8. AgRISTARS: Supporting research. US crop calendars in support of the early warning project

    NASA Technical Reports Server (NTRS)

    Hodges, T. (Principal Investigator)

    1981-01-01

    The crop calendars produced for the Large Area Crop Inventory Experiment (LACIE) and crop calendar samples for Colorado, Iowa, Kansas, Minnesota, Montana, Nebraska, North Dakota, South Dakota, and Texas are presented. These calendars are based on weekly crop reporting district level observations of the percentage of various crops at several growth stages. A sample of the statistical treatments of the weekly data is provided. Four to five years of 50-percent dates for stages on a crop reporting district level for Arkansas, Iowa, Kentucky, Louisiana, Michigan, Mississippi, Ohio and Wisconsin are also given.

  9. Wind Turbines Benefit Crops

    SciTech Connect

    Takle, Gene

    2010-01-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  10. Wind Turbines Benefit Crops

    ScienceCinema

    Takle, Gene

    2016-07-12

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  11. Priority regions for research on dryland cereals and legumes.

    PubMed

    Hyman, Glenn; Barona, Elizabeth; Biradar, Chandrashekhar; Guevara, Edward; Dixon, John; Beebe, Steve; Castano, Silvia Elena; Alabi, Tunrayo; Gumma, Murali Krishna; Sivasankar, Shoba; Rivera, Ovidio; Espinosa, Herlin; Cardona, Jorge

    2016-01-01

    Dryland cereals and legumes  are important crops in farming systems across the world.  Yet they are frequently neglected among the priorities for international agricultural research and development, often due to lack of information on their magnitude and extent. Given what we know about the global distribution of dryland cereals and legumes, what regions should be high priority for research and development to improve livelihoods and food security? This research evaluated the geographic dimensions of these crops and the farming systems where they are found worldwide. The study employed geographic information science and data to assess the key farming systems and regions for these crops. Dryland cereal and legume crops should be given high priority in 18 farming systems worldwide, where their cultivated area comprises more than 160 million ha. These regions include the dryer areas of South Asia, West and East Africa, the Middle East and North Africa, Central America and other parts of Asia. These regions are prone to drought and heat stress, have limiting soil constraints, make up half of the global population and account for 60 percent of the global poor and malnourished. The dryland cereal and legume crops and farming systems merit more research and development attention to improve productivity and address development problems. This project developed an open access dataset and information resource that provides the basis for future analysis of the geographic dimensions of dryland cereals and legumes.

  12. Priority regions for research on dryland cereals and legumes

    PubMed Central

    Hyman, Glenn; Barona, Elizabeth; Biradar, Chandrashekhar; Guevara, Edward; Dixon, John; Beebe, Steve; Castano, Silvia Elena; Alabi, Tunrayo; Gumma, Murali Krishna; Sivasankar, Shoba; Rivera, Ovidio; Espinosa, Herlin; Cardona, Jorge

    2016-01-01

    Dryland cereals and legumes  are important crops in farming systems across the world.  Yet they are frequently neglected among the priorities for international agricultural research and development, often due to lack of information on their magnitude and extent. Given what we know about the global distribution of dryland cereals and legumes, what regions should be high priority for research and development to improve livelihoods and food security? This research evaluated the geographic dimensions of these crops and the farming systems where they are found worldwide. The study employed geographic information science and data to assess the key farming systems and regions for these crops. Dryland cereal and legume crops should be given high priority in 18 farming systems worldwide, where their cultivated area comprises more than 160 million ha. These regions include the dryer areas of South Asia, West and East Africa, the Middle East and North Africa, Central America and other parts of Asia. These regions are prone to drought and heat stress, have limiting soil constraints, make up half of the global population and account for 60 percent of the global poor and malnourished. The dryland cereal and legume crops and farming systems merit more research and development attention to improve productivity and address development problems. This project developed an open access dataset and information resource that provides the basis for future analysis of the geographic dimensions of dryland cereals and legumes. PMID:27303632

  13. Crop status evaluations and yield predictions

    NASA Technical Reports Server (NTRS)

    Haun, J. R.

    1975-01-01

    A model was developed for predicting the day 50 percent of the wheat crop is planted in North Dakota. This model incorporates location as an independent variable. The Julian date when 50 percent of the crop was planted for the nine divisions of North Dakota for seven years was regressed on the 49 variables through the step-down multiple regression procedure. This procedure begins with all of the independent variables and sequentially removes variables that are below a predetermined level of significance after each step. The prediction equation was tested on daily data. The accuracy of the model is considered satisfactory for finding the historic dates on which to initiate yield prediction model. Growth prediction models were also developed for spring wheat.

  14. On the use of L-band multipolarization airborne SAR for surveys of crops, vineyards, and orchards in a California irrigated agricultural region

    NASA Technical Reports Server (NTRS)

    Paris, J. F.

    1985-01-01

    The airborne L-band synthetic aperture radar (SAR) collected multipolarization calibrated image data over an irrigated agricultural test site near Fresno, CA, on March 6, 1984. The conclusions of the study are as follows: (1) the effects of incidence angle on the measured backscattering coefficients could be removed by using a correction factor equal to the secant of the angle raised to the 1.4 power, (2) for this scene and time of year, the various polarization channels were highly correlated such that the use of more than one polarization added little to the ability of the radar to discriminate vegetation type or condition; the exception was barley which separated from vineyards only when a combination of like and cross polarization data were used (polarization was very useful for corn identification in fall crops), (3) an excellent separation between herbaceous vegetation (alfalfa, barley, and oats) or bare fields and trees in orchards existed in brightness was well correlated to alfalfa height or biomass, especially for the HH polarization combination, (5) vineyards exhibited a narrow range of brightnesses with no systematic effects of type or number of stakes nor of number of wires in the trellises nor of the size of the vines, (6) within the orchard classes, areal biomass characterized by basal area differences caused radar image brightness differences for small to medium trees but not for medium to large trees.

  15. Rye cover crop effects on soil quality in no-till corn silage-soybean cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn and soybean farmers in the upper Midwest are showing increasing interest in winter cover crops. Known benefits of winter cover crops include reductions in nutrient leaching, erosion prevention, and weed suppression; however, the effects of winter cover crops on soil quality in this region have ...

  16. Cover crops for Alabama

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are grown to benefit the following crop as well as to improve the soil, but they are normally not intended for harvest. Selecting the right cover crops for farming operations can improve yields, soil and water conservation and quality, and economic productivity. Properly managed cover ...

  17. Sorghums as energy crops

    SciTech Connect

    Lipinsky, E. S.; Kresovich, S.

    1980-01-01

    The botanical, physiological, and agronomic characteristics of sorghum are described. Integration concepts to improve sorghum prospects are discussed as follows: multiple sweet sorghum crops each year, integration with sugarcane, integration with sugar beets, integration with starch crops, sweet stemmed grain sorghum, and integration with lignocellulosic crops. (MHR)

  18. Cucurbitaceae (Vine Crops)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cucurbitaceae or vine crop family is a distinct family without any close relatives. The Cucurbitaceae or vine crop family includes many important vegetables collectively referred to as cucurbits. Cucumber, melon, and watermelon are major crop species originally from the Old World (cucumber fro...

  19. Embodied crop calories in animal products

    NASA Astrophysics Data System (ADS)

    Pradhan, Prajal; Lüdeke, Matthias K. B.; Reusser, Dominik E.; Kropp, Jürgen P.

    2013-12-01

    Increases in animal products consumption and the associated environmental consequences have been a matter of scientific debate for decades. Consequences of such increases include rises in greenhouse gas emissions, growth of consumptive water use, and perturbation of global nutrients cycles. These consequences vary spatially depending on livestock types, their densities and their production system. In this letter, we investigate the spatial distribution of embodied crop calories in animal products. On a global scale, about 40% of the global crop calories are used as livestock feed (we refer to this ratio as crop balance for livestock) and about 4 kcal of crop products are used to generate 1 kcal of animal products (embodied crop calories of around 4). However, these values vary greatly around the world. In some regions, more than 100% of the crops produced is required to feed livestock requiring national or international trade to meet the deficit in livestock feed. Embodied crop calories vary between less than 1 for 20% of the livestock raising areas worldwide and greater than 10 for another 20% of the regions. Low values of embodied crop calories are related to production systems for ruminants based on fodder and forage, while large values are usually associated with production systems for non-ruminants fed on crop products. Additionally, we project the future feed demand considering three scenarios: (a) population growth, (b) population growth and changes in human dietary patterns and (c) changes in population, dietary patterns and feed conversion efficiency. When considering dietary changes, we project the global feed demand to be almost doubled (1.8-2.3 times) by 2050 compared to 2000, which would force us to produce almost equal or even more crops to raise our livestock than to directly nourish ourselves in the future. Feed demand is expected to increase over proportionally in Africa, South-Eastern Asia and Southern Asia, putting additional stress on these

  20. Regression model estimation of early season crop proportions: North Dakota, some preliminary results

    NASA Technical Reports Server (NTRS)

    Lin, K. K. (Principal Investigator)

    1982-01-01

    To estimate crop proportions early in the season, an approach is proposed based on: use of a regression-based prediction equation to obtain an a priori estimate for specific major crop groups; modification of this estimate using current-year LANDSAT and weather data; and a breakdown of the major crop groups into specific crops by regression models. Results from the development and evaluation of appropriate regression models for the first portion of the proposed approach are presented. The results show that the model predicts 1980 crop proportions very well at both county and crop reporting district levels. In terms of planted acreage, the model underpredicted 9.1 percent of the 1980 published data on planted acreage at the county level. It predicted almost exactly the 1980 published data on planted acreage at the crop reporting district level and overpredicted the planted acreage by just 0.92 percent.

  1. Evaluation of spring wheat and barley crop calender models for the 1979 crop year

    NASA Technical Reports Server (NTRS)

    Nazare, C. V.; Carnes, J. G. (Principal Investigator)

    1981-01-01

    During the Large Area Crop Inventory Experiment, spring wheat planting date and crop development stage estimates based on historical normals were improved by the use of the Feyerherm planting date and Robertson spring wheat crop calendar models. The Supporting Research Crop Calendar Project element modified the Robertson model to reduce bias at cardinal growth stages within the growing season. These models were tested in 1980 along with a state-of-the-art barley model (Williams) against a ground-truth data set from 49 calendar year 1979 segments in the U.S. Great Plains spring wheat and barley region.

  2. Fluorescence of crop residue: postmortem analysis of crop conditions

    NASA Astrophysics Data System (ADS)

    McMurtrey, James E., III; Kim, Moon S.; Daughtry, Craig S. T.; Corp, Lawrence A.; Chappelle, Emmett W.

    1997-07-01

    Fluorescence of crop residues at the end of the growing season may provide an indicator of the past crop's vegetative condition. Different levels of nitrogen (N) fertilization were applied to field grown corn and wheat at Beltsville, Maryland. The N fertilizer treatments produce a range of physiological conditions, pigment concentrations, biomass levels, and grain yields that resulted in varying growth and stress conditions in the living crops. After normal harvesting procedures the crop residues remained. The fluorescence spectral characteristics of the plant residues from crops grown under different levels of N nutrition were analyzed. The blue-green fluorescence response of in-vitro residue biomass of the N treated field corn had different magnitudes. A blue-green- yellow algorithm, (460/525)*600 nm, gave the best separations between prior corn growth conditions at different N fertilization levels. Relationships between total dry biomass, the grain yield, and fluorescence properties in the 400 - 670 nm region of the spectrum were found in both corn and wheat residues. The wheat residue was analyzed to evaluate the constituents responsible for fluorescence. A ratio of the blue-green, 450/550 nm, images gave the best separation among wheat residues at different N fertilization levels. Fluorescence of extracts from wheat residues showed inverse fluorescence intensities as a function of N treatments compared to that of the intact wheat residue or ground residue samples. The extracts also had an additional fluorescence emission peak in the red, 670 nm. Single band fluorescence intensity in corn and wheat residues is due mostly to the quantity of the material on the soil surface. Ratios of fluorescence bands varied as a result of the growth conditions created by the N treatments and are thought to be indicative of the varying concentrations of the plant residues fluorescing constituents. Estimates of the amount and cost effectiveness of N fertilizers to satisfy

  3. Potential Impact of Land Use Change on Future Regional Climate in the Southeastern U.S.: Reforestation and Crop Land Conversion

    NASA Technical Reports Server (NTRS)

    Trail, M.; Tsimpidi, A. P.; Liu, P.; Tsigaridis, Konstantinos; Hu, Y.; Nenes, A.; Stone, B.; Russell, A. G.

    2013-01-01

    The impact of future land use and land cover changes (LULCC) on regional and global climate is one of the most challenging aspects of understanding anthropogenic climate change. We study the impacts of LULCC on regional climate in the southeastern U.S. by downscaling the NASA Goddard Institute for Space Studies global climate model E to the regional scale using a spectral nudging technique with the Weather Research and Forecasting Model. Climate-relevant meteorological fields are compared for two southeastern U.S. LULCC scenarios to the current land use/cover for four seasons of the year 2050. In this work it is shown that reforestation of cropland in the southeastern U.S. tends to warm surface air by up to 0.5 K, while replacing forested land with cropland tends to cool the surface air by 0.5 K. Processes leading to this response are investigated and sensitivity analyses conducted. The sensitivity analysis shows that results are most sensitive to changes in albedo and the stomatal resistance. Evaporative cooling of croplands also plays an important role in regional climate. Implications of LULCC on air quality are discussed. Summertime warming associated with reforestation of croplands could increase the production of some secondary pollutants, while a higher boundary layer will decrease pollutant concentrations; wintertime warming may decrease emissions from biomass burning from wood stoves

  4. Early Warning Look Ahead Metrics: The Percent Milestone Backlog Metric

    NASA Technical Reports Server (NTRS)

    Shinn, Stephen A.; Anderson, Timothy P.

    2017-01-01

    All complex development projects experience delays and corresponding backlogs of their project control milestones during their acquisition lifecycles. NASA Goddard Space Flight Center (GSFC) Flight Projects Directorate (FPD) teamed with The Aerospace Corporation (Aerospace) to develop a collection of Early Warning Look Ahead metrics that would provide GSFC leadership with some independent indication of the programmatic health of GSFC flight projects. As part of the collection of Early Warning Look Ahead metrics, the Percent Milestone Backlog metric is particularly revealing, and has utility as a stand-alone execution performance monitoring tool. This paper describes the purpose, development methodology, and utility of the Percent Milestone Backlog metric. The other four Early Warning Look Ahead metrics are also briefly discussed. Finally, an example of the use of the Percent Milestone Backlog metric in providing actionable insight is described, along with examples of its potential use in other commodities.

  5. Evaluating the crop coefficient using spectral reflectance

    USGS Publications Warehouse

    Heilman, J. L.; Heilman, W. E.; Moore, Donald G.

    1982-01-01

    Significant linear relationships were found between PVI and percent cover (r2 = 0.911), and between Kc and percent cover (r2 = 0.815). In addition, the position of the PVl intersection on the soil background line changed as a result of soil moisture increases following irrigation, even at high percent cover. Thus, once experimental relationships between Kc and crop growth are established, a mean Kc can be determined from spectral estimates of stage of development and the soil background component of PVI can be used to adjust the mean K, for increased evaporation following irrigation because the ratio of actual to potential evapotranspiration will approach 1 when the soil surface is wet.

  6. Development of high efficiency (14 percent) solar cell array module

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Khemthong, S.; Olah, S.; Sampson, W. J.; Ling, K. S.

    1980-01-01

    Most effort was concentrated on development of procedures to provide large area (3 in. diameter) high efficiency (16.5 percent AM1, 28 C) P+NN+ solar cells. Intensive tests with 3 in. slices gave consistently lower efficiency (13.5 percent). The problems were identified as incomplete formation of and optimum back surface field (BSF), and interaction of the BSF process and the shallow P+ junction. The problem was shown not to be caused by reduced quality of silicon near the edges of the larger slices.

  7. Spatiotemporal properties of growing season indices during 1961-2010 and possible association with agroclimatological regionalization of dominant crops in Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Ci, Hui; Zhang, Qiang; Singh, Vijay P.; Xiao, Mingzhong; Liu, Lin

    2016-08-01

    Variations of frost days and growing season length (GSL) have been drawing increasing attention due to their impact on agriculture. The Xinjiang region in China is climatically an arid region and plays an important role in agriculture development. In this study, the GSL and frost events are analyzed in both space and time, based on the daily minimum, mean and maximum air surface temperature data covering a period of 1961-2010. Results indicate that: (1) a significant lengthening of GSL is detected during 1961-2010 in Xinjiang, China. The increasing rate of GSL over Xinjiang is about 2.5 days per decade. Besides, the starting time of growing season is 0.7 days earlier per decade and the ending time is 1.6 days later per decade. Generally, GSL in southern Xinjiang has larger increasing magnitude when compared to other regions of Xinjiang; (2) longer GSL and larger changing magnitude of growing season start (GSS), growing season end (GSE) and GSL in southern Xinjiang implies higher sensitivity of the growing season response to climate warming. Besides, GSL is in close relation with latitude, and higher latitude usually corresponds to later start and earlier end of growing season, and hence shorter GSL. In general, a northward increase of 1° latitude triggers an 8-day delay of the starting time of growing season, 6-day advance of the ending time of growing season, and thus the GSL is 14 days shorter; (3) GSL under different rates can reflect light and heat resources over Xinjiang. The GSL related to 80 % guarantee rate is 5-14 days shorter than the long-term annual mean GSL; (4) Lengthening of GSL has the potential to increase agricultural production. However, negative influences by climate warming, such as enhanced evapotranspiration, increasing weeds, insects, and pathogen-mediated plant diseases, should also be considered in planning, management and development of agriculture in Xinjiang.

  8. School Designed To Use 80 Percent Less Energy

    ERIC Educational Resources Information Center

    American School and University, 1975

    1975-01-01

    The new Terraset Elementary School in Reston, Virginia, uses earth as a cover for the roof area and for about 80 percent of the wall area. A heat recovery system will be used with solar collectors playing a primary role in heating and cooling. (Author/MLF)

  9. Tricky Times for the Top 10 Percent Program

    ERIC Educational Resources Information Center

    Roach, Ronald

    2007-01-01

    Both supporters and critics of Texas' Top 10 Percent law have been surprised at its popularity, but some UT officials and legislators would like to see the program scaled back. As a Texas state legislator, Jim McReynolds, D-Lufkin, knows a thing or two about influencing the voting positions of his colleagues. This past spring, when Texas House…

  10. Grieving: 22 to 30 Percent of All College Students

    ERIC Educational Resources Information Center

    Balk, David E.

    2008-01-01

    At any given time, 22 to 30 percent of college undergraduates are in the first twelve months of grieving the death of a family member or friend. This conclusion, startling to some but accepted by others, comes from a variety of sources at academic sites in the United States and Europe. Information about the prevalence rate resulted from clinical…

  11. 35 GHz integrated circuit rectifying antenna with 33 percent efficiency

    NASA Technical Reports Server (NTRS)

    Yoo, T.-W.; Chang, K.

    1991-01-01

    A 35 GHz integrated circuit rectifying antenna (rectenna) has been developed using a microstrip dipole antenna and beam-lead mixer diode. Greater than 33 percent conversion efficiency has been achieved. The circuit should have applications in microwave/millimeter-wave power transmission and detection.

  12. Evaluating Equating Results: Percent Relative Error for Chained Kernel Equating

    ERIC Educational Resources Information Center

    Jiang, Yanlin; von Davier, Alina A.; Chen, Haiwen

    2012-01-01

    This article presents a method for evaluating equating results. Within the kernel equating framework, the percent relative error (PRE) for chained equipercentile equating was computed under the nonequivalent groups with anchor test (NEAT) design. The method was applied to two data sets to obtain the PRE, which can be used to measure equating…

  13. Creatine monohydrate supplementation on body weight and percent body fat.

    PubMed

    Kutz, Matthew R; Gunter, Michael J

    2003-11-01

    Seventeen active males (age 22.9 +/- 4.9 year) participated in a study to examine the effects of creatine monohydrate supplementation on total body weight (TBW), percent body fat, body water content, and caloric intake. The TBW was measured in kilograms, percent body fat by hydrostatic weighing, body water content via bioelectrical impedance, and caloric intake by daily food log. Subjects were paired and assigned to a creatine or placebo group with a double-blind research design. Supplementation was given for 4 weeks (30 g a day for the initial 2 weeks and 15 g a day for the final 2 weeks). Subjects reported 2 days a week for supervised strength training of the lower extremity. Significant increases before and after the study were found in TBW (90.42 +/- 14.74 to 92.12 +/- 15.19 kg) and body water content (53.77 +/- 1.75 to 57.15 +/- 2.01 L) for the creatine group (p = 0.05). No significant changes were found in percent body fat or daily caloric intake in the creatine group. No significant changes were noted for the placebo group. These findings support previous research that creatine supplementation increases TBW. Mean percent body fat and caloric intake was not affected by creatine supplementation. Therefore weight gain in lieu of creatine supplementation may in part be due to water retention.

  14. Realities and Myths of the Top 10 Percent Rule

    ERIC Educational Resources Information Center

    Johnson, Troy

    2010-01-01

    Since its inception in Texas a baker's dozen years ago, educators look forward with every new legislative session to another round of discussion about the "top 10 percent rule," which guarantees admission to the state's public universities for these talented high school graduates. Originally passed as a way to increase enrollment of…

  15. 32 CFR 48.508 - Certain 100 percent disability retirement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Certain 100 percent disability retirement. 48.508 Section 48.508 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE PERSONNEL, MILITARY AND CIVILIAN RETIRED SERVICEMAN'S FAMILY PROTECTION PLAN Annuity § 48.508 Certain 100...

  16. 32 CFR 48.508 - Certain 100 percent disability retirement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Certain 100 percent disability retirement. 48.508 Section 48.508 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE PERSONNEL, MILITARY AND CIVILIAN RETIRED SERVICEMAN'S FAMILY PROTECTION PLAN Annuity § 48.508 Certain 100...

  17. 32 CFR 48.508 - Certain 100 percent disability retirement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Certain 100 percent disability retirement. 48.508 Section 48.508 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE PERSONNEL, MILITARY AND CIVILIAN RETIRED SERVICEMAN'S FAMILY PROTECTION PLAN Annuity § 48.508 Certain 100...

  18. 32 CFR 48.508 - Certain 100 percent disability retirement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Certain 100 percent disability retirement. 48.508 Section 48.508 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE PERSONNEL, MILITARY AND CIVILIAN RETIRED SERVICEMAN'S FAMILY PROTECTION PLAN Annuity § 48.508 Certain 100...

  19. 32 CFR 48.508 - Certain 100 percent disability retirement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Certain 100 percent disability retirement. 48.508 Section 48.508 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE PERSONNEL, MILITARY AND CIVILIAN RETIRED SERVICEMAN'S FAMILY PROTECTION PLAN Annuity § 48.508 Certain 100...

  20. Issues of Institutionalization: Five Percent Fallacies and Terminal Care.

    ERIC Educational Resources Information Center

    Rosenberg, Edwin; And Others

    1983-01-01

    Discusses the "5 percent fallacy," which refers to the number of older people living in institutions at a given time, and the likelihood of an older person dying in an institution. Three articles discuss research methodology, data interpretation, and measuring techniques. (JAC)

  1. Serum Predictors of Percent Lean Mass in Young Adults.

    PubMed

    Lustgarten, Michael S; Price, Lori L; Phillips, Edward M; Kirn, Dylan R; Mills, John; Fielding, Roger A

    2016-08-01

    Lustgarten, MS, Price, LL, Phillips, EM, Kirn, DR, Mills, J, and Fielding, RA. Serum predictors of percent lean mass in young adults. J Strength Cond Res 30(8): 2194-2201, 2016-Elevated lean (skeletal muscle) mass is associated with increased muscle strength and anaerobic exercise performance, whereas low levels of lean mass are associated with insulin resistance and sarcopenia. Therefore, studies aimed at obtaining an improved understanding of mechanisms related to the quantity of lean mass are of interest. Percent lean mass (total lean mass/body weight × 100) in 77 young subjects (18-35 years) was measured with dual-energy x-ray absorptiometry. Twenty analytes and 296 metabolites were evaluated with the use of the standard chemistry screen and mass spectrometry-based metabolomic profiling, respectively. Sex-adjusted multivariable linear regression was used to determine serum analytes and metabolites significantly (p ≤ 0.05 and q ≤ 0.30) associated with the percent lean mass. Two enzymes (alkaline phosphatase and serum glutamate oxaloacetate aminotransferase) and 29 metabolites were found to be significantly associated with the percent lean mass, including metabolites related to microbial metabolism, uremia, inflammation, oxidative stress, branched-chain amino acid metabolism, insulin sensitivity, glycerolipid metabolism, and xenobiotics. Use of sex-adjusted stepwise regression to obtain a final covariate predictor model identified the combination of 5 analytes and metabolites as overall predictors of the percent lean mass (model R = 82.5%). Collectively, these data suggest that a complex interplay of various metabolic processes underlies the maintenance of lean mass in young healthy adults.

