North Pacific Mesoscale Coupled Air-Ocean Simulations Compared with Observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerovecki, Ivana; McClean, Julie; Koracin, Darko
2014-11-14
The overall objective of this study was to improve the representation of regional ocean circulation in the North Pacific by using high resolution atmospheric forcing that accurately represents mesoscale processes in ocean-atmosphere regional (North Pacific) model configuration. The goal was to assess the importance of accurate representation of mesoscale processes in the atmosphere and the ocean on large scale circulation. This is an important question, as mesoscale processes in the atmosphere which are resolved by the high resolution mesoscale atmospheric models such as Weather Research and Forecasting (WRF), are absent in commonly used atmospheric forcing such as CORE forcing, employedmore » in e.g. the Community Climate System Model (CCSM).« less
NASA Technical Reports Server (NTRS)
Kaplan, Michael L.; Huffman, Allan W.; Lux, Kevin M.; Cetola, Jeffrey D.; Charney, Joseph J.; Riordan, Allen J.; Lin, Yuh-Lang; Waight, Kenneth T., III; Proctor, Fred (Technical Monitor)
2003-01-01
Simulation experiments reveal key processes that organize a hydrostatic environment conducive to severe turbulence. The paradigm requires juxtaposition of the entrance region of a curved jet stream, which is highly subgeostrophic, with the entrance region of a straight jet stream, which is highly supergeostrophic. The wind and mass fields become misphased as the entrance regions converge resulting in the significant spatial variation of inertial forcing, centripetal forcing, and along- and cross-stream pressure gradient forcing over a mesobeta scale region. This results in frontogenesis and the along-stream divergence of cyclonic and convergence of cyclonic ageostrophic vertical vorticity. The centripetally forced mesoscale front becomes the locus of large gradients of ageostrophic vertical vorticity along an overturning isentrope. This region becomes favorable for streamwise vorticity gradient formation enhancing the environment for organization of horizontal vortex tubes in the presence of buoyant forcing.
Indonesia: Internal Conditions, the Global Economy, and Regional Development.
ERIC Educational Resources Information Center
Leitner, Helga; Sheppard, Eric S.
1987-01-01
Describes recent trends in the economic and regional development of Indonesia and examines the internal and external forces influencing the process. Shows how these forces account for the rise of a strong centralized state. Discusses Indonesia's current problems. Includes tables, maps, and graphs of economic investment figures, world trade, and…
Seasonality of Forcing by Carbonaceous Aerosols
NASA Astrophysics Data System (ADS)
Habib, G.; Bond, T.; Rasch, P. J.; Coleman, D.
2006-12-01
Aerosols can influence the energy balance of Earth-Atmosphere system with profound effect on regional climate. Atmospheric processes, such as convection, scavenging, wet and dry deposition, govern the lifetime and location of aerosol; emissions affect its quantity and location. Both affect climate forcing. Here we investigate the effect of seasonality in emissions and atmospheric processes on radiative forcing by carbonaceous aerosols, focusing on aerosol from fossil fuel and biofuel. Because aerosol lifetime is seasonal, ignoring the seasonality of sources such as residential biofuel may introduce a bias in aerosol burden and therefore in predicted climate forcing. We present a global emission inventory of carbonaceous aerosols with seasonality, and simulate atmospheric concentrations using the Community Atmosphere Model (CAM). We discuss where and when the seasonality of emissions and atmospheric processes has strong effects on atmospheric burden, lifetime, climate forcing and aerosol optical depth (AOD). Previous work has shown that aerosol forcing is higher in summer than in winter, and has identified the importance of aerosol above cloud in determining black carbon forcing. We show that predicted cloud height is a very important factor in determining normalized radiative forcing (forcing per mass), especially in summer. This can affect the average summer radiative forcing by nearly 50%. Removal by cloud droplets is the dominant atmospheric cleansing mechanism for carbonaceous aerosols. We demonstrate the modeled seasonality of removal processes and compare the importance of scavenging by warm and cold clouds. Both types of clouds contribute significantly to aerosol removal. We estimate uncertainty in direct radiative forcing due to scavenging by tagging the aerosol which has experienced cloud interactions. Finally, seasonal variations offer an opportunity to assess modeled processes when a single process dominates variability. We identify regions where aerosol burden is most sensitive to convection and scavenging in warm and cold clouds, and compare seasonally modeled AOD with that retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS).
The Role of Nongyrotropy in Balancing the Reconnection Diffusion Region
NASA Astrophysics Data System (ADS)
Hesse, M.; Liu, Y. H.; Chen, L. J.; Bessho, N.; Wang, S.; Burch, J. L.; Moretto, T.; Genestreti, K.; Phan, T.; Tenfjord, P.
2017-12-01
The structure of the reconnection diffusion region is, to a large degree, determined by the requirement to balance both the current flow and its dissipation processes, and the forces exerted onto the current layer by the inflow magnetic pressure. These balances are critical: without resupply processes, the transport of accelerated and current-carrying particles away from the diffusion region would generate a current density depletion, which, in principle, could lead to a mismatch with the curl of the magnetic field. Similarly, without heating processes, the convection of hot plasma away from the diffusion region would generate a force imbalance with the ambient magnetic field. The fact that neither of these imbalances occur is a consequence of the reconnection electric field, which is therefore not only required to facilitate magnetic flux transport, but also to provide the energization required to maintain balance in the diffusion region. In this presentation, we will use particle-in-cell simulations to analyze these balance conditions. We will furthermore show that nongyrotropic particle dynamics plays a key role both as current dissipation mechanism, and as overall heating mechanism in the diffusion region current layer.
Climate Implications of the Heterogeneity of Anthropogenic Aerosol Forcing
NASA Astrophysics Data System (ADS)
Persad, Geeta Gayatri
Short-lived anthropogenic aerosols are concentrated in regions of high human activity, where they interact with radiation and clouds, causing horizontally heterogeneous radiative forcing between polluted and unpolluted regions. Aerosols can absorb shortwave energy in the atmosphere, but deplete it at the surface, producing opposite radiative perturbations between the surface and atmosphere. This thesis investigates climate and policy implications of this horizontal and vertical heterogeneity of anthropogenic aerosol forcing, employing the Geophysical Fluid Dynamics Laboratory's AM2.1 and AM3 models, both at a global scale and using East Asia as a regional case study. The degree of difference between spatial patterns of climate change due to heterogeneous aerosol forcing versus homogeneous greenhouse gas forcing deeply impacts the detection, attribution, and prediction of regional climate change. This dissertation addresses a gap in current understanding of these two forcings' response pattern development, using AM2.1 historical forcing simulations. The results indicate that fast atmospheric and land-surface processes alone substantially homogenize the global pattern of surface energy flux response to heterogeneous aerosol forcing. Aerosols' vertical redistribution of energy significantly impacts regional climate, but is incompletely understood. It is newly identified here, via observations and historical and idealized forcing simulations, that increased aerosol-driven atmospheric absorption may explain half of East Asia's recent surface insolation decline. Further, aerosols' surface and atmospheric effects counteract each other regionally---atmospheric heating enhances summer monsoon circulation, while surface dimming suppresses it---but absorbing aerosols' combined effects reduce summer monsoon rainfall. This thesis constitutes the first vertical decomposition of aerosols' impacts in this high-emissions region and elucidates the monsoonal response to aerosols' surface versus atmospheric forcing. Future aerosol emissions patterns will affect the distribution of regional climate impacts. This dissertation interrogates how international trade affects existing assumptions about East Asia's future black carbon aerosol emissions, using integrated assessment modeling, emissions and economic data, and AM3 simulations. Exports emerge as a uniquely large and potentially growing source of Chinese black carbon emissions that could impede projected regional emissions reductions, with substantial climate and health consequences. The findings encourage greater emissions projection sophistication and illustrate how societal decisions may influence future aerosol forcing heterogeneity.
Science and Sandy: Lessons Learned
NASA Astrophysics Data System (ADS)
Werner, K.
2013-12-01
Following Hurricane Sandy's impact on the mid-Atlantic region, President Obama established a Task Force to '...ensure that the Federal Government continues to provide appropriate resources to support affected State, local, and tribal communities to improve the region's resilience, health, and prosperity by building for the future.' The author was detailed from NOAA to the Task Force between January and June 2013. As the Task Force and others began to take stock of the region's needs and develop plans to address them, many diverse approaches emerged from different areas of expertise including: infrastructure, management and construction, housing, public health, and others. Decision making in this environment was complex with many interests and variables to consider and balance. Although often relevant, science and technical expertise was not always at the forefront of this process. This talk describes the author's experience with the Sandy Task Force focusing on organizing scientific expertise to support the work of the Task Force. This includes a description of federal activity supporting Sandy recovery efforts, the role of the Task Force, and lessons learned from developing a science support function within the Task Force.
Thermal denaturing of mutant lysozyme with both the OPLSAA and the CHARMM force fields.
Eleftheriou, Maria; Germain, Robert S; Royyuru, Ajay K; Zhou, Ruhong
2006-10-18
Biomolecular simulations enabled by massively parallel supercomputers such as BlueGene/L promise to bridge the gap between the currently accessible simulation time scale and the experimental time scale for many important protein folding processes. In this study, molecular dynamics simulations were carried out for both the wild-type and the mutant hen lysozyme (TRP62GLY) to study the single mutation effect on lysozyme stability and misfolding. Our thermal denaturing simulations at 400-500 K with both the OPLSAA and the CHARMM force fields show that the mutant structure is indeed much less stable than the wild-type, which is consistent with the recent urea denaturing experiment (Dobson et al. Science 2002, 295, 1719-1722; Nature 2003, 424, 783-788). Detailed results also reveal that the single mutation TRP62GLY first induces the loss of native contacts in the beta-domain region of the lysozyme protein at high temperatures, and then the unfolding process spreads into the alpha-domain region through Helix C. Even though the OPLSAA force field in general shows a more stable protein structure than does the CHARMM force field at high temperatures, the two force fields examined here display qualitatively similar results for the misfolding process, indicating that the thermal denaturing of the single mutation is robust and reproducible with various modern force fields.
NASA Astrophysics Data System (ADS)
Cai, Yunshen
Electrospinning produces submicron fibers from a wide range of polymer/solvent systems that enable a variety of different applications. In electrospinning process, a straight polymer/solvent charged jet is initially formed, followed by a circular moving jet in the shape of a cone, called the bending region. The process physics in the bending region are difficult to study since the jet diameter cannot be measured directly due to its rapid motion and small size ( microns and smaller), and due to complex coupling of multiple forces, mass transport, and changing jet geometry. Since the solutions studied are hydrophilic, they readily absorb ambient moisture. This thesis explores the role of the bending region in determining the resulting electrospun fiber diameter through a combined experimental and modeling analysis for a variety of hydrophilic polymer/solvent solutions. Electrospinning experiments were conducted over a broad range of operating conditions for 4 different polymer/solvent systems. Comparison of the final straight jet diameters to fiber diameters reveals that between 30% to 60% jet thinning occurs in the bending region. These experiments also reveal that relative humidity significantly affects the electrospinning process and final fiber diameter, even for non-aqueous solutions. A model is developed to obtain insight into the bending region process physics. Important ones include understanding the mass transport for non-aqueous hydrophilic jets (including solvent evaporation and water absorption on the jet surface, radial diffusion, and axial advection), and the coupling between the mass and force balances that determines the final fiber diameter. The absorption and evaporation physics is validated by evaporation experiments. The developed model predicts fiber diameter to within of 8%, even though the solution properties and operating conditions that determines net stretching forces and net evaporation rates vary over a large range. Model analysis reveals how the net evaporation rate affects the jet length and net stretching force, both of which ultimately determine the fiber diameter. It is also shown that the primary impact of RH on the process is through occupation of the surface states that limits solvent evaporation rate, rather than the amount of water absorbed. Correlation functions between process conditions, solution properties and the resulting fiber diameters are discussed.
Tidal downscaling from the open ocean to the coast: a new approach applied to the Bay of Biscay
NASA Astrophysics Data System (ADS)
Toublanc, F.; Ayoub, N. K.; Lyard, F.; Marsaleix, P.; Allain, D. J.
2018-04-01
Downscaling physical processes from a large scale to a regional scale 3D model is a recurrent issue in coastal processes studies. The choice of boundary conditions will often greatly influence the solution within the 3D circulation model. In some regions, tides play a key role in coastal dynamics and must be accurately represented. The Bay of Biscay is one of these regions, with highly energetic tides influencing coastal circulation and river plume dynamics. In this study, three strategies are tested to force with barotropic tides a 3D circulation model with a variable horizontal resolution. The tidal forcings, as well as the tidal elevations and currents resulting from the 3D simulations, are compared to tidal harmonics extracted from satellite altimetry and tidal gauges, and tidal currents harmonics obtained from ADCP data. The results show a strong improvement of the M2 solution within the 3D model with a "tailored" tidal forcing generated on the same grid and bathymetry as the 3D configuration, compared to a global tidal atlas forcing. Tidal harmonics obtained from satellite altimetry data are particularly valuable to assess the performance of each simulation. Comparisons between sea surface height time series, a sea surface salinity database, and daily averaged 2D currents also show a better agreement with this tailored forcing.
Ferreira, Vanda Lúcia; Strüssmann, Christine; Tomas, Walfrido Moraes
2015-01-01
Ecological communities are structured by both deterministic and stochastic processes. We investigated phylogenetic patterns at regional and local scales to understand the influences of seasonal processes in shaping the structure of anuran communities in the southern Pantanal wetland, Brazil. We assessed the phylogenetic structure at different scales, using the Net Relatedness Index (NRI), the Nearest Taxon Index (NTI), and phylobetadiversity indexes, as well as a permutation test, to evaluate the effect of seasonality. The anuran community was represented by a non-random set of species with a high degree of phylogenetic relatedness at the regional scale. However, at the local scale the phylogenetic structure of the community was weakly related with the seasonality of the system, indicating that oriented stochastic processes (e.g. colonization, extinction and ecological drift) and/or antagonist forces drive the structure of such communities in the southern Pantanal. PMID:26102202
Martins, Clarissa de Araújo; Roque, Fabio de Oliveira; Santos, Bráulio A; Ferreira, Vanda Lúcia; Strüssmann, Christine; Tomas, Walfrido Moraes
2015-01-01
Ecological communities are structured by both deterministic and stochastic processes. We investigated phylogenetic patterns at regional and local scales to understand the influences of seasonal processes in shaping the structure of anuran communities in the southern Pantanal wetland, Brazil. We assessed the phylogenetic structure at different scales, using the Net Relatedness Index (NRI), the Nearest Taxon Index (NTI), and phylobetadiversity indexes, as well as a permutation test, to evaluate the effect of seasonality. The anuran community was represented by a non-random set of species with a high degree of phylogenetic relatedness at the regional scale. However, at the local scale the phylogenetic structure of the community was weakly related with the seasonality of the system, indicating that oriented stochastic processes (e.g. colonization, extinction and ecological drift) and/or antagonist forces drive the structure of such communities in the southern Pantanal.
NASA Astrophysics Data System (ADS)
Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta
2018-03-01
Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.
The labor force and urbanization in the Middle East: analysis and policy.
Bean, L L
1983-01-01
"The purpose of this paper is to describe and comment on the labor force movements in the Middle East with particular reference to the implications of these flows for the process of urbanization in the region. [The author deals] with both international transfers of labor and internal movements of labor to urban communities." The international flow of labor in the Middle East in general is first examined, and a classification scheme is outlined to identify the major differences that exist within the region. Internal labor force migration is then analyzed using data for Libya. The final sections of the paper deal with data collection and policy issues. excerpt
Rethinking the Mission of Internationalization of Higher Education in the Asia-Pacific Region
ERIC Educational Resources Information Center
Ng, Shun Wing
2012-01-01
This article adopts the critical theory approach to reflect and analyse the impacts of globalization on the internationalization process of higher education in the Asia-Pacific region. It argues that globalization forces many of the higher education institutions in the region to follow global practices and ideologies of the Anglo-American paradigm…
Does temperature nudging overwhelm aerosol radiative ...
For over two decades, data assimilation (popularly known as nudging) methods have been used for improving regional weather and climate simulations by reducing model biases in meteorological parameters and processes. Similar practice is also popular in many regional integrated meteorology-air quality models that include aerosol direct and indirect effects. However in such multi-modeling systems, temperature changes due to nudging can compete with temperature changes induced by radiatively active & hygroscopic short-lived tracers leading to interesting dilemmas: From weather and climate prediction’s (retrospective or future) point of view when nudging is continuously applied, is there any real added benefit of using such complex and computationally expensive regional integrated modeling systems? What are the relative sizes of these two competing forces? To address these intriguing questions, we convert temperature changes due to nudging into radiative fluxes (referred to as the pseudo radiative forcing, PRF) at the surface and troposphere, and compare the net PRF with the reported aerosol radiative forcing. Results indicate that the PRF at surface dominates PRF at top of the atmosphere (i.e., the net). Also, the net PRF is about 2-4 times larger than estimated aerosol radiative forcing at regional scales while it is significantly larger at local scales. These results also show large surface forcing errors at many polluted urban sites. Thus, operational c
Interactive coupling of regional climate and sulfate aerosol models over eastern Asia
NASA Astrophysics Data System (ADS)
Qian, Yun; Giorgi, Filippo
1999-03-01
The NCAR regional climate model (RegCM) is interactively coupled to a simple radiatively active sulfate aerosol model over eastern Asia. Both direct and indirect aerosol effects are represented. The coupled model system is tested for two simulation periods, November 1994 and July 1995, with aerosol sources representative of present-day anthropogenic sulfur emissions. The model sensitivity to the intensity of the aerosol source is also studied. The main conclusions from our work are as follows: (1) The aerosol distribution and cycling processes show substantial regional spatial variability, and temporal variability varying on a range of scales, from the diurnal scale of boundary layer and cumulus cloud evolution to the 3-10 day scale of synoptic scale events and the interseasonal scale of general circulation features; (2) both direct and indirect aerosol forcings have regional effects on surface climate; (3) the regional climate response to the aerosol forcing is highly nonlinear, especially during the summer, due to the interactions with cloud and precipitation processes; (4) in our simulations the role of the aerosol indirect effects is dominant over that of direct effects; (5) aerosol-induced feedback processes can affect the aerosol burdens at the subregional scale. This work constitutes the first step in a long term research project aimed at coupling a hierarchy of chemistry/aerosol models to the RegCM over the eastern Asia region.
2012-10-01
facilities, such as water supply, waste water treatment , and power generation. The Ministry of Defense’s procurement process is unable to provide the...the Joint Regional Afghanistan Security Forces Compound Water Treatment System...Ministry of Interior NTM-A North Atlantic Treaty Organization Training Mission-Afghanistan O&M operation and maintenance PCO Primary Contracting Officer
NASA Technical Reports Server (NTRS)
Roberts, J. Brent; Clayson, C. A.
2012-01-01
Residual forcing necessary to close the MLTB on seasonal time scales are largest in regions of strongest surface heat flux forcing. Identifying the dominant source of error - surface heat flux error, mixed layer depth estimation, ocean dynamical forcing - remains a challenge in the eastern tropical oceans where ocean processes are very active. Improved sub-surface observations are necessary to better constrain errors. 1. Mixed layer depth evolution is critical to the seasonal evolution of mixed layer temperatures. It determines the inertia of the mixed layer, and scales the sensitivity of the MLTB to errors in surface heat flux and ocean dynamical forcing. This role produces timing impacts for errors in SST prediction. 2. Errors in the MLTB are larger than the historical 10Wm-2 target accuracy. In some regions, a larger accuracy can be tolerated if the goal is to resolve the seasonal SST cycle.
Wen J. Wang; Hong S. He; Frank R. Thompson; Jacob S. Fraser; William D. Dijak
2016-01-01
Tree species distribution and abundance are affected by forces operating at multiple scales. Niche and biophysical process models have been commonly used to predict climate change effects at regional scales, however, these models have limited capability to include site-scale population dynamics and landscape- scale disturbance and dispersal. We applied a landscape...
NASA Astrophysics Data System (ADS)
Siedlecki, Samantha A.; Pilcher, Darren J.; Hermann, Albert J.; Coyle, Ken; Mathis, Jeremy
2017-11-01
High-latitude and subpolar regions like the Gulf of Alaska (GOA) are more vulnerable than equatorial regions to rising carbon dioxide (CO2) levels, in part due to local processes that amplify the global signal. Recent field observations have shown that the shelf of the GOA is currently experiencing seasonal corrosive events (carbonate mineral saturation states Ω, Ω < 1), including suppressed Ω in response to ocean acidification as well as local processes like increased low-alkalinity glacial meltwater discharge. While the glacial discharge mainly influences the inner shelf, on the outer shelf, upwelling brings corrosive waters from the deep GOA. In this work, we develop a high-resolution model for carbon dynamics in the GOA, identify regions of high variability of Ω, and test the sensitivity of those regions to changes in the chemistry of glacial meltwater discharge. Results indicate the importance of this climatically sensitive and relatively unconstrained regional freshwater forcing for Ω variability in the nearshore. The increase was nearly linear at 0.002 Ω per 100 µmol/kg increase in alkalinity in the freshwater runoff. We find that the local winds, biological processes, and freshwater forcing all contribute to the spatial distribution of Ω and identify which of these three is highly correlated to the variability in Ω. Given that the timing and magnitude of these processes will likely change during the next few decades, it is critical to elucidate the effect of local processes on the background ocean acidification signal using robust models, such as the one described here.
Detecting climate forcing and feedback signals in surface climate change
NASA Astrophysics Data System (ADS)
Davy, Richard; Esau, Igor
2015-04-01
The Earth has warmed in the last century and a large component of that warming has been attributed to the build-up of anthropogenic greenhouse gases. There are also numerous feedback processes which can introduce strong, regionalized asymmetries to the overall warming trend. These processes alter the surface energy budget, and thus affect the surface air temperature, which is one of the primary measures of how the climate is changing. However, the degree to which a given forcing or feedback process alters surface temperatures is contingent on the effective heat capacity of the atmosphere which is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, which can lead to a strongly amplified temperature response in shallow boundary layers. Therefore, if a climate forcing or feedback is acting across a wide range of conditions of the boundary layer, then this non-linear response of the surface climate to perturbations in the forcing must be accounted for in order to correctly assess the effect of the forcing on the surface climatology.
Topography at the inner core boundary
NASA Astrophysics Data System (ADS)
Lasbleis, M.; Forquenot, Q.; Deguen, R.
2017-12-01
Topography at the inner core boundary has been proposed to explain surprising seismic observations of some regional studies. Such observations are still debatted, and numerical values of possible inner core topography have been proposed ranging from no topography to "inner core mountains" (10km heigth over lengthscales of 20km, as in Dai et al. 2012). The inner core boundary is a peculiar boundary, as it is the place where the iron alloy constituting the core freezes. The existence of a significant topography on such a boundary is possible, but unlikely. At thermodynamic equilibrium, no topography is expected, as any material above the equilibrium radius would have melted and any below would have freezed. However, mechanical forcing may push the system out of equilibrium. Dynamical topography could be forced by convective flows in the inner core or by outer core heterogeneities. A topography induced by outer core convection would be short-lived when compared to geodynamical processes in the bulk of the inner core (τ ≈ 10-100 Myears), but long-lived compared to observations. Here, we would like to give a geodynamical perspective over inner core topography. We constrain plausible amplitude of inner core topography, and discuss the implications for seismic observations. We consider topography created by viscous flows in the bulk of the inner core and by variations of growth rate on regional lengthscale due to outer core convection. This approach allows us to consider both internal and external forcings on the topography. We treat topography forcings as stochastic processes, and calculate the probability of observing a given topography. Based on preliminary results, the high values for observed topography can not be interpreted as a normal behavior of core dynamics. If confirmed, the regions are likely to be anomalous and originated from outliers in the distribution of stochastic processes.
NASA Astrophysics Data System (ADS)
Yamamoto, Takuya; Okano, Yasunori; Ujihara, Toru; Dost, Sadik
2017-07-01
A global numerical simulation was performed for the induction heating Top-Seeded Solution Growth (TSSG) process of SiC. Analysis included the furnace and growth melt. The effects of interfacial force due to free surface tension gradient, the RF coil-induced electromagnetic body force, buoyancy, melt free surface deformation, and seed rotation were examined. The simulation results showed that the contributions of free surface tension gradient and the electromagnetic body force to the melt flow are significant. Marangoni convection affects the growth process adversely by making the melt flow downward in the region under the seed crystal. This downward flow reduces carbon flux into the seed and consequently lowers growth rate. The effects of free surface deformation and seed rotation, although positive, are not so significant compared with those of free surface tension gradient and the electromagnetic body force. Due to the small size of the melt the contribution of buoyancy is also small.
Three-dimensional cell to tissue development process
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Parker, Clayton R. (Inventor)
2008-01-01
An improved three-dimensional cell to tissue development process using a specific time varying electromagnetic force, pulsed, square wave, with minimum fluid shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region.
2012-08-21
Vandenberg Air Force Base, Calif. – Inside a processing facility at Vandenberg Air Force Base in California, technicians assist as a crane moves the wing closer for a fit check with the Orbital Sciences Pegasus XL launch vehicle. NASA’s Interface Region Imaging Spectrograph, or IRIS, spacecraft will launch aboard the Pegasus XL in late 2012. IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and heliosphere, or region around the sun. Photo credit: NASA/Randy Beaudoin
2012-08-21
Vandenberg Air Force Base, Calif. – Inside a processing facility at Vandenberg Air Force Base in California, technicians assist as a crane lowers the wing closer for a fit check with the Orbital Sciences Pegasus XL launch vehicle. NASA’s Interface Region Imaging Spectrograph, or IRIS, spacecraft will launch aboard the Pegasus XL in late 2012. IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and heliosphere, or region around the sun. Photo credit: NASA/Randy Beaudoin
2012-08-21
Vandenberg Air Force Base, Calif. – Inside a processing facility at Vandenberg Air Force Base in California, technicians assist as a crane moves the wing closer for a fit check with the Orbital Sciences Pegasus XL launch vehicle. NASA’s Interface Region Imaging Spectrograph, or IRIS, spacecraft will launch aboard the Pegasus XL in late 2012. IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and heliosphere, or region around the sun. Photo credit: NASA/Randy Beaudoin
2012-08-21
Vandenberg Air Force Base, Calif. – Inside a processing facility at Vandenberg Air Force Base in California, technicians assist as a crane moves the wing closer for a fit check with the Orbital Sciences Pegasus XL launch vehicle. NASA’s Interface Region Imaging Spectrograph, or IRIS, spacecraft will launch aboard the Pegasus XL in late 2012. IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and heliosphere, or region around the sun. Photo credit: NASA/Randy Beaudoin
2012-08-21
Vandenberg Air Force Base, Calif. – Inside a processing facility at Vandenberg Air Force Base in California, technicians prepare the wing for a fit check with the Orbital Sciences Pegasus XL launch vehicle. NASA’s Interface Region Imaging Spectrograph, or IRIS, spacecraft will launch aboard the Pegasus XL in late 2012. IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and heliosphere, or region around the sun. Photo credit: NASA/Randy Beaudoin
2012-08-21
Vandenberg Air Force Base, Calif. – Inside a processing facility at Vandenberg Air Force Base in California, technicians assist as a crane lowers the wing closer for a fit check with the Orbital Sciences Pegasus XL launch vehicle. NASA’s Interface Region Imaging Spectrograph, or IRIS, spacecraft will launch aboard the Pegasus XL in late 2012. IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and heliosphere, or region around the sun. Photo credit: NASA/Randy Beaudoin
2012-08-21
Vandenberg Air Force Base, Calif. – Inside a processing facility at Vandenberg Air Force Base in California, technicians assist as a crane lowers the wing closer for a fit check with the Orbital Sciences Pegasus XL launch vehicle. NASA’s Interface Region Imaging Spectrograph, or IRIS, spacecraft will launch aboard the Pegasus XL in late 2012. IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and heliosphere, or region around the sun. Photo credit: NASA/Randy Beaudoin
2012-08-21
Vandenberg Air Force Base, Calif. – Inside a processing facility at Vandenberg Air Force Base in California, technicians prepare the wing for a fit check with the Orbital Sciences Pegasus XL launch vehicle. NASA’s Interface Region Imaging Spectrograph, or IRIS, spacecraft will launch aboard the Pegasus XL in late 2012. IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and heliosphere, or region around the sun. Photo credit: NASA/Randy Beaudoin
Asian Monsoons: Variability, Predictability, and Sensitivity to External Forcing
NASA Technical Reports Server (NTRS)
Yang, Song; Lau, K.-M.
1999-01-01
In this study, we have addressed the interannual variations of Asian monsoons including both broad-scale and regional monsoon components. Particular attention is devoted to the identities of the South China Sea monsoon and Indian monsoon. We use CPC Merged Analysis of Precipitation and NCEP reanalyses to define regional monsoon indices and to depict the various monsoons. Parallel modeling studies have also been carried out to assess the role of boundary forcing and the potential predictability of the monsoons. Each monsoon is characterized by its unique features. While the South Asian monsoon represents a classical monsoon in which anomalous circulation is governed by Rossby-wave dynamics, the Southeast Asian monsoon symbolizes a "hybrid" monsoon that features multi-cellular meridional circulation over eastern Asia. The broad-scale Asian monsoon links to the basin-wide atmospheric circulation over the Indian-Pacific oceans. Both SST and land surface processes are important for determining the variations of all monsoons. For the broad-scale monsoon, SST anomalies are more important than land surface processes. For regional monsoons, however, land surface processes may become equally important. Both observation and model shows that the broad-scale monsoon is potentially more predictable than regional monsoons, and that the Southeast Asian monsoon may possess higher predictability than the South Asian monsoon.
NASA Astrophysics Data System (ADS)
Mutiibwa, D.; Irmak, S.
2011-12-01
The majority of recent climate change studies have largely focused on detection and attribution of anthropogenic forcings of greenhouse gases, aerosols, stratospheric and tropospheric ozone. However, there is growing evidence that land cover/land use (LULC) change can significantly impact atmospheric processes from local to regional weather and climate variability. Human activities such as conversion of natural ecosystem to croplands and urban-centers, deforestation and afforestation impact biophysical properties of the land surfaces including albedo, energy balance, moisture-holding capacity of soil, and surface roughness. Alterations in these properties affect the heat and moisture exchanges between the land surface and atmospheric boundary layer, and ultimately impact the climate system. The challenge is to demonstrate that LULC changes produce a signal that can be discerned from natural climate noise. In this study, we attempt to detect the signature of anthropogenic forcing of LULC change on climate on regional scale. The signal projector investigated for detecting the signature of LULC changes on regional climate of the High Plains of the USA is the Normalized Difference Vegetation Index (NDVI). NDVI is an indicator that captures short and long-term geographical distribution of vegetation surfaces. The study develops an enhanced signal processing procedure to maximize the signal to noise ratio by introducing a pre-filtering technique of ARMA processes on the investigated climate and signal variables, before applying the optimal fingerprinting technique to detect the signals of LULC changes on observed climate, temperature, in the High Plains. The intent is to filter out as much noise as possible while still retaining the essential features of the signal by making use of the known characteristics of the noise and the anticipated signal. The study discusses the approach of identifying and suppressing the autocorrelation in optimal fingerprint analysis by applying linear transformation of ARMA processes to the analysis variables. With the assumption that natural climate variability is a near stationary process, the pre-filters are developed to generate stationary residuals. The High Plains region although impacted by droughts over the last three decades has had an increase in agricultural lands, both irrigated and non-irrigated. The study shows that for the most part of the High Plains region there is significant influence of evaporative cooling on regional climate during the summer months. As the vegetation coverage increases coupled with increased in irrigation application, the regional daytime surface energy in summer is increasingly redistributed into latent heat flux which increases the effect of evaporative cooling on summer temperatures. We included the anthropogenic forcing of CO2 on regional climate with the main purpose of surpassing the radiative heating effect of greenhouse gases from natural climate noise, to enhance the LULC signal-to-noise ratio. The warming signal due to greenhouse gas forcing is observed to be weakest in the central part of the High Plains. The results showed that the CO2 signal in the region was weak or is being surpassed by the evaporative cooling effect.
Nonlinear regional warming with increasing CO2 concentrations
NASA Astrophysics Data System (ADS)
Good, Peter; Lowe, Jason A.; Andrews, Timothy; Wiltshire, Andrew; Chadwick, Robin; Ridley, Jeff K.; Menary, Matthew B.; Bouttes, Nathaelle; Dufresne, Jean Louis; Gregory, Jonathan M.; Schaller, Nathalie; Shiogama, Hideo
2015-02-01
When considering adaptation measures and global climate mitigation goals, stakeholders need regional-scale climate projections, including the range of plausible warming rates. To assist these stakeholders, it is important to understand whether some locations may see disproportionately high or low warming from additional forcing above targets such as 2 K (ref. ). There is a need to narrow uncertainty in this nonlinear warming, which requires understanding how climate changes as forcings increase from medium to high levels. However, quantifying and understanding regional nonlinear processes is challenging. Here we show that regional-scale warming can be strongly superlinear to successive CO2 doublings, using five different climate models. Ensemble-mean warming is superlinear over most land locations. Further, the inter-model spread tends to be amplified at higher forcing levels, as nonlinearities grow--especially when considering changes per kelvin of global warming. Regional nonlinearities in surface warming arise from nonlinearities in global-mean radiative balance, the Atlantic meridional overturning circulation, surface snow/ice cover and evapotranspiration. For robust adaptation and mitigation advice, therefore, potentially avoidable climate change (the difference between business-as-usual and mitigation scenarios) and unavoidable climate change (change under strong mitigation scenarios) may need different analysis methods.
Variability of High-Resolution Sea Surface Heights on a Broad, Shallow Continental Shelf
NASA Astrophysics Data System (ADS)
Crout, R. L.; Rice, A. E.
2017-12-01
Recent satellite altimeter technologies and processing methodologies are allowing investigation of the dynamics of the continental shelf as never before. The region seaward of 20 km from the coast is a region where winds, tides, currents, river discharge, and bathymetry interact. All of these are important parameters to understand when applying coastal altimetry to coastal sea level monitoring. Processing of 8 years (July 2008 to July 2016) of Jason-2 altimeter 20 Hz data from the L2 AVISO-PISTACH experimental products yields nearly 300 crossings of the broad continental shelf to the southeast of Delaware Bay from Cape May, NJ. Removal of a mean surface yields individual crossings that, plotted together, form an envelope that shows high water level variability near the coast. Water level changes near the coast begin at a hinge point that occurs approximately 50 km from shore in less than 30 meters of water. Comparison of individual Jason-2 passes with regional weather patterns, cold front passages, local winds, tides, surface currents, river discharge, and regional oceanography provides information regarding the forcing factors for these regional water levels. The water levels farther than 20 km from shore show similar patterns to the low pass filtered tide data at Cape May, NJ and respond primarily to regional forcing.
NASA Astrophysics Data System (ADS)
Bond, T. C.; Zarzycki, C.; Flanner, M. G.; Koch, D. M.
2010-06-01
We propose a measure to quantify climate warming or cooling by pollutants with atmospheric lifetimes of less than one year: the Specific Forcing Pulse (SFP). SFP is the amount of energy added to the Earth system per mass of pollutant emitted. Global average SFP for black carbon, including atmosphere and cryosphere, is 1.12 GJ g-1 and that for organic matter is -0.061 GJ g-1. We provide regional values for black carbon (BC) and organic matter (OM) emitted from 23 source-region combinations, divided between atmosphere and cryosphere impacts and identifying forcing by latitude. Regional SFP varies by about 40% for black carbon. This variation is relatively small because of compensating effects; particles from regions that affect ice albedo typically have shorter atmospheric lifetimes because of lower convection. The ratio between BC and OM SFP implies that, for direct forcing, an OM:BC mass ratio of 15 has a neutral effect on top-of-atmosphere direct forcing for any region, and any lower ratio induces direct warming. However, important processes, particularly cloud changes that tend toward cooling, have not been included here. We demonstrate ensemble adjustment, in which we produce a "best estimate" by combining a suite of diverse but simple models and enhanced models of greater complexity. Adjustments for black carbon internal mixing and for regional variability are discussed; regions with convection are implicated in greater model diversity. SFP expresses scientific uncertainty and separates it from policy uncertainty; the latter is caused by disagreements about the relevant time horizon, impact, or spatial scale of interest. However, metrics used in policy discussions, such as global warming potentials, are easily derived from SFP. Global-average SFP for biofuel and fossil fuel emissions translates to a 100-year GWP of about 760 for black carbon and -40 for organic matter when snow forcing is included. Ensemble-adjusted estimates of atmospheric radiative impact by black and organic matter using year 2000 emissions are +0.46 W m-2 and -0.17 W m-2, respectively; anthropogenic forcing is +0.38 W m-2 and -0.12 W m-2. The black carbon value is only 11% higher than that of the Intergovernmental Panel on Climate Change (IPCC), although this value includes enhanced absorption due to internal mixing.
Irrigation as an Historical Climate Forcing
NASA Technical Reports Server (NTRS)
Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.
2014-01-01
Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols, greenhouse gases, etc.) dominate the long term climate evolution in the simulations. To better constrain the magnitude and uncertainties of irrigation-forced climate anomalies, irrigation should therefore be considered as another important anthropogenic climate forcing in the next generation of historical climate simulations and multimodel assessments.
NASA Astrophysics Data System (ADS)
Yuan, S.; Xin, C.; Ying, Z.
2016-12-01
In recent years, earthquake disaster occurred frequently in Chinese mainland, the secondary disaster which have been caused by it is more serious in mountainous region. Because of the influence of terrain and geological conditions, the difficulty of earthquake emergency rescue work greatly increased, rescue force is also urged. Yet, it has been studied less on earthquake emergency rescue in mountainous region, the research in existing equipment whether can meet the actual needs of local earthquake emergency rescue is poorly. This paper intends to discuss and solve these problems. Through the mountainous regions Ganzi and Liangshan states in Sichuan field research, we investigated the process of earthquake emergency response and the projects for rescue force after an earthquake, and we also collected and collated local rescue force based data. By consulting experts and statistical analyzing the basic data, there are mainly two problems: The first is about local rescue force, they are poorly equipped and lack in the knowledge of medical help or identify architectural structure. There are no countries to establish a sound financial investment protection mechanism. Also, rescue equipment's updates and maintenance; The second problem is in earthquake emergency rescue progress. In the complicated geologic structure of mountainous regions, traffic and communication may be interrupted by landslides and mud-rock flows after earthquake. The outside rescue force may not arrive in time, rescue equipment was transported by manpower. Because of unknown earthquake disaster information, the local rescue force was deployed unreasonable. From the above, the local government worker should analyze the characteristics of the earthquake disaster in mountainous regions, and research how to improve their earthquake emergency rescue ability. We think they can do that by strengthening and regulating the rescue force structure, enhancing the skills and knowledge, training rescue workers, outfitting the light and portable rescue equipment, improving the public's self and mutual aid ability. All these measures will help local government reach the final goal of reducing the earthquake disaster.
Electrodynamic tailoring of self-assembled three-dimensional electrospun constructs
NASA Astrophysics Data System (ADS)
Reis, Tiago C.; Correia, Ilídio J.; Aguiar-Ricardo, Ana
2013-07-01
The rational design of three-dimensional electrospun constructs (3DECs) can lead to striking topographies and tailored shapes of electrospun materials. This new generation of materials is suppressing some of the current limitations of the usual 2D non-woven electrospun fiber mats, such as small pore sizes or only flat shaped constructs. Herein, we pursued an explanation for the self-assembly of 3DECs based on electrodynamic simulations and experimental validation. We concluded that the self-assembly process is driven by the establishment of attractive electrostatic forces between the positively charged aerial fibers and the already collected ones, which tend to acquire a negatively charged network oriented towards the nozzle. The in situ polarization degree is strengthened by higher amounts of clustered fibers, and therefore the initial high density fibrous regions are the preliminary motifs for the self-assembly mechanism. As such regions increase their in situ polarization electrostatic repulsive forces will appear, favoring a competitive growth of these self-assembled fibrous clusters. Highly polarized regions will evidence higher distances between consecutive micro-assembled fibers (MAFs). Different processing parameters - deposition time, electric field intensity, concentration of polymer solution, environmental temperature and relative humidity - were evaluated in an attempt to control material's design.The rational design of three-dimensional electrospun constructs (3DECs) can lead to striking topographies and tailored shapes of electrospun materials. This new generation of materials is suppressing some of the current limitations of the usual 2D non-woven electrospun fiber mats, such as small pore sizes or only flat shaped constructs. Herein, we pursued an explanation for the self-assembly of 3DECs based on electrodynamic simulations and experimental validation. We concluded that the self-assembly process is driven by the establishment of attractive electrostatic forces between the positively charged aerial fibers and the already collected ones, which tend to acquire a negatively charged network oriented towards the nozzle. The in situ polarization degree is strengthened by higher amounts of clustered fibers, and therefore the initial high density fibrous regions are the preliminary motifs for the self-assembly mechanism. As such regions increase their in situ polarization electrostatic repulsive forces will appear, favoring a competitive growth of these self-assembled fibrous clusters. Highly polarized regions will evidence higher distances between consecutive micro-assembled fibers (MAFs). Different processing parameters - deposition time, electric field intensity, concentration of polymer solution, environmental temperature and relative humidity - were evaluated in an attempt to control material's design. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01668d
Region 9 Task Force on Learning Disabilities: Summary of Proceedings, March 24-25, 1976.
ERIC Educational Resources Information Center
Rosen, Karen; Minisi, Rena
Presented is the report of the Region 9 (Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, Rhode Island, and Vermont) invitational caucus of the Council for Exceptional Children's Division on Children with Learning Disabilities which met in March of 1976. Focused on is the process for identifying children with learning disabilities…
1990-02-13
considered with these production processes in a simple photochemical equilibrium calculation , we are able to determine the contribution each makes to the...Hessian matrix of second derivatives (which is required in the Newton-Raphson procedure) by the vector product of the gradient (VJ) and its transpose...was focused on the altitude region 80-250 Km. Papers were presented in the folowing areas: Air Force requirements , physics of density and drag
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebser, J., E-mail: Jan.Ebser@uni-konstanz.de; Sommer, D.; Fritz, S.
Local rear contacts for silicon passivated emitter and rear contact solar cells can be established by point-wise treating an Al layer with laser radiation and thereby establishing an electrical contact between Al and Si bulk through the dielectric passivation layer. In this laser fired contacts (LFC) process, Al can establish a few μm thick p{sup +}-doped Si region below the metal/Si interface and forms in this way a local back surface field which reduces carrier recombination at the contacts. In this work, the applicability of Kelvin probe force microscopy (KPFM) to the investigation of LFCs considering the p{sup +}-doping distributionmore » is demonstrated. The method is based on atomic force microscopy and enables the evaluation of the lateral 2D Fermi-level characteristics at sub-micrometer resolution. The distribution of the electrical potential and therefore the local hole concentration in and around the laser fired region can be measured. KPFM is performed on mechanically polished cross-sections of p{sup +}-doped Si regions formed by the LFC process. The sample preparation is of great importance because the KPFM signal is very surface sensitive. Furthermore, the measurement is responsive to sample illumination and the height of the applied voltage between tip and sample. With other measurement techniques like micro-Raman spectroscopy, electrochemical capacitance-voltage, and energy dispersive X-ray analysis, a high local hole concentration in the range of 10{sup 19 }cm{sup −3} is demonstrated in the laser fired region. This provides, in combination with the high spatial resolution of the doping distribution measured by KPFM, a promising approach for microscopic understanding and further optimization of the LFC process.« less
Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow
NASA Astrophysics Data System (ADS)
Wang, Zhen-guo; Wu, Liyin; Li, Qinglian; Li, Chun
2014-09-01
Particle image velocimetry was applied in the study focusing on the structure and velocity of water jets injected into a Ma = 2.1 crossflow. The instantaneous structures of the jet, including surface waves in the near-injector region and vortices in the far-field, were visualized clearly. Spray velocity increases rapidly to 66% of the mainstream velocity in the region of x/d < 15, owing to the strong gas-liquid interaction near the orifice. By contrast, the velocity grows slowly in the far-field region, where the liquid inside the spray is accelerated mainly by the continuous driven force provided by the mainstream with the gas-liquid shear. The injection and atomization of liquid jet in a supersonic crossflow serves as a foundation of scramjet combustion process, by affecting the combustion efficiency and some other performances. With various forces acting on the liquid jet (Mashayek et al. [AIAA J. 46, 2674-2686 (2008)] and Wang et al. [AIAA J. 50, 1360-1366 (2012)]), the atomization process involves very complex flow physics. These physical processes include strong vortical structures, small-scale wave formation, stripping of small droplets from the jet surface, formations of ligaments, and droplets with a wide range of sizes.
Vythilingam, Meena; Nelson, Eric E.; Scaramozza, Matthew; Waldeck, Tracy; Hazlett, Gary; Southwick, Steven M.; Pine, Daniel S.; Drevets, Wayne; Charney, Dennis S.; Ernst, Monique
2008-01-01
Enhanced brain reward function could contribute to resilience to trauma. Reward circuitry in active duty, resilient special forces (SF) soldiers was evaluated using fMRI during a monetary incentive delay task. Findings in this group of resilient individuals revealed unique patterns of activation during expectation of reward in the subgenual prefrontal cortex and nucleus accumbens area; regions pivotal to reward processes. PMID:19243926
2011-12-06
Mass Wasting is the term given to the process of change on a surface due to gravity things moving downhill due to the force of gravity. Dark streaks mark the slopes of craters and hills in this region of Amazonis Planitia.
Fine structure in the transition region: reaction force analyses of water-assisted proton transfers.
Yepes, Diana; Murray, Jane S; Santos, Juan C; Toro-Labbé, Alejandro; Politzer, Peter; Jaque, Pablo
2013-07-01
We have analyzed the variation of the reaction force F(ξ) and the reaction force constant κ(ξ) along the intrinsic reaction coordinates ξ of the water-assisted proton transfer reactions of HX-N = Y (X,Y = O,S). The profile of the force constant of the vibration associated with the reactive mode, k ξ (ξ), was also determined. We compare our results to the corresponding intramolecular proton transfers in the absence of a water molecule. The presence of water promotes the proton transfers, decreasing the energy barriers by about 12 - 15 kcal mol(-1). This is due in part to much smaller bond angle changes being needed than when water is absent. The κ(ξ) profiles along the intrinsic reaction coordinates for the water-assisted processes show striking and intriguing differences in the transition regions. For the HS-N = S and HO-N = S systems, two κ(ξ) minima are obtained, whereas for HO-N = O only one minimum is found. The k ξ (ξ) show similar behavior in the transition regions. We propose that this fine structure reflects the degree of synchronicity of the two proton migrations in each case.
The Impacts of Daily Surface Forcing in the Upper Ocean over Tropical Pacific: A Numerical Study
NASA Technical Reports Server (NTRS)
Sui, C.-H.; Rienecker, Michele M.; Li, Xiaofan; Lau, William K.-M.; Laszlo, Istvan; Pinker, Rachel T.
2001-01-01
Tropical Pacific Ocean is an important region that affects global climate. How the ocean responds to the atmospheric surface forcing (surface radiative, heat and momentum fluxes) is a major topic in oceanographic research community. The ocean becomes warm when more heat flux puts into the ocean. The monthly mean forcing has been used in the past years since daily forcing was unavailable due to the lack of observations. The daily forcing is now available from the satellite measurements. This study investigates the response of the upper ocean over tropical Pacific to the daily atmospheric surface forcing. The ocean surface heat budgets are calculated to determine the important processes for the oceanic response. The differences of oceanic responses between the eastern and western Pacific are intensively discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, W.B.; Culver, D.C.; Herman, J.S.
1995-09-01
Karst lands are produced by the action of water on soluble rocks, a process among the most dynamic of all erosive forces that counterbalance the uplifting forces of tectonics. The dissolution of carbonate rock, primarily limestone and dolomite, produces unique landscapes and poses significant hydrological and environmental concerns. The major topic areas discussed in this article include the following: processes that form karst; karst drainage basins; discharge from karst aquifers; caves as paleoclimatic recorders; caves as ecosystems; water issues in karst regions; and sinkholes, soil piping and subsidence. 20 refs., 9 figs.
Design and Development of a Three-Component Force Sensor for Milling Process Monitoring
Li, Yingxue; Zhao, Yulong; Fei, Jiyou; Qin, Yafei; Zhao, You; Cai, Anjiang; Gao, Song
2017-01-01
A strain-type three-component table dynamometer is presented in this paper, which reduces output errors produced by cutting forces imposed on the different milling positions of a workpiece. A sensor structure with eight parallel elastic beams is proposed, and sensitive regions and Wheastone measuring circuits are also designed in consideration of eliminating the influences of the eccentric forces. To evaluate the sensor decoupling performance, both of the static calibration and dynamic milling test were implemented in different positions of the workpiece. Static experiment results indicate that the maximal deviation between the measured forces and the standard inputs is 4.58%. Milling tests demonstrate that with same machining parameters, the differences of the measured forces between different milling positions derived by the developed sensor are no larger than 6.29%. In addition, the natural frequencies of the dynamometer are kept higher than 2585.5 Hz. All the measuring results show that as a strain-type dynamometer, the developed force sensor has an improved eccentric decoupling accuracy with natural frequencies not much decreased, which owns application potential in milling process monitoring. PMID:28441354
How emotion context modulates unconscious goal activation during motor force exertion.
Blakemore, Rebekah L; Neveu, Rémi; Vuilleumier, Patrik
2017-02-01
Priming participants with emotional or action-related concepts influences goal formation and motor force output during effort exertion tasks, even without awareness of priming information. However, little is known about neural processes underpinning how emotional cues interact with action (or inaction) goals to motivate (or demotivate) motor behaviour. In a novel functional neuroimaging paradigm, visible emotional images followed by subliminal action or inaction word primes were presented before participants performed a maximal force exertion. In neutral emotional contexts, maximum force was lower following inaction than action primes. However, arousing emotional images had interactive motivational effects on the motor system: Unpleasant images prior to inaction primes increased force output (enhanced effort exertion) relative to control primes, and engaged a motivation-related network involving ventral striatum, extended amygdala, as well as right inferior frontal cortex. Conversely, pleasant images presented before action (versus control) primes decreased force and activated regions of the default-mode network, including inferior parietal lobule and medial prefrontal cortex. These findings show that emotional context can determine how unconscious goal representations influence motivational processes and are transformed into actual motor output, without direct rewarding contingencies. Furthermore, they provide insight into altered motor behaviour in psychopathological disorders with dysfunctional motivational processes. Copyright © 2016 Elsevier Inc. All rights reserved.
Does High Plasma-β Dynamics ``Load'' Active Regions?
NASA Astrophysics Data System (ADS)
McIntosh, Scott W.
2007-03-01
Using long-duration observations in the He II 304 Å passband of SOHO EIT, we investigate the spatial and temporal appearance of impulsive intensity fluctuations in the pixel light curves. These passband intensity fluctuations come from plasma emitting in the chromosphere, in the transition region, and in the lowest portions of the corona. We see that they are spatially tied to the supergranular scale and that their rate of occurrence is tied to the unsigned imbalance of the magnetic field in which they are observed. The signature of the fluctuations (in space and time) is consistent with their creation by magnetoconvection-forced reconnection, which is driven by the flow field in the high-β plasma. The signature of the intensity fluctuations around an active region suggests that the bulk of the mass and energy going into the active region complex observed in the hotter coronal plasma is supplied by this process, dynamically forcing the looped structure from beneath.
Coarse-Grained Simulation of Solvated Cellulose Ib Microfibril
NASA Astrophysics Data System (ADS)
Fan, Bingxin; Maranas, Janna; Zhong, Linghao; Zhen Zhao Collaboration
2013-03-01
We construct a coarse-grained (CG) model of cellulose microfibrils in water. The force field is derived from atomistic simulation of a 40 glucose-unit-long microfibril by requiring consistency between the chain configuration, intermolecular packing and hydrogen bonding of the two levels of modeling. Intermolecular interactions such as hydrogen bonding are added sequentially until the force field holds the microfibril crystal structure. This stepwise process enables us to evaluate the importance of each potential and provides insight to ordered and disordered regions. We simulate cellulose microfibrils with 100 to 400 residues, comparable to the smallest observed microfibrils. Microfibrils longer than 100nm would form a bending region along their longitudinal direction. Multiple bends are observed in the microfibril containing 400 residues. Although the cause is not clear, the bending regions may provide us insights about the periodicity and the behavior of the disordered regions in the microfibril.
Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai
2016-05-24
A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing.
Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G.; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai
2016-01-01
A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing. PMID:26921324
A conceptual framework for regional feedbacks in a changing climate
NASA Astrophysics Data System (ADS)
Batlle Bayer, L.; van den Hurk, B. J. J. M.; Strengers, B.
2012-04-01
Terrestrial ecosystems and climate influence each other through biogeochemical (e.g. carbon cycle) and biogeophysical (e.g. albedo, water fluxes) processes. These interactions might be disturbed when a climate human-induced forcing takes place (e.g. deforestation); and the ecosystem responses to the climate system might amplify (positive feedback) or dampen (negative feedback) the initial forcing. Research on feedbacks has been mainly based on the carbon cycle at the global scale. However, biogeophysical feedbacks might have a great impact at the local or regional scale, which is the main focus of this article. A conceptual framework, with the major interactions and processes between terrestrial ecosystems and climate, is presented to further explore feedbacks at the regional level. Four hot spots with potential changes in land use/management and climate are selected: sub-Saharan Africa (SSA), Europe, the Amazon Basin and South and Southeast Asia. For each region, diverse climate human-induced forcings and feedbacks were identified based on relevant published literature. For Europe, the positive soil moisture-evapotranspiration (ET) is important for natural vegetation during a heat wave event, while the positive soil moisture-precipitation feedback plays a more important role for droughts in the Amazon region. Agricultural expansion in SSA will depend on the impacts of the changing climate on crop yields and the adopted agro-technologies. The adoption of irrigation in the commonly rainfed systems might turn the positive soil moisture- ET feedback into a negative one. In contrast, South and Southeast Asia might face water shortage in the future, and thus turning the soil moisture-ET feedback into a positive one. Further research is needed for the major processes that affect the ultimate sign of the feedbacks, as well as for the interactions, which effect remains uncertain, such as ET-precipitation interaction. In addition, socio-economic feedbacks need to be added in the ecosystems-climate system since they play an essential role in human decisions on land use and land cover change (LULCC).