  2. Matter power spectrum and the challenge of percent accuracy

    NASA Astrophysics Data System (ADS)

    Schneider, Aurel; Teyssier, Romain; Potter, Doug; Stadel, Joachim; Onions, Julian; Reed, Darren S.; Smith, Robert E.; Springel, Volker; Pearce, Frazer R.; Scoccimarro, Roman

    2016-04-01

    Future galaxy surveys require one percent precision in the theoretical knowledge of the power spectrum over a large range including very nonlinear scales. While this level of accuracy is easily obtained in the linear regime with perturbation theory, it represents a serious challenge for small scales where numerical simulations are required. In this paper we quantify the precision of present-day N-body methods, identifying main potential error sources from the set-up of initial conditions to the measurement of the final power spectrum. We directly compare three widely used N-body codes, Ramses, Pkdgrav3, and Gadget3 which represent three main discretisation techniques: the particle-mesh method, the tree method, and a hybrid combination of the two. For standard run parameters, the codes agree to within one percent at k<=1 h Mpc-1 and to within three percent at k<=10 h Mpc-1. We also consider the bispectrum and show that the reduced bispectra agree at the sub-percent level for k<= 2 h Mpc-1. In a second step, we quantify potential errors due to initial conditions, box size, and resolution using an extended suite of simulations performed with our fastest code Pkdgrav3. We demonstrate that the simulation box size should not be smaller than L=0.5 h-1Gpc to avoid systematic finite-volume effects (while much larger boxes are required to beat down the statistical sample variance). Furthermore, a maximum particle mass of Mp=109 h-1Msolar is required to conservatively obtain one percent precision of the matter power spectrum. As a consequence, numerical simulations covering large survey volumes of upcoming missions such as DES, LSST, and Euclid will need more than a trillion particles to reproduce clustering properties at the targeted accuracy.

  3. The use of ERTS-1 multispectral imagery for crop identification in a semi-arid climate

    NASA Technical Reports Server (NTRS)

    Stockton, J. G.; Bauer, M. E.; Blair, B. O.; Baumgardner, M. F.

    1975-01-01

    Crop identification using multispectral satellite imagery and multivariate pattern recognition was used to identify wheat accurately in Greeley County, Kansas. A classification accuracy of 97 percent was found for wheat and the wheat estimate in hectares was within 5 percent of the USDA's Statistical Reporting Service estimate for 1973. The multispectral response of cotton and sorghum in Texas was not unique enough to distinguish between them nor to separate them from other cultivated crops.

  4. Determination of crop coefficients (Kc) for irrigation management of crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weighing lysimeters are used to measure crop water use during the growing season. By relating the water use of a specific crop to a well-watered reference crop such as grass, crop coefficients (Kc) can be developed to assist in predicting crop needs using meteorological data available from weather ...

  5. Environmental enhancement using short-rotation woody crops and perennial grasses as alternative agricultural crops

    SciTech Connect

    Tolbert, V.R.; Schiller, A.

    1996-10-01

    Short-rotation woody crops and perennial grasses are grown as biomass feedstocks for energy and fiber. When replacing traditional row crops on similar lands, these alternative crops can provide multiple environmental benefits in addition to enhancing rural economies and providing valuable resources. The DOE is supporting research to address how these crops can provide environmental benefits to soil, water, and native wildlife species in addition to providing bioenergy feedstocks. Research is underway to address the potential for biomass crops to provide soils conservation and water quality improvements in crop settings. Replacement of traditional erosive row drops with biomass crops on marginal lands and establishment of biomass plantations as filter strips adjacent to streams and wetlands are being studied. The habitat value of different crops for wildlife species is also considered. Combining findings on wildlife use of individual plantations with information on the cumulative effects of multiple plantations on wildlife populations can provide guidance for establishing and managing biomass crops to enhance biodiversity while providing feedstocks. Data from site-specific environmental studies can provide input for evaluation of the effects of large-scale plantings at both landscape and regional levels of resolution.

  6. Weather-based forecasts of California crop yields

    SciTech Connect

    Lobell, D B; Cahill, K N; Field, C B

    2005-09-26

    Crop yield forecasts provide useful information to a range of users. Yields for several crops in California are currently forecast based on field surveys and farmer interviews, while for many crops official forecasts do not exist. As broad-scale crop yields are largely dependent on weather, measurements from existing meteorological stations have the potential to provide a reliable, timely, and cost-effective means to anticipate crop yields. We developed weather-based models of state-wide yields for 12 major California crops (wine grapes, lettuce, almonds, strawberries, table grapes, hay, oranges, cotton, tomatoes, walnuts, avocados, and pistachios), and tested their accuracy using cross-validation over the 1980-2003 period. Many crops were forecast with high accuracy, as judged by the percent of yield variation explained by the forecast, the number of yields with correctly predicted direction of yield change, or the number of yields with correctly predicted extreme yields. The most successfully modeled crop was almonds, with 81% of yield variance captured by the forecast. Predictions for most crops relied on weather measurements well before harvest time, allowing for lead times that were longer than existing procedures in many cases.

  7. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    NASA Astrophysics Data System (ADS)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern

  8. Patterns of crop cover under future climates.

    PubMed

    Porfirio, Luciana L; Newth, David; Harman, Ian N; Finnigan, John J; Cai, Yiyong

    2017-04-01

    We study changes in crop cover under future climate and socio-economic projections. This study is not only organised around the global and regional adaptation or vulnerability to climate change but also includes the influence of projected changes in socio-economic, technological and biophysical drivers, especially regional gross domestic product. The climatic data are obtained from simulations of RCP4.5 and 8.5 by four global circulation models/earth system models from 2000 to 2100. We use Random Forest, an empirical statistical model, to project the future crop cover. Our results show that, at the global scale, increases and decreases in crop cover cancel each other out. Crop cover in the Northern Hemisphere is projected to be impacted more by future climate than the in Southern Hemisphere because of the disparity in the warming rate and precipitation patterns between the two Hemispheres. We found that crop cover in temperate regions is projected to decrease more than in tropical regions. We identified regions of concern and opportunities for climate change adaptation and investment.

  9. Origins of food crops connect countries worldwide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research into the origins of food plants has led to the recognition that specific geographic regions around the world have been of particular importance to the development of agricultural crops. Yet the relative contributions of these different regions in the context of current food systems have not...

  10. Waves and Crops

    ERIC Educational Resources Information Center

    Bennett, J.

    1973-01-01

    Discusses wave patterns on the surfaces of ripening wheat and barley crops when the wind is moderately strong. Examines the structure of the turbulence over such natural surfaces and conditions under which the crop may be damaged by the wind. (JR)

  11. Concepts in crop rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop rotations have been a part of civilization since the Middle Ages. With colonization of what would become the United States came new crops of tobacco, cotton, and corn, the first two of which would play significant roles in both the economic beginnings and social fabric of the new country, how ...

  12. 28 percent efficient GaAs concentrator solar cells

    NASA Technical Reports Server (NTRS)

    Macmillan, H. F.; Hamaker, H. C.; Kaminar, N. R.; Kuryla, M. S.; Ladle Ristow, M.

    1988-01-01

    AlGaAs/GaAs heteroface solar concentrator cells which exhibit efficiencies in excess of 27 percent at high solar concentrations (over 400 suns, AM1.5D, 100 mW/sq cm) have been fabricated with both n/p and p/n configurations. The best n/p cell achieved an efficiency of 28.1 percent around 400 suns, and the best p/n cell achieved an efficiency of 27.5 percent around 1000 suns. The high performance of these GaAs concentrator cells compared to earlier high-efficiency cells was due to improved control of the metal-organic chemical vapor deposition growth conditions and improved cell fabrication procedures (gridline definition and edge passivation). The design parameters of the solar cell structures and optimized grid pattern were determined with a realistic computer modeling program. An evaluation of the device characteristics and a discussion of future GaAs concentrator cell development are presented.

  13. Identification of a novel percent mammographic density locus at 12q24.

    PubMed

    Stevens, Kristen N; Lindstrom, Sara; Scott, Christopher G; Thompson, Deborah; Sellers, Thomas A; Wang, Xianshu; Wang, Alice; Atkinson, Elizabeth; Rider, David N; Eckel-Passow, Jeanette E; Varghese, Jajini S; Audley, Tina; Brown, Judith; Leyland, Jean; Luben, Robert N; Warren, Ruth M L; Loos, Ruth J F; Wareham, Nicholas J; Li, Jingmei; Hall, Per; Liu, Jianjun; Eriksson, Louise; Czene, Kamila; Olson, Janet E; Pankratz, V Shane; Fredericksen, Zachary; Diasio, Robert B; Lee, Adam M; Heit, John A; DeAndrade, Mariza; Goode, Ellen L; Vierkant, Robert A; Cunningham, Julie M; Armasu, Sebastian M; Weinshilboum, Richard; Fridley, Brooke L; Batzler, Anthony; Ingle, James N; Boyd, Norman F; Paterson, Andrew D; Rommens, Johanna; Martin, Lisa J; Hopper, John L; Southey, Melissa C; Stone, Jennifer; Apicella, Carmel; Kraft, Peter; Hankinson, Susan E; Hazra, Aditi; Hunter, David J; Easton, Douglas F; Couch, Fergus J; Tamimi, Rulla M; Vachon, Celine M

    2012-07-15

    Percent mammographic density adjusted for age and body mass index (BMI) is one of the strongest risk factors for breast cancer and has a heritable component that remains largely unidentified. We performed a three-stage genome-wide association study (GWAS) of percent mammographic density to identify novel genetic loci associated with this trait. In stage 1, we combined three GWASs of percent density comprised of 1241 women from studies at the Mayo Clinic and identified the top 48 loci (99 single nucleotide polymorphisms). We attempted replication of these loci in 7018 women from seven additional studies (stage 2). The meta-analysis of stage 1 and 2 data identified a novel locus, rs1265507 on 12q24, associated with percent density, adjusting for age and BMI (P = 4.43 × 10(-8)). We refined the 12q24 locus with 459 additional variants (stage 3) in a combined analysis of all three stages (n = 10 377) and confirmed that rs1265507 has the strongest association in the 12q24 region (P = 1.03 × 10(-8)). Rs1265507 is located between the genes TBX5 and TBX3, which are members of the phylogenetically conserved T-box gene family and encode transcription factors involved in developmental regulation. Understanding the mechanism underlying this association will provide insight into the genetics of breast tissue composition.

  14. The California Biomass Crop Adoption Model estimates biofuel feedstock crop production across diverse agro-ecological zones within the state, under different future climates

    NASA Astrophysics Data System (ADS)

    Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.

    2012-12-01

    Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In

  15. Crop Sequence Economics in Dynamic Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    No-till production systems allow more intensified and diversified production in the northern Great Plains; however, this has increased the need for information on improving economic returns through crop sequence selection. Field research was conducted 6 km southwest of Mandan ND to determine the inf...

  16. High-resolution measurement of ammonia emissions from fertilization of vegetable and rice crops in the Pearl River Delta Region, China

    NASA Astrophysics Data System (ADS)

    Gong, Weiwei; Zhang, Yisheng; Huang, Xiaofeng; Luan, Shengji

    2013-02-01

    Loss of ammonia (NH3) as a result of intensive N fertilization, especially due to agronomic practices in South China, is not well characterized. To investigate mechanisms and characteristics of NH3 volatilization after urea application, an on-line monitoring system, with 30-min data resolution, was used to study vegetable and rice fields from January 2009 to September 2010. Ammonia emissions and concurrent meteorological conditions were monitored for up to 20 days after fertilization in 12 experiments. Standard recovery test results indicated that the on-line measurement system was both stable and accurate. The NH3 emission factors (EFs) related to broadcast (soil surface) basal dressing and top dressing to Brassica rapa L. were 23.6% and 21.3%, respectively. The NH3 EFs from holing basal dressing and broadcasting top dressing for lettuce were 17.6% and 24.0%, respectively. The NH3 EFs for early rice in parallel broadcast basal dressing process were 10.7% and 14.2%, while in parallel top dressing process were 24.0% and 22.6%, respectively. The NH3 EFs for late rice were 15.4% and 21.0% in parallel broadcasting basal dressing process, while 13.2% and 17.6% in parallel top dressing process. Emission of NH3 from vegetable and rice fields occurred mainly in the first 2-3 weeks after fertilization. Ammonia emission flux was positively correlated with air temperature and soil temperature in the majority of the experiments. Relationships between NH3 emissions and humidity, soil moisture or wind speed were explored, which were not consistent among all tests. Ammonia emission in vegetable and rice fields was primarily associated with temperature. High-resolution data, such as those gathered in the current investigation, will contribute to a more thorough quantitative understanding of the relationship between fertilizer application, environmental conditions, and NH3 volatilization which, in turn, will improve the accuracy of atmospheric modeling on local, regional and global

  17. 7 CFR 457.125 - Safflower crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., unless proper measures to control wildlife have not been taken; (f) Earthquake; (g) Volcanic eruption; or... insured crop on a weight basis. 12. Prevented Planting Your prevented planing coverage will be 60 percent... prevented planting coverage to a level specified in the actuarial documents....

  18. 7 CFR 457.125 - Safflower crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., unless proper measures to control wildlife have not been taken; (f) Earthquake; (g) Volcanic eruption; or... insured crop on a weight basis. 12. Prevented Planting Your prevented planing coverage will be 60 percent... prevented planting coverage to a level specified in the actuarial documents....

  19. 7 CFR 457.108 - Sunflower seed crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... insufficient or improper application of disease control measures; (e) Wildlife; (f) Earthquake; (g) Volcanic... insured crop on a weight basis. 12. Prevented Planting Your prevented planting coverage will be 60 percent... prevented planting coverage to a level specified in the actuarial documents....

  20. 7 CFR 457.125 - Safflower crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., unless proper measures to control wildlife have not been taken; (f) Earthquake; (g) Volcanic eruption; or... insured crop on a weight basis. 12. Prevented Planting Your prevented planing coverage will be 60 percent... prevented planting coverage to a level specified in the actuarial documents....

  1. 7 CFR 457.125 - Safflower crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., unless proper measures to control wildlife have not been taken; (f) Earthquake; (g) Volcanic eruption; or... insured crop on a weight basis. 12. Prevented Planting Your prevented planing coverage will be 60 percent... prevented planting coverage to a level specified in the actuarial documents....

  2. 7 CFR 457.125 - Safflower crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., unless proper measures to control wildlife have not been taken; (f) Earthquake; (g) Volcanic eruption; or... insured crop on a weight basis. 12. Prevented Planting Your prevented planing coverage will be 60 percent... prevented planting coverage to a level specified in the actuarial documents....

  3. Effects of potato-cotton cropping systems and nematicides on plant-parasitic nematodes and crop yields.

    PubMed

    Crow, W T; Weingartner, D P; Dickson, D W

    2000-09-01

    Belonolaimus longicaudatus has been reported as damaging both potato (Solanum tuberosum) and cotton (Gossypium hirsutum). These crops are not normally grown in cropping systems together in areas where the soil is infested with B. longicaudatus. During the 1990s cotton was grown in a potato production region that was a suitable habitat for B. longicaudatus. It was not known how integrating the production of these two crops by rotation or double-cropping would affect the population densities of B. longicaudatus, other plant-parasitic nematodes common in the region, or crop yields. A 3-year field study evaluated the viability of both crops in monocropping, rotation, and double-cropping systems. Viability was evaluated using effects on population densities of plant-parasitic nematodes and yields. Rotation of cotton with potato was found to decrease population densities of B. longicaudatus and Meloidogyne incognita in comparison with continuous potato. Population densities of B. longicaudatus following double-cropping were greater than following continuous cotton. Yields of both potato and cotton in rotation were equivalent to either crop in monocropping. Yields of both crops were lower following double-cropping when nematicides were not used.

  4. Impacts of varying agricultural intensification on crop yield and groundwater resources: comparison of the North China Plain and US High Plains

    NASA Astrophysics Data System (ADS)

    Pei, Hongwei; Scanlon, Bridget R.; Shen, Yanjun; Reedy, Robert C.; Long, Di; Liu, Changming

    2015-04-01

    Agricultural intensification is often considered the primary approach to meet rising food demand. Here we compare impacts of intensive cultivation on crop yield in the North China Plain (NCP) with less intensive cultivation in the US High Plains (USHP) and associated effects on water resources using spatial datasets. Average crop yield during the past decade from intensive double cropping of wheat and corn in the NCP was only 15% higher than the yield from less intensive single cropping of corn in the USHP, although nitrogen fertilizer application and percent of cropland that was irrigated were both ˜2 times greater in the NCP than in the USHP. Irrigation and fertilization in both regions have depleted groundwater storage and resulted in widespread groundwater nitrate contamination. The limited response to intensive management in the NCP is attributed in part to the two month shorter growing season for corn to accommodate winter wheat than that for corn in the USHP. Previous field and modeling studies of crop yield in the NCP highlight over application of N and water resulting in low nitrogen and water use efficiencies and indicate that cultivars, plant densities, soil fertility and other factors had a much greater impact on crop yields over the past few decades. The NCP-USHP comparison along with previous field and modeling studies underscores the need to weigh the yield returns from intensive management relative to the negative impacts on water resources. Future crop management should consider the many factors that contribute to yield along with optimal fertilization and irrigation to further increase crop yields while reducing adverse impacts on water resources.

  5. Noah-MP-Crop: Introducing dynamic crop growth in the Noah-MP land surface model

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Chen, Fei; Barlage, Michael; Zhou, Guangsheng; Niyogi, Dev

    2016-12-01

    Croplands are important in land-atmosphere interactions and in the modification of local and regional weather and climate; however, they are poorly represented in the current version of the coupled Weather Research and Forecasting/Noah with multiparameterization (Noah-MP) land surface modeling system. This study introduced dynamic corn (Zea mays) and soybean (Glycine max) growth simulations and field management (e.g., planting date) into Noah-MP and evaluated the enhanced model (Noah-MP-Crop) at field scales using crop biomass data sets, surface heat fluxes, and soil moisture observations. Compared to the generic dynamic vegetation and prescribed-leaf area index (LAI)-driven methods in Noah-MP, the Noah-MP-Crop showed improved performance in simulating leaf area index (LAI) and crop biomass. This model is able to capture the seasonal and annual variability of LAI and to differentiate corn and soybean in peak values of LAI as well as the length of growing seasons. Improved simulations of crop phenology in Noah-MP-Crop led to better surface heat flux simulations, especially in the early period of growing season where current Noah-MP significantly overestimated LAI. The addition of crop yields as model outputs expand the application of Noah-MP-Crop to regional agriculture studies. There are limitations in the use of current growing degree days (GDD) criteria to predict growth stages, and it is necessary to develop a new method that combines GDD with other environmental factors, to more accurately define crop growth stages. The capability introduced in Noah-MP allows further crop-related studies and development.

  6. Soil and water quality implications of production of herbaceous and woody energy crops

    SciTech Connect

    Tolbert, V.R.; Lindberg, J.E.; Green, T.H.

    1997-10-01

    Field-scale studies in three physiographic regions of the Tennessee Valley in the Southeastern US are being used to address the environmental effects of producing biomass energy crops on former agricultural lands. Comparison of erosion, surface water quality and quantity, and subsurface movement of water and nutrients from woody crops, switchgrass and agricultural crops began with crop establishment in 1994. Nutrient cycling, soil physical changes, and productivity of the different crops are also being monitored at the three sites.

  7. IET. Aerial view of project, 95 percent complete. Camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Aerial view of project, 95 percent complete. Camera facing east. Left to right: stack, duct, mobile test cell building (TAN-624), four-rail track, dolly. Retaining wall between mobile test building and shielded control building (TAN-620) just beyond. North of control building are tank building (TAN-627) and fuel-transfer pump building (TAN-625). Guard house at upper right along exclusion fence. Construction vehicles and temporary warehouse in view near guard house. Date: June 6, 1955. INEEL negative no. 55-1462 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  8. Percent Agricultural Land Cover on Steep Slopes (Future)

    EPA Pesticide Factsheets

    Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type. High amounts of agriculture on steep slopes can increase the amount of soil erosion leading to increased sediment in surface water. Agricultural land cover on steep slopes (AGSL) is the percent of agriculture on slopes greater than or equal to 9%. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  9. Congress approves 13 percent increase in AIDS spending.

    PubMed

    1996-10-18

    A Republican Congress voted for a significant increase in AIDS-related spending for the fiscal year 1996. Increases were granted in every major program, including the Ryan White CARE Act and the once-doomed Housing Opportunities for People with AIDS (HOPWA) program. Overall, discretionary spending for Federal AIDS programs rose by 13 percent. This increase includes an additional $94 million for AIDS-related research at the National Institute's of Health (NIH). Advocates call on policy-makers to develop a long-term strategy for providing drugs to those who lack private insurance and are not qualified for Medicaid.

  10. Creep behaviour of Cu-30 percent Zn at intermediate temperatures

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    1991-01-01

    The present, intermediate-temperature (573-823 K) range investigation of creep properties for single-phase Cu-30 percent Zn alpha-brass observed inverse, linear, and sigmoidal primary-creep transients above 573 K under stresses that yield minimum creep rates in the 10 to the -7th to 2 x 10 to the -4th range; normal primary creep occurred in all other conditions. In conjunction with a review of the pertinent literature, a detailed analysis of these data suggests that no clearly defined, classes M-to-A-to-M transition exists in this alloy notwithstanding the presence of both classes' characteristics under nominally similar stresses and temperatures.

  11. Evaluation of the use of remote-sensing data to identify crop types and estimate irrigated acreage, Uvalde and Medina counties, Texas, 1989

    USGS Publications Warehouse

    Raymond, L.H.; Nalley, G.M.; Rettman, P.L.

    1992-01-01

    Results were verified using crop acreages reported by the U.S. Department of Agriculture, Agricultural Stabilization and Conservation Service (ASCS). The total areas for all irrigated crops estimated using remote-sensing data were about 8 percent higher for Uvalde County and about 4 percent higher for Medina County than the areas reported by the ASCS. Irrigated-crop areas subsequently were multiplied by the respective duties of water to calculate the total quantity of water pumped from the aquifer for irrigation. Pumpage did not differ for the two estimates of crop areas for Uvalde County and differed by about 3 percent for Medina County.

  12. Alternative Crops and Biofuel Production

    SciTech Connect

    Kenkel, Philip; Holcomb, Rodney B.

    2013-03-01

    In order for the biofuel industry to meet the RFS benchmarks for biofuels, new feedstock sources and production systems will have to be identified and evaluated. The Southern Plains has the potential to produce over a billion gallons of biofuels from regionally produced alternative crops, agricultural residues, and animal fats. While information on biofuel conversion processes is available, it is difficult for entrepreneurs, community planners and other interested individuals to determine the feasibility of biofuel processes or to match production alternatives with feed stock availability and community infrastructure. This project facilitates the development of biofuel production from these regionally available feed stocks. Project activities are concentrated in five major areas. The first component focused on demonstrating the supply of biofuel feedstocks. This involves modeling the yield and cost of production of dedicated energy crops at the county level. In 1991 the DOE selected switchgrass as a renewable source to produce transportation fuel after extensive evaluations of many plant species in multiple location (Caddel et al,. 2010). However, data on the yield and cost of production of switchgrass are limited. This deficiency in demonstrating the supply of biofuel feedstocks was addressed by modeling the potential supply and geographic variability of switchgrass yields based on relationship of available switchgrass yields to the yields of other forage crops. This model made it possible to create a database of projected switchgrass yields for five different soil types at the county level. A major advantage of this methodology is that the supply projections can be easily updated as improved varieties of switchgrass are developed and additional yield data becomes available. The modeling techniques are illustrated using the geographic area of Oklahoma. A summary of the regional supply is then provided.

  13. Research in satellite-aided crop forecasting

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.; Dragg, J. L.; Bizzell, R. M.; Trichel, M. C.

    1984-01-01

    Evaluations of remote sensing procedures developed specifically to estimate non-U.S. spring small grains area show accuracies of less than 10 percent relative difference to reference statistics for North Dakota in 1978 and good comparison with 9000 square miles of observations over four states and Saskatchewan, Canada during the years 1976-79. Processing a 5 x 6-nautical-mile sample site requires a few minutes manual time and a few minutes central processing unit time on an AS-3000 computer. Evaluations of summer crop, corn, and soybeans area estimates show unbiased summer crops estimates in the U.S. central corn belt but significant bias in one of two years for area estimates of corn and soybeans. Based on results to date, a highly automated corn/sorghum/soybean area estimation procedure should be achieved that is applicable to Argentina.

  14. A 99 percent purity molecular sieve oxygen generator

    NASA Technical Reports Server (NTRS)

    Miller, G. W.

    1991-01-01

    Molecular sieve oxygen generating systems (MSOGS) have become the accepted method for the production of breathable oxygen on military aircraft. These systems separate oxygen for aircraft engine bleed air by application of pressure swing adsorption (PSA) technology. Oxygen is concentrated by preferential adsorption in nitrogen in a zeolite molecular sieve. However, the inability of current zeolite molecular sieves to discriminate between oxygen and argon results in an oxygen purity limitations of 93-95 percent (both oxygen and argon concentrate). The goal was to develop a new PSA process capable of exceeding the present oxygen purity limitations. A novel molecular sieve oxygen concentrator was developed which is capable of generating oxygen concentrations of up to 99.7 percent directly from air. The process is comprised of four absorbent beds, two containing a zeolite molecular sieve and two containing a carbon molecular sieve. This new process may find use in aircraft and medical breathing systems, and industrial air separation systems. The commercial potential of the process is currently being evaluated.

  15. Cover crop biomass harvest for bioenergy: implications for crop productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops, such as rye (Secale cereale), are usually used in conservation agriculture systems in the Southeast. Typically, the cover crop is terminated two to three weeks before planting the summer crop, with the cover biomass left on the soil surface as a mulch. However, these cover crops ...

  16. Using cover crops and cropping systems for nitrogen management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reasons for using cover crops and optimized cropping sequences to manage nitrogen (N) are to maximize economic returns, improve soil quality and productivity, and minimize losses of N that might adversely impact environmental quality. Cover crops and cropping systems’ effects on N management are...

  17. Transgenics in crops

    NASA Technical Reports Server (NTRS)

    Li, Y.; Wu, Y. H.; McAvoy, R.; Duan, H.

    2001-01-01

    With rapid world population growth and declining availability of fresh water and arable land, a new technology is urgently needed to enhance agricultural productivity. Recent discoveries in the field of crop transgenics clearly demonstrate the great potential of this technology for increasing food production and improving food quality while preserving the environment for future generations. In this review, we briefly discuss some of the recent achievements in crop improvement that have been made using gene transfer technology.

  18. Radioactivity in food crops

    SciTech Connect

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  19. The present status of commercialized and developed biotech (GM) crops, results of evaluation of plum 'HoneySweet" for resistance to plum pox virus in the Czech Republic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercialization of biotech (GM) crops started in 1996. A significant increase of 9 million hectars was realized in 1996-2009. In the years 2010-2011, it was already 12 million hectars (8 percent of total crop area). 16.7 million farmers in 29 countries planted 160 million hectars of GM crops in...

  20. Economic Analysis of Energy Crop Production in the U.S. - Location, Quantities, Price, and Impacts on Traditional Agricultural Crops

    SciTech Connect

    Walsh, M.E.; De La Torre Ugarte, D.; Slinsky, S.; Graham, R.L.; Shapouri, H.; Ray, D.

    1998-10-04

    POLYSYS is used to estimate US locations where, for any given energy crop price, energy crop production can be economically competitive with conventional crops. POLYSYS is a multi-crop, multi-sector agricultural model developed and maintained by the University of Tennessee and used by the USDA-Economic Research Service. It includes 305 agricultural statistical districts (ASD) which can be aggregated to provide state, regional, and national information. POLYSYS is being modified to include switchgrass, hybrid poplar, and willow on all land suitable for their production. This paper summarizes the preliminary national level results of the POLYSYS analysis for selected energy crop prices for the year 2007 and presents the corresponding maps (for the same prices) of energy crop production locations by ASD. Summarized results include: (1) estimates of energy crop hectares (acres) and quantities (dry Mg, dry tons), (2) identification of traditional crops allocated to energy crop production and calculation of changes in their prices and hectares (acres) of production, and (3) changes in total net farm returns for traditional agricultural crops. The information is useful for identifying areas of the US where large quantities of lowest cost energy crops can most likely be produced.

  1. Volatile Organic Compound Emissions by Agricultural Crops

    NASA Astrophysics Data System (ADS)

    Ormeno, E.; Farres, S.; Gentner, D.; Park, J.; McKay, M.; Karlik, J.; Goldstein, A.

    2008-12-01

    Biogenic Volatile Organic Compounds (BVOCs) participate in ozone and aerosol formation, and comprise a substantial fraction of reactive VOC emission inventories. In the agriculturally intensive Central Valley of California, emissions from crops may substantially influence regional air quality, but emission potentials have not been extensively studied with advanced instrumentation for many important crops. Because crop emissions may vary according to the species, and California emission inventories are constructed via a bottom-up approach, a better knowledge of the emission rate at the species-specific level is critical for reducing uncertainties in emission inventories and evaluating emission model performance. In the present study we identified and quantified the BVOCs released by dominant agricultural crops in California. A screening study to investigate both volatile and semivolatile BVOC fractions (oxygenated VOCs, isoprene, monoterepenes, sesquiterpenes, etc.) was performed for 25 crop species (at least 3 replicates plants each), including branch enclosures of woody species (e.g. peach, mandarin, grape, pistachio) and whole plant enclosures for herbaceous species (e.g. onion, alfalfa, carrot), through a dynamic cuvette system with detection by PTRMS, in-situ GCMS/FID, and collection on carbon-based adsorbents followed by extraction and GCMS analysis. Emission data obtained in this study will allow inclusion of these crops in BVOC emission inventories and air quality simulations.

  2. Screening and selection of lignocellulosic crops for energy

    SciTech Connect

    Turhollow, A.F.; Cushman, J.H.; Elmore, J.L.; Johnston, J.W.

    1985-01-01

    The Department of Energy's Herbaceous Energy Crops Program at Oak Ridge National Laboratory is beginning its research on lignocellulosic energy crops with five studies in the Southeast and Midwest/Lakes regions. Early objectives for these studies include selecting species that show promise on marginal croplands typical of the regions, determining productivity rates under various levels of management, defining cost-effective and environmentally sound production systems for each region, and identifying the most promising means of reducing costs. 2 tabs.

  3. One Percent Strömvil Photometry in M 67

    NASA Astrophysics Data System (ADS)

    Philip, A. G. D.; Boyle, R. P.; Janusz, R.

    2005-05-01

    The Vatican Advanced Technology Telescope on Mt. Graham is being used in a program of CCD photometry of open and globular clusters. We are using the Ströomvil System (Straižys et al. 1996), a combination of the Strömgren and Vilnius Systems. This system allows stars to be classified as to temperature, surface gravity, metallicity and reddening from the photometric measures alone. However, to make accurate estimates of the stellar parameters the photometry should be accurate to 1 or 1.5 percent. In our initial runs on the VATT we did not achieve this accuracy. The problem turned out to be scattered light in the telescope and this has now been reduced so we can do accurate photometry. Boyle has written a routine in IRAF which allows us to correct the flats for any differences. We take rotated frames and also frames which are offset in position by one third of a frame, east-west and north-south. Measures of the offset stars give us the corrections that need to be made to the flat. Robert Janusz has written a program, the CommandLog, which allows us to paste IRAF commands in the correct order to reduce measures made on a given observing run. There is an automatic version where one can test various parameters and get a set of solutions. Now we have a set of Strömvil frames in the open cluster, M 67 and we compare our color-magnitude diagram with those of BATC (Fan et al. 1996) and Vilnius (Boyle et al. 1998). A preliminary report of the M 67 photometry will be found in Laugalys et al. (2004). Here we report on a selected set of stars in the M 67 frames, those with errors 1 percent or less.

  4. Biotechnology: herbicide-resistant crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic, herbicide-resistant (HR) crops are planted on about 80% of the land covered by transgenic crops. More than 90% of HR crios are glyphosate-resistant (GR) crops, the others being resistant to glufosinate. The wide-scale adoption of HR crops, largely for economic reasons, has been the mos...

  5. Grand challenges for crop science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop science is a highly integrative science using the disciplines of conventional plant breeding, transgenic crop improvement, plant physiology, and cropping system sciences to develop improved varieties of agronomic, turf, and forage crops to produce feed, food, fuel, and fiber for our world's gro...

  6. Cover crops and N credits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops often provide many short- and long-term benefits to cropping systems. Legume cover crops can significantly reduce the N fertilizer requirement of non-legume cash crops that follow. The objectives of this presentation were to: I) educate stakeholders about the potential benefits of cover ...

  7. Introduction: food crops in a changing climate

    PubMed Central

    Slingo, Julia M; Challinor, Andrew J; Hoskins, Brian J; Wheeler, Timothy R

    2005-01-01

    Changes in both the mean and the variability of climate, whether naturally forced, or due to human activities, pose a threat to crop production globally. This paper summarizes discussions of this issue at a meeting of the Royal Society in April 2005. Recent advances in understanding the sensitivity of crops to weather, climate and the levels of particular gases in the atmosphere indicate that the impact of these factors on crop yields and quality may be more severe than previously thought. There is increasing information on the importance to crop yields of extremes of temperature and rainfall at key stages of crop development. Agriculture will itself impact on the climate system and a greater understanding of these feedbacks is needed. Complex models are required to perform simulations of climate variability and change, together with predictions of how crops will respond to different climate variables. Variability of climate, such as that associated with El Niño events, has large impacts on crop production. If skilful predictions of the probability of such events occurring can be made a season or more in advance, then agricultural and other societal responses can be made. The development of strategies to adapt to variations in the current climate may also build resilience to changes in future climate. Africa will be the part of the world that is most vulnerable to climate variability and change, but knowledge of how to use climate information and the regional impacts of climate variability and change in Africa is rudimentary. In order to develop appropriate adaptation strategies globally, predictions about changes in the quantity and quality of food crops need to be considered in the context of the entire food chain from production to distribution, access and utilization. Recommendations for future research priorities are given. PMID:16433087

  8. Transgenic Crops: Implications for Biodiversity and Sustainable Agriculture

    ERIC Educational Resources Information Center

    Garcia, Maria Alice; Altieri, Miguel A.

    2005-01-01

    The potential for genetically modified (GM) crops to threaten biodiversity conservation and sustainable agriculture is substantial. Megadiverse countries and centers of origin and/or diversity of crop species are particularly vulnerable regions. The future of sustainable agriculture may be irreversibly jeopardized by contamination of in situ…

  9. Influence of angular effects on surface reflections for crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing imageries with wide swath have been broadly used in mapping crop types and monitoring crop conditions at the regional, continental or global scales. In recent years, the U.S. Department of Agriculture (USDA) has used the Moderate Resolution Imaging Spectroradiometer (MODIS, 250m–1km) ...

  10. Differential Soil Acidity Tolerance of Tropical Legume Cover Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In tropical regions, soil acidity and low soil fertility are the most important yield limiting factors for sustainable crop production. Using legume cover crops as mulch is an important strategy not only to protect the soil loss from erosion but also ameliorating soil fertility. Information is limit...

  11. 78 FR 47214 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... Insurance Regulations; Extra Long Staple Cotton Crop Provisions AGENCY: Federal Crop Insurance Corporation... the Common Crop Insurance Regulations, Extra Long Staple (ELS) Cotton Crop Insurance Provisions to make the ELS Cotton Crop Insurance Provisions consistent with the Upland Cotton Crop...

  12. Micro irrigation of tropical fruit crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In most tropical regions, tropical fruits are grown either in wet-and-dry climates characterized by erratic rainfall patterns and prolonged dry periods or in fertile but semiarid lands under irrigation. Little is known about water requirements of tropical crops grown in the tropics. This book chapt...

  13. 75 FR 65995 - Biomass Crop Assistance Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... physical and biological resources at the contract level. Those mitigation measures and practices approved... negative impacts, through reduced purchases of inputs for traditional farming, within a region ranging from... changes in land management associated with the adoption of dedicated biomass energy cropping practices...

  14. Rice crop risk map in Babahoyo canton (Ecuador)

    NASA Astrophysics Data System (ADS)

    Valverde Arias, Omar; Tarquis, Ana; Garrido, Alberto

    2016-04-01

    It is widely known that extreme climatic phenomena occur with more intensity and frequency. This fact has put more pressure over farming, making agricultural and livestock production riskier. In order to reduce hazards and economic loses that could jeopardize farmer's incomes and even its business continuity, it is very important to implement agriculture risk management plans by governments and institutions. One of the main strategies is transfer risk by agriculture insurance. Agriculture insurance based in indexes has a significant growth in the last decade. And consist in a comparison between measured index values with a defined threshold that triggers damage losses. However, based index insurance could not be based on an isolated measurement. It is necessary to be integrated in a complete monitoring system that uses many sources of information and tools. For example, index influence areas, crop production risk maps, crop yields, claim statistics, and so on. Crop production risk is related with yield variation of crops and livestock, due to weather, pests, diseases, and other factors that affect both the quantity and quality of commodities produced. This is the risk which farmers invest more time managing, and it is completely under their control. The aim of this study is generate a crop risk map of rice that can provide risk manager important information about the status of crop facing production risks. Then, based on this information, it will be possible to make best decisions to deal with production risk. The rice crop risk map was generated qualifying a 1:25000 scale soil and climatic map of Babahoyo canton, which is located in coast region of Ecuador, where rice is one of the main crops. The methodology to obtain crop risk map starts by establishing rice crop requirements and indentifying the risks associated with this crop. A second step is to evaluate soil and climatic conditions of the study area related to optimal crop requirements. Based on it, we can

  15. 75 FR 15777 - Common Crop Insurance Regulations, Basic Provisions; and Various Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ...The Federal Crop Insurance Corporation (FCIC) finalizes the Common Crop Insurance Regulations, Basic Provisions, Small Grains Crop Insurance Provisions, Cotton Crop Insurance Provisions, Sunflower Seed Crop Insurance Provisions, Coarse Grains Crop Insurance Provisions, Malting Barley Crop Insurance Provisions, Rice Crop Insurance Provisions, and Canola and Rapeseed Crop Insurance Provisions to......

  16. Plant biotechnology: transgenic crops.

    PubMed

    Shewry, Peter R; Jones, Huw D; Halford, Nigel G

    2008-01-01

    Transgenesis is an important adjunct to classical plant breeding, in that it allows the targeted manipulation of specific characters using genes from a range of sources. The current status of crop transformation is reviewed, including methods of gene transfer, the selection of transformed plants and control of transgene expression. The application of genetic modification technology to specific traits is then discussed, including input traits relating to crop production (herbicide tolerance and resistance to insects, pathogens and abiotic stresses) and output traits relating to the composition and quality of the harvested organs. The latter include improving the nutritional quality for consumers as well as the improvement of functional properties for food processing.

  17. Determining crop acreage estimates for specific winter crops using shape attributes from sequential MODIS imagery

    NASA Astrophysics Data System (ADS)

    Potgieter, A. B.; Lawson, K.; Huete, A. R.

    2013-08-01

    There are increasing societal and plant industry demands for more accurate, objective and near real-time crop production information to meet both economic and food security concerns. The advent of the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite platform has augmented the capability of satellite-based applications to monitor large agricultural areas at acceptable pixel scale, cost and accuracy. Fitting parametric profiles to growing season vegetation index time series reduces the volume of data and provides simple quantitative parameters that relates to crop phenology (sowing date, flowering). In this study, we modelled various Gaussian profiles to time sequential MODIS enhanced vegetation index (EVI) images over winter crops in Queensland, Australia. Three simple Gaussian models were evaluated in their effectiveness to identify and classify various winter crop types and coverage at both pixel and regional scales across Queensland's main agricultural areas. Equal to or greater than 93% classification accuracies were obtained in determining crop acreage estimates at pixel scale for each of the Gaussian modelled approaches. Significant high to moderate correlations (log-linear transformation) were also obtained for determining total winter crop (R2 = 0.93) areas as well as specific crop acreage for wheat (R2 = 0.86) and barley (R2 = 0.83). Conversely, it was much more difficult to predict chickpea acreage (R2 ≤ 0.26), mainly due to very large uncertainties in survey data. The quantitative approach utilised here further had additional benefits of characterising crop phenology in terms of length of growing season and providing regression diagnostics of how well the fitted profiles matched the EVI time series. The Gaussian curve models utilised here are novel in application and therefore will enhance the use and adoption of remote sensing technologies in targeted agricultural application. With innate simplicity and accuracies comparable to other

  18. Historical patterns and drivers of global crop water demand.

    NASA Astrophysics Data System (ADS)

    Urban, D.; Lobell, D. B.; Sheffield, J.

    2015-12-01

    With climate change expected to subject staple crops in major growing regions to increased heat exposure, a critical question for agriculture and global food security is the degree to which crop water demand is also likely to change. Recent work has explored the relationship between extreme temperatures and crop water demand, finding that vapor pressure deficit (VPD), through its dependence on both temperature and humidity, provides a very good meteorological predictor of water stress. However, assessing crop water demand solely through atmospheric conditions ignores the roles of radiation and transpiration efficiency, which are increased through elevated CO2. We provide a 60-year global assessment of crop water demand in the world's major growing areas, comparing trends and drivers across key growing regions. We find that an atmospheric-based demand measure can differ significantly from that of a crop-specific sink-based approach that incorporates radiation and CO2 effects, sometimes enough to reverse the sign of historical trends. We also find that these changes differ significantly by region, and that multi-decadal trends can mask large decadal swings. To our knowledge, our work is the first to use global meteorological datasets in a global analysis of crop water demand, and should serve as a valuable reference for future work examining the interaction of hydrological, temperature, and CO2 changes on crop yields.

  19. Cover crops support ecological intensification of arable cropping systems

    PubMed Central

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-01-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification. PMID:28157197

  20. Cover crops support ecological intensification of arable cropping systems

    NASA Astrophysics Data System (ADS)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  1. Simulation of temporal and spatial distribution of required irrigation water by crop models and the pan evaporation coefficient method

    NASA Astrophysics Data System (ADS)

    Yang, Yan-min; Yang, Yonghui; Han, Shu-min; Hu, Yu-kun

    2009-07-01

    Hebei Plain is the most important agricultural belt in North China. Intensive irrigation, low and uneven precipitation have led to severe water shortage on the plain. This study is an attempt to resolve this crucial issue of water shortage for sustainable agricultural production and water resources management. The paper models distributed regional irrigation requirement for a range of cultivated crops on the plain. Classic crop models like DSSAT- wheat/maize and COTTON2K are used in combination with pan-evaporation coefficient method to estimate water requirements for wheat, corn, cotton, fruit-trees and vegetables. The approach is more accurate than the static approach adopted in previous studies. This is because the combination use of crop models and pan-evaporation coefficient method dynamically accounts for irrigation requirement at different growth stages of crops, agronomic practices, and field and climatic conditions. The simulation results show increasing Required Irrigation Amount (RIA) with time. RIA ranges from 5.08×109 m3 to 14.42×109 m3 for the period 1986~2006, with an annual average of 10.6×109 m3. Percent average water use by wheat, fruit trees, vegetable, corn and cotton is 41%, 12%, 12%, 11%, 7% and 17% respectively. RIA for April and May (the period with the highest irrigation water use) is 1.78×109 m3 and 2.41×109 m3 respectively. The counties in the piedmont regions of Mount Taihang have high RIA while the central and eastern regions/counties have low irrigation requirement.

  2. GEOGLAM Crop Assessment Tool: Adapting from global agricultural monitoring to food security monitoring

    NASA Astrophysics Data System (ADS)

    Humber, M. L.; Becker-Reshef, I.; Nordling, J.; Barker, B.; McGaughey, K.

    2014-12-01

    The GEOGLAM Crop Monitor's Crop Assessment Tool was released in August 2013 in support of the GEOGLAM Crop Monitor's objective to develop transparent, timely crop condition assessments in primary agricultural production areas, highlighting potential hotspots of stress/bumper crops. The Crop Assessment Tool allows users to view satellite derived products, best available crop masks, and crop calendars (created in collaboration with GEOGLAM Crop Monitor partners), then in turn submit crop assessment entries detailing the crop's condition, drivers, impacts, trends, and other information. Although the Crop Assessment Tool was originally intended to collect data on major crop production at the global scale, the types of data collected are also relevant to the food security and rangelands monitoring communities. In line with the GEOGLAM Countries at Risk philosophy of "foster[ing] the coordination of product delivery and capacity building efforts for national and regional organizations, and the development of harmonized methods and tools", a modified version of the Crop Assessment Tool is being developed for the USAID Famine Early Warning Systems Network (FEWS NET). As a member of the Countries at Risk component of GEOGLAM, FEWS NET provides agricultural monitoring, timely food security assessments, and early warnings of potential significant food shortages focusing specifically on countries at risk of food security emergencies. While the FEWS NET adaptation of the Crop Assessment Tool focuses on crop production in the context of food security rather than large scale production, the data collected is nearly identical to the data collected by the Crop Monitor. If combined, the countries monitored by FEWS NET and GEOGLAM Crop Monitor would encompass over 90 countries representing the most important regions for crop production and food security.

  3. Biotechnology Towards Energy Crops.

    PubMed

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

  4. Crop Dusting Using GPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global Positioning System (GPS) receivers and GPS-based swath guidance systems are used on agricultural aircraft for remote sensing, airplane guidance, and to support variable-rate aerial application of crop inputs such as insecticides, cotton growth regulators, and defoliants. Agricultural aircraf...

  5. Major Cucurbit Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucurbit is a general term to denote all species within the Cucurbitaceae family, which includes approximately 800 species in 130 genera. Cucurbits are mostly annual, herbaceous, tendril-bearing and frost sensitive vines and are among the economically most important vegetable crops worldwide. Cucurb...

  6. Crop biotechnology. Where now?

    PubMed

    Miflin, B J

    2000-05-01

    Nature Biotechnology organized a conference in London on Agobiotech 99: Biotechnology and World Agriculture (November 14-16, 1999). The conference focused entirely on crop biotechnology and covered both societal and scientific aspects. Below is an account of the more important issues raised by the speakers and the audience.

  7. Nitrogen catch crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High costs of nitrogen (N) fertilizer and the potential for N losses to ground and surface water have resulted in increased interest in using catch crops to recover this N. Research on potatoes has shown that the amount of N lost to leaching can be as much as the amount of N removed from the field ...

  8. Crop/weed discrimination in simulated images

    NASA Astrophysics Data System (ADS)

    Jones, G.; Gée, C.; Truchetet, F.

    2007-02-01

    In the context of site-specific weed management by vision systems, an efficient image processing for a crop/weed discrimination is required in order to quantify the Weed Infestation Rate (WIR) in an image. This paper presents a modeling of crop field in presence of different Weed Infestation Rates and a set of simulated agronomic images is used to test and validate the effectiveness of a crop/weed discrimination algorithm. For instance, an algorithm has been implemented to firstly detect the crop rows in the field by the use of a Hough Transform and secondly to detect plant areas by a region based-segmentation on binary images. This image processing has been tested on virtual cereal fields of a large field of view with perspective effects. The vegetation in the virtual field is modeled by a sowing pattern for crop plants and the weed spatial distribution is modeled by either a Poisson process or a Neyman-Scott cluster process. For each simulated image, a comparison between the initial and the detected weed infestation rate allows us to assess the accuracy of the algorithm. This comparison demonstrates an accuracy of better than 80% is possible, despite that intrarow weeds can not be detected from this spatial method.

  9. Short rotation Wood Crops Program

    SciTech Connect

    Wright, L.L.; Ehrenshaft, A.R.

    1990-08-01

    This report synthesizes the technical progress of research projects in the Short Rotation Woody Crops Program for the year ending September 30, 1989. The primary goal of this research program, sponsored by the US Department of Energy's Biofuels and Municipal Waste Technology Division, is the development of a viable technology for producing renewable feedstocks for conversion to biofuels. One of the more significant accomplishments was the documentation that short-rotation woody crops total delivered costs could be $40/Mg or less under optimistic but attainable conditions. By taking advantage of federal subsidies such as those offered under the Conservation Reserve Program, wood energy feedstock costs could be lower. Genetic improvement studies are broadening species performance within geographic regions and under less-than-optimum site conditions. Advances in physiological research are identifying key characteristics of species productivity and response to nutrient applications. Recent developments utilizing biotechnology have achieved success in cell and tissue culture, somaclonal variation, and gene-insertion studies. Productivity gains have been realized with advanced cultural studies of spacing, coppice, and mixed-species trials. 8 figs., 20 tabs.

  10. Effects of soil composition and mineralogy on remote sensing of crop residue cover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The management of crop residues in agricultural fields influences soil erosion and soil carbon sequestration. Remote sensing methods can efficiently assess crop residue cover and tillaje intensity over many fields in a region. Although the reflectance spectra of soils and crop residues are often s...

  11. Cover crop biomass production and water use in the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The water-limited environment of the semi-arid central Great Plains may not have potential to produce enough cover crop biomass to generate benefits associated with cover crop use in more humid regions. There have been reports that cover crops grown in mixtures produce more biomass with greater wate...

  12. Cover crop biomass production and water use in the central great plains under varying water availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The water-limited environment of the semi-arid central Great Plains may not have potential to produce enough cover crop biomass to generate benefits associated with cover crop use in more humid regions. There have been reports that cover crops grown in mixtures produce more biomass with greater wate...

  13. Chemistry and microbial functional diversity differences in biofuel crop and grassland soils in multiple geographies

    EPA Science Inventory

    As crop and non-crop lands are increasingly converted to biofuel feedstock production, it is of interest to identify potential impacts of annual and perennial feedstocks on soil ecosystem services. Soil samples were obtained from diverse regionally distributed biofuel cropping si...

  14. Intensifying a semi-arid dryland crop rotation by replacing fallow with pea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing dryland cropping system intensity in the semi-arid central Great Plains by reducing frequency of fallow can add diversity to cropping systems and decrease erosion potential. However elimination of the periodic fallow phase has been shown to reduce yields of subsequent crops in this region...

  15. Seed fates in crop–wild hybrid sunflower: crop allele and maternal effects

    PubMed Central

    Pace, Brian A; Alexander, Helen M; Emry, Jason D; Mercer, Kristin L

    2015-01-01

    Domestication has resulted in selection upon seed traits found in wild populations, yet crop-wild hybrids retain some aspects of both parental phenotypes. Seed fates of germination, dormancy, and mortality can influence the success of crop allele introgression in crop-wild hybrid zones, especially if crop alleles or crop-imparted seed coverings result in out-of-season germination. We performed a seed burial experiment using crop, wild, and diverse hybrid sunflower (Helianthus annuus) cross types to test how a cross type's maternal parent and nuclear genetic composition might affect its fate under field conditions. We observed higher maladaptive fall germination in the crop- and F1- produced seeds than wild-produced seeds and, due to an interaction with percent crop alleles, fall germination was higher for cross types with more crop-like nuclear genetics. By spring, crop-produced cross types had the highest overwintering mortality, primarily due to higher fall germination. Early spring germination was identical across maternal types, but germination continued for F1-produced seeds. In conclusion, the more wild-like the maternal parent or the less proportion of the cross type's genome contributed by the crop, the greater likelihood a seed will remain ungerminated than die. Wild-like dormancy may facilitate introgression through future recruitment from the soil seed bank. PMID:25685189

  16. Multi-scale indicators in CropWatch

    NASA Astrophysics Data System (ADS)

    Wu, B.; Gommes, R.; Zhang, M.; Zeng, H.; Yan, N.; Zhang, N.; Zou, W.; Chang, S.; Liu, G.