Nineteenth Century Harbors: Accounting for Coastal Urban Development in Hydrologic Change
NASA Astrophysics Data System (ADS)
Schlichting, K. M.; Ruffing, C. M.; McCormack, S. M.; Urbanova, T.; Powell, L. J.; Hermans, C. M.
2009-12-01
Harbors complicate the analytical framework of quantifying nineteenth-century hydrologic change in the northeastern United States. The hydrology of the region was fundamentally altered by the growth of water engineering such as canals as well as by land cover changes as deforestation in the region peaked and urban centers grew. Urban coastal growth epitomized nineteenth-century development as northeastern colonial ports evolved into manufacturing and industrial centers. Coastal urban industrial development concentrated tanneries, machineries, and paper processing companies along cities’ trading rivers. Additionally, the populations of cities such as Boston, New Haven, New York, Newark, and Baltimore reached unprecedented numbers, forcing urban municipalities to confront sewerage and drinking water infrastructure in the face of shortages and waterborne disease. We discuss how the concentration of industry and population at river mouths complicates the process of quantifying the effects of municipal drinking water and sewage infrastructure on regional hydrology and how the growth of nineteenth-century urban centers shaped regional hydrologic hinterlands. Additionally, harbors oblige a reconsideration of hydrologic boundaries by forcing hydrologists and environmental historians to account for fisheries and harbor engineering alongside population and industry as factors in changes to water quality and quantity in and human response to urban nineteenth-century hydrologic change.
Origins of Eddy Kinetic Energy in the Bay of Bengal
NASA Astrophysics Data System (ADS)
Chen, Gengxin; Li, Yuanlong; Xie, Qiang; Wang, Dongxiao
2018-03-01
By analyzing satellite observational data and ocean general circulation model experiments, this study investigates the key processes that determine the spatial distribution and seasonality of intraseasonal eddy kinetic energy (EKE) within the Bay of Bengal (BOB). It is revealed that a complicated mechanism involving both local and remote wind forcing and ocean internal instability is responsible for the generation and modulation of EKE in this region. High-level EKE mainly resides in four regions: east of Sri Lanka (Region 1), the western BOB (Region 2), northwest of Sumatra (Region 3), and the coastal rim of the BOB (Region 4). The high EKE levels in Regions 1 and 2 are predominantly produced by ocean internal instability, which contributes 90% and 79%, respectively. Prominent seasonality is also observed in these two regions, with higher EKE levels in boreal spring and fall due to enhanced instability of the East Indian Coast Current and the Southwest Monsoon Current, respectively. In contrast, ocean internal instability contributes 49% and 52% of the total EKE in Regions 3 and 4, respectively, whereas the atmospheric forcing of intraseasonal oscillations (ISOs) also plays an important role. ISOs produce EKE mainly through wind stress, involving both the remote effect of equatorial winds and the local effect of monsoonal winds. Equatorial-origin wave signals significantly enhance the EKE levels in Regions 3 and 4, in the form of reflected Rossby waves and coastal Kelvin waves, respectively. The local wind forcing effect through Ekman pumping also has a significant contribution in Regions 3 and 4 (24% and 22%, respectively).
Persistent drying in the tropics linked to natural forcing.
Winter, Amos; Zanchettin, Davide; Miller, Thomas; Kushnir, Yochanan; Black, David; Lohmann, Gerrit; Burnett, Allison; Haug, Gerald H; Estrella-Martínez, Juan; Breitenbach, Sebastian F M; Beaufort, Luc; Rubino, Angelo; Cheng, Hai
2015-07-14
Approximately half of the world's population lives in the tropics, and future changes in the hydrological cycle will impact not just the freshwater supplies but also energy production in areas dependent upon hydroelectric power. It is vital that we understand the mechanisms/processes that affect tropical precipitation and the eventual surface hydrological response to better assess projected future regional precipitation trends and variability. Paleo-climate proxies are well suited for this purpose as they provide long time series that pre-date and complement the present, often short instrumental observations. Here we present paleo-precipitation data from a speleothem located in Mesoamerica that reveal large multi-decadal declines in regional precipitation, whose onset coincides with clusters of large volcanic eruptions during the nineteenth and twentieth centuries. This reconstruction provides new independent evidence of long-lasting volcanic effects on climate and elucidates key aspects of the causal chain of physical processes determining the tropical climate response to global radiative forcing.
Solar and anthropogenic forcing of tropical hydrology
NASA Astrophysics Data System (ADS)
Shindell, Drew T.; Faluvegi, Greg; Miller, Ron L.; Schmidt, Gavin A.; Hansen, James E.; Sun, Shan
2006-12-01
Holocene climate proxies suggest substantial correlations between tropical meteorology and solar variations, but these have thus far not been explained. Using a coupled ocean-atmosphere-composition model forced by sustained multi-decadal irradiance increases, we show that greater tropical temperatures alter the hydrologic cycle, enhancing the climatological precipitation maxima in the tropics while drying the subtropical subsidence regions. The shift is enhanced by tropopause region ozone increases, and the model captures the pattern inferred from paleoclimate records. The physical process we describe likely affected past civilizations, including the Maya, Moche, and Ancestral Puebloans who experienced drought coincident with increased irradiance during the late medieval (~900-1250). Similarly, decreased irradiance may have affected cultures via a weakened monsoon during the Little Ice Age (~1400-1750). Projections of 21st-century climate change yield hydrologic cycle changes via similar processes, suggesting a strong likelihood of increased subtropical drought as climate warms.
Poon, Cynthia; Chin-Cottongim, Lisa G.; Coombes, Stephen A.; Corcos, Daniel M.
2012-01-01
It is well established that the prefrontal cortex is involved during memory-guided tasks whereas visually guided tasks are controlled in part by a frontal-parietal network. However, the nature of the transition from visually guided to memory-guided force control is not as well established. As such, this study examines the spatiotemporal pattern of brain activity that occurs during the transition from visually guided to memory-guided force control. We measured 128-channel scalp electroencephalography (EEG) in healthy individuals while they performed a grip force task. After visual feedback was removed, the first significant change in event-related activity occurred in the left central region by 300 ms, followed by changes in prefrontal cortex by 400 ms. Low-resolution electromagnetic tomography (LORETA) was used to localize the strongest activity to the left ventral premotor cortex and ventral prefrontal cortex. A second experiment altered visual feedback gain but did not require memory. In contrast to memory-guided force control, altering visual feedback gain did not lead to early changes in the left central and midline prefrontal regions. Decreasing the spatial amplitude of visual feedback did lead to changes in the midline central region by 300 ms, followed by changes in occipital activity by 400 ms. The findings show that subjects rely on sensorimotor memory processes involving left ventral premotor cortex and ventral prefrontal cortex after the immediate transition from visually guided to memory-guided force control. PMID:22696535
Martin, Heather J; Delawska-Elliott, Basia
2015-01-01
After a reduction in full-time equivalents, 2 libraries in large teaching hospitals and 2 libraries in small community hospitals in a western US statewide health system saw opportunity for expansion through a regional reorganization. Despite a loss of 2/3 of the professional staff and a budgetary decrease of 27% over the previous 3 years, the libraries were able to grow business, usage, awareness, and collections through organizational innovation and improved efficiency. This paper describes the experience--including process, challenges, and lessons learned--of an organizational shift to regionalized services, collections, and staffing. Insights from this process may help similar organizations going through restructuring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menon, Surabi; Shindell, Drew T.; Faluvegi, Greg
2007-03-26
We investigate the climate forcing from and response to projected changes in short-lived species and methane under the A1B scenario from 2000-2050 in the GISS climate model. We present a meta-analysis of new simulations of the full evolution of gas and aerosol species and other existing experiments with variations of the same model. The comparison highlights the importance of several physical processes in determining radiative forcing, especially the effect of climate change on stratosphere-troposphere exchange, heterogeneous sulfate-nitrate-dust chemistry, and changes in methane oxidation and natural emissions. However, the impact of these fairly uncertain physical effects is substantially less than themore » difference between alternative emission scenarios for all short-lived species. The net global mean annual average direct radiative forcing from the short-lived species is .02 W/m{sup 2} or less in our projections, as substantial positive ozone forcing is largely offset by negative aerosol direct forcing. Since aerosol reductions also lead to a reduced indirect effect, the global mean surface temperature warms by {approx}0.07 C by 2030 and {approx}0.13 C by 2050, adding 19% and 17%, respectively, to the warming induced by long-lived greenhouse gases. Regional direct forcings are large, up to 3.8 W/m{sup 2}. The ensemble-mean climate response shows little regional correlation with the spatial pattern of the forcing, however, suggesting that oceanic and atmospheric mixing generally overwhelms the effect of even large localized forcings. Exceptions are the polar regions, where ozone and aerosols may induce substantial seasonal climate changes.« less
NASA Astrophysics Data System (ADS)
Hamilton, Andrew; Caplinger, James; Sotnikov, Vladimir; Sarkisov, Gennady; Leland, John
2017-10-01
In the Plasma Physics and Sensors Laboratory, located at Wright Patterson Air Force Base, we utilize a pulsed power source to create plasma through a wire ablation process of metallic wires. With a parallel arrangement of wires the azimuthal magnetic fields generated around each wire, along with the Ohmic current dissipation and heating occurring upon wire evaporation, launch strong radial outflows of magnetized plasmas towards the centralized stagnation region. It is in this region that we investigate two phases of the wire ablation process. Observations in the first phase are collsionless and mostly comprised of light ions ejected from the initial corona. The second phase is observed when the wire core is ablated and heavy ions dominate collisions in the stagnation region. In this presentation we will show how dual-wavelength interferometric techniques can provide information about electron and atomic densities from experiments. Additionally, we expect white-light emission to provide a qualitative confirmation of the instabilities observed from our experiments. The material is based upon work supported by the Air Force Office of Scientific Research under Award Number 16RYCOR289.
NASA Astrophysics Data System (ADS)
Bond, T. C.; Zarzycki, C.; Flanner, M. G.; Koch, D. M.
2011-02-01
Climatic effects of short-lived climate forcers (SLCFs) differ from those of long-lived greenhouse gases, because they occur rapidly after emission and because they depend upon the region of emission. The distinctive temporal and spatial nature of these impacts is not captured by measures that rely on global averages or long time integrations. Here, we propose a simple measure, the Specific Forcing Pulse (SFP), to quantify climate warming or cooling by these pollutants, where we define "immediate" as occurring primarily within the first year after emission. SFP is the amount of energy added to or removed from a receptor region in the Earth-atmosphere system by a chemical species, per mass of emission in a source region. We limit the application of SFP to species that remain in the atmosphere for less than one year. Metrics used in policy discussions, such as total forcing or global warming potential, are easily derived from SFP. However, SFP conveys purely physical information without incurring the policy implications of choosing a time horizon for the global warming potential. Using one model (Community Atmosphere Model, or CAM), we calculate values of SFP for black carbon (BC) and organic matter (OM) emitted from 23 source-region combinations. Global SFP for both atmosphere and cryosphere impacts is divided among receptor latitudes. SFP is usually greater for open-burning emissions than for energy-related (fossil-fuel and biofuel) emissions because of the timing of emission. Global SFP for BC varies by about 45% for energy-related emissions from different regions. This variation would be larger except for compensating effects. When emitted aerosol has larger cryosphere forcing, it often has lower atmosphere forcing because of less deep convection and a shorter atmospheric lifetime. A single model result is insufficient to capture uncertainty. We develop a best estimate and uncertainties for SFP by combining forcing results from 12 additional models. We outline a framework for combining a large number of simple models with a smaller number of enhanced models that have greater complexity. Adjustments for black carbon internal mixing and for regional variability are discussed. Emitting regions with more deep convection have greater model diversity. Our best estimate of global-mean SFP is +1.03 ± 0.52 GJ g-1 for direct atmosphere forcing of black carbon, +1.15 ± 0.53 GJ g-1 for black carbon including direct and cryosphere forcing, and -0.064 (-0.02, -0.13) GJ g-1 for organic matter. These values depend on the region and timing of emission. The lowest OM:BC mass ratio required to produce a neutral effect on top-of-atmosphere direct forcing is 15:1 for any region. Any lower ratio results in positive direct forcing. However, important processes, particularly cloud changes that tend toward cooling, have not been included here. Global-average SFP for energy-related emissions can be converted to a 100-year GWP of about 740 ± 370 for BC without snow forcing, and 830 ± 440 with snow forcing. 100-year GWP for OM is -46 (-18, -92). Best estimates of atmospheric radiative impact (without snow forcing) by black and organic matter are +0.47 ± 0.26 W m-2 and -0.17 (-0.07, -0.35) W m-2 for BC and OM, respectively, assuming total emission rates of 7.4 and 45 Tg yr-1. Anthropogenic forcing is +0.40 ± 0.18 W m-2 and -0.13 (-0.05, -0.25) W m-2 for BC and OM, respectively, assuming anthropogenic emission rates of 6.3 and 32.6 Tg yr-1. Black carbon forcing is only 18% higher than that given by the Intergovernmental Panel on Climate Change (IPCC), although the value presented here includes enhanced absorption due to internal mixing.
Research on the Micro Sheet Stamping Process Using Plasticine as Soft Punch
Wang, Xiao; Zhang, Di; Gu, Chunxing; Shen, Zongbao; Liu, Huixia
2014-01-01
Plasticine is widely used in the analysis of metal forming processes, due to its excellent material flow ability. In this study, plasticine is used as the soft punch to fabricate array micro-channels on metal sheet in the micro sheet stamping process. This is because plasticine can produce a large material flow after being subjected to force and through the material flow, the plasticine can cause the sheet to fill into the micro-channels of the rigid die, leading to the generation of micro-channels in the sheet. The distribution of array micro-channels was investigated as well as the influence of load forces on the sheet deformations. It was found that the depth of micro-channels increases as the load force increases. When the load force reaches a certain level, a crack can be observed. The micro sheet stamping process was also investigated by the method of numerical simulation. The obtained experimental and numerical results for the stamping process showed that they were in good agreement. Additionally, from the simulation results, it can be seen that the corner region of the micro-channel-shape work piece has a risk to crack due to the existence of maximum von Mises stress and significant thinning. PMID:28788668
Mechanisms of microgravity flame spread over a thin solid fuel - Oxygen and opposed flow effects
NASA Technical Reports Server (NTRS)
Olson, S. L.
1991-01-01
Microgravity tests varying oxygen concentration and forced flow velocity have examined the importance of transport processes on flame spread over very thin solid fuels. Flame spread rates, solid phase temperature profiles and flame appearance for these tests are measured. A flame spread map is presented which indicates three distinct regions where different mechanisms control the flame spread process. In the near-quenching region (very low characteristic relative velocities) a new controlling mechanism for flame spread - oxidizer transport-limited chemical reaction - is proposed. In the near-limit, blowoff region, high opposed flow velocities impose residence time limitations on the flame spread process. A critical characteristic relative velocity line between the two near-limit regions defines conditions which result in maximum flammability both in terms of a peak flame spread rate and minimum oxygen concentration for steady burning. In the third region, away from both near-limit regions, the flame spread behavior, which can accurately be described by a thermal theory, is controlled by gas-phase conduction.
Corrected simulations for one-dimensional diffusion processes with naturally occurring boundaries.
Shafiey, Hassan; Gan, Xinjun; Waxman, David
2017-11-01
To simulate a diffusion process, a usual approach is to discretize the time in the associated stochastic differential equation. This is the approach used in the Euler method. In the present work we consider a one-dimensional diffusion process where the terms occurring, within the stochastic differential equation, prevent the process entering a region. The outcome is a naturally occurring boundary (which may be absorbing or reflecting). A complication occurs in a simulation of this situation. The term involving a random variable, within the discretized stochastic differential equation, may take a trajectory across the boundary into a "forbidden region." The naive way of dealing with this problem, which we refer to as the "standard" approach, is simply to reset the trajectory to the boundary, based on the argument that crossing the boundary actually signifies achieving the boundary. In this work we show, within the framework of the Euler method, that such resetting introduces a spurious force into the original diffusion process. This force may have a significant influence on trajectories that come close to a boundary. We propose a corrected numerical scheme, for simulating one-dimensional diffusion processes with naturally occurring boundaries. This involves correcting the standard approach, so that an exact property of the diffusion process is precisely respected. As a consequence, the proposed scheme does not introduce a spurious force into the dynamics. We present numerical test cases, based on exactly soluble one-dimensional problems with one or two boundaries, which suggest that, for a given value of the discrete time step, the proposed scheme leads to substantially more accurate results than the standard approach. Alternatively, the standard approach needs considerably more computation time to obtain a comparable level of accuracy to the proposed scheme, because the standard approach requires a significantly smaller time step.
Corrected simulations for one-dimensional diffusion processes with naturally occurring boundaries
NASA Astrophysics Data System (ADS)
Shafiey, Hassan; Gan, Xinjun; Waxman, David
2017-11-01
To simulate a diffusion process, a usual approach is to discretize the time in the associated stochastic differential equation. This is the approach used in the Euler method. In the present work we consider a one-dimensional diffusion process where the terms occurring, within the stochastic differential equation, prevent the process entering a region. The outcome is a naturally occurring boundary (which may be absorbing or reflecting). A complication occurs in a simulation of this situation. The term involving a random variable, within the discretized stochastic differential equation, may take a trajectory across the boundary into a "forbidden region." The naive way of dealing with this problem, which we refer to as the "standard" approach, is simply to reset the trajectory to the boundary, based on the argument that crossing the boundary actually signifies achieving the boundary. In this work we show, within the framework of the Euler method, that such resetting introduces a spurious force into the original diffusion process. This force may have a significant influence on trajectories that come close to a boundary. We propose a corrected numerical scheme, for simulating one-dimensional diffusion processes with naturally occurring boundaries. This involves correcting the standard approach, so that an exact property of the diffusion process is precisely respected. As a consequence, the proposed scheme does not introduce a spurious force into the dynamics. We present numerical test cases, based on exactly soluble one-dimensional problems with one or two boundaries, which suggest that, for a given value of the discrete time step, the proposed scheme leads to substantially more accurate results than the standard approach. Alternatively, the standard approach needs considerably more computation time to obtain a comparable level of accuracy to the proposed scheme, because the standard approach requires a significantly smaller time step.
NASA Astrophysics Data System (ADS)
Takahashi, Hideyuki; Okamoto, Tsubasa; Ohmichi, Eiji; Ohta, Hitoshi
Electron spin resonance spectroscopy in the terahertz region (THz-ESR) is a promising technique to study biological materials such as metalloproteins because it directly probes the metal ion sites that play an important role in the emergence of functionality. By combining THz-ESR with force detection, the samples mass is reduced to the order of ng. This feature is of great advantage because the sample preparation process of biological materials is time-consuming. We developed a force-detected THz-ESR system utilizing optical interferometry for precise cantilever displacement measurement. In order to suppress the sensitivity fluctuation and instability of cantilever dynamics under high magnetic field, the tuning of interferometer is feedback-controlled during a measurement. By using this system, we successfully observed the ESR signal of hemin, which is a model substance of hemoglobin and myoglobin, in THz region.
NASA Astrophysics Data System (ADS)
Van der Sanden, Germaine; Kluiving, Sjoerd; Roymans, Nico
2017-04-01
Archaeological research is fundamental in the process of obtaining a greater understanding on the intricate dynamics between the human species and the 'natural' environment. Deep historical processes can evaluate the complex interactions that eventually led to the human species as the dominating agent, in terms of the Earth's biotic and abiotic processes. Regional landscape studies can determine whether the human species can be evaluated as a formative element in soil formation processes during the Holocene. This study is directed to examine early anthropogenic land cover change (ALCC) in the Meuse-Demer-Scheldt region, in the southern Netherlands and northern Belgium, between the Late Bronze Age and Early Roman Period (1050-200 AD). The introduction of an extensive agricultural system, the Celtic field system, in co-relation with demographic rise, led to increased anthropogenic pressure on the MDS landscape. Throughout the Holocene, demographic rise pressured farmers to develop increasingly efficient and innovative methods of extracting more yields per unit area farmed resulting in a decrease in land use per capita over time (Kaplan et al. 2010; Boserup, 1965,1981)). The land use per capita under Celtic field technology was relatively high compared to contemporary numbers, based on the assumption that land use per capita did not remain constant. The MDS region is a clear example of early Holocene ALCC and modification of terrestrial ecosystems due to excessive clearance of vegetation. Early Holocene ALCC resulted in ecological deficiencies in the landscape, e.g. deforestation, acceleration of podzolisation and a decrease in terrestrial carbon storage as well as water retention capacity. ALCC can impact climate through biogeophysical and biogeochemical feedbacks to the atmosphere, and result in regional negative radiative forcing. Here we hypothesize that the previously presumed fundamental restructuring that led to a structural bipartition in the landscape due to negative modification of the terrestrial environment (Roymans & Gerritsen, 2002; Kluiving et al. 2015), is the result of a collaboration between internal forcing - anthropogenic land cover change - as well as external climate forcing - reduction in solar irradiance - (2.8 kyr event). We will present an estimation of net surface cover of Celtic Field Complexes during the Urnfield period in the MDS region and indicate that the agricultural system was even more extensive than previously thought based on detailed remote sensing (LiDAR) analyses.
A 3-D Model Study of Aerosol Composition and Radiative Forcing in the Asian-Pacific Region
NASA Technical Reports Server (NTRS)
Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xuepeng; Einaudi, Franco (Technical Monitor)
2000-01-01
The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model will be used in analyzing the aerosol data in the ACE-Asia program. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosol and the processes that control these properties over the Asian-Pacific region, (2) to determine the aerosol radiative forcing over the Asian-Pacific region, and (3) to investigate the interaction between aerosol and tropospheric chemistry. We will present the GOCART aerosol simulations of sulfate, dust, carbonaceous, and sea salt concentrations, their optical thicknesses, and their radiative effects. We will also show the comparisons of model results with data taken from previous field campaigns, ground-based sun photometer measurements, and satellite observations. Finally, we will present our plan for the ACE-Asia study.
Regional flow in the Baltic Shield during Holocene coastal regression
Voss, Clifford I.; Andersson, Johan
1993-01-01
The occurrence of saline waters in the Baltic Shield in Sweden is consistent with ongoing but incomplete Holocene flushing and depends on the geometry and connectivity of conductive structures at both regional and local scales, and on the surface topography. Numerical simulation of regional variable-density fluid flow during Holocene land-rise and coastal regression shows that the existence of any old saline water, whether derived from submarine recharge in regions below Sweden's highest postglacial coastline or geochemical processes in the crystalline rock, is an indication either of slow fluid movements through the bedrock over long times, or of long travel distances through fracture systems before arriving at measurement points. During the land-rise period, regional flow is not affected by the variable density of fluids in the upper few kilometers of the shield, and the topography of the water table is the only driving force. The spatial distribution of meteoric flushing water and pre-Holocene waters may be complex, with the possibility of relatively fresh water in fracture zones below salty units even at depths of a few kilometers. The domination of the topographic driving force implies that deep saline water is not necessarily stagnant, and significant flow may be expected to occur in well-connected horizons even at depth. Local topography variation and fracture zone location combine to create a complex flow field in which local topographic driving forces extend to considerable depth in some areas, whereas regional topographic forces predominate in others. Thus, a pattern may be difficult to discern in measurements of the regional salinity distribution, although it is clear that the coastal region is the major zone of discharge for deeper pre-Holocene fluids. During the land-rise period, the regional flow field equilibrates with changing climatic conditions and coastal positions, while the distribution of flushing water and older water lags and will perpetually change between successive glaciations. These characteristics have direct implications for the safety of nuclear water repositories located at depth in Baltic Shield rocks.
The impacts of land use, radiative forcing, and biological changes on regional climate in Japan
NASA Astrophysics Data System (ADS)
Dairaku, K.; Pielke, R. A., Sr.
2013-12-01
Because regional responses of surface hydrological and biogeochemical changes are particularly complex, it is necessary to develop assessment tools for regional scale adaptation to climate. We developed a dynamical downscaling method using the regional climate model (NIED-RAMS) over Japan. The NIED-RAMS model includes a plant model that considers biological processes, the General Energy and Mass Transfer Model (GEMTM) which adds spatial resolution to accurately assess critical interactions within the regional climate system for vulnerability assessments to climate change. We digitalized a potential vegetation map that formerly existed only on paper into Geographic Information System data. It quantified information on the reduction of green spaces and the expansion of urban and agricultural areas in Japan. We conducted regional climate sensitivity experiments of land use and land cover (LULC) change, radiative forcing, and biological effects by using the NIED-RAMS with horizontal grid spacing of 20 km. We investigated regional climate responses in Japan for three experimental scenarios: 1. land use and land cover is changed from current to potential vegetation; 2. radiative forcing is changed from 1 x CO2 to 2 x CO2; and 3. biological CO2 partial pressures in plants are doubled. The experiments show good accuracy in reproducing the surface air temperature and precipitation. The experiments indicate the distinct change of hydrological cycles in various aspects due to anthropogenic LULC change, radiative forcing, and biological effects. The relative impacts of those changes are discussed and compared. Acknowledgments This study was conducted as part of the research subject "Vulnerability and Adaptation to Climate Change in Water Hazard Assessed Using Regional Climate Scenarios in the Tokyo Region' (National Research Institute for Earth Science and Disaster Prevention; PI: Koji Dairaku) of Research Program on Climate Change Adaptation (RECCA), and was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan.
Roles of production, consumption and trade in global and regional aerosol radiative forcing
NASA Astrophysics Data System (ADS)
Lin, J.; Tong, D.; Davis, S. J.; Ni, R.; Tan, X.; Pan, D.; Zhao, H.; Lu, Z.; Streets, D. G.; Feng, T.; Zhang, Q.; Yan, Y.; Hu, Y.; Li, J.; Liu, Z.; Jiang, X.; Geng, G.; He, K.; Huang, Y.; Guan, D.
2016-12-01
Anthropogenic aerosols exert strong radiative forcing on the climate system. Prevailing view regards aerosol radiative forcing as a result of emissions from regions' economic production, with China and other developing regions having the largest contributions to radiative forcing at present. However, economic production is driven by global demand for computation, and international trade allows for separation of regions consuming goods and services from regions where goods and related aerosol pollution are produced. It has recently been recognized that regions' consumption and trade have profoundly altered the spatial distribution of aerosol emissions and pollution. Building upon our previous work, this study quantifies for the first time the roles of trade and consumption in aerosol climate forcing attributed to different regions. We contrast the direct radiative forcing of aerosols related to regions' consumption of goods and services against the forcing due to emissions produced in each region. Aerosols assessed include black carbon, primary organic aerosol, and secondary inorganic aerosols including sulfate, nitrate and ammonium. We find that global aerosol radiative forcing due to emissions produced in East Asia is much stronger than the forcing related to goods and services ultimately consumed in that region because of its large net export of emissions-intensive goods. The opposite is true for net importers like Western Europe and North America: global radiative forcing related to consumption is much greater than the forcing due to emissions produced in these regions. Overall, trade is associated with a shift of radiative forcing from net importing to net exporting regions. Compared to greenhouse gases such as carbon dioxide, the short atmospheric lifetimes of aerosols cause large localized differences in radiative forcing. International efforts to reduce emissions in the exporting countries will help alleviate trade-related climate and health impacts of aerosols while lowering global emissions associated with global consumption. Ref: Lin et al., China's international trade and air pollution in the United States, PNAS, 2014 Lin et al., Global climate forcing of aerosols embodied in international trade, Nature Geoscience, 2016
Effects of Topography-based Subgrid Structures on Land Surface Modeling
NASA Astrophysics Data System (ADS)
Tesfa, T. K.; Ruby, L.; Brunke, M.; Thornton, P. E.; Zeng, X.; Ghan, S. J.
2017-12-01
Topography has major control on land surface processes through its influence on atmospheric forcing, soil and vegetation properties, network topology and drainage area. Consequently, accurate climate and land surface simulations in mountainous regions cannot be achieved without considering the effects of topographic spatial heterogeneity. To test a computationally less expensive hyper-resolution land surface modeling approach, we developed topography-based landunits within a hierarchical subgrid spatial structure to improve representation of land surface processes in the ACME Land Model (ALM) with minimal increase in computational demand, while improving the ability to capture the spatial heterogeneity of atmospheric forcing and land cover influenced by topography. This study focuses on evaluation of the impacts of the new spatial structures on modeling land surface processes. As a first step, we compare ALM simulations with and without subgrid topography and driven by grid cell mean atmospheric forcing to isolate the impacts of the subgrid topography on the simulated land surface states and fluxes. Recognizing that subgrid topography also has important effects on atmospheric processes that control temperature, radiation, and precipitation, methods are being developed to downscale atmospheric forcings. Hence in the second step, the impacts of the subgrid topographic structure on land surface modeling will be evaluated by including spatial downscaling of the atmospheric forcings. Preliminary results on the atmospheric downscaling and the effects of the new spatial structures on the ALM simulations will be presented.
South Carolina Wins the Prize.
ERIC Educational Resources Information Center
Baldwin, Fred
1992-01-01
Discusses factors involved in locating new BMW car-manufacturing plant in South Carolina. Discusses state's business environment, transportation, and education system. Describes development process, site selection, and implications for economic development. Describes importance of state's labor-force development via regional technical colleges and…
Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhen-guo, E-mail: wangzhenguo-wzg@163.com; Wu, Liyin; Li, Qinglian
Particle image velocimetry was applied in the study focusing on the structure and velocity of water jets injected into a Ma = 2.1 crossflow. The instantaneous structures of the jet, including surface waves in the near-injector region and vortices in the far-field, were visualized clearly. Spray velocity increases rapidly to 66% of the mainstream velocity in the region of x/d < 15, owing to the strong gas-liquid interaction near the orifice. By contrast, the velocity grows slowly in the far-field region, where the liquid inside the spray is accelerated mainly by the continuous driven force provided by the mainstream with the gas-liquid shear. Themore » injection and atomization of liquid jet in a supersonic crossflow serves as a foundation of scramjet combustion process, by affecting the combustion efficiency and some other performances. With various forces acting on the liquid jet (Mashayek et al. [AIAA J. 46, 2674–2686 (2008)] and Wang et al. [AIAA J. 50, 1360–1366 (2012)]), the atomization process involves very complex flow physics. These physical processes include strong vortical structures, small-scale wave formation, stripping of small droplets from the jet surface, formations of ligaments, and droplets with a wide range of sizes.« less
NASA Technical Reports Server (NTRS)
Sotiropoulou, Rafaella-Eleni P.; Nenes, Athanasios; Adams, Peter J.; Seinfeld, John H.
2007-01-01
In situ observations of aerosol and cloud condensation nuclei (CCN) and the GISS GCM Model II' with an online aerosol simulation and explicit aerosol-cloud interactions are used to quantify the uncertainty in radiative forcing and autoconversion rate from application of Kohler theory. Simulations suggest that application of Koehler theory introduces a 10-20% uncertainty in global average indirect forcing and 2-11% uncertainty in autoconversion. Regionally, the uncertainty in indirect forcing ranges between 10-20%, and 5-50% for autoconversion. These results are insensitive to the range of updraft velocity and water vapor uptake coefficient considered. This study suggests that Koehler theory (as implemented in climate models) is not a significant source of uncertainty for aerosol indirect forcing but can be substantial for assessments of aerosol effects on the hydrological cycle in climatically sensitive regions of the globe. This implies that improvements in the representation of GCM subgrid processes and aerosol size distribution will mostly benefit indirect forcing assessments. Predictions of autoconversion, by nature, will be subject to considerable uncertainty; its reduction may require explicit representation of size-resolved aerosol composition and mixing state.
NASA Astrophysics Data System (ADS)
Zhang, Dongdong; Tan, Jianguo; Lv, Liang
2015-12-01
The mixing process has been an important issue for the design of supersonic combustion ramjet engine, and the mixing efficiency plays a crucial role in the improvement of the combustion efficiency. In the present study, nanoparticle-based planar laser scattering (NPLS), particle image velocimetry (PIV) and large eddy simulation (LES) are employed to investigate the flow and mixing characteristics of supersonic mixing layer under different forced vibration conditions. The indexes of fractal dimension, mixing layer thickness, momentum thickness and scalar mixing level are applied to describe the mixing process. Results show that different from the development and evolution of supersonic mixing layer without vibration, the flow under forced vibration is more likely to present the characteristics of three-dimensionality. The laminar flow region of mixing layer under forced vibration is greatly shortened and the scales of rolled up Kelvin-Helmholtz vortices become larger, which promote the mixing process remarkably. The fractal dimension distribution reveals that comparing with the flow without vibration, the turbulent fluctuation of supersonic mixing layer under forced vibration is more intense. Besides, the distribution of mixing layer thickness, momentum thickness and scalar mixing level are strongly influenced by forced vibration. Especially, when the forcing frequency is 4000 Hz, the mixing layer thickness and momentum thickness are 0.0391 m and 0.0222 m at the far field of 0.16 m, 83% and 131% higher than that without vibration at the same position, respectively.
Entropic forces drive contraction of cytoskeletal networks.
Braun, Marcus; Lansky, Zdenek; Hilitski, Feodor; Dogic, Zvonimir; Diez, Stefan
2016-05-01
The cytoskeleton is a network of interconnected protein filaments, which provide a three-dimensional scaffold for cells. Remodeling of the cytoskeleton is important for key cellular processes, such as cell motility, division, or morphogenesis. This remodeling is traditionally considered to be driven exclusively by processes consuming chemical energy, such as the dynamics of the filaments or the action of molecular motors. Here, we review two mechanisms of cytoskeletal network remodeling that are independent of the consumption of chemical energy. In both cases directed motion of overlapping filaments is driven by entropic forces, which arise from harnessing thermal energy present in solution. Entropic forces are induced either by macromolecular crowding agents or by diffusible crosslinkers confined to the regions where filaments overlap. Both mechanisms increase filament overlap length and lead to the contraction of filament networks. These force-generating mechanisms, together with the chemical energy-dependent mechanisms, need to be considered for the comprehensive quantitative picture of the remodeling of cytoskeletal networks in cells. © 2016 WILEY Periodicals, Inc.
Figure-Ground Processing: A Reassessment of Gelb and Granit.
Nelson, Rolf; Hebda, Nicholas
2018-03-01
In 1923, Adhemar Gelb and Ragnar Granit, two prominent researchers in early Gestalt perceptual theory, reported a lower threshold for detection of a target (a small colored dot) on the ground region of an image than on an adjacent figural region. Although their results had a wide influence on the understanding of figure-ground perception, they are at odds with more recent investigations in which figural regions appear to have a processing advantage over ground regions. The two present studies replicated Gelb and Granit's experiment using a similar figure-ground stimulus albeit with a two-alternative forced choice procedure rather than their original method of adjustment. Experiment 1 found that, contrary to Gelb and Granit's findings, a detection advantage was found for the figural over the ground region. Experiment 2 indicated that explicit contours might have played a role in detection.
NASA Technical Reports Server (NTRS)
Lyell, M. J.; Roh, Michael
1991-01-01
With the increasing opportunities for research in a microgravity environment, there arises a need for understanding fluid mechanics under such conditions. In particular, a number of material processing configurations involve fluid-fluid interfaces which may experience instabilities in the presence of external forcing. In a microgravity environment, these accelerations may be periodic or impulse-type in nature. This research investigates the behavior of a multi-layer idealized fluid configuration which is infinite in extent. The analysis is linear, and each fluid region is considered inviscid, incompressible, and immiscible. An initial parametric study of confiquration stability in the presence of a constant acceleration field is performed. The zero mean gravity limit case serves as the base state for the subsequent time-dependent forcing cases. A stability analysis of the multi-layer fluid system in the presence of periodic forcing is investigated. Floquet theory is utilized. A parameter study is performed, and regions of stability are identified. For the impulse-type forcing case, asymptotic stability is established for the configuration. Using numerical integration, the time response of the interfaces is determined.
Meeting the Challenges of Regional Security
1994-02-01
targets over time, assessing strike damage, and, of course, developing up-to- date maps of crucial urban and industrial areas. Coupled with modem digital ...of huge diverse data bases is key to dissecting criminal infrastructures, and identifying relevant regional and global linkages. New digital processing...cities). They can aid in reaction force planning and training. One 10-inch optical disc can easily store 25 (and display at any scale with 4- digit
Dutta, Mary; Chutia, Rajkalyan; Mattaparthi, Venkata Satish Kumar
2017-01-01
Recent experiments with Amyloid β1-42 peptide have indicated that the initial dimerization of Aβ1-42 monomers to form amyloid dimers stand out as a key event in the generation of toxic oligomers. However, the structural characterization of Aβ1-42 dimer at the atomistic level and the dimerization mechanism by which Aβ1-42 peptides co-aggregate still remains not clear. In the present study, the process of Aβ17-42 peptide dimerization which is known to play an important role in the plaque formation in Alzheimer's disease was evaluated in terms of potential of mean force. The Aβ17-42 dimer was constructed using PatchDock server. We have used molecular dynamics (MD) simulation with the umbrella sampling methodology to compute the Potential of Mean Force for the dimerization of Aβ17-42. The global minima structure at the minimum distance of separation was isolated from the calculated free energy profile and the interactions involved in the formation of the dimer structure were examined. Protein-protein interfaces and the residueresidue interactions vital for generation of the dimer complexes were also evaluated. The simulation results elucidated the interaction between the monomeric units to be governed primarily by the hydrophobic and hydrogen bonds. The resultant Aβ17-42 dimer was found to have an increased β-strands propensity at the hydrophobic regions encompassing the CHC region. Furthermore, specific hydrophobic residues were found to play a vital role in the formation of the dimer complex. From the results we may therefore conclude hydrophobic region encompassing the CHC region to be crucial in dimerization process. The findings from this study provide detailed information for the complex process of early events of Aβ aggregation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
1988-11-15
3 Sincerely, William H. Ehorn3Suerintenent United States Department of the Interior FISH AND WILDLIFE SERVICE LAGUNA NIGUEL FIELD OFFICE 24000 Avila...Road Laguna Niguel, California 92656 Ma’ 19, 1988 Department of the Air Force Headquarters Space Division (AFSC) Los Angeles Air Force Station P. 0...agricultural supply, and ground water recharge. In addition, all minor streams and tributaries in the central coastal region, including Honda Creek and Jalama
Procedures for offline grid nesting in regional ocean models
NASA Astrophysics Data System (ADS)
Mason, Evan; Molemaker, Jeroen; Shchepetkin, Alexander F.; Colas, Francois; McWilliams, James C.; Sangrà, Pablo
One-way offline nesting of a primitive-equation regional ocean numerical model (ROMS) is investigated, with special attention to the boundary forcing file creation process. The model has a modified open boundary condition which minimises false wave reflections, and is optimised to utilise high-frequency boundary updates. The model configuration features a previously computed solution which supplies boundary forcing data to an interior domain with an increased grid resolution. At the open boundaries of the interior grid (the child) the topography is matched to that of the outer grid (the parent), over a narrow transition region. A correction is applied to the normal baroclinic and barotropic velocities at the open boundaries of the child to ensure volume conservation. It is shown that these steps, together with a carefully constructed interpolation of the parent data, lead to a high-quality child solution, with minimal artifacts such as persistent rim currents and wave reflections at the boundaries. Sensitivity experiments provide information about the robustness of the model open boundary condition to perturbations in the surface wind stress forcing field, to the perturbation of the volume conservation enforcement in the boundary forcing, and to perturbation of the vertical density structure in the boundary forcing. This knowledge is important when extending the nesting technique to include external data from alien sources, such as ocean models with physics and/or numerics different from ROMS, or from observed climatologies of temperature, salinity and sea level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
VANNONI, MICHAEL G.; BIRINGER, KENT L.; TROST, LAWRENCE C.
Missiles are attractive weapon systems because of their flexibility, survivability, and relatively low cost. Consequently, many nations are seeking to build missile forces resulting in regional arms races. Missile forces can be both stabilizing (e.g., providing a survivable force for deterrence) and destabilizing (e.g., creating strategic asymmetries). Efforts to control missile proliferation must account for these effects. A number of strategies to control the destabilizing effects of missiles were developed during the Cold War. Some of these strategies are applicable to regional missile control but new approaches, tailored to regional geographic and security conditions, are needed. Regional missile nonproliferation canmore » be pursued in a variety of ways: Reducing the demand for missiles by decreasing the perception of national threats; Restricting the export of missiles and associated equipment by supplier countries; Restricting information describing missile technology; Limiting missile development activities such as flight or engine tests; Restricting the operational deployment of existing missile forces; and Reducing existing missile forces by number and/or type. Even when development is complete, limits on deployment within range of potential targets or limits on operational readiness can help stabilize potential missile confrontations. Implementing these strategies often involves the collection and exchange of information about activities related to missile development or deployment. Monitoring is the process of collecting information used to for subsequent verification of commitments. A systematic approach to implementing verification is presented that identifies areas where monitoring could support missile nonproliferation agreements. The paper presents both non-technical and technical techniques for monitoring. Examples of non-technical techniques are declarations about planned test launches or on-site inspections. Examples of technical monitoring include remote monitoring (i.e., a sensor that is physically present at a facility) and remote sensing (i.e., a sensor that records activity without being physically present at a facility).« less
NASA Astrophysics Data System (ADS)
Anderson, C. J.; Wildhaber, M. L.; Wikle, C. K.; Moran, E. H.; Franz, K. J.; Dey, R.
2012-12-01
Climate change operates over a broad range of spatial and temporal scales. Understanding the effects of change on ecosystems requires accounting for the propagation of information and uncertainty across these scales. For example, to understand potential climate change effects on fish populations in riverine ecosystems, climate conditions predicted by course-resolution atmosphere-ocean global climate models must first be translated to the regional climate scale. In turn, this regional information is used to force watershed models, which are used to force river condition models, which impact the population response. A critical challenge in such a multiscale modeling environment is to quantify sources of uncertainty given the highly nonlinear nature of interactions between climate variables and the individual organism. We use a hierarchical modeling approach for accommodating uncertainty in multiscale ecological impact studies. This framework allows for uncertainty due to system models, model parameter settings, and stochastic parameterizations. This approach is a hybrid between physical (deterministic) downscaling and statistical downscaling, recognizing that there is uncertainty in both. We use NARCCAP data to determine confidence the capability of climate models to simulate relevant processes and to quantify regional climate variability within the context of the hierarchical model of uncertainty quantification. By confidence, we mean the ability of the regional climate model to replicate observed mechanisms. We use the NCEP-driven simulations for this analysis. This provides a base from which regional change can be categorized as either a modification of previously observed mechanisms or emergence of new processes. The management implications for these categories of change are significantly different in that procedures to address impacts from existing processes may already be known and need adjustment; whereas, an emergent processes may require new management strategies. The results from hierarchical analysis of uncertainty are used to study the relative change in weights of the endangered Missouri River pallid sturgeon (Scaphirhynchus albus) under a 21st century climate scenario.
Occurrence of pristine aerosol environments on a polluted planet.
Hamilton, Douglas S; Lee, Lindsay A; Pringle, Kirsty J; Reddington, Carly L; Spracklen, Dominick V; Carslaw, Kenneth S
2014-12-30
Natural aerosols define a preindustrial baseline state from which the magnitude of anthropogenic aerosol effects on climate are calculated and are a major component of the large uncertainty in anthropogenic aerosol-cloud radiative forcing. This uncertainty would be reduced if aerosol environments unperturbed by air pollution could be studied in the present--day atmosphere, but the pervasiveness of air pollution makes identification of unperturbed regions difficult. Here, we use global model simulations to define unperturbed aerosol regions in terms of two measures that compare 1750 and 2000 conditions-the number of days with similar aerosol concentrations and the similarity of the aerosol response to perturbations in model processes and emissions. The analysis shows that the aerosol system in many present-day environments looks and behaves like it did in the preindustrial era. On a global annual mean, unperturbed aerosol regions cover 12% of the Earth (16% of the ocean surface and 2% of the land surface). There is a strong seasonal variation in unperturbed regions of between 4% in August and 27% in January, with the most persistent conditions occurring over the equatorial Pacific. About 90% of unperturbed regions occur in the Southern Hemisphere, but in the Northern Hemisphere, unperturbed conditions are transient and spatially patchy. In cloudy regions with a radiative forcing relative to 1750, model results suggest that unperturbed aerosol conditions could still occur on a small number of days per month. However, these environments are mostly in the Southern Hemisphere, potentially limiting the usefulness in reducing Northern Hemisphere forcing uncertainty.
Striemer, Christopher L; Whitwell, Robert L; Goodale, Melvyn A
2017-11-12
Previous research suggests that the implicit recognition of emotional expressions may be carried out by pathways that bypass primary visual cortex (V1) and project to the amygdala. Some of the strongest evidence supporting this claim comes from case studies of "affective blindsight" in which patients with V1 damage can correctly guess whether an unseen face was depicting a fearful or happy expression. In the current study, we report a new case of affective blindsight in patient MC who is cortically blind following extensive bilateral lesions to V1, as well as face and object processing regions in her ventral visual stream. Despite her large lesions, MC has preserved motion perception which is related to sparing of the motion sensitive region MT+ in both hemispheres. To examine affective blindsight in MC we asked her to perform gender and emotion discrimination tasks in which she had to guess, using a two-alternative forced-choice procedure, whether the face presented was male or female, happy or fearful, or happy or angry. In addition, we also tested MC in a four-alternative forced-choice target localization task. Results indicated that MC was not able to determine the gender of the faces (53% accuracy), or localize targets in a forced-choice task. However, she was able to determine, at above chance levels, whether the face presented was depicting a happy or fearful (67%, p = .006), or a happy or angry (64%, p = .025) expression. Interestingly, although MC was better than chance at discriminating between emotions in faces when asked to make rapid judgments, her performance fell to chance when she was asked to provide subjective confidence ratings about her performance. These data lend further support to the idea that there is a non-conscious visual pathway that bypasses V1 which is capable of processing affective signals from facial expressions without input from higher-order face and object processing regions in the ventral visual stream. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Analysis of the United States Air Force Energy Savings Performance Contracts
2007-12-01
key element of the ESPC system. Chapter IV uses the standard contracting processes to review the USAF implementations of strategic purchasing with...process and each level facilitates regionalization, which is the current implementation method of strategic purchasing for energy service management...the existing regulations that are inconsistent with the ESPC intent , and 3) to formulate substitute regulations consistent with laws governing Federal
War and Escalation in South Asia
2006-01-01
their foreign area officer expertise in the region, especially through language training (p. 85). Summary xv • Review special operations forces...stability, based on an effective central gov- ernment and denial of safe haven for terrorists. In Nepal and Sri Lanka, we will support processes to...U.S.-Pakistan Defense Consultative Group processes — has historically proven the highest-leverage U.S. policy instrument. The Near East South Asia
Precipitation Response to Regional Radiative Forcing
NASA Technical Reports Server (NTRS)
Shindell, D. T.; Voulgarakis, A.; Faluvegi, G.; Milly, G.
2012-01-01
Precipitation shifts can have large impacts on human society and ecosystems. Many aspects of how inhomogeneous radiative forcings influence precipitation remain unclear, however. Here we investigate regional precipitation responses to various forcings imposed in different latitude bands in a climate model. We find that several regions show strong, significant responses to most forcings, but that the magnitude and even the sign depends upon the forcing location and type. Aerosol and ozone forcings typically induce larger responses than equivalent carbon dioxide (CO2) forcing, and the influence of remote forcings often outweighs that of local forcings. Consistent with this, ozone and especially aerosols contribute greatly to precipitation changes over the Sahel and South and East Asia in historical simulations, and inclusion of aerosols greatly increases the agreement with observed trends in these areas, which cannot be attributed to either greenhouse gases or natural forcings. Estimates of precipitation responses derived from multiplying our Regional Precipitation Potentials (RPP; the response per unit forcing relationships) by historical forcings typically capture the actual response in full transient climate simulations fairly well, suggesting that these relationships may provide useful metrics. The strong sensitivity to aerosol and ozone forcing suggests that although some air quality improvements may unmask greenhouse gas-induced warming, they have large benefits for reducing regional disruption of the hydrologic cycle.
Adhesion of leukocytes under oscillating stagnation point conditions: a numerical study.
Walker, P G; Alshorman, A A; Westwood, S; David, T
2002-01-01
Leukocyte recruitment from blood to the endothelium plays an important role in atherosclerotic plaque formation. Cells show a primary and secondary adhesive process with primary bonds responsible for capture and rolling and secondary bonds for arrest. Our objective was to investigate the role played by this process on the adhesion of leukocytes in complex flow. Cells were modelled as rigid spheres with spring like adhesion molecules which formed bonds with endothelial receptors. Models of bond kinetics and Newton's laws of motion were solved numerically to determine cell motion. Fluid force was obtained from the local shear rate obtained from a CFD simulation of the flow over a backward facing step.In stagnation point flow the shear rate near the stagnation point has a large gradient such that adherent cells in this region roll to a high shear region preventing permanent adhesion. This is enhanced if a small time dependent perturbation is imposed upon the stagnation point. For lower shear rates the cell rolling velocity may be such that secondary bonds have time to form. These bonds resist the lower fluid forces and consequently there is a relatively large permanent adhesion region.
Effects of photophoresis on the dust distribution in a 3D protoplanetary disc
NASA Astrophysics Data System (ADS)
Cuello, N.; Gonzalez, J.-F.; Pignatale, F. C.
2016-05-01
Photophoresis is a physical process based on momentum exchange between an illuminated dust particle and its gaseous environment. Its net effect in protoplanetary discs (PPD) is the outward transport of solid bodies from hot to cold regions. This process naturally leads to the formation of ring-shaped features where dust piles up. In this work, we study the dynamical effects of photophoresis in PPD by including the photophoretic force in the two-fluid (gas+dust) smoothed particle hydrodynamics (SPH) code developed by Barrière-Fouchet et al. (2005). We find that the conditions of pressure and temperature encountered in the inner regions of PPD result in important photophoretic forces, which dramatically affect the radial motion of solid bodies. Moreover, dust particles have different equilibrium locations in the disc depending on their size and their intrinsic density. The radial transport towards the outer parts of the disc is more efficient for silicates than for iron particles, which has important implications for meteoritic composition. Our results indicate that photophoresis must be taken into account in the inner regions of PPD to fully understand the dynamics and the evolution of the dust composition.
Integration of sensory force feedback is disturbed in CRPS-related dystonia.
Mugge, Winfred; van der Helm, Frans C T; Schouten, Alfred C
2013-01-01
Complex regional pain syndrome (CRPS) is characterized by pain and disturbed blood flow, temperature regulation and motor control. Approximately 25% of cases develop fixed dystonia. The origin of this movement disorder is poorly understood, although recent insights suggest involvement of disturbed force feedback. Assessment of sensorimotor integration may provide insight into the pathophysiology of fixed dystonia. Sensory weighting is the process of integrating and weighting sensory feedback channels in the central nervous system to improve the state estimate. It was hypothesized that patients with CRPS-related dystonia bias sensory weighting of force and position toward position due to the unreliability of force feedback. The current study provides experimental evidence for dysfunctional sensory integration in fixed dystonia, showing that CRPS-patients with fixed dystonia weight force and position feedback differently than controls do. The study shows reduced force feedback weights in CRPS-patients with fixed dystonia, making it the first to demonstrate disturbed integration of force feedback in fixed dystonia, an important step towards understanding the pathophysiology of fixed dystonia.
Force transmission in migrating cells
Sauser, Roger; Ambrosi, Davide; Meister, Jean-Jacques; Verkhovsky, Alexander B.
2010-01-01
During cell migration, forces generated by the actin cytoskeleton are transmitted through adhesion complexes to the substrate. To investigate the mechanism of force generation and transmission, we analyzed the relationship between actin network velocity and traction forces at the substrate in a model system of persistently migrating fish epidermal keratocytes. Front and lateral sides of the cell exhibited much stronger coupling between actin motion and traction forces than the trailing cell body. Further analysis of the traction–velocity relationship suggested that the force transmission mechanisms were different in different cell regions: at the front, traction was generated by a gripping of the actin network to the substrate, whereas at the sides and back, it was produced by the network’s slipping over the substrate. Treatment with inhibitors of the actin–myosin system demonstrated that the cell body translocation could be powered by either of the two different processes, actomyosin contraction or actin assembly, with the former associated with significantly larger traction forces than the latter. PMID:20100912
Flume experimentation and simulation of bedrock channel processes
NASA Astrophysics Data System (ADS)
Thompson, Douglas; Wohl, Ellen
Flume experiments can provide cost effective, physically manageable miniature representations of complex bedrock channels. The inherent change in scale in such experiments requires a corresponding change in the scale of the forces represented in the flume system. Three modeling approaches have been developed that either ignore the scaling effects, utilize the change in scaled forces, or assume similarity of process between scales. An understanding of the nonlinear influence of a change in scale on all the forces involved is important to correctly analyze model results. Similarly, proper design and operation of flume experiments requires knowledge of the fundamental components of flume systems. Entrance and exit regions of the flume are used to provide good experimental conditions in the measurement region of the flume where data are collected. To insure reproducibility, large-scale turbulence must be removed in the head of the flume and velocity profiles must become fully developed in the entrance region. Water-surface slope and flow acceleration effects from downstream water-depth control must also be isolated in the exit region. Statistical design and development of representative channel substrate also influence model results in these systems. With proper experimental design, flumes may be used to investigate bedrock channel hydraulics, sediment-transport relations, and morphologic evolution. In particular, researchers have successfully used flume experiments to demonstrate the importance of turbulence and substrate characteristics in bedrock channel evolution. Turbulence often operates in a self perpetuating fashion, can erode bedrock walls with clear water and increase the mobility of sediment particles. Bedrock substrate influences channel evolution by offering varying resistance to erosion, controlling the location or type of incision and modifying the local influence of turbulence. An increased usage of scaled flume models may help to clarify the remaining uncertainties involving turbulence, channel substrate and bedrock channel evolution.
Climate Effects and Efficacy of Dust and Soot in Snow
NASA Astrophysics Data System (ADS)
Zender, C. S.; Flanner, M. G.; Randerson, J. T.; Mahowald, N. M.; Rasch, P. J.; Yoshioka, M.; Painter, T.
2006-12-01
Dust and industrial and biomass burning emissions from low and mid-latitudes dominate the absorbing impurities trapped in snow at mid- and high-latitudes. We study the effects of dust and smoke on global and regional climate using a general circulation model driven by observed and predicted aerosol emissions determined from satellite and in situ observations. The model has sophisticated treatments of aerosol and snowpack radiative and thermodynamic processes that compare well with observations of snow albedo evolution and impurity concentration. This presentation focuses on the individual and combined contributions of present day dust and soot to snow-albedo forcing and on the global temperature and snowpack responses. Results are emphasized near India and East Asia, where the anthropogenic aerosol forcing of surface albedo and hydrology is greatest. We find that dust and black carbon (BC) aerosols have climate change efficacies (surface temperature change per unit forcing) about 3--4 times greater than CO2, making them the most efficacious forcing agents known. We estimate present day dust and soot snowpack-forcing of ~ 0.050 W m-2 warms global climate by ~ 0.16 °K. Anthropogenic soot from fossil fuel sources causes more than 50% of this warming, and biomass burning can account for up to 30% in strong tropical or boreal burn years. The greatest forcings occur in the Tarim/Mongol region (due to dust), northeastern China (due to soot), and the Tibetan Plateau (both). Dirty springtime snow in these regions can darken albedo by more than 0.1 and increase surface absorption by more than 20 W m-2. These results have implications for the strength of the Asian Monsoon, which is negatively correlated with antecedent snow cover in non-ENSO years. Dust and soot have such strong efficacies because they increase spring melt rates thus reduce summer snow cover. In some regions and seasons, dirty snow reduces snowpack depth and cover by 50%, triggering strong snow and sea-ice albedo feedbacks.
Grahn, A.R.
1993-05-11
A force sensor and related method for determining force components is described. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.
Grahn, Allen R.
1993-01-01
A force sensor and related method for determining force components. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.
ON THE STRENGTH OF THE HEMISPHERIC RULE AND THE ORIGIN OF ACTIVE-REGION HELICITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil
Vector magnetograph and morphological observations have shown that the solar magnetic field tends to have negative (positive) helicity in the northern (southern) hemisphere, although only ∼60%-70% of active regions appear to obey this 'hemispheric rule'. In contrast, at least ∼80% of quiescent filaments and filament channels that form during the decay of active regions follow the rule. We attribute this discrepancy to the difficulty in determining the helicity sign of newly emerged active regions, which are dominated by their current-free component; as the transverse field is canceled at the polarity inversion lines, however, the axial component becomes dominant there, allowingmore » a more reliable determination of the original active-region chirality. We thus deduce that the hemispheric rule is far stronger than generally assumed, and cannot be explained by stochastic processes. Earlier studies have shown that the twist associated with the axial tilt of active regions is too small to account for the observed helicity; here, both tilt and twist are induced by the Coriolis force acting on the diverging flow in the emerging flux tube. However, in addition to this east-west expansion about the apex of the loop, each of its legs must expand continually in cross section during its rise through the convection zone, thereby acquiring a further twist through the Coriolis force. Since this transverse pressure effect is not limited by drag or tension forces, the final twist depends mainly on the rise time, and may be large enough to explain the observed active-region helicity.« less
Wang, Jianlong; Nguyen, Anh V
2017-12-01
Van der Waals forces are one of the important components of intermolecular, colloidal and surface forces governing many phenomena and processes. The latest examples include the colloidal interactions between hydrophobic colloids and interfaces in ambient (non-degassed) water in which dissolved gases and nanobubbles are shown to affect the van der Waals attractions significantly. The advanced computation of van der Waals forces in aqueous systems by the Lifshitz theory requires reliable data for water dielectric spectra. In this paper we review the available predictions of water dielectric spectra for calculating colloidal and surface van der Waals forces. Specifically, the available experimental data for the real and imaginary parts of the complex dielectric function of liquid water in the microwave, IR and UV regions and various corresponding predictions of the water spectra are critically reviewed. The data in the UV region are critical, but the available predictions are still based on the outdated data obtained in 1974 (for frequency only up to 25.5eV). We also reviewed and analysed the experimental data obtained for the UV region in 2000 (for frequency up to 50eV) and 2015 (for frequency up to 100eV). The 1974 and 2000 data require extrapolations to higher frequencies needed for calculating the van der Waals forces but remain inaccurate. Our analysis shows that the latest data of 2015 do not require the extrapolation and can be used to reliably calculate van der Waals forces. The most recent water dielectric spectra gives the (non-retarded) Hamaker constant, A=5.20×10 -20 J, for foam films of liquid water. This review provides the most updated and reliable water dielectric spectra to compute van der Waals forces in aqueous systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Associations of Region-Specific Foot Pain and Foot Biomechanics: The Framingham Foot Study
Hagedorn, Thomas J.; Dufour, Alyssa B.; Hannan, Marian T.
2015-01-01
Background. Specific regions of the foot are responsible for the gait tasks of weight acceptance, single-limb support, and forward propulsion. With region foot pain, gait abnormalities may arise and affect the plantar pressure and force pattern utilized. Therefore, this study’s purpose was to evaluate plantar pressure and force pattern differences between adults with and without region-specific foot pain. Methods. Plantar pressure and force data were collected on Framingham Foot Study members while walking barefoot at a self-selected pace. Foot pain was evaluated by self-report and grouped by foot region (toe, forefoot, midfoot, or rearfoot) or regions (two or three or more regions) of pain. Unadjusted and adjusted linear regression with generalized estimating equations was used to determine associations between feet with and without foot pain. Results. Individuals with distal foot (forefoot or toes) pain had similar maximum vertical forces under the pain region, while those with proximal foot (rearfoot or midfoot) pain had different maximum vertical forces compared to those without regional foot pain (referent). During walking, there were significant differences in plantar loading and propulsion ranging from 2% to 4% between those with and without regional foot pain. Significant differences in normalized maximum vertical force and plantar pressure ranged from 5.3% to 12.4% and 3.4% to 24.1%, respectively, between those with and without regional foot pain. Conclusions. Associations of regional foot pain with plantar pressure and force were different by regions of pain. Region-specific foot pain was not uniformly associated with an increase or decrease in loading and pressure patterns regions of pain. PMID:25995291
Climatic Effects of Black Carbon Aerosols Over the Tibetan Plateau
NASA Astrophysics Data System (ADS)
He, Cenlin
Black carbon (BC), also known as soot, has been identified as the second most important anthropogenic emissions in terms of global climate forcing in the current atmosphere. Ample evidence has shown that BC deposition is an important driver of rapid snow melting and glacier retreat over the Tibetan Plateau, which holds the largest snow/ice mass outside polar regions. However, the climatic effects of BC over the Tibetan Plateau have not been thoroughly investigated in such a manner as to understand, quantify, and reduce large uncertainties in the estimate of radiative and hydrological effects. Thus, this Ph.D. study seeks to understand and improve key processes controlling BC life cycle in global and regional models and to quantify BC radiative effects over the Tibetan Plateau. First, the capability of a state-of-the-art global chemical transport model (CTM), GEOS-Chem, and the associated model uncertainties are systematically evaluated in simulating BC over the Tibetan Plateau, using in situ measurements of BC in surface air, BC in snow, and BC absorption optical depth. The effects of three key factors on the simulation are also delineated, including Asian anthropogenic emissions, BC aging process, and model resolution. Subsequently, a microphysics-based BC aging scheme that accounts for condensation, coagulation, and heterogeneous chemical oxidation processes is developed and examined in GEOS-Chem by comparing with aircraft measurements. Compared to the default aging scheme, the microphysical scheme reduces model-observation discrepancies by a factor of 3, particularly in the middle and upper troposphere. In addition, a theoretical BC aging-optics model is developed to account for three typical evolution stages, namely, freshly emitted aggregates, coated BC by soluble material, and BC particles undergoing further hygroscopic growth. The geometric-optics surface-wave (GOS) approach is employed to compute the BC single-scattering properties at each aging stage, which are subsequently compared with laboratory measurements. Results show large variations in BC optical properties caused by coating morphology and aging stages. Furthermore, a comprehensive intercomparison of the GOS approach, the superposition T-matrix method, and laboratory measurements is performed for optical properties of BC with complex structures during aging. Moreover, a new snow albedo model is developed for widely-observed close-packed snow grains internally mixed with BC. Results indicate that albedo simulations that account for snow close packing match closer to observations. Close packing enhances BC-induced snow albedo reduction and associated surface radiative forcing by up to 15% (20%) for fresh (old) snow, which suggests that BC-snow albedo forcing is underestimated in previous modeling studies without accounting for close packing. Finally, the snow albedo forcing and direct radiative forcing (DRF) of BC in the Tibetan Plateau are estimated using GEOS-Chem in conjunction with a stochastic snow model and a radiative transfer model. This, for the first time, accounts for realistic non-spherical snow grain shape and stochastic multiple inclusions of BC within snow in assessing BC-snow interactions. The annual mean BC snow albedo forcing is 2.9 W m-2 over snow-covered Plateau regions. BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. BC DRF at the top of the atmosphere is 2.3 W m-2 with uncertainties of -70% - +85% in the Plateau. The BC forcings are further attributed to emissions from different regions.
Continental-Scale Temperature Reconstructions from the PAGES 2k Network
NASA Astrophysics Data System (ADS)
Kaufman, D. S.
2012-12-01
We present a major new synthesis of seven regional temperature reconstructions to elucidate the global pattern of variations and their association with climate-forcing mechanisms over the past two millennia. To coordinate the integration of new and existing data of all proxy types, the Past Global Changes (PAGES) project developed the 2k Network. It comprises nine working groups representing eight continental-scale regions and the oceans. The PAGES 2k Consortium, authoring this paper, presently includes 79 representatives from 25 countries. For this synthesis, each of the PAGES 2k working groups identified the proxy climate records for reconstructing past temperature and associated uncertainty using the data and methodologies that they deemed most appropriate for their region. The datasets are from 973 sites where tree rings, pollen, corals, lake and marine sediment, glacier ice, speleothems, and historical documents record changes in biologically and physically mediated processes that are sensitive to temperature change, among other climatic factors. The proxy records used for this synthesis are available through the NOAA World Data Center for Paleoclimatology. On long time scales, the temperature reconstructions display similarities among regions, and a large part of this common behavior can be explained by known climate forcings. Reconstructed temperatures in all regions show an overall long-term cooling trend until around 1900 C.E., followed by strong warming during the 20th century. On the multi-decadal time scale, we assessed the variability among the temperature reconstructions using principal component (PC) analysis of the standardized decadal mean temperatures over the period of overlap among the reconstructions (1200 to 1980 C.E.). PC1 explains 35% of the total variability and is strongly correlated with temperature reconstructions from the four Northern Hemisphere regions, and with the sum of external forcings including solar, volcanic, and greenhouse gases. PC2 captures 18% of the variability and is correlated most strongly with the Southern Hemisphere regions of Australasia and South America. PC3 captures 15% of the variability in the temperature reconstructions with a predominant loading from Antarctica. The timing of extremely warm and cold decades (10th percentiles) in each region were analyzed and compared with climate forcings. Only 22% of the regionally coldest decades can be ascribed to extreme minima in solar forcing, and 17% to volcanic forcing. The association between extremely warm regional temperatures and solar maxima is weaker than for cold temperatures and their corresponding solar minima. Spatially, volcanic forcing moderately increased the frequency of extremely cold decades in the Northern Hemisphere reconstructions, but had no significant effect in the Southern Hemisphere. Solar and volcanic impacts do not induce globally consistent decadal temperature shifts, but they increase the probability of cooling or warming at the continental scale. The majority of cold and warm decades identified here cannot be explained by changes in the records of volcanic activity or solar forcing. This indicates that at this timescale, prior to the anthropogenic buildup of greenhouse gases, unforced internal variability in the coupled ocean/atmosphere system was the dominant control on temperature variation.
Jansen-Osmann, Petra; Richter, Stefanie; Konczak, Jürgen; Kalveram, Karl-Theodor
2002-03-01
When humans perform goal-directed arm movements under the influence of an external damping force, they learn to adapt to these external dynamics. After removal of the external force field, they reveal kinematic aftereffects that are indicative of a neural controller that still compensates the no longer existing force. Such behavior suggests that the adult human nervous system uses a neural representation of inverse arm dynamics to control upper-extremity motion. Central to the notion of an inverse dynamic model (IDM) is that learning generalizes. Consequently, aftereffects should be observable even in untrained workspace regions. Adults have shown such behavior, but the ontogenetic development of this process remains unclear. This study examines the adaptive behavior of children and investigates whether learning a force field in one hemifield of the right arm workspace has an effect on force adaptation in the other hemifield. Thirty children (aged 6-10 years) and ten adults performed 30 degrees elbow flexion movements under two conditions of external damping (negative and null). We found that learning to compensate an external damping force transferred to the opposite hemifield, which indicates that a model of the limb dynamics rather than an association of visited space and experienced force was acquired. Aftereffects were more pronounced in the younger children and readaptation to a null-force condition was prolonged. This finding is consistent with the view that IDMs in children are imprecise neural representations of the actual arm dynamics. It indicates that the acquisition of IDMs is a developmental achievement and that the human motor system is inherently flexible enough to adapt to any novel force within the limits of the organism's biomechanics.
The Electronic Flux in Chemical Reactions. Insights on the Mechanism of the Maillard Reaction
NASA Astrophysics Data System (ADS)
Flores, Patricio; Gutiérrez-Oliva, Soledad; Herrera, Bárbara; Silva, Eduardo; Toro-Labbé, Alejandro
2007-11-01
The electronic transfer that occurs during a chemical process is analysed in term of a new concept, the electronic flux, that allows characterizing the regions along the reaction coordinate where electron transfer is actually taking place. The electron flux is quantified through the variation of the electronic chemical potential with respect to the reaction coordinate and is used, together with the reaction force, to shed light on reaction mechanism of the Schiff base formation in the Maillard reaction. By partitioning the reaction coordinate in regions in which different process might be taking place, electronic reordering associated to polarization and transfer has been identified and found to be localized at specific transition state regions where most bond forming and breaking occur.
Personal Privacy in an Information Society. Final Report.
ERIC Educational Resources Information Center
Privacy Protection Study Commission, Washington, DC.
This report of the Privacy Protection Study Commission was prepared in response to a Congressional mandate to study data banks, automatic data processing programs, and information systems of governmental, regional and private organizations to determine standards and procedures in force for the protection of personal information. Recommendations…
A ‘self-adjustment’ mechanism for mixed-layer heat budget in the equatorial Atlantic cold tongue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yanyan; Wang, Bin; Huang, Wenyu
Wind forcing is one of the most important sources for the oceanic energy cycle and is especially critical to the heat budget of surface mixed layer. The sensitivity of heat budget in the equatorial Atlantic cold tongue (EACT) region (5°S–5°N, 25°W–5°E) to wind forcing and the related mechanism are explored in this study. Based on the experiments forced by different wind forcing from both reanalysis and idealized datasets, it is revealed that the contribution ratio for each of the dominant physical processes in the heat budget is insensitive (the variations within 1% of the mean) to the variations in themore » local winds (the largest variation is about 20% of the mean) over the EACT region. Therefore, a ‘self-adjustment’ mechanism exists in the mixed-layer heat budget: as local zonal winds over the EACT region strengthen (weaken), both the cooling effects of turbulent mixing and the combined warming effects of surface net heat flux and zonal advection simultaneously increase (decrease) by nearly the same percentage and thus their contribution ratios are kept constant. Finally, owing to the impact of meridional winds on each term of heat budget can be neglected, the above mechanism is also tenable under the situation when the local meridional winds change.« less
A ‘self-adjustment’ mechanism for mixed-layer heat budget in the equatorial Atlantic cold tongue
Shi, Yanyan; Wang, Bin; Huang, Wenyu
2017-01-20
Wind forcing is one of the most important sources for the oceanic energy cycle and is especially critical to the heat budget of surface mixed layer. The sensitivity of heat budget in the equatorial Atlantic cold tongue (EACT) region (5°S–5°N, 25°W–5°E) to wind forcing and the related mechanism are explored in this study. Based on the experiments forced by different wind forcing from both reanalysis and idealized datasets, it is revealed that the contribution ratio for each of the dominant physical processes in the heat budget is insensitive (the variations within 1% of the mean) to the variations in themore » local winds (the largest variation is about 20% of the mean) over the EACT region. Therefore, a ‘self-adjustment’ mechanism exists in the mixed-layer heat budget: as local zonal winds over the EACT region strengthen (weaken), both the cooling effects of turbulent mixing and the combined warming effects of surface net heat flux and zonal advection simultaneously increase (decrease) by nearly the same percentage and thus their contribution ratios are kept constant. Finally, owing to the impact of meridional winds on each term of heat budget can be neglected, the above mechanism is also tenable under the situation when the local meridional winds change.« less
Attribution of the Regional Patterns of North American Climate Trends
NASA Astrophysics Data System (ADS)
Hoerling, M.; Kumar, A.; Karoly, D.; Rind, D.; Hegerl, G.; Eischeid, J.
2007-12-01
North American trends in surface temperature and precipitation during 1951-2006 exhibit large spatial and seasonal variations. We seek to explain these by synthesizing new information based on existing model simulations of climate and its forcing, and based on modern reanalyses that describe past and current conditions within the free atmosphere. The presentation focuses on current capabilities to explain the spatial variations and seasonal differences in North American climate trends. It will address whether various heterogeneities in space and time can be accounted for by the climate system's sensitivity to time evolving anthropogenic forcing, and examines the influences of non-anthropogenic processes. New findings are presented that indicate anthropogenic forcing alone was unlikely the cause for key regional and seasonal patterns of change, including the absence of summertime warming over the Great Plains of the United States, and the absence of warming during both winter and summer over the southern United States. Key regional features are instead attributed to trends in the principal patterns of atmospheric flow that affect North American climate. It is demonstrated that observed variations in global sea surface temperatures have significantly influenced these patterns of atmospheric flow.
Satellite orbit and data sampling requirements
NASA Technical Reports Server (NTRS)
Rossow, William
1993-01-01
Climate forcings and feedbacks vary over a wide range of time and space scales. The operation of non-linear feedbacks can couple variations at widely separated time and space scales and cause climatological phenomena to be intermittent. Consequently, monitoring of global, decadal changes in climate requires global observations that cover the whole range of space-time scales and are continuous over several decades. The sampling of smaller space-time scales must have sufficient statistical accuracy to measure the small changes in the forcings and feedbacks anticipated in the next few decades, while continuity of measurements is crucial for unambiguous interpretation of climate change. Shorter records of monthly and regional (500-1000 km) measurements with similar accuracies can also provide valuable information about climate processes, when 'natural experiments' such as large volcanic eruptions or El Ninos occur. In this section existing satellite datasets and climate model simulations are used to test the satellite orbits and sampling required to achieve accurate measurements of changes in forcings and feedbacks at monthly frequency and 1000 km (regional) scale.
NASA Astrophysics Data System (ADS)
Wang, S.; Gautam, R.; Lau, W. K.; Tsay, S.; Sun, W.; Kim, K.; Chern, J.; Colarco, P. R.; Hsu, N. C.; Lin, N.
2011-12-01
Current assessment of aerosol radiative effect is hindered by our incomplete knowledge of aerosol optical properties, especially absorption, and our current inability to quantify physical and microphysical processes. In this research, we investigate direct aerosol radiative effect over heavy aerosol loading areas (e.g., Indo-Gangetic Plains, South/East Asia) and its feedbacks on the South Asian climate during the pre-monsoon season (March-June) using the Purdue Regional Climate Model (PRCM) with prescribed aerosol data derived by the NASA Goddard Earth Observing System Model (GEOS-5). Our modeling domain covers South and East Asia (60-140E and 0-50N) with spatial resolutions of 45 km in horizontal and 28 layers in vertical. The model is integrated from 15 February to 30 June 2008 continuously without nudging (i.e., only forced by initial/boundary conditions). Two numerical experiments are conducted with and without the aerosol-radiation effects. Both simulations are successful in reproducing the synoptic patterns on seasonal-to-interannual time scales and capturing a pre-monsoon feature of the northward rainfall propagation over Indian region in early June which shown in Tropical Rainfall Measuring Mission (TRMM) observation. Preliminary result suggests aerosol-radiation interactions mainly alter surface-atmosphere energetics and further result in an adjustment of the vertical temperature distribution in lower atmosphere (below 700 hPa). The modifications of temperature and associated rainfall and circulation feedbacks on the regional climate will be discussed in the presentation. In addition to modeling study, we will also present the most recent results on aerosol properties, regional aerosol absorption, and radiative forcing estimation based on NASA's operational satellite and ground-based remote sensing. Observational results show spatial gradients in aerosol loading and solar absorption accounting over Indo-Gangetic Plains during the pre-monsoon season. The direct radiative forcing of aerosols at surface to be -19-23 Wm-2 (12-15 % of the surface solar insolation) over NW India is estimated using an observational approach. A comparison of aerosol radiative forcing between numerical simulation and observational estimate will be presented. Overall, this work will demonstrate the aerosol direct effects from both modeling and observation perspectives, and further to assess the physical processes underlying the aerosol radiative feedbacks and possible impacts on the large-scale South Asian monsoon system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Jianxin; Mei, Deqing, E-mail: meidq-127@zju.edu.cn; Yang, Keji
2014-08-14
In existing ultrasonic transportation methods, the long-range transportation of micro-particles is always realized in step-by-step way. Due to the substantial decrease of the driving force in each step, the transportation is lower-speed and stair-stepping. To improve the transporting velocity, a non-stepping ultrasonic transportation approach is proposed. By quantitatively analyzing the acoustic potential well, an optimal region is defined as the position, where the largest driving force is provided under the condition that the driving force is simultaneously the major component of an acoustic radiation force. To keep the micro-particle trapped in the optimal region during the whole transportation process, anmore » approach of optimizing the phase-shifting velocity and phase-shifting step is adopted. Due to the stable and large driving force, the displacement of the micro-particle is an approximately linear function of time, instead of a stair-stepping function of time as in the existing step-by-step methods. An experimental setup is also developed to validate this approach. Long-range ultrasonic transportations of zirconium beads with high transporting velocity were realized. The experimental results demonstrated that this approach is an effective way to improve transporting velocity in the long-range ultrasonic transportation of micro-particles.« less
NASA Astrophysics Data System (ADS)
Chu, Qu-cheng; Wang, Qi-guang; Qiao, Shao-bo; Feng, Guo-lin
2018-01-01
When persistent rainfall occurs frequently over South China, meso-scale and micro-scale synoptic systems persist and expand in space and time and eventually form meso-scale and long-scale weather processes. The accumulation of multiple torrential rain processes is defined as a "cumulative effect" of torrential rain (CETR) event. In this paper, daily reanalysis datasets collected by the National Centers for Environmental Prediction-Department of Energy (NCEP-DOE) during 1979-2014 are used to study the anomalous features and causes of heavy CETR events over South China. The results show that there is a significant difference in the spatial distribution of the heavy CETR events. Based on the center position of the CETR, the middle region displayed middle-region-heavy CETR events while the western region displayed west-region-heavy CETR events. El Niño events in the previous period (December, January, February, March (DJFM)) are major extra-forcing factors of middle-region-heavy CETR events, which is beneficial for the continuous, anomalous Philippine Sea anticyclone and strengthens the West Pacific Subtropical High (WPSH), extending it more westward than normal. The primary water vapor source for precipitation in middle-region-heavy CETR events is the Tropical Western Pacific Ocean. The major extra-forcing factor of a west-region-heavy CETR is the negative anomaly in the southern Tropical Indian Ocean (TIO) during the previous period (DJFM). This factor is beneficial for strengthening the cross-equatorial flow and westerly winds from the Bay of Bengal to the South China Sea (SCS) and early SCS summer monsoon onset. The primary water vapor source of precipitation in the west-region-heavy CETR is the southern TIO.
Davy, Richard; Esau, Igor
2016-05-25
The Earth has warmed in the last century and a large component of that warming has been attributed to increased anthropogenic greenhouse gases. There are also numerous processes that introduce strong, regionalized variations to the overall warming trend. However, the ability of a forcing to change the surface air temperature depends on its spatial and temporal distribution. Here we show that the efficacy of a forcing is determined by the effective heat capacity of the atmosphere, which in cold and dry climates is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, and so we get a strongly amplified temperature response in shallow boundary layers. This must be accounted for to assess the efficacy of a climate forcing, and also implies that multiple climate forcings cannot be linearly combined to determine the temperature response.
Yang, Y; Pan, L; Lightstone, F C; Merz, K M
2016-01-01
The potential of mean force simulations, widely applied in Monte Carlo or molecular dynamics simulations, are useful tools to examine the free energy variation as a function of one or more specific reaction coordinate(s) for a given system. Implementation of the potential of mean force in the simulations of biological processes, such as enzyme catalysis, can help overcome the difficulties of sampling specific regions on the energy landscape and provide useful insights to understand the catalytic mechanism. The potential of mean force simulations usually require many, possibly parallelizable, short simulations instead of a few extremely long simulations and, therefore, are fairly manageable for most research facilities. In this chapter, we provide detailed protocols for applying the potential of mean force simulations to investigate enzymatic mechanisms for several different enzyme systems. © 2016 Elsevier Inc. All rights reserved.
Rognoni, Lorenz; Möst, Tobias; Žoldák, Gabriel; Rief, Matthias
2014-01-01
Proline switches, controlled by cis–trans isomerization, have emerged as a particularly effective regulatory mechanism in a wide range of biological processes. In this study, we use single-molecule mechanical measurements to develop a full kinetic and energetic description of a highly conserved proline switch in the force-sensing domain 20 of human filamin and how prolyl isomerization modulates the force-sensing mechanism. Proline isomerization toggles domain 20 between two conformations. A stable cis conformation with slow unfolding, favoring the autoinhibited closed conformation of filamin’s force-sensing domain pair 20–21, and a less stable, uninhibited conformation promoted by the trans form. The data provide detailed insight into the folding mechanisms that underpin the functionality of this binary switch and elucidate its remarkable efficiency in modulating force-sensing, thus combining two previously unconnected regulatory mechanisms, proline switches and mechanosensing. PMID:24706888
Davy, Richard; Esau, Igor
2016-01-01
The Earth has warmed in the last century and a large component of that warming has been attributed to increased anthropogenic greenhouse gases. There are also numerous processes that introduce strong, regionalized variations to the overall warming trend. However, the ability of a forcing to change the surface air temperature depends on its spatial and temporal distribution. Here we show that the efficacy of a forcing is determined by the effective heat capacity of the atmosphere, which in cold and dry climates is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, and so we get a strongly amplified temperature response in shallow boundary layers. This must be accounted for to assess the efficacy of a climate forcing, and also implies that multiple climate forcings cannot be linearly combined to determine the temperature response. PMID:27221757
Resolving the molecular mechanism of cadherin catch bond formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manibog, Kristine; Li, Hui; Rakshit, Sabyasachi
2014-06-02
Classical cadherin Ca(2+)-dependent cell-cell adhesion proteins play key roles in embryogenesis and in maintaining tissue integrity. Cadherins mediate robust adhesion by binding in multiple conformations. One of these adhesive states, called an X-dimer, forms catch bonds that strengthen and become longer lived in the presence of mechanical force. Here we use single-molecule force-clamp spectroscopy with an atomic force microscope along with molecular dynamics and steered molecular dynamics simulations to resolve the molecular mechanisms underlying catch bond formation and the role of Ca(2+) ions in this process. Our data suggest that tensile force bends the cadherin extracellular region such that theymore » form long-lived, force-induced hydrogen bonds that lock X-dimers into tighter contact. When Ca(2+) concentration is decreased, fewer de novo hydrogen bonds are formed and catch bond formation is eliminated« less
Huang, Cheng-Ya; Chang, Gwo-Ching; Tsai, Yi-Ying; Hwang, Ing-Shiou
2016-01-01
Increase in postural-demand resources does not necessarily degrade a concurrent motor task, according to the adaptive resource-sharing hypothesis of postural-suprapostural dual-tasking. This study investigated how brain networks are organized to optimize a suprapostural motor task when the postural load increases and shifts postural control into a less automatic process. Fourteen volunteers executed a designated force-matching task from a level surface (a relative automatic process in posture) and from a stabilometer board while maintaining balance at a target angle (a relatively controlled process in posture). Task performance of the postural and suprapostural tasks, synchronization likelihood (SL) of scalp EEG, and graph-theoretical metrics were assessed. Behavioral results showed that the accuracy and reaction time of force-matching from a stabilometer board were not affected, despite a significant increase in postural sway. However, force-matching in the stabilometer condition showed greater local and global efficiencies of the brain networks than force-matching in the level-surface condition. Force-matching from a stabilometer board was also associated with greater frontal cluster coefficients, greater mean SL of the frontal and sensorimotor areas, and smaller mean SL of the parietal-occipital cortex than force-matching from a level surface. The contrast of supra-threshold links in the upper alpha and beta bands between the two stance conditions validated load-induced facilitation of inter-regional connections between the frontal and sensorimotor areas, but that contrast also indicated connection suppression between the right frontal-temporal and the parietal-occipital areas for the stabilometer stance condition. In conclusion, an increase in stance difficulty alters the neurocognitive processes in executing a postural-suprapostural task. Suprapostural performance is not degraded by increase in postural load, due to (1) increased effectiveness of information transfer, (2) an anterior shift of processing resources toward frontal executive function, and (3) cortical dissociation of control hubs in the parietal-occipital cortex for neural economy. PMID:27594830
The climate impacts of absorbing aerosols on and within the Arctic
NASA Astrophysics Data System (ADS)
Rasch, P.; Wang, H.; Ma, P.; Fast, J. D.; Wang, M.; Easter, R. C.; Liu, X.; Qian, Y.; Flanner, M. G.; Ghan, S.; Singh, B.
2011-12-01
Absorbing aerosols are receiving increasing attention as forcing agents in the climate system. By scattering and absorbing light they can reduce planetary albedo, particularly over bright surfaces (clouds, snow and ice). They also act as cloud condensation and/or ice nuclei, influencing the brightness, lifetime and precipitation properties of clouds. Atmospheric stability and primary circulation features respond to the changing vertical and horizontal patterns of heating, cooling, and surface fluxes produced by the aerosols, clouds and surface properties. These changes in meteorology have further impacts on aerosols and clouds producing a complex interplay between transport, forcings, and feedbacks involving absorbing aerosols and climate. The complexity of the processes and the interactions between them make it very challenging to represent aerosols realistically in large scale (global and regional) climate models. Simulations of important features of aerosols still contain easily identifiable biases. I will describe our efforts to identify the processes responsible for some of those biases and the deficiencies in model formulations that impede progress in treating aerosols and understanding their role in polar climate. I plan to summarize some studies performed with the NCAR CESM (global) and WRF-Chem (regional) Community models that examine the simulation sensitivity to treatments of physics, chemistry, and meteorology. Some of these simulations were allowed to evolve freely; others were strongly constrained to agree with observed meteorological fields. We have also altered the formulation of a number of the processes in the model to improve fidelity in the aerosol distributions. The parameterizations used in our global model have also been transferred to the regional model, allowing comparisons to be made between the simpler formulations used in the global model with more elaborate and costly formulations available in the regional model. The regional model can be run at higher resolution in order to explore the resolution dependence of the parameterizations and make comparisons to field experiments more straightforward. Aerosols sources have also been tagged by sector and geographic region to help in attribution and interpretation. The many variations mentioned here help in understanding how aerosols reach the arctic and how they produce changes in radiative forcing and Arctic climate. I will provide a brief overview of these studies, with more detail available in presentations submitted to this session and elsewhere.
ARM Airborne Carbon Measurements (ARM-ACME) and ARM-ACME 2.5 Final Campaign Reports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biraud, S. C.; Tom, M. S.; Sweeney, C.
2016-01-01
We report on a 5-year multi-institution and multi-agency airborne study of atmospheric composition and carbon cycling at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, with scientific objectives that are central to the carbon-cycle and radiative-forcing goals of the U.S. Global Change Research Program and the North American Carbon Program (NACP). The goal of these measurements is to improve understanding of 1) the carbon exchange of the Atmospheric Radiation Measurement (ARM) SGP region; 2) how CO 2 and associated water and energy fluxes influence radiative-forcing, convective processes, and CO 2 concentrations over the ARM SGPmore » region, and 3) how greenhouse gases are transported on continental scales.« less
Regionalism of Air Force Accounting and Finance Offices.
1988-04-01
facilities. (2:40) The present organizational structure of AFOs is a structure which Leonard Kazm.ier in Principles of Management would describe as...Leonard J. Principles of Management . New York: McGraw-Hill Book Company, 1964, p. 82. 2. Newman, William H. and Summer, Charles E. Jr., The Process
Numerical modeling of heat transfer in molten silicon during directional solidification process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivasan, M.; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in
2015-06-24
Numerical investigation is performed for some of the thermal and fluid flow properties of silicon melt during directional solidification by numerical modeling. Dimensionless numbers are extremely useful to understand the heat and mass transfer of fluid flow on Si melt and control the flow patterns during crystal growth processes. The average grain size of whole crystal would increase when the melt flow is laminar. In the silicon growth process, the melt flow is mainly driven by the buoyancy force resulting from the horizontal temperature gradient. The thermal and flow pattern influences the quality of the crystal through the convective heatmore » and mass transport. The computations are carried out in a 2D axisymmetric model using the finite-element technique. The buoyancy effect is observed in the melt domain for a constant Rayleigh number and for different Prandtl numbers. The convective heat flux and Reynolds numbers are studied in the five parallel horizontal cross section of melt silicon region. And also, velocity field is simulated for whole melt domain with limited thermal boundaries. The results indicate that buoyancy forces have a dramatic effect on the most of melt region except central part.« less
Method for sealing an ultracapacitor, and related articles
Day, James; Shapiro, Andrew Philip; Jerabek, Elihu Calvin
2000-08-29
An improved process for sealing at least one ultracapacitor which includes a multi-layer structure is disclosed. The process includes the step of applying a substantial vacuum to press together an uppermost layer of the structure and a lowermost layer of the structure and to evacuate ambient gasses, wherein a sealant situated in a peripheral area between the facing surfaces of the layers forms a liquid-impermeable seal for the structure under the vacuum. In some embodiments, a press is used to apply pressure to the peripheral area on which the sealant is disposed. Usually, the ultracapacitor would be situated within an enclosable region of the press, and a collapsible membrane would be fastened over the ultracapacitor to fully enclose the region and transmit the vacuum force to the multi-layer structure. The force applied by the press itself causes the sealant to flow, thereby ensuring a complete seal upon curing of the sealant. This process can be employed to seal one ultracapacitor or a stack of at least two ultracapacitors. Another embodiment of this invention is directed to an apparatus for sealing a multi-layer ultracapacitor, comprising the elements described above.
NASA Astrophysics Data System (ADS)
Dugger, A. L.; Rafieeinasab, A.; Gochis, D.; Yu, W.; McCreight, J. L.; Karsten, L. R.; Pan, L.; Zhang, Y.; Sampson, K. M.; Cosgrove, B.
2016-12-01
Evaluation of physically-based hydrologic models applied across large regions can provide insight into dominant controls on runoff generation and how these controls vary based on climatic, biological, and geophysical setting. To make this leap, however, we need to combine knowledge of regional forcing skill, model parameter and physics assumptions, and hydrologic theory. If we can successfully do this, we also gain information on how well our current approximations of these dominant physical processes are represented in continental-scale models. In this study, we apply this diagnostic approach to a 5-year retrospective implementation of the WRF-Hydro community model configured for the U.S. National Weather Service's National Water Model (NWM). The NWM is a water prediction model in operations over the contiguous U.S. as of summer 2016, providing real-time estimates and forecasts out to 30 days of streamflow across 2.7 million stream reaches as well as distributed snowpack, soil moisture, and evapotranspiration at 1-km resolution. The WRF-Hydro system permits not only the standard simulation of vertical energy and water fluxes common in continental-scale models, but augments these processes with lateral redistribution of surface and subsurface water, simple groundwater dynamics, and channel routing. We evaluate 5 years of NLDAS-2 precipitation forcing and WRF-Hydro streamflow and evapotranspiration simulation across the contiguous U.S. at a range of spatial (gage, basin, ecoregion) and temporal (hourly, daily, monthly) scales and look for consistencies and inconsistencies in performance in terms of bias, timing, and extremes. Leveraging results from other CONUS-scale hydrologic evaluation studies, we translate our performance metrics into a matrix of likely dominant process controls and error sources (forcings, parameter estimates, and model physics). We test our hypotheses in a series of controlled model experiments on a subset of representative basins from distinct "problem" environments (Southeast U.S. Coastal Plain, Central and Coastal Texas, Northern Plains, and Arid Southwest). The results from these longer-term model diagnostics will inform future improvements in forcing bias correction, parameter calibration, and physics developments in the National Water Model.
Reconstructing geomorphic patterns and forcing factors from Alpine Lake Sediment
NASA Astrophysics Data System (ADS)
Arnaud, Fabien; Poulenard, Jérôme; Giguet-Covex, Charline; Wilhelm, Bruno; Révillon, Sidonie; Jenny, Jean-Philippe; Revel, Marie; Enters, Dirk; Bajard, Manon; Fouinat, Laurent; Doyen, Elise; Simonneau, Anaëlle; Pignol, Cécile; Chapron, Emmanuel; Vannière, Boris; Sabatier, Pierre
2017-04-01
In this paper we review the scientific efforts that were led over the last decades to reconstruct geomorphic patterns from continuous alpine lake sediment records. Whereas our results point a growing importance of humans as erosion forcing factors, we will focus here on climate-related processes. Our main dataset is made of a regional approach which was led without any a priori regarding erosion forcing factors. We hence integrated a set of sediment sequences from various environment along an altitudinal gradient from 200 up to 2400m asl in Northern French Alps. Altogether our data point climate change as one of the main factor of erosion variability. In particular, the last two cold spells that occurred during the early middle age (Dark Age) and between the 14th and the 20th century AD (Little Ice Age) appear to be outstanding compared to any other periods of enhanced erosion along the Holocene. The climatic forcing of those erosion phases is supported by an increase in the contribution of glacier-eroded material at a regional scale. At local scales, our data also point the growing importance, since at least the mid Bronze Age (ca. 3500 cal. BP) of human activities as a major erosion factor. This influence peaked during the late Iron Age and Antiquity periods (200 BC - 400 AD) when we record a regional generalised period of enhanced erosion in response to the development of pasturing activities. Thanks to provenance and weathering markers, we evidenced a strong relationship between the changes in ecosystems, soil development and erosion patterns. We hence showed the vegetal colonisation of bared soil led to a period of intense weathering while new soils were under formation between 11,000 and 8,000 cal. BP. Soils then knew an optimum until the onset of the Neoglacial at ca. 4,500 cal. BP prior to decline under both climate and human pressures. Altogether our data point the complexity of processes that affected the Earth critical zone along the Holocene. However, we highlight the interest of leading spatialized paleo-investigation in order to reconstruct those dynamics through and thus better understand the processes in play in critical zone dynamics over long time periods.
Process for manufacturing shell membrane force and deflection sensor
NASA Technical Reports Server (NTRS)
Park, Yong-Lae (Inventor); Moslehi, Behzad (Inventor); Black, Richard James (Inventor); Cutkosky, Mark R. (Inventor); Chau, Kelvin K. (Inventor)
2012-01-01
A sensor for force is formed from an elastomeric cylinder having a region with apertures. The apertures have passageways formed between them, and an optical fiber is introduced into these passageways, where the optical fiber has a grating for measurement of tension positioned in the passageways between apertures. Optionally, a temperature measurement sensor is placed in or around the elastomer for temperature correction, and if required, a copper film may be deposited in the elastomer for reduced sensitivity to spot temperature variations in the elastomer near the sensors.
2005-05-01
402) 342-0949 MAPA Email: mapa @mapacog.org www.mapacog.org In the MAl> A Region: 1-800-827-6866 A Council of Governments July 22, 2004... MAPA Project Review Committee with the iqfprmation requested on the enclosed E.O. 12372 Review Process Form for the f11.?P9l;!et;l project. Completing...advance ior your cooperation. ~a /f:u6JbVA All~e A, Ramsey Adtinistrative Services Director i .. 07/27/2004 10:17 FAX 4022940790 MAPA E.O. 12372
Coherent flow structures and heat transfer in a duct with electromagnetic forcing
NASA Astrophysics Data System (ADS)
Himo, Rawad; Habchi, Charbel
2018-04-01
Coherent vortices are generated electromagnetically in a square duct flow. The vortices are induced by a Lorentz force applied in a small section near the entrance of the duct. The flow structure complexity increases with the electromagnetic forcing since the primary vortices propagating along the duct detach to generate secondary smaller streamwise vortices and hairpin-like structures. The Reynolds number based on the mean flow velocity and hydraulic diameter is 500, and five cases were studied by varying the electromagnetic forcing. Even though this Reynolds number is relatively low, a periodic sequence of hairpin-like structure flow was observed for the high forcing cases. This mechanism enhances the mixing process between the different flow regions resulting in an increase in the thermal performances which reaches 66% relative to the duct flow without forcing. In addition to the flow complexity, lower forcing cases remained steady, unlike high Lorentz forces that induced periodic instabilities with a Strouhal number around 0.59 for the transient eddies. The effect of the flow structure on the heat transfer is analyzed qualitatively and quantitatively using numerical simulations based on the finite volume method. Moreover, proper orthogonal decomposition (POD) analysis was performed on the flow structures to evaluate the most energetic modes contributing in the flow. It is found from the POD analysis that the primary streamwise vortices and hairpin legs are the flow structures that are the most contributing to the heat transfer process.
Host Model Uncertainty in Aerosol Radiative Effects: the AeroCom Prescribed Experiment and Beyond
NASA Astrophysics Data System (ADS)
Stier, Philip; Schutgens, Nick; Bian, Huisheng; Boucher, Olivier; Chin, Mian; Ghan, Steven; Huneeus, Nicolas; Kinne, Stefan; Lin, Guangxing; Myhre, Gunnar; Penner, Joyce; Randles, Cynthia; Samset, Bjorn; Schulz, Michael; Yu, Hongbin; Zhou, Cheng; Bellouin, Nicolas; Ma, Xiaoyan; Yu, Fangqun; Takemura, Toshihiko
2013-04-01
Anthropogenic and natural aerosol radiative effects are recognized to affect global and regional climate. Multi-model "diversity" in estimates of the aerosol radiative effect is often perceived as a measure of the uncertainty in modelling aerosol itself. However, current aerosol models vary considerably in model components relevant for the calculation of aerosol radiative forcings and feedbacks and the associated "host-model uncertainties" are generally convoluted with the actual uncertainty in aerosol modelling. In the AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in eleven participating models. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention. However, uncertainties in aerosol radiative effects also include short-term and long-term feedback processes that will be systematically explored in future intercomparison studies. Here we will present an overview of the proposals for discussion and results from early scoping studies.
NASA Astrophysics Data System (ADS)
Lewinschal, Anna; Ekman, Annica; Hansson, Hans-Christen
2017-04-01
Emissions of anthropogenic aerosols vary substantially over the globe and the short atmospheric residence time of aerosols leads to a highly uneven radiative forcing distribution, both spatially and temporally. Regional aerosol radiative forcing can, nevertheless, exert a large influence on the temperature field away from the forcing region through changes in heat transport or the atmospheric or ocean circulation. Moreover, the global temperature response distribution to aerosol forcing may vary depending on the geographical location of the forcing. In other words, the climate sensitivity in one region can vary depending on the location of the forcing. The surface temperature distribution response to changes in sulphate aerosol forcing caused by sulphur dioxide (SO2) emission perturbations in four different regions is investigated using the Norwegian Earth System Model (NorESM). The four regions, Europe, North America, East and South Asia, are all regions with historically high aerosol emissions and are relevant from both an air-quality and climate policy perspective. All emission perturbations are defined relative to the year 2000 emissions provided for the Coupled Model Intercomparison Project phase 5. The global mean temperature change per unit SO2 emission change is similar for all four regions for similar magnitudes of emissions changes. However, the global temperature change per unit SO2 emission in simulations where regional SO2 emission were removed is substantially higher than that obtained in simulations where regional SO2 emissions were increased. Thus, the climate sensitivity to regional SO2 emissions perturbations depends on the magnitude of the emission perturbation in NorESM. On regional scale, on the other hand, the emission perturbations in different geographical locations lead to different regional temperature responses, both locally and in remote regions. The results from the model simulations are used to construct regional temperature potential (RTP) coefficients, which directly link regional aerosol or aerosol precursor emissions to the temperature response in different regions. These RTP coefficients can provide a simplified way to perform an initial evaluation of climate impacts of e.g. different emission policy pathways and pollution abatement strategies.
Occurrence of pristine aerosol environments on a polluted planet
Hamilton, Douglas S.; Lee, Lindsay A.; Pringle, Kirsty J.; Reddington, Carly L.; Spracklen, Dominick V.; Carslaw, Kenneth S.
2014-01-01
Natural aerosols define a preindustrial baseline state from which the magnitude of anthropogenic aerosol effects on climate are calculated and are a major component of the large uncertainty in anthropogenic aerosol−cloud radiative forcing. This uncertainty would be reduced if aerosol environments unperturbed by air pollution could be studied in the present-day atmosphere, but the pervasiveness of air pollution makes identification of unperturbed regions difficult. Here, we use global model simulations to define unperturbed aerosol regions in terms of two measures that compare 1750 and 2000 conditions—the number of days with similar aerosol concentrations and the similarity of the aerosol response to perturbations in model processes and emissions. The analysis shows that the aerosol system in many present-day environments looks and behaves like it did in the preindustrial era. On a global annual mean, unperturbed aerosol regions cover 12% of the Earth (16% of the ocean surface and 2% of the land surface). There is a strong seasonal variation in unperturbed regions of between 4% in August and 27% in January, with the most persistent conditions occurring over the equatorial Pacific. About 90% of unperturbed regions occur in the Southern Hemisphere, but in the Northern Hemisphere, unperturbed conditions are transient and spatially patchy. In cloudy regions with a radiative forcing relative to 1750, model results suggest that unperturbed aerosol conditions could still occur on a small number of days per month. However, these environments are mostly in the Southern Hemisphere, potentially limiting the usefulness in reducing Northern Hemisphere forcing uncertainty. PMID:25512511
Mixing Characteristics of Strongly-Forced Jet Flames in Crossflow
NASA Astrophysics Data System (ADS)
Marr, Kevin; Clemens, Noel; Ezekoye, Ofodike
2008-11-01
The effects of high frequency, large-amplitude forcing on the characteristics of a non-premixed jet flame in crossflow (JFICF) at mean Reynolds numbers of 3,200 and 4,850 are studied experimentally. Harmonic forcing of the jet fuel results in a drastic decrease in flame length and complete suppression of soot luminosity. Visualization by planar laser Mie scattering shows that forced JFICF, similar to forced free or coflow jet flames, are characterized by ejection of high-momentum, deeply penetrating vortical structures. These structures rapidly breakdown and promote intense turbulent mixing in the near region of the jet. The rapid mixing resembles a ``one-step'' process going from a fuel rich state far in the nozzle to a well-mixed, but significantly diluted, state just a few diameters from the jet exit plane. Exhaust gas emissions measurements indicate a decrease in NOx, but increases in CO and unburned hydrocarbons with increasing forcing amplitude. Acetone PLIF measurements are used to investigate the effect of partial-premixing on these emissions findings.
Non-double-couple earthquakes. 1. Theory
Julian, B.R.; Miller, A.D.; Foulger, G.R.
1998-01-01
Historically, most quantitative seismological analyses have been based on the assumption that earthquakes are caused by shear faulting, for which the equivalent force system in an isotropic medium is a pair of force couples with no net torque (a 'double couple,' or DC). Observations of increasing quality and coverage, however, now resolve departures from the DC model for many earthquakes and find some earthquakes, especially in volcanic and geothermal areas, that have strongly non-DC mechanisms. Understanding non-DC earthquakes is important both for studying the process of faulting in detail and for identifying nonshear-faulting processes that apparently occur in some earthquakes. This paper summarizes the theory of 'moment tensor' expansions of equivalent-force systems and analyzes many possible physical non-DC earthquake processes. Contrary to long-standing assumption, sources within the Earth can sometimes have net force and torque components, described by first-rank and asymmetric second-rank moment tensors, which must be included in analyses of landslides and some volcanic phenomena. Non-DC processes that lead to conventional (symmetric second-rank) moment tensors include geometrically complex shear faulting, tensile faulting, shear faulting in an anisotropic medium, shear faulting in a heterogeneous region (e.g., near an interface), and polymorphic phase transformations. Undoubtedly, many non-DC earthquake processes remain to be discovered. Progress will be facilitated by experimental studies that use wave amplitudes, amplitude ratios, and complete waveforms in addition to wave polarities and thus avoid arbitrary assumptions such as the absence of volume changes or the temporal similarity of different moment tensor components.
[Topography and mechanical property of goat temporomandibular joint disc cells].
Bao, Guangjie; Kong, Nannan; Guo, Manli; Su, Xuelian; Kang, Hong
2015-08-01
This study is performed to investigate the cell topographies and biomechanical properties of two different types of temporomandibular joint (TMJ) discs from goats by using JPK Nano Wizard 3 biological atomic force microscopy (AFM). This process provides a guideline for selecting seed cells for TMJ disc tissue engineering. TMJ disc cells from primary goats were cultured by monolayer culture method. AFM was used to contact scan the topographies of the two types of TMJ disc cells under physiological environment. Approximately 20 chondrocyte-like and fibroblast-like cells were selected randomly to plot the force-versus-distance curves of the cytoplasm and nucleus. Young's modulus and adhesion were analyzed by JPK Data Processing. The triangle-shapednucleus of the chondrocyte-like cell occupied a large portion of the cell. Cytoskeleton was arranged dendritically on the surface. Pseudopodia were extended from cell edges. The spindle-shaped nucleus of the fibroblast-like cell occupied a significantly larger region compared with the cytoplasmic region. Cytoskeleton was arranged regularly. Cell edges were smooth with less pseudopodia extended. No difference was found in the surface roughness between the two types of cells. According to the force-versus-distance curves, the Young's moduli of the two types of cells were not statistically different (P>0.05), but differences were found in the cytoplasmic regions (P=0.047). No statistical difference was found in the adhesions between the two types of cells (P>0.05). The AFM topography and curves were compared and analyzed. The two types of TMJ disc cells exhibited significantly different topographies, but only slight difference in their mechanical abilities.
Modeling Endoplasmic Reticulum Network Maintenance in a Plant Cell.
Lin, Congping; White, Rhiannon R; Sparkes, Imogen; Ashwin, Peter
2017-07-11
The endoplasmic reticulum (ER) in plant cells forms a highly dynamic network of complex geometry. ER network morphology and dynamics are influenced by a number of biophysical processes, including filament/tubule tension, viscous forces, Brownian diffusion, and interactions with many other organelles and cytoskeletal elements. Previous studies have indicated that ER networks can be thought of as constrained minimal-length networks acted on by a variety of forces that perturb and/or remodel the network. Here, we study two specific biophysical processes involved in remodeling. One is the dynamic relaxation process involving a combination of tubule tension and viscous forces. The other is the rapid creation of cross-connection tubules by direct or indirect interactions with cytoskeletal elements. These processes are able to remodel the ER network: the first reduces network length and complexity whereas the second increases both. Using live cell imaging of ER network dynamics in tobacco leaf epidermal cells, we examine these processes on ER network dynamics. Away from regions of cytoplasmic streaming, we suggest that the dynamic network structure is a balance between the two processes, and we build an integrative model of the two processes for network remodeling. This model produces quantitatively similar ER networks to those observed in experiments. We use the model to explore the effect of parameter variation on statistical properties of the ER network. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yanju; Wang, Hailong; Singh, Balwinder
The linearity of dependence of aerosol direct and indirect radiative forcing (DRF and IRF) on emissions is essential to answer the policy-relevant question on how the change in forcing would result from a change in emission. In this study, the forcing-to-emission relationship is investigated for black carbon (BC) and primary organic carbon (OC) emitted from North America and Asia. Direct and indirect radiative forcing of BC and OC are simulated with the Community Atmosphere Model (CAM5.1). Two diagnostics are introduced to aid in policy-relevant discussion: emission-normalized forcing (ENF) and linearity (R). DRF is linearly related to emission for both BCmore » and OC from the two regions and emission-normalized DRF is similar, within 15%. IRF is linear to emissions for weaker sources and regions far from source (North American BC and OC), while for large emission sources and near source regions (Asian OC) the response of forcing to emission is sub-linear. In North America emission-normalized IRF (ENIRF) is 2-4 times higher than that in Asia. The difference among regions and species is primarily caused by failure of accumulation mode particles to become CCN, and then to activate into CDNC. Optimal aggregation area (30ºx 30º) has been used to communicate the regional variation of forcing-to-emission relationship. For IRF, only 15-40% of the Earth’s surface is significantly affected by the two emission regions, but the forcing in these regions comprises most of the global impact. Linearity of IRF occurs in about two-thirds of the significant regions except for Asian OC. ENF is an effective tool to estimate forcing changes due to reduction of surface emissions, as long as there is sufficient attention to the causes of nonlinearity in the simulations used to derive ENIRF (emission into polluted regions and emission elevation). The differences in ENIRF have important implications for policy decisions. Lower ENIRF in more polluted region like Asia means that reductions of large amounts of OC in these regions would be relatively climate-neutral rather than causing significant warming via IRF reduction.« less
Deconvolving the Fate of Carbon in Coastal Sediments
NASA Astrophysics Data System (ADS)
Van der Voort, Tessa S.; Mannu, Utsav; Blattmann, Thomas M.; Bao, Rui; Zhao, Meixun; Eglinton, Timothy I.