    2013-12-01

    CropWatch is a crop monitoring system developed and operated by the Institute of Remote Sensing and Digital Earth (Chinese Academy of Sciences) to provide global-scale crop information, mostly for Chinese users. In its 15th year of operation, CropWatch uses remote sensing data combined with selected field data to determine key crop descriptors: acreage, yield and production, condition, cropping intensity, planting proportion, total food availability, and the status and severity of droughts. Currently, CropWatch is being upgraded with new indicators based on new sensors, especially those on board of China Environmental Satellite (HJ-1 CCD), the Medium Resolution Spectral Imager (MERSI) on Chinese meteorological satellite 3 (FY-3A) and geostationary meteorological satellites (FY-2). The new indicators can be assigned to three different scales: (1) global, (2) regional/Agro-ecological Zone (AEZ), and (3) National/sub-national level. At the global scale, CropWatch focuses on the growing environment including precipitation (R), soil moisture (SM), land surface temperature accumulation (LSTA) and photosynthetically active radiation (PAR). National values of these four descriptors of the current season and their departure from long term average (LTA) will be determined by spatial average weighted by the production potential. At regional/AEZ scale, CropWatch will use three indicators (biomass, fallow land ratio and cropping intensity) to represent crop condition. At the national/sub-national scale, CropWatch will focus on 30 countries plus China, covering 80% of exports and 80% of production, plus some additional countries. Indicators at global and AEZ scale will also be used for the 30 countries plus China but at a high resolution. Normalized difference vegetation index (NDVI) as well as Evapotranspiration (ET) will be incorporated to determine the crop condition and water stress. All these national/sub-national indicators will be analyzed by irrigated and rain-fed areas

  17. Projected Cropping Patterns, Livestock Enterprises, Processing Activities, Capital Requirements, Employment, Income, and Training Needs for Alternative Farm Organizational Structures for the Navajo Indian Irrigation Project. A Special Report to the Four Corners Regional Commission.

    ERIC Educational Resources Information Center

    Gorman, William D.; And Others

    Information on the expected cropping patterns, livestock enterprises, processing and related activities, income and employment opportunities, capital needs, and training requirements for alternative farm organizational structures that could be selected for development of the Navajo Indian Irrigation Project is presented in this report. The major…

  18. Active microwave responses - An aid in improved crop classification

    NASA Technical Reports Server (NTRS)

    Rosenthal, W. D.; Blanchard, B. J.

    1984-01-01

    A study determined the feasibility of using visible, infrared, and active microwave data to classify agricultural crops such as corn, sorghum, alfalfa, wheat stubble, millet, shortgrass pasture and bare soil. Visible through microwave data were collected by instruments on board the NASA C-130 aircraft over 40 agricultural fields near Guymon, OK in 1978 and Dalhart, TX in 1980. Results from stepwise and discriminant analysis techniques indicated 4.75 GHz, 1.6 GHz, and 0.4 GHz cross-polarized microwave frequencies were the microwave frequencies most sensitive to crop type differences. Inclusion of microwave data in visible and infrared classification models improved classification accuracy from 73 percent to 92 percent. Despite the results, further studies are needed during different growth stages to validate the visible, infrared, and active microwave responses to vegetation.

  19. COLT: seasonal prediction of crop irrigation needs

    NASA Astrophysics Data System (ADS)

    Villani, Giulia; Spisni, Andrea; Mariani, Maria Cristina; Pratizzoli, William; Pavan, Valentina; Tomei, Fausto; Botarelli, Lucio; Marletto, Vittorio

    2013-04-01

    COLT is an operational chain to predict summer (June, July, August) crop irrigation needs in Emilia-Romagna (Northern Italy) at the regional and lower scales. Set up by ARPA-SIMC in 2010, it has been applied since with good results. COLT predicts summer irrigation needs in May, i.e. at the beginning of the irrigation season in Emilia-Romagna. COLT is based on the production of yearly updated land use maps, observed daily weather data, a regional soil map and ensemble probabilistic seasonal weather forecasts obtained from the EUROSIP multi-model operational system and a geographical soil water balance model (CRITERIA). The first step of the operational scheme is the supervised classification of crops through field surveys and a set of multitemporal satellite images acquired during the first months of the growing period. As the identification of all crop species during the satellite working windows is not feasible, they are grouped in six classes: summer field crops (including corn, sorghum, tomato, sugar beet, potato and others), winter crops (wheat, barley, oat, etc.), perennial grasses (alfa-alfa and meadows), rice, vineyards and orchards, on the whole regional plain, covering about 775000 ha. The second step involves the statistical downscaling of the EUROSIP ensemble predictions over Emilia-Romagna and the use of a weather generator to synthetically produce a number (usually 50) replicated meteorological summer daily data series, consistent with the predicted and downscaled summer anomalies of temperature, rainfall and other related indices. During the final step the CRITERIA model computes crop development and soil water balance on the crop classification map using observed meteorological daily data up to the end of May. Afterword forecasts are used up to the end of the summer irrigation season, i.e. August 31st. The statistical distribution projections of summer irrigation needs at the regional and reclamation consortia scale are then issued and disseminated

  20. Genomics of crop wild relatives: expanding the gene pool for crop improvement.

    PubMed

    Brozynska, Marta; Furtado, Agnelo; Henry, Robert J

    2016-04-01

    Plant breeders require access to new genetic diversity to satisfy the demands of a growing human population for more food that can be produced in a variable or changing climate and to deliver the high-quality food with nutritional and health benefits demanded by consumers. The close relatives of domesticated plants, crop wild relatives (CWRs), represent a practical gene pool for use by plant breeders. Genomics of CWR generates data that support the use of CWR to expand the genetic diversity of crop plants. Advances in DNA sequencing technology are enabling the efficient sequencing of CWR and their increased use in crop improvement. As the sequencing of genomes of major crop species is completed, attention has shifted to analysis of the wider gene pool of major crops including CWR. A combination of de novo sequencing and resequencing is required to efficiently explore useful genetic variation in CWR. Analysis of the nuclear genome, transcriptome and maternal (chloroplast and mitochondrial) genome of CWR is facilitating their use in crop improvement. Genome analysis results in discovery of useful alleles in CWR and identification of regions of the genome in which diversity has been lost in domestication bottlenecks. Targeting of high priority CWR for sequencing will maximize the contribution of genome sequencing of CWR. Coordination of global efforts to apply genomics has the potential to accelerate access to and conservation of the biodiversity essential to the sustainability of agriculture and food production.

  1. Sugar crops for fuel alcohol

    SciTech Connect

    Irvine, J.E.

    1980-01-01

    The use of alcohol rather than petroleum as a fuel source would require a large amount of land and suitable crops. Acerage now in use for food crops and animal production in the USA is given. The author presents alternatives to present land use in order to free acreage for energy crops such as sorghum, sugar beets, and sugar cane. (DC)

  2. Crop Sequence Calculator, v. 3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers need to know how to sequence crops to develop sustainable dynamic cropping systems that take advantage of inherent internal resources, such as crop synergism, nutrient cycling, and soil water, and capitalize on external resources, such as weather, markets, and government programs. Version ...

  3. Crop genomics: advances and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The completion of reference genome sequences for many important crops and the ability to perform high-throughput resequencing are providing opportunities for improving our understanding of the history of plant domestication and to accelerate crop improvement. Crop plant comparative genomics is being...

  4. The green, blue and grey water footprint of crops and derived crop products

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-05-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network. Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ-1

  5. The green, blue and grey water footprint of crops and derived crop products

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-01-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment is global and improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc min grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the water footprint network. Considering the water footprints of primary crops, we see that global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals} (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51

  6. Epigenetics and crop improvement.

    PubMed

    Springer, Nathan M

    2013-04-01

    There is considerable excitement about the potential for epigenetic information to contribute to heritable variation in many species. Our understanding of the molecular mechanisms of epigenetic inheritance is rapidly growing, and it is now possible to profile the epigenome at high resolution. Epigenetic information plays a role in developmental gene regulation, response to the environment, and in natural variation of gene expression levels. Because of these central roles, there is the potential for epigenetics to play a role in crop improvement strategies including the selection for favorable epigenetic states, creation of novel epialleles, and regulation of transgene expression. In this review we consider the potential, and the limitations, of epigenetic variation in crop improvement.

  7. Halophytes As Bioenergy Crops

    PubMed Central

    Sharma, Rita; Wungrampha, Silas; Singh, Vinay; Pareek, Ashwani; Sharma, Manoj K.

    2016-01-01

    Shrinking arable land due to soil salinization and, depleting fresh water resources pose serious worldwide constraints to crop productivity. A vision of using plant feedstock for biofuel production can only be realized if we can identify alternate species that can be grown on saline soils and therefore, would not compete for the resources required for conventional agriculture. Halophytes have remarkable ability to grow under high salinity conditions. They can be irrigated with seawater without compromising their biomass and seed yields making them good alternate candidates as bioenergy crops. Both oil produced from the seeds and the lignocellulosic biomass of halophytes can be utilized for biofuel production. Several researchers across the globe have recognized this potential and assessed several halophytes for their tolerance to salt, seed oil contents and composition of their lignocellulosic biomass. Here, we review current advances and highlight the key species of halophytes analyzed for this purpose. We have critically assessed the challenges and opportunities associated with using halophytes as bioenergy crops. PMID:27679645

  8. Alfalfa interseeded into silage corn can serve as a cover crop and subsequent forage crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alfalfa (Medicago sativa) and corn (Zea mays) silage are commonly grown in rotation in dairy forage production systems throughout the northern regions of the USA. Alfalfa interseeded into silage corn could potentially serve two purposes: as a cover crop during the silage corn production year, and as...

  9. Impact of GM crops on biodiversity.

    PubMed

    Carpenter, Janet E

    2011-01-01

    The potential impact of GM crops on biodiversity has been a topic of interest both in general as well as specifically in the context of the Convention on Biological Diversity. Agricultural biodiversity has been defined at levels from genes to ecosystems that are involved or impacted by agricultural production (www.cbd.int/agro/whatis.shtml). After fifteen years of commercial cultivation, a substantial body of literature now exists addressing the potential impacts of GM crops on the environment. This review takes a biodiversity lens to this literature, considering the impacts at three levels: the crop, farm and landscape scales. Within that framework, this review covers potential impacts of the introduction of genetically engineered crops on: crop diversity, biodiversity of wild relatives, non-target soil organisms, weeds, land use, non-target above-ground organisms, and area-wide pest suppression. The emphasis of the review is peer-reviewed literature that presents direct measures of impacts on biodiversity. In addition, possible impacts of changes in management practises such as tillage and pesticide use are also discussed to complement the literature on direct measures. The focus of the review is on technologies that have been commercialized somewhere in the world, while results may emanate from non-adopting countries and regions. Overall, the review finds that currently commercialized GM crops have reduced the impacts of agriculture on biodiversity, through enhanced adoption of conservation tillage practices, reduction of insecticide use and use of more environmentally benign herbicides and increasing yields to alleviate pressure to convert additional land into agricultural use.

  10. Near Zero Emissions at 50 Percent Thermal Efficiency

    SciTech Connect

    None, None

    2012-12-31

    Detroit Diesel Corporation (DDC) has successfully completed a 10 year DOE sponsored heavy-duty truck engine program, hereafter referred to as the NZ-50 program. This program was split into two major phases. The first phase was called Near-Zero Emission at 50 Percent Thermal Efficiency, and was completed in 2007. The second phase was initiated in 2006, and this phase was named Advancements in Engine Combustion Systems to Enable High-Efficiency Clean Combustion for Heavy-Duty Engines. This phase was completed in September, 2010. The key objectives of the NZ-50 program for this first phase were to: Quantify thermal efficiency degradation associated with reduction of engine-out NOx emissions to the 2007 regulated level of ~1.1 g/hp-hr. Implement an integrated analytical/experimental development plan for improving subsystem and component capabilities in support of emerging engine technologies for emissions and thermal efficiency goals of the program. Test prototype subsystem hardware featuring technology enhancements and demonstrate effective application on a multi-cylinder, production feasible heavy-duty engine test-bed. Optimize subsystem components and engine controls (calibration) to demonstrate thermal efficiency that is in compliance with the DOE 2005 Joule milestone, meaning greater than 45% thermal efficiency at 2007 emission levels. Develop technology roadmap for meeting emission regulations of 2010 and beyond while mitigating the associated degradation in engine fuel consumption. Ultimately, develop technical prime-path for meeting the overall goal of the NZ-50 program, i.e., 50% thermal efficiency at 2010 regulated emissions. These objectives were successfully met during the course of the NZ-50 program. The most noteworthy achievements in this program are summarized as follows: Demonstrated technologies through advanced integrated experiments and analysis to achieve the technical objectives of the NZ-50 program with 50.2% equivalent thermal efficiency under

  11. Methods to estimate irrigated reference crop evapotranspiration - a review.

    PubMed

    Kumar, R; Jat, M K; Shankar, V

    2012-01-01

    Efficient water management of crops requires accurate irrigation scheduling which, in turn, requires the accurate measurement of crop water requirement. Irrigation is applied to replenish depleted moisture for optimum plant growth. Reference evapotranspiration plays an important role for the determination of water requirements for crops and irrigation scheduling. Various models/approaches varying from empirical to physically base distributed are available for the estimation of reference evapotranspiration. Mathematical models are useful tools to estimate the evapotranspiration and water requirement of crops, which is essential information required to design or choose best water management practices. In this paper the most commonly used models/approaches, which are suitable for the estimation of daily water requirement for agricultural crops grown in different agro-climatic regions, are reviewed. Further, an effort has been made to compare the accuracy of various widely used methods under different climatic conditions.

  12. Climate variation explains a third of global crop yield variability

    NASA Astrophysics Data System (ADS)

    Ray, Deepak K.; Gerber, James S.; MacDonald, Graham K.; West, Paul C.

    2015-01-01

    Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32-39%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability.

  13. Climate variation explains a third of global crop yield variability.

    PubMed

    Ray, Deepak K; Gerber, James S; MacDonald, Graham K; West, Paul C

    2015-01-22

    Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32-39%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability.

  14. Climate variation explains a third of global crop yield variability

    PubMed Central

    Ray, Deepak K.; Gerber, James S.; MacDonald, Graham K.; West, Paul C.

    2015-01-01

    Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32–39%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability. PMID:25609225

  15. Impact of topography and soil factors on crop suitability in two Mediterranean areas (Egypt and Spain)

    NASA Astrophysics Data System (ADS)

    Abd-Elmabod, S. K.; Jordán, A.; Anaya-Romero, M.; Ali, R. R.; Muñoz-Rojas, M.; Zavala, L. M.; de la Rosa, D.

    2012-04-01

    The aim of this research is to study the influence of topography and soil factors on crop suitability two Mediterranean areas: Sevilla (southern Spain) and El-Fayoum (northern Egypt). The Shuttle Radar Topography Mission (SRTM) images were processed using ENVI 4.7 software to extract elevation data, slope gradient and slope direction. North-south toposequences from both areas were extracted and studied using Arc-GIS 9.3 software. Soil characteristics along these toposequences were extracted from regional soil maps, as well as land surveying and laboratory analyses. The Almagra model (included in the agro-ecological system MicroLEIS DSS) was used to evaluate agricultural soil suitability using soil factors of useful depth, texture, drainage, carbonate content, salinity, sodium saturation, and degree of development of the profile. Changes of soil characteristics through the toposequences are discussed. The results of Almagra model indicate that the crop suitability main limiting factors are soil texture, drainage, soil salinity and sodium saturation percent and topography factors elevation, slope gradient, slope direction.

  16. 30 CFR 57.22239 - Actions at 2.0 percent methane (IV mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... percent methane (IV mines). If methane reaches 2.0 percent in the mine atmosphere, all persons other than competent persons necessary to make ventilation changes shall be withdrawn from the mine until methane...

  17. 30 CFR 57.22240 - Actions at 2.0 percent methane (V-A mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... percent methane (V-A mines). If methane reaches 2.0 percent in the mine atmosphere, all persons other than competent persons necessary to make ventilation changes shall be withdrawn from affected areas until...

  18. 30 CFR 57.22239 - Actions at 2.0 percent methane (IV mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... percent methane (IV mines). If methane reaches 2.0 percent in the mine atmosphere, all persons other than competent persons necessary to make ventilation changes shall be withdrawn from the mine until methane...

  19. 30 CFR 57.22236 - Actions at 1.0 percent methane (VI mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... percent methane (VI mines). If methane reaches 1.0 percent in the mine atmosphere, all persons other than competent persons necessary to make ventilation changes shall be withdrawn from affected areas until...

  20. 30 CFR 57.22240 - Actions at 2.0 percent methane (V-A mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... percent methane (V-A mines). If methane reaches 2.0 percent in the mine atmosphere, all persons other than competent persons necessary to make ventilation changes shall be withdrawn from affected areas until...

  1. 30 CFR 57.22236 - Actions at 1.0 percent methane (VI mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... percent methane (VI mines). If methane reaches 1.0 percent in the mine atmosphere, all persons other than competent persons necessary to make ventilation changes shall be withdrawn from affected areas until...

  2. 30 CFR 57.22240 - Actions at 2.0 percent methane (V-A mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... percent methane (V-A mines). If methane reaches 2.0 percent in the mine atmosphere, all persons other than competent persons necessary to make ventilation changes shall be withdrawn from affected areas until...

  3. 30 CFR 57.22239 - Actions at 2.0 percent methane (IV mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... percent methane (IV mines). If methane reaches 2.0 percent in the mine atmosphere, all persons other than competent persons necessary to make ventilation changes shall be withdrawn from the mine until methane...

  4. 30 CFR 57.22236 - Actions at 1.0 percent methane (VI mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... percent methane (VI mines). If methane reaches 1.0 percent in the mine atmosphere, all persons other than competent persons necessary to make ventilation changes shall be withdrawn from affected areas until...

  5. Methods to Map Cropping Intensity Using MODIS Data (Invited)

    NASA Astrophysics Data System (ADS)

    Jain, M.; Mondal, P.; DeFries, R. S.; Small, C.; Galford, G. L.

    2013-12-01

    The food security of smallholder farmers is vulnerable to climate change and climate variability. Cropping intensity, the number of crops planted annually, can be used as a measure of food security for smallholder farmers given that it can greatly affect net production. Remote sensing tools and techniques offer a unique way to map cropping patterns over large spatial and temporal scales as well as in real time. Yet current techniques for quantifying cropping intensity using remote sensing may not accurately map smallholder farms where the size of one agricultural plot is typically smaller than the spatial resolution of readily available satellite data like MODIS (250 m) and sometimes Landsat (30 m). This presentation presents techniques to map cropping intensity by quantifying the amount of cropped area at a 1 x 1 km scale using MODIS satellite data in study regions in India. Specifically we present two methods to map cropped area, which are validated using higher-resolution Quickbird and Landsat data. The first method uses Landsat data to train MODIS data - while the method has fairly high accuracy (R2 > .80), it is difficult to automate over large spatial and temporal scales. The second method uses only MODIS data to quantify cropped area - this method is easy to automate over large spatial and temporal scales but has slightly reduced accuracy. To illustrate the utility of these methods, we present maps of cropping intensity across several regions in India and show how these data can be related to changes in cropped area through time with contemporaneous climate and irrigation data.

  6. 24 CFR 266.305 - HFAs accepting less than 50 percent of risk.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false HFAs accepting less than 50 percent... PROJECT LOANS Processing, Development, and Approval § 266.305 HFAs accepting less than 50 percent of risk... electing to take less than 50 percent of the risk on certain projects are subject to review,...

  7. 30 CFR 57.22236 - Actions at 1.0 percent methane (VI mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Actions at 1.0 percent methane (VI mines). 57... MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22236 Actions at 1.0 percent methane (VI mines). If methane reaches 1.0 percent in the mine atmosphere, all persons other...

  8. 30 CFR 57.22239 - Actions at 2.0 percent methane (IV mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Actions at 2.0 percent methane (IV mines). 57... MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22239 Actions at 2.0 percent methane (IV mines). If methane reaches 2.0 percent in the mine atmosphere, all persons other...

  9. 30 CFR 57.22233 - Actions at 0.5 percent methane (I-C mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Actions at 0.5 percent methane (I-C mines). 57... MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22233 Actions at 0.5 percent methane (I-C mines). If methane reaches 0.5 percent in the mine atmosphere, ventilation...

  10. 30 CFR 57.22236 - Actions at 1.0 percent methane (VI mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Actions at 1.0 percent methane (VI mines). 57... MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22236 Actions at 1.0 percent methane (VI mines). If methane reaches 1.0 percent in the mine atmosphere, all persons other...

  11. 30 CFR 57.22239 - Actions at 2.0 percent methane (IV mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Actions at 2.0 percent methane (IV mines). 57... MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22239 Actions at 2.0 percent methane (IV mines). If methane reaches 2.0 percent in the mine atmosphere, all persons other...

  12. 30 CFR 57.22233 - Actions at 0.5 percent methane (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Actions at 0.5 percent methane (I-C mines). 57... MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22233 Actions at 0.5 percent methane (I-C mines). If methane reaches 0.5 percent in the mine atmosphere, ventilation...

  13. Replacing fallow by cover crops: economic sustainability

    NASA Astrophysics Data System (ADS)

    Gabriel, José Luis; Garrido, Alberto; Quemada, Miguel

    2013-04-01

    costs varied from 28 to 73 € ha-1 but, results suggest that barley and vetch as cover crops increases maize yields, being a strategy that stochastically dominates the fallow. In this case, even without selling residue and without fertilizer reduction, vetch treatment increased the benefits with respect to the fallow in almost two out of three years and barley treatment did so in one year out of two. When biomass was sold as forage, benefits increase in 80% of the years for the vetch and in 70% of years for the barley with respect to the fallow. However, rapeseed was not a good cover crop for the Mediterranean region because poorly adaptation to the weather conditions. Then, cover crops can lead to increase of economical benefits improving environmental conditions at the same time. Acknowledgements: Financial support by Spain CICYT (ref. AGL2005-00163 and AGL 2011-24732), Comunidad de Madrid (project AGRISOST, S2009/AGR-1630), Belgium FSR 2012 (ref. SPER/DST/340-1120525) and Marie Curie actions.

  14. Mapping crop coefficients in irrigated areas from Landsat TM images

    NASA Astrophysics Data System (ADS)

    D'Urso, Guido; Menenti, Massimo

    1995-11-01

    It is well known that reflectance of Earth surface largely depends upon amount of biomass, crop type, development stage, ground coverage. The knowledge of these parameters -- together with groundbased meteorological data -- allows for the estimate of crop water requirements and their spatial distribution. Recent research has shown the possibility of using multispectral satellite images in combination with other information for mapping crop coefficients in irrigated areas. This approach is based on the assumption that crop coefficients (Kc) are greatly influenced by canopy development and vegetation fractional ground cover; since these parameters directly affect the reflectance of cropped areas, it is possible to establish a correlation between multispectral measurements of canopies reflectance and the corresponding Kc values. Within this frame, two different approaches may be applied: (1) definition of spectral classes corresponding to different crop coefficient values and successive supervised classification for the derivation of crop coefficients maps; (2) use of analytical relationships between the surface reflectance and the corresponding values of vegetation parameters, i.e., the leaf area index, the albedo and the surface roughness, needed for the calculation of the potential evapotranspiration according to the combination type equation. The two different techniques are discussed with reference to the results of their application to specific case-studies. The aim of this report is to illustrate the suitability of remote sensing techniques as an operational tool for assessing crop water demand at regional scale.

  15. Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China.

    PubMed

    Wang, Y B; Wu, P T; Engel, B A; Sun, S K

    2014-11-01

    Water shortages are detrimental to China's grain production while food production consumes a great deal of water causing water crises and ecological impacts. Increasing crop water productivity (CWP) is critical, so China is devoting significant resources to develop water-saving agricultural systems based on crop planning and agricultural water conservation planning. A comprehensive CWP index is necessary for such planning. Existing indices such as water use efficiency (WUE) and irrigation efficiency (IE) have limitations and are not suitable for the comprehensive evaluation of CWP. The water footprint (WF) index, calculated using effective precipitation and local water use, has advantages for CWP evaluation. Due to regional differences in crop patterns making the CWP difficult to compare directly across different regions, a unified virtual crop pattern is needed to calculate the WF. This project calculated and compared the WF of each grain crop and the integrated WFs of grain products with actual and virtual crop patterns in different regions of China for 2010. The results showed that there were significant differences for the WF among different crops in the same area or among different areas for the same crop. Rice had the highest WF at 1.39 m(3)/kg, while corn had the lowest at 0.91 m(3)/kg among the main grain crops. The WF of grain products was 1.25 m(3)/kg in China. Crop patterns had an important impact on WF of grain products because significant differences in WF were found between actual and virtual crop patterns in each region. The CWP level can be determined based on the WF of a virtual crop pattern, thereby helping optimize spatial distribution of crops and develop agricultural water savings to increase CWP.

  16. Irrigation management of crops rotations in a changing climate

    NASA Astrophysics Data System (ADS)

    Rolim, J.; Teixeira, J.; Catalão, J.

    2012-04-01

    Due to climate change we cannot continue to perform irrigation systems design and irrigation management based only on historical records of weather stations, assuming that the statistical parameters of the meteorological data remains unchanged in time, being necessary to take into account the climatic data relative to climate change scenarios. For the Mediterranean basin the various climate models indicate an increase in temperature and a reduction in precipitation and a more frequent occurrence of extreme events which will increase the risk of crop failure. Thus, it is important to adopt strategies to ensure the sustainability of irrigated agriculture in a changing climate. A very interesting technique to achieve this is the adoption of crops rotations, since they increase the heterogeneity of farming systems distributing the risk between crops and minimizing costs. This study aims to evaluate the impact of climate change in the irrigation requirements of crop rotations for the Alentejo region in the South of Portugal, and the ability of crops rotation to reduce these impacts and stabilize crops production. The IrrigRotation software was used to estimate the water requirements of two crop rotations used in the Alentejo region, Sunflower-Wheat-Barley and Sugar beet-Maize-Tomato-Wheat. IrrigRotation is a soil water balance simulation model, continuous in time, based on the dual crop coefficients methodology, which allows to compute the irrigation requirements of crop rotations. The climate data used were the observed data of the Évora and Beja weather stations (1961-90), the A2 and B2 scenarios of the HadRM3P model and the A2 scenarios of the HIRHAMh and HIRHAMhh models (2071-2100). The consideration of a set of climate change scenarios produces as a result a range of values for the irrigation requirements which can be used to define safety margins in irrigation design. The results show that for the Beja clay soils, with high values of soil water storage capacity

  17. Impacts of Future Climate Change on California Perennial Crop Yields: Model Projections with Climate and Crop Uncertainties

    SciTech Connect

    Lobell, D; Field, C; Cahill, K; Bonfils, C

    2006-01-10

    Most research on the agricultural impacts of climate change has focused on the major annual crops, yet perennial cropping systems are less adaptable and thus potentially more susceptible to damage. Improved assessments of yield responses to future climate are needed to prioritize adaptation strategies in the many regions where perennial crops are economically and culturally important. These impact assessments, in turn, must rely on climate and crop models that contain often poorly defined uncertainties. We evaluated the impact of climate change on six major perennial crops in California: wine grapes, almonds, table grapes, oranges, walnuts, and avocados. Outputs from multiple climate models were used to evaluate climate uncertainty, while multiple statistical crop models, derived by resampling historical databases, were used to address crop response uncertainties. We find that, despite these uncertainties, climate change in California is very likely to put downward pressure on yields of almonds, walnuts, avocados, and table grapes by 2050. Without CO{sub 2} fertilization or adaptation measures, projected losses range from 0 to >40% depending on the crop and the trajectory of climate change. Climate change uncertainty generally had a larger impact on projections than crop model uncertainty, although the latter was substantial for several crops. Opportunities for expansion into cooler regions are identified, but this adaptation would require substantial investments and may be limited by non-climatic constraints. Given the long time scales for growth and production of orchards and vineyards ({approx}30 years), climate change should be an important factor in selecting perennial varieties and deciding whether and where perennials should be planted.

  18. Impact of heat and drought stress on arable crop production in Belgium

    NASA Astrophysics Data System (ADS)

    Gobin, A.

    2012-06-01

    Modelling approaches are needed to accelerate understanding of adverse weather impacts on crop performances and yields. The aim was to elicit biometeorological conditions that affect Belgian arable crop yield, commensurate with the scale of climatic impacts. The regional crop model REGCROP (Gobin, 2010) enabled to examine changing weather patterns in relation to the crop season and crop sensitive stages of six arable crops: winter wheat, winter barley, winter rapeseed, potato, sugar beet and maize. The sum of vapour pressure deficit during the growing season is the single best predictor of arable yields, with R2 ranging from 0.55 for sugar beet to 0.76 for wheat. Drought and heat stress, in particular during the sensitive crop stages, occur at different times in the crop season and significantly differ between two climatic periods, 1947-1987 and 1988-2008. Though average yields have risen steadily between 1947 and 2008, there is no evidence that relative tolerance to stress has improved.

  19. Improving crop salt tolerance.

    PubMed

    Flowers, T J

    2004-02-01

    Salinity is an ever-present threat to crop yields, especially in countries where irrigation is an essential aid to agriculture. Although the tolerance of saline conditions by plants is variable, crop species are generally intolerant of one-third of the concentration of salts found in seawater. Attempts to improve the salt tolerance of crops through conventional breeding programmes have met with very limited success, due to the complexity of the trait: salt tolerance is complex genetically and physiologically. Tolerance often shows the characteristics of a multigenic trait, with quantitative trait loci (QTLs) associated with tolerance identified in barley, citrus, rice, and tomato and with ion transport under saline conditions in barley, citrus and rice. Physiologically salt tolerance is also complex, with halophytes and less tolerant plants showing a wide range of adaptations. Attempts to enhance tolerance have involved conventional breeding programmes, the use of in vitro selection, pooling physiological traits, interspecific hybridization, using halophytes as alternative crops, the use of marker-aided selection, and the use of transgenic plants. It is surprising that, in spite of the complexity of salt tolerance, there are commonly claims in the literature that the transfer of a single or a few genes can increase the tolerance of plants to saline conditions. Evaluation of such claims reveals that, of the 68 papers produced between 1993 and early 2003, only 19 report quantitative estimates of plant growth. Of these, four papers contain quantitative data on the response of transformants and wild-type of six species without and with salinity applied in an appropriate manner. About half of all the papers report data on experiments conducted under conditions where there is little or no transpiration: such experiments may provide insights into components of tolerance, but are not grounds for claims of enhanced tolerance at the whole plant level. Whether enhanced

  20. Remote estimation of canopy chlorophyll content in crops

    NASA Astrophysics Data System (ADS)

    Gitelson, Anatoly A.; Viña, Andrés; Ciganda, Verónica; Rundquist, Donald C.; Arkebauer, Timothy J.

    2005-04-01

    Accurate estimation of spatially distributed chlorophyll content (Chl) in crops is of great importance for regional and global studies of carbon balance and responses to fertilizer (e.g., nitrogen) application. In this paper a recently developed conceptual model was applied for remotely estimating Chl in maize and soybean canopies. We tuned the spectral regions to be included in the model, according to the optical characteristics of the crops studied, and showed that the developed technique allowed accurate estimation of total Chl in both crops, explaining more than 92% of Chl variation. This new technique shows great potential for remotely tracking the physiological status of crops, with contrasting canopy architectures, and their responses to environmental changes.

  1. Meteorological risks and impacts on crop production systems in Belgium

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2013-04-01

    Extreme weather events such as droughts, heat stress, rain storms and floods can have devastating effects on cropping systems. The perspective of rising risk-exposure is exacerbated further by projected increases of extreme events with climate change. More limits to aid received for agricultural damage and an overall reduction of direct income support to farmers further impacts farmers' resilience. Based on insurance claims, potatoes and rapeseed are the most vulnerable crops, followed by cereals and sugar beets. Damages due to adverse meteorological events are strongly dependent on crop type, crop stage and soil type. Current knowledge gaps exist in the response of arable crops to the occurrence of extreme events. The degree of temporal overlap between extreme weather events and the sensitive periods of the farming calendar requires a modelling approach to capture the mixture of non-linear interactions between the crop and its environment. The regional crop model REGCROP (Gobin, 2010) enabled to examine the likely frequency and magnitude of drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages of six arable crops: winter wheat, winter barley, winter rapeseed, potato, sugar beet and maize. Since crop development is driven by thermal time, crops matured earlier during the warmer 1988-2008 period than during the 1947-1987 period. Drought and heat stress, in particular during the sensitive crop stages, occur at different times in the cropping season and significantly differ between two climatic periods, 1947-1987 and 1988-2008. Soil moisture deficit increases towards harvesting, such that earlier maturing winter crops may avoid drought stress that occurs in late spring and summer. This is reflected in a decrease both in magnitude and frequency of soil moisture deficit around the sensitive stages during the 1988-2008 period when atmospheric drought may be compensated for with soil moisture. The risk of drought spells during

  2. Modeling the water-satisfied degree for production of the main food crops in China.

    PubMed

    Yu, Guangming; Yang, Yumeng; Tu, Zhenfa; Jie, Yi; Yu, Qiwu; Hu, Xiaoyan; Yu, Hailong; Zhou, Ruirui; Chen, Xiaoxu; Wang, Hongzhi

    2016-03-15

    Water resources are one of the important factors that influence regional crop production and the food security of humans. Most traditional models of crop water demand analysis are built on the basis of a certain crop or macroscopic analysis, which neglect regional crop allocation and the difference of water demand in different crop growing periods. In this paper, a new assessing model, the satisfied degree of crop water requirement, is developed to assess the impacts of water resources on production of six main food crops in China. The six main food crops are spring wheat, winter wheat, corn, early season rice, middle-season rice and late rice. The results show that: (1) there are serious risks of water shortage in China, even in south China with its abundant precipitation; (2) the satisfied degree of crop water demand represents great temporal-spatial changes. On spatial distribution the risks are high in major bases of food production due to influences of cropping system and crop-combinations. Northwest China is a special interesting case. In seasonal fluctuation water shortage is severe in March and September. These risks seriously restrict food production in China. The results also show that the strategic measures of water resources management must be chosen carefully to deal with food security and regional sustainable development in China.

  3. Space Data for Crop Management

    NASA Technical Reports Server (NTRS)

    1990-01-01

    CROPIX, Inc., formed in 1984 by Frank Lamb, president of the Eastern Oregon Farming Company, monitors primarily potato crops in a 20,000 square mile area of northern Oregon and central Washington. Potatoes are a high value specialty crop that can be more profitable to the farmer if he has advance knowledge of market conditions, knows when to harvest, and when to take it to market. By processing and collecting data collected by the NASA-developed Landsat Earth Resources survey satellites, Lamb is able to provide accurate information on crop acreage and conditions on a more timely basis than the routine estimates by the USDA. CROPIX uses Landsat data to make acreage estimates of crops, and to calculate a field-by-field vegetative index number. CROPIX then distributes to its customers a booklet containing color-coded maps, an inventory of crops, plus data and graphs on crop conditions and other valuable information.

  4. Crop demand of manganese.

    PubMed

    Marton, Laszlo

    2012-01-01

    The objectives of this study were to evaluate some of the popular rotation crops grown in Hungary for tolerance to low external Mn(2+) levels and to determine the critical tissue concentration of Mn(2+) deficiency during early stages of growth. The minimum Mn(2+) concentration required in soil nutrient contents was 42.5 mg kg(-1) for sunflower, 24.3 mg kg(-1) for tobacco and 10.2 mg kg(-1) for triticale. Sunflower, tobacco and triticale achieved optimum growth at 48.0-65.0 mg Mn(2+) kg(-1), 24.9-32.1 mg Mn( n+) kg(-1) and 28.7 to 29.6 mg Mn(2+) kg(-1), respectively. Critical shoot Mn(2+) concentration at early stages of growth was 53.6 mg kg(-1) in sunflower, 458.0 mg kg(-1) in tobacco and 193.8 mg kg(-1) in triticale. Our results demonstrate that the tolerance to low external Mn(2+) (triticale: <30.2 mg kg(-1); sunflower: <56.2 mg kg(-1); tobacco: <69.3 mg kg(-1)) and the critical tissue Mn(2+) levels for deficiency varied significantly between crop species tested.

  5. Modifying agricultural crops for improved nutrition.

    PubMed

    McGloughlin, Martina Newell

    2010-11-30

    The first generation of biotechnology products commercialized were crops focusing largely on input agronomic traits whose value was often opaque to consumers. The coming generations of crop plants can be grouped into four broad areas each presenting what, on the surface, may appear as unique challenges and opportunities. The present and future focus is on continuing improvement of agronomic traits such as yield and abiotic stress resistance in addition to the biotic stress tolerance of the present generation; crop plants as biomass feedstocks for biofuels and "bio-synthetics"; value-added output traits such as improved nutrition and food functionality; and plants as production factories for therapeutics and industrial products. From a consumer perspective, the focus on value-added traits, especially improved nutrition, is undoubtedly one of the areas of greatest interest. From a basic nutrition perspective, there is a clear dichotomy in demonstrated need between different regions and socioeconomic groups, the starkest being inappropriate consumption in the developed world and under-nourishment in Less Developed Countries (LDCs). Dramatic increases in the occurrence of obesity and related ailments in affluent regions are in sharp contrast to chronic malnutrition in many LDCs. Both problems require a modified food supply, and the tools of biotechnology have a part to play. Developing plants with improved traits involves overcoming a variety of technical, regulatory and indeed perception hurdles inherent in perceived and real challenges of complex traits modifications. Continuing improvements in molecular and genomic technologies are contributing to the acceleration of product development to produce plants with the appropriate quality traits for the different regions and needs. Crops with improved traits in the pipeline, the evolving technologies and the opportunities and challenges that lie ahead are covered.

  6. Reversed-polarity regions

    NASA Technical Reports Server (NTRS)

    Tang, F.

    1980-01-01

    The 58 RPRS studied have a lifespan comparable to normal active regions and have no tendency to rotate toward a more normal alignment. They seem to have stable configurations with no apparent evidence suggesting stress due to their anomalous magnetic alignment. Magnetic complexity in RPRs is the key to flare productivity just as it is in normal regions - weak field RPRs produced no flares and regions with complex spots produced more flares than regions with noncomplex spots by a factor of 5. The RPRs however, differ from normal regions in the frequency of having complex spots, particularly the long lived complex spots, in them. Less than 17 percent of normal ARs have complex spots; less than 1.8 percent have long lived complex spots. In contrast, 41 percent of RPRs have complex spots and 24 percent have long lived complex spots.

  7. Water Footprint of crop productions: A review.

    PubMed

    Lovarelli, Daniela; Bacenetti, Jacopo; Fiala, Marco

    2016-04-01

    Water Footprint is an indicator recently developed with the goal of quantifying the virtual content of water in products and/or services. It can also be used to identify the worldwide virtual water trade. Water Footprint is composed of three parts (green, blue and grey waters) that make the assessment complete in accordance with the Water Footprint Network and with the recent ISO14046. The importance of Water Footprint is linked to the need of taking consciousness about water content in products and services and of the achievable changes in productions, diets and market trades. In this study, a literature review has been completed on Water Footprint of agricultural productions. In particular, the focus was paid on crops for the production of food and bioenergy. From the review, the development of the Water Footprint concept emerged: in early studies the main goal was to assess products' water trade on a global scale, while in the subsequent years, the goal was the rigorous quantification of the three components for specific crops and in specific geographical areas. In the most recent assessments, similarities about the methodology and the employed tools emerged. For 96 scientific articles on Water Footprint indicator of agricultural productions, this literature review reports the main results and analyses weaknesses and strengths. Seventy-eight percent of studies aimed to quantify Water Footprint, while the remaining 22% analysed methodology, uncertainty, future trends and comparisons with other footprints. It emerged that most studies that quantified Water Footprint concerned cereals (33%), among which maize and wheat were the most investigated crops. In 46% of studies all the three components were assessed, while in 18% no indication about the subdivision was given; in the remaining 37%, only blue or green and blue components were quantified.

  8. Noah-MP-Crop: Enhancing cropland representation in the community land surface modeling system

    NASA Astrophysics Data System (ADS)

    Liu, X.; Chen, F.; Barlage, M. J.; Zhou, G.; Niyogi, D.

    2015-12-01

    Croplands are important in land-atmosphere interactions and in modifying local and regional weather and climate. Despite their importance, croplands are poorly represented in the current version of the coupled Weather Research and Forecasting (WRF)/ Noah land-surface modeling system, resulting in significant surface temperature and humidity biases across agriculture- dominated regions of the United States. This study aims to improve the WRF weather forecasting and regional climate simulations during the crop growing season by enhancing the representation of cropland in the Noah-MP land model. We introduced dynamic crop growth parameterization into Noah-MP and evaluated the enhanced model (Noah-MP-Crop) at both the field and regional scales with multiple crop biomass datasets, surface fluxes and soil moisture/temperature observations. We also integrated a detailed cropland cover map into WRF, enabling the model to simulate corn and soybean field across the U.S. Great Plains. Results show marked improvement in the Noah-MP-Crop performance in simulating leaf area index (LAI), crop biomass, soil temperature, and surface fluxes. Enhanced cropland representation is not only crucial for improving weather forecasting but can also help assess potential impacts of weather variability on regional hydrometeorology and crop yields. In addition to its applications to WRF, Noah-MP-Crop can be applied in high-spatial-resolution regional crop yield modeling and drought assessments

  9. Climate Change Impacts on Crop Production in Nigeria

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.

    2011-12-01

    The agricultural sector in Nigeria is particularly important for the country's food security, natural resources, and growth agenda. The cultivable areas comprise more than 70% of the total area; however, the cultivated area is about the 35% of the total area. The most important components in the food basket of the nation are cereals and tubers, which include rice, maize, corn, millet, sorghum, yam, and cassava. These crops represent about 80% of the total agricultural product in Nigeria (from NPAFS). The major crops grown in the country can be divided into food crops (produced for consumption) and export products. Despite the importance of the export crops, the primary policy of agriculture is to make Nigeria self-sufficient in its food and fiber requirements. The projected impacts of future climate change on agriculture and water resources are expected to be adverse and extensive in these area. This implies the need for actions and measures to adapt to climate change impacts, and especially as they affect agriculture, the primary sector for Nigerian economy. In the framework of the Project Climate Risk Analysis in Nigeria (founded by World Bank Contract n.7157826), a study was made to assess the potential impact of climate change on the main crops that characterize Nigerian agriculture. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT are tools that simulate physiological processes of crop growth, development and production by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were calibrated to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output was "perturbed" with 10 Global Climate Models to have

  10. An Assessment of the Quality of Crop Yield Predictions under Different Degrees of Water Limitation in European Crop Producing Countries

    NASA Astrophysics Data System (ADS)

    Vogel, E.

    2015-12-01

    The Fifth IPCC Assessment Report on climate change shows that the frequency and/or intensity of different types of weather extreme events is likely to increase in a number of regions across the globe. The agricultural sector, which plays a crucial role for the livelihood of a large fraction of the world's population, is particularly vulnerable to extreme events due to its dependency on climate conditions.Process-based crop models play an important role for translating climate and weather information into agricultural forecasts, both at decadal time scales as part of climate impact assessments and shorter time scales, for examples for seasonal yield predictions as part of early warning systems for harvest failures. A variety of crop models exist, with different degrees of complexity, spatial and temporal resolutions, incorporated chemical, physical and biological processes and mathematical formulations of these processes. Furthermore, crop models differ with regard to the agro-climatic zones and crop types for which they were calibrated and validated. For these reasons, crop models can vary significantly with respect to their suitability for yield forecasts under different climate conditions, geographical regions and crop types.In this study, we assess the quality of crop yield predictions of the vegetation model LPJmL for four major crops (maize, rice, wheat, soy) under a range of water limitation conditions in Europe, using a high-resolution regional climate data set (0.1 ° x 0.1 °) covering the period 1989-2008. The aim of the study is to examine the degree of uncertainty of yield predictions for different agro-climatic zones and to identify the factors that influence the goodness-of-fit of model predictions. By this, we hope to provide input into further model improvements and to provide guidance for decision-makers on the suitability of yield predictions for different climatic regions within the European continent.

  11. Australia’s food system is highly dependent on foreign crop diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The food crops that are now produced or consumed in Australia were initially domesticated and evolved over time in specific geographic regions across the planet. Genetic diversity within these crops and their wild relatives is considered to be historically particularly rich within these regions. Los...

  12. Impact of Corn Residue Removal on Crop and Soil Productivity

    NASA Astrophysics Data System (ADS)

    Johnson, J. M.; Wilhelm, W. W.; Hatfield, J. L.; Voorhees, W. B.; Linden, D.

    2003-12-01

    Over-reliance on imported fuels, increasing atmospheric levels of greenhouses and sustaining food production for a growing population are three of the most important problems facing society in the mid-term. The US Department of Energy and private enterprise are developing technology necessary to use high cellulose feedstock, such as crop residues, for ethanol production. Based on production levels, corn (Zea mays L.) residue has potential as a biofuel feedstock. Crop residues are a renewable and domestic fuel source, which can reduce the rate of fossil fuel use (both imported and domestic) and provide an additional farm commodity. Crop residues protect the soil from wind and water erosion, provide inputs to form soil organic matter (a critical component determining soil quality) and play a role in nutrient cycling. Crop residues impact radiation balance and energy fluxes and reduce evaporation. Therefore, the benefits of using crop residues as fuel, which removes crop residues from the field, must be balanced against negative environmental impacts (e.g. soil erosion), maintaining soil organic matter levels, and preserving or enhancing productivity. All ramifications of new management practices and crop uses must be explored and evaluated fully before an industry is established. There are limited numbers of long-term studies with soil and crop responses to residue removal that range from negative to negligible. The range of crop and soil responses to crop residue removal was attributed to interactions with climate, management and soil type. Within limits, corn residue can be harvested for ethanol production to provide a renewable, domestic source of energy feedstock that reduces greenhouse gases. Removal rates must vary based on regional yield, climatic conditions and cultural practices. Agronomists are challenged to develop a protocol (tool) for recommending maximum permissible removal rates that ensure sustained soil productivity.

  13. 605 Salad crops: Root, bulb, and tuber Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root and tuber crops (potato, cassava, sweet potato, and yams) comprise 4 of the 10 major food staples of the world and serve as a major source of energy for the poor of developing nations. Minimal strain placed on agro ecosystems by root and tuber crops highlight their welcomed contribution to the ...

  14. Vinasse and Its Influence on Ant (Hymenoptera: Formicidae) Communities in Sugarcane Crops.

    PubMed

    Saad, L P; Souza-Campana, D R; Bueno, O C; Morini, M S C

    2017-01-01

    Sugarcane is an important crop within the Brazilian socioeconomic landscape. There is a constant need for approaches to increase sustainability at all steps of the production chain. Irrigating sugarcane crops with vinasse is one of these approaches, because vinasse is a residue of sugarcane processing that can be used to fertilize these same crops. However, due to its chemical properties, vinasse may be harmful to soil fauna. Analyzing the structure and functional organization of ant communities is a fast and practical way to monitor sites affected by the addition of chemicals. This study compared the structure of soil ant communities in vinasse-irrigated sugarcane crops to those in secondary forests adjacent to the crops. In total, 32 genera and 107 species of ants were observed; of these, 30 species foraged in crop fields and 102 foraged in forests. Twenty-five percent of the species were present in both crops and forests. Ant communities in crop soil had poorer taxonomic composition and lower richness in each functional group compared to communities in forest remnants. However, regardless of vegetation type, epigeic ants were more diverse, and Dorymyrmex brunneus (crop) and Pachycondyla striata (forest) were very frequent. Vinasse did not increase the diversity of epigeic and hypogeic ants, but it may affect the community composition.

  15. Vinasse and Its Influence on Ant (Hymenoptera: Formicidae) Communities in Sugarcane Crops

    PubMed Central

    Saad, L. P.; Souza-Campana, D. R.; Bueno, O. C.

    2017-01-01

    Sugarcane is an important crop within the Brazilian socioeconomic landscape. There is a constant need for approaches to increase sustainability at all steps of the production chain. Irrigating sugarcane crops with vinasse is one of these approaches, because vinasse is a residue of sugarcane processing that can be used to fertilize these same crops. However, due to its chemical properties, vinasse may be harmful to soil fauna. Analyzing the structure and functional organization of ant communities is a fast and practical way to monitor sites affected by the addition of chemicals. This study compared the structure of soil ant communities in vinasse-irrigated sugarcane crops to those in secondary forests adjacent to the crops. In total, 32 genera and 107 species of ants were observed; of these, 30 species foraged in crop fields and 102 foraged in forests. Twenty-five percent of the species were present in both crops and forests. Ant communities in crop soil had poorer taxonomic composition and lower richness in each functional group compared to communities in forest remnants. However, regardless of vegetation type, epigeic ants were more diverse, and Dorymyrmex brunneus (crop) and Pachycondyla striata (forest) were very frequent. Vinasse did not increase the diversity of epigeic and hypogeic ants, but it may affect the community composition. PMID:28130455

  16. Weather based risks and insurances for crop production in Belgium

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2014-05-01

    Extreme weather events such as late frosts, droughts, heat waves and rain storms can have devastating effects on cropping systems. Damages due to extreme events are strongly dependent on crop type, crop stage, soil type and soil conditions. The perspective of rising risk-exposure is exacerbated further by limited aid received for agricultural damage, an overall reduction of direct income support to farmers and projected intensification of weather extremes with climate change. According to both the agriculture and finance sectors, a risk assessment of extreme weather events and their impact on cropping systems is needed. The impact of extreme weather events particularly during the sensitive periods of the farming calendar requires a modelling approach to capture the mixture of non-linear interactions between the crop, its environment and the occurrence of the meteorological event. The risk of soil moisture deficit increases towards harvesting, such that drought stress occurs in spring and summer. Conversely, waterlogging occurs mostly during early spring and autumn. Risks of temperature stress appear during winter and spring for chilling and during summer for heat. Since crop development is driven by thermal time and photoperiod, the regional crop model REGCROP (Gobin, 2010) enabled to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. The risk profiles were subsequently confronted with yields, yield losses and insurance claims for different crops. Physically based crop models such as REGCROP assist in understanding the links between different factors causing crop damage as demonstrated for cropping systems in Belgium. Extreme weather events have already precipitated contraction of insurance coverage in some markets (e.g. hail insurance), and the process can be expected to continue if the losses or damages from such events increase in the future. Climate

  17. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    NASA Astrophysics Data System (ADS)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    moderate levels (67 kg N ha-1). Increasing fertilizer application beyond the point of diminishing returns for grain (67 kg N ha-1) to double the regionally-recommended amount (202 kg N ha-1) resulted in only marginal increases (25%) in crop residue carbohydrate yield, while increasing lignin yields 41%. In the case of at least this ecosystem, high fertilization rates did not result in large carbohydrate yield increases in the crop residue, and instead produced a lower quality feedstock for cellulosic ethanol production.

  18. Ozone impacts on the productivity of selected crops. [Corn, wheat, soybean and peanut crops

    SciTech Connect

    Heck, W.W.; Cure, W.W.; Shriner, D.S.; Olson, R.J.; Heagle, A.S.