2018-05-01
Coastal oceans play a crucial role in the global carbon cycle, and are increasingly affected by anthropogenic forcing. Understanding carbon cycling in coastal environments is hindered by convoluted sources and myriad processes that vary over a range of spatial and temporal scales. In this study, we deconvolve the complex mosaic of organic carbon manifested in Chinese Marginal Sea (CMS) sediments using a novel numerical clustering algorithm based on 14C and total OC content. Results reveal five regions that encompass geographically distinct depositional settings. Complementary statistical analyses reveal contrasting region-dependent controls on carbon dynamics and composition. Overall, clustering is shown to be highly effective in demarcating areas of distinct organic facies by disentangling intertwined organic geochemical patterns resulting from superimposed effects of OC provenance, reworking and deposition on a shelf region exhibiting pronounced spatial heterogeneity. This information will aid in constraining region-specific budgets of carbon burial and carbon cycle processes.
Topography associated with crustal flow in continental collisions, with application to Tibet
NASA Astrophysics Data System (ADS)
Bendick, R.; McKenzie, D.; Etienne, J.
2008-10-01
Collision between an undeformable indenter and a viscous region generates isostatically compensated topography by solid-state flow. We model this process numerically, using a finite element scheme. The slope, amplitude and symmetry of the topographic signal depend on the indenter size and the Argand number of the viscous region, a dimensionless ratio of gravitational body forces to viscous forces. When applied to convergent continental settings, these scaling rules provide estimates of the position of an indenter at depth and the mechanical properties of the viscous region, especially effective viscosity. In Tibet, forward modelling suggests that some elevated, low relief topography within the northern plateau may be attributed to lower crustal flow, stimulated by a crustal indenter, possibly Indian lithosphere. The best-fit model constrains the northernmost limit of this indenter to 33.7°N and the maximum effective viscosity of Eurasian middle and lower crust to 1 × 1020 +/- 0.3 × 1020 Pa s.
High Resolution IRS Mapping of the Star-Forming Region NGC 6334 A
NASA Astrophysics Data System (ADS)
Sarma, Anuj; Abel, Nicholas; Ferland, Gary; Mayo, Elizabeth; Troland, Thomas
2005-06-01
Star formation involves the interplay of thermal, gravitational and magnetic forces. These processes lead to a dynamically evolving region in which O stars ionize the surrounding medium, and the ionized gas expands into the molecular cloud. Of these forces, magnetic effects are the least understood. A detailed analysis of the conditions in star-forming environments requires that one combine magnetic field observations with observations of the ionized, atomic, and molecular gas along with dust. We propose to carry out high-resolution IRS spectroscopy between 9.9-37.2 microns of the nearby (1.7 kpc) star-forming region NGC 6334 A. Maps of the magnetic field strength in the molecular gas exist for NGC 6334 A, yet the conditions in the H II region, the surrounding photodissociated region (PDR), and the dynamical interaction between the two regions are poorly understood. In the H II region, our proposed observation will allow us to use well-known infrared diagnostic ratios to determine the electron density, temperature, and the hardness of the continuum source. Spitzer observations of rotational transitions of molecular hydrogen and PAH emission, combined with previous observations, will allow us to determine the hydrogen density, UV radiation flux, and temperature in the PDR. We will combine our observations with theoretical calculations, using the spectral synthesis code Cloudy. Recent improvements to Cloudy include a ~1000 reaction molecular network, the ability to treat the dynamical flow of ionized gas into a molecular cloud, and the effects of magnetic pressure. Matching the observed spectra with theoretical calculations will tell us the physical conditions in the H II region and PDR, the role of magnetic fields in NGC 6334 A, and the importance of dynamics in the region. Overall, IRS observations of NGC 6334 A offers a unique opportunity to study, at high spatial resolution, many of the physical processes in star-forming regions.
Seasonal characteristics of flood regimes across the Alpine-Carpathian range.
Parajka, J; Kohnová, S; Bálint, G; Barbuc, M; Borga, M; Claps, P; Cheval, S; Dumitrescu, A; Gaume, E; Hlavčová, K; Merz, R; Pfaundler, M; Stancalie, G; Szolgay, J; Blöschl, G
2010-11-17
The aim of this paper is to analyse the differences in the long-term regimes of extreme precipitation and floods across the Alpine-Carpathian range using seasonality indices and atmospheric circulation patterns to understand the main flood-producing processes. This is supported by cluster analyses to identify areas of similar flood processes, both in terms of precipitation forcing and catchment processes. The results allow to isolate regions of similar flood generation processes including southerly versus westerly circulation patterns, effects of soil moisture seasonality due to evaporation and effects of soil moisture seasonality due to snow melt. In many regions of the Alpine-Carpathian range, there is a distinct shift in flood generating processes with flood magnitude as evidenced by a shift from summer to autumn floods. It is argued that the synoptic approach proposed here is valuable in both flood analysis and flood estimation.
Seasonal characteristics of flood regimes across the Alpine–Carpathian range
Parajka, J.; Kohnová, S.; Bálint, G.; Barbuc, M.; Borga, M.; Claps, P.; Cheval, S.; Dumitrescu, A.; Gaume, E.; Hlavčová, K.; Merz, R.; Pfaundler, M.; Stancalie, G.; Szolgay, J.; Blöschl, G.
2010-01-01
Summary The aim of this paper is to analyse the differences in the long-term regimes of extreme precipitation and floods across the Alpine–Carpathian range using seasonality indices and atmospheric circulation patterns to understand the main flood-producing processes. This is supported by cluster analyses to identify areas of similar flood processes, both in terms of precipitation forcing and catchment processes. The results allow to isolate regions of similar flood generation processes including southerly versus westerly circulation patterns, effects of soil moisture seasonality due to evaporation and effects of soil moisture seasonality due to snow melt. In many regions of the Alpine–Carpathian range, there is a distinct shift in flood generating processes with flood magnitude as evidenced by a shift from summer to autumn floods. It is argued that the synoptic approach proposed here is valuable in both flood analysis and flood estimation. PMID:25067854
Evaluation of adhesion forces of Staphylococcus aureus along the length of Candida albicans hyphae.
Ovchinnikova, Ekaterina S; Krom, Bastiaan P; Busscher, Henk J; van der Mei, Henny C
2012-11-27
Candida albicans is a human fungal pathogen, able to cause both superficial and serious, systemic diseases and is able to switch from yeast cells to long, tube-like hyphae, depending on the prevailing environmental conditions. Both morphological forms of C. albicans are found in infected tissue, often in combination with Staphylococcus aureus. Although bacterial adhesion to the different morphologies of C. albicans has been amply studied, possible differences in staphylococcal adhesion forces along the length of C. albicans hyphae have never been determined. In this study, we aim to verify the hypothesis that the forces mediating S. aureus NCTC8325-4GFP adhesion to hyphae vary along the length of C. albicans SC5314 and MB1 hyphae, as compared with adhesion to yeast cells. C. albicans hyphae were virtually divided into a "tip" (the growing and therefore youngest part of the hyphae), a "middle" and a so-called "head" region (the yeast cell from which germination started). Adhesion forces between S. aureus NCTC8325-4GFP and the different regions of C. albicans SC5314 hyphae were measured using atomic force microscopy. Strong adhesion forces were found at the tip and middle regions of C. albicans hyphae (-4.1 nN and -4.0 nN, respectively), while much smaller adhesion forces were measured at the head region (-0.3 nN). Adhesion forces exerted by the head region were comparable with the forces arising from budding yeast cells (-0.5 nN). A similar regional dependence of the staphylococcal adhesion forces was found for the clinical isolate involved in this study, C. albicans MB1. This is the first time that differences in adhesion forces between S. aureus and different regions of C. albicans hyphae have been demonstrated on a quantitative basis, supporting the view that the head region is different from the remainder of the hyphae. Notably it can be concluded that the properties of the hyphal head region are similar to those of budding yeast cells. These novel findings provide new insights in the intricate interkingdom interaction between C. albicans and S. aureus.
NASA Astrophysics Data System (ADS)
Li, Xiaoqiong; Ting, Mingfang
2017-10-01
Future hydroclimate projections from state-of-the-art climate models show large uncertainty and model spread, particularly in the tropics and over the monsoon regions. The precipitation and circulation responses to rising greenhouse gases involve a fast component associated with direct radiative forcing and a slow component associated with sea surface temperature (SST) warming; the relative importance of the two may contribute to model discrepancies. In this study, regional hydroclimate responses to greenhouse warming are assessed using output from coupled general circulation models in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) and idealized atmospheric general circulation model experiments from the Atmosphere Model Intercomparison Project. The thermodynamic and dynamic mechanisms causing the rainfall changes are examined using moisture budget analysis. Results show that direct radiative forcing and SST change exert significantly different responses both over land and ocean. For most part of the Asian monsoon region, the summertime rainfall changes are dominated by the direct CO2 radiative effect through enhanced monsoon circulation. The response to SST warming shows a larger model spread compared to direct radiative forcing, possibly due to the cancellation between the thermodynamical and dynamical components. While the thermodynamical response of the Asian monsoon is robust across the models, there is a lack of consensus for the dynamical response among the models and weak multi-model mean responses in the CMIP5 ensemble, which may be related to the multiple physical processes evolving on different time scales.
Non-radiative processes dominate land surface signals in the climate system
NASA Astrophysics Data System (ADS)
Bright, R. M.; Davin, E.; O'Halloran, T. L.; Pongratz, J.; Zhao, K.; Cescatti, A.
2016-12-01
Perturbations to the surface energy budget linked to land cover/land management changes (LCMC) are rarely included in land-climate assessments although they have long been recognized as important drivers of local climate change. At local scales, climate forcings from LCMC depend strongly on changes to surface energy redistribution by various non-radiative mechanisms, dampening or even outweighing the local radiative effect of an albedo change. The extent to which these mechanisms are locally relevant for different types of LCMC across the world remains largely unquantified. Here, we combine extensive records of remote sensing and in-situ observations to quantify local forcings for nine common real-world LCMC perturbations, identifying their underlying physical mechanisms and analyzing their spatial patterns at the global scale. We find that throughout the densely populated regions, non-radiative forcings dominate the local surface temperature response in 8 of 9 LCMC scenarios. Further, the observed local response to re-/afforestation is an annual cooling in all regions south of the upper conterminous United States, Western Europe, and Indo-China. Given that the global response to re-/afforestation in these regions is likely a cooling, projects here can be seen as attractive mitigation measures. Our results - gridded to a 1° x 1° resolution - can be directly used to evaluate climate models or compute indicators providing a more comprehensive picture of the trade-offs between local and global climate forcings linked to land sector projects and policies.
Pi-Pi contacts are an overlooked protein feature relevant to phase separation
Vernon, Robert McCoy; Chong, Paul Andrew; Tsang, Brian; Kim, Tae Hun; Bah, Alaji; Farber, Patrick; Lin, Hong
2018-01-01
Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing. PMID:29424691
Some limitations on processing materials in acoustic levitation devices
NASA Technical Reports Server (NTRS)
Oran, W. A.; Witherow, W. K.; Ross, B. B.; Rush, J. E.
1979-01-01
The spot heating of samples, suspended in an acoustic field, was investigated to determine if the technique could be used to process materials. A single axis resonance device operating in air at 25 C with an rms pressure maximum of 160 to 170 db was used in the experiments. The heat flow from a hot object suspended in a levitation node is dominated by the effects of the field, with the heat loss approximately 20 times larger than that due to natural convection. The acoustic forces which suspend the body at a node also serve to eject the heated air. The coupling between the locally heated region around the body and the acoustic field results in instabilities in both the pressure wave and force field. The investigations indicated the extreme difficulties in developing a materials processing device based on acoustic/spot heating for use in a terrestrial environment.
A task force model for statewide change in nursing education: building quality and safety.
Mundt, Mary H; Clark, Margherita Procaccini; Klemczak, Jeanette Wrona
2013-01-01
The purpose of this article was to describe a statewide planning process to transform nursing education in Michigan to improve quality and safety of patient care. A task force model was used to engage diverse partners in issue identification, consensus building, and recommendations. An example of a statewide intervention in nursing education and practice that was executed was the Michigan Quality and Safety in Nursing Education Institute, which was held using an integrated approach to academic-practice partners from all state regions. This paper describes the unique advantage of leadership by the Michigan Chief Nurse Executive, the existence of a nursing strategic plan, and a funding model. An overview of the Task Force on Nursing Education is presented with a focus on the model's 10 process steps and resulting seven recommendations. The Michigan Nurse Education Council was established to implement the recommendations that included quality and safety. Copyright © 2013 Elsevier Inc. All rights reserved.
The Impact of Desert Dust Aerosol Radiative Forcing on Global and West African Precipitation
NASA Astrophysics Data System (ADS)
Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.; Dezfuli, A. K.
2015-12-01
Desert dust aerosols exert a radiative forcing on the atmosphere, influencing atmospheric temperature structure and modifying radiative fluxes at the top of the atmosphere (TOA) and surface. As dust aerosols perturb radiative fluxes, the atmosphere responds by altering both energy and moisture dynamics, with potentially significant impacts on regional and global precipitation. Global Climate Model (GCM) experiments designed to characterize these processes have yielded a wide range of results, owing to both the complex nature of the system and diverse differences across models. Most model results show a general decrease in global precipitation, but regional results vary. Here, we compare simulations from GFDL's CM2Mc GCM with multiple other model experiments from the literature in order to investigate mechanisms of radiative impact and reasons for GCM differences on a global and regional scale. We focus on West Africa, a region of high interannual rainfall variability that is a source of dust and that neighbors major Sahara Desert dust sources. As such, changes in West African climate due to radiative forcing of desert dust aerosol have serious implications for desertification feedbacks. Our CM2Mc results show net cooling of the planet at TOA and surface, net warming of the atmosphere, and significant increases in precipitation over West Africa during the summer rainy season. These results differ from some previous GCM studies, prompting comparative analysis of desert dust parameters across models. This presentation will offer quantitative analysis of differences in dust aerosol parameters, aerosol optical properties, and overall particle burden across GCMs, and will characterize the contribution of model differences to the uncertainty of forcing and climate response affecting West Africa.
World and regional labour force trends and prospects.
Ypsilantis, J N
1974-01-01
Changes in fertility during 1970-1985 will not have any effect on the composition of the world work force until 1985 because the people who will be of working age at that time have already been born. However, fertility for this period will directly influence the size of the age group 15-30 in the year 2000. Moreover, fertility trends for this period will have an indirect effect on participation of women in the labor force. The number of people in the labor force has proportionately followed total population. Just as total population is projected to increase in the single decade 1970-1980 by an amount equal to its size in 1750, so the labor force will increase by 360 million during the 1980's (its original size in 1750). By the end of the present century the world labor force may well number some 2,6000 million, reaching 3,000 million by the year 2010; 4,000 million by 2030; 5,000 million by 2070; and stabilizing at about 5,200 million by the end of the 21st century. There will be great regional variations. Increases will range from 20-35% in Europe and the U.S.S.R. to 100-120% in South Asia, Africa, and Latin America. For East Asia and North America the increases may amount to 60% by the year 2000 and 100% by 2050. In 1970 less developed regions had 2/3 the world's labor force; by 2000 they will have 3/4. In 1970 about 20% of the labor force in more developed regions were working in agriculture while in less developed regions 2/3 were so engaged. In other terms, in more developed regions 10 farmers supported 108 persons while in less developed regions 10 farmers supported only 38. According to Food and Agriculture Organization projections, by 2000 only 3.5% of the labor force in developed regions and 43.5% in less developed regions will be in agriculture. Differences in gross national product between regions is striking. In 1970 the less developed regions contained 70% of world population, 67% of the world labor force, 87% of the world agricultural labor, and produced 15% of its wealth. There are also sharp contrasts in participation in the labor force. In less developed countries more youths and older persons are in the labor force while in developed countries more women work. By the year 2000 female activity rates in more developed regions will increase for ages 20-64 and decrease for those under 20 and over 64. This will raise female participation in the labor force to 35%. In less developed regions female participation is expected to decline. The proportion of young workers is expected to increase in less developed and decline in more developed regions; the same will be true for older workers. The dependency burden will be concentrated among the young in less developed nations; in more devel oped regions there will be larger numbers of older dependents.
NASA Technical Reports Server (NTRS)
Yu, Hongbin; Chin, Mian; West, J. Jason; Atherton, Cynthia S.; Bellouin, Nicolas; Bergmann, Dan; Bey, Isabelle; Bian, Huisheng; Diehl, Thomas; Forberth, Gerd;
2012-01-01
In this study, we assess changes of aerosol optical depth (AOD) and direct radiative forcing (DRF) in response to the reduction of anthropogenic emissions in four major pollution regions in the northern hemisphere by using results from 10 global chemical transport models in the framework of the Hemispheric Transport of Air Pollution (HTAP). The multi-model results show that on average, a 20% reduction of anthropogenic emissions in North America, Europe, East Asia and South Asia lowers the global mean AOD and DRF by about 9%, 4%, and 10% for sulfate, organic matter, and black carbon aerosol, respectively. The impacts of the regional emission reductions on AOD and DRF extend well beyond the source regions because of intercontinental transport. On an annual basis, intercontinental transport accounts for 10-30% of the overall AOD and DRF in a receptor region, with domestic emissions accounting for the remainder, depending on regions and species. While South Asia is most influenced by import of sulfate aerosol from Europe, North America is most influenced by import of black carbon from East Asia. Results show a large spread among models, highlighting the need to improve aerosol processes in models and evaluate and constrain models with observations.
Global and Regional Sea Level Rise Scenarios for the United States
NASA Technical Reports Server (NTRS)
Sweet, William V.; Kopp, Robert E.; Weaver, Christopher P.; Obeysekera, Jayantha; Horton, Radley M.; Thieler, E. Robert; Zervas, Chris
2017-01-01
The Sea Level Rise and Coastal Flood Hazard Scenarios and Tools Interagency Task Force, jointly convened by the U.S. Global Change Research Program (USGCRP) and the National Ocean Council (NOC), began its work in August 2015. The Task Force has focused its efforts on three primary tasks: 1) updating scenarios of global mean sea level (GMSL) rise, 2) integrating the global scenarios with regional factors contributing to sea level change for the entire U.S. coastline, and 3) incorporating these regionally appropriate scenarios within coastal risk management tools and capabilities deployed by individual agencies in support of the needs of specific stakeholder groups and user communities. This technical report focuses on the first two of these tasks and reports on the production of gridded relative sea level (RSL, which includes both ocean-level change and vertical land motion) projections for the United States associated with an updated set of GMSL scenarios. In addition to supporting the longer-term Task Force effort, this new product will be an important input into the USGCRP Sustained Assessment process and upcoming Fourth National Climate Assessment (NCA4) due in 2018. This report also serves as a key technical input into the in-progress USGCRP Climate Science Special Report (CSSR).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, William I.; Qian, Yun; Fast, Jerome D.
2011-07-13
Recent improvements to many global climate models include detailed, prognostic aerosol calculations intended to better reproduce the observed climate. However, the trace gas and aerosol fields are treated at the grid-cell scale with no attempt to account for sub-grid impacts on the aerosol fields. This paper begins to quantify the error introduced by the neglected sub-grid variability for the shortwave aerosol radiative forcing for a representative climate model grid spacing of 75 km. An analysis of the value added in downscaling aerosol fields is also presented to give context to the WRF-Chem simulations used for the sub-grid analysis. We foundmore » that 1) the impact of neglected sub-grid variability on the aerosol radiative forcing is strongest in regions of complex topography and complicated flow patterns, and 2) scale-induced differences in emissions contribute strongly to the impact of neglected sub-grid processes on the aerosol radiative forcing. The two of these effects together, when simulated at 75 km vs. 3 km in WRF-Chem, result in an average daytime mean bias of over 30% error in top-of-atmosphere shortwave aerosol radiative forcing for a large percentage of central Mexico during the MILAGRO field campaign.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Fuyao; Yu, Yan; Notaro, Michael
This study advances the practicality and stability of the traditional multivariate statistical method, generalized equilibrium feedback assessment (GEFA), for decomposing the key oceanic drivers of regional atmospheric variability, especially when available data records are short. An advanced stepwise GEFA methodology is introduced, in which unimportant forcings within the forcing matrix are eliminated through stepwise selection. Method validation of stepwise GEFA is performed using the CESM, with a focused application to northern and tropical Africa (NTA). First, a statistical assessment of the atmospheric response to each primary oceanic forcing is carried out by applying stepwise GEFA to a fully coupled controlmore » run. Then, a dynamical assessment of the atmospheric response to individual oceanic forcings is performed through ensemble experiments by imposing sea surface temperature anomalies over focal ocean basins. Finally, to quantify the reliability of stepwise GEFA, the statistical assessment is evaluated against the dynamical assessment in terms of four metrics: the percentage of grid cells with consistent response sign, the spatial correlation of atmospheric response patterns, the area-averaged seasonal cycle of response magnitude, and consistency in associated mechanisms between assessments. In CESM, tropical modes, namely El Niño–Southern Oscillation and the tropical Indian Ocean Basin, tropical Indian Ocean dipole, and tropical Atlantic Niño modes, are the dominant oceanic controls of NTA climate. In complementary studies, stepwise GEFA is validated in terms of isolating terrestrial forcings on the atmosphere, and observed oceanic and terrestrial drivers of NTA climate are extracted to establish an observational benchmark for subsequent coupled model evaluation and development of process-based weights for regional climate projections.« less
Wang, Fuyao; Yu, Yan; Notaro, Michael; ...
2017-09-27
This study advances the practicality and stability of the traditional multivariate statistical method, generalized equilibrium feedback assessment (GEFA), for decomposing the key oceanic drivers of regional atmospheric variability, especially when available data records are short. An advanced stepwise GEFA methodology is introduced, in which unimportant forcings within the forcing matrix are eliminated through stepwise selection. Method validation of stepwise GEFA is performed using the CESM, with a focused application to northern and tropical Africa (NTA). First, a statistical assessment of the atmospheric response to each primary oceanic forcing is carried out by applying stepwise GEFA to a fully coupled controlmore » run. Then, a dynamical assessment of the atmospheric response to individual oceanic forcings is performed through ensemble experiments by imposing sea surface temperature anomalies over focal ocean basins. Finally, to quantify the reliability of stepwise GEFA, the statistical assessment is evaluated against the dynamical assessment in terms of four metrics: the percentage of grid cells with consistent response sign, the spatial correlation of atmospheric response patterns, the area-averaged seasonal cycle of response magnitude, and consistency in associated mechanisms between assessments. In CESM, tropical modes, namely El Niño–Southern Oscillation and the tropical Indian Ocean Basin, tropical Indian Ocean dipole, and tropical Atlantic Niño modes, are the dominant oceanic controls of NTA climate. In complementary studies, stepwise GEFA is validated in terms of isolating terrestrial forcings on the atmosphere, and observed oceanic and terrestrial drivers of NTA climate are extracted to establish an observational benchmark for subsequent coupled model evaluation and development of process-based weights for regional climate projections.« less
Factors Affecting Aerosol Radiative Forcing
NASA Astrophysics Data System (ADS)
Wang, Jingxu; Lin, Jintai; Ni, Ruijing
2016-04-01
Rapid industrial and economic growth has meant a large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RF of aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissions per unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size. South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions, its aerosol RF is alleviated by its lowest chemical efficiency. The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is lowered by a small per capita GDP. Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The resulting relocation of emissions would meant drastic changes in both the spatial distribution and the magnitude of RF, with consequences on regional and global climate forcing. Our findings are relevant to global aerosol control and climate mitigation.
Factors Affecting Aerosol Radiative Forcing
NASA Astrophysics Data System (ADS)
Wang, J.; Lin, J.; Ni, R.
2016-12-01
Rapid industrial and economic growth has meant large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RFof aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissionsper unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size.South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions,its aerosol RF is alleviated by its lowest chemical efficiency.The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is loweredbyasmall per capita GDP.Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The resulting relocation of emissions would meant drastic changes in both the spatial distribution and the magnitude of RF, with consequences on regional and global climate forcing. Our findings are relevant to global aerosol control and climate mitigation.
The complete process of large elastic-plastic deflection of a cantilever
NASA Astrophysics Data System (ADS)
Wu, Xiaoqiang; Yu, Tongxi
1986-11-01
An extension of the Elastica theory is developed to study the large deflection of an elastic-perfectly plastic horizontal cantilever beam subjected to a vertical concentrated force at its tip. The entire process is divided into four stages: I.elastic in the whole cantilever; II.loading and developing of the plastic region; III.unloading in the plastic region; and IV.reverse loading. Solutions for stages I and II are presented in a closed form. A combination of closed-form solution and numerical integration is presented for stage III. Finally, stage IV is qualitatively studied. Computed results are given and compared with those from small-deflection theory and from the Elastica theory.
NASA Astrophysics Data System (ADS)
Lee, Hyomin; Jung, Yeonsu; Park, Sungmin; Kim, Ho-Young; Kim, Sung Jae
2016-11-01
Generally, an ion depletion region near a permselective medium is induced by predominant ion flux through the medium. External electric field or hydraulic pressure has been reported as the driving forces. Among these driving forces, an imbibition through the nanoporous medium was chosen as the mechanism to spontaneously generate the ion depletion region. The water-absorbing process leads to the predominant ion flux so that the spontaneous formation of the ion depletion zone is expected even if there are no additional driving forces except for the inherent capillary action. In this presentation, we derived the analytical solutions using perturbation method and asymptotic analysis for the spontaneous phenomenon. Using the analysis, we found that there is also spontaneous accumulation regime depending on the mobility of dissolved electrolytic species. Therefore, the rigorous analysis of the spontaneous ion depletion and accumulation phenomena would provide a key perspective for the control of ion transportation in nanofluidic system such as desalinator, preconcentrator, and energy harvesting device, etc. Samsung Research Funding Center of Samsung Electronics (SRFC-MA1301-02) and BK21 plus program of Creative Research Engineer Development IT, Seoul National University.
NASA Technical Reports Server (NTRS)
Zhou, Yaping; Wu, Di; Lau, K.- M.; Tao, Wei-Kuo
2016-01-01
Large-scale forcing and land-atmosphere interactions on precipitation are investigated with NASA-Unified WRF (NU-WRF) simulations during fast transitions of ENSO phases from spring to early summer of 2010 and 2011. The model is found to capture major precipitation episodes in the 3-month simulations without resorting to nudging. However, the mean intensity of the simulated precipitation is underestimated by 46% and 57% compared with the observations in dry and wet regions in the southwestern and south-central United States, respectively. Sensitivity studies show that large-scale atmospheric forcing plays a major role in producing regional precipitation. A methodology to account for moisture contributions to individual precipitation events, as well as total precipitation, is presented under the same moisture budget framework. The analysis shows that the relative contributions of local evaporation and large-scale moisture convergence depend on the dry/wet regions and are a function of temporal and spatial scales. While the ratio of local and large-scale moisture contributions vary with domain size and weather system, evaporation provides a major moisture source in the dry region and during light rain events, which leads to greater sensitivity to soil moisture in the dry region and during light rain events. The feedback of land surface processes to large-scale forcing is well simulated, as indicated by changes in atmospheric circulation and moisture convergence. Overall, the results reveal an asymmetrical response of precipitation events to soil moisture, with higher sensitivity under dry than wet conditions. Drier soil moisture tends to suppress further existing below-normal precipitation conditions via a positive soil moisture-land surface flux feedback that could worsen drought conditions in the southwestern United States.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Chun; Hu, Zhiyuan; Qian, Yun
2014-10-30
A state-of-the-art regional model, WRF-Chem, is coupled with the SNICAR model that includes the sophisticated representation of snow metamorphism processes available for climate study. The coupled model is used to simulate the black carbon (BC) and dust concentrations and their radiative forcing in seasonal snow over North China in January-February of 2010, with extensive field measurements used to evaluate the model performance. In general, the model simulated spatial variability of BC and dust mass concentrations in the top snow layer (hereafter BCS and DSTS, respectively) are quantitatively or qualitatively consistent with observations. The model generally moderately underestimates BCS in themore » clean regions but significantly overestimates BCS in some polluted regions. Most model results fall into the uncertainty ranges of observations. The simulated BCS and DSTS are highest with >5000 ng g-1 and up to 5 mg g-1, respectively, over the source regions and reduce to <50 ng g-1 and <1 μg g-1, respectively, in the remote regions. BCS and DSTS introduce similar magnitude of radiative warming (~10 W m-2) in snowpack, which is comparable to the magnitude of surface radiative cooling due to BC and dust in the atmosphere. This study represents the first effort in using a regional modeling framework to simulate BC and dust and their direct radiative forcing in snow. Although a variety of observational datasets have been used to attribute model biases, some uncertainties in the results remain, which highlights the need for more observations, particularly concurrent measurements of atmospheric and snow aerosols and the deposition fluxes of aerosols, in future campaigns.« less
NASA Astrophysics Data System (ADS)
Morse, Clinton; Latuga, Brian M.; Delfaus, Stephen; Devore, Thomas C.; Augustine, Brian H.; Hughes, W. Christopher; Warne, Paul G.
2003-11-01
Using the liquid cell capability of the atomic force microscope (AFM), we report the determination of the activation energy of the biodegradation process of the enzymatic biodegradation of poly 3-hydroxybutyrate / poly 3-hydroxyvalerate [P(3HB-HV)] thin films. We have prepared P(3HB-3HV) copolymer microstructures by the selective dewetting of soft lithographically patterned gold substrates with features sizes down to 10 mm. These have been then used as an internal height standard to measure the volume of material as a function of biodegradation time. Biodegradation is measured in-situ and real time using contact mode AFM in an enzymatic solution produced from Streptomyces sp. bacteria. The temperature dependent biodegradation has been measured over a temperature range from 23oC to 40oC. We will discuss the calculation of the activation energy of this process as well as a physical model to describe three distinct regions in the biodegradation process that have been observed.
Implementing participatory decision making in forest planning.
Ananda, Jayanath
2007-04-01
Forest policy decisions are often a source of debate, conflict, and tension in many countries. The debate over forest land-use decisions often hinges on disagreements about societal values related to forest resource use. Disagreements on social value positions are fought out repeatedly at local, regional, national, and international levels at an enormous social cost. Forest policy problems have some inherent characteristics that make them more difficult to deal with. On the one hand, forest policy decisions involve uncertainty, long time scales, and complex natural systems and processes. On the other hand, such decisions encompass social, political, and cultural systems that are evolving in response to forces such as globalization. Until recently, forest policy was heavily influenced by the scientific community and various economic models of optimal resource use. However, growing environmental awareness and acceptance of participatory democracy models in policy formulation have forced the public authorities to introduce new participatory mechanisms to manage forest resources. Most often, the efforts to include the public in policy formulation can be described using the lower rungs of Arnstein's public participation typology. This paper presents an approach that incorporates stakeholder preferences into forest land-use policy using the Analytic Hierarchy Process (AHP). An illustrative case of regional forest-policy formulation in Australia is used to demonstrate the approach. It is contended that applying the AHP in the policy process could considerably enhance the transparency of participatory process and public acceptance of policy decisions.
Miyata, Kazuki; Tracey, John; Miyazawa, Keisuke; Haapasilta, Ville; Spijker, Peter; Kawagoe, Yuta; Foster, Adam S; Tsukamoto, Katsuo; Fukuma, Takeshi
2017-07-12
The microscopic understanding of the crystal growth and dissolution processes have been greatly advanced by the direct imaging of nanoscale step flows by atomic force microscopy (AFM), optical interferometry, and X-ray microscopy. However, one of the most fundamental events that govern their kinetics, namely, atomistic events at the step edges, have not been well understood. In this study, we have developed high-speed frequency modulation AFM (FM-AFM) and enabled true atomic-resolution imaging in liquid at ∼1 s/frame, which is ∼50 times faster than the conventional FM-AFM. With the developed AFM, we have directly imaged subnanometer-scale surface structures around the moving step edges of calcite during its dissolution in water. The obtained images reveal that the transition region with typical width of a few nanometers is formed along the step edges. Building upon insight in previous studies, our simulations suggest that the transition region is most likely to be a Ca(OH) 2 monolayer formed as an intermediate state in the dissolution process. On the basis of this finding, we improve our understanding of the atomistic dissolution model of calcite in water. These results open up a wide range of future applications of the high-speed FM-AFM to the studies on various dynamic processes at solid-liquid interfaces with true atomic resolution.
NASA Astrophysics Data System (ADS)
Cook, K. H.
2006-12-01
An overview of concepts used in studying climate variability is provided as an introduction. Internally generated variability is the result of interactions within a system, while externally forced variability arises when some factor outside of the system causes a change. Distinguishing between the two requires a definition of the boundaries of "the system" considered. Climate variability is also classified according to space and time scales, for example, regional to global space scales and/or intraseasonal, seasonal, interannual, decadal, and millennial time scales. Any of these variability signatures may be internally generated or externally forced. A discussion of some of the climate forcing factors and physical processes thought to be relevant in determining climate variations of the past 20,000 years over South America is presented. An exhaustive treatment is not practical, and there are still many unknowns. Prominent in the literature are studies that discuss the influence of the ITCZ on South American precipitation. Other investigations focus on the South American monsoon dynamics. The physical processes that support these two precipitation systems are quite different, so the modes of variability that they exhibit also differ and it is important to clearly distinguish between them. The ITCZ is zonally elongated, formed by meridional convergence in the tropics. It is largely a structure of the atmosphere over the ocean, and persists throughout the year. Its position and strength vary with SST gradients and the vertical stability of the atmosphere. In contrast, a monsoon system is seasonal, and arises because of the different heat capacities of the land and ocean. It is influenced by land surface features such as vegetation and topography, and SSTs in the vicinity of the continent. Monsoon systems may also vary due to remote and/or large-scale forcing factors such as global sea surface temperature distributions and Hadley and Walker circulations. An example for the LGM climate of South America is presented to distinguish between the variations of ITCZ and monsoon dynamics. Another example presented concerns remote forcing of South American climate from an "intercontinental teleconnection" from Africa. GCM simulations show that summertime precipitation rates in Brazil's Nordeste region would be significantly greater in the absence of the African continent, and precipitation rates over the Amazon basin would be smaller. The generation of a Walker circulation by heating over southern Africa is the cause, and the effect is amplified by land surface feedbacks over South America. The teleconnection is sensitive to the distance between the two continents, to the strength and position of the heating over Africa, and the land surface characteristics over both South America and Africa. The east/west circulation influences the north/south position of the Atlantic ITCZ when asymmetry in surface conditions over Africa displaces the meridional convergence.
Acoustic forcing of a liquid drop
NASA Technical Reports Server (NTRS)
Lyell, M. J.
1992-01-01
The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.
Recent advances in understanding secondary organic aerosols: implications for global climate forcing
NASA Astrophysics Data System (ADS)
Shrivastava, Manish
2017-04-01
Anthropogenic emissions and land-use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding pre-industrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features 1) influence estimates of aerosol radiative forcing and 2) can confound estimates of the historical response of climate to increases in greenhouse gases (e.g. the 'climate sensitivity'). Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, often represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate models typically do not comprehensively include all important processes. This presentation is based on a US Department of Energy Atmospheric Systems Research sponsored workshop, which highlighted key SOA processes overlooked in climate models that could greatly affect climate forcing estimates. We will highlight the importance of processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including: formation of extremely low-volatility organics in the gas-phase; isoprene epoxydiols (IEPOX) multi-phase chemistry; particle-phase oligomerization; and physical properties such as viscosity. We also highlight some of the recently discovered important processes that involve interactions between natural biogenic emissions and anthropogenic emissions such as effects of sulfur and NOx emissions on SOA. We will present examples of integrated model-measurement studies that relate the observed evolution of organic aerosol mass and number with knowledge of particle properties such as volatility and viscosity. We will also highlight the importance of continuing efforts to rank the most influential SOA processes that affect climate forcing, but are often missing in climate models. Ultimately, gas- and particle-phase chemistry processes that capture the dynamic evolution of number and mass concentrations of SOA particles need to be accurately and efficiently represented in regional and global atmospheric chemistry-climate models.
NASA Technical Reports Server (NTRS)
Perlwitz, Jan; Tegen, Ina; Miller, Ron L.
2000-01-01
The sensitivity of the soil dust aerosol cycle to the radiative forcing by soil dust aerosols is studied. Four experiments with the NASA/GISS atmospheric general circulation model, which includes a soil dust aerosol model, are compared, all using a prescribed climatological sea surface temperature as lower boundary condition. In one experiment, dust is included as dynamic tracer only (without interacting with radiation), whereas dust interacts with radiation in the other simulations. Although the single scattering albedo of dust particles is prescribed to be globally uniform in the experiments with radiatively active dust, a different single scattering albedo is used in those experiments to estimate whether regional variations in dust optical properties, corresponding to variations in mineralogical composition among different source regions, are important for the soil dust cycle and the climate state. On a global scale, the radiative forcing by dust generally causes a reduction in the atmospheric dust load corresponding to a decreased dust source flux. That is, there is a negative feedback in the climate system due to the radiative effect of dust. The dust source flux and its changes were analyzed in more detail for the main dust source regions. This analysis shows that the reduction varies both with the season and with the single scattering albedo of the dust particles. By examining the correlation with the surface wind, it was found that the dust emission from the Saharan/Sahelian source region and from the Arabian peninsula, along with the sensitivity of the emission to the single scattering albedo of dust particles, are related to large scale circulation patterns, in particular to the trade winds during Northern Hemisphere winter and to the Indian monsoon circulation during summer. In the other regions, such relations to the large scale circulation were not found. There, the dependence of dust deflation to radiative forcing by dust particles is probably dominated by physical processes with short time scales. The experiments show that dust radiative forcing can lead to significant changes both in the soil dust cycle and in the climate state. To estimate dust concentration and radiative forcing by dust more accurately, dust size distributions and dust single scattering albedo in the model should be a function of the source region, because dust concentration and climate response to dust radiative forcing are sensitive to dust radiative parameters.
Recent decadal trends in Iberian water vapour: GPS analysis and WRF process study
NASA Astrophysics Data System (ADS)
Miranda, Pedro M. A.; Nogueira, Miguel; Semedo, Alvaro; Benevides, Pedro; Catalao, Joao; Costa, Vera
2016-04-01
A 24-year simulation of the recent Iberian climate, using the WRF model at 9km resolution forced by ERA-Interim reanalysis (1989-2012), is analysed for the decadal evolution of the upwelling forcing coastal wind and for column integrated Precipitable water vapour (PWV). Results indicate that, unlike what was found by Bakun et al. (2009) for the Peruvian region, a statistically significant trend in the upwelling favourable (northerly) wind has been accompanied by a corresponding decrease in PWV, not only inland but also over the coastal waters. Such increase is consistent with a reinforced northerly coastal jet in the maritime boundary layer contributing to atmospheric Ekman pumping of dry continental air into the coastal region. Diagnostics of the prevalence of the Iberian thermal low following Hoinka and Castro (2003) also show a positive trend in its frequency during an extended summer period (April to September). These results are consistent with recent studies indicating an upward trend in the frequency of upwelling in SW Iberia (Alves and Miranda 2013), and may be relevant for climate change applications as an increase in coastal upwelling (Miranda et al 2013) may lead to substantial regional impacts in the subtropics. The same analysis with ERA-Interim reanalysis data, which was used to force the WRF simulations, does not reveal the same signal in PWV, and indeed correlates poorly with the GPS observations, indicating that the data assimilation process makes the water vapour data in reanalysis unusable for climate change purposes. The good correlation between the WRF simulated data and GPS observations allow for a detailed analysis of the processes involved in the evolution of the PWV field. Akcnowledgements: Study done within FCT Grant RECI/GEO-MET/0380/2012, financially supported by FCT Grant UID/ GEO/50019/2013-IDL Alves JMR, Miranda PMA (2013) Variability of Iberian upwelling implied by ERA-40 and ERA-Interim reanalyses, Tellus A 2013, http://dx.doi.org/10.3402/tellusa.v65i0.19245. Bakun et al (2010) Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems, Global Change Biology, doi: 10.1111/j.1365-2486.2009.02094.x Hoinka KP, Castro M (2003) The Iberian Peninsula thermal low. QJRMS, 129, 1491- 1511, doi: 10.1256/qj.01.189. Miranda et al (2013) Climate change and upwelling: response of Iberian upwelling to atmospheric forcing in a regional climate scenario. Climate Dynamics, doi: 10.1007/s00382-012-1442-9.
Regional-Scale Forcing and Feedbacks from Alternative Scenarios of Global-Scale Land Use Change
NASA Astrophysics Data System (ADS)
Jones, A. D.; Chini, L. P.; Collins, W.; Janetos, A. C.; Mao, J.; Shi, X.; Thomson, A. M.; Torn, M. S.
2011-12-01
Future patterns of land use change depend critically on the degree to which terrestrial carbon management strategies, such as biological carbon sequestration and biofuels, are utilized in order to mitigate global climate change. Furthermore, land use change associated with terrestrial carbon management induces biogeophysical changes to surface energy budgets that perturb climate at regional and possibly global scales, activating different feedback processes depending on the nature and location of the land use change. As a first step in a broader effort to create an integrated earth system model, we examine two scenarios of future anthropogenic activity generated by the Global Change Assessment Model (GCAM) within the full-coupled Community Earth System Model (CESM). Each scenario stabilizes radiative forcing from greenhouse gases and aerosols at 4.5 W/m^2. In the first, stabilization is achieved through a universal carbon tax that values terrestrial carbon equally with fossil carbon, leading to modest afforestation globally and low biofuel utilization. In the second scenario, stabilization is achieved with a tax on fossil fuel and industrial carbon alone. In this case, biofuel utilization increases dramatically and crop area expands to claim approximately 50% of forest cover globally. By design, these scenarios exhibit identical climate forcing from atmospheric constituents. Thus, differences among them can be attributed to the biogeophysical effects of land use change. In addition, we utilize offline radiative transfer and offline land model simulations to identify forcing and feedback mechanisms operating in different regions. We find that boreal deforestation has a strong climatic signature due to significant albedo change coupled with a regional-scale water vapor feedback. Tropical deforestation, on the other hand, has more subtle effects on climate. Globally, the two scenarios yield warming trends over the 21st century that differ by 0.5 degrees Celsius. This work demonstrates the importance of land use in shaping future patterns of climate change, both globally and regionally.
Force Balance and Substorm Effects in the Magnetotail
NASA Technical Reports Server (NTRS)
Kaufmann, Richard L.; Larson, Douglas J.; Kontodinas, Ioannis D.; Ball, Bryan M.
1997-01-01
A model of the quiet time middle magnetotail is developed using a consistent orbit tracing technique. The momentum equation is used to calculate geocentric solar magnetospheric components of the particle and electromagnetic forces throughout the current sheet. Ions generate the dominant x and z force components. Electron and ion forces almost cancel in the y direction because the two species drift earthward at comparable speeds. The force viewpoint is applied to a study of some substorm processes. Generation of the rapid flows seen during substorm injection and bursty bulk flow events implies substantial force imbalances. The formation of a substorm diversion loop is one cause of changes in the magnetic field and therefore in the electromagnetic force. It is found that larger forces are produced when the cross-tail current is diverted to the ionosphere than would be produced if the entire tail current system simply decreased. Plasma is accelerated while the forces are unbalanced resulting in field lines within a diversion loop becoming more dipolar. Field lines become more stretched and the plasma sheet becomes thinner outside a diversion loop. Mechanisms that require thin current sheets to produce current disruption then can create additional diversion loops in the newly thinned regions. This process may be important during multiple expansion substorms and in differentiating pseudoexpansions from full substorms. It is found that the tail field model used here can be generated by a variety of particle distribution functions. However, for a given energy distribution the mixture of particle mirror or reflection points is constrained by the consistency requirement. The study of uniqueness also leads to the development of a technique to select guiding center electrons that will produce charge neutrality all along a flux tube containing nonguiding center ions without the imposition of a parallel electric field.
NASA Astrophysics Data System (ADS)
Spence, C.
2016-12-01
Rapid landscape changes in the circumpolar north have been documented, including degradation of permafrost and alteration of vegetation communities. These are widely expected to have profound impacts on the freshwater fluxes of solutes, carbon and nitrogen across the Arctic domain. However, there have been few attempts to document trends across the diversity of landscapes in the circumpolar north, mostly due to a dearth of long term data. Some of the fastest rates of warming over the last thirty years have occurred in Canada's Northwest Territories, so this region should already exhibit changes in aquatic chemistry. Observations of chemical loads in streams draining the ice-poor discontinuous permafrost subarctic Canadian Shield region were analyzed with the goal of determining how basins across scales have responded to changes in atmospheric forcing. Smaller streams, with much closer linkages to terrestrial processes, experienced a synchrony among hydrological and biogeochemical processes that enhanced chemical flux above that in their larger counterparts. This demonstrates that there are differences in resiliency and resistance across scales to climate change. These results highlight the importance of biogeochemical process understanding to properly explain and predict how chemical loading scales from headwaters to river mouths. This is important information if society is to properly adapt policies for effluent discharge, nearshore marine management, among others.
NASA Astrophysics Data System (ADS)
Matsui, Toshi; Zhang, Sara Q.; Lang, Stephen E.; Tao, Wei-Kuo; Ichoku, Charles; Peters-Lidard, Christa D.
2018-03-01
In this study, the impact of different configurations of the Goddard radiation scheme on convection-permitting simulations (CPSs) of the West African monsoon (WAM) is investigated using the NASA-Unified WRF (NU-WRF). These CPSs had 3 km grid spacing to explicitly simulate the evolution of mesoscale convective systems (MCSs) and their interaction with radiative processes across the WAM domain and were able to reproduce realistic precipitation and energy budget fields when compared with satellite data, although low clouds were overestimated. Sensitivity experiments reveal that (1) lowering the radiation update frequency (i.e., longer radiation update time) increases precipitation and cloudiness over the WAM region by enhancing the monsoon circulation, (2) deactivation of precipitation radiative forcing suppresses cloudiness over the WAM region, and (3) aggregating radiation columns reduces low clouds over ocean and tropical West Africa. The changes in radiation configuration immediately modulate the radiative heating and low clouds over ocean. On the 2nd day of the simulations, patterns of latitudinal air temperature profiles were already similar to the patterns of monthly composites for all radiation sensitivity experiments. Low cloud maintenance within the WAM system is tightly connected with radiation processes; thus, proper coupling between microphysics and radiation processes must be established for each modeling framework.
Multi-scale coupled modelling of waves and currents on the Catalan shelf.
NASA Astrophysics Data System (ADS)
Grifoll, M.; Warner, J. C.; Espino, M.; Sánchez-Arcilla, A.
2012-04-01
Catalan shelf circulation is characterized by a background along-shelf flow to the southwest (including some meso-scale features) plus episodic storm driven patterns. To investigate these dynamics, a coupled multi-scale modeling system is applied to the Catalan shelf (North-western Mediterranean Sea). The implementation consists of a set of increasing-resolution nested models, based on the circulation model ROMS and the wave model SWAN as part of the COAWST modeling system, covering from the slope and shelf region (~1 km horizontal resolution) down to a local area around Barcelona city (~40 m). The system is initialized with MyOcean products in the coarsest outer domain, and uses atmospheric forcing from other sources for the increasing resolution inner domains. Results of the finer resolution domains exhibit improved agreement with observations relative to the coarser model results. Several hydrodynamic configurations were simulated to determine dominant forcing mechanisms and hydrodynamic processes that control coastal scale processes. The numerical results reveal that the short term (hours to days) inner-shelf variability is strongly influenced by local wind variability, while sea-level slope, baroclinic effects, radiation stresses and regional circulation constitute second-order processes. Additional analysis identifies the significance of shelf/slope exchange fluxes, river discharge and the effect of the spatial resolution of the atmospheric fluxes.
A new perspective on the regional hydrologic cycle over North and South America
NASA Astrophysics Data System (ADS)
Weng, Shu-Ping
The GEOS-1 vertically-integrated 3-hr moisture flux reanalyses and hourly-gridded United States station precipitation plus a satellite-based, 6-hr global precipitation estimate were employed to investigate the impacts of nocturnal low-level jets (LLJs) on the regional hydrological cycle over the central United States (Part I) and the subtropical plains of South America (Part II). Research stressed the influences of upper-level synoptic-scale waves (i.e., synoptic-scale forcings) upon the regional hydrologic processes, which were explored by the impacts associated with the occurrence of LLJ. Besides the conventional budget analysis, the adopted `synoptic-forcing approach' was proven illustrative in describing these impacts through the down-scaling process of LLJs. In Part 1, the major findings include: (1)the seasonal-averaged hydrological cycle over the Great Plains is strongly affected by the occurrence of GPLLJ, (2)the synoptic-scale forcing provided by the upper-level propagating jet (ULJ) streams is essential in generating the large-scale precipitation after the GPLLJ forms from the diurnal boundary layer process, (3)without the dynamic coupling between the ULJ and LLJ, the impact of LLJ on the hydrological cycle is demonstrated to be less important, and (4)the importance of synoptic-scale forcings in preconditioning the setting of wet/dry seasons in the interannual variability of rainfall anomaly is further illustrated by examining the changes of intensity as well as the occurrence frequency between the different types of LLJ. In Part II of this study, it was found that the occurrence of Andean LLJ represents a transient episode that detours the climatic rainfall activity along the South Atlantic Convergent Zone (SACZ) to the subtropical plains (Brazilian Nordeste) in its southwestern (northeastern) flank. The appearance of a seesaw pattern in the rainfall and flux convergence anomalies along the southeastern portion of South America, which is spatially in quadrature with the seasonal mean circulation, reflects the synoptic-scale forcing generated by the upper-level propagating transient-scale waves. In this regard, the function of the Andean LLJ in providing a scale-interaction mechanism that links the synoptic-scale setting with the localized rainfall event is the same as the GPLLJ. Due to the unique geographic background such as the narrow east-west landmass extension and the relative orientation between the Andean LLJ and the ULJ, however, the enhanced rainfall activity over the subtropical plains in response to the perturbed flux convergence is smaller than the case in the GPLLJ.
Diagnosing Mechanisms of Oceanic Influence on Sahel Precipitation Variability
NASA Astrophysics Data System (ADS)
Pomposi, Catherine A.
The West African Monsoon (WAM) is a significant component of the global monsoon system and plays a key role in the annual cycle of precipitation in the Sahel region of Africa (10°N to 20°N) during the summer months (July to September). Rainfall in the Sahel varies on timescales ranging from seasons to millennia as a result of changes in the WAM. In the last century, the Sahel experienced a relatively wet period (prior to the 1960s) followed by a period of severe drought (1970s-1980s) with higher-frequency variability superimposed on this low-frequency background signal. Understanding precipitation variability like that which occurred over the 20th Century and its impact on Sahel precipitation is critically important for skillful hydroclimate predictions and disaster preparedness in the region. Previous work has shown that the WAM responds to both internal atmospheric variability and external oceanic forcing. A large fraction of 20th Century Sahel rainfall variability has been linked to nearby and remote oceanic forcing from the Atlantic, Pacific, and Indian Oceans, suggesting that the ocean is the primary driver of variability. However, the mechanisms underlying the influence of sea surface temperature (SST) forcing to land based precipitation and the relative importance of the roles of different basins are not as well understood. To this end, the work completed in this thesis examines the physical mechanisms linking oceanic forcing to recent precipitation variability in the Sahel and identifies them alongside large-scale environmental conditions. A series of moisture budget decomposition studies are performed for the Sahel in order to understand the processes that govern regional hydroclimate variability on decadal and interannual time scales. The results show that the oceanic forcing of atmospheric mass convergence and divergence explains the moisture balance patterns in the region to first order on the timescales considered. On decadal timescales, forcing by the Indian and Atlantic Oceans correlate strongly with precipitation variability. The combination of a warm Indian Ocean and negative gradient across the Atlantic forces anomalous circulation patterns that result in net moisture divergence by the mean and transient flow. Together with negative moisture advection, these processes result in a strong drying of the Sahel during the later part of the 20th Century. Diagnosis of moisture budget and circulation components within the main rainbelt and along the monsoon margins show that changes to the mass convergence are related to the magnitude of precipitation that falls in the region, while the advection of dry air is associated with the maximum latitudinal extent of precipitation. On interannual timescales, results show that warm conditions in the Eastern Tropical Pacific remotely force anomalously dry conditions primarily through affecting the low-troposphere mass divergence field. This behavior is related to increased subsidence over the tropical Atlantic and into the Sahel and an anomalous westward flow of moisture from the continent, both resulting in a coherent drying pattern. The interannual signal is then further explored, particularly in light of the expected link between the El Nino Southern Oscillation and dry conditions in the Sahel, notably unseen during the historic El Nino event of 2015. Motivated by this, recent El Nino years and their precipitation signature in the Sahel along with the associated large-scale environmental conditions are examined. Two different outcomes for Sahel summer season are defined; an anomalously wet or an anomalously dry season coincident with El Nino conditions. The different precipitation patterns are distinguished by increased moisture supply for the wet years, which can be driven by both regional oceanic conditions that favor increased moisture convergence over the continent as well as weaker El Nino forcing. Finally, a series of new idealized SST-forced experiments that explore the causal link between oceanic forcing and the response of convection in the region on daily time resolution are discussed and preliminary results shown. These experiments aim to understand how convection in the Sahel responds to SST forcing using transient model simulations that track the evolving response of the WAM through time, day-by-day, under different oceanic conditions. Preliminary results show the stark differences in seasonal precipitation that occur when anomalies of opposite sign are applied in parts of the Atlantic and Pacific basin. There is also a suggestion of a difference in the timing of the rainy season when the model is run with different SST configurations.