    1982-01-01

    The regional impacts of ozone on corn, wheat, soybean, and peanut crops are estimated by using dose-response functions to relate ambient maximum 7 h/d seasonal ozone concentrations to crop productivity data. Linear dose-response functions were developed from open-top field chamber studies. It was assumed that the limited number of cultivars and growing conditions available for the analysis were representative of major agricultural regions. Hourly ozone data were selected to represent rural concentrations and used to calculate maximum 7-h/d average values. Seasonal ozone averages for counties were extrapolated from approximately 300 monitoring sites. Results must be interpreted with knowledge of these assumptions and sources of uncertainty. Impacts are calculated for county units for the conterminous United States with maps showing patterns and tables summarizing the potential magnitude of ozone effects on selected crop yields. The assessment estimates that approximately three billion dollars of productivity could be gained if current maximum 7 hour per day ozone levels were reduced from present levels to below 25 parts per billion. Dollar values are based on 1978 crop prices, without accounting for price effects, to provide an overall estimate of the impact. Of the estimated economic impact, soybean represents 64%, corn 17%, wheat 12%, and peanuts 7%.

  19. Biosolarization in garlic crop

    NASA Astrophysics Data System (ADS)

    Fabeiro, Concepcion; Andres, Manuela; Wic, Consuelo

    2014-05-01

    One of the most important limitations of garlic cultivation is the presence of various soil pathogens. Fusarium proliferatum and Sclerotinium cepivorum and nematode Ditilenchus dipsaci cause such problems that prevent the repetition of the crop in the same field for at least 5 -8 years or soil disinfection is necessary. Chemical disinfection treatments have an uncertain future, in the European Union are reviewing their use, due to the effect on the non-pathogenic soil fauna. This situation causes a itinerant cultivation to avoid the limitations imposed by soil diseases, thereby increasing production costs. The Santa Monica Cooperative (Albacete, Spain) requested advice on possible alternative techniques, solarization and biosolarization. For which a trial was conducted to evaluate the effectiveness on the riverside area of the municipality. This place has recently authorized irrigation, which would allow the repeated cultivation of garlic if the incidence of soil diseases and the consequent soil fatigue could be avoided. Additionally, this work will serve to promote the cultivation of organic garlic. Last, but not least, the biosolarization technique allows to use waste from wineries, oil mills and mushroom crops. (Bello et al. 2003). The essay should serve as demonstrative proof for farmers' cooperative members. The specific objective for this first year is to assess, the effect on the global soil biota, on the final garlic production and quality and the effect of biosolarization to control soil pathogens. The trial is set on a cooperative's plot previously cultivated with corn. 5 treatments were set, defined by different amounts of organic matter applied, 7.5, 5, 2.5 kg m -2, a solarized with no organic matter, and a control without any treatment. The plot has inground sprinkler for full coverage with four sprinkler lines demarcating the five bands of differential treatment, randomly arranged. Organic matter was incorporated the August 14, 2013, then thoroughly

  20. Thiamin biofortification of crops.

    PubMed

    Goyer, Aymeric

    2016-10-14

    Thiamin is essential for human health. While plants are the ultimate source of thiamin in most human diets, staple foods like white rice have low thiamin content. Therefore, populations whose diets are mainly based on low-thiamin staple crops suffer from thiamin deficiency. Biofortification of rice grain by engineering the thiamin biosynthesis pathway has recently been attempted, with up to 5-fold increase in thiamin content in unpolished seeds. However, polished seeds that retain only the starchy endosperm had similar thiamin content than that of non-engineered plants. Various factors such as limited supply of precursors, limited activity of thiamin biosynthetic enzymes, dependence on maternal tissues to supply thiamin, or lack of thiamin stabilizing proteins may have hindered thiamin increase in the endosperm.

  1. Why genetically modified crops?

    PubMed

    Jones, Jonathan D G

    2011-05-13

    This paper is intended to convey the message of the talk I gave at the Theo Murphy meeting at the Kavli Centre in July 2010. It, like the talk, is polemical, and conveys the exasperation felt by a practitioner of genetically modified (GM) plant science at its widespread misrepresentation. I argue that sustainable intensification of agriculture, using GM as well as other technologies, reduces its environmental impact by reducing pesticide applications and conserving soil carbon by enabling low till methods. Current technologies (primarily insect resistance and herbicide tolerance) have been beneficial. Moreover, the near-term pipeline of new GM methods and traits to enhance our diet, increase crop yields and reduce losses to disease is substantial. It would be perverse to spurn this approach at a time when we need every tool in the toolbox to ensure adequate food production in the short, medium and long term.

  2. Economic evaluation of crop acreage estimation by multispectral remote sensing. [Michigan

    NASA Technical Reports Server (NTRS)

    Manderscheid, L. V.; Nalepka, R. F. (Principal Investigator); Myers, W.; Safir, G.; Ilhardt, D.; Morgenstern, J. P.; Sarno, J.

    1976-01-01

    The author has identified the following significant results. Photointerpretation of S190A and S190B imagery showed significantly better resolution with the S190B system. A small tendancy to underestimate acreage was observed. This averaged 6 percent and varied with field size. The S190B system had adequate resolution for acreage measurement but the color film did not provide adequate contrast to allow detailed classification of ground cover from imagery of a single date. In total 78 percent of the fields were correctly classified but with 56 percent correct for the major crop, corn.

  3. Biofortifying crops with essential mineral elements.

    PubMed

    White, Philip J; Broadley, Martin R

    2005-12-01

    Humans require more than 22 mineral elements, which can all be supplied by an appropriate diet. However, the diets of populations subsisting on cereals, or inhabiting regions where soil mineral imbalances occur, often lack Fe, Zn, Ca, Mg, Cu, I or Se. Traditional strategies to deliver these minerals to susceptible populations have relied on supplementation or food fortification programs. Unfortunately, these interventions have not always been successful. An alternative solution is to increase mineral concentrations in edible crops. This is termed 'biofortification'. It can be achieved by mineral fertilization or plant breeding. There is considerable genetic variation in crop species that can be harnessed for sustainable biofortification strategies. Varieties with increased mineral concentrations in their edible portions are already available, and new genotypes with higher mineral densities are being developed.

  4. Micronutrients in Soils, Crops, and Livestock

    NASA Astrophysics Data System (ADS)

    Gupta, Umesh C.; Wu, Kening; Liang, Siyuan

    Micronutrient concentrations are generally higher in the surface soil and decrease with soil depth. In spite of the high concentration of most micronutrients in soils, only a small fraction is available to plants. Micronutrients, also known as trace elements, are required in microquantities but their lack can cause serious crop production and animal health problems. Crops vary considerably in their response to various micronutrients. Brassicas and legumes are highly responsive to molybdenum (Mo) and boron (B), whereas corn and other cereals are more responsive to zinc (Zn) and copper (Cu). Micronutrient deficiencies are more common in humid temperate regions, as well as in humid tropical regions, because of intense leaching associated with high precipitation. Soil pH is one of the most important factors affecting the availability of micronutrients to plants. With increasing pH, the availability of these nutrients is reduced with the exception of Mo whose availability increases as soil pH increases. In most plant species, leaves contain higher amounts of nutrients than other plant parts. Therefore, whenever possible, leaves should be sampled to characterize the micronutrient status of crops. Deficiency symptoms for most micronutrients appear on the younger leaves at the top of the plant, whereas toxicity symptoms generally appear on the older leaves of plants. As summarized by Deckers and Steinnes, micronutrient deficiencies are widespread in developing countries, which have much poorer soil resources than the fertile soils of Europe and North America. Many of these areas lie in the humid tropics with extremely infertile, highly weathered, and/or highly leached soils, which are intensely deficient in nutrients. The rest of such soils are in the semiarid and areas adjacent to the latter, where alkaline and calcareous soil conditions severely limit the availability of micronutrients to plants. Frequently, the Cu, iron (Fe), manganese (Mn), Zn, and selenium (Se) levels

  5. Effects of geoengineering on crop yields

    NASA Astrophysics Data System (ADS)

    Pongratz, J.; Lobell, D. B.; Cao, L.; Caldeira, K.

    2011-12-01

    The potential of "solar radiation management" (SRM) to reduce future climate change and associated risks has been receiving significant attention in scientific and policy circles. SRM schemes aim to reduce global warming despite increasing atmospheric CO2 concentrations by diminishing the amount of solar insolation absorbed by the Earth, for example, by injecting scattering aerosols into the atmosphere. Climate models predict that SRM could fully compensate warming at the global mean in a high-CO2 world. While reduction of global warming may offset a part of the predicted negative effects of future climate change on crop yields, SRM schemes are expected to alter regional climate and to have substantial effects on climate variables other than temperature, such as precipitation. It has therefore been warned that, overall, SRM may pose a risk to food security. Assessments of benefits and risks of geoengineering are imperative, yet such assessments are only beginning to emerge; in particular, effects on global food security have not previously been assessed. Here, for the first time, we combine climate model simulations with models of crop yield responses to climate to assess large-scale changes in yields and food production under SRM. In most crop-growing regions, we find that yield losses caused by climate changes are substantially reduced under SRM as compared with a non-geoengineered doubling of atmospheric CO2. Substantial yield losses with SRM are only found for rice in high latitudes, where the limits of low temperatures are no longer alleviated. At the same time, the beneficial effect of CO2-fertilization on plant productivity remains active. Overall therefore, SRM in our models causes global crop yields to increase. We estimate the direct effects of climate and CO2 changes on crop production, and do not quantify effects of market dynamics and management changes. We note, however, that an SRM deployment would be unlikely to maintain the economic status quo, as

  6. Irrigation modeling with AquaCrop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AquaCrop is a crop water productivity model developed by the Land and Water Division of UN-FAO. It simulates yield response to water of herbaceous crops, and is suited to address conditions where water is a key limiting factor in crop production. AquaCrop attempts to balance accuracy, simplicity, an...

  7. Transgenic Crops for Herbicide Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since their introduction in 1995, crops made resistant to the broad-spectrum herbicides glyphosate and glufosinate with transgenes are widely available and used in much of the world. As of 2008, over 80% of the transgenic crops grown world-wide have this transgenic trait. This technology has had m...

  8. High plains cover crop research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some recent statements have been made about the benefits of growing cover crops in mixtures as compared with single-species plantings of cover crops. Those stated benefits have included greatly reduced water use, enhanced soil microbiological activity, increased biomass productivity, and enhanced wa...

  9. Crop Residue and Soil Water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop yield is greatly influenced by the amount of water that moves from the soil, through the plant, and out into the atmosphere. Winter wheat yield responds linearly to available soil water content at planting (bu/a = 5.56 + 5.34*inches). Therefore, storing precipitation in the soil during non-crop...

  10. Genetic Engineering and Crop Production.

    ERIC Educational Resources Information Center

    Jones, Helen C.; Frost, S.

    1991-01-01

    With a spotlight upon current agricultural difficulties and environmental dilemmas, this paper considers both the extant and potential applications of genetic engineering with respect to crop production. The nonagricultural factors most likely to sway the impact of this emergent technology upon future crop production are illustrated. (JJK)

  11. Transgenic horticultural crops in Asia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern biotechnology applications, including genetic engineering, are a powerful tool to complement the conventional methods of crop improvement. Asia currently has three countries cultivating biotech/transgenic crops – China, India, and the Philippines, but only China commercially grows a transgen...

  12. Midwest Cover Crops Field Guide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers who want to prevent soil erosion, improve nutrient cycling, sustain their soils, and protect/maintain the environment have been returning to a very old practice: planting cover crops. Cover crops are effective tools for reducing soil erosion and increasing nutrient recycling on farmlands, ...

  13. Alternative cropping systems for sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting cover crops during the fallow period prior to planting sugarcane has the potential to influence not only the following sugarcane crop, but the economics of the production system as a whole. Research was conducted at the USDA, ARS, Sugarcane Research Unit at Houma, LA to determine the impac...

  14. Crop Species Diversity Changes in the United States: 1978–2012

    PubMed Central

    Aguilar, Jonathan; Gramig, Greta G.; Hendrickson, John R.; Archer, David W.; Forcella, Frank; Liebig, Mark A.

    2015-01-01

    Anecdotal accounts regarding reduced US cropping system diversity have raised concerns about negative impacts of increasingly homogeneous cropping systems. However, formal analyses to document such changes are lacking. Using US Agriculture Census data, which are collected every five years, we quantified crop species diversity from 1978 to 2012, for the contiguous US on a county level basis. We used Shannon diversity indices expressed as effective number of crop species (ENCS) to quantify crop diversity. We then evaluated changes in county-level crop diversity both nationally and for each of the eight Farm Resource Regions developed by the National Agriculture Statistics Service. During the 34 years we considered in our analyses, both national and regional ENCS changed. Nationally, crop diversity was lower in 2012 than in 1978. However, our analyses also revealed interesting trends between and within different Resource Regions. Overall, the Heartland Resource Region had the lowest crop diversity whereas the Fruitful Rim and Northern Crescent had the highest. In contrast to the other Resource Regions, the Mississippi Portal had significantly higher crop diversity in 2012 than in 1978. Also, within regions there were differences between counties in crop diversity. Spatial autocorrelation revealed clustering of low and high ENCS and this trend became stronger over time. These results show that, nationally counties have been clustering into areas of either low diversity or high diversity. Moreover, a significant trend of more counties shifting to lower rather than to higher crop diversity was detected. The clustering and shifting demonstrates a trend toward crop diversity loss and attendant homogenization of agricultural production systems, which could have far-reaching consequences for provision of ecosystem system services associated with agricultural systems as well as food system sustainability. PMID:26308552

  15. Double- and relay-cropping oilseed and biomass crops for sustainable energy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economically and environmentally sustainable bioenergy production requires strategic integration of biofuel crops into modern cropping systems. Double- and relay-cropping can offer a means of increasing production efficiency to boost profits and provide environmental benefits through crop diversific...

  16. Employing a composite gene-flow index to numerically quantify a crop's potential for gene flow: an Irish perspective.

    PubMed

    Flannery, Marie-Louise; Meade, Conor; Mullins, Ewen

    2005-01-01

    Guidelines to ensure the efficient coexistence of genetically modified (GM) and conventional crops are currently being considered across the European Union. The purpose of this strategy is to describe the measures a farmer must adopt to minimize the admixture of GM and non-GM crops. Minimizing pollen/seed-mediated gene flow between GM and non-GM crops is central to successful coexistence. However no system is currently available to permit the numeric quantification of a crop's propensity for pollen/seed-mediated gene flow. The provision of such a system could permit a background level of gene flow, specific for a particular conventional crop, to be calculated. Here we present a gene flow index model implemented using the principal arable crops in Ireland as a model dataset. The objective of this research was to establish a baseline gene flow data set for Ireland's primary conventional crops through the provision of a simple numerical index. This Gene Flow Index (GFI) incorporates four strands of crop-mediated gene flow (crop pollen-to-crop, crop pollen-to-wild, crop seed-to-volunteer and crop seed-to-feral) into a format that permits the calculation of a crop's gene flow potential. Responsive to regional parameters, we have applied the model to sugar beet, oilseed rape, potato, ryegrass, maize, wheat and barley. We propose that the attained indices will highlight those crops that require additional measures in order to minimize gene flow in accordance with anticipated coexistence guidelines.

  17. Mapping Crop Yield and Sow Date Using High Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Royal, K.

    2015-12-01

    Keitasha Royal, Meha Jain, Ph.D., David Lobell, Ph.D Mapping Crop Yield and Sow Date Using High Resolution ImageryThe use of satellite imagery in agriculture is becoming increasingly more significant and valuable. Due to the emergence of new satellites, such as Skybox, these satellites provide higher resolution imagery (e.g 1m) therefore improving the ability to map smallholder agriculture. For the smallholder farm dominated area of northern India, Skybox high-resolution satellite imagery can aid in understanding how to improve farm yields. In particular, we are interested in mapping winter wheat in India, as this region produces approximately 80% of the country's wheat crop, which is important given that wheat is a staple crop that provides approximately 20% of household calories. In northeast India, the combination of increased heat stress, limited irrigation access, and the difficulty for farmers to access advanced farming technologies results in farmers only producing about 50% of their potential crop yield. The use of satellite imagery can aid in understanding wheat yields through time and help identify ways to increase crop yields in the wheat belt of India. To translate Skybox satellite data into meaningful information about wheat fields, we examine vegetation indices, such as the normalized difference vegetation index (NDVI), to measure the "greenness" of plants to help determine the health of the crops. We test our ability to predict crop characteristics, like sow date and yield, using vegetation indices of 59 fields for which we have field data in Bihar, India.

  18. Functional Genomics of Drought Tolerance in Bioenergy Crops

    SciTech Connect

    Yin, Hengfu; Chen, Rick; Yang, Jun; Weston, David; Chen, Jay; Muchero, Wellington; Ye, Ning; Tschaplinski, Timothy J; Wullschleger, Stan D; Cheng, Zong-Ming; Tuskan, Gerald A; Yang, Xiaohan

    2014-01-01

    With the predicted trends in climate change, drought will increasingly impose a grand challenge to biomass production. Most of the bioenergy crops have some degree of drought susceptibility with low water-use efficiency (WUE). It is imperative to improve drought tolerance and WUE in bioenergy crops for sustainable biomass production in arid and semi-arid regions with minimal water input. Genetics and functional genomics can play a critical role in generating knowledge to inform and aid genetic improvement of drought tolerance in bioenergy crops. The molecular aspect of drought response has been extensively investigated in model plants like Arabidopsis, yet our understanding of the molecular mechanisms underlying drought tolerance in bioenergy crops are limited. Crops exhibit various responses to drought stress depending on species and genotype. A rational strategy for studying drought tolerance in bioenergy crops is to translate the knowledge from model plants and pinpoint the unique features associated with individual species and genotypes. In this review, we summarize the general knowledge about drought responsive pathways in plants, with a focus on the identification of commonality and specialty in drought responsive mechanisms among different species and/or genotypes. We describe the genomic resources developed for bioenergy crops and discuss genetic and epigenetic regulation of drought responses. We also examine comparative and evolutionary genomics to leverage the ever-increasing genomics resources and provide new insights beyond what has been known from studies on individual species. Finally, we outline future exploration of drought tolerance using the emerging new technologies.

  19. Rice Crop Mapping Using SENTINEL-1A Phenological Metrics

    NASA Astrophysics Data System (ADS)

    Chen, C. F.; Son, N. T.; Chen, C. R.; Chang, L. Y.; Chiang, S. H.

    2016-06-01

    Rice is the most important food crop in Vietnam, providing food more than 90 million people and is considered as an essential source of income for majority of rural populations. Monitoring rice-growing areas is thus important to developing successful strategies for food security in the country. This paper aims to develop an approach for crop acreage estimation from multi-temporal Sentinel-1A data. We processed the data for two main cropping seasons (e.g., winter-spring, summer-autumn) in the Mekong River Delta (MRD), Vietnam through three main steps: (1) data pre-processing, (3) rice classification based on crop phenological metrics, and (4) accuracy assessment of the mapping results. The classification results compared with the ground reference data indicated the overall accuracy of 86.2% and Kappa coefficient of 0.72. These results were reaffirmed by close correlation between the government's rice area statistics for such crops (R2 > 0.95). The values of relative error in area obtained for the winter-spring and summer-autumn were -3.6% and 6.7%, respectively. This study demonstrates the potential application of multi-temporal Sentinel-1A data for rice crop mapping using information of crop phenology in the study region.

  20. Evaluation of current derivative spectrophotometric methodology for the determination of percent carboxyhemoglobin saturation in postmortem blood samples.

    PubMed

    Perrigo, B J; Joynt, B P

    1989-01-01

    Carbon monoxide intoxication continues to be a commonly encountered cause of death in most areas of Canada. The forensic nature of the samples in these cases presents special problems that are not normally encountered in clinical determinations. A study was undertaken to assess various methods of determining the percent carboxyhemoglobin saturation in blood, more specifically, those using derivative spectrophotometric measurements in the Soret region of the UV spectrum. At the same time, other studies were carried out: the effects of storage time on the carboxyhemoglobin levels; evaluation of sample containers; comparison of percent carboxyhemoglobin saturation in blood samples taken ante-mortem and post-mortem. Blood for the study was obtained from laboratory animals that were exposed to carbon monoxide before death.

  1. 30 CFR 57.22240 - Actions at 2.0 percent methane (V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Actions at 2.0 percent methane (V-A mines). 57... MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22240 Actions at 2.0 percent methane (V-A mines). If methane reaches 2.0 percent in the mine atmosphere, all persons other...

  2. 30 CFR 57.22240 - Actions at 2.0 percent methane (V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Actions at 2.0 percent methane (V-A mines). 57... MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22240 Actions at 2.0 percent methane (V-A mines). If methane reaches 2.0 percent in the mine atmosphere, all persons other...

  3. TPLOT:A Simple Program for Plotting Percent Composition Data on Ternary Diagrams.

    DTIC Science & Technology

    TPLOT directs the Hewlett-Packard 9810A programmable calculator and the 9862A plotter to plot points, on an equilateral ternary diagram, which represent designated percent compositions of three pure end-members: A, B, and C. Percent A and percent B are the only required data input to this program. Use of the TPLOT program provides a substantial savings of time and minimizes operator fatigue when compared with manual methods of plotting the same data. (Author)

  4. Cover crop mixtures for promoting arbuscular mycorrhizal fungi in production agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arbuscular mycorrhizal fungi (AMF) associate with an estimated 80-90 percent of flowering plants and virtually every crop species that supplies food to the world. AMF play a vital role in nutrient uptake and are particularly adept at increasing phosphorus availability to plants. With the growing e...

  5. Soil Water Improvements with the Long Term Use of a Winter Rye Cover Crop

    NASA Astrophysics Data System (ADS)

    Basche, A.; Kaspar, T.; Archontoulis, S.; Jaynes, D. B.; Sauer, T. J.; Parkin, T.; Miguez, F.

    2015-12-01

    The Midwestern United States, a region that produces one-third of maize and one-quarter of soybeans globally, is projected to experience increasing rainfall variability with future climate change. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance soil water storage, reducing the risks of flooding and runoff as well as drought-induced crop water stress. While some research indicates that a winter cover crop in a maize-soybean rotation increases soil water, producers continue to be concerned that water use by cover crops will reduce water for a following cash crop. We analyzed continuous in-field soil moisture measurements over from 2008-2014 at a Central Iowa research site that has included a winter rye cover crop in a maize-soybean rotation for thirteen years. This period of study included years in the top third of wettest years on record (2008, 2010, 2014) as well as years in the bottom third of driest years (2012, 2013). We found the cover crop treatment to have significantly higher soil water storage from 2012-2014 when compared to the no cover crop treatment and in most years greater soil water content later in the growing season when a cover crop was present. We further found that the winter rye cover crop significantly increased the field capacity water content and plant available water compared to the no cover crop treatment. Finally, in 2012 and 2013, we measured maize and soybean biomass every 2-3 weeks and did not see treatment differences in crop growth, leaf area or nitrogen uptake. Final crop yields were not statistically different between the cover and no cover crop treatment in any of the years of this analysis. This research indicates that the long-term use of a winter rye cover crop can improve soil water dynamics without sacrificing cash crop growth.

  6. 13 CFR 107.1410 - Requirement to redeem 4 percent Preferred Securities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees (Leverage) Preferred Securities Leverage-Section 301(d) Licensees § 107.1410 Requirement to redeem 4 percent Preferred...

  7. 13 CFR 107.1420 - Articles requirements for 4 percent Preferred Securities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees (Leverage) Preferred Securities Leverage-Section 301(d) Licensees § 107.1420 Articles requirements for 4 percent...

  8. 13 CFR 107.1420 - Articles requirements for 4 percent Preferred Securities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees (Leverage) Preferred Securities Leverage-Section 301(d) Licensees § 107.1420 Articles requirements for 4 percent...

  9. 13 CFR 107.1410 - Requirement to redeem 4 percent Preferred Securities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees (Leverage) Preferred Securities Leverage-Section 301(d) Licensees § 107.1410 Requirement to redeem 4 percent Preferred...

  10. 13 CFR 107.1410 - Requirement to redeem 4 percent Preferred Securities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees (Leverage) Preferred Securities Leverage-Section 301(d) Licensees § 107.1410 Requirement to redeem 4 percent Preferred...

  11. 13 CFR 107.1420 - Articles requirements for 4 percent Preferred Securities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees (Leverage) Preferred Securities Leverage-Section 301(d) Licensees § 107.1420 Articles requirements for 4 percent...

  12. 13 CFR 107.1420 - Articles requirements for 4 percent Preferred Securities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees (Leverage) Preferred Securities Leverage-Section 301(d) Licensees § 107.1420 Articles requirements for 4 percent...

  13. 13 CFR 107.1420 - Articles requirements for 4 percent Preferred Securities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees (Leverage) Preferred Securities Leverage-Section 301(d) Licensees § 107.1420 Articles requirements for 4 percent...

  14. 13 CFR 107.1410 - Requirement to redeem 4 percent Preferred Securities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees (Leverage) Preferred Securities Leverage-Section 301(d) Licensees § 107.1410 Requirement to redeem 4 percent Preferred...

  15. Orphan Crops Browser: a bridge between model and orphan crops.

    PubMed

    Kamei, Claire Lessa Alvim; Severing, Edouard I; Dechesne, Annemarie; Furrer, Heleen; Dolstra, Oene; Trindade, Luisa M

    Many important crops have received little attention by the scientific community, either because they are not considered economically important or due to their large and complex genomes. De novo transcriptome assembly, using next-generation sequencing data, is an attractive option for the study of these orphan crops. In spite of the large amount of sequencing data that can be generated, there is currently a lack of tools which can effectively help molecular breeders and biologists to mine this type of information. Our goal was to develop a tool that enables molecular breeders, without extensive bioinformatics knowledge, to efficiently study de novo transcriptome data from any orphan crop (http://www.bioinformatics.nl/denovobrowser/db/species/index). The Orphan Crops Browser has been designed to facilitate the following tasks (1) search and identification of candidate transcripts based on phylogenetic relationships between orthologous sequence data from a set of related species and (2) design specific and degenerate primers for expression studies in the orphan crop of interest. To demonstrate the usability and reliability of the browser, it was used to identify the putative orthologues of 17 known lignin biosynthetic genes from maize and sugarcane in the orphan crop Miscanthus sinensis. Expression studies in miscanthus stem internode tissue differing in maturation were subsequently carried out, to follow the expression of these genes during lignification. Our results showed a negative correlation between lignin content and gene expression. The present data are in agreement with recent findings in maize and other crops, and it is further discussed in this paper.

  16. Does the conversion of grasslands to row crop production in semi-arid areas threaten global food supplies?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the world’s semi-arid regions, high crop demands have produced short term economic incentives to convert native grasslands to dryland row crop production, while genetic enhancements and equipment have reduced the risk of crop failure. The objectives of this paper were to discuss: 1) the importanc...

  17. Assessing evapotranspiration, basal crop coefficient, and irrigation efficiency in production peach orchard in California's San Joaquin Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate field scale observations of crop water use are necessary to maximize crop productivity with limited water resources and to parameterize regional and continental satellite models to estimate near real-time crop water use. However, rapid, continuous observations of field-scale water use in Ca...

  18. Effects of thermomechanical processing on tensile and long-time creep behavior of Nb-1 percent Zr-0.1 percent C sheet

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Uz, Mehmet

    1994-01-01

    Effects of thermomechanical processing on the mechanical properties of Nb-1 wt. percent Zr-0.1 wt. percent C, a candidate alloy for use in advanced space power systems, were investigated. Sheet bars were cold rolled into 1-mm thick sheets following single, double, or triple extrusion operations at 1900 K. All the creep and tensile specimens were given a two-step heat treatment 1 hr at 1755 K + 2 hr 1475 K prior to testing. Tensile properties were determined at 300 as well as at 1350 K. Microhardness measurements were made on cold rolled, heat treated, and crept samples. Creep tests were carried out at 1350 K and 34.5 MPa for times of about 10,000 to 19,000 hr. The results show that the number of extrusions had some effects on both the microhardness and tensile properties. However, the long-time creep behavior of the samples were comparable, and all were found to have adequate properties to meet the design requirements of advanced power systems regardless of thermomechanical history. The results are discussed in correlation with processing and microstructure, and further compared to the results obtained from the testing of Nb-1 wt. percent Zr and Nb-1 wt. percent Zr-0.06 wt. percent C alloys.

  19. New crop/weed/soil discrimination uses only one wavelength to reproduce the near-infrared signature

    NASA Astrophysics Data System (ADS)

    Hahn, Federico

    1996-11-01

    Plant species discrimination by optical reflectance requires us to analyze reflectance spectral differences between two sampled broad band signatures making use of the discriminative integration index, DII. Crop/weed discrimination analyses of these indexes using a crop threshold introduces the discrimination efficiency of the entire vegetation population consisting of crop and weeds. Best discriminative efficiencies are spectral dependant and results for leek, cabbage, turnip and potato crops having competence with ten different weed species are presented. With the reflectance of an unique wavelength found iteratively, it was possible to reproduce the NIR spectrum of the crop or weed. This reflectance was multiplied by the crop reference spectrum, producing a pattern similar to the real crop signature and for the four crops tested the control wavelength corresponded to the one having the peak reflectance at the red region. This algorithm is the heart of a new model used to distinguish crops from weeds and the results achieved per group are presented.

  20. Rice crop monitoring with multitemporal MODIS-Landsat data fusion

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Ru; Chen, Chi-Farn; Son, Nguyen-Thanh

    2014-05-01

    Rice is one of the most important cereal crops in the world and is the major crop in Taiwan. However, it is a challenge because rice fields are generally small and fragmental, while crop mapping requires information of crop phenology associating with the high spatiotemporal resolution of remote-sensing data. This problem can be partially overcome by a spatiotemporal fusion to create a new dataset that has a better spatiotemporal resolution. In this study, the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat imageries were used because MODIS data, which a spatial resolution of land bands of 500 m and temporal resolution of 1-2 days, were able to achieve the phenological information of rice crops at a large region; while Landsat data demonstrate the effectiveness to collectively map small patches of crop fields at the subnational level due to its spatial resolution of 30 m. However, the temporal resolution of Landsat data is lower (16 days), making it difficult to investigate temporal responses of crop phenology from rice fields. The main objective of this study was to take into account of advantages of MODIS and Landsat imageries to generate a synthetic dataset at Landsat spatial resolution and MODIS temporal resolution for rice crop mapping in Taiwan. The methodology comprised five steps: (1) satellite data for 2011 were pre-processed to account for geometric and radiometric correction of MODIS and Landsat data, (2) MODIS-Landsat data fusion using the Spatial Temporal Adaptive Fusion Model (STARFM), (3) construct the smooth time-series Normalized Difference Vegetation Index (NDVI) data using wavelet transform, (4) rice crop classification using phenological information of crop phenology, and (5) accuracy assessment. The data fusion results for day of year (DOY) 153 were compared with the reference Landsat data (DOY 153) indicated a close correlation (R2 = 0.81). The phenology-based classification results compared with the ground reference data

  1. Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data

    NASA Astrophysics Data System (ADS)

    Mingwei, Zhang; Qingbo, Zhou; Zhongxin, Chen; Jia, Liu; Yong, Zhou; Chongfa, Cai

    2008-12-01

    Crop identification is the basis of crop monitoring using remote sensing. Remote sensing the extent and distribution of individual crop types has proven useful to a wide range of users, including policy-makers, farmers, and scientists. Northern China is not merely the political, economic, and cultural centre of China, but also an important base for grain production. Its main grains are wheat, maize, and cotton. By employing the Fourier analysis method, we studied crop planting patterns in the Northern China plain. Then, using time-series EOS-MODIS NDVI data, we extracted the key parameters to discriminate crop types. The results showed that the estimated area and the statistics were correlated well at the county-level. Furthermore, there was little difference between the crop area estimated by the MODIS data and the statistics at province-level. Our study shows that the method we designed is promising for use in regional spatial scale crop mapping in Northern China using the MODIS NDVI time-series.

  2. Bioenergy crop models: Descriptions, data requirements and future challenges

    SciTech Connect

    Nair, S. Surendran; Kang, Shujiang; Zhang, Xuesong; Miguez, Fernando; Izaurralde, Dr. R. Cesar; Post, Wilfred M; Dietze, Michael; Lynd, L.; Wullschleger, Stan D

    2012-01-01

    Field studies that address the production of lignocellulosic biomass as a source of renewable energy provide critical data for the development of bioenergy crop models. A literature survey revealed that 14 models have been used for simulating bioenergy crops including herbaceous and woody bioenergy crops, and for crassulacean acid metabolism (CAM) crops. These models simulate field-scale production of biomass for switchgrass (ALMANAC, EPIC, and Agro-BGC), miscanthus (MISCANFOR, MISCANMOD, and WIMOVAC), sugarcane (APSIM, AUSCANE, and CANEGRO), and poplar and willow (SECRETS and 3PG). Two models are adaptations of dynamic global vegetation models and simulate biomass yields of miscanthus and sugarcane at regional scales (Agro-IBIS and LPJmL). Although it lacks the complexity of other bioenergy crop models, the environmental productivity index (EPI) is the only model used to estimate biomass production of CAM (Agave and Opuntia) plants. Except for the EPI model, all models include representations of leaf area dynamics, phenology, radiation interception and utilization, biomass production, and partitioning of biomass to roots and shoots. A few models simulate soil water, nutrient, and carbon cycle dynamics, making them especially useful for assessing the environmental consequences (e.g., erosion and nutrient losses) associated with the large-scale deployment of bioenergy crops. The rapid increase in use of models for energy crop simulation is encouraging; however, detailed information on the influence of climate, soils, and crop management practices on biomass production is scarce. Thus considerable work remains regarding the parameterization and validation of process-based models for bioenergy crops; generation and distribution of high-quality field data for model development and validation; and implementation of an integrated framework for efficient, high-resolution simulations of biomass production for use in planning sustainable bioenergy systems.

  3. [Computerized estimation of a percent glandular tissue composition in computed radiography mammography].

    PubMed

    Tsujita, Naoko; Goto, Sachiko; Azuma, Yoshiharu; Shiraishi, Junji

    2011-01-01

    Measurement of a percent glandular tissue composition (%GTC) is important in terms of the estimation of individual patient exposure dose and the prediction of malignancy, and thus a number of reports for estimating %GTC by use of a mammogram have been published. In this study, we propose a method for estimating individual %GTC by use of computed radiography (CR) mammograms. By employing breast-equivalent phantoms that are able to create breast phantom images with various combinations of fat and glandular tissue, as well as the thickness of whole breast, we determined a reference table for converting an each pixel value on CR mammography to the glandular tissue ratio. Therefore, the %GTC for individual breast was estimated by averaging glandular tissue ratio for a whole region. The clinical image data set that consisted of 49 CR mammograms were used for estimating %GTC. A paired comparison method for determining subjective ranking of the degree of breast density was employed in order to demonstrate the validity of our method. The results indicate that the average estimated %GTC was 35.0% (ranged from 12.0% to 67.0%) and they had a increased correlation with the ranking of those obtained by observer test. Therefore, it was suggested that our proposed method would be utilized for estimating the %GTC in objective manner.

  4. Recycling crop residues for use in recirculating hydroponic crop production

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  5. 7 CFR 762.129 - Percent of guarantee and maximum loss.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Percent of guarantee and maximum loss. 762.129 Section 762.129 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS GUARANTEED FARM LOANS § 762.129 Percent of guarantee and...

  6. A Comparison of Three Methods to Measure Percent Body Fat on Mentally Retarded Adults.

    ERIC Educational Resources Information Center

    Burkett, Lee N.; And Others

    1994-01-01

    Reports a study that compared three measures for determining percent body fat in mentally retarded adults (multiple skinfolds and circumference measurements, Infrared Interactance, and Bioelectrical Impedance). Results indicated the Bioelectrical Impedance Analyzer and Infrared Interactance Analyzer produced values for percent body fat that were…

  7. 13 CFR 107.1400 - Dividends or partnership distributions on 4 percent Preferred Securities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... distributions on 4 percent Preferred Securities. 107.1400 Section 107.1400 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees... distributions on 4 percent Preferred Securities. If you issued Preferred Securities to SBA on or after...

  8. Effect of Physical Activity on BMI and Percent Body Fat of Chinese Girls.

    ERIC Educational Resources Information Center

    Fu, Frank H.; And Others

    1995-01-01

    This study investigated the effect of regular physical activity on body mass index (BMI) and percent body fat of Chinese girls grouped by age and physical activity patterns. Measurements of skinfold, height, and weight, and BMI calculations, found differences in BMI and percent body fat between active and inactive girls. (SM)

  9. 46 CFR 153.559 - Special requirements for nitric acid (less than 70 percent).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Special requirements for nitric acid (less than 70... MATERIALS Design and Equipment Special Requirements § 153.559 Special requirements for nitric acid (less than 70 percent). A containment system that carries nitric acid (less than 70 percent) must be...

  10. 7 CFR 762.129 - Percent of guarantee and maximum loss.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Percent of guarantee and maximum loss. 762.129 Section 762.129 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS GUARANTEED FARM LOANS § 762.129 Percent of guarantee and...

  11. 7 CFR 762.129 - Percent of guarantee and maximum loss.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Percent of guarantee and maximum loss. 762.129 Section 762.129 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS GUARANTEED FARM LOANS § 762.129 Percent of guarantee and...

  12. 7 CFR 762.129 - Percent of guarantee and maximum loss.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Percent of guarantee and maximum loss. 762.129 Section 762.129 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS GUARANTEED FARM LOANS § 762.129 Percent of guarantee and...

  13. 42 CFR 457.618 - Ten percent limit on certain Children's Health Insurance Program expenditures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Ten percent limit on certain Children's Health Insurance Program expenditures. 457.618 Section 457.618 Public Health CENTERS FOR MEDICARE & MEDICAID... (SCHIPs) ALLOTMENTS AND GRANTS TO STATES Payments to States § 457.618 Ten percent limit on...

  14. Evaluation of the Reactivity of Reillex HPQ in 64 Percent Nitric Acid

    SciTech Connect

    Crooks, W.J. III

    2001-02-20

    The purpose of this work was to evaluate the reactivity of Reillex HPQ in 64 percent nitric acid and to address an accident scenario in which 64 percent nitric acid solution is inadvertently added to an HB-Line ion exchange column containing Reillex HPQ anion exchange resin.

  15. The relationships between the amount of spared tissue, percent signal change, and accuracy in semantic processing in aphasia.

    PubMed

    Sims, Jordyn A; Kapse, Kushal; Glynn, Peter; Sandberg, Chaleece; Tripodis, Yorghos; Kiran, Swathi

    2016-04-01

    Recovery from aphasia, loss of language following a cerebrovascular incident (stroke), is a complex process involving both left and right hemispheric regions. In our study, we analyzed the relationships between semantic processing behavioral data, lesion size and location, and percent signal change from functional magnetic resonance imaging (fMRI) data. This study included 14 persons with aphasia in the chronic stage of recovery (six or more months post stroke), along with normal controls, who performed semantic processing tasks of determining whether a written semantic feature matched a picture or whether two written words were related. Using region of interest (ROI) analysis, we found that left inferior frontal gyrus pars opercularis and pars triangularis, despite significant damage, were the only regions to correlate with behavioral accuracy. Additionally, bilateral frontal regions including superior frontal gyrus, middle frontal gyrus, and anterior cingulate appear to serve as an assistive network in the case of damage to traditional language regions that include inferior frontal gyrus, middle temporal gyrus, supramarginal gyrus, and angular gyrus. Right hemisphere posterior regions including right middle temporal gyrus, right supramarginal gyrus, and right angular gyrus are engaged in the case of extensive damage to left hemisphere language regions. Additionally, right inferior frontal gyrus pars orbitalis is presumed to serve a monitoring function. These results reinforce the importance of the left hemisphere in language processing in aphasia, and provide a framework for the relative importance of left and right language regions in the brain.

  16. Nutrient biofortification of food crops.

    PubMed

    Hirschi, Kendal D

    2009-01-01

    Plant-based foods offer an array of nutrients that are essential for human nutrition and promote good health. However, the major staple crops of the world are often deficient in some of these nutrients. Traditional agricultural approaches can marginally enhance the nutritional value of some foods, but the advances in molecular biology are rapidly being exploited to engineer crops with enhanced key nutrients. Nutritional targets include elevated mineral content, improved fatty acid composition, increased amino acid levels, and heightened antioxidant levels. Unfortunately, in many cases the benefits of these "biofortified" crops to human nutrition have not been demonstrated.

  17. Relationships between body size and percent body fat among Melanesians in Vanuatu.

    PubMed

    Dancause, Kelsey Needham; Vilar, Miguel; DeHuff, Christa; Wilson, Michelle; Soloway, Laura E; Chan, Chim; Lum, J Koji; Garruto, Ralph M

    2010-01-01

    Obesity is a global epidemic, and measures to define it must be appropriate for diverse populations for accurate assessment of worldwide risk. Obesity refers to excess body fatness, but is more commonly defined by body mass index (BMI). Body composition varies among populations: Asians have higher percent body fat (%BF), and Pacific Islanders lower %BF at a given BMI compared to Europeans. Many researchers thus propose higher BMI cut-off points for obesity among Pacific Islanders and lower cut-offs for Asians. Because of the great genetic diversity in the Asia-Pacific region, more studies analyzing associations between BMI and %BF among diverse populations remain necessary. We measured height; weight; tricep, subscapular, and suprailiac skinfolds; waist and hip circumference; and %BF by bioelectrical impedance among 546 adult Melanesians from Vanuatu in the South Pacific. We analyzed relationships among anthropometric measurements and compared them to measurements from other populations in the Asia-Pacific region. BMI was a relatively good predictor of %BF among our sample. Based on regression analyses, the BMI value associated with obesity defined by %BF (>25% for men, >35% for women) at age 40 was 27.9 for men and 27.8 for women. This indicates a need for a more nuanced definition of obesity than provided by the common BMI cut-off value of 30. Rather than using population-specific cut-offs for Pacific Islanders, we suggest the World Health Organization's public health action cut-off points (23, 27.5, 32.5, 37.5), which enhance the precision of assessments of population-wide obesity burdens while still allowing for international comparison.

  18. Projective analysis of staple food crop productivity in adaptation to future climate change in China

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Zhang, Wen; Li, Tingting; Sun, Wenjuan; Yu, Yongqiang; Wang, Guocheng

    2017-02-01

    Climate change continually affects our capabilities to feed the increasing population. Rising temperatures have the potential to shorten the crop growth duration and therefore reduce crop yields. In the past decades, China has successfully improved crop cultivars to stabilize, and even lengthen, the crop growth duration to make use of increasing heat resources. However, because of the complex cropping systems in the different regions of China, the possibility and the effectiveness of regulating crop growth duration to reduce the negative impacts of future climate change remain questionable. Here, we performed a projective analysis of the staple food crop productivity in double-rice, wheat-rice, wheat-maize, single-rice, and single-maize cropping systems in China using modeling approaches. The results indicated that from the present to the 2040s, the warming climate would shorten the growth duration of the current rice, wheat, and maize cultivars by 2-24, 11-13, and 9-29 days, respectively. The most significant shortening of the crop growth duration would be in Northeast China, where single-rice and single-maize cropping dominates the croplands. The shortened crop growth duration would consequently reduce crop productivity. The most significant decreases would be 27-31, 6-20, and 7-22% for the late crop in the double-rice rotation, wheat in the winter wheat-rice rotation, and single maize, respectively. However, our projection analysis also showed that the negative effects of the warming climate could be compensated for by stabilizing the growth duration of the crops via improvement in crop cultivars. In this case, the productivity of rice, wheat, and maize in the 2040s would increase by 4-16, 31-38, and 11-12%, respectively. Our modeling results implied that the possibility of securing future food production exists by adopting proper adaptation options in China.

  19. Projective analysis of staple food crop productivity in adaptation to future climate change in China.

    PubMed

    Zhang, Qing; Zhang, Wen; Li, Tingting; Sun, Wenjuan; Yu, Yongqiang; Wang, Guocheng

    2017-02-28

    Climate change continually affects our capabilities to feed the increasing population. Rising temperatures have the potential to shorten the crop growth duration and therefore reduce crop yields. In the past decades, China has successfully improved crop cultivars to stabilize, and even lengthen, the crop growth duration to make use of increasing heat resources. However, because of the complex cropping systems in the different regions of China, the possibility and the effectiveness of regulating crop growth duration to reduce the negative impacts of future climate change remain questionable. Here, we performed a projective analysis of the staple food crop productivity in double-rice, wheat-rice, wheat-maize, single-rice, and single-maize cropping systems in China using modeling approaches. The results indicated that from the present to the 2040s, the warming climate would shorten the growth duration of the current rice, wheat, and maize cultivars by 2-24, 11-13, and 9-29 days, respectively. The most significant shortening of the crop growth duration would be in Northeast China, where single-rice and single-maize cropping dominates the croplands. The shortened crop growth duration would consequently reduce crop productivity. The most significant decreases would be 27-31, 6-20, and 7-22% for the late crop in the double-rice rotation, wheat in the winter wheat-rice rotation, and single maize, respectively. However, our projection analysis also showed that the negative effects of the warming climate could be compensated for by stabilizing the growth duration of the crops via improvement in crop cultivars. In this case, the productivity of rice, wheat, and maize in the 2040s would increase by 4-16, 31-38, and 11-12%, respectively. Our modeling results implied that the possibility of securing future food production exists by adopting proper adaptation options in China.

  20. Modeling olive-crop forecasting in Tunisia

    NASA Astrophysics Data System (ADS)

    Ben Dhiab, Ali; Ben Mimoun, Mehdi; Oteros, Jose; Garcia-Mozo, Herminia; Domínguez-Vilches, Eugenio; Galán, Carmen; Abichou, Mounir; Msallem, Monji

    2016-01-01

    Tunisia is the world's second largest olive oil-producing region after the European Union. This paper reports on the use of models to forecast local olive crops, using data for Tunisia's five main olive-producing areas: Mornag, Jemmel, Menzel Mhiri, Chaal, and Zarzis. Airborne pollen counts were monitored over the period 1993-2011 using a Cour trap. Forecasting models were constructed using agricultural data (harvest size in tonnes of fruit/year) and data for several weather-related and phenoclimatic variables (rainfall, humidity, temperature, Growing Degree Days, and Chilling). Analysis of these data revealed that the amount of airborne pollen emitted over the pollen season as a whole (i.e., the Pollen Index) was the variable most influencing harvest size. Findings for all local models also indicated that the amount, timing, and distribution of rainfall (except during blooming) had a positive impact on final olive harvests. Air temperature also influenced final crop yield in three study provinces (Menzel Mhiri, Chaal, and Zarzis), but with varying consequences: in the model constructed for Chaal, cumulative maximum temperature from budbreak to start of flowering contributed positively to yield; in the Menzel Mhiri model, cumulative average temperatures during fruit development had a positive impact on output; in Zarzis, by contrast, cumulative maximum temperature during the period prior to flowering negatively influenced final crop yield. Data for agricultural and phenoclimatic variables can be used to construct valid models to predict annual variability in local olive-crop yields; here, models displayed an accuracy of 98, 93, 92, 91, and 88 % for Zarzis, Mornag, Jemmel, Chaal, and Menzel Mhiri, respectively.

  1. Crop Frequency Mapping for Land Use Intensity Estimation During Three Decades

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael; Tindall, Dan

    2016-08-01

    Crop extent and frequency maps are an important input to inform the debate around land value and competitive land uses, food security and sustainability of agricultural practices. Such spatial datasets are likely to support decisions on natural resource management, planning and policy. The complete Landsat Time Series (LTS) archive for 23 Landsat footprints in western Queensland from 1987 to 2015 was used in a multi-temporal mapping approach. Spatial, spectral and temporal information were combined in multiple crop-modelling steps, supported by on ground training data sampled across space and time for the classes Crop and No-Crop. Temporal information within summer and winter growing seasons for each year were summarised, and combined with various vegetation indices and band ratios computed from a mid-season spectral-composite image. All available temporal information was spatially aggregated to the scale of image segments in the mid- season composite for each growing season and used to train a random forest classifier for a Crop and No- Crop classification. Validation revealed that the predictive accuracy varied by growing season and region to be within k = 0.88 to 0.97 and are thus suitable for mapping current and historic cropping activity. Crop frequency maps were produced for all regions at different time intervals. The crop frequency maps were validated separately with a historic crop information time series. Different land use intensities and conversions e.g. from agricultural to pastures are apparent and potential drivers of these conversions are discussed.

  2. Management of Overwintering Cover Crops Influences Floral Resources and Visitation by Native Bees.

    PubMed

    Ellis, Katherine E; Barbercheck, Mary E

    2015-08-01

    The incorporation of cover crops into annual crop rotations is one practice that is used in the Mid-Atlantic United States to manage soil fertility, suppress weeds, and control erosion. Additionally, flowering cover crops have the potential to support beneficial insect communities, such as native bees. Because of the current declines in managed honey bee colonies, the conservation of native bee communities is critical to maintaining "free" pollination services. However, native bees are negatively affected by agricultural intensification and are also in decline across North America. We conducted two experiments to assess the potential of flowering cover crops to act as a conservation resource for native bees. We evaluated the effects of cover crop diversity and fall planting date on floral resource availability and visitation by native bees for overwintering flowering cover crop species commonly used in the Mid-Atlantic region. Cover crop species, crop rotation schedule, and plant diversity significantly influenced floral resource availability. Different cover crop species not only had different blooming phenologies and winter survival responses to planting date, but attracted unique bee communities. Flower density was the primary factor influencing frequency of bee visitation across cover crop diversity and fall planting date treatments. The results from these experiments will be useful for informing recommendations on the applied use of flowering cover crops for pollinator conservation purposes.

  3. Growth stage estimation. [crop calendars

    NASA Technical Reports Server (NTRS)

    Whitehead, V. S.; Phinney, D. E.; Crea, W. E. (Principal Investigator)

    1979-01-01

    Of the three candidate approaches to adjustment of the crop calendar to account for year-to-year weather differences, the Robertson triquadratic unit, a function of a nonlinear function of maximum and minimum temperature and day length, best described the rate of phenological development of wheat. The adjustable crop calendar (ACC) as implemented for LACIE is used to calculate the daily increment of development through six physiological stages of growth. Topics covered include dormancy modeling, the spring restart model, spring wheat starter model, winter starter model, winter wheat starter model, inclusion of the moisture variable, and display of crop stage estimation results. Assessment of the ACC accuracy over the period of LACIE operation indicates that the adjustable crop calendars used provided more accurate information than would have been available using historical norms. The models performed best under the conditions from which they were derived (Canadian spring wheat) and most poorly for the dwarf varieties and Southern Hemisphere applications.

  4. Heterocyclic chemistry in crop protection.

    PubMed

    Lamberth, Clemens

    2013-10-01

    An overview is given of the significance of heterocycles in crop protection chemistry, which is enormous as more than two-thirds of all agrochemicals launched to the market within the last 20 years belong to this huge group of chemicals. This review focuses on two important aspects of heterocyclic agrochemistry: the different roles of heterocyclic scaffolds in crop protection agents and the major possibilities for their synthesis.