NASA Astrophysics Data System (ADS)
Rogers, J.; Monismith, S. G.; Fringer, O. B.; Koweek, D.; Dunbar, R. B.
2016-12-01
We present a hydrodynamic analysis of an atoll system from modeling simulations using a coupled wave and three-dimensional hydrodynamic model (COAWST) applied to Palmyra Atoll in the Central Pacific. This is the first time the vortex force formalism has been applied in a highly frictional reef environment. The model results agree well with field observations considering the model complexity in terms of bathymetry, bottom roughness, and forcing (waves, wind, metrological, tides, regional boundary conditions), and open boundary conditions. At the atoll scale, strong regional flows create flow separation and a well-defined wake, similar to 2D flow past a cylinder. Circulation within the atoll is typically forced by waves and tides, with strong waves from the north driving flow from north to south across the atoll, and from east to west through the lagoon system. Bottom stress is significant for depths less than about 60 m, and in addition to the model bathymetry, is important for correct representation of flow in the model. Connectivity within the atoll system shows that the general trends follow the mean flow paths. However, some connectivity exists between all regions of the atoll system due to nonlinear processes such as eddies and tidal phasing. While high mean flow and travel time less than 20 hours appears to differentiate very productive coral regions, low temperature and moderate wave stress appear to be the most ideal conditions for high coral cover on Palmyra.
NASA Astrophysics Data System (ADS)
Wanders, N.; Van Lanen, H. A. J.
2015-03-01
Hydrological drought characteristics (drought in groundwater and streamflow) likely will change in the 21st century as a result of climate change. The magnitude and directionality of these changes and their dependency on climatology and catchment characteristics, however, is uncertain. In this study a conceptual hydrological model was forced by downscaled and bias-corrected outcome from three general circulation models for the SRES A2 emission scenario (GCM forced models), and the WATCH Forcing Data set (reference model). The threshold level method was applied to investigate drought occurrence, duration and severity. Results for the control period (1971-2000) show that the drought characteristics of each GCM forced model reasonably agree with the reference model for most of the climate types, suggesting that the climate models' results after post-processing produce realistic outcomes for global drought analyses. For the near future (2021-2050) and far future (2071-2100) the GCM forced models show a decrease in drought occurrence for all major climates around the world and increase of both average drought duration and deficit volume of the remaining drought events. The largest decrease in hydrological drought occurrence is expected in cold (D) climates where global warming results in a decreased length of the snow season and an increased precipitation. In the dry (B) climates the smallest decrease in drought occurrence is expected to occur, which probably will lead to even more severe water scarcity. However, in the extreme climate regions (desert and polar), the drought analysis for the control period showed that projections of hydrological drought characteristics are most uncertain. On a global scale the increase in hydrological drought duration and severity in multiple regions will lead to a higher impact of drought events, which should motivate water resource managers to timely anticipate the increased risk of more severe drought in groundwater and streamflow and to design pro-active measures.
NASA Astrophysics Data System (ADS)
Kaspari, S.; Painter, T. H.; Gysel, M.; Skiles, M.; Schwikowski, M.
2014-12-01
Black carbon (BC) and dust deposited on snow and glacier surfaces can reduce the surface albedo, accelerate melt, and trigger albedo feedback. Assessing BC and dust concentrations in snow and ice in the Himalaya is of interest because this region borders large BC and dust sources, and seasonal snow and glacier ice in this region are an important source of water resources. Snow and ice samples were collected from crevasse profiles and snowpits at elevations between 5400 and 6400 m asl from Mera glacier located in the Solu-Khumbu region of Nepal. The samples were measured for Fe concentrations (used as a dust proxy) via ICP-MS, total impurity content gravimetrically, and BC concentrations using a Single Particle Soot Photometer (SP2). BC and Fe concentrations are substantially higher at elevations < 6000 m due to post-depositional processes including melt and sublimation and greater loading in the lower troposphere. Because the largest areal extent of snow and ice resides at elevations < 6000 m, the higher BC and dust concentrations at these elevations can reduce the snow and glacier albedo over large areas, accelerating melt, affecting glacier mass-balance and water resources, and contributing to a positive climate forcing. Radiative transfer modeling constrained by measurements at 5400 m at Mera La indicates that BC concentrations in the winter-spring snow/ice horizons are sufficient to reduce albedo by 6-10% relative to clean snow, corresponding to localized instantaneous radiative forcings of 75-120 W m-2. The other bulk impurity concentrations, when treated separately as dust, reduce albedo by 40-42% relative to clean snow and give localized instantaneous radiative forcings of 488 to 525 W m-2. Adding the BC absorption to the other impurities results in additional radiative forcings of 3 W m-2. While these results suggest that the snow albedo and radiative forcing effect of dust is considerably greater than BC, there are several sources of uncertainty.
NASA Technical Reports Server (NTRS)
Natarajan, Murali; Pierce, R. Bradley; Lenzen, Allen J.; Al-Saadi, Jassim A.; Soja, Amber J.; Charlock, Thomas P.; Rose, Fred G.; Winker, David M.; Worden, John R.
2012-01-01
Simulations of tropospheric ozone and carbonaceous aerosol distributions, conducted with the Real-time Air Quality Modeling System (RAQMS), are used to study the effects of major outbreaks of fires that occurred in three regions of Asia, namely Thailand, Kazakhstan, and Siberia, during spring 2008. RAQMS is a global scale meteorological and chemical modeling system. Results from these simulations, averaged over April 2008, indicate that tropospheric ozone column increases by more than 10 Dobson units (DU) near the Thailand region, and by lesser amounts in the other regions due to the fires. Widespread increases in the optical depths of organic and black carbon aerosols are also noted. We have used an off-line radiative transfer model to evaluate the direct radiative forcing due to the fire-induced changes in atmospheric composition. For clear sky, the monthly averaged radiative forcing at the top of the atmosphere (TOA) is mostly negative with peak values less than -12 W/sq m occurring near the fire regions. The negative forcing represents the increased outgoing shortwave radiation caused by scattering due to carbonaceous aerosols. At high latitudes, the radiative forcing is positive due to the presence of absorbing aerosols over regions of high surface albedo. Regions of positive forcing at TOA are more pronounced under total sky conditions. The monthly averaged radiative forcing at the surface is mostly negative, and peak values of less than -30 W/sq m occur near the fire regions. Persistently large negative forcing at the surface could alter the surface energy budget and potentially weaken the hydrological cycle.
NASA Technical Reports Server (NTRS)
Killeen, T. L.; Roble, R. G.
1984-01-01
A diagnostic processor (DP) was developed for analysis of hydrodynamic and thermodynamic processes predicted by the NCAR thermospheric general circulation model (TGCM). The TGCM contains a history file on the projected wind, temperature and composition fields at each grid point for each hour of universal time. The DP assimilates the history file plus ion drag tensors and drift velocities, specific heats, coefficients of viscosity, and thermal conductivity and calculates the individual forcing terms for the momentum and energy equations for a given altitude. Sample momentum forcings were calculated for high latitudes in the presence of forcing by solar radiation and magnetospheric convection with a 60 kV cross-tail potential, i.e., conditions on Oct. 21, 1981. It was found that ion drag and pressure forces balance out at F region heights where ion drift velocities are small. The magnetic polar cap/auroral zone boundary featured the largest residual force or net acceleration. Diurnal oscillations were detected in the thermospheric convection, and geostrophic balance was dominant in the E layer.
Microencapsulation and Electrostatic Processing Device
NASA Technical Reports Server (NTRS)
Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor); Cassanto, John M. (Inventor)
2001-01-01
A microencapsulation and electrostatic processing (MEP) device is provided for forming microcapsules. In one embodiment, the device comprises a chamber having a filter which separates a first region in the chamber from a second region in the chamber. An aqueous solution is introduced into the first region through an inlet port, and a hydrocarbon/ polymer solution is introduced into the second region through another inlet port. The filter acts to stabilize the interface and suppress mixing between the two immiscible solutions as they are being introduced into their respective regions. After the solutions have been introduced and have become quiescent, the interface is gently separated from the filter. At this point, spontaneous formation of microcapsules at the interface may begin to occur, or some fluid motion may be provided to induce microcapsule formation. In any case, the fluid shear force at the interface is limited to less than 100 dynes/sq cm. This low-shear approach to microcapsule formation yields microcapsules with good sphericity and desirable size distribution. The MEP device is also capable of downstream processing of microcapsules, including rinsing, re-suspension in tertiary fluids, electrostatic deposition of ancillary coatings, and free-fluid electrophoretic separation of charged microcapsules.
Dean, J; Forsberg, R C; Mendlovitz, S
2000-01-01
At the end of history's bloodiest century and the outset of a new millennium, we have an opportunity to fulfil one of humanity's oldest dreams: making the world largely free of war. Global changes make this goal achievable. Nuclear weapons have shown the folly of war. For the first time, there is no war and no immediate prospect of war among the main military powers. For the first time, many proven measures to prevent armed conflict, distilled in the crucible of this century's wars, are available. If systematically applied, these measures can sharply decrease the frequency and violence of war, genocide, and other forms of deadly conflict. To seize the opportunity, nations should adopt a comprehensive programme to reduce conventional armaments and armed conflict. This programme will complement and strengthen efforts to eliminate nuclear arms. To assure its ongoing worldwide implementation, the conventional reduction programme should be placed in a treaty framework. We propose a four-phased process, with three treaties, each lasting five to ten years, to lay the groundwork for the fourth treaty, which will establish a permanent international security system. The main objectives of the treaties are to achieve: 1. A verified commitment to provide full transparency on conventional armed forces and military spending, not to increase forces during negotiations on arms reductions, and to increase the resources allocated to multilateral conflict prevention and peacekeeping. 2. Substantial worldwide cuts in national armed forces and military spending and further strengthening of United Nations and regional peacekeeping and peace-enforcement capabilities. 3. A trial of a watershed commitment by participating nations, including the major powers, not to deploy their armed forces beyond national borders except in a multilateral action under UN or regional auspices. 4. A permanent transfer to the UN and regional security organizations of the authority and capability for armed intervention to prevent or end war, accompanied by further substantial cuts in national armed forces and increases in UN and regional forces. This programme offers many valuable features: a global framework for conventional forces that parallels the nuclear Non-Proliferation Treaty; a verified no-increase commitment for national armed forces based on full data exchange; a commitment to undertake prescribed confidence-building measures, including limits on force activities and deployments; a commitment to a specified plan for increased funding of UN and regional peacekeeping capabilities; a commitment to strengthen international legal institutions; and after a trial period, a lasting commitment by each participant not to unilaterally deploy its armed forces beyond its borders, but instead to give the responsibility for peacekeeping and peace enforcement to international institutions. This programme of phased steps to reduce armed forces and strengthen peacekeeping institutions will make war rare. It will foster the spread of zones of peace like those in North America and Western Europe where, after centuries of violence, international and civil war have given way to the peaceful settlement of disputes.
Arun, Mike W J; Yoganandan, Narayan; Stemper, Brian D; Pintar, Frank A
2014-12-01
While studies have used acoustic sensors to determine fracture initiation time in biomechanical studies, a systematic procedure is not established to process acoustic signals. The objective of the study was to develop a methodology to condition distorted acoustic emission data using signal processing techniques to identify fracture initiation time. The methodology was developed from testing a human cadaver lumbar spine column. Acoustic sensors were glued to all vertebrae, high-rate impact loading was applied, load-time histories were recorded (load cell), and fracture was documented using CT. Compression fracture occurred to L1 while other vertebrae were intact. FFT of raw voltage-time traces were used to determine an optimum frequency range associated with high decibel levels. Signals were bandpass filtered in this range. Bursting pattern was found in the fractured vertebra while signals from other vertebrae were silent. Bursting time was associated with time of fracture initiation. Force at fracture was determined using this time and force-time data. The methodology is independent of selecting parameters a priori such as fixing a voltage level(s), bandpass frequency and/or using force-time signal, and allows determination of force based on time identified during signal processing. The methodology can be used for different body regions in cadaver experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Experimental study on titanium wire drawing with ultrasonic vibration.
Liu, Shen; Shan, Xiaobiao; Guo, Kai; Yang, Yuancai; Xie, Tao
2018-02-01
Titanium and its alloys have been widely used in aerospace and biomedical industries, however, they are classified as difficult-to-machine materials. In this paper, ultrasonic vibration is imposed on the die to overcome the difficulties during conventional titanium wire drawing processes at the room temperature. Numerical simulations were performed to investigate the variation of axial stress within the contacting region and study the change of the drawing stress with several factors in terms of the longitudinal amplitude and frequency of the applied ultrasonic vibration, the diameter reduction ratio, and the drawing force. An experimental testing equipment was established to measure the drawing torque and rotational velocity of the coiler drum during the wire drawing process. The result indicates the drawing force increases with the growth of the drawing velocity and the reduction ratio, whether with or without vibrations. Application of either form of ultrasonic vibrations contributes to the further decrease of the drawing force, especially the longitudinal vibration with larger amplitude. SEM was employed to detect the surface morphology of the processed wires drawn under the three circumstances. The surface quality of the drawn wires with ultrasonic vibrations was apparently improved compared with those using conventional method. In addition, the longitudinal and torsional composite vibration was more effective for surface quality improvement than pure longitudinal vibration, however, at the cost of weakened drawing force reduction effect. Copyright © 2017 Elsevier B.V. All rights reserved.
Poon, Cynthia; Coombes, Stephen A.; Corcos, Daniel M.; Christou, Evangelos A.
2013-01-01
When subjects perform a learned motor task with increased visual gain, error and variability are reduced. Neuroimaging studies have identified a corresponding increase in activity in parietal cortex, premotor cortex, primary motor cortex, and extrastriate visual cortex. Much less is understood about the neural processes that underlie the immediate transition from low to high visual gain within a trial. This study used 128-channel electroencephalography to measure cortical activity during a visually guided precision grip task, in which the gain of the visual display was changed during the task. Force variability during the transition from low to high visual gain was characterized by an inverted U-shape, whereas force error decreased from low to high gain. Source analysis identified cortical activity in the same structures previously identified using functional magnetic resonance imaging. Source analysis also identified a time-varying shift in the strongest source activity. Superior regions of the motor and parietal cortex had stronger source activity from 300 to 600 ms after the transition, whereas inferior regions of the extrastriate visual cortex had stronger source activity from 500 to 700 ms after the transition. Force variability and electrical activity were linearly related, with a positive relation in the parietal cortex and a negative relation in the frontal cortex. Force error was nonlinearly related to electrical activity in the parietal cortex and frontal cortex by a quadratic function. This is the first evidence that force variability and force error are systematically related to a time-varying shift in cortical activity in frontal and parietal cortex in response to enhanced visual gain. PMID:23365186
Pi-Pi contacts are an overlooked protein feature relevant to phase separation.
Vernon, Robert McCoy; Chong, Paul Andrew; Tsang, Brian; Kim, Tae Hun; Bah, Alaji; Farber, Patrick; Lin, Hong; Forman-Kay, Julie Deborah
2018-02-09
Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing. © 2018, Vernon et al.
NASA Astrophysics Data System (ADS)
Miguez-Macho, Gonzalo; Stenchikov, Georgiy L.; Robock, Alan
2005-04-01
The reasons for biases in regional climate simulations were investigated in an attempt to discern whether they arise from deficiencies in the model parameterizations or are due to dynamical problems. Using the Regional Atmospheric Modeling System (RAMS) forced by the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis, the detailed climate over North America at 50-km resolution for June 2000 was simulated. First, the RAMS equations were modified to make them applicable to a large region, and its turbulence parameterization was corrected. The initial simulations showed large biases in the location of precipitation patterns and surface air temperatures. By implementing higher-resolution soil data, soil moisture and soil temperature initialization, and corrections to the Kain-Fritch convective scheme, the temperature biases and precipitation amount errors could be removed, but the precipitation location errors remained. The precipitation location biases could only be improved by implementing spectral nudging of the large-scale (wavelength of 2500 km) dynamics in RAMS. This corrected for circulation errors produced by interactions and reflection of the internal domain dynamics with the lateral boundaries where the model was forced by the reanalysis.
NASA Astrophysics Data System (ADS)
Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.
2018-06-01
High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.
NASA Astrophysics Data System (ADS)
Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.
2017-09-01
High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.
In-vitro analysis of forces in conventional and ultrasonically assisted drilling of bone.
Alam, K; Hassan, Edris; Imran, Syed Husain; Khan, Mushtaq
2016-05-12
Drilling of bone is widely performed in orthopaedics for repair and reconstruction of bone. Current paper is focused on the efforts to minimize force generation during the drilling process. Ultrasonically Assisted Drilling (UAD) is a possible option to replace Conventional Drilling (CD) in bone surgical procedures. The purpose of this study was to investigate and analyze the effect of drilling parameters and ultrasonic parameters on the level of drilling thrust force in the presence of water irrigation. Drilling tests were performed on young bovine femoral bone using different parameters such as spindle speeds, feed rates, coolant flow rates, frequency and amplitudes of vibrations. The drilling force was significantly dropped with increase in drill rotation speed in both types of drilling. Increase in feed rate was more influential in raising the drilling force in CD compared to UAD. The force was significantly dropped when ultrasonic vibrations up to 10 kHz were imposed on the drill. The drill force was found to be unaffected by the range of amplitudes and the amount of water supplied to the drilling region in UAD. Low frequency vibrations with irrigation can be successfully used for safe and efficient drilling in bone.
Factors Affecting Aerosol Radiative Forcing from Both Production-based and Consumption-based View
NASA Astrophysics Data System (ADS)
Wang, J.; Lin, J.; Ni, R.
2017-12-01
Aerosol radiative forcing (RF) is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. This problem becomes more complicated when taking into account the role of international trade, which means reallocated aerosol RF due to separation of regions producing goods and emissions and regions consuming those goods. Here we analyze major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA) and black carbon (BC), extending the work of Lin et al. (2016, Nature Geoscience). We contrast five factors determining production-based (RFp, due to a region's production of goods) and consumption-based (RFc, due to a region's consumption) forcing by 11 major regions, including population size, per capita output, emission intensity (emission per output), chemical efficiency (mass per unit emission) and radiative efficiency (RF per unit mass). Comparing across the 11 regions, East Asia produces the strongest RFp and RFc of SIOA and BC and the second largest RFp and RFc of POA primarily due to its high emission intensity. Although Middle East and North Africa has low emissions, its RFp is strengthened by its largest chemical efficiency for POA and BC and second largest chemical efficiency for SIOA. However, RFp of South-East Asia and Pacific is greatly weakened by its lowest chemical efficiency. Economic trade means that net importers (Western Europe, North America and Pacific OECD) have higher RFc than RFp by 50-100%. And such forcing difference is mainly due to the high emission intensity of the exporters supplying these regions. For North America, SIOA's RFc is 50% stronger than RFp, for that emission intensity of SIOA is 5.2 times in East Asia and 2.5 times in Latin America and Caribbean compared with that in North America, and the chemical efficiency in the top four exporters are 1.4-2.1 times of North America. For East Asia, the RFc of SIOA is 20% lower than RFp due to the relatively low emission intensity and chemical efficiency of the top two exporters (Pacific OECD and Western Europe). Overall, economic, emission and atmospheric factors all play important roles in differentiating regions' RFp and RFc.
Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seneviratne, Sonia I.; Wartenburger, Richard; Guillod, Benoit P.
This article investigates projected changes in temperature and water cycle extremes at 1.5°C global warming, and highlights the role of land processes and land-use changes (LUC) for these projections. We provide new comparisons of changes in climate at 1.5°C vs 2°C based on empirical sampling analyses of transient simulations vs simulations from the 'Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) multi-model experiment. The two approaches yield overall similar results regarding changes in climate extremes on land, and reveal a substantial difference in regional extremes occurrence at 1.5°C vs 2°C. Land processes mediated through soil moisture feedbacks andmore » land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from Integrated Assessment Models (IAMs), which include major LUC in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUC are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.« less
Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C
Seneviratne, Sonia I.; Wartenburger, Richard; Guillod, Benoit P.; ...
2018-04-02
Here, this article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated throughmore » soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.« less
Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seneviratne, Sonia I.; Wartenburger, Richard; Guillod, Benoit P.
Here, this article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated throughmore » soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talamás-Lara, Daniel, E-mail: daniel_talamas@hotmail.com; Talamás-Rohana, Patricia, E-mail: ptr@cinvestav.mx; Fragoso-Soriano, Rogelio Jaime, E-mail: rogelio@fis.cinvestav.mx
Invasion of tissues by Entamoeba histolytica is a multistep process that initiates with the adhesion of the parasite to target tissues. The recognition of the non-invasive Entamoeba dispar as a distinct, but closely related protozoan species raised the question as to whether the lack of its pathogenic potential could be related to a weaker adhesion due to limited cytoskeleton restructuring capacity. We here compared the adhesion process of both amebas to fibronectin through scanning, transmission, atomic force, and confocal microscopy. In addition, electrophoretic and western blot assays of actin were also compared. Adhesion of E. histolytica to fibronectin involves amore » dramatic reorganization of the actin network that results in a tighter contact to and the subsequent focal degradation of the fibronectin matrix. In contrast, E. dispar showed no regions of focal adhesion, the cytoskeleton was poorly reorganized and there was little fibronectin degradation. In addition, atomic force microscopy using topographic, error signal and phase modes revealed clear-cut differences at the site of contact of both amebas with the substrate. In spite of the morphological and genetic similarities between E. histolytica and E. dispar the present results demonstrate striking differences in their respective cell-to-matrix adhesion processes, which may be of relevance for understanding the invasive character of E. histolytica. - Highlights: • Striking differences in adhesion to FN between E. histolytica and E. dispar. • A greater degree of cell stiffness in E. histolytica with respect to E. dispar. • E. histolytica but not E. dispar forms regions of close contact with FN. • The actin cytoskeleton is involved in the pathogenicity of E. histolytica.« less
NASA Astrophysics Data System (ADS)
Li, Yun; Ji, Rubao; Fratantoni, Paula S.; Chen, Changsheng; Hare, Jonathan A.; Davis, Cabell S.; Beardsley, Robert C.
2014-04-01
In this study, we examine the importance of regional wind forcing in modulating advective processes and hydrographic properties along the Northwest Atlantic shelf, with a focus on the Nova Scotian Shelf (NSS)-Gulf of Maine (GoM) region. Long-term observational data of alongshore wind stress, sea level slope, and along-shelf flow are analyzed to quantify the relationship between wind forcing and hydrodynamic responses on interannual time scales. Additionally, a simplified momentum balance model is used to examine the underlying mechanisms. Our results show significant correlation among the observed interannual variability of sea level slope, along-shelf flow, and alongshore wind stress in the NSS-GoM region. A mechanism is suggested to elucidate the role of wind in modulating the sea level slope and along-shelf flow: stronger southwesterly (northeastward) winds tend to weaken the prevailing southwestward flow over the shelf, building sea level in the upstream Newfoundland Shelf region, whereas weaker southwesterly winds allow stronger southwestward flow to develop, raising sea level in the GoM region. The wind-induced flow variability can influence the transport of low-salinity water from the Gulf of St. Lawrence to the GoM, explaining interannual variations in surface salinity distributions within the region. Hence, our results offer a viable mechanism, besides the freshening of remote upstream sources, to explain interannual patterns of freshening in the GoM.
Regional income inequality model based on theil index decomposition and weighted variance coeficient
NASA Astrophysics Data System (ADS)
Sitepu, H. R.; Darnius, O.; Tambunan, W. N.
2018-03-01
Regional income inequality is an important issue in the study on economic development of a certain region. Rapid economic development may not in accordance with people’s per capita income. The method of measuring the regional income inequality has been suggested by many experts. This research used Theil index and weighted variance coefficient in order to measure the regional income inequality. Regional income decomposition which becomes the productivity of work force and their participation in regional income inequality, based on Theil index, can be presented in linear relation. When the economic assumption in j sector, sectoral income value, and the rate of work force are used, the work force productivity imbalance can be decomposed to become the component in sectors and in intra-sectors. Next, weighted variation coefficient is defined in the revenue and productivity of the work force. From the quadrate of the weighted variation coefficient result, it was found that decomposition of regional revenue imbalance could be analyzed by finding out how far each component contribute to regional imbalance which, in this research, was analyzed in nine sectors of economic business.
Bishop, Michael P.; Olsenholler, Jeffrey A.; Shroder, John F.; Barry, Roger G.; Rasup, Bruce H.; Bush, Andrew B. G.; Copland, Luke; Dwyer, John L.; Fountain, Andrew G.; Haeberli, Wilfried; Kääb, Andreas; Paul, Frank; Hall, Dorothy K.; Kargel, Jeffrey S.; Molnia, Bruce F.; Trabant, Dennis C.; Wessels, Rick L.
2004-01-01
Concerns over greenhouse‐gas forcing and global temperatures have initiated research into understanding climate forcing and associated Earth‐system responses. A significant component is the Earth's cryosphere, as glacier‐related, feedback mechanisms govern atmospheric, hydrospheric and lithospheric response. Predicting the human and natural dimensions of climate‐induced environmental change requires global, regional and local information about ice‐mass distribution, volumes, and fluctuations. The Global Land‐Ice Measurements from Space (GLIMS) project is specifically designed to produce and augment baseline information to facilitate glacier‐change studies. This requires addressing numerous issues, including the generation of topographic information, anisotropic‐reflectance correction of satellite imagery, data fusion and spatial analysis, and GIS‐based modeling. Field and satellite investigations indicate that many small glaciers and glaciers in temperate regions are downwasting and retreating, although detailed mapping and assessment are still required to ascertain regional and global patterns of ice‐mass variations. Such remote sensing/GIS studies, coupled with field investigations, are vital for producing baseline information on glacier changes, and improving our understanding of the complex linkages between atmospheric, lithospheric, and glaciological processes.
Physics and chemistry of the solar nebula.
Lunine, J I
1997-06-01
The solar system is thought to have begun in a flattened disk of gas and dust referred to traditionally as the solar nebula. Such a construct seems to be a natural product of the collapse of dense parts of giant molecular clouds, the vast star-forming regions that pepper the Milky Way and other galaxies. Gravitational, magnetic and thermal forces within the solar nebula forced a gradual evolution of mass toward the center (where the sun formed) and angular momentum (borne by a small fraction of the mass) toward the outer more distant regions of the disk. This evolution was accompanied by heating and a strong temperature contrast from the hot, inner regions to the cold, more remote parts of the disk. The resulting chemistry in the disk determined the initial distribution of organic matter in the planets; most of the reduced carbon species, in condensed form, were located beyond the asteroid belt (the 'outer' solar system). The Earth could have received much of its inventory of pre-biological material from comets and other icy fragments of the process of planetary formation in the outer solar system.
Junier, Ivan; Boccard, Frédéric; Espéli, Olivier
2014-01-01
The mechanisms that control chromosome conformation and segregation in bacteria have not yet been elucidated. In Escherichia coli, the mere presence of an active process remains an open question. Here, we investigate the conformation and segregation pattern of the E. coli genome by performing numerical simulations on a polymer model of the chromosome. We analyze the roles of the intrinsic structuring of chromosomes and the forced localization of specific loci, which are observed in vivo. Specifically, we examine the segregation pattern of a chromosome that is divided into four structured macrodomains (MDs) and two non-structured regions. We find that strong osmotic-like organizational forces, which stem from the differential condensation levels of the chromosome regions, dictate the cellular disposition of the chromosome. Strikingly, the comparison of our in silico results with fluorescent imaging of the chromosome choreography in vivo reveals that in the presence of MDs the targeting of the origin and terminus regions to specific positions are sufficient to generate a segregation pattern that is indistinguishable from experimentally observed patterns. PMID:24194594
[Conceptual approach to formation of a modern system of medical provision].
Belevitin, A B; Miroshnichenko, Iu V; Bunin, S A; Goriachev, A B; Krasavin, K D
2009-09-01
Within the frame of forming of a new face of medical service of the Armed Forces, were determined the principle approaches to optimization of the process of development of the system of medical supply. It was proposed to use the following principles: principle of hierarchic structuring, principle of purposeful orientation, principle of vertical task sharing, principle of horizontal task sharing, principle of complex simulation, principle of permanent perfection. The main direction of optimization of structure and composition of system of medical supply of the Armed Forces are: forming of modern institutes of medical supply--centers of support by technique and facilities on the base of central, regional storehouses, and attachment of several functions of organs of military government to them; creation of medical supply office on the base military hospitals, being basing treatment-prophylaxis institutes, in adjusted territorial zones of responsibility for the purpose of realization of complex of tasks of supplying the units and institutes, attached to them on medical support, by medical equipment. Building of medical support system is realized on three levels: Center - Military region (NAVY region) - territorial zone of responsibility.
NASA Astrophysics Data System (ADS)
Feng, N.; Christopher, S. A.; Nair, U. S.
2014-12-01
Due to increasing urbanization, deforestation, and agriculture, land use change over Southeast Asia has dramatically risen during the last decades. Large areas of peat swamp forests over the Southeast Asian Maritime Continent region (10°S~20°N and 90°E~135°E) have been cleared for agricultural purposes. The Center for Remote Imaging, Sensing and Processing (CRISP) Moderate Resolution Imaging Spectroradiometer (MODIS) derived land cover classification data show that changes in land use are dominated by conversion of peat swamp forests to oil palm plantation, open lowland or lowland mosaic categories. Nested grid simulations based on Weather Research Forecasting Version 3.6 modelling system (WRFV3.6) over the central region of the Sarawak coast are used to investigate the climatic impacts of land use change over Maritime Continent. Numerical simulations were conducted for August of 2009 for satellite derived land cover scenarios for years 2000 and 2010. The variations in cloud formation, precipitation, and regional radiative and non-radiative parameters on climate results from land use change have been assessed based on numerical simulation results. Modelling studies demonstrate that land use change such as extensive deforestation processes can produce a negative radiative forcing due to the surface albedo increase and evapotranspiration decrease, while also largely caused reduced rainfall and cloud formation, and enhanced shortwave radiative forcing and temperature over the study area. Land use and land cover changes, similar to the domain in this study, has also occurred over other regions in Southeast Asia including Indonesia and could also impact cloud and precipitation formation in these regions.
NASA Technical Reports Server (NTRS)
Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xue-Peng
2005-01-01
We propose a research project to incorporate a global 3-D model and satellite data into the multi-national Aerosol Characterization Experiment-Asia (ACE-Asia) mission. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosols and the processes that control those properties over the Asian-Pacific region, (2) to investigate the interaction between aerosols and tropospheric chemistry, and (3) to determine the aerosol radiative forcing over the Asia-Pacific region. We will use the Georgia TecWGoddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model to link satellite observations and the ACE-Asia measurements. First, we will use the GOCART model to simulate aerosols and related species, and evaluate the model with satellite and in-situ observations. Second, the model generated aerosol vertical profiles and compositions will be used to validate the satellite products; and the satellite data will be used for during- and post- mission analysis. Third, we will use the model to analyze and interpret both satellite and ACE- Asia field campaign data and investigate the aerosol-chemistry interactions. Finally, we will calculate aerosol radiative forcing over the Asian-Pacific region, and assess the influence of Asian pollution in the global atmosphere. We propose a research project to incorporate a global 3-D model and satellite data into
Internal and forced eddy variability in the Labrador Sea
NASA Astrophysics Data System (ADS)
Bracco, A.; Luo, H.; Zhong, Y.; Lilly, J.
2009-04-01
Water mass transformation in the Labrador Sea, widely believed to be one of the key regions in the Atlantic Meridional Overturning Circulation (AMOC), now appears to be strongly impacted by vortex dynamics of the unstable boundary current. Large interannual variations in both eddy shedding and buoyancy transport from the boundary current have been observed but not explained, and are apparently sensitive to the state of the inflowing current. Heat and salinity fluxes associated with the eddies drive ventilation changes not accounted for by changes in local surface forcing, particularly during occasional years of extreme eddy activity, and constitute a predominant source of "internal" oceanic variability. The nature of this variable eddy-driven restratification is one of the outstanding questions along the northern transformation pathway. Here we investigate the eddy generation mechanism and the associated buoyancy fluxes by combining realistic and idealized numerical modeling, data analysis, and theory. Theory, supported by idealized experiments, provides criteria to test hypotheses as to the vortex formation process (by baroclinic instability linked to the bottom topography). Ensembles of numerical experiments with a high-resolution regional model (ROMS) allow for quantifying the sensitivity of eddy generation and property transport to variations in local and external forcing parameters. For the first time, we reproduce with a numerical simulation the observed interannual variability in the eddy kinetic energy in the convective region of the Labrador Basin and along the West Greenland Current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin-Garcia, Fernando; Mendieta-Moreno, Jesus Ignacio; Mendieta, Jesus
2012-03-30
Highlights: Black-Right-Pointing-Pointer Initial conformational change of paramyxovirus F protein is caused only by mechanical forces. Black-Right-Pointing-Pointer HRA region undergoes a structural change from a beta + alpha conformation to an extended coil and then to an all-alpha conformation. Black-Right-Pointing-Pointer HRS domains of F protein form three single {alpha}-helices prior to generation of the coiled coil. -- Abstract: The fusion of paramyxovirus to the cell membrane is mediated by fusion protein (F protein) present in the virus envelope, which undergoes a dramatic conformational change during the process. Unlike hemagglutinin in orthomyxovirus, this change is not mediated by an alteration of environmentalmore » pH, and its cause remains unknown. Steered molecular dynamics analysis leads us to suggest that the conformational modification is mediated only by stretching mechanical forces once the transmembrane fusion peptide of the protein is anchored to the cell membrane. Such elongating forces will generate major secondary structure rearrangement in the heptad repeat A region of the F protein; from {beta}-sheet conformation to an elongated coil and then spontaneously to an {alpha}-helix. In addition, it is proposed that the heptad repeat A region adopts a final three-helix coiled coil and that this structure appears after the formation of individual helices in each monomer.« less
Inter-annual variability of the Mediterranean thermohaline circulation in Med-CORDEX simulations
NASA Astrophysics Data System (ADS)
Vittoria Struglia, Maria; Adani, Mario; Carillo, Adriana; Pisacane, Giovanna; Sannino, Gianmaria; Beuvier, Jonathan; Lovato, Tomas; Sevault, Florence; Vervatis, Vassilios
2016-04-01
Recent atmospheric reanalysis products, such as ERA40 and ERA-interim, and their regional dynamical downscaling prompted the HyMeX/Med-CORDEX community to perform hind-cast simulations of the Mediterranean Sea, giving the opportunity to evaluate the response of different ocean models to a realistic inter-annual atmospheric forcing. Ocean numerical modeling studies have been steadily improving over the last decade through hind-cast processing, and are complementary to observations in studying the relative importance of the mechanisms playing a role in ocean variability, either external forcing or internal ocean variability. This work presents a review and an inter-comparison of the most recent hind-cast simulations of the Mediterranean Sea Circulation, produced in the framework of the Med-CORDEX initiative, at resolutions spanning from 1/8° to 1/16°. The richness of the simulations available for this study is exploited to address the effects of increasing resolution, both of models and forcing, the initialization procedure, and the prescription of the atmospheric boundary conditions, which are particularly relevant in order to model a realistic THC, in the perspective of fully coupled regional ocean-atmosphere models. The mean circulation is well reproduced by all the simulations. However, it can be observed that the horizontal resolution of both atmospheric forcing and ocean model plays a fundamental role in the reproduction of some specific features of both sub-basins and important differences can be observed among low and high resolution atmosphere forcing. We analyze the mean circulation on both the long-term and decadal time scale, and the represented inter-annual variability of intermediate and deep water mass formation processes in both the Eastern and Western sub-basins, finding that models agree with observations in correspondence of specific events, such as the 1992-1993 Eastern Mediterranean Transient, and the 2005-2006 event in the Gulf of Lion. Long-term trends of the hydrological properties have been investigated at sub-basin scale and have been interpreted in terms of response to forcing and boundary conditions, detectable differences resulting mainly due either to the different initialization and spin up procedure or to the different prescription of Atlantic boundary conditions.
2015-05-20
Professional Military Education RAB Regionally Aligned Brigade RAF Regionally Aligned Force SAS Special Air Service SFG (A) Special Forces Group...to create unnecessary barriers between themselves and the people. Rather comically , they had to put on the full body armor to enter American bases...in our forces from the very beginning of professional military education and throughout all planning and training. The closure of the Iraq theater
Ramos, Sergio Luis L M; Ogino, Michihiko; Oguni, Masaharu
2015-01-28
We investigated the thermal properties of liquid methylcyclohexane and racemic sec-butylcyclohexane, as representatives of a molecular system with only dispersion-force intermolecular interactions, confined in the pores (thickness/diameter d = 12, 6, 1.1 nm) of silica gels by adiabatic calorimetry. The results imply a heterogeneous picture for molecular aggregate under confinement consisting of an interfacial region and an inner pore one. In the vicinity of a glass-transition temperature T(g,bulk) of bulk liquid, two distinguishable relaxation phenomena were observed for the confined systems and their origins were attributed to the devitrification, namely glass transition, processes of (1) a layer of interfacial molecules adjacent to the pore walls and (2) the molecules located in the middle of the pore. A third glass-transition phenomenon was observed at lower temperatures and ascribed to a secondary relaxation process. The glass transition of the interfacial-layer molecules was found to proceed at temperatures rather above T(g,bulk), whereas that of the molecules located in the inner pore region occurred at temperatures below T(g,bulk). We discuss the reason why the molecules located in different places in the pores reveal the respectively different dynamical properties.
NASA Technical Reports Server (NTRS)
Yu, Hongbin; Chin, Mian; West, Jason; Atherton, Cynthia S.; Bellouin, Nicolas; Bergmann, Dan; Bey, Isabelle; Bian, Huisheng; Diehl, Thomas; Forberth, Gerd;
2013-01-01
In this study, we assess changes of aerosol optical depth (AOD) and direct radiative forcing (DRF) in response to the reduction of anthropogenic emissions in four major pollution regions in the Northern Hemisphere by using results from nine global models in the framework of the Hemispheric Transport of Air Pollution (HTAP). DRF at top of atmosphere (TOA) and surface is estimated based on AOD results from the HTAP models and AOD-normalized DRF (NDRF) from a chemical transport model. The multimodel results show that, on average, a 20% reduction of anthropogenic emissions in North America, Europe, East Asia, and South Asia lowers the global mean AOD (all-sky TOA DRF) by 9.2% (9.0%), 3.5% (3.0%), and 9.4% (10.0%) for sulfate, particulate organic matter (POM), and black carbon (BC), respectively. Global annual average TOA all-sky forcing efficiency relative to particle or gaseous precursor emissions from the four regions (expressed as multimodel mean +/- one standard deviation) is -3.5 +/-0.8, -4.0 +/- 1.7, and 29.5+/-18.1mW / sq m per Tg for sulfate (relative to SO2), POM, and BC, respectively. The impacts of the regional emission reductions on AOD and DRF extend well beyond the source regions because of intercontinental transport (ICT). On an annual basis, ICT accounts for 11 +/- 5% to 31 +/- 9% of AOD and DRF in a receptor region at continental or subcontinental scale, with domestic emissions accounting for the remainder, depending on regions and species. For sulfate AOD, the largest ICT contribution of 31 +/- 9% occurs in South Asia, which is dominated by the emissions from Europe. For BC AOD, the largest ICT contribution of 28 +/- 18% occurs in North America, which is dominated by the emissions from East Asia. The large spreads among models highlight the need to improve aerosol processes in models, and evaluate and constrain models with observations.
2017-06-23
NASA's TDRS-M satellite arrives inside its shipping container at Space Coast Regional Airport in Titusville, Florida, aboard a U.S. Air Force transport aircraft. The spacecraft is transported to the nearby Astrotech facility, also in Titusville, for preflight processing. The TDRS-M is the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 9:02 a.m. EDT Aug. 3, 2017.
NASA Astrophysics Data System (ADS)
Sekiguchi, Atsuko; Koike, Junichi
2008-01-01
Mechanical processes of the nanoscratch test are investigated using a finite element analysis of Cu/Ta/SiO2/Si multilayer films. The calculated stress distribution at the moment of delamination suggests that delamination occurs in a small region of approximately 100 nm. The driving force for delamination is the stress concentration due to strain-incompatibility at the Cu/Ta interface resulting from the large plastic deformation in Cu. The degree of stress concentration is found to depend on internal variables, such as plastic deformation, residual stress, and the elastic modulus, and on the magnitude of lateral force.
Modeling the mechanism of CLN025 beta-hairpin formation
NASA Astrophysics Data System (ADS)
McKiernan, Keri A.; Husic, Brooke E.; Pande, Vijay S.
2017-09-01
Beta-hairpins are substructures found in proteins that can lend insight into more complex systems. Furthermore, the folding of beta-hairpins is a valuable test case for benchmarking experimental and theoretical methods. Here, we simulate the folding of CLN025, a miniprotein with a beta-hairpin structure, at its experimental melting temperature using a range of state-of-the-art protein force fields. We construct Markov state models in order to examine the thermodynamics, kinetics, mechanism, and rate-determining step of folding. Mechanistically, we find the folding process is rate-limited by the formation of the turn region hydrogen bonds, which occurs following the downhill hydrophobic collapse of the extended denatured protein. These results are presented in the context of established and contradictory theories of the beta-hairpin folding process. Furthermore, our analysis suggests that the AMBER-FB15 force field, at this temperature, best describes the characteristics of the full experimental CLN025 conformational ensemble, while the AMBER ff99SB-ILDN and CHARMM22* force fields display a tendency to overstabilize the native state.
NASA Astrophysics Data System (ADS)
Irazoqui Apecechea, Maialen; Verlaan, Martin; Zijl, Firmijn; Le Coz, Camille; Kernkamp, Herman
2017-06-01
The impact of the self-attraction and loading effect (SAL) in a regional 2D barotropic tidal model has been assessed, a term with acknowledged and well-understood importance for global models but omitted for boundary-forced, regional models, for which the implementation of SAL is non-trivial due to its non-local nature. In order to understand the impact of the lack of SAL effects in a regional scale, we have forced a regional model of the Northwest European Continental Shelf and the North Sea (continental shelf model (CSM)) with the SAL potential field derived from a global model (GTSM), in the form of a pressure field. Impacts have been studied in an uncalibrated setup and with only tidal forcing activated, in order to isolate effects. Additionally, the usually adopted simple SAL parameterization, in which the SAL contribution to the total tide is parameterized as a percentage of the barotropic pressure gradient (typically chosen 10%), is also implemented and compared to the results obtained with a full SAL computation. A significant impact on M2 representation is observed in the English Channel, Irish Sea and the west (UK East coast) and south (Belgian and Dutch Coast) of the North Sea, with an impact of up to 20 cm in vector difference terms. The impact of SAL translates into a consistent M2 amplitude and propagation speeds reduction throughout the domain. Results using the beta approximation, with an optimal domain-wide constant value of 1.5%, show a somewhat comparable impact in phase but opposite direction of the impact in amplitude, increasing amplitudes everywhere. In relative terms, both implementations lead to a reduction of the tidal representation error in comparison with the reference run without SAL, with the full SAL approach showing further impacted, improved results. Although the overprediction of tidal amplitudes and propagation speeds in the reference run might have additional sources like the lack of additional dissipative processes and non-considered bottom friction settings, results show an overall significant impact, most remarkable in tidal phases. After showing evidence of the SAL impact in regional models, the question of how to include this physical process in them in an efficient way arises, since SAL is a non-local effect and depends on the instantaneous water levels over the whole ocean, which is non-trivial to implement.
Implementing Participatory Decision Making in Forest Planning
NASA Astrophysics Data System (ADS)
Ananda, Jayanath
2007-04-01
Forest policy decisions are often a source of debate, conflict, and tension in many countries. The debate over forest land-use decisions often hinges on disagreements about societal values related to forest resource use. Disagreements on social value positions are fought out repeatedly at local, regional, national, and international levels at an enormous social cost. Forest policy problems have some inherent characteristics that make them more difficult to deal with. On the one hand, forest policy decisions involve uncertainty, long time scales, and complex natural systems and processes. On the other hand, such decisions encompass social, political, and cultural systems that are evolving in response to forces such as globalization. Until recently, forest policy was heavily influenced by the scientific community and various economic models of optimal resource use. However, growing environmental awareness and acceptance of participatory democracy models in policy formulation have forced the public authorities to introduce new participatory mechanisms to manage forest resources. Most often, the efforts to include the public in policy formulation can be described using the lower rungs of Arnstein’s public participation typology. This paper presents an approach that incorporates stakeholder preferences into forest land-use policy using the Analytic Hierarchy Process (AHP). An illustrative case of regional forest-policy formulation in Australia is used to demonstrate the approach. It is contended that applying the AHP in the policy process could considerably enhance the transparency of participatory process and public acceptance of policy decisions.
Specific cerebellar regions are related to force amplitude and rate of force development
Spraker, M.B.; Corcos, D.M.; Kurani, A.S.; Prodoehl, J.; Swinnen, S.P.; Vaillancourt, D.E.
2011-01-01
The human cerebellum has been implicated in the control of a wide variety of motor control parameters, such as force amplitude, movement extent, and movement velocity. These parameters often covary in both movement and isometric force production tasks, so it is difficult to resolve whether specific regions of the cerebellum relate to specific parameters. In order to address this issue, the current study used two experiments and SUIT normalization to determine whether BOLD activation in the cerebellum scales with the amplitude or rate of change of isometric force production or both. In the first experiment, subjects produced isometric pinch-grip force over a range of force amplitudes without any constraints on the rate of force development. In the second experiment, subjects varied the rate of force production, but the target force amplitude remained constant. The data demonstrate that BOLD activation in separate sub-areas of cerebellar regions lobule VI and Crus I/II scale with both force amplitude and force rate. In addition, BOLD activation in cerebellar lobule V and vermis VI was specific to force amplitude, whereas BOLD activation in lobule VIIb was specific to force rate. Overall, cerebellar activity related to force amplitude was located superior and medial, whereas activity related to force rate was inferior and lateral. These findings suggest that specific circuitry in the cerebellum may be dedicated to specific motor control parameters such as force amplitude and force rate. PMID:21963915
Electromagnetic characteristic of twin-wire indirect arc welding
NASA Astrophysics Data System (ADS)
Shi, Chuanwei; Zou, Yong; Zou, Zengda; Wu, Dongting
2015-01-01
Traditional welding methods are limited in low heat input to workpiece and high welding wire melting rate. Twin-wire indirect arc(TWIA) welding is a new welding method characterized by high melting rate and low heat input. This method uses two wires: one connected to the negative electrode and another to the positive electrode of a direct-current(DC) power source. The workpiece is an independent, non-connected unit. A three dimensional finite element model of TWIA is devised. Electric and magnetic fields are calculated and their influence upon TWIA behavior and the welding process is discussed. The results show that with a 100 A welding current, the maximum temperature reached is 17 758 K, arc voltage is 14.646 V while maximum current density was 61 A/mm2 with a maximum Lorene force of 84.5 μN. The above mentioned arc parameters near the cathode and anode regions are far higher than those in the arc column region. The Lorene force is the key reason for plasma velocity direction deviated and charged particles flowed in the channel formed by the cathode, anode and upper part of arc column regions. This led to most of the energy being supplied to the polar and upper part of arc column regions. The interaction between electric and magnetic fields is a major determinant in shaping TWIA as well as heat input on the workpiece. This is a first study of electromagnetic characteristics and their influences in the TWIA welding process, and it is significant in both a theoretical and practical sense.
NASA Astrophysics Data System (ADS)
Gao, S. W.; Feng, W. J.; Fang, X. Q.; Zhang, G. L.
2014-11-01
In this work, the penny-shaped crack problem is investigated for an infinite long superconducting cylinder under electromagnetic forces. The distributions of magnetic flux density in the superconducting cylinder are obtained analytically for both the zero-field cooling (ZFC) and the field cooling (FC) activation processes, where the magnetically impermeable crack surface condition and the Bean model outside the crack region are adopted. Based on the finite element method (FEM), the stress intensity factor (SIF) and energy release rate (ERR) at the crack tips in the process of field descent are further numerically calculated. Numerical results obtained show that according to the maximal energy release rate criterion, the FC process is generally easier to enhance crack initiation and propagation than the ZFC activation process. On the other hand, for the FC activation process, the larger the maximal applied magnetic field, more likely the crack propagates. Additionally, crack size has important and slightly different effects on the crack extension forces for the ZFC and FC cases. Thus, all of the activation processes, the applied field and the diameter of the penny-shaped crack have significant effects on the intensity analysis and design of superconducting materials.
Flux canceling in three-dimensional radiative magnetohydrodynamic simulations
NASA Astrophysics Data System (ADS)
Thaler, Irina; Spruit, H. C.
2017-05-01
We aim to study the processes involved in the disappearance of magnetic flux between regions of opposite polarity on the solar surface using realistic three-dimensional (3D) magnetohydrodynamic (MHD) simulations. "Retraction" below the surface driven by magnetic forces is found to be a very effective mechanism of flux canceling of opposite polarities. The speed at which flux disappears increases strongly with initial mean flux density. In agreement with existing inferences from observations we suggest that this is a key process of flux disappearance within active complexes. Intrinsic kG strength concentrations connect the surface to deeper layers by magnetic forces, and therefore the influence of deeper layers on the flux canceling process is studied. We do this by comparing simulations extending to different depths. For average flux densities of 50 G, and on length scales on the order of 3 Mm in the horizontal and 10 Mm in depth, deeper layers appear to have only a mild influence on the effective rate of diffusion.
NASA Astrophysics Data System (ADS)
Dao-ming, Lu
2018-05-01
The negativity of Wigner function (WF) is one of the important symbols of non-classical properties of light field. Therefore, it is of great significance to study the evolution of WF in dissipative process. The evolution formula of WF in laser process under the action of linear resonance force is given by virtue of thermo entangled state representation and the technique of integration within an ordered product of operator. As its application, the evolution of WF of thermal field and that of single-photon-added coherent state are discussed. The results show that the WF of thermal field maintains its original character. On the other hand, the negative region size and the depth of negativity of WF of single- photon-added coherent state decrease until it vanishes with dissipation. This shows that the non-classical property of single-photon-added coherent state is weakened, until it disappears with dissipation time increasing.
Hsieh, Y-C; Chung, J-D; Wang, C-N; Chang, C-T; Chen, C-Y; Hwang, S-Y
2013-01-01
Elucidation of the evolutionary processes that constrain or facilitate adaptive divergence is a central goal in evolutionary biology, especially in non-model organisms. We tested whether changes in dynamics of gene flow (historical vs contemporary) caused population isolation and examined local adaptation in response to environmental selective forces in fragmented Rhododendron oldhamii populations. Variation in 26 expressed sequence tag-simple sequence repeat loci from 18 populations in Taiwan was investigated by examining patterns of genetic diversity, inbreeding, geographic structure, recent bottlenecks, and historical and contemporary gene flow. Selection associated with environmental variables was also examined. Bayesian clustering analysis revealed four regional population groups of north, central, south and southeast with significant genetic differentiation. Historical bottlenecks beginning 9168–13,092 years ago and ending 1584–3504 years ago were revealed by estimates using approximate Bayesian computation for all four regional samples analyzed. Recent migration within and across geographic regions was limited. However, major dispersal sources were found within geographic regions. Altitudinal clines of allelic frequencies of environmentally associated positively selected outliers were found, indicating adaptive divergence. Our results point to a transition from historical population connectivity toward contemporary population isolation and divergence on a regional scale. Spatial and temporal dispersal differences may have resulted in regional population divergence and local adaptation associated with environmental variables, which may have played roles as selective forces at a regional scale. PMID:23591517
NASA Astrophysics Data System (ADS)
Holt, Jason; Schrum, Corinna; Cannaby, Heather; Daewel, Ute; Allen, Icarus; Artioli, Yuri; Bopp, Laurent; Butenschon, Momme; Fach, Bettina A.; Harle, James; Pushpadas, Dhanya; Salihoglu, Baris; Wakelin, Sarah
2016-01-01
Regional seas are potentially highly vulnerable to climate change, yet are the most directly societally important regions of the marine environment. The combination of widely varying conditions of mixing, forcing, geography (coastline and bathymetry) and exposure to the open-ocean makes these seas subject to a wide range of physical processes that mediates how large scale climate change impacts on these seas' ecosystems. In this paper we explore the response of five regional sea areas to potential future climate change, acting via atmospheric, oceanic and terrestrial vectors. These include the Barents Sea, Black Sea, Baltic Sea, North Sea, Celtic Seas, and are contrasted with a region of the Northeast Atlantic. Our aim is to elucidate the controlling dynamical processes and how these vary between and within these seas. We focus on primary production and consider the potential climatic impacts on: long term changes in elemental budgets, seasonal and mesoscale processes that control phytoplankton's exposure to light and nutrients, and briefly direct temperature response. We draw examples from the MEECE FP7 project and five regional model systems each using a common global Earth System Model as forcing. We consider a common analysis approach, and additional sensitivity experiments. Comparing projections for the end of the 21st century with mean present day conditions, these simulations generally show an increase in seasonal and permanent stratification (where present). However, the first order (low- and mid-latitude) effect in the open ocean projections of increased permanent stratification leading to reduced nutrient levels, and so to reduced primary production, is largely absent, except in the NE Atlantic. Even in the two highly stratified, deep water seas we consider (Black and Baltic Seas) the increase in stratification is not seen as a first order control on primary production. Instead, results show a highly heterogeneous picture of positive and negative change arising from complex combinations of multiple physical drivers, including changes in mixing, circulation and temperature, which act both locally and non-locally through advection.
Nanoscale reduction of graphene oxide thin films and its characterization
NASA Astrophysics Data System (ADS)
Lorenzoni, M.; Giugni, A.; Di Fabrizio, E.; Pérez-Murano, Francesc; Mescola, A.; Torre, B.
2015-07-01
In this paper, we report on a method to reduce thin films of graphene oxide (GO) to a spatial resolution better than 100 nm over several tens of micrometers by means of an electrochemical scanning probe based lithography. In situ tip-current measurements show that an edged drop in electrical resistance characterizes the reduced areas, and that the reduction process is, to a good approximation, proportional to the applied bias between the onset voltage and the saturation thresholds. An atomic force microscope (AFM) quantifies the drop of the surface height for the reduced profile due to the loss of oxygen. Complementarily, lateral force microscopy reveals a homogeneous friction coefficient of the reduced regions that is remarkably lower than that of native graphene oxide, confirming a chemical change in the patterned region. Micro Raman spectroscopy, which provides access to insights into the chemical process, allows one to quantify the restoration and de-oxidation of the graphitic network driven by the electrochemical reduction and to determine characteristic length scales. It also confirms the homogeneity of the process over wide areas. The results shown were obtained from accurate analysis of the shift, intensity and width of Raman peaks for the main vibrational bands of GO and reduced graphene oxide (rGO) mapped over large areas. Concerning multilayered GO thin films obtained by drop-casting we have demonstrated an unprecedented lateral resolution in ambient conditions as well as an improved control, characterization and understanding of the reduction process occurring in GO randomly folded multilayers, useful for large-scale processing of graphene-based material.
Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco
2014-01-01
Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required beacause of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied. PMID:25285917
Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco
2014-01-01
Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required because of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied.
NASA Astrophysics Data System (ADS)
Li, Linghan; McClean, Julie L.; Miller, Arthur J.; Eisenman, Ian; Hendershott, Myrl C.; Papadopoulos, Caroline A.
2014-12-01
The seasonal cycle of sea ice variability in the Bering Sea, together with the thermodynamic and dynamic processes that control it, are examined in a fine resolution (1/10°) global coupled ocean/sea-ice model configured in the Community Earth System Model (CESM) framework. The ocean/sea-ice model consists of the Los Alamos National Laboratory Parallel Ocean Program (POP) and the Los Alamos Sea Ice Model (CICE). The model was forced with time-varying reanalysis atmospheric forcing for the time period 1970-1989. This study focuses on the time period 1980-1989. The simulated seasonal-mean fields of sea ice concentration strongly resemble satellite-derived observations, as quantified by root-mean-square errors and pattern correlation coefficients. The sea ice energy budget reveals that the seasonal thermodynamic ice volume changes are dominated by the surface energy flux between the atmosphere and the ice in the northern region and by heat flux from the ocean to the ice along the southern ice edge, especially on the western side. The sea ice force balance analysis shows that sea ice motion is largely associated with wind stress. The force due to divergence of the internal ice stress tensor is large near the land boundaries in the north, and it is small in the central and southern ice-covered region. During winter, which dominates the annual mean, it is found that the simulated sea ice was mainly formed in the northern Bering Sea, with the maximum ice growth rate occurring along the coast due to cold air from northerly winds and ice motion away from the coast. South of St Lawrence Island, winds drive the model sea ice southwestward from the north to the southwestern part of the ice-covered region. Along the ice edge in the western Bering Sea, model sea ice is melted by warm ocean water, which is carried by the simulated Bering Slope Current flowing to the northwest, resulting in the S-shaped asymmetric ice edge. In spring and fall, similar thermodynamic and dynamic patterns occur in the model, but with typically smaller magnitudes and with season-specific geographical and directional differences.
Process Contributions to Cool Java SST Anomalies at the Onset of Positive Indian Ocean Dipole Events
NASA Astrophysics Data System (ADS)
Delman, A. S.; McClean, J.; Sprintall, J.; Talley, L. D.
2016-12-01
The seasonal upwelling region along the south coast of Java is the first area to exhibit the negative SST anomalies associated with positive Indian Ocean Dipole (pIOD) events. The seasonal cooling in austral winter is driven by local wind forcing; however, recent observational studies have suggested that the anomalous Java cooling that starts during May-July of pIOD years is driven largely by intraseasonal wind variability along the equator, which forces upwelling Kelvin waves that propagate to the coast of Java. Using observations and an eddy-active ocean GCM simulation, the impacts of local wind stress and remotely-forced Kelvin waves are assessed and compared to the effects of mesoscale eddies and outflows from nearby Lombok Strait. A Kelvin wave coefficient computed from altimetry data shows anomalous levels of upwelling Kelvin wave activity during May-July of all pIOD years, indicating that Kelvin waves are an important and perhaps necessary precondition for pIOD events. Correlation analyses also suggest that flows through Lombok Strait and winds along the Indonesian Throughflow may be influential, though their impacts are more difficult to isolate. Composite temperature budgets from the ocean GCM indicate that advection and diabatic vertical mixing are the primary mechanisms for anomalous mixed layer cooling south of Java. The advection term is further decomposed by linearly regressing model velocity and temperature anomalies onto indices representing each process. According to this process decomposition, the local wind stress and Kelvin waves together account for most of the anomalous advective cooling, though the anomalous cooling effect of local wind stress may be overestimated in the model due to wind and stratification biases. The process decomposition also shows a very modest warming effect from mesoscale eddies. These results demonstrate both the IOD's resemblance to ENSO in the importance of Kelvin waves for its evolution, and notable differences from ENSO that arise from the complex interplay of local winds, planetary waves, stratification, eddies, and topography in the Indonesian region.
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Sohn, B. J.
1990-01-01
Global cloudiness and radiation budget data from Nimbus 6 and 7 are used to investigate the role of cloud and surface radiative forcing and elements of the earth's general circulation. Although globally integrated cloud forcing is nearly zero, there are large regional imbalances and well regulated processes in the shortwave and longwave spectrum that control the meridional gradient structure of the net radiation balance and the factors modulating the east-west oriented North Africa-western Pacific energy transport dipole. The analysis demonstrates that clouds play a dual role in both the shortwave and longwave spectra in terms of tropical and midlatitude east-west gradients. The key result is that cloud forcing, although not always the principle regulator of interannual variability of the global climate, serves to reinforce the basic three-cell meridional circulation.
Tidal Impacts on Oceanographic and Sea-ice Processes in the Southern Ocean
NASA Astrophysics Data System (ADS)
Padman, L.; Muench, R. D.; Howard, S.; Mueller, R.
2008-12-01
We review recent field and modeling results that demonstrate the importance of tides in establishing the oceanographic and sea-ice conditions in the boundary regions of the Southern Ocean. The tidal component dominates the total oceanic kinetic energy throughout much of the circum-Antarctic seas. This domination is especially pronounced over the continental slope and shelf including the sub-ice-shelf cavities. Tides provide most of the energy that forces diapycnal mixing under ice shelves and thereby contributes to basal melting. The resulting Ice Shelf Water is a significant component of the Antarctic Bottom Water (AABW) filling much of the deep global ocean. Tides exert significant divergent forcing on sea ice along glacial ice fronts and coastal regions, contributing to creation and maintenance of the coastal polynyas where much of the High Salinity Shelf Water component of AABW is formed. Additional tidally forced ice divergence along the shelf break and upper slope significantly impacts area-averaged ice growth and upper-ocean salinity. Tidally forced cross- slope advection, and mixing by the benthic stress associated with tidal currents along the shelf break and upper slope, strongly influence the paths, volume fluxes and hydrographic properties of benthic outflows of dense water leaving the continental shelf. These outflows provide primary source waters for the AABW. These results confirm that general ocean circulation and coupled ocean/ice/atmosphere climate models must incorporate the impacts of tides.
Mechanism of ENSO influence on the South Asian monsoon rainfall in global model simulations
NASA Astrophysics Data System (ADS)
Joshi, Sneh; Kar, Sarat C.
2018-02-01
Coupled ocean atmosphere global climate models are increasingly being used for seasonal scale simulation of the South Asian monsoon. In these models, sea surface temperatures (SSTs) evolve as coupled air-sea interaction process. However, sensitivity experiments with various SST forcing can only be done in an atmosphere-only model. In this study, the Global Forecast System (GFS) model at T126 horizontal resolution has been used to examine the mechanism of El Niño-Southern Oscillation (ENSO) forcing on the monsoon circulation and rainfall. The model has been integrated (ensemble) with observed, climatological and ENSO SST forcing to document the mechanism on how the South Asian monsoon responds to basin-wide SST variations in the Indian and Pacific Oceans. The model simulations indicate that the internal variability gets modulated by the SSTs with warming in the Pacific enhancing the ensemble spread over the monsoon region as compared to cooling conditions. Anomalous easterly wind anomalies cover the Indian region both at 850 and 200 hPa levels during El Niño years. The locations and intensity of Walker and Hadley circulations are altered due to ENSO SST forcing. These lead to reduction of monsoon rainfall over most parts of India during El Niño events compared to La Niña conditions. However, internally generated variability is a major source of uncertainty in the model-simulated climate.
NASA Technical Reports Server (NTRS)
Thomas, Andrew C.; Chai, F.; Townsend, D. W.; Xue, H.
2002-01-01
The goals of this project were to acquire, process, QC, archive and analyze SeaWiFS chlorophyll fields over the Gulf of Maine and Scotia Shelf region. The focus of the analysis effort was to calculate and quantify seasonality and interannual. variability of SeaWiFS-measured phytoplankton biomass in the study area and compare these to physical forcing and hydrography. An additional focus within this effort was on regional differences within the heterogeneous biophysical regions of the Gulf of Maine / Scotia Shelf. Overall goals were approached through the combined use of SeaWiFS and AVHRR data and the development of a coupled biology-physical numerical model.
Bizzarri, Anna Rita; Cannistraro, Salvatore
2014-08-22
Atomic force spectroscopy is able to extract kinetic and thermodynamic parameters of biomolecular complexes provided that the registered unbinding force curves could be reliably attributed to the rupture of the specific complex interactions. To this aim, a commonly used strategy is based on the analysis of the stretching features of polymeric linkers which are suitably introduced in the biomolecule-substrate immobilization procedure. Alternatively, we present a method to select force curves corresponding to specific biorecognition events, which relies on a careful analysis of the force fluctuations of the biomolecule-functionalized cantilever tip during its approach to the partner molecules immobilized on a substrate. In the low frequency region, a characteristic 1/f (α) noise with α equal to one (flickering noise) is found to replace white noise in the cantilever fluctuation power spectrum when, and only when, a specific biorecognition process between the partners occurs. The method, which has been validated on a well-characterized antigen-antibody complex, represents a fast, yet reliable alternative to the use of linkers which may involve additional surface chemistry and reproducibility concerns.
Searching for Partners: Regional Organizations and Peace Operations
1998-06-01
directed force, the U.N. Protection Force (UNPROFOR), performed abysmally in Bosnia and had to be replaced by a combination of NATO and other forces...African regional organization. Other examplars were the operational support provided by NATO during the U.N. Protection Force (UNPROFOR) phase of...body capable of organizing or directing field operations. 34 Lewis a n d Marks Even in the realm of protecting human rights, OSCE has lost
Rahemi, Hadi; Nigam, Nilima; Wakeling, James M
2014-01-01
Skeletal muscle can contain neuromuscular compartments that are spatially distinct regions that can receive relatively independent levels of activation. This study tested how the magnitude and direction of the force developed by a whole muscle would change when the muscle activity was regionalized within the muscle. A 3D finite element model of a muscle with its bounding aponeurosis was developed for the lateral gastrocnemius, and isometric contractions were simulated for a series of conditions with either a uniform activation pattern, or regionally distinct activation patterns: in all cases the mean activation from all fibers within the muscle reached 10%. The models showed emergent features of the fiber geometry that matched physiological characteristics: with fibers shortening, rotating to greater pennation, adopting curved trajectories in 3D and changes in the thickness and width of the muscle belly. Simulations were repeated for muscle with compliant, normal and stiff aponeurosis and the aponeurosis stiffness affected the changes to the fiber geometry and the resultant muscle force. Changing the regionalization of the activity resulted to changes in the magnitude, direction and center of the force vector from the whole muscle. Regionalizing the muscle activity resulted in greater muscle force than the simulation with uniform activity across the muscle belly. The study shows how the force from a muscle depends on the complex interactions between the muscle fibers and connective tissues and the region of muscle that is active.
A theoretical study of resin flows for thermosetting materials during prepreg processing
NASA Technical Reports Server (NTRS)
Hou, T. H.
1984-01-01
A flow model which describes the process of resin consolidation during prepreg lamination was developed. The salient features of model predictions were explored. It is assumed that resin flows in all directions originate from squeezing action between two approaching adjacent fiber/fabric layers. In the horizontal direction, a squeezing flow between two nonporous parallel plates is analyzed, while in the vertical direction a poiseuille type pressure flow through porous media is assumed. Proper force and mass balance was established for the whole system which is composed of these two types of flow. A flow parameter, CF, shows to be a measure of processibility for the curing resin. For a given external load-F the responses of resin flow during prepreg lamination, as measured by CF, are categorized into three regions: (1) the low CF region where resin flows are inhibited by the high chemoviscosity during initial curing stages; (2) the median CF region where resin flows are properly controllable; and (3) the high CF region where resin flows are ceased due to fiber/fabric compression effects. Resin losses in both directions are calculated. Potential uses of this model and quality control of incoming prepreg material are discussed.
Asian Monsoons: Variability, Predictability, and Sensitivity to External Forcing
NASA Technical Reports Server (NTRS)
Yang, Song; Lau, K.-M.; Kim, K.-M.
1999-01-01
In this study, we have addressed the interannual variations of Asian monsoons including both broad-scale and regional monsoon components. Particular attention is devoted to the identities of the South China Sea monsoon and Indian monsoon. We use CPC Merged Analysis of Precipitation and NCEP reanalyses to define regional monsoon indices and to depict the various monsoons. Parallel modeling studies have also been carried out to assess the potential predictability of the broad-scale and regional monsoons. Each monsoon is characterized by its unique features. While the South Asian monsoon represents a classical monsoon in which anomalous circulation is governed by Rossby-wave dynamics, the Southeast Asian monsoon symbolizes a "hybrid" monsoon that features multi-cellular meridional circulation over eastern Asia. The broad-scale Asian monsoon links to the basin-wide atmospheric circulation over the Indian-Pacific oceans. Both Sea Surface Temperatures (SST) and land surface processes are important for determining the variations of all monsoons. For the broad-scale monsoon, SST anomalies are more important than land surface processes. However, for regional monsoons, land surface processes may become equally important. Both observation and model shows that the broad-scale monsoon is potentially more predictable than regional monsoons, and that the Southeast Asian monsoon may possess higher predictability than the South Asian monsoon.
GNSS orbit determination by precise modeling of non-gravitational forces acting on satellite's body
NASA Astrophysics Data System (ADS)
Wielgosz, Agata; Kalarus, Maciej; Liwosz, Tomasz
2016-04-01
Satellites orbiting around Earth are affected by gravitational forces and non-gravitational perturbations (NGP). While the perturbations caused by gravitational forces, which are due to central body gravity (including high-precision geopotential field) and its changes (due to secular variations and tides), solar bodies attraction and relativistic effects are well-modeled, the perturbations caused by the non-gravitational forces are the most limiting factor in Precise Orbit Determination (POD). In this work we focused on very precise non-gravitational force modeling for medium Earth orbit satellites by applying the various models of solar radiation pressure including changes in solar irradiance and Earth/Moon shadow transition, Earth albedo and thermal radiation. For computing influence of aforementioned forces on spacecraft the analytical box-wing satellite model was applied. Smaller effects like antenna thrust or spacecraft thermal radiation were also included. In the process of orbit determination we compared the orbit with analytically computed NGP with the standard procedure in which CODE model is fitted for NGP recovery. We considered satellites from several systems and on different orbits and for different periods: when the satellite is all the time in full sunlight and when transits the umbra and penumbra regions.
NASA Astrophysics Data System (ADS)
Jackson, Christopher Robert
"Lucky-region" fusion (LRF) is a synthetic imaging technique that has proven successful in enhancing the quality of images distorted by atmospheric turbulence. The LRF algorithm selects sharp regions of an image obtained from a series of short exposure frames, and fuses the sharp regions into a final, improved image. In previous research, the LRF algorithm had been implemented on a PC using the C programming language. However, the PC did not have sufficient sequential processing power to handle real-time extraction, processing and reduction required when the LRF algorithm was applied to real-time video from fast, high-resolution image sensors. This thesis describes two hardware implementations of the LRF algorithm to achieve real-time image processing. The first was created with a VIRTEX-7 field programmable gate array (FPGA). The other developed using the graphics processing unit (GPU) of a NVIDIA GeForce GTX 690 video card. The novelty in the FPGA approach is the creation of a "black box" LRF video processing system with a general camera link input, a user controller interface, and a camera link video output. We also describe a custom hardware simulation environment we have built to test the FPGA LRF implementation. The advantage of the GPU approach is significantly improved development time, integration of image stabilization into the system, and comparable atmospheric turbulence mitigation.
Khurelbaatar, Tsolmonbaatar; Kim, Kyungsoo; Hyuk Kim, Yoon
2015-11-01
Computational musculoskeletal models have been developed to predict mechanical joint loads on the human spine, such as the forces and moments applied to vertebral and facet joints and the forces that act on ligaments and muscles because of difficulties in the direct measurement of joint loads. However, many whole-spine models lack certain elements. For example, the detailed facet joints in the cervical region or the whole spine region may not be implemented. In this study, a detailed cervico-thoraco-lumbar multibody musculoskeletal model with all major ligaments, separated structures of facet contact and intervertebral disk joints, and the rib cage was developed. The model was validated by comparing the intersegmental rotations, ligament tensile forces, facet joint contact forces, compressive and shear forces on disks, and muscle forces were to those reported in previous experimental and computational studies both by region (cervical, thoracic, or lumbar regions) and for the whole model. The comparisons demonstrated that our whole spine model is consistent with in vitro and in vivo experimental studies and with computational studies. The model developed in this study can be used in further studies to better understand spine structures and injury mechanisms of spinal disorders.
A master equation approach to actin polymerization applied to endocytosis in yeast.
Wang, Xinxin; Carlsson, Anders E
2017-12-01
We present a Master Equation approach to calculating polymerization dynamics and force generation by branched actin networks at membranes. The method treats the time evolution of the F-actin distribution in three dimensions, with branching included as a directional spreading term. It is validated by comparison with stochastic simulations of force generation by actin polymerization at obstacles coated with actin "nucleation promoting factors" (NPFs). The method is then used to treat the dynamics of actin polymerization and force generation during endocytosis in yeast, using a model in which NPFs form a ring around the endocytic site, centered by a spot of molecules attaching the actin network strongly to the membrane. We find that a spontaneous actin filament nucleation mechanism is required for adequate forces to drive the process, that partial inhibition of branching and polymerization lead to different characteristic responses, and that a limited range of polymerization-rate values provide effective invagination and obtain correct predictions for the effects of mutations in the active regions of the NPFs.
A master equation approach to actin polymerization applied to endocytosis in yeast
Wang, Xinxin
2017-01-01
We present a Master Equation approach to calculating polymerization dynamics and force generation by branched actin networks at membranes. The method treats the time evolution of the F-actin distribution in three dimensions, with branching included as a directional spreading term. It is validated by comparison with stochastic simulations of force generation by actin polymerization at obstacles coated with actin “nucleation promoting factors” (NPFs). The method is then used to treat the dynamics of actin polymerization and force generation during endocytosis in yeast, using a model in which NPFs form a ring around the endocytic site, centered by a spot of molecules attaching the actin network strongly to the membrane. We find that a spontaneous actin filament nucleation mechanism is required for adequate forces to drive the process, that partial inhibition of branching and polymerization lead to different characteristic responses, and that a limited range of polymerization-rate values provide effective invagination and obtain correct predictions for the effects of mutations in the active regions of the NPFs. PMID:29240771
Stiffness map of the grasping contact areas of the human hand.
Pérez-González, Antonio; Vergara, Margarita; Sancho-Bru, Joaquin L
2013-10-18
The elasticity and damping of the soft tissues of the hand contribute to dexterity while grasping and also help to stabilise the objects in manipulation tasks. Although some previous works have studied the force-displacement response of the fingertips, the responses in all other regions of the hand that usually participate in grasping have not been analysed to date. In this work we performed experimental measurements in 20 subjects to obtain a stiffness map of the different grasping contact areas of the human hand. A force-displacement apparatus was used to simultaneously measure force and displacement at 39 different points on the hand at six levels of force ranging from 1N to 6N. A non-linear force-displacement response was found for all points, with stiffness increasing with the amount of force applied. Mean stiffness for the different points and force levels was within the range from 0.2N/mm to 7.7N/mm. However, the stiffness range and variation with level of force were found to be different from point to point. A total of 13 regions with similar stiffness behaviours were identified. The stiffness in the fingertips increased linearly with the amount of force applied, while in the palm it remained more constant for the range of forces considered. It is hypothesised that the differences in the stiffness behaviour from one region to another allow these regions to play different roles during grasping. © 2013 Elsevier Ltd. All rights reserved.
Liu, Zhiwei; Ensing, Bernd; Moore, Preston B
2011-02-08
The free energy surfaces (FESs) of alanine dipeptide are studied to illustrate a new strategy to assess the performance of classical molecular mechanics force field on the full range of the (ϕ-ψ) conformational space. The FES is obtained from metadynamics simulations with five commonly used force fields and from ab initio density functional theory calculations in both gas phase and aqueous solution. The FESs obtained at the B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d,p) level of theory are validated by comparison with previously reported MP2 and LMP2 results as well as with experimentally obtained probability distribution between the C5-β (or β-PPII) and αR states. A quantitative assessment is made for each force field in three conformational basins, LeRI (C5-β-C7eq), LeRII (β2-αR), and LeRIII(αL-C7ax-αD) as well as three transition-state regions linking the above conformational basins. The performance of each force field is evaluated in terms of the average free energy of each region in comparison with that of the ab initio results. We quantify how well a force field FES matches the ab initio FES through the calculation of the standard deviation of a free energy difference map between the two FESs. The results indicate that the performance varies largely from region to region or from force field to force field. Although not one force field is able to outperform all others in all conformational areas, the OPLSAA/L force field gives the best performance overall, followed by OPLSAA and AMBER03. For the three top performers, the average free energies differ from the corresponding ab initio values from within the error range (<0.4 kcal/mol) to ∼1.5 kcal/mol for the low-energy regions and up to ∼2.0 kcal/mol for the transition-state regions. The strategy presented and the results obtained here should be useful for improving the parametrization of force fields targeting both accuracy in the energies of conformers and the transition-state barriers.
Labus, Paul; Whitman, Richard L.; Nevers, Meredith Becker
1999-01-01
The Calumet Region was shaped by geologic forces, succession, and interacting biomes converging on a unique natural landscape. Over the past 4500 years, a strand plain has formed to the north of a geologic area called Toleston Beach. Sequential and differential primary succession of dune and swale communities in this region allowed species from different biomes to interact freely. In the mid-nineteenth century, commerce and settlement drastically changed the area, and natural areas were fragmented, manipulated, and degraded by cultural intrusions and industrialization. Despite the near obliteration of dune and swale habitat, small fragments of natural land escaped destruction. These native fragments maintained some semblance of the landscape that once covered the region. Currently, these native fragments are threatened by the lingering intrusion of historic contamination and the continuing presence of industry and commerce. Restoration and conservation of these remnants will need to be a process of integrating biological diversity goals into the landscape of the industrialized region through planning and design. We outline here the natural history of the region, the philosophical rationale for conservation, and possible approaches for integrating and maintaining these valuable remnant resources and processes.
NASA Astrophysics Data System (ADS)
Deser, C.
2017-12-01
Natural climate variability occurs over a wide range of time and space scales as a result of processes intrinsic to the atmosphere, the ocean, and their coupled interactions. Such internally generated climate fluctuations pose significant challenges for the identification of externally forced climate signals such as those driven by volcanic eruptions or anthropogenic increases in greenhouse gases. This challenge is exacerbated for regional climate responses evaluated from short (< 50 years) data records. The limited duration of the observations also places strong constraints on how well the spatial and temporal characteristics of natural climate variability are known, especially on multi-decadal time scales. The observational constraints, in turn, pose challenges for evaluation of climate models, including their representation of internal variability and assessing the accuracy of their responses to natural and anthropogenic radiative forcings. A promising new approach to climate model assessment is the advent of large (10-100 member) "initial-condition" ensembles of climate change simulations with individual models. Such ensembles allow for accurate determination, and straightforward separation, of externally forced climate signals and internal climate variability on regional scales. The range of climate trajectories in a given model ensemble results from the fact that each simulation represents a particular sequence of internal variability superimposed upon a common forced response. This makes clear that nature's single realization is only one of many that could have unfolded. This perspective leads to a rethinking of approaches to climate model evaluation that incorporate observational uncertainty due to limited sampling of internal variability. Illustrative examples across a range of well-known climate phenomena including ENSO, volcanic eruptions, and anthropogenic climate change will be discussed.
NASA Astrophysics Data System (ADS)
Gochis, D. J.; Dugger, A. L.; Karsten, L. R.; Barlage, M. J.; Sampson, K. M.; Yu, W.; Pan, L.; McCreight, J. L.; Howard, K.; Busto, J.; Deems, J. S.
2017-12-01
Hydrometeorological processes vary over comparatively short length scales in regions of complex terrain such as the southern Rocky Mountains. Changes in temperature, precipitation, wind and solar radiation can vary significantly across elevation gradients, terrain landform and land cover conditions throughout the region. Capturing such variability in hydrologic models can necessitate the utilization of so-called `hyper-resolution' spatial meshes with effective element spacings of less than 100m. However, it is often difficult to obtain meteorological forcings of high quality in such regions at those resolutions which can result in significant uncertainty in fundamental in hydrologic model inputs. In this study we examine the comparative influences of meteorological forcing data fidelity and spatial resolution on seasonal simulations of snowpack evolution, runoff and streamflow in a set of high mountain watersheds in southern Colorado. We utilize the operational, NOAA National Water Model configuration of the community WRF-Hydro system as a baseline and compare against it, additional model scenarios with differing specifications of meteorological forcing data, with and without topographic downscaling adjustments applied, with and without experimental high resolution radar derived precipitation estimates and with WRF-Hydro configurations of progressively finer spatial resolution. The results suggest significant influence from and importance of meteorological downscaling techniques in controlling spatial distributions of meltout and runoff timing. The use of radar derived precipitation exhibits clear sensitivity on hydrologic simulation skill compared with the use of coarser resolution, background precipitation analyses. Advantages and disadvantages of the utilization of progressively higher resolution model configurations both in terms of computational requirements and model fidelity are also discussed.
Creation of the Teton landscape: A geologic chronicle of Jackson Hole and The Teton Range
Reed, John Calvin; Love, David; Pierce, Kenneth
2003-01-01
Geology is the science of the Earth-the study of the forces, processes, and past life that not only shape our land but influence our daily lives and our Nation's welfare. This booklet, prepared by two members of the U.S. Geological Survey, discusses how geologic phenomena are responsible for the magnificent scenery of the Teton region
50 CFR 217.60 - Specified activity and specified geographical region.
Code of Federal Regulations, 2014 CFR
2014-10-01
... geographical region. (a) Regulations in this subpart apply only to the 30th Space Wing, United States Air Force... that occurs incidental to: (1) Launching up to 15 space and each year from Vandenberg Air Force Base.... Air Force Launches, Aircraft and Helicopter Operations, and Harbor Activities Related to Launch...
NASA Astrophysics Data System (ADS)
Folguera, Andrés; Gianni, Guido; Sagripanti, Lucía; Rojas Vera, Emilio; Novara, Iván; Colavitto, Bruno; Alvarez, Orlando; Orts, Darío; Tobal, Jonathan; Giménez, Mario; Introcaso, Antonio; Ruiz, Francisco; Martínez, Patricia; Ramos, Victor A.
2015-12-01
A broad range of processes acted simultaneously during the Quaternary producing relief in the Andes and adjacent foreland, from the Chilean coast, where the Pacific Ocean floor is being subducted beneath South American, to the Brazilian and the Argentinean Atlantic platform area. This picture shows to be complex and responds to a variety of processes. The Geoid exemplifies this spectrum of uplift mechanisms, since it reflects an important change at 35°S along the Andes and the foreland that could be indicating the presence of dynamic forces modeling the topography with varying intensity through the subduction margin. On the other hand, mountains uplifted in the Atlantic margin, along a vast sector of the Brazilian Atlantic coast and inland regions seem to be created at the area where the passive margin has been hyper-extended and consequently mechanically debilitated and the forearc region shifts eastwardly at a similar rate than the westward advancing continent. Therefore the forearc at the Arica latitudes can be considered as relatively stationary and dynamically sustained by a perpendicular-to-the-margin asthenospheric flow that inhibits trench roll back, determining a highly active orogenic setting at the eastern Andes in the Subandean region. To the south, the Pampean flat subduction zone creates particular conditions for deformation and rapid propagation of the orogenic front producing a high-amplitude orogen. In the southern Central and Patagonian Andes, mountain (orogenic) building processes are attenuated, becoming dominant other mechanisms of exhumation such as the i) impact of mantle plumes originated in the 660 km mantle transition, ii) the ice-masse retreat from the Andes after the Pleistocene producing an isostatic rebound, iii) the dynamic topography associated with the opening of an asthenospheric window during the subduction of the Chile ridge and slab tearing processes, iv) the subduction of oceanic swells linked to transform zones and v) the accretion of oceanic materials beneath the forearc region. Additionally and after last geodetic studies, vi) exhumation due to co- and post-seismic lithospheric stretching associated with large earthquakes along the subduction zone, also shows to be a factor associated with regional uplift that needs to be further considered as an additional mechanism from the Chilean coast to the western retroarc area. Finally, this revision constitutes a general picture about the different mechanisms of uplift and active deformation along the Southern Andes, in which orogenic processes become dominant north of 35°S, while south of these latitudes dynamic forces seem to predominate all over the Patagonian platform.
Magnetic diffusion and flare energy buildup
NASA Technical Reports Server (NTRS)
Wu, S. T.; Yin, C. L.; Yang, W.-H.
1992-01-01
Photospheric motion shears or twists solar magnetic fields to increase magnetic energy in the corona, because this process may change a current-free state of a coronal field to force-free states which carry electric current. This paper analyzes both linear and nonlinear 2D force-free magnetic field models and derives relations of magnetic energy buildup with photospheric velocity field. When realistic data of solar magnetic field and photospheric velocity field are used, it is found that 3-4 hours are needed to create an amount of free magnetic energy which is of the order of the current-free field energy. Furthermore, the paper studies situations in which finite magnetic diffusivities in photospheric plasma are introduced. The shearing motion increases coronal magnetic energy, while the photospheric diffusion reduces the energy. The variation of magnetic energy in the coronal region, then, depends on which process dominates.
Dolby, Greer; Bennett, Scott E. K.; Lira-Noriega, Andres; Wilder, Benjamin T.; Munguia-Vega, Adrian
2015-01-01
For almost a century the Baja California peninsula (Peninsula), Gulf of California (Gulf), and broader Sonoran Desert region (figure 1) have drawn geologists and biologists alike to study its unique physical and evolutionary processes (e.g., Wittich 1920; Darton 1921; Nelson 1921; Johnston 1924; Beal 1948; Durham and Allison 1960). The challenge remains to untangle the long, intricate, and at times enigmatic geological and climatological histories that have shaped the high levels of endemism and biodiversity observed in the region today (Van Devender 1990; Grismer 2000; Riddle et al. 2000).
Landslide Hazards in the Seattle, Washington, Area
Baum, Rex; Harp, Ed; Highland, Lynn
2007-01-01
The Seattle, Washington, area is known for its livability and its magnificent natural setting. The city and nearby communities are surrounded by an abundance of rivers and lakes and by the bays of Puget Sound. Two majestic mountain ranges, the Olympics and the Cascades, rim the region. These dramatic natural features are products of dynamic forces-landslides, earthquakes, tsunamis, glaciers, volcanoes, and floods. The same processes that formed this beautiful landscape pose hazards to the ever-growing population of the region. Landslides long have been a major cause of damage and destruction to people and property in the Seattle area.
The effect of radiation pressure on spatial distribution of dust inside H II regions
NASA Astrophysics Data System (ADS)
Ishiki, Shohei; Okamoto, Takashi; Inoue, Akio K.
2018-02-01
We investigate the impact of radiation pressure on spatial dust distribution inside H II regions using one-dimensional radiation hydrodynamic simulations, which include absorption and re-emission of photons by dust. In order to investigate grain-size effects as well, we introduce two additional fluid components describing large and small dust grains in the simulations. Relative velocity between dust and gas strongly depends on the drag force. We include collisional drag force and coulomb drag force. We find that, in a compact H II region, a dust cavity region is formed by radiation pressure. Resulting dust cavity sizes (˜0.2 pc) agree with observational estimates reasonably well. Since dust inside an H II region is strongly charged, relative velocity between dust and gas is mainly determined by the coulomb drag force. Strength of the coulomb drag force is about 2 order of magnitude larger than that of the collisional drag force. In addition, in a cloud of mass 105 M⊙, we find that the radiation pressure changes the grain-size distribution inside H II regions. Since large (0.1 μm) dust grains are accelerated more efficiently than small (0.01 μm) grains, the large-to-small grain mass ratio becomes smaller by an order of magnitude compared with the initial one. Resulting dust-size distributions depend on the luminosity of the radiation source. The large and small grain segregation becomes weaker when we assume stronger radiation source, since dust grain charges become larger under stronger radiation and hence coulomb drag force becomes stronger.
NASA Astrophysics Data System (ADS)
Jeong, Dae Il; Sushama, Laxmi; Naveed Khaliq, M.
2017-06-01
Snow is an important component of the cryosphere and it has a direct and important influence on water storage and supply in snowmelt-dominated regions. This study evaluates the temporal evolution of snow water equivalent (SWE) for the February-April spring period using the GlobSnow observation dataset for the 1980-2012 period. The analysis is performed for different regions of hemispherical to sub-continental scales for the Northern Hemisphere. The detection-attribution analysis is then performed to demonstrate anthropogenic and natural effects on spring SWE changes for different regions, by comparing observations with six CMIP5 model simulations for three different external forcings: all major anthropogenic and natural (ALL) forcings, greenhouse gas (GHG) forcing only, and natural forcing only. The observed spring SWE generally displays a decreasing trend, due to increasing spring temperatures. However, it exhibits a remarkable increasing trend for the southern parts of East Eurasia. The six CMIP5 models with ALL forcings reproduce well the observed spring SWE decreases at the hemispherical scale and continental scales, whereas important differences are noted for smaller regions such as southern and northern parts of East Eurasia and northern part of North America. The effects of ALL and GHG forcings are clearly detected for the spring SWE decline at the hemispherical scale, based on multi-model ensemble signals. The effects of ALL and GHG forcings, however, are less clear for the smaller regions or with single-model signals, indicating the large uncertainty in regional SWE changes, possibly due to stronger influence of natural climate variability.
Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing during Boreal Spring
NASA Technical Reports Server (NTRS)
Kim, Maeng-Ki; Lau, William K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.
2006-01-01
The direct effects of aerosols on global and regional climate during boreal spring are investigated based on numerical simulations with the NASA Global Modeling and Assimilation Office finite-volume general circulation model (fvGCM) with Microphyics of Clouds with the Relaxed Arakawa Schubert Scheme (McRAS), using aerosol forcing functions derived from the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The authors find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excite a planetary-scale teleconnection pattern in sea level pressure, temperature, and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, that is, South Asia, East Asia, and northern and western Africa. Significant atmospheric heating is found in regions with large loading of dust (over northern Africa and the Middle East) and black carbon (over Southeast Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east west dipole anomaly with strong cooling over the Caspian Sea and warming over central and northeastern Asia, where aerosol concentrations are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection pattern driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes associated with the regional circulations. The surface temperature signature associated with the aerosol-induced teleconnection bears striking resemblance to the spatial pattern of observed long-term trend in surface temperature over Eurasia. Additionally, the boreal spring wave train pattern is similar to that reported by Fukutomi et al. associated with the boreal summer precipitation seesaw between eastern and western Siberia. The results of this study raise the possibility that global aerosol forcing during boreal spring may play an important role in spawning atmospheric teleconnections that affect regional and global climates.
NASA Astrophysics Data System (ADS)
Naik, V.; Mauzerall, D. L.; Horowitz, L.; Schwarzkopf, D.; Ramaswamy, V.; Oppenheimer, M.
2004-12-01
The global distribution of tropospheric ozone (O3) depends on the location of emissions of its precursors in addition to chemical and dynamical factors. The global picture of O3 forcing is, therefore, a sum of regional forcings arising from emissions of precursors from different sources. The Kyoto Protocol does not include ozone as a greenhouse gas, and emission reductions of ozone precursors made under Kyoto or any similar agreement would presently receive no credit. In this study, we quantitatively estimate the contribution of emissions of nitrogen oxides (NOx), the primary limiting O3 precursor in the non-urban atmosphere, from specific countries and regions of the world to global O3 concentration distributions. We then estimate radiative forcing resulting from the regional perturbations of NOx emissions. This analysis is intended as an early step towards incorporating O3 into the Kyoto Protocol or any successor agreement. Under such a system countries could obtain credit for improvements in local air quality that result in reductions of O3 concentrations because of the associated reductions in radiative forcing. We use the global chemistry transport model, MOZART-2, to simulate the global O3 distribution for base year 1990 and perturbations to this distribution caused by a 10% percent reduction in the base emissions of NOx from the United States, Europe, East Asia, India, South America, and Africa. We calculate the radiative forcing for the simulated base and perturbed O3 distributions using the GFDL radiative transfer model. The difference between the radiative forcing from O3 for the base and perturbed distributions provides an estimate of the marginal radiative forcing from a region's emissions of NOx. We will present a quantitative analysis of the magnitude, spatial, and temporal distribution of radiative forcing resulting from marginal changes in the NOx emissions from each region.
NASA Astrophysics Data System (ADS)
Ji, Zhenming; Wang, Guiling; Pal, Jeremy S.; Yu, Miao
2016-02-01
Mineral dusts present in the atmosphere can play an important role in climate over West Africa and surrounding regions. However, current understanding regarding how dust aerosols influence climate of West Africa is very limited. In this study, a regional climate model is used to investigate the potential climatic impacts of dust aerosols. Two sets of simulations driven by reanalysis and Earth System Model boundary conditions are performed with and without the representation of dust processes. The model, regardless of the boundary forcing, captures the spatial and temporal variability of the aerosol optical depth and surface concentration. The shortwave radiative forcing of dust is negative at the surface and positive in the atmosphere, with greater changes in the spring and summer. The presence of mineral dusts causes surface cooling and lower troposphere heating, resulting in a stabilization effect and reduction in precipitation in the northern portion of the monsoon close to the dust emissions region. This results in an enhancement of precipitation to the south. While dusts cause the lower troposphere to stabilize, upper tropospheric cooling makes the region more prone to intense deep convection as is evident by a simulated increase in extreme precipitation. In a companion paper, the impacts of dust emissions on future West African climate are investigated.
NASA Astrophysics Data System (ADS)
Liu, Z.; LU, G.; He, H.; Wu, Z.; He, J.
2017-12-01
Reliable drought prediction is fundamental for seasonal water management. Considering that drought development is closely related to the spatio-temporal evolution of large-scale circulation patterns, we develop a conceptual prediction model of seasonal drought processes based on atmospheric/oceanic Standardized Anomalies (SA). It is essentially the synchronous stepwise regression relationship between 90-day-accumulated atmospheric/oceanic SA-based predictors and 3-month SPI updated daily (SPI3). It is forced with forecasted atmospheric and oceanic variables retrieved from seasonal climate forecast systems, and it can make seamless drought prediction for operational use after a year-to-year calibration. Simulation and prediction of four severe seasonal regional drought processes in China were forced with the NCEP/NCAR reanalysis datasets and the NCEP Climate Forecast System Version 2 (CFSv2) operationally forecasted datasets, respectively. With the help of real-time correction for operational application, model application during four recent severe regional drought events in China revealed that the model is good at development prediction but weak in severity prediction. In addition to weakness in prediction of drought peak, the prediction of drought relief is possible to be predicted as drought recession. This weak performance may be associated with precipitation-causing weather patterns during drought relief. Based on initial virtual analysis on predicted 90-day prospective SPI3 curves, it shows that the 2009/2010 drought in Southwest China and 2014 drought in North China can be predicted and simulated well even for the prospective 1-75 day. In comparison, the prospective 1-45 day may be a feasible and acceptable lead time for simulation and prediction of the 2011 droughts in Southwest China and East China, after which the simulated and predicted developments clearly change.
Umeshima, Hiroki; Nomura, Ken-Ichi; Yoshikawa, Shuhei; Hörning, Marcel; Tanaka, Motomu; Sakuma, Shinya; Arai, Fumihito; Kaneko, Makoto; Kengaku, Mineko
2018-04-05
Somal translocation in long bipolar neurons is regulated by actomyosin contractile forces, yet the precise spatiotemporal sites of force generation are unknown. Here we investigate the force dynamics generated during somal translocation using traction force microscopy. Neurons with a short leading process generated a traction force in the growth cone and counteracting forces in the leading and trailing processes. In contrast, neurons with a long leading process generated a force dipole with opposing traction forces in the proximal leading process during nuclear translocation. Transient accumulation of actin filaments was observed at the dipole center of the two opposing forces, which was abolished by inhibition of myosin II activity. A swelling in the leading process emerged and generated a traction force that pulled the nucleus when nuclear translocation was physically hampered. The traction force in the leading process swelling was uncoupled from somal translocation in neurons expressing a dominant negative mutant of the KASH protein, which disrupts the interaction between cytoskeletal components and the nuclear envelope. Our results suggest that the leading process is the site of generation of actomyosin-dependent traction force in long bipolar neurons, and that the traction force is transmitted to the nucleus via KASH proteins. Copyright © 2018 Elsevier B.V. and Japan Neuroscience Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Jayakumar, A.; Gnanaseelan, C.
2012-03-01
The present study explores the mechanisms responsible for the strong intraseasonal cooling events in the Thermocline Ridge region of the southwestern Indian Ocean. Air sea interface and oceanic processes associated with Madden Julian Oscillation are studied using an Ocean General Circulation Model and satellite observations. Sensitivity experiments are designed to understand the ocean response to intraseasonal forcing with a special emphasis on 2002 cooling events, which recorded the strongest intraseasonal perturbations during the last well-observed decade. This event is characterized by anomalous Walker circulation over the tropical Indian Ocean and persistent intraseasonal heat flux anomaly for a longer duration than is typical for similar events (but without any favorable preconditioning of ocean basic state at the interannual timescale). The model heat budget analysis during 1996 to 2007 revealed an in-phase relationship between atmospheric fluxes associated with Madden Julian Oscillation and the subsurface oceanic processes during the intense cooling events of 2002. The strong convection, reduced shortwave radiation and increased evaporation have contributed to the upper ocean heat loss in addition to the slower propagation of active phase of convection, which supported the integration of longer duration of forcing. The sensitivity experiments revealed that dynamic response of ocean through entrainment at the intraseasonal timescale primarily controls the biological response during the event, with oceanic interannual variability playing a secondary role. This study further speculates the role of oceanic intraseasonal variability in the 2002 droughts over Indian subcontinent.
Characteristics of regional aerosols: Southern Arizona and eastern Pacific Ocean
NASA Astrophysics Data System (ADS)
Prabhakar, Gouri
Atmospheric aerosols impact the quality of our life in many direct and indirect ways. Inhalation of aerosols can have harmful effects on human health. Aerosols also have climatic impacts by absorbing or scattering solar radiation, or more indirectly through their interactions with clouds. Despite a better understanding of several relevant aerosol properties and processes in the past years, they remain the largest uncertainty in the estimate of global radiative forcing. The uncertainties arise because although aerosols are ubiquitous in the Earth's atmosphere they are highly variable in space, time and their physicochemical properties. This makes in-situ measurements of aerosols vital in our effort towards reducing uncertainties in the estimate of global radiative forcing due to aerosols. This study is an effort to characterize atmospheric aerosols at a regional scale, in southern Arizona and eastern Pacific Ocean, based on ground and airborne observations of aerosols. Metals and metalloids in particles with aerodynamic diameter (Dp) smaller than 2.5 μm are found to be ubiquitous in southern Arizona. The major sources of the elements considered in the study are identified to be crustal dust, smelting/mining activities and fuel combustion. The spatial and temporal variability in the mass concentrations of these elements depend both on the source strength and meteorological conditions. Aircraft measurements of aerosol and cloud properties collected during various field campaigns over the eastern Pacific Ocean are used to study the sources of nitrate in stratocumulus cloud water and the relevant processes. The major sources of nitrate in cloud water in the region are emissions from ships and wildfires. Different pathways for nitrate to enter cloud water and the role of meteorology in these processes are examined. Observations of microphysical properties of ambient aerosols in ship plumes are examined. The study shows that there is an enhancement in the number concentration of giant cloud condensation nuclei (Dp > 2 microm) in ship plumes relative to the unperturbed background regions over the ocean.
Ponderomotive Forces in Cosmos
NASA Astrophysics Data System (ADS)
Lundin, R.; Guglielmi, A.
2006-12-01
This review is devoted to ponderomotive forces and their importance for the acceleration of charged particles by electromagnetic waves in space plasmas. Ponderomotive forces constitute time-averaged nonlinear forces acting on a media in the presence of oscillating electromagnetic fields. Ponderomotive forces represent a useful analytical tool to describe plasma acceleration. Oscillating electromagnetic fields are also related with dissipative processes, such as heating of particles. Dissipative processes are, however, left outside these discussions. The focus will be entirely on the (conservative) ponderomotive forces acting in space plasmas. The review consists of seven sections. In Section 1, we explain the rational for using the auxiliary ponderomotive forces instead of the fundamental Lorentz force for the study of particle motions in oscillating fields. In Section 2, we present the Abraham, Miller, Lundin-Hultqvist and Barlow ponderomotive forces, and the Bolotovsky-Serov ponderomotive drift. The hydrodynamic, quasi-hydrodynamic, and ‘`test-particle’' approaches are used for the study of ponderomotive wave-particle interaction. The problems of self-consistency and regularization are discussed in Section 3. The model of static balance of forces (Section 4) exemplifies the interplay between thermal, gravitational and ponderomotive forces, but it also introduces a set of useful definitions, dimensionless parameters, etc. We analyze the Alfvén and ion cyclotron waves in static limit with emphasis on the specific distinction between traveling and standing waves. Particular attention has been given to the impact of traveling Alfvén waves on the steady state anabatic wind that blows over the polar regions (Section~5). We demonstrate the existence of a wave-induced cold anabatic wind. We also show that, at a critical point, the ponderomotive acceleration of the wind is a factor of 3 greater than the thermal acceleration. Section 6 demonstrates various manifestations of ponderomotive forces in the Earth's magnetosphere, for instance the ionospheric plasma acceleration and outflow. The polar wind and the auroral density cavities are considered in relation to results from the Freja and Viking satellites. The high-altitude energization and escape of ions is discussed. The ponderomotive anharmonicity of standing Alfvén waves is analyzed from ground based ULF wave measurements. The complexity of the many challenging problems related with plasma processes near the magnetospheric boundaries is discussed in the light of recent Cluster observations. At the end of Section 6, we consider the application of ponderomotive forces to the diversity of phenomena on the Sun, in the interstellar environment, on newborn stars, pulsars and active galaxies. We emphasize the role of forcing of magnetized plasmas in general and ponderomotive forcing in particular, presenting some simple conceivable scenarios for massive outflow and jets from astrophysical objects.
Protecting Future Biodiversity via Re-allocation of Future Land-use Change Patterns
NASA Astrophysics Data System (ADS)
Chini, L. P.; Hurtt, G. C.; Jantz, S.; Brooks, T.; Leon, C.; Waldhoff, S.; Edmonds, J.
2013-12-01
Future scenarios, such as the Representative Concentration Pathways (RCPs), are typically designed to meet a radiative forcing target while also producing enough food and energy for a growing population. In the assessment process, impacts of these scenarios for other important variables such as biodiversity loss are considered 'downstream', after the future climate has been simulated within Earth System Models. However, the direct land-use impacts associated with future scenarios often have as much impact on these issues as the changing climate; in addition, many different patterns of land-use can result in the same radiative forcing target. In the case of biodiversity loss, one of the greatest contributors to species extinction is the loss of habitat such as primary forest, which is a direct result of land-use change decisions. By considering issues such as the preservation of future biodiversity 'up-front' in the scenario process, we can design a scenario that not only meets a radiative forcing target and feeds a growing planet, but also preserves as much habitat as possible through careful spatial allocation of future land-use change. Our Global Land-use Model (GLM) is used to provide 'harmonized' land-use data for the RCP process. GLM preserves as much information as possible from the Integrated Assessment Models (IAMs) while spatially allocating regional IAM land-use change data, ensuring a continuous transition from historical to future land-use states, and producing annual, gridded (0.5°×0.5°), fractional land-use states and all associated transitions. In this presentation we will present results from new GLM simulations in which land-use change decisions are constrained to meet the mutual goals of protecting important eco-regions (e.g. biodiversity hotspots) from future land-use change, providing enough food and fiber for a growing planet, and remaining consistent with the radiative forcing targets of the future scenarios. Trade-offs between agricultural demand and biodiversity protection were needed in some scenarios, but by constraining the land-use decisions to protect future biodiversity, an estimated 10-25% of species could be saved from loss between 2005 and 2100 (Jantz et al. 2013, in prep).
NASA Astrophysics Data System (ADS)
Yamada, Tatsuya; Mitaku, Shigeki; Yamato, Takahisa
2018-01-01
Single-molecule force spectroscopy by atomic force microscopy allows us to get insight into the mechanical unfolding of membrane proteins, and a typical experiment exhibits characteristic patterns on the force distance curves. The origin of these patterns, however, has not been fully understood yet. We performed coarse-grained simulation of the forced unfolding of halorodopsin, reproduced the characteristic features of the experimental force distance curves. A further examination near the membrane-water interface indicated the existence of a motif for the force peak formation, i.e., the occurrence of hydrophobic residues in the upper interface region and hydrophilic residues below the lower interface region.
The effect of the London-van der Waals dispersion force on interline heat transfer
NASA Technical Reports Server (NTRS)
Wayner, P. C., Jr.
1978-01-01
A theoretical procedure to determine the heat transfer characteristics of the interline region (junction of liquid-solid-vapor) from the macroscopic optical and thermophysical properties of the system is outlined. The analysis is based on the premise that the interline transport processes are controlled by the London-van der Waals dispersion force between condensed phases (solid and liquid). Numerical values of the dispersion constant are presented. The procedure is used to compare the relative size of the interline heat sink of various systems using a constant heat flux mode. This solution demonstrates the importance of the interline heat flow number, which is evaluated for various systems.
Parker Solar Probe Spacecraft Arrival, Offload and Transport
2018-04-03
A U.S. Air Force C-5 transport aircraft arrives at Space Coast Regional Airport in Titusville, Florida, with NASA's Parker Solar Probe spacecraft aboard. The spacecraft will be offloaded and transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.
Parker Solar Probe Spacecraft Arrival, Offload and Transport
2018-04-03
NASA's Parker Solar Probe, secured in its shipping container, arrives at the Astrotech processing facility near the agency's Kennedy Space Center in Florida. The spacecraft arrived aboard a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.
Parker Solar Probe Spacecraft Arrival, Offload and Transport
2018-04-03
A U.S. Air Force C-5 transport aircraft touches down at Space Coast Regional Airport in Titusville, Florida, with NASA's Parker Solar Probe spacecraft aboard. The spacecraft will be offloaded and transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.
Parker Solar Probe Spacecraft Arrival, Offload and Transport
2018-04-03
NASA's Parker Solar Probe, secured in its shipping container, is offloaded from a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.
Parker Solar Probe Spacecraft Arrival, Offload and Transport
2018-04-03
A U.S. Air Force C-5 transport aircraft approaches the runway for landing at Space Coast Regional Airport in Titusville, Florida, with NASA's Parker Solar Probe spacecraft aboard. The spacecraft will be offloaded and transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.
Parker Solar Probe Spacecraft Arrival, Offload and Transport
2018-04-03
NASA's Parker Solar Probe, secured in its shipping container, has been offloaded from a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.
Parker Solar Probe Spacecraft Arrival, Offload and Transport
2018-04-03
NASA's Parker Solar Probe, secured in its shipping container, arrives aboard a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be offloaded and transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.
NASA Astrophysics Data System (ADS)
Buaraphan, Khajornsak
2018-01-01
According to the constructivist theory, students' prior conceptions play an important role in their process of knowledge construction and teachers must take those prior conceptions into account when designing learning activities. The interpretive study was conducted to explore grade 8 students' conceptions about force and motion. The research participants were 42 students (21 male, 21 female) from seven Educational Opportunity Expansion Schools in Nakhon Pathom province located at the central region of Thailand. In each school, two low, two medium and two high achievers were selected. The Interview-About-Instance (IAI) technique was used to collect data. All interviews were audio recorded and subsequently transcribed verbatim. The students' conceptions were interpreted into scientific conception (SC), partial scientific conception (PC) and alternative conception (AC). The frequency of each category was counted and calculated for percentage. The results revealed that the students held a variety of prior conceptions about force and motion ranged from SC, PC to AC. Each students, including the high achievers, held mixed conceptions of force and motion. Interesting, the two dominant ACs held by the students were: a) force-implies-motion or motion-implies-force, and b) force coming only from an active agent. The science teachers need to take these ACs into account when designing the learning activities to cope with them. The implications regarding teaching and learning about force and motion are also discussed.
The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6
Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; ...
2017-01-01
Our primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud–climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. But, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions Howmore » does the Earth system respond to forcing? and What are the origins and consequences of systematic model biases? and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO 2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO 2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO 2 forcing and sea surface warming?CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions. How well do clouds and other relevant variables simulated by models agree with observations?What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models?Which models have the most credible representations of processes relevant to the simulation of clouds?How do clouds and their changes interact with other elements of the climate system?« less
The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6.
NASA Technical Reports Server (NTRS)
Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; Bony, Sandrine; Bretherton, Christopher S.; Chadwick, Robin; Chepfer, Helene; Douville, Herve; Good, Peter; Kay, Jennifer E.;
2017-01-01
The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud-climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions 'How does the Earth system respond to forcing?' and 'What are the origins and consequences of systematic model biases?' and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity. A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO2 forcing and sea surface warming? CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions. 1. How well do clouds and other relevant variables simulated by models agree with observations? 2. What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models? 3. Which models have the most credible representations of processes relevant to the simulation of clouds? 4. How do clouds and their changes interact with other elements of the climate system?
The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro
Our primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud–climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. But, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions Howmore » does the Earth system respond to forcing? and What are the origins and consequences of systematic model biases? and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO 2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO 2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO 2 forcing and sea surface warming?CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions. How well do clouds and other relevant variables simulated by models agree with observations?What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models?Which models have the most credible representations of processes relevant to the simulation of clouds?How do clouds and their changes interact with other elements of the climate system?« less
NASA Astrophysics Data System (ADS)
Rogers, Justin S.; Monismith, Stephen G.; Fringer, Oliver B.; Koweek, David A.; Dunbar, Robert B.
2017-02-01
We present a hydrodynamic analysis of an atoll system from modeling simulations using a coupled wave and three-dimensional hydrodynamic model (COAWST) applied to Palmyra Atoll in the Central Pacific. This is the first time the vortex force formalism has been applied in a highly frictional reef environment. The model results agree well with field observations considering the model complexity in terms of bathymetry, bottom roughness, and forcing (waves, wind, metrological, tides, regional boundary conditions), and open boundary conditions. At the atoll scale, strong regional flows create flow separation and a well-defined wake, similar to 2D flow past a cylinder. Circulation within the atoll is typically forced by waves and tides, with strong waves from the north driving flow from north to south across the atoll, and from east to west through the lagoon system. Bottom stress is significant for depths less than about 60 m, and in addition to the model bathymetry, is important for correct representation of flow in the model. Connectivity within the atoll system shows that the general trends follow the mean flow paths. However, some connectivity exists between all regions of the atoll system due to nonlinear processes such as eddies and tidal phasing. Moderate wave stress, short travel time (days since entering the reef system), and low temperature appear to be the most ideal conditions for high coral cover at this site.
The NRL relocatable ocean/acoustic ensemble forecast system
NASA Astrophysics Data System (ADS)
Rowley, C.; Martin, P.; Cummings, J.; Jacobs, G.; Coelho, E.; Bishop, C.; Hong, X.; Peggion, G.; Fabre, J.
2009-04-01
A globally relocatable regional ocean nowcast/forecast system has been developed to support rapid implementation of new regional forecast domains. The system is in operational use at the Naval Oceanographic Office for a growing number of regional and coastal implementations. The new system is the basis for an ocean acoustic ensemble forecast and adaptive sampling capability. We present an overview of the forecast system and the ocean ensemble and adaptive sampling methods. The forecast system consists of core ocean data analysis and forecast modules, software for domain configuration, surface and boundary condition forcing processing, and job control, and global databases for ocean climatology, bathymetry, tides, and river locations and transports. The analysis component is the Navy Coupled Ocean Data Assimilation (NCODA) system, a 3D multivariate optimum interpolation system that produces simultaneous analyses of temperature, salinity, geopotential, and vector velocity using remotely-sensed SST, SSH, and sea ice concentration, plus in situ observations of temperature, salinity, and currents from ships, buoys, XBTs, CTDs, profiling floats, and autonomous gliders. The forecast component is the Navy Coastal Ocean Model (NCOM). The system supports one-way nesting and multiple assimilation methods. The ensemble system uses the ensemble transform technique with error variance estimates from the NCODA analysis to represent initial condition error. Perturbed surface forcing or an atmospheric ensemble is used to represent errors in surface forcing. The ensemble transform Kalman filter is used to assess the impact of adaptive observations on future analysis and forecast uncertainty for both ocean and acoustic properties.
Martinez, Elodie; Maamaatuaiahutapu, Keitapu; Taillandier, Vincent
2009-09-01
Whatever its origin is, a floating particle at the sea surface is advected by ocean currents. Surface currents could be derived from in situ observations or combined with satellite data. For a better resolution in time and space, we use satellite-derived sea-surface height and wind stress fields with a 1/3 degrees grid from 1993 to 2001 to determine the surface circulation of the South Pacific Ocean. Surface currents are then used to compute the Lagrangian trajectories of floating debris. Results show an accumulation of the debris in the eastern-centre region of the South Pacific subtropical gyre ([120 degrees W; 80 degrees W]-[20 degrees S; 40 degrees S]), resulting from a three-step process: in the first two years, mostly forced by Ekman drift, the debris drift towards the tropical convergence zone ( approximately 30 degrees S). Then they are advected eastward mostly forced by geostrophic currents. They finally reach the eastern-centre region of the South Pacific subtropical gyre from where they could not escape.
A Paleoclimate Modeling Perspective on the Challenges to Quantifying Paleoelevation
NASA Astrophysics Data System (ADS)
Poulsen, C. J.; Aron, P.; Feng, R.; Fiorella, R.; Shen, H.; Skinner, C. B.
2016-12-01
Surface elevation is a fundamental characteristic of the land surface. Gradients in elevation associated with mountain ranges are a first order control on local and regional climate; weathering, erosion and nutrient transport; and the evolution and biodiversity of organisms. In addition, surface elevations are a proxy for the geodynamic processes that created them. Efforts to quantify paleoelevation have relied on reconstructions of mineralogical and fossil proxies that preserve environmental signals such as surface temperature, moist enthalpy, or surface water isotopic composition that have been observed to systematically vary with elevation. The challenge to estimating paleoelevation from proxies arises because the modern-day elevation dependence of these environmental parameters is not constant and has differed in the past in response to changes in both surface elevation and other climatic forcings, including greenhouse gas and orbital variations. For example, downward mixing of vapor that is isotopically enriched through troposphere warming under greenhouse forcing reduces the isotopic lapse rate. Without considering these factors, paleoelevation estimates for orogenic systems can be in error by hundreds of meters or more. Isotope-enabled climate models provide a tool for separating the climate response to these forcings into elevation and non-elevation components and for identifying the processes that alter the elevation dependence of environmental parameters. Our past and ongoing work has focused on the simulated climate response to surface uplift of the South American Andes, the North American Cordillera, and the Tibetan-Himalyan system during the Cenozoic, and its implication for interpreting proxy records from these regions. This work demonstrates that the climate response to uplift, and the implications for interpreting proxy records, varies tremendously by region. In this presentation, we synthesize climate responses to uplift across orogens, present new results examining the affect of orbital variations on elevation-dependent environmental parameters, and discuss the implications of our work for quantifying paleoelevations.
NASA Astrophysics Data System (ADS)
Csatho, B. M.; Schenk, A. F.; Babonis, G. S.; van den Broeke, M. R.; Kuipers Munneke, P.; van der Veen, C. J.; Khan, S. A.; Porter, D. F.
2016-12-01
This study presents a new, comprehensive reconstruction of Greenland Ice Sheet elevation changes, generated using the Surface Elevation And Change detection (SERAC) approach. 35-year long elevation-change time series (1980-2015) were obtained at more than 150,000 locations from observations acquired by NASA's airborne and spaceborne laser altimeters (ATM, LVIS, ICESat), PROMICE laser altimetry data (2007-2011) and a DEM covering the ice sheet margin derived from stereo aerial photographs (1970s-80s). After removing the effect of Glacial Isostatic Adjustment (GIA) and the elastic crustal response to changes in ice loading, the time series were partitioned into changes due to surface processes and ice dynamics and then converted into mass change histories. Using gridded products, we examined ice sheet elevation, and mass change patterns, and compared them with other estimates at different scales from individual outlet glaciers through large drainage basins, on to the entire ice sheet. Both the SERAC time series and the grids derived from these time series revealed significant spatial and temporal variations of dynamic mass loss and widespread intermittent thinning, indicating the complexity of ice sheet response to climate forcing. To investigate the regional and local controls of ice dynamics, we examined thickness change time series near outlet glacier grounding lines. Changes on most outlet glaciers were consistent with one or more episodes of dynamic thinning that propagates upstream from the glacier terminus. The spatial pattern of the onset, duration, and termination of these dynamic thinning events suggest a regional control, such as warming ocean and air temperatures. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. We use statistical methods, such as principal component analysis and multivariate regression to analyze the dynamic ice-thickness change time series derived by SERAC and to investigate the primary forcings and controls on outlet glacier changes.
NASA Astrophysics Data System (ADS)
Pathak, Vishwa Bandhu; Tripathi, V. K.
2007-02-01
Nonlinear electromagnetic eigenmodes of collisional and collisionless plasmas, when the temporal extent of the modes is longer than the ambipolar diffusion time, have been investigated. The nonlinearity in a collisionless plasma arises through ponderomotive force, whereas in collisional plasmas Ohmic nonlinearity prevails. The mode structure in both cases, representing a balance between the nonlinearity-induced self-convergence and diffraction-induced divergence, closely resembles Gaussian form. The spot size of the mode decreases with the increasing axial amplitude of the laser, attains a minimum, and then rises very gradually. The modes are susceptible to stimulated Brillouin backscattering. The growth rate of the Brillouin process initially increases with mode amplitude, attains a maximum, and then decreases. The reduction in the growth rate is caused by strong electron evacuation from the axial region by the ponderomotive force and thermal pressure gradient force created by nonuniform Ohmic heating.
The role of earth radiation budget studies in climate and general circulation research
NASA Technical Reports Server (NTRS)
Ramanathan, V.
1987-01-01
The use of earth radiation budget (ERB) data for climate and general circulation research is studied. ERB measurements obtained in the 1960's and 1970's have provided data on planetary brightness, planetary global energy balances, the greenhouse effect, solar insolation, meridional heat transport by oceans and atmospheres, regional forcing, climate feedback processes, and the computation of albedo values in low latitudes. The role of clouds in governing climate, in influencing the general circulation, and in determining the sensitivity of climate to external perturbations needs to be researched; a procedure for analyzing the ERB data, which will address these problems, is described. The approach involves estimating the clear-sky fluxes from the high spatial resolution scanner measurement and defining a cloud radiative forcing; the global average of the sum of the solar and long-wave cloud forcing yields the net radiative effect of clouds on the climate.
Advances in quantifying air-sea gas exchange and environmental forcing.
Wanninkhof, Rik; Asher, William E; Ho, David T; Sweeney, Colm; McGillis, Wade R
2009-01-01
The past decade has seen a substantial amount of research on air-sea gas exchange and its environmental controls. These studies have significantly advanced the understanding of processes that control gas transfer, led to higher quality field measurements, and improved estimates of the flux of climate-relevant gases between the ocean and atmosphere. This review discusses the fundamental principles of air-sea gas transfer and recent developments in gas transfer theory, parameterizations, and measurement techniques in the context of the exchange of carbon dioxide. However, much of this discussion is applicable to any sparingly soluble, non-reactive gas. We show how the use of global variables of environmental forcing that have recently become available and gas exchange relationships that incorporate the main forcing factors will lead to improved estimates of global and regional air-sea gas fluxes based on better fundamental physical, chemical, and biological foundations.
Frequency dependence of the acoustic radiation force acting on absorbing cylindrical shells.
Mitri, Farid G
2005-02-01
The frequency dependence of the radiation force function Y(p) for absorbing cylindrical shells suspended in an inviscid fluid in a plane incident sound field is analysed, in relation to the thickness and the content of their interior hollow region. The theory is modified to include the effect of hysteresis type absorption of compressional and shear waves in the material. The results of numerical calculations are presented for two viscoelastic (lucite and phenolic polymer) materials, with the hollow region filled with water or air indicating how damping and change of the interior fluid inside the shell's hollow region affect the acoustic radiation force. The acoustic radiation force acting on cylindrical lucite shells immersed in a high density fluid (in this case mercury) and filled with water in their hollow region, is also studied.
On some properties of force-free magnetic fields in infinite regions of space
NASA Technical Reports Server (NTRS)
Aly, J. J.
1984-01-01
Techniques for solving boundary value problems (BVP) for a force free magnetic field (FFF) in infinite space are presented. A priori inequalities are defined which must be satisfied by the force-free equations. It is shown that upper bounds may be calculated for the magnetic energy of the region provided the value of the magnetic normal component at the boundary of the region can be shown to decay sufficiently fast at infinity. The results are employed to prove a nonexistence theorem for the BVP for the FFF in the spatial region. The implications of the theory for modeling the origins of solar flares are discussed.
NASA Astrophysics Data System (ADS)
Chadwick, Robin; Douville, Hervé; Skinner, Christopher B.
2017-11-01
A set of atmosphere-only timeslice experiments are described, designed to examine the processes that cause regional climate change and inter-model uncertainty in coupled climate model responses to CO_2 forcing. The timeslice experiments are able to reproduce the pattern of regional climate change in the coupled models, and are applied here to two cases where inter-model uncertainty in future projections is large: the tropical hydrological cycle, and European winter circulation. In tropical forest regions, the plant physiological effect is the largest cause of hydrological cycle change in the two models that represent this process. This suggests that the CMIP5 ensemble mean may be underestimating the magnitude of water cycle change in these regions, due to the inclusion of models without the plant effect. SST pattern change is the dominant cause of precipitation and circulation change over the tropical oceans, and also appears to contribute to inter-model uncertainty in precipitation change over tropical land regions. Over Europe and the North Atlantic, uniform SST increases drive a poleward shift of the storm-track. However this does not consistently translate into an overall polewards storm-track shift, due to large circulation responses to SST pattern change, which varies across the models. Coupled model SST biases influence regional rainfall projections in regions such as the Maritime Continent, and so projections in these regions should be treated with caution.
Yang, Tsung-Chieh; Chen, Yi-Chen; Wang, Tong-Mei; Lin, Li-Deh
This study evaluated the effect of implant number and location on strain around the implant and force transferred to the palate in maxillary implant overdentures (IODs), including two locators attached bilaterally in the canine region (IOD 2), four locators attached bilaterally in the canine and premolar regions (IOD 4CP), four locators attached bilaterally in the canine and molar regions (IOD 4CM), and six locators attached bilaterally in the canine, premolar, and molar regions (IOD 6). As the implant number increased, strain around the implant regions increased, whereas force transferred to the palate decreased under loading. However, the differences were small between IOD 4CM and IOD 6, suggesting identical biomechanical effectiveness.
Piras, Monica; Mascaro, Giuseppe; Deidda, Roberto; Vivoni, Enrique R
2016-02-01
Mediterranean region is characterized by high precipitation variability often enhanced by orography, with strong seasonality and large inter-annual fluctuations, and by high heterogeneity of terrain and land surface properties. As a consequence, catchments in this area are often prone to the occurrence of hydrometeorological extremes, including storms, floods and flash-floods. A number of climate studies focused in the Mediterranean region predict that extreme events will occur with higher intensity and frequency, thus requiring further analyses to assess their effect at the land surface, particularly in small- and medium-sized watersheds. In this study, climate and hydrologic simulations produced within the Climate Induced Changes on the Hydrology of Mediterranean Basins (CLIMB) EU FP7 research project were used to analyze how precipitation extremes propagate into discharge extremes in the Rio Mannu basin (472.5km(2)), located in Sardinia, Italy. The basin hydrologic response to climate forcings in a reference (1971-2000) and a future (2041-2070) period was simulated through the combined use of a set of global and regional climate models, statistical downscaling techniques, and a process based distributed hydrologic model. We analyzed and compared the distribution of annual maxima extracted from hourly and daily precipitation and peak discharge time series, simulated by the hydrologic model under climate forcing. For this aim, yearly maxima were fit by the Generalized Extreme Value (GEV) distribution using a regional approach. Next, we discussed commonality and contrasting behaviors of precipitation and discharge maxima distributions to better understand how hydrological transformations impact propagation of extremes. Finally, we show how rainfall statistical downscaling algorithms produce more reliable forcings for hydrological models than coarse climate model outputs. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nijholt, Nicolai; Govers, Rob; Wortel, Rinus
2018-04-01
The geodynamics of the Mediterranean comprises a transitional setting in which slab rollback and plate convergence compete to shape the region. In the central Mediterranean, where the balance of driving and resisting forces changes continuously and rapidly since the Miocene, both kinematic and seismo-tectonic observations display a strong variation in deformation style and, therefore possibly, lithospheric forces. We aim to understand the current kinematics in southern Italy and Sicily in terms of lithospheric forces that cause them. The strong regional variation of geodetic velocities appears to prohibit such simple explanation. We use mechanical models to quantify the deformation resulting from large-scale Africa-Eurasia convergence, ESE retreat of the Calabrian subduction zone, pull by the Aegean slab, and regional variations in gravitational potential energy (topography). A key model element is the resistance to slip on major regional fault zones. We show that geodetic velocities, seismicity and sense of slip on regional faults can be understood to result from lithospheric forces. Our most important new finding is that regional variations in resistive tractions are required to fit the observations, with notably very low tractions on the Calabrian subduction contact, and a buildup towards a significant earthquake in the Calabrian fore-arc. We also find that the Calabrian net slab pull force is strongly reduced (compared to the value possible in view of the slab's dimensions) and that trench suction tractions are negligible. Such very small contributions to the present-day force balance in the south-central Mediterranean suggest that the Calabrian arc is now further transitioning towards a setting dominated by Africa-Eurasia plate convergence, whereas during the past 30 Myrs slab retreat continually was the dominant factor.
2006-08-01
reveal a strong set of traditions that are meant to maintain and repair relationships between families, tribes , and clans through extension of...JSOU Report 06-6 The Pashtun are not at peace unless they are at war. — Pashtun proverb Pashtuns, as a tribe , have been a dominant force in this region... Zulu time), the CEB worked through a monthly process that determined enemy vulnerabilities, developed targets, presented targets for decision, and
ERIC Educational Resources Information Center
Komatsu, Taro
2016-01-01
This article examines whether and to what extent educational reforms in a post-conflict society conform to "global (regional) standards," and explores the meaning of inconsistencies observed in the process of global reform transfer. Among the nations of the world, nowhere is the influence of external forces on educational reforms more…
Human influence on sub-regional surface air temperature change over India.
Dileepkumar, R; AchutaRao, Krishna; Arulalan, T
2018-06-12
Human activities have been implicated in the observed increase in Global Mean Surface Temperature. Over regional scales where climatic changes determine societal impacts and drive adaptation related decisions, detection and attribution (D&A) of climate change can be challenging due to the greater contribution of internal variability, greater uncertainty in regionally important forcings, greater errors in climate models, and larger observational uncertainty in many regions of the world. We examine the causes of annual and seasonal surface air temperature (TAS) changes over sub-regions (based on a demarcation of homogeneous temperature zones) of India using two observational datasets together with results from a multimodel archive of forced and unforced simulations. Our D&A analysis examines sensitivity of the results to a variety of optimal fingerprint methods and temporal-averaging choices. We can robustly attribute TAS changes over India between 1956-2005 to anthropogenic forcing mostly by greenhouse gases and partially offset by other anthropogenic forcings including aerosols and land use land cover change.
32 CFR 644.27 - Authority to issue Real Estate Directives.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Directorate of Engineering and Services, HQ, USAF. Major Air Commands and Air Force Regional Civil Engineers... Engineers will assign numbers to Real Estate Directives issued by Air Force Regional Civil Engineers. The...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atkinson, L.P.
This study of continental shelf processes affecting the oceanography of the South Atlantic Bight (SAB) is part of the interdisciplinary DOE-sponsored South Atlantic Bight Program. Our part of the program involves hydrographic and nutrient characteristics of the region. Current research efforts in the SAB Program are being focused on the inner shelf region where effects of bottom friction, local wind forcing, river and estuarine discharge, and tides, which are all small scale processes, are important. Our major accomplishment during the past year was the completion of the FLEX (Fall Experiment) field study. Since most of our data collection is computerized,more » preliminary hydrographic data analysis was done on board ship during the cruise and preliminary results are available. These results will be presented in this report. We are just beginning our standard data processing and data analysis procedures. We continued the processing and analysis of SPREX data collected during April 1985. Work has also continued on the older GABEX I and II data sets. 8 refs., 19 figs., 2 tabs.« less
Dynamic analysis of trapping and escaping in dual beam optical trap
NASA Astrophysics Data System (ADS)
Li, Wenqiang; Hu, Huizhu; Su, Heming; Li, Zhenggang; Shen, Yu
2016-10-01
In this paper, we simulate the dynamic movement of a dielectric sphere in optical trap. This dynamic analysis can be used to calibrate optical forces, increase trapping efficiency and measure viscous coefficient of surrounding medium. Since an accurate dynamic analysis is based on a detailed force calculation, we calculate all forces a sphere receives. We get the forces of dual-beam gradient radiation pressure on a micron-sized dielectric sphere in the ray optics regime and utilize Einstein-Ornstein-Uhlenbeck to deal with its Brownian motion forces. Hydrodynamic viscous force also exists when the sphere moves in liquid. Forces from buoyance and gravity are also taken into consideration. Then we simulate trajectory of a sphere when it is subject to all these forces in a dual optical trap. From our dynamic analysis, the sphere can be trapped at an equilibrium point in static water, although it permanently fluctuates around the equilibrium point due to thermal effects. We go a step further to analyze the effects of misalignment of two optical traps. Trapping and escaping phenomena of the sphere in flowing water are also simulated. In flowing water, the sphere is dragged away from the equilibrium point. This dragging distance increases with the decrease of optical power, which results in escaping of the sphere with optical power below a threshold. In both trapping and escaping process we calculate the forces and position of the sphere. Finally, we analyze a trapping region in dual optical tweezers.
The gravity model of labor migration behavior
NASA Astrophysics Data System (ADS)
Alexandr, Tarasyev; Alexandr, Tarasyev
2017-07-01
In this article, we present a dynamic inter-regional model, that is based on the gravity approach to migration and describes in continuous time the labor force dynamics between a number of conjugate regions. Our modification of the gravity migration model allows to explain the migration processes and to display the impact of migration on the regional economic development both for regions of origin and attraction. The application of our model allows to trace the dependency between salaries levels, total workforce, the number of vacancies and the number unemployed people in simulated regions. Due to the gravity component in our model the accuracy of prediction for migration flows is limited by the distance range between analyzed regions, so this model is tested on a number of conjugate neighbor regions. Future studies will be aimed at development of a multi-level dynamic model, which allows to construct a forecast for unemployment and vacancies trends on the first modeling level and to use these identified parameters on the second level for describing dynamic trajectories of migration flows.
Satellite-enhanced dynamical downscaling for the analysis of extreme events
NASA Astrophysics Data System (ADS)
Nunes, Ana M. B.
2016-09-01
The use of regional models in the downscaling of general circulation models provides a strategy to generate more detailed climate information. In that case, boundary-forcing techniques can be useful to maintain the large-scale features from the coarse-resolution global models in agreement with the inner modes of the higher-resolution regional models. Although those procedures might improve dynamics, downscaling via regional modeling still aims for better representation of physical processes. With the purpose of improving dynamics and physical processes in regional downscaling of global reanalysis, the Regional Spectral Model—originally developed at the National Centers for Environmental Prediction—employs a newly reformulated scale-selective bias correction, together with the 3-hourly assimilation of the satellite-based precipitation estimates constructed from the Climate Prediction Center morphing technique. The two-scheme technique for the dynamical downscaling of global reanalysis can be applied in analyses of environmental disasters and risk assessment, with hourly outputs, and resolution of about 25 km. Here the satellite-enhanced dynamical downscaling added value is demonstrated in simulations of the first reported hurricane in the western South Atlantic Ocean basin through comparisons with global reanalyses and satellite products available in ocean areas.
Light and scanning electron microscopy of the ecdysis of Haemonchus contortus infective larvae.
Gamble, H R; Lichtenfels, J R; Purcell, J P
1989-04-01
During the second ecdysis of ruminant trichostrongyles, a region of the second molt cuticle is digested by a 44-kDa Zn-metalloprotease. We have examined this digestion process by light and scanning electron microscopy (SEM). The substrate region of the cuticle appeared, during the ecdysis process, as an indented ring at the 20th cuticular annulus coincident with the anterior terminus of the lateral alae. Continued digestion of the cuticle resulted in holes in the ring region that expanded until they became continuous and separation occurred between the anterior and posterior portions of the cuticle. Mechanical movements of the L3 forced aside the cuticle cap that generally remained attached on one side to the posterior portion as the larva escaped from the sheath. The site of secretion of the 44-kDa ecdysing enzyme causing cuticle digestion was not clear from morphological observations; however, existing evidence strongly points to the release of enzyme from the esophageal (pharyngeal) glands through the mouth.
PDL Progenitor-Mediated PDL Recovery Contributes to Orthodontic Relapse.
Feng, L; Yang, R; Liu, D; Wang, X; Song, Y; Cao, H; He, D; Gan, Y; Kou, X; Zhou, Y
2016-08-01
Periodontal ligament (PDL) is subjected to mechanical force during physiologic activities. PDL stem /: progenitor cells are the main mesenchymal stem cells in PDL. However, how PDL progenitors participate in PDL homeostasis upon and after mechanical force is largely unknown. In this study, force-triggered orthodontic tooth movement and the following relapse were used as models to demonstrate the response of PDL progenitors and their role in PDL remodeling upon and after mechanical force. Upon orthodontic force, PDL collagen on the compression side significantly degraded, showing a broken and disorganized pattern. After force withdrawal, the degraded PDL collagen recovered during the early stage of relapse. Correspondingly, increased CD90(+) PDL progenitors with suppressed expression of type I collagen (Col-I) were observed upon orthodontic force, whereas these cells accumulated at the degradation regions and regained Col-I expression after force withdrawal during early relapse. Our results further showed that compressive force altered cell morphology and repressed collagen expression in cultured PDL progenitors, which both recovered after force withdrawal. Force withdrawal-induced recovery of collagen expression in cultured PDL progenitors could be regulated by transforming growth factor-β (TGF-β), a key molecule for tissue homeostasis and extracellular matrix remodeling. More interesting, inhibiting the regained Col-I expression in CD90(+) PDL progenitors by blocking TGF-β interrupted PDL collagen recovery and partially inhibited the early relapse. These data suggest that PDL progenitors can respond to mechanical force and may process intrinsic stability to recover to original status after force withdrawal. PDL progenitors with intrinsic stability are required for PDL recovery and consequently contribute to early orthodontic relapse, which can be regulated by TGF-β signaling. © International & American Associations for Dental Research 2016.
Mixing and Formation of Layers by Internal Wave Forcing
NASA Astrophysics Data System (ADS)
Dossmann, Yvan; Pollet, Florence; Odier, Philippe; Dauxois, Thierry
2017-12-01
The energy pathways from propagating internal waves to the scales of irreversible mixing in the ocean are not fully described. In the ocean interior, the triadic resonant instability is an intrinsic destabilization process that may enhance the energy cascade away from topographies. The present study focuses on the integrated impact of mixing processes induced by a propagative normal mode-1 over long-term experiments in an idealized setup. The internal wave dynamics and the evolution of the density profile are followed using the light attenuation technique. Diagnostics of the turbulent diffusivity KT and background potential energy BPE are provided. Mixing effects result in a partially mixed layer colocated with the region of maximum shear induced by the forcing normal mode. The maximum measured turbulent diffusivity is 250 times larger than the molecular value, showing that diapycnal mixing is largely enhanced by small-scale turbulent processes. Intermittency and reversible energy transfers are discussed to bridge the gap between the present diagnostic and the larger values measured in Dossmann et al. (). The mixing efficiency η is assessed by relating the BPE growth to the linearized KE input. One finds a value of Γ=12-19%, larger than the mixing efficiency in the case of breaking interfacial wave. After several hours of forcing, the development of staircases in the density profile is observed. This mechanism has been previously observed in experiments with weak homogeneous turbulence and explained by Phillips (1972) argument. The present experiments suggest that internal wave forcing could also induce the formation of density interfaces in the ocean.
Marshall, Wallace F.; Fung, Jennifer C.
2016-01-01
The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by un-attached chromosomes, but that randomly-directed active forces applied to the telomeres speeds up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions. PMID:27046097
NASA Astrophysics Data System (ADS)
Marshall, Wallace F.; Fung, Jennifer C.
2016-04-01
The recognition and pairing of homologous chromosomes during meiosis is a complex physical and molecular process involving a combination of polymer dynamics and molecular recognition events. Two highly conserved features of meiotic chromosome behavior are the attachment of telomeres to the nuclear envelope and the active random motion of telomeres driven by their interaction with cytoskeletal motor proteins. Both of these features have been proposed to facilitate the process of homolog pairing, but exactly what role these features play in meiosis remains poorly understood. Here we investigate the roles of active motion and nuclear envelope tethering using a Brownian dynamics simulation in which meiotic chromosomes are represented by a Rouse polymer model subjected to tethering and active forces at the telomeres. We find that tethering telomeres to the nuclear envelope slows down pairing relative to the rates achieved by unattached chromosomes, but that randomly directed active forces applied to the telomeres speed up pairing dramatically in a manner that depends on the statistical properties of the telomere force fluctuations. The increased rate of initial pairing cannot be explained by stretching out of the chromosome conformation but instead seems to correlate with anomalous diffusion of sub-telomeric regions.
Escape rate for nonequilibrium processes dominated by strong non-detailed balance force
NASA Astrophysics Data System (ADS)
Tang, Ying; Xu, Song; Ao, Ping
2018-02-01
Quantifying the escape rate from a meta-stable state is essential to understand a wide range of dynamical processes. Kramers' classical rate formula is the product of an exponential function of the potential barrier height and a pre-factor related to the friction coefficient. Although many applications of the rate formula focused on the exponential term, the prefactor can have a significant effect on the escape rate in certain parameter regions, such as the overdamped limit and the underdamped limit. There have been continuous interests to understand the effect of non-detailed balance on the escape rate; however, how the prefactor behaves under strong non-detailed balance force remains elusive. In this work, we find that the escape rate formula has a vanishing prefactor with decreasing friction strength under the strong non-detailed balance limit. We both obtain analytical solutions in specific examples and provide a derivation for more general cases. We further verify the result by simulations and propose a testable experimental system of a charged Brownian particle in electromagnetic field. Our study demonstrates that a special care is required to estimate the effect of prefactor on the escape rate when non-detailed balance force dominates.
A vorticity budget for the Gulf Stream
NASA Astrophysics Data System (ADS)
Le Bras, Isabela; Toole, John
2017-04-01
We develop a depth-averaged vorticity budget framework to diagnose the dynamical balance of the Gulf Stream, and apply this framework to observations and the ECCO state estimate (Wunsch and Heimbach 2013) above the thermocline in the subtropical North Atlantic. Using the hydrographic and ADCP data along the WOCE/CLIVAR section A22 and a variety of wind stress data products, we find that the advective vorticity flux out of the western region is on the same order as the wind stress forcing over the eastern portion of the gyre. This is consistent with a large-scale balance between a negative source of vorticity from wind stress forcing and a positive source of vorticity in the western region. Additionally, the form of the vorticity flux indicates that the Gulf Stream has a significant inertial component. In the ECCO state estimate, we diagnose a seasonal cycle in advective vorticity flux across a meridional section associated with seasonal fluctuations in Gulf Stream transport. This vorticity flux is forced by wind stress over the eastern subtropical North Atlantic and balanced by lateral friction with the western boundary. The lateral friction in ECCO is a necessary parameterization of smaller scale processes that occur in the real ocean, and quantifying these remains an open and interesting question. This simplified framework provides a means to interpret large scale ocean dynamics. In our application, it points to wind stress forcing over the subtropical North Altantic as an important regulator of the Gulf Stream and hence the climate system.
The Response of the Thermosphere and Ionosphere to Magnetospheric Forcing
NASA Astrophysics Data System (ADS)
Rees, D.; Fuller-Rowell, T. J.
1989-06-01
During the past six years, rapid advances in three observational techniques (ground-based radars, optical interferometers and satellite-borne instruments) have provided a means of observing a wide range of spectacular interactions between the coupled magnetosphere, ionosphere and thermosphere system. Perhaps the most fundamental gain has come from the combined data-sets from the NASA Dynamics Explorer (DE) Satellites. These have unambiguously described the global nature of thermospheric flows, and their response to magnetospheric forcing. The DE spacecraft have also described, at the same time, the magnetospheric particle precipitation and convective electric fields which force the polar thermosphere and ionosphere. The response of the thermosphere to magnetospheric forcing is far more complex than merely the rare excitation of 1 km s-1 wind speeds and strong heating; the heating causes large-scale convection and advection within the thermosphere. These large winds grossly change the compositional structure of the upper thermosphere at high and middle latitudes during major geomagnetic disturbances. Some of the major seasonal and geomagnetic storm-related anomalies of the ionosphere are directly attributable to the gross wind-induced changes of thermospheric composition; the mid-latitude ionospheric storm `negative phase', however, is yet to be fully understood. The combination of very strong polar wind velocities and rapid plasma convection forced by magnetospheric electric fields strongly and rapidly modify F-region plasma distributions generated by the combination of local solar and auroral ionization sources. Until recently, however, it has been difficult to interpret the observed complex spatial and time-dependent structures and motions of the thermosphere and ionosphere because of their strong and nonlinear coupling. It has recently been possible to complete a numerical and computational merging of the University College London (UCL) global thermospheric model and the Sheffield University ionospheric model. This has produced a self-consistent coupled thermospheric--ionospheric model, which has become a valuable diagnostic tool for examining thermospheric--ionospheric interactions in the polar regions. In particular, it is possible to examine the effects of induced winds, ion transport, and the seasonal and diurnal U.T. variations of solar heating and photoionization within the polar regions. Polar and high-latitude plasma density structure at F-region altitudes can be seen to be strongly controlled by U.T., and by season, even for constant solar and geomagnetic activity. In the winter, the F-region polar plasma density is generally dominated by the effects of transport of plasma from the dayside (sunlit cusp). In the summer polar region, however, an increase in the proportion of molecular to atomic species, created by the global seasonal circulation and augmented by the geomagnetic forcing, controls the plasma composition and generally depresses plasma densities at all U.Ts. A number of these complex effects can be seen in data obtained from ground-based radars, Fabry--Perot interferometers and in the combined DE data-sets. Several of these observations will be used, in combination with simulations using the UCL--Sheffield coupled model, to illustrate the major features of large-scale thermosphere--ionosphere interactions in response to geomagnetic forcing. The past decade has seen a major improvement in the quality and quantity of experimental data available to study the thermosphere and ionosphere and their response to magnetospheric forcing. Earlier, large measured changes of individual parameters were difficult to place in a global or large-scale perspective. However, a clear picture of the distinction between the solar and geomagnetic forcing processes has emerged from the combined data-sets available from spacecraft such as the Dynamics Explorers, and from ground-based radar and optical observations of the polar thermosphere. A first experimental view of the strong coupling between the thermosphere and ionosphere has also emerged from these combined new data-sets. In parallel with the development of observing techniques, numerical models of the thermosphere and ionosphere have matured. We are at a state where the combined thermosphere and ionosphere can be modelled self-consistently. We can now realistically simulate the response of the combined system to the magnetospheric forcing, and also investigate the many and varied feedback processes between the two components. The models can be used to understand and interpret the diversity of experimental observations, and provide the framework for evaluating phenomena which are as yet not well understood. The dominant thermosphere--ionosphere interactions which appear from the modelling studies and which have counterparts in the experimental database can be summarized. In the winter polar region, ionization enhancements are observed which are due to auroral particle precipitation in both the E-region and in the F-region. The former are relatively easy to understand, since decay rates are generally rapid, and large-scale transport is unimportant. The sole caveat will be related to sporadic-E layers of long-lived metallic ions. In the polar F-region, neutral winds, neutral composition changes, convection changes and solar photoionization all cause important modifications of plasma distributions. In the winter, plasma convection and winds cause important effects in the horizontal and vertical transport of plasma, respectively. As such, plumes of high density (or low-density) plasma are transported large distances from their origin, and local plasma densities are rarely explicable by local sources and sinks. The exact distributions will depend very much on detailed plasma convection patterns. However, the winter subauroral trough and localized polar troughs will be created when the combination of convection and corotation cause plasma stagnation in regions out of sunlight and photoionization. There is a strong U.T. modulation of plasma density within the winter polar cap and dusk auroral oval (generally) as the polar cusp enters sunlight for a few hours around 18h U.T., and there is a direct source of high-density plasma (photoionization plus particle ionization) convected through the cusp. At other U.Ts, the source is generally cut off, and polar plasma densities generally decay. Summer F-region high-latitude and polar plasma densities are generally a factor of about 3-5 lower than in winter. This is due to the seasonal F-region neutral composition variation, generated by summer to winter mean circulation, by which increased plasma recombination rates (due to much higher molecular nitrogen densities) more than compensate for the increased solar photoionization source in the summer polar cap. In turn, this mean circulation is generated by the combination of asymmetric solar insolation and greater geomagnetic heating in the summer compared with winter polar regions (Rees et al. 1985, 1987). Particularly at times of high geomagnetic activity, the summer `F-region' neutral composition is close to that of the standard atmosphere E-region. The major features of the summer polar F-region are thus quite different to those of the corresponding winter region. Plasma troughs develop in regions of very strong Joule heating, i.e. where ion convection is strongest. As such, the location and intensity of the troughs is quite dependent on the plasma convection patterns. Summer-time troughs tend to occur in the same regions where rapid transport causes high-density plasma plumes in the winter polar region. The classical subauroral trough is distinctly a feature of the winter polar F-region. Even at equinox, the full subauroral trough does not develop, while in winter it fully encircles the geomagnetic polar cap for much of the U.T. day (except around 18h U.T.). In the summer F-region, stagnation troughs do not develop within the polar cap, irrespective of convection pattern. Any polar cap troughs are a result of changes in neutral composition. Subauroral troughs can only develop around the summer polar region when the auroral oval is expanded so that the midnight part of the auroral oval extends into the nightside. Conditions for this situation are likely to occur preferentially in the southern polar region, due to the greater offset of the geomagnetic from geographic pole. The E-region response to geomagnetic forcing is also strong, although generally rather less marked than in the F-region, in terms of the neutral thermal and compositional response. The major feed-back between the thermosphere and ionosphere occurs due to the effects of high induced winds, since the neutral chemical changes do not significantly affect the ionospheric chemistry. Apart from localized effects such as sporadic-E layers, high-speed auroral oval winds do not cause significant vertical transport of E-region molecular species, due to rapid recombination. The most significant vertical transport effects will be in non-sunlit regions, where ion production is lowest. The dynamo effect of induced E-region winds of 200-400 m s-1 is also quite significant. Such winds reduce horizontal currents, with an implication that the FAC or Pedersen currents may also be decreased, with a possible feedback to the convection electric field. There is still relatively little data available for detailed case-study comparisons. Such studies have been quite successful in improving our understanding of the F-region behaviour, and the CEDAR initiative and programmes such as LTCS promise to extend the range of multiparameter data-sets to the E-region as well. Simulating atmospheric density and compositional structure with numerical models is one of the most testing demands. Density at a given altitude is very sensitive to the total thermospheric energy budget, and is thus liable to be the first casualty of cumulative small errors in the many external terms of the energy input. There are also some indeterminate factors in the radiative energy budget of the lower thermosphere and upper mesosphere. In practice, we have found that the present version of the coupled model computes density and composition relatively accurately, compared with mean mass spectrometer and incoherent scatter (MSIS) predictions for comparable solar and geomagnetic activity levels and for different seasonal conditions. Typical differences (MSIS to model) of around 20% occur at F-region altitudes in the data-sets shown in the model simulations described within this paper. This is roughly comparable with the standard deviation of MSIS in comparison with satellite data-sets for specific locations and times. The numerical models have greater spatial and temporal resolution than MSIS models and relate to real physical processes. Undoubtedly, however, the real thermosphere contains a whole spectrum of high-frequency variations which are beyond present parametrization techniques, our current description of geomagnetic inputs and present computer limitations. From the initial coupled-model simulations it is possible to examine key features of the coupling between the magnetosphere and the thermosphere--ionosphere. Field-aligned currents reflect the divergence or convergence of the ionospheric Pedersen current. The Pedersen current depends on changes of the ionospheric conductivity and also the dynamo effects of induced winds. Both FAC and E-region winds display considerable seasonal, U.T. and geomagnetic activity variations. Except in the unlikely event that the magnetosphere acts as a `zero-resistance' source of charge, and momentum, etc., we would anticipate, on the basis of these thermosphere--ionosphere model simulations, to see corresponding modulation of magnetosphere--ionosphere forcing as a function of U.T., season and geomagnetic activity. However, a detailed theoretical evaluation of such processes will have to await the development of a new range of coupled models embracing the near-Earth environment. As new experimental data from coordinated ground-based campaigns becomes available over the next several years, and it is to be hoped from new space missions within the next decade, we may hope that the validity of many of the simplified assumptions we currently have to make within present models can be tested. Undoubtedly, many present concepts will be found wanting. The impact of global images of particle precipitation and energy deposition, coupled with perhaps the development of techniques of imaging polar plasma convection patterns will mean that future models are capable of looking at the effects of short period and smaller-scale variations in forcing. The present patterns of magnetospheric forcing are too simplified and averaged in time and space. While the thermosphere averages out rapid and short-scale momentum inputs, the energy input integrates all variations, including the effect of rapid forcing variations. The thermospheric composition responds to this `additional' energy source in a way which presently cannot be simulated accurately, and we already know how sensitive the polar plasma environment appears to be to thermospheric composition changes forced by the combined solar and magnetospheric forcing. We are indebted to Dr Fred Rich for provision of the Heppner & Maynard polar electric fields in the form of harmonic coefficients. We also thank John Harmer and Hilary Hughes for their assistance in preparing, running and processing the computer simulations using the UCL--Sheffield coupled ionospheric--thermospheric model. Computer time was made available by the University of London Computer Centre (CRAY 1-S) and on the CRAY-XMP-48 at the Rutherford Appleton Laboratory (Science and Engineering Research Council). The research was supported by grants from the U.K. SERC, and from the European Office of Aerospace Research and Development (AFOSR-86-341). The IGRF magnetic field model was provided, in computer-readable form, by the British Geological Survey, Edinburgh.
Experimental investigation on the weld pool formation process in plasma keyhole arc welding
NASA Astrophysics Data System (ADS)
Van Anh, Nguyen; Tashiro, Shinichi; Van Hanh, Bui; Tanaka, Manabu
2018-01-01
This paper seeks to clarify the weld pool formation process in plasma keyhole arc welding (PKAW). We adopted, for the first time, the measurement of the 3D convection inside the weld pool in PKAW by stereo synchronous imaging of tungsten tracer particles using two sets of x-ray transmission systems. The 2D convection on the weld pool surface was also measured using zirconia tracer particles. Through these measurements, the convection in a wide range of weld pools from the vicinity of the keyhole to the rear region was successfully visualized. In order to discuss the heat transport process in a weld pool, the 2D temperature distribution on the weld pool surface was also measured by two-color pyrometry. The results of the comprehensive experimental measurement indicate that the shear force due to plasma flow is found to be the dominant driving force in the weld pool formation process in PKAW. Thus, heat transport in a weld pool is considered to be governed by two large convective patterns near the keyhole: (1) eddy pairs on the surface (perpendicular to the torch axis), and (2) eddy pairs on the bulk of the weld pool (on the plane of the torch). They are formed with an equal velocity of approximately 0.35 m s-1 and are mainly driven by shear force. Furthermore, the flow velocity of the weld pool convection becomes considerably higher than that of other welding processes, such as TIG welding and GMA welding, due to larger plasma flow velocity.
Finding simplicity in complexity: modelling post-fire hydrogeomorphic processes and risks
NASA Astrophysics Data System (ADS)
Sheridan, Gary; Langhans, Christoph; Lane, Patrick; Nyman, Petter
2017-04-01
Post-fire runoff and erosion can shape landscapes, destroy infrastructure, and result in the loss of human life. However even within seemingly similar geographic regions post-fire hydro-geomorphic responses vary from almost no response through to catastrophic flash floods and debris flows. Why is there so much variability, and how can we predict areas at risk? This presentation describes the research journey taken by the post-fire research group at The University of Melbourne to answer this question for the se Australian uplands. Key steps along the way have included identifying the dominant erosion processes (and their forcings), and the key system properties controlling the rates of these dominant processes. The high degree of complexity in the interactions between the forcings, the system properties, and the erosion processes, necessitated the development of a simplified conceptual representation of post-fire hydrogeomorphic system that was conducive to modelling and simulation. Spatially mappable metrics (and proxies) for key system forcings and properties were then required to parameterize and drive the model. Each step in this journey has depended on new research, as well as ongoing feedback from land and water management agencies tasked with implementing these risk models and interpreting the results. These models are now imbedded within agencies and used for strategic risk assessments, for tactical response during fires, and for post-fire remediation and risk planning. Reflecting on the successes and failures along the way provides for some more general insights into the process of developing research-based models for operational use by land and water management agencies.
Vacuum pull down method for an enhanced bonding process
Davidson, James C.; Balch, Joseph W.
1999-01-01
A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle. Also, it is beneficial to provide a vacuum groove or channel near the perimeter of the plates or substrates to ensure bonding of the perimeter of the plates or substrates and reduce the unbonded regions inside the interior region of the plates or substrates.
NASA Astrophysics Data System (ADS)
M. C. Sagis, Leonard
2001-03-01
In this paper, we develop a theory for the calculation of the surface diffusion coefficient for an arbitrarily curved fluid-fluid interface. The theory is valid for systems in hydrodynamic equilibrium, with zero mass-averaged velocities in the bulk and interfacial regions. We restrict our attention to systems with isotropic bulk phases, and an interfacial region that is isotropic in the plane parallel to the dividing surface. The dividing surface is assumed to be a simple interface, without memory effects or yield stresses. We derive an expression for the surface diffusion coefficient in terms of two parameters of the interfacial region: the coefficient for plane-parallel diffusion D (AB)aa(ξ) , and the driving force d(B)I||(ξ) . This driving force is the parallel component of the driving force for diffusion in the interfacial region. We derive an expression for this driving force using the entropy balance.
NASA Astrophysics Data System (ADS)
Liénart, Camilla; Savoye, Nicolas; David, Valérie; Ramond, Pierre; Rodriguez Tress, Paco; Hanquiez, Vincent; Marieu, Vincent; Aubert, Fabien; Aubin, Sébastien; Bichon, Sabrina; Boinet, Christophe; Bourasseau, Line; Bozec, Yann; Bréret, Martine; Breton, Elsa; Caparros, Jocelyne; Cariou, Thierry; Claquin, Pascal; Conan, Pascal; Corre, Anne-Marie; Costes, Laurence; Crouvoisier, Muriel; Del Amo, Yolanda; Derriennic, Hervé; Dindinaud, François; Duran, Robert; Durozier, Maïa; Devesa, Jérémy; Ferreira, Sophie; Feunteun, Eric; Garcia, Nicole; Geslin, Sandrine; Grossteffan, Emilie; Gueux, Aurore; Guillaudeau, Julien; Guillou, Gaël; Jolly, Orianne; Lachaussée, Nicolas; Lafont, Michel; Lagadec, Véronique; Lamoureux, Jézabel; Lauga, Béatrice; Lebreton, Benoît; Lecuyer, Eric; Lehodey, Jean-Paul; Leroux, Cédric; L'Helguen, Stéphane; Macé, Eric; Maria, Eric; Mousseau, Laure; Nowaczyk, Antoine; Pineau, Philippe; Petit, Franck; Pujo-Pay, Mireille; Raimbault, Patrick; Rimmelin-Maury, Peggy; Rouaud, Vanessa; Sauriau, Pierre-Guy; Sultan, Emmanuelle; Susperregui, Nicolas
2018-03-01
In costal systems, particulate organic matter (POM) results from a multiplicity of sources having their respective dynamics in terms of production, decomposition, transport and burial. The POM pool experiences thus considerable spatial and temporal variability. In order to better understand this variability, the present study employs statistical multivariate analyses to investigate links between POM composition and environmental forcings for a panel of twelve coastal systems distributed along the three maritime regions of France and monitored weekly to monthly for 1 to 8 years. At multi-system scale, two main gradients of POC composition have been identified: a 'Continent-Ocean' gradient associated with hydrodynamics, sedimentary dynamics and depth of the water column, and a gradient of trophic status related to nutrient availability. At local scale, seasonality of POC composition appears to be station-specific but still related to part of the above-mentioned forcings. A typology of systems was established by coupling spatial and temporal variability of POC composition. Four groups were highlighted: (1) the estuarine stations where POC composition is dominated by terrestrial POM and driven by hydrodynamics and sedimentary processes, (2) the oligotrophic systems, characterized by the contribution of diazotrophs due to low nutrient availability, and the marine meso/eutroph systems whose POC composition is (3) either deeply dominated by phytoplankton or (4) dominated by phytoplankton but where the contribution of continental and benthic POC is not negligible and is driven by hydrodynamics, sedimentary processes and the height of the water column. Finally, the present study provides several insights into the different forcings to POM composition and dynamics in temperate coastal systems at local and multi-system scales. This work also presents a methodological approach that establishes statistical links between forcings and POM composition, helping to gain more objectively insight of forcings.
NASA Astrophysics Data System (ADS)
King, J.; Harrington, M. D.; Cole, J. E.; Drysdale, R.; Woodhead, J. D.; Fasullo, J.; Stevenson, S.; Otto-Bliesner, B. L.; Overpeck, J. T.; Edwards, R. L.; Henderson, G. M.
2017-12-01
Understanding long-term hydroclimate is particularly important in semiarid regions where prolonged droughts may be exacerbated by a warming climate. In many regions, speleothem trace elements correlate with regional wet and dry climate signals. In the drought-prone Southwestern US (SW), wet and dry episodes are strongly influenced by seasonal changes in atmospheric circulation and teleconnections to remote forcing. Here, we address the need for seasonal moisture reconstructions using paleoclimate and climate model approaches. First, we present a high-resolution (sub-annual) record of speleothem trace elements spanning the last 3000 years from Fort Huachuca Cave, AZ, to investigate the variability of regional seasonal precipitation and sustained regional droughts. In a principal component (PC) analysis of the speleothem, trace elements associated with wet (Sr, Ba) and dry (P, Y, Zn) episodes load strongly and inversely, and the associated PC signals correlate with local gridded precipitation data over the last 50 years (R > 0.6, p < 0.1). These results suggest that the elemental signals provide a seasonal moisture record for Southern Arizona. We use the record to examine the frequency and timing of extreme droughts in the region and compare the speleothem record's frequency domain characteristics with other regional moisture records and with climate model output. The speleothem record demonstrates strong low-frequency variability with pronounced multi-decadal dry periods, a feature notably lacking in drought metrics from simulations of the last millennium. We also examine the seasonal SW precipitation response to modes of climate variability and external forcings, including volcanic eruptions, in both the speleothem record and the Community Earth System Model's Last Millennium Ensemble (CESM-LME). Notably, ENSO and volcanic forcing have a discernable effect on SW seasonal precipitation in model simulations, particularly when the two processes combine to shift the position of the ITCZ. This integrated analysis of paleodata with climate model results will help us identify and explain discrepancies between these information sources and improve stakeholders' ability to anticipate and prepare for future drought.
Flows, Fields, and Forces in the Mars-Solar Wind Interaction
NASA Astrophysics Data System (ADS)
Halekas, J. S.; Brain, D. A.; Luhmann, J. G.; DiBraccio, G. A.; Ruhunusiri, S.; Harada, Y.; Fowler, C. M.; Mitchell, D. L.; Connerney, J. E. P.; Espley, J. R.; Mazelle, C.; Jakosky, B. M.
2017-11-01
We utilize suprathermal ion and magnetic field measurements from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, organized by the upstream magnetic field, to investigate the morphology and variability of flows, fields, and forces in the Mars-solar wind interaction. We employ a combination of case studies and statistical investigations to characterize the interaction in both quasi-parallel and quasi-perpendicular regions and under high and low solar wind Mach number conditions. For the first time, we include a detailed investigation of suprathermal ion temperature and anisotropy. We find that the observed magnetic fields and suprathermal ion moments in the magnetosheath, bow shock, and upstream regions have observable asymmetries controlled by the interplanetary magnetic field, with particularly large asymmetries found in the ion parallel temperature and anisotropy. The greatest temperature anisotropies occur in quasi-perpendicular regions of the magnetosheath and under low Mach number conditions. These results have implications for the growth and evolution of wave-particle instabilities and their role in energy transport and dissipation. We utilize the measured parameters to estimate the average ion pressure gradient, J × B, and v × B macroscopic force terms. The pressure gradient force maintains nearly cylindrical symmetry, while the J × B force has larger asymmetries and varies in magnitude in comparison to the pressure gradient force. The v × B force felt by newly produced planetary ions exceeds the other forces in magnitude in the magnetosheath and upstream regions for all solar wind conditions.
Force-related neuronal activity in two regions of the primate ventral premotor cortex.
Hepp-Reymond, M C; Hüsler, E J; Maier, M A; Ql, H X
1994-05-01
Neuronal activity was recorded in the ventral premotor cortex of one monkey (Macaca fascicularis) trained to exert finely graded forces with thumb and index finger on a force sensor in a visuomotor step-tracking paradigm. Trials with two or three consecutive ramp-and-hold force steps were presented randomly. Most neurons displayed similar discharge patterns in the two- and three-step trials and were assigned to one of the following classes: phasic, phasic-tonic, tonic, decreasing, and mixed. For more than 50% of the neurons with tonic activity, positive or negative correlations between firing rate and force were statistically significant. The indices of force sensitivity were on average higher for the two-step than for the three-step trials, indicating that the correlations yielded linearity over only a limited force range. The force-related cells were located in two regions of the ventral premotor cortex. One group was ying rostrally within the inferior limb of the arcuate sulcus, from which microstimulation elicited movements of fingers and hand. In the other more caudal region, adjacent to the finger region of primary motor cortex, microstimulation was rarely effective, but all neurons had clear peripheral receptive fields on finger and hand. The data indicate that two populations of neurons, located in the ventral premotor cortex, are related to movement execution. Effective microstimulation also suggests that one of the populations has fairly direct access to the spinal motor apparatus.
NASA Technical Reports Server (NTRS)
Zanchettin, Davide; Khodri, Myriam; Timmreck, Claudia; Toohey, Matthew; Schmidt, Anja; Gerber, Edwin P.; Hegerl, Gabriele; Robock, Alan; Pausata, Francesco; Ball, William T.;
2016-01-01
The enhancement of the stratospheric aerosol layer by volcanic eruptions induces a complex set of responses causing global and regional climate effects on a broad range of timescales. Uncertainties exist regarding the climatic response to strong volcanic forcing identified in coupled climate simulations that contributed to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). In order to better understand the sources of these model diversities, the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) has defined a coordinated set of idealized volcanic perturbation experiments to be carried out in alignment with the CMIP6 protocol. VolMIP provides a common stratospheric aerosol data set for each experiment to minimize differences in the applied volcanic forcing. It defines a set of initial conditions to assess how internal climate variability contributes to determining the response. VolMIP will assess to what extent volcanically forced responses of the coupled ocean-atmosphere system are robustly simulated by state-of-the-art coupled climate models and identify the causes that limit robust simulated behavior, especially differences in the treatment of physical processes. This paper illustrates the design of the idealized volcanic perturbation experiments in the VolMIP protocol and describes the common aerosol forcing input data sets to be used.
NASA Astrophysics Data System (ADS)
Raleigh, M. S.; Lundquist, J. D.; Clark, M. P.
2015-07-01
Physically based models provide insights into key hydrologic processes but are associated with uncertainties due to deficiencies in forcing data, model parameters, and model structure. Forcing uncertainty is enhanced in snow-affected catchments, where weather stations are scarce and prone to measurement errors, and meteorological variables exhibit high variability. Hence, there is limited understanding of how forcing error characteristics affect simulations of cold region hydrology and which error characteristics are most important. Here we employ global sensitivity analysis to explore how (1) different error types (i.e., bias, random errors), (2) different error probability distributions, and (3) different error magnitudes influence physically based simulations of four snow variables (snow water equivalent, ablation rates, snow disappearance, and sublimation). We use the Sobol' global sensitivity analysis, which is typically used for model parameters but adapted here for testing model sensitivity to coexisting errors in all forcings. We quantify the Utah Energy Balance model's sensitivity to forcing errors with 1 840 000 Monte Carlo simulations across four sites and five different scenarios. Model outputs were (1) consistently more sensitive to forcing biases than random errors, (2) generally less sensitive to forcing error distributions, and (3) critically sensitive to different forcings depending on the relative magnitude of errors. For typical error magnitudes found in areas with drifting snow, precipitation bias was the most important factor for snow water equivalent, ablation rates, and snow disappearance timing, but other forcings had a more dominant impact when precipitation uncertainty was due solely to gauge undercatch. Additionally, the relative importance of forcing errors depended on the model output of interest. Sensitivity analysis can reveal which forcing error characteristics matter most for hydrologic modeling.
Calibration of Ocean Forcing with satellite Flux Estimates (COFFEE)
NASA Astrophysics Data System (ADS)
Barron, Charlie; Jan, Dastugue; Jackie, May; Rowley, Clark; Smith, Scott; Spence, Peter; Gremes-Cordero, Silvia
2016-04-01
Predicting the evolution of ocean temperature in regional ocean models depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. Within the COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates, real-time satellite observations are used to estimate shortwave, longwave, sensible, and latent air-sea heat flux corrections to a background estimate from the prior day's regional or global model forecast. These satellite-corrected fluxes are used to prepare a corrected ocean hindcast and to estimate flux error covariances to project the heat flux corrections for a 3-5 day forecast. In this way, satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. While traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle, COFFEE endeavors to appropriately partition and reduce among various surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using operational global or regional atmospheric forcing. Experiment cases combine different levels of flux calibration with assimilation alternatives. The cases use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is equally applicable to other regions. These approaches within a 3DVAR application are anticipated to be useful for global and larger regional domains where a full 4DVAR methodology may be cost-prohibitive.
Preliminary results and assessment of the MAR outputs over High Mountain Asia
NASA Astrophysics Data System (ADS)
Linares, M.; Tedesco, M.; Margulis, S. A.; Cortés, G.; Fettweis, X.
2017-12-01
Lack of ground measurements has made the use of regional climate models (RCMs) over the High Mountain Asia (HMA) pivotal for understanding the impact of climate change on the hydrological cycle and on the cryosphere. Here, we show an analysis of the assessment of the outputs of Modèle Atmosphérique Régionale (MAR) model RCM over the HMA region as part of the NASA-funded project `Understanding and forecasting changes in High Mountain Asia snow hydrology via a novel Bayesian reanalysis and modeling approach'. The first step was to evaluate the impact of the different forcings on MAR outputs. To this aim, we performed simulations for the 2007 - 2008 and 2014 - 2015 years forcing MAR at its boundaries either with reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) or from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The comparison between the outputs obtained with the two forcings indicates that the impact on MAR simulations depends on specific parameters. For example, in case of surface pressure the maximum percentage error is 0.09 % while the 2-m air temperature has a maximum percentage error of 103.7%. Next, we compared the MAR outputs with reanalysis data fields over the region of interest. In particular, we evaluated the following parameters: surface pressure, snow depth, total cloud cover, two meter temperature, horizontal wind speed, vertical wind speed, wind speed, surface new solar radiation, skin temperature, surface sensible heat flux, and surface latent heat flux. Lastly, we report results concerning the assessment of MAR surface albedo and surface temperature over the region through MODIS remote sensing products. Next steps are to determine whether RCMs and reanalysis datasets are effective at capturing snow and snowmelt runoff processes in the HMA region through a comparison with in situ datasets. This will help determine what refinements are necessary to improve RCM outputs.
Manufacture of composite test specimens for delamination studies
NASA Technical Reports Server (NTRS)
Sumich, M.
1989-01-01
This paper describes the process for manufacturing high-quality test specimens for uses in evaluations of interlaminar tensile strength of laminated composites. The chosen specimen configuration is a curved beam which experiences interlaminar tension in the region of greatest curvature when the beam is subjected to 'opening' forces. The manufacturing process uses a lock-mold tooling approach, the principle of which relies upon the difference in coefficients of thermal expansion between the internal rubber mandrel and the surrounding steel female mold. With this method, compaction pressures above those provided by a typical autoclave can be achieved.
Self-organization of local magnetoplasma structures in the upper layers of the solar convection zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumak, O. V., E-mail: chuo@yandex.ru
Self-organization and evolution of magnetoplasma structures in the upper layers of the solar convection zone are discussed as a process of diffuse aggregation of magnetic flux tubes. Equations describing the tube motion under the action of magnetic interaction forces, hydrodynamic forces, and random forces are written explicitly. The process of aggregation of magnetic flux tubes into magnetic flux clusters of different shapes and dimensions is simulated numerically. The obtained structures are compared with the observed morphological types of sunspot groups. The quantitative comparison with the observational data was performed by comparing the fractal dimensions of the photospheric magnetic structures observedmore » in solar active regions with those of structures obtained in the numerical experiment. The model has the following free parameters: the numbers of magnetic flux tubes with opposite polarities on the considered area element (Nn and Ns), the average radius of the cross section of the magnetic flux tube (a), its effective length (l), the twist factor of the tube field (k), and the absolute value of the average velocity of chaotic tube displacements (d). Variations in these parameters in physically reasonable limits leads to the formation of structures (tube clusters of different morphological types) having different fractal dimensions. Using the NOAA 10488 active region, which appeared and developed into a complicated configuration near the central meridian, as an example, it is shown that good quantitative agreement between the fractal dimensions is achieved at the following parameters of the model: Nn = Ns = 250 ± 50; a = 150 ± 50 km; l ∼ 5000 km, and d = 80 ± 10 m/s. These results do not contradict the observational data and theoretical estimates obtained in the framework of the Parker “spaghetti” model and provide new information on the physical processes resulting in the origin and evolution of local magnetic plasma structures in the near-photospheric layers of the solar convection zone.« less
NASA Astrophysics Data System (ADS)
Stam, Samantha; Alberts, Jonathan; Gardel, Margaret; Munro, Edwin
2013-03-01
The interactions of bipolar myosin II filaments with actin arrays are a predominate means of generating forces in numerous physiological processes including muscle contraction and cell migration. However, how the spatiotemporal regulation of these forces depends on motor mechanochemistry, bipolar filament size, and local actin mechanics is unknown. Here, we simulate myosin II motors with an agent-based model in which the motors have been benchmarked against experimental measurements. Force generation occurs in two distinct regimes characterized either by stable tension maintenance or by stochastic buildup and release; transitions between these regimes occur by changes to duty ratio and myosin filament size. The time required for building force to stall scales inversely with the stiffness of a network and the actin gliding speed of a motor. Finally, myosin motors are predicted to contract a network toward stiffer regions, which is consistent with experimental observations. Our representation of myosin motors can be used to understand how their mechanical and biochemical properties influence their observed behavior in a variety of in vitro and in vivo contexts.
Farhadi, Ahmad; Jeffs, Andrew G; Farahmand, Hamid; Rejiniemon, Thankappan Sarasam; Smith, Greg; Lavery, Shane D
2017-08-18
There is increasing recognition of the concordance between marine biogeographic and phylogeographic boundaries. However, it is still unclear how population-level divergence translates into species-level divergence, and what are the principal factors that first initiate that divergence, and then maintain reproductive isolation. This study examines the likely forces driving population and lineage divergences in the broadly-distributed Indo-Pacific spiny lobster Panulirus homarus, which has peripheral divergent lineages in the west and east. The study focuses particularly on the West Indian Ocean, which is emerging as a region of unexpected diversity. Mitochondrial control region (mtCR) and COI sequences as well as genotypes of 9 microsatellite loci were examined in 410 individuals from 17 locations grouped into 7 regions from South Africa in the west, and eastward across to Taiwan and the Marquesas Islands. Phylogenetic and population-level analyses were used to test the significance and timing of divergences and describe the genetic relationships among populations. Analyses of the mtCR revealed high levels of divergence among the seven regions (Ф ST = 0.594, P < 0.001). Microsatellite analyses also revealed significant divergence among regions, but at a much lower level (F ST = 0.066, P < 0.001). The results reveal different patterns of mtCR v. nDNA divergence between the two distinct peripheral lineages: a subspecies in South Africa and Madagascar, and a phylogeographically diverged population in the Marquesas. The results also expose a number of other more fine-scale population divergences, particularly in the Indian Ocean. The divergence of peripheral lineages in the west and east of the species' range appear to have been initiated and maintained by very different processes. The pattern of mitochondrial and nuclear divergence of the western lineage, implicates processes of parapatric isolation, secondary contact and introgression, and suggests possible maintenance through adaptation and behavioural reproductive isolation. In contrast, the eastern lineage appears to have diverged through a rare colonisation event, maintained through long-term isolation, and matches expectations of the core-periphery hypothesis. The process of active peripheral speciation may be a common force in the Indo-Pacific that helps drive some of the regions' recognized biogeographic boundaries.
Water's role in the force-induced unfolding of ubiquitin.
Li, Jingyuan; Fernandez, Julio M; Berne, B J
2010-11-09
In atomic force spectroscopic studies of the elastomeric protein ubiquitin, the β-strands 1-5 serve as the force clamp. Simulations show how the rupture force in the force-induced unfolding depends on the kinetics of water molecule insertion into positions where they can eventually form hydrogen bonding bridges with the backbone hydrogen bonds in the force-clamp region. The intrusion of water into this region is slowed down by the hydrophobic shielding effect of carbonaceous groups on the surface residues of β-strands 1-5, which thereby regulates water insertion prior to hydrogen bond breakage. The experiments show that the unfolding of the mechanically stressed protein is nonexponential due to static disorder. Our simulations show that different numbers and/or locations of bridging water molecules give rise to a long-lived distribution of transition states and static disorder. We find that slowing down the translational (not rotational) motions of the water molecules by increasing the mass of their oxygen atoms, which leaves the force field and thereby the equilibrium structure of the solvent unchanged, increases the average rupture force; however, the early stages of the force versus time behavior are very similar for our "normal" and fictitious "heavy" water models. Finally, we construct six mutant systems to regulate the hydrophobic shielding effect of the surface residues in the force-clamp region. The mutations in the two termini of β-sheets 1-5 are found to determine a preference for different unfolding pathways and change mutant's average rupture force.
MARO - Mass Atrocity Response Operations: A Military Planning Handbook
2010-05-01
while conveying an implied deterrent message to perpetrators. • Current military presence in the region can be reinforced with addi- tional US ...complete HUMINT network is likely to be a time- consuming process, ear- ly efforts may provide useful dividends. • Shows of force can be conducted...climate change, the impact of the information environment on military operations, and the evolving nature of warfare. coL (ret) scott Feil ( Us army) is an
Manpower planning for nurse personnel.
Keaveny, T J; Hayden, R L
1978-01-01
A technique is described which can be applied to manpower planning for nurse personnel at a state or regional level. An iterative process explores the implications of alternative planning policy decision strategies intended to balance manpower supply and requirements. Impacts of the following policy alternatives are estimated: scale of operations of education institutions; interstate migration patterns; labor force participation rates; and job design of licensed practical nurse (LPN) and registered nurse (RN) positions. PMID:665883
Removal of floating dust in glow discharge using plasma jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ticos, C. M.; Jepu, I.; Lungu, C. P.
2010-07-05
Dust can be an inconvenient source of impurities in plasma processing reactors and in many cases it can cause damage to the plasma-treated surfaces. A technique for dust expulsion out of the trapping region in plasma is presented here, based on the wind force exerted on dust particles by a pulsed plasma jet. Its applicability is demonstrated by removing floating dust in the sheath of parallel-plate capacitive radio-frequency plasma.
Hysteresis properties of the amorphous high permeability Co66Fe3Cr3Si15B13 alloy
NASA Astrophysics Data System (ADS)
Tsepelev, V. S.; Starodubtsev, Yu. N.; Tsepeleva, N. P.
2018-04-01
The scaling law of minor loops was studied on an amorphous alloy Co66Fe3Cr3Si15B13 with a very high initial permeability (more than 150000) and low coercivity (about 0.1 A/m). An analytical expression for the coercive force in the Rayleigh region was derived. The coercive force is connected with the maximal magnetic field Hmax via the reversibility coefficient μi/ηHmax. Reversibility coefficient shows the relationship between reversible and irreversible magnetization processes. A universal dependence of magnetic losses for hysteresis Wh on the remanence Br with a power factor of 1.35 is confirmed for a wide range of magnetic fields strengths.
Parker Solar Probe Spacecraft Arrival, Offload and Transport
2018-04-03
Preparations are underway to offload NASA's Parker Solar Probe spacecraft, secured in its shipping container, from a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.
Parker Solar Probe Spacecraft Arrival, Offload and Transport
2018-04-03
A forklift operator latches onto the shipping container with NASA's Parker Solar Probe inside, after it was offloaded from a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jie; Li, Hui; Feng, Li
By using a new method of forced-field extrapolation, we study the emerging flux region AR11850 observed by the Interface Region Imaging Spectrograph and Solar Dynamical Observatory . Our results suggest that the bright points (BPs) in this emerging region exhibit responses in lines formed from the upper photosphere to the transition region, which have relatively similar morphologies. They have an oscillation of several minutes according to the Atmospheric Imaging Assembly data at 1600 and 1700 Å. The ratio between the BP intensities measured in 1600 and 1700 Å filtergrams reveals that these BPs are heated differently. Our analysis of themore » Helioseismic and Magnetic Imager vector magnetic field and the corresponding topology in AR11850 indicates that the BPs are located at the polarity inversion line and most of them are related to magnetic reconnection or cancelation. The heating of the BPs might be different due to different magnetic topology. We find that the heating due to the magnetic cancelation would be stronger than the case of bald patch reconnection. The plasma density rather than the magnetic field strength could play a dominant role in this process. Based on physical conditions in the lower atmosphere, our forced-field extrapolation shows consistent results between the bright arcades visible in slit-jaw image 1400 Å and the extrapolated field lines that pass through the bald patches. It provides reliable observational evidence for testing the mechanism of magnetic reconnection for the BPs and arcades in the emerging flux region, as proposed in simulation studies.« less
Photophoretic Levitation and Trapping of Dust in the Inner Regions of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
McNally, Colin P.; McClure, Melissa K.
2017-01-01
In protoplanetary disks, the differential gravity-driven settling of dust grains with respect to gas and with respect to grains of varying sizes determines the observability of grains, and sets the conditions for grain growth and eventually planet formation. In this work, we explore the effect of photophoresis on the settling of large dust grains in the inner regions of actively accreting protoplanetary disks. Photophoretic forces on dust grains result from the collision of gas molecules with differentially heated grains. We undertake one-dimensional dust settling calculations to determine the equilibrium vertical distribution of dust grains in each column of the disk. In the process we introduce a new treatment of the photophoresis force which is consistent at all optical depths with the representation of the radiative intensity field in a two-stream radiative transfer approximation. The levitation of large dust grains creates a photophoretic dust trap several scale heights above the mid-plane in the inner regions of the disk where the dissipation of accretion energy is significant. We find that differential settling of dust grains is radically altered in these regions of the disk, with large dust grains trapped in a layer below the stellar irradiation surface, where the dust to gas mass ratio can be enhanced by a factor of a hundred for the relevant particles. The photophoretic trapping effect has a strong dependence on particle size and porosity.
Plates for vacuum thermal fusion
Davidson, James C.; Balch, Joseph W.
2002-01-01
A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle. Also, it is beneficial to provide a vacuum groove or channel near the perimeter of the plates or substrates to ensure bonding of the perimeter of the plates or substrates and reduce the unbonded regions inside the interior region of the plates or substrates.
Hanes, Daniel M.; Barnard, Patrick L.; Dallas, Kate; Elias, Edwin; Erikson, Li H.; Eshleman, Jodi; Hansen, Jeff; Hsu, Tian Jian; Shi, Fengyan
2011-01-01
Recent research in the San Francisco, California, U.S.A., coastal region has identified the importance of the ebb tidal delta to coastal processes. A process-based numerical model is found to qualitatively reproduce the equilibrium size and shape of the delta. The ebb tidal delta itself has been contracting over the past century, and the numerical model is applied to investigate the sensitivity of the delta to changes in forcing conditions. The large ebb tidal delta has a strong influence upon regional coastal processes. The prominent bathymetry of the ebb tidal delta protects some of the coast from extreme storm waves, but the delta also focuses wave energy toward the central and southern portions of Ocean Beach. Wave focusing likely contributes to a chronic erosion problem at the southern end of Ocean Beach. The ebb tidal delta in combination with non-linear waves provides a potential cross-shore sediment transport pathway that probably supplies sediment to Ocean Beach.
Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C
Wartenburger, Richard; Guillod, Benoit P.; Hirsch, Annette L.; Vogel, Martha M.; Brovkin, Victor; van Vuuren, Detlef P.; Schaller, Nathalie; Boysen, Lena; Calvin, Katherine V.; Doelman, Jonathan; Greve, Peter; Havlik, Petr; Humpenöder, Florian; Krisztin, Tamas; Mitchell, Daniel; Popp, Alexander; Riahi, Keywan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Sillmann, Jana; Stehfest, Elke
2018-01-01
This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. PMID:29610382
Climate extremes, land-climate feedbacks and land-use forcing at 1.5°C.
Seneviratne, Sonia I; Wartenburger, Richard; Guillod, Benoit P; Hirsch, Annette L; Vogel, Martha M; Brovkin, Victor; van Vuuren, Detlef P; Schaller, Nathalie; Boysen, Lena; Calvin, Katherine V; Doelman, Jonathan; Greve, Peter; Havlik, Petr; Humpenöder, Florian; Krisztin, Tamas; Mitchell, Daniel; Popp, Alexander; Riahi, Keywan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Sillmann, Jana; Stehfest, Elke
2018-05-13
This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the 'Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Authors.
Climate extremes, land-climate feedbacks and land-use forcing at 1.5°C
NASA Astrophysics Data System (ADS)
Seneviratne, Sonia I.; Wartenburger, Richard; Guillod, Benoit P.; Hirsch, Annette L.; Vogel, Martha M.; Brovkin, Victor; van Vuuren, Detlef P.; Schaller, Nathalie; Boysen, Lena; Calvin, Katherine V.; Doelman, Jonathan; Greve, Peter; Havlik, Petr; Humpenöder, Florian; Krisztin, Tamas; Mitchell, Daniel; Popp, Alexander; Riahi, Keywan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Sillmann, Jana; Stehfest, Elke
2018-05-01
This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the `Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.
Atmospheric Composition Change: Climate-Chemistry Interactions
NASA Technical Reports Server (NTRS)
Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.;
2011-01-01
Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced concentration through reduced biospheric uptake. During the last 510 years, new observational data have been made available and used for model validation and the study of atmospheric processes. Although there are significant uncertainties in the modelling of composition changes, access to new observational data has improved modelling capability. Emission scenarios for the coming decades have a large uncertainty range, in particular with respect to regional trends, leading to a significant uncertainty range in estimated regional composition changes and climate impact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosa, B., E-mail: bogdan.rosa@imgw.pl; Parishani, H.; Department of Earth System Science, University of California, Irvine, California 92697-3100
2015-01-15
In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope [“An examination of forcing in direct numerical simulations of turbulence,” Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynoldsmore » number of 30 and less. We then study the effects of forcing time scale on the kinematic collision statistics of inertial particles. We show that the radial distribution function and the radial relative velocity may depend on the forcing time scale when it becomes comparable to the eddy turnover time. This dependence, however, can be largely explained in terms of altered flow Reynolds number and the changing range of flow length scales present in the turbulent flow. We argue that removing this dependence is important when studying the Reynolds number dependence of the turbulent collision statistics. The results are also compared to those based on a deterministic forcing scheme to better understand the role of large-scale forcing, relative to that of the small-scale turbulence, on turbulent collision of inertial particles. To further elucidate the correlation between the altered flow structures and dynamics of inertial particles, a conditional analysis has been performed, showing that the regions of higher collision rate of inertial particles are well correlated with the regions of lower vorticity. Regions of higher concentration of pairs at contact are found to be highly correlated with the region of high energy dissipation rate.« less
Simulating Sand Behavior through Terrain Subdivision and Particle Refinement
NASA Astrophysics Data System (ADS)
Clothier, M.
2013-12-01
Advances in computer graphics, GPUs, and parallel processing hardware have provided researchers with new methods to visualize scientific data. In fact, these advances have spurred new research opportunities between computer graphics and other disciplines, such as Earth sciences. Through collaboration, Earth and planetary scientists have benefited by using these advances in hardware technology to process large amounts of data for visualization and analysis. At Oregon State University, we are collaborating with the Oregon Space Grant and IGERT Ecosystem Informatics programs to investigate techniques for simulating the behavior of sand. In addition, we have also been collaborating with the Jet Propulsion Laboratory's DARTS Lab to exchange ideas on our research. The DARTS Lab specializes in the simulation of planetary vehicles, such as the Mars rovers. One aspect of their work is testing these vehicles in a virtual "sand box" to test their performance in different environments. Our research builds upon this idea to create a sand simulation framework to allow for more complex and diverse environments. As a basis for our framework, we have focused on planetary environments, such as the harsh, sandy regions on Mars. To evaluate our framework, we have used simulated planetary vehicles, such as a rover, to gain insight into the performance and interaction between the surface sand and the vehicle. Unfortunately, simulating the vast number of individual sand particles and their interaction with each other has been a computationally complex problem in the past. However, through the use of high-performance computing, we have developed a technique to subdivide physically active terrain regions across a large landscape. To achieve this, we only subdivide terrain regions where sand particles are actively participating with another object or force, such as a rover wheel. This is similar to a Level of Detail (LOD) technique, except that the density of subdivisions are determined by their proximity to the interacting object or force with the sand. To illustrate an example, as a rover wheel moves forward and approaches a particular sand region, that region will continue to subdivide until individual sand particles are represented. Conversely, if the rover wheel moves away, previously subdivided sand regions will recombine. Thus, individual sand particles are available when an interacting force is present but stored away if there is not. As such, this technique allows for many particles to be represented without the computational complexity. We have also further generalized these subdivision regions in our sand framework into any volumetric area suitable for use in the simulation. This allows for more compact subdivision regions and has fine-tuned our framework so that more emphasis can be placed on regions of actively participating sand. We feel that this increases the framework's usefulness across scientific applications and can provide for other research opportunities within the earth and planetary sciences. Through continued collaboration with our academic partners, we continue to build upon our sand simulation framework and look for other opportunities to utilize this research.
NASA Astrophysics Data System (ADS)
Qian, Y.; Gustafson, W. I.; Leung, R.; Ghan, S. J.
2008-12-01
Radiative forcing induced by soot on snow is an important anthropogenic forcing affecting the global climate. In this study we simulated the deposition of soot aerosol on snow and the resulting impact on snowpack and the hydrological cycle in the western United States. A yearlong simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine the soot deposition, followed by three simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced snow albedo perturbations increase the surface net solar radiation flux during late winter to early spring, increase the surface air temperature, and reduce the snow accumulation and spring snowmelt. These effects are stronger over the central Rockies and southern Alberta, where soot deposition and snowpack overlap the most. The indirect forcing of soot accelerates snowmelt and alters stream flows, including a trend toward earlier melt dates in the western United States. The soot-induced albedo reduction initiates a positive feedback process whereby dirty snow absorbs more solar radiation, heating the surface and warming the air. This warming causes reduced snow depth and fraction, which further reduces the regional surface albedo for the snow covered regions. For a doubled snow albedo perturbation, the change to surface energy and temperature is around 50-80%, however, snowpack reduction is nonlinearly accelerated.
NASA Astrophysics Data System (ADS)
Qian, Yun; Gustafson, William I.; Leung, L. Ruby; Ghan, Steven J.
2009-02-01
Radiative forcing induced by soot on snow is an important anthropogenic forcing affecting the global climate. In this study we simulated the deposition of soot aerosol on snow and the resulting impact on snowpack and the hydrological cycle in the western United States. A year-long simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine the soot deposition, followed by three simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced snow albedo perturbations increase the surface net solar radiation flux during late winter to early spring, increase the surface air temperature, and reduce the snow accumulation and spring snowmelt. These effects are stronger over the central Rockies and southern Alberta, where soot deposition and snowpack overlap the most. The indirect forcing of soot accelerates snowmelt and alters stream flows, including a trend toward earlier melt dates in the western United States. The soot-induced albedo reduction initiates a positive feedback process whereby dirty snow absorbs more solar radiation, heating the surface and warming the air. This warming causes reduced snow depth and fraction, which further reduces the regional surface albedo for the snow-covered regions. For a doubled snow albedo perturbation, the change to surface energy and temperature is around 50-80%; however, snowpack reduction is nonlinearly accelerated.
Electron–Positron Pair Flow and Current Composition in the Pulsar Magnetosphere
NASA Astrophysics Data System (ADS)
Brambilla, Gabriele; Kalapotharakos, Constantinos; Timokhin, Andrey N.; Harding, Alice K.; Kazanas, Demosthenes
2018-05-01
We perform ab initio particle-in-cell (PIC) simulations of a pulsar magnetosphere with electron–positron plasma produced only in the regions close to the neutron star surface. We study how the magnetosphere transitions from the vacuum to a nearly force-free configuration. We compare the resulting force-free-like configuration with those obtained in a PIC simulation where particles are injected everywhere as well as with macroscopic force-free simulations. We find that, although both PIC solutions have similar structure of electromagnetic fields and current density distributions, they have different particle density distributions. In fact, in the injection from the surface solution, electrons and positrons counterstream only along parts of the return current regions and most of the particles leave the magnetosphere without returning to the star. We also find that pair production in the outer magnetosphere is not critical for filling the whole magnetosphere with plasma. We study how the current density distribution supporting the global electromagnetic configuration is formed by analyzing particle trajectories. We find that electrons precipitate to the return current layer inside the light cylinder and positrons precipitate to the current sheet outside the light cylinder by crossing magnetic field lines, contributing to the charge density distribution required by the global electrodynamics. Moreover, there is a population of electrons trapped in the region close to the Y-point. On the other hand, the most energetic positrons are accelerated close to the Y-point. These processes can have observational signatures that, with further modeling effort, would help to distinguish this particular magnetosphere configuration from others.
NASA Astrophysics Data System (ADS)
Farhadi, Leila; Entekhabi, Dara; Salvucci, Guido
2016-04-01
In this study, we develop and apply a mapping estimation capability for key unknown parameters that link the surface water and energy balance equations. The method is applied to the Gourma region in West Africa. The accuracy of the estimation method at point scale was previously examined using flux tower data. In this study, the capability is scaled to be applicable with remotely sensed data products and hence allow mapping. Parameters of the system are estimated through a process that links atmospheric forcing (precipitation and incident radiation), surface states, and unknown parameters. Based on conditional averaging of land surface temperature and moisture states, respectively, a single objective function is posed that measures moisture and temperature-dependent errors solely in terms of observed forcings and surface states. This objective function is minimized with respect to parameters to identify evapotranspiration and drainage models and estimate water and energy balance flux components. The uncertainty of the estimated parameters (and associated statistical confidence limits) is obtained through the inverse of Hessian of the objective function, which is an approximation of the covariance matrix. This calibration-free method is applied to the mesoscale region of Gourma in West Africa using multiplatform remote sensing data. The retrievals are verified against tower-flux field site data and physiographic characteristics of the region. The focus is to find the functional form of the evaporative fraction dependence on soil moisture, a key closure function for surface and subsurface heat and moisture dynamics, using remote sensing data.
The Formation of Super-Earths by Tidally Forced Turbulence
NASA Astrophysics Data System (ADS)
Yu, Cong
2017-12-01
The Kepler observations indicate that many exoplanets are super-Earths, which brings about a puzzle for the core-accretion scenario. Since observed super-Earths are in the range of critical mass, they accrete gas efficiently and become gas giants. Theoretically, super-Earths are predicted to be rare in the core-accretion framework. To resolve this contradiction, we propose that the tidally forced turbulent diffusion may affect the heat transport inside the planet. Thermal feedback induced by turbulent diffusion is investigated. We find that the tidally forced turbulence generates pseudo-adiabatic regions within radiative zones, which pushes the radiative-convective boundaries inward. This decreases the cooling luminosity and enhances the Kelvin-Helmholtz (KH) timescale. For a given lifetime of protoplanetary disks (PPDs), there exists a critical threshold for the turbulent diffusivity, ν critical. If ν turb > ν critical, the KH timescale is longer than the disk lifetime and the planet becomes a super-Earth, rather than a gas giant. We find that even a small value of turbulent diffusion has influential effects on the evolution of super-Earths. The ν critical increases with the core mass. We further ascertain that, within the minimum-mass extrasolar nebula, ν critical increases with the semimajor axis. This may explain the feature that super-Earths are common in inner PPD regions, while gas giants are common in outer PPD regions. The predicted envelope mass fraction is not fully consistent with observations. We discuss physical processes, such as late core assembly and mass-loss mechanisms, that may be operating during super-Earth formation.
NASA Astrophysics Data System (ADS)
Solomon, A.; Cox, C. J.; Hughes, M.; Intrieri, J. M.; Persson, O. P. G.
2015-12-01
The dramatic decrease of Arctic sea-ice has led to a new Arctic sea-ice paradigm and to increased commercial activity in the Arctic Ocean. NOAA's mission to provide accurate and timely sea-ice forecasts, as explicitly outlined in the National Ocean Policy and the U.S. National Strategy for the Arctic Region, needs significant improvement across a range of time scales to improve safety for human activity. Unfortunately, the sea-ice evolution in the new Arctic involves the interaction of numerous physical processes in the atmosphere, ice, and ocean, some of which are not yet understood. These include atmospheric forcing of sea-ice movement through stress and stress deformation; atmospheric forcing of sea-ice melt and formation through energy fluxes; and ocean forcing of the atmosphere through new regions of seasonal heat release. Many of these interactions involve emerging complex processes that first need to be understood and then incorporated into forecast models in order to realize the goal of useful sea-ice forecasting. The underlying hypothesis for this study is that errors in simulations of "fast" atmospheric processes significantly impact the forecast of seasonal sea-ice retreat in summer and its advance in autumn in the marginal ice zone (MIZ). We therefore focus on short-term (0-20 day) ice-floe movement, the freeze-up and melt-back processes in the MIZ, and the role of storms in modulating stress and heat fluxes. This study uses a coupled ocean-atmosphere-seaice forecast model as a testbed to investigate; whether ocean-sea ice-atmosphere coupling improves forecasts on subseasonal time scales, where systematic biases develop due to inadequate parameterizations (focusing on mixed-phase clouds and surface fluxes), how increased atmospheric resolution of synoptic features improves the forecasts, and how initialization of sea ice area and thickness and snow depth impacts the skill of the forecasts. Simulations are validated with measurements at pan-Arctic land sites, satellite data, and recent ocean field campaigns.
NASA Technical Reports Server (NTRS)
McCanta, M. C.; Rutherford, M. J.
2003-01-01
Knowledge of the oxidation state of a magma is critical as it is one of the parameters which controls the nature and composition of the resulting crystals. In terrestrial magmatic systems, oxygen fugacity (fo2) is known to vary by over nine orders of magnitude. With variations of this magnitude, understanding the compositional differences, phase changes, and crystallization sequence variations, caused by the magma fo2, is essential in deciphering the origin of all igneous rocks. Magmatic oxidation state is of great importance in that it reflects the degree of oxidation of the source region and can provide insight into magmatic processes, such as metasomatism, degassing, and assimilation, which may have changed them. Carmichael [1991] argues that most magmas are unlikely to have their redox states altered from those of their source region. This assumption allows for estimation of the oxidation state of planetary interiors. Conversely, it is known that the fo2 of the magma can be affected by other processes, which occur outside of the source region and therefore, the oxidation state may record those too. Processes which could overprint source region fugacities include melt dehydrogenation or other volatile loss, water or melt infiltration, or assimilation of oxidized or reduced wallrock. Understanding which of these processes is responsible for the redox state of a magma can provide crucial information regarding igneous processes and other forces active in the region. The composition of the SNC basalts and their widely varying proposed oxidation states raise some interesting questions. Do the SNC meteorites have an oxidized or reduced signature? What was the oxygen fugacity of the SNC source region at the time of melt generation? Is the fugacity calculated for the various SNC samples the fugacity of the magma source region or was it overprinted by later events? Are there different oxidation states in the Martian interior or a single one? This proposal seeks to address all of these questions.
Local bipolar-transistor gain measurement for VLSI devices
NASA Astrophysics Data System (ADS)
Bonnaud, O.; Chante, J. P.
1981-08-01
A method is proposed for measuring the gain of a bipolar transistor region as small as possible. The measurement then allows the evaluation particularly of the effect of the emitter-base junction edge and the technology-process influence of VLSI-technology devices. The technique consists in the generation of charge carriers in the transistor base layer by a focused laser beam in order to bias the device in as small a region as possible. To reduce the size of the conducting area, a transversal reverse base current is forced through the base layer resistance in order to pinch in the emitter current in the illuminated region. Transistor gain is deduced from small signal measurements. A model associated with this technique is developed, and this is in agreement with the first experimental results.
Regional Differences in Rat Vaginal Smooth Muscle Contractility and Morphology
Skoczylas, Laura C.; Jallah, Zegbeh; Sugino, Yoshio; Stein, Suzan E.; Feola, Andrew; Yoshimura, Naoki
2013-01-01
The objective of this study was to define the regional differences in rat vaginal smooth muscle contractility and morphology. We evaluated circumferential segments from the proximal, middle, and distal rat vagina (n = 21) in vitro. Contractile responses to carbachol, phenylephrine, potassium chloride, and electrical field stimulation (EFS) were measured. Immunohistochemical analyses were also performed. The dose–response curves for carbachol- and phenylephrine-dependent contractions were different in the distal (P = .05, P = .04) compared to the proximal/middle regions. Adjusted for region-dependent changes in contractility, the distal vagina generated lower force in response to carbachol and higher force in response to phenylephrine. There was less force with increasing EFS frequency in the distal (P = .03), compared to the proximal/middle regions. Cholinergic versus adrenergic nerves were more frequent in the proximal region (P = .03). In summary, the results indicate that functional and morphological differences in smooth muscle and nerve fibers of the distal versus proximal/middle regions of the vagina exist. PMID:23298869
Mitri, F G
2005-08-01
The theory of the acoustic radiation force acting on elastic spherical shells suspended in a plane standing wave field is developed in relation to their thickness and the content of their hollow regions. The theory is modified to include the effect of a hysteresis type of absorption of compressional and shear waves in the material. The fluid-loading effect on the acoustic radiation force function Y(st) is analyzed as well. Results of numerical calculations are presented for a number of elastic and viscoelastic materials, with the hollow region filled with water or air. These results show how the damping due to absorption, the change of the interior fluid inside the shells' hollow regions, and the exterior fluid surrounding their structures, affect the acoustic radiation force.
Single-molecule study of the DNA denaturation phase transition in the force-torsion space.
Salerno, D; Tempestini, A; Mai, I; Brogioli, D; Ziano, R; Cassina, V; Mantegazza, F
2012-09-14
We use the "magnetic tweezers" technique to show the structural transitions that the DNA undergoes in the force-torsion space. In particular, we focus on the regions corresponding to negative supercoiling. These regions are characterized by the formation of the so-called denaturation bubbles, which play an essential role in the replication and transcription of DNA. We experimentally map the region of the force-torsion space where the denaturation takes place. We observe that large fluctuations in DNA extension occur at one of the boundaries of this region, i.e., when the formation of denaturation bubbles and of plectonemes compete. To describe the experiments, we introduce a suitable extension of the classical model. The model correctly describes the position of the denaturation regions, the transition boundaries, and the measured values of the DNA extension fluctuations.
Single-Molecule Study of the DNA Denaturation Phase Transition in the Force-Torsion Space
NASA Astrophysics Data System (ADS)
Salerno, D.; Tempestini, A.; Mai, I.; Brogioli, D.; Ziano, R.; Cassina, V.; Mantegazza, F.
2012-09-01
We use the “magnetic tweezers” technique to show the structural transitions that the DNA undergoes in the force-torsion space. In particular, we focus on the regions corresponding to negative supercoiling. These regions are characterized by the formation of the so-called denaturation bubbles, which play an essential role in the replication and transcription of DNA. We experimentally map the region of the force-torsion space where the denaturation takes place. We observe that large fluctuations in DNA extension occur at one of the boundaries of this region, i.e., when the formation of denaturation bubbles and of plectonemes compete. To describe the experiments, we introduce a suitable extension of the classical model. The model correctly describes the position of the denaturation regions, the transition boundaries, and the measured values of the DNA extension fluctuations.
Air pollution radiative forcing from specific emissions sectors at 2030
NASA Astrophysics Data System (ADS)
Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.; Streets, David G.
2008-01-01
Reduction of short-lived air pollutants can contribute to mitigate global warming in the near-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the Goddard Institute for Space Studies atmospheric composition-climate model to quantify near-future (2030 A1B) global annual mean radiative forcing by ozone (O3) and sulfate from six emissions sectors in seven geographic regions. At 2030 the net forcings from O3, sulfate, black and organic carbon, and indirect CH4 effects for each emission sector are (in mWm-2) biomass burning, +95; domestic, +68; transportation, +67; industry, -131; and power, -224. Biomass burning emissions in East Asia and central and southern Africa, domestic biofuel emissions in East Asia, south Asia, and central and southern Africa, and transportation emissions in Europe and North America have large net positive forcings and are therefore attractive targets to counter global warming. Power and industry emissions from East Asia, south Asia, and north Africa and the Middle East have large net negative forcings. Therefore air quality control measures that affect these regional sectors require offsetting climate measures to avoid a warming impact. Linear relationships exist between O3 forcing and biomass burning and domestic biofuel CO precursor emissions independent of region with sensitivity of +0.2 mWm-2/TgCO. Similarly, linear relationships exist between sulfate forcing and SO2 precursor emissions that depend upon region but are independent of sector with sensitivities ranging from -3 to -12 mWm-2/TgS.
Developing quantitative criteria to evaluate AOGCMs for application to regional climate assessments
NASA Astrophysics Data System (ADS)
Hayhoe, K.; Wake, C.; Bradbury, J.; Degaetano, A.; Hertel, A.
2006-12-01
Climate projections are the foundation for regional assessments of potential climate impacts. However, the soundness of regional assessments depends on the ability of global climate models to reproduce key processes responsible for regional climate trends. Here, we develop a systematic method to compare observed climate with historical atmosphere-ocean general circulation model (AOGCM) simulations, to assess the degree to which AOGCMs are able to reproduce regional circulation patterns. Applying this methodology to the U.S. Northeast (NE), we find that nearly all AOGCMs simulate a reasonable winter NAO pattern and seasonal positions of the Jet Stream and the East Coast Trough. However, not all models capture observed correlations between these circulation patterns and seasonal climate anomalies in the NE. Using only those AOGCMs that meet the criteria in each of these areas, we then develop projections of future climate change in the NE. The primary changes projected to occur over the next century - slightly greater temperature increases in summer than winter, and increases in winter precipitation - are consistent with projected trends in regional climate processes and are relatively independent of model or scale. These suggest confidence in the direction and potential range of the most notable regional climate trends, with the absolute magnitude of change depending on both the sensitivity of the climate system to human forcing as well as on human emissions over coming decades.
Low-frequency variability of the Atlantic MOC in the eddying regime : the intrinsic component.
NASA Astrophysics Data System (ADS)
Gregorio, S.; Penduff, T.; Barnier, B.; Molines, J.-M.; Le Sommer, J.
2012-04-01
A 327-year 1/4° global ocean/sea-ice simulation has been produced by the DRAKKAR ocean modeling consortium. This simulation is forced by a repeated seasonal atmospheric forcing but nevertheless exhibits a substantial low-frequency variability (at interannual and longer timescales), which is therefore of intrinsic origin. This nonlinearly-generated intrinsic variability is almost absent from the coarse-resolution (2°) version of this simulation. Comparing the 1/4° simulation with its fully-forced counterpart, Penduff et al. (2011) have shown that the low-frequency variability of local sea-level is largely generated by the ocean itself in eddying areas, rather than directly forced by the atmosphere. Using the same simulations, the present study quantifies the imprint of the intrinsic low-frequency variability on the Meridional Overturning Circulation (MOC) at interannual-to-decadal timescales in the Atlantic. We first compare the intrinsic and atmospherically-forced interannual variances of the Atlantic MOC calculated in geopotential coordinates. This analysis reveals substantial sources of intrinsic MOC variability in the South Atlantic (driven by the Agulhas mesoscale activity according to Biastoch et al. (2008)), but also in the North Atlantic. We extend our investigation to the MOC calculated in isopycnal coordinates, and identify regions in the basin where the water mass transformation exhibits low-frequency intrinsic variability. In this eddy-permitting regime, intrinsic processes are shown to generate about half the total (geopotential and isopycnal) MOC interannual variance in certain key regions of the Atlantic. This intrinsic variability is absent from 2° simulations. Penduff, T., Juza, M., Barnier, B., Zika, J., Dewar, W.K., Treguier, A.-M., Molines, J.-M., Audiffren, N., 2011: Sea-level expression of intrinsic and forced ocean variabilities at interannual time scales. J. Climate, 24, 5652-5670. doi: 10.1175/JCLI-D-11-00077.1. Biastoch, A., Böning, C. W., Lutjeharms, J. R. E., 2008: Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation. Nature, 456, 489-492, doi: 10.1038/nature07426.
Winzen, A; Roidl, B; Schröder, W
2016-04-01
Low-speed aerodynamics has gained increasing interest due to its relevance for the design process of small flying air vehicles. These small aircraft operate at similar aerodynamic conditions as, e.g. birds which therefore can serve as role models of how to overcome the well-known problems of low Reynolds number flight. The flight of the barn owl is characterized by a very low flight velocity in conjunction with a low noise emission and a high level of maneuverability at stable flight conditions. To investigate the complex three-dimensional flow field and the corresponding local structural deformation in combination with their influence on the resulting aerodynamic forces, time-resolved stereoscopic particle-image velocimetry and force and moment measurements are performed on a prepared natural barn owl wing. Several spanwise positions are measured via PIV in a range of angles of attack [Formula: see text] 6° and Reynolds numbers 40 000 [Formula: see text] 120 000 based on the chord length. Additionally, the resulting forces and moments are recorded for -10° ≤ α ≤ 15° at the same Reynolds numbers. Depending on the spanwise position, the angle of attack, and the Reynolds number, the flow field on the wing's pressure side is characterized by either a region of flow separation, causing large-scale vortical structures which lead to a time-dependent deflection of the flexible wing structure or wing regions showing no instantaneous deflection but a reduction of the time-averaged mean wing curvature. Based on the force measurements the three-dimensional fluid-structure interaction is assumed to considerably impact the aerodynamic forces acting on the wing leading to a strong mechanical loading of the interface between the wing and body. These time-depending loads which result from the flexibility of the wing should be taken into consideration for the design of future small flying air vehicles using flexible wing structures.
Aradya, Anupama; Kumar, U Krishna; Chowdhary, Ramesh
2016-01-01
The study was designed to evaluate and compare stress distribution in transcortical section of bone with normal abutment and platform switched abutment under vertical and oblique forces in posterior mandible region. A three-dimensional finite element model was designed using ANSYS 13.0 software. The type of bone selection for the model was made of type II mandibular bone, having cortical bone thickness ranging from 0.595 mm to 1.515 mm with the crestal region measuring 1.5 mm surrounding dense trabecular bone. The implant will be modulated at 5 mm restorative platform and tapering down to 4.5 mm wide at the threads, 13 mm long with an abutment 3 mm in height. The models will be designed for two situations: (1) An implant with a 5 mm diameter abutment representing a standard platform in the posterior mandible region. (2) An implant with a 4.5 mm diameter abutment representing platform switching in the posterior mandible region. Force application was performed in both oblique and vertical conditions using 100 N as a representative masticatory force. For oblique loading, a force of 100 N was applied at 15° from the vertical axis. von Mises stress analysis was evaluated. The results of the study showed cortical stress in the conventional and platform switching model under oblique forces were 59.329 MPa and 39.952 MPa, respectively. Cortical stress in the conventional and platform switching model under vertical forces was 13.914 MPa and 12.793 MPa, respectively. Results from this study showed the platform switched abutment led to relative decrease in von Mises stress in transcortical section of bone compared to normal abutment under vertical and oblique forces in posterior mandible region.
Estradiol or fluoxetine alters depressive behavior and tryptophan hydroxylase in rat raphe.
Yang, Fu-Zhong; Wu, Yan; Zhang, Wei-Guo; Cai, Yi-Yun; Shi, Shen-Xun
2010-03-10
The effects of 17beta-estradiol and fluoxetine on behavior of ovariectomized rats subjected to the forced swimming test and the expression of tryptophan hydroxylase (TPH) in dorsal and median raphe were investigated, respectively through time sampling technique of behavior scoring and immunohistochemistry. Both estradiol and fluoxetine increased swimming and decreased immobility in the forced swimming test. The forced swimming stress decreased integrated optical density of TPH-positive regions in dorsal and median raphe. Both estradiol and fluoxetine administration prevented integrated optical density of TPH-positive regions from being decreased by forced swimming stress. These observations suggest that both estradiol and fluoxetine have protective bearing on ovariectomized rats enduring forced swimming stress.
The Anterolateral Capsule of the Knee Behaves Like a Sheet of Fibrous Tissue.
Guenther, Daniel; Rahnemai-Azar, Amir A; Bell, Kevin M; Irarrázaval, Sebastián; Fu, Freddie H; Musahl, Volker; Debski, Richard E
2017-03-01
The function of the anterolateral capsule of the knee has not been clearly defined. However, the contribution of this region of the capsule to knee stability in comparison with other anterolateral structures can be determined by the relative force that each structure carries during loading of the knee. Purpose/Hypothesis: The purpose of this study was to determine the forces in the anterolateral structures of the intact and anterior cruciate ligament (ACL)-deficient knee in response to an anterior tibial load and internal tibial torque. It was hypothesized that the anterolateral capsule would not function like a traditional ligament (ie, transmitting forces only along its longitudinal axis). Controlled laboratory study. Loads (134-N anterior tibial load and 7-N·m internal tibial torque) were applied continuously during flexion to 7 fresh-frozen cadaveric knees in the intact and ACL-deficient state using a robotic testing system. The lateral collateral ligament (LCL) and the anterolateral capsule were separated from the surrounding tissue and from each other. This was done by performing 3 vertical incisions: lateral to the LCL, medial to the LCL, and lateral to the Gerdy tubercle. Attachments of the LCL and anterolateral capsule were detached from the underlying tissue (ie, meniscus), leaving the insertions and origins intact. The force distribution in the anterolateral capsule, ACL, and LCL was then determined at 30°, 60°, and 90° of knee flexion using the principle of superposition. In the intact knee, the force in the ACL in response to an anterior tibial load was greater than that in the other structures ( P < .001). However, in response to an internal tibial torque, no significant differences were found between the ACL, LCL, and forces transmitted between each region of the anterolateral capsule after capsule separation. The anterolateral capsule experienced smaller forces (~50% less) compared with the other structures ( P = .048). For the ACL-deficient knee in response to an anterior tibial load, the force transmitted between each region of the anterolateral capsule was 434% greater than was the force in the anterolateral capsule ( P < .001) and 54% greater than the force in the LCL ( P = .036) at 30° of flexion. In response to an internal tibial torque at 30°, 60°, or 90° of knee flexion, no significant differences were found between the force transmitted between each region of the anterolateral capsule and the LCL. The force in the anterolateral capsule was significantly smaller than that in the other structures at all knee flexion angles for both loading conditions ( P = .004 for anterior tibial load and P = .04 for internal tibial torque). The anterolateral capsule carries negligible forces in the longitudinal direction, and the forces transmitted between regions of the capsule were similar to the forces carried by the other structures at the knee, suggesting that it does not function as a traditional ligament. Thus, the anterolateral capsule should be considered a sheet of tissue. Surgical repair techniques for the anterolateral capsule should restore the ability of the tissue to transmit forces between adjacent regions of the capsule rather than along its longitudinal axis.
NASA Astrophysics Data System (ADS)
Silveira, O.; Santos, V. F.; Takiyama, L. R.
2007-05-01
The north brazilian coastal region is submitted to the conjunction of three major forcing: 1) Atmospheric, related to the wind and precipitation regimen and controlling the climatic seasonality and the local rivers hydrology; 2) Oceanic, result of the general oceanic circulation (North Equatorial Current-NEC) and it modulation with the atmospheric forcing (North Brazilian Coastal Current reflection), and 3) Amazonic, which is a result of the sedimentary transport from Amazon river, being itself under the influence of the atmospheric and oceanic forcing. Their main characteristic are the proper periodicities and also variabilities expressed according multiples and differentiated scales of time and space, determining the structure and functioning of the coastal space, giving to the Amazon coast line a considerable environmental instability. The Amapa Coastal Plain shows important part of this environmental instability. Semidiurnal macro tides, strong currents and tidal bores acts over a low gradient coastal plain which evolutionary process are intrinsically related with tectonic and geological settings. Two main areas can be distinguished in this scenario. The first one is the Amapa Lakes Region, developed over meanders of ancient drainages building a mosaic of low relief forms, with varied shapes, linked throughout communication channels. Two lacustrine belts showing alignments with the main tectonic traces were recognized beginning at the internal limit of the coastal plain, flowing southeast through the Tabaco Creek until reach the Araguari River. In it way it conform the Occidental and Meridional Belts represented by shallow lakes, totally dependent of Tartarugal River discharge and surrounded by enormous areas of peat highly sensitive to fire during the regional low discharge. Light blue clays, peat and a package of tidal deposits with fluidization structures were recognized close to Araguari River, suggesting deposition during high sea level. The second area refers to the coastal zone between the Amapa Grande River and Araguari River, including Maraca Island and the Oriental lacustrine Belt. Westward the island, at least three paleolevels of clays with roots in life position suggests regressive/transgressive events. Extraordinaty paleodrainage network beginnig at the continent and recognized at the insular portion suggests links with the paleochannels found at the continental shelf. The Oriental Belt of lakes is located close to the coastline, at Cabo Norte. It main feature is a mud lump approximately 10 Km ratio, well recognized at the remote sensing. It shows similar evolutionary processes with Araguari River, dating from XIX century, when this river had two mouths defined by the Carpori Island. The reasons of the deactivation are still unknowed, but, this rapid morphological evolution indicates short time colmatation processes