  5. Crop yield gaps in Cameroon.

    PubMed

    Yengoh, Genesis T; Ardö, Jonas

    2014-03-01

    Although food crop yields per hectare have generally been increasing in Cameroon since 1961, the food price crisis of 2008 and the ensuing social unrest and fatalities raised concerns about the country's ability to meet the food needs of its population. This study examines the country's potential for increasing crop yields and food production to meet this food security challenge. Fuzzy set theory is used to develop a biophysical spatial suitability model for different crops, which in turn is employed to ascertain whether crop production is carried out in biophysically suited areas. We use linear regression to examine the trend of yield development over the last half century. On the basis of yield data from experimental stations and farmers' fields we assess the yield gap for major food crops. We find that yields have generally been increasing over the last half century and that agricultural policies can have significant effects on them. To a large extent, food crops are cultivated in areas that are biophysically suited for their cultivation, meaning that the yield gap is not a problem of biophysical suitability. Notwithstanding, there are significantly large yield gaps between actual yields on farmers' farms and maximum attainable yields from research stations. We conclude that agronomy and policies are likely to be the reasons for these large yield gaps. A key challenge to be addressed in closing the yield gaps is that of replenishing and properly managing soil nutrients.

  6. Changing Pattern of Crop Fraction in Late Blight Induced Potato Crops in Potato Bowl of West Bengal by using Multi-temporal Time Series AWiFs Data

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Abhisek

    2016-07-01

    after late blight disease affected in potato crops. Therefore, it can be concluded that based on the result of this study the improved Pixel Dichotomy Model is the most convenient method for crop fraction estimation for this region with satisfactory accuracy.

  7. AgMIP Training in Multiple Crop Models and Tools

    NASA Technical Reports Server (NTRS)

    Boote, Kenneth J.; Porter, Cheryl H.; Hargreaves, John; Hoogenboom, Gerrit; Thornburn, Peter; Mutter, Carolyn

    2015-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) has the goal of using multiple crop models to evaluate climate impacts on agricultural production and food security in developed and developing countries. There are several major limitations that must be overcome to achieve this goal, including the need to train AgMIP regional research team (RRT) crop modelers to use models other than the ones they are currently familiar with, plus the need to harmonize and interconvert the disparate input file formats used for the various models. Two activities were followed to address these shortcomings among AgMIP RRTs to enable them to use multiple models to evaluate climate impacts on crop production and food security. We designed and conducted courses in which participants trained on two different sets of crop models, with emphasis on the model of least experience. In a second activity, the AgMIP IT group created templates for inputting data on soils, management, weather, and crops into AgMIP harmonized databases, and developed translation tools for converting the harmonized data into files that are ready for multiple crop model simulations. The strategies for creating and conducting the multi-model course and developing entry and translation tools are reviewed in this chapter.

  8. The commercial use of satellite data to monitor the potato crop in the Columbia Basin

    NASA Technical Reports Server (NTRS)

    Waddington, George R., Jr.; Lamb, Frank G.

    1990-01-01

    The imaging of potato crops with satellites is described and evaluated in terms of the commercial application of the remotely sensed data. The identification and analysis of the crops is accomplished with multiple images acquired from the Landsat MSS and TM systems. The data are processed on a PC with image-procesing software which produces images of the seven 1024 x 1024 pixel windows which are subdivided into 21 512 x 512 pixel windows. Maximization of imaged data throughout the year aids in the identification of crop types by IR reflectance. The classification techniques involve the use of six or seven spectral classes for particular image dates. Comparisons with ground-truth data show good agreement; for example, potato fields are identified correctly 90 percent of the time. Acreage estimates and crop-condition assessments can be made from satellite data and used for corrective agricultural action.

  9. Prediction of Percent Body Fat for U.S. Navy Men from Body Circumferences and Height

    DTIC Science & Technology

    1984-06-01

    AD-A143 890 (1" PREDICTION OF PERCENT BODY FAT FOR U.S. NAVY MEN FROM BODY CIRCUMFERENCES AND JEIGHT ’•, i. A. HODGDON M.. B. BECKETI -W" RTll NO. 84...11 - N•. , 1 . V -’, ’’I ,Q NAVAL HEALTH RESEARCH CENTE•P - .AV’AL 1,iL[-i(.AL iI:- ARCh i,r.F: i[ jOFUi PREDICTION OF PERCENT BODY FAT FOR U.S. NAVY...6110.1B established percent body fat (%BF) as the basis for weight control decisions, replacing height/weight tables. Tables based upon the work of

  10. Large scale maps of cropping intensity in Asia from MODIS

    NASA Astrophysics Data System (ADS)

    Gray, J. M.; Friedl, M. A.; Frolking, S. E.; Ramankutty, N.; Nelson, A.

    2013-12-01

    Agricultural systems are geographically extensive, have profound significance to society, and also affect regional energy, carbon, and water cycles. Since most suitable lands worldwide have been cultivated, there is growing pressure to increase yields on existing agricultural lands. In tropical and sub-tropical regions, multi-cropping is widely used to increase food production, but regional-to-global information related to multi-cropping practices is poor. Such information is of critical importance to ensure sustainable food production while mitigating against negative environmental impacts associated with agriculture such as contamination and depletion of freshwater resources. Unfortunately, currently available large-area inventory statistics are inadequate because they do not capture important spatial patterns in multi-cropping, and are generally not available in a timeframe that can be used to help manage cropping systems. High temporal resolution sensors such as MODIS provide an excellent source of information for addressing this need. However, relative to studies that document agricultural extensification, systematic assessment of agricultural intensification via multi-cropping has received relatively little attention. The goal of this work is to help close this methodological and information gap by developing methods that use multi-temporal remote sensing to map multi-cropping systems in Asia. Image time series analysis is especially challenging in Asia because atmospheric conditions including clouds and aerosols lead to high frequencies of missing or low quality remote sensing observations, especially during the Asian Monsoon. The methodology that we use for this work builds upon the algorithm used to produce the MODIS Land Cover Dynamics product (MCD12Q2), but employs refined methods to segment, smooth, and gap-fill 8-day EVI time series calculated from MODIS BRDF corrected surface reflectances. Crop cycle segments are identified based on changes in slope

  11. Zinc requirements of tropical legume cover crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical soils are deficient in essential plant nutrients, including zinc (Zn). Using cover crops in cropping systems is an important option to improve soil fertility for sustainable crop production. However, success of cover crops in highly weathered tropical infertile acid soils is greatly influen...

  12. Multiple pathways of commodity crop expansion in tropical forest landscapes

    NASA Astrophysics Data System (ADS)

    Meyfroidt, Patrick; Carlson, Kimberly M.; Fagan, Matthew E.; Gutiérrez-Vélez, Victor H.; Macedo, Marcia N.; Curran, Lisa M.; DeFries, Ruth S.; Dyer, George A.; Gibbs, Holly K.; Lambin, Eric F.; Morton, Douglas C.; Robiglio, Valentina

    2014-07-01

    Commodity crop expansion, for both global and domestic urban markets, follows multiple land change pathways entailing direct and indirect deforestation, and results in various social and environmental impacts. Here we compare six published case studies of rapid commodity crop expansion within forested tropical regions. Across cases, between 1.7% and 89.5% of new commodity cropland was sourced from forestlands. Four main factors controlled pathways of commodity crop expansion: (i) the availability of suitable forestland, which is determined by forest area, agroecological or accessibility constraints, and land use policies, (ii) economic and technical characteristics of agricultural systems, (iii) differences in constraints and strategies between small-scale and large-scale actors, and (iv) variable costs and benefits of forest clearing. When remaining forests were unsuitable for agriculture and/or policies restricted forest encroachment, a larger share of commodity crop expansion occurred by conversion of existing agricultural lands, and land use displacement was smaller. Expansion strategies of large-scale actors emerge from context-specific balances between the search for suitable lands; transaction costs or conflicts associated with expanding into forests or other state-owned lands versus smallholder lands; net benefits of forest clearing; and greater access to infrastructure in already-cleared lands. We propose five hypotheses to be tested in further studies: (i) land availability mediates expansion pathways and the likelihood that land use is displaced to distant, rather than to local places; (ii) use of already-cleared lands is favored when commodity crops require access to infrastructure; (iii) in proportion to total agricultural expansion, large-scale actors generate more clearing of mature forests than smallholders; (iv) property rights and land tenure security influence the actors participating in commodity crop expansion, the form of land use displacement

  13. Satellite Estimation of Fractional Cover in Several California Specialty Crops

    NASA Technical Reports Server (NTRS)

    Johnson, Lee; Cahn, Michael; Rosevelt, Carolyn; Guzman, Alberto; Farrara, Barry; Melton, Forrest S.

    2016-01-01

    Past research in California and elsewhere has revealed strong relationships between satellite NDVI, photosynthetically active vegetation fraction (Fc), and crop evapotranspiration (ETc). Estimation of ETc can support efficiency of irrigation practice, which enhances water security and may mitigate nitrate leaching. The U.C. Cooperative Extension previously developed the CropManage (CM) web application for evaluation of crop water requirement and irrigation scheduling for several high-value specialty crops. CM currently uses empirical equations to predict daily Fc as a function of crop type, planting date and expected harvest date. The Fc prediction is transformed to fraction of reference ET and combined with reference data from the California Irrigation Management Information System to estimate daily ETc. In the current study, atmospherically-corrected Landsat NDVI data were compared with in-situ Fc estimates on several crops in the Salinas Valley during 2011-2014. The satellite data were observed on day of ground collection or were linearly interpolated across no more than an 8-day revisit period. Results will be presented for lettuce, spinach, celery, broccoli, cauliflower, cabbage, peppers, and strawberry. An application programming interface (API) allows CM and other clients to automatically retrieve NDVI and associated data from NASA's Satellite Irrigation Management Support (SIMS) web service. The SIMS API allows for queries both by individual points or user-defined polygons, and provides data for individual days or annual timeseries. Updates to the CM web app will convert these NDVI data to Fc on a crop-specific basis. The satellite observations are expected to play a support role in Salinas Valley, and may eventually serve as a primary data source as CM is extended to crop systems or regions where Fc is less predictable.

  14. Irradiation effects on 17-7 PH stainless steel, A-201 carbon steel, and titanium-6-percent-aluminum-4-percent-vanadium alloy

    NASA Technical Reports Server (NTRS)

    Hasse, R. A.; Hartley, C. B.

    1972-01-01

    Irradiation effects on three materials from the NASA Plum Brook Reactor Surveillance Program were determined. An increase of 105 K in the nil-ductility temperature for A-201 steel was observed at a fluence of approximately 3.1 x 10 to the 18th power neutrons/sq cm (neutron energy E sub n greater than 1.0 MeV). Only minor changes in the mechanical properties of 17-7 PH stainless steel were observed up to a fluence of 2 x 10 to the 21st power neutrons/sq cm (E sub n greater than 1.0 MeV). The titanium-6-percent-aluminum-4-percent-vanadium alloy maintained its notch toughness up to a fluence of 1 x 10 to the 21st power neutrons/sq cm (E sub n greater than 1.0 MeV).

  15. Selection on crop-derived traits and QTL in sunflower (Helianthus annuus) crop-wild hybrids under water stress.

    PubMed

    Owart, Birkin R; Corbi, Jonathan; Burke, John M; Dechaine, Jennifer M

    2014-01-01

    Locally relevant conditions, such as water stress in irrigated agricultural regions, should be considered when assessing the risk of crop allele introgression into wild populations following hybridization. Although research in cultivars has suggested that domestication traits may reduce fecundity under water stress as compared to wild-like phenotypes, this has not been investigated in crop-wild hybrids. In this study, we examine phenotypic selection acting on, as well as the genetic architecture of vegetative, reproductive, and physiological characteristics in an experimental population of sunflower crop-wild hybrids grown under wild-like low water conditions. Crop-derived petiole length and head diameter were favored in low and control water environments. The direction of selection differed between environments for leaf size and leaf pressure potential. Interestingly, the additive effect of the crop-derived allele was in the direction favored by selection for approximately half the QTL detected in the low water environment. Selection favoring crop-derived traits and alleles in the low water environment suggests that a subset of these alleles would be likely to spread into wild populations under water stress. Furthermore, differences in selection between environments support the view that risk assessments should be conducted under multiple locally relevant conditions.

  16. Climate impacts on agriculture: Implications for crop production

    SciTech Connect

    Hatfield, Jerry L.; Boote, Kenneth J.; Kimball, B. A.; Ziska, Lewis A.; Izaurralde, Roberto C.; Ort, Don; Thomson, Allison M.; Wolfe, David W.

    2011-04-19

    Changes in temperature, CO2, and precipitation under the scenarios of climate change for the next 30 years present a challenge to crop production. This review focuses on the impact of temperature, CO2, and ozone on agronomic crops and the implications for crop production. Understanding these implications for agricultural crops is critical for developing cropping systems resilient to stresses induced by climate change. There is variation among crops in their response to CO2, temperature, and precipitation changes and, with the regional differences in predicted climate, a situation is created in which the responses will be further complicated. For example, the temperature effects on soybean could potentially cause yield reductions of 2.4% in the South but an increase of 1.7% in the Midwest. The frequency of years when temperatures exceed thresholds for damage during critical growth stages is likely to increase for some crops and regions. The increase in CO2 contributes significantly to enhanced plant growth and improved water use efficiency; however, there may be a downscaling of these positive impacts due to higher temperatures plants will experience during their growth cycle. A challenge is to understand the interactions of the changing climatic parameters because of the interactions among temperature, CO2, and precipitation on plant growth and development and also on the biotic stresses of weeds, insects, and diseases. Agronomists will have to consider the variations in temperature and precipitation as part of the production system if they are to ensure the food security required by an ever increasing population.

  17. Short communication. Characterization of chloroplast region rrn16-rrn23S from the tropical timber tree Cedrela odorata L. and de novo construction of a transplastomic expression vector suitable for Meliaceae trees and other economically important crops.

    PubMed

    López-Ochoa, L A; Apolinar-Hernández, M M; Peña-Ramírez, Y J

    2015-02-20

    The forest tree Spanish cedar (Cedrela odorata L.) is well-known for its high-value timber; however, this species is attacked by the shoot borer (Hypsipyla grandella) during its early years of development, resulting in branched stems and making the plants useless for high-quality wood production. The generation of resistant varieties expressing entomotoxic proteins may be an alternative to pesticide treatments. The use of plastid transformation rather than nuclear transformation should be used because it reduces the risk of transgene dissemination by pollen. Chloroplast transformation vectors require an expression cassette flanked by homologous plastid sequences to drive plastome recombination. Thus, C. odorata plastome sequences are a prerequisite. The rrn16-rrn23 plastome region was selected, cloned, and characterized. When the sequence identity among the rrn16-rrn23 regions from C. odorata and Nicotiana tabacum was compared, 3 inDels of 240, 104, and 39 bp were found that might severely affect transformation efficiency. Using this region, a new transformation vector was developed using pUC19 as a backbone by inserting the rrn16-trnI and trnA-rrn23 sequences from C. odorata and adding 2 independent expression cassettes into the trnI-trnA intergenic region, conferring spectinomycin resistance, the ability to express the gfp reporter gene, and a site that can be used to express any other gene of interest.

  18. Near-real-time cheatgrass percent cover in the Northern Great Basin, USA, 2015

    USGS Publications Warehouse

    Boyte, Stephen; Wylie, Bruce K.

    2016-01-01

    Cheatgrass (Bromus tectorum L.) dramatically changes shrub steppe ecosystems in the Northern Great Basin, United States.Current-season cheatgrass location and percent cover are difficult to estimate rapidly.We explain the development of a near-real-time cheatgrass percent cover dataset and map in the Northern Great Basin for the current year (2015), display the current year’s map, provide analysis of the map, and provide a website link to download the map (as a PDF) and the associated dataset.The near-real-time cheatgrass percent cover dataset and map were consistent with non-expedited, historical cheatgrass percent cover datasets and maps.Having cheatgrass maps available mid-summer can help land managers, policy makers, and Geographic Information Systems personnel as they work to protect socially relevant areas such as critical wildlife habitats.

  19. Health Care Spending for U.S. Kids Jumped 56 Percent in Less Than 20 Years

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_162753.html Health Care Spending for U.S. Kids Jumped 56 Percent in ... between 1996 and 2013, a new study finds. Health care expenditures jumped from nearly $150 billion in 1996 ...

  20. Estimated Yield of Some Alternative Crops Under Varying Irrigation in Northeast Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much of the irrigated acres in northeastern Colorado are devoted to corn grain production. Diversifying irrigated agricultural production in this region could result in water savings if alternative crops were grown that have lower water requirements than corn. Making such crop choice decisions initi...

  1. Greenhouse gas mitigation potential of dryland cropping systems in the U.S. Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Great Plains contain significant expanses of agricultural land dedicated to dryland cropping. Dryland cropping systems in the region that sequester soil organic carbon (SOC) and minimize nitrous oxide (N2O) emissions can serve to reduce the greenhouse gas (GHG) balance of U.S. agriculture....

  2. Simulating crop phenology in the Community Land Model and its impact on energy and carbon fluxes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A reasonable representation of crop phenology and biophysical processes in land surface models is necessary to accurately simulate energy, water and carbon budgets at the field, regional, and global scales. However, the evaluation of crop models that can be coupled to earth system models is relative...

  3. Forage radish winter cover crop suppresses winter annual weeds in fall and before corn planting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forage radish (Raphanus sativus L. var. longipinnatus) is a new winter cover crop in the Mid-Atlantic region. The objective of this project was to characterize the repeatability, amount, and duration of weed suppression during and after a fall-planted forage radish cover crop and to quantify the sub...

  4. Assimilating Leaf Area Index Estimates from Remote Sensing into the Simulations of a Cropping Systems Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial extrapolation of cropping systems models for regional crop growth and water use assessment and farm-level precision management has been limited by the vast model input requirements and the model sensitivity to parameter uncertainty. Remote sensing has been proposed as a viable source of spat...

  5. Chemistry and microbial functional diversity differences in biofuel crop and grassland soils in multiple geographies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As crop and non-crop lands are increasingly becoming converted to biofuel feedstock production, it is of interest to identify potential impacts of annual and perennial feedstocks on soil ecosystem services. Soil samples obtained from 6 regional sets of switchgrass (Panicum virgatum L.) and 3 regiona...

  6. Acquisition history simulation for evaluation of Landsat-based crop inventory systems

    NASA Technical Reports Server (NTRS)

    Smith, J. H.; Malin, J. T.; Lin, C. C.; Dvorin, M.

    1982-01-01

    This paper describes the development and evaluation of a simulation procedure which produces patterns of Landsat data loss attributable to cloud patterns that are characteristic of a crop region. This simulation procedure is part of a simulation system under development which evaluates the performance of crop inventory system components over a number of years and under a variety of conditions.

  7. Utilizing cover crop mulches to reduce tillage in organic systems in the southeastern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic sytems in the southeast offer unique challenges and solutions due to regional soil and climate characterized by highly weather soil types, high precipitation, and the capacity to grow cover crops in the winter. Recently high-residue cover crops and conservation tillage systems have increased...

  8. Utilizing Cover Crop Mulches to Reduce TIllage in Organic Systems in the Southeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crop roller-crimper trials have been conducted across the southeastern U.S. during the past decade. Regional climatic conditions make the system particularly attractive but also pose their own challenges. Winter annual cover crops productivity can exceed 8 Mg ha-1 (dry weight) for rye (Secale ...

  9. Aggregate Carbon Pools after 13 Years of Integrated Crop-Livestock Management in Semiarid Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Semi-arid regions have the potential to sequester soil organic carbon (SOC) but the magnitude and rate of sequestration is highly management specific. Integrated crop-livestock (ICL) systems that utilize perennial or high-residue no-till annual forage crops as part of the overall agronomic system ma...

  10. Germany wide seasonal flood risk analysis for agricultural crops

    NASA Astrophysics Data System (ADS)

    Klaus, Stefan; Kreibich, Heidi; Kuhlmann, Bernd; Merz, Bruno; Schröter, Kai

    2016-04-01

    In recent years, large-scale flood risk analysis and mapping has gained attention. Regional to national risk assessments are needed, for example, for national risk policy developments, for large-scale disaster management planning and in the (re-)insurance industry. Despite increasing requests for comprehensive risk assessments some sectors have not received much scientific attention, one of these is the agricultural sector. In contrast to other sectors, agricultural crop losses depend strongly on the season. Also flood probability shows seasonal variation. Thus, the temporal superposition of high flood susceptibility of crops and high flood probability plays an important role for agricultural flood risk. To investigate this interrelation and provide a large-scale overview of agricultural flood risk in Germany, an agricultural crop loss model is used for crop susceptibility analyses and Germany wide seasonal flood-frequency analyses are undertaken to derive seasonal flood patterns. As a result, a Germany wide map of agricultural flood risk is shown as well as the crop type most at risk in a specific region. The risk maps may provide guidance for federal state-wide coordinated designation of retention areas.

  11. 46 CFR 42.20-8 - Flooding standard: Type “B” vessel, 100 percent reduction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Flooding standard: Type âBâ vessel, 100 percent reduction. 42.20-8 Section 42.20-8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Freeboards § 42.20-8 Flooding standard: Type “B” vessel, 100 percent reduction. (a) Design calculations...

  12. 46 CFR 42.20-7 - Flooding standard: Type “B” vessel, 60 percent reduction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Flooding standard: Type âBâ vessel, 60 percent reduction. 42.20-7 Section 42.20-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES DOMESTIC AND FOREIGN VOYAGES BY SEA Freeboards § 42.20-7 Flooding standard: Type “B” vessel, 60 percent reduction. (a) Design calculations must...

  13. Prediction of Percent Body Fat for U.S. Navy Women from Body Circumferences and Height

    DTIC Science & Technology

    1984-06-01

    PREDICTION OF PERCENT BODY FAT FOR U.S. NAVY WOMEN FROII BODY CIRCUMFERENCES AND HEIGHT James A. Hodgdon Marcie B. Beckett Naval Health Research Center...22, including those having body fat above the 301 Navy body fat standard. It was decided to develop an alternative equation. o Factor analysis of the...is reconinended that this new equation be adopte’d for the determination of 1BF for female Navy personnel. -.. PREDICTION OF PERCENT BODY FAT FOR U.S

  14. WHK Student Internship Enrollment, Mentor Participation Up More than 50 Percent | Poster

    Cancer.gov

    By Nancy Parrish, Staff Writer The Werner H. Kirsten Student Internship Program (WHK SIP) has enrolled the largest class ever for the 2013–2014 academic year, with 66 students and 50 mentors. This enrollment reflects a 53 percent increase in students and a 56 percent increase in mentors, compared to 2012–2013 (43 students and 32 mentors), according to Julie Hartman, WHK SIP director.

  15. Determination of Percent Body Fat Using 3D Whole Body Laser Scanning: A Preliminary Investigation

    DTIC Science & Technology

    2006-11-01

    circumferences, 3D whole body laser scans and DEXA scans were performed on fifty-one men and women age 18-62. Mean percent body fat was not statistically...3D whole body laser scan , and DEXA scan to measure individuals during a one hour measurement session. 1 Report Documentation Page Form...underwent a 6 minute whole body DEXA scan using a GE Lunar Prodigy DEXA scanner running software version 7.53. Percent body fat was calculated from the

  16. How Do We Improve Crop Production in a Warming World?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global analysis of crop yields from 1981-2002, showed a negative response of wheat, maize and barley yields to rising temperature, costing an estimated $5 billion per year. An analysis of maize and soybean production in the northern Corn Belt region of the U.S. found that productivity was adversely ...

  17. Economic implications of alternative potato cropping systems in Maine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable cropping systems and management practices are needed to improve agricultural viability and rural economic vitality in Maine and the surrounding region. Research is being conducted to 1) identify the constraints to potato system sustainability and 2) develop practices and management strat...

  18. 76 FR 32067 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... Corporation 7 CFR Part 457 RIN 0563-AC27 Common Crop Insurance Regulations; Extra Long Staple Cotton Crop... Staple Cotton Crop Insurance Provisions to remove all references to the Daily Spot Cotton Quotation and... Cotton Crop Insurance Provisions consistent with the Upland Cotton Crop Insurance Provisions....

  19. Patterns of Nutrients, Water, and Carbon Embodied in Major Export Crops

    NASA Astrophysics Data System (ADS)

    West, P. C.; Gerber, J. S.; Mueller, N. D.; Brauman, K. A.; Cassidy, E. S.; Johnston, M.; Ray, D. K.; Foley, J. A.

    2012-12-01

    Global trade of major crop commodities embodies the natural resources used to produce them. The irrigation water, excess nutrients, and greenhouse gas emissions associated with this production vary widely across crops and regions. Using spatially explicit data on crop yields and land management practices (fertilizer and irrigation), we estimate the tradeoffs of production and water use, carbon, and excess nitrogen and phosphorus. These findings help improve our understanding of environmental costs from major export crops and can be used to guide sustainability assessments and practices.

  20. Crop models capture the impacts of climate variability on corn yield

    NASA Astrophysics Data System (ADS)

    Niyogi, Dev; Liu, Xing; Andresen, Jeff; Song, Yang; Jain, Atul K.; Kellner, Olivia; Takle, Eugene S.; Doering, Otto C.

    2015-05-01

    We investigate the ability of three different crop models of varying complexity for capturing El Niño-Southern Oscillation-based climate variability impacts on the U.S. Corn Belt (1981-2010). Results indicate that crop models, irrespective of their complexity, are able to capture the impacts of climate variability on yield. Multiple-model ensemble analysis provides best results. There was no significant difference between using on-site and gridded meteorological data sets to drive the models. These results highlight the ability of using simpler crop models and gridded regional data sets for crop-climate assessments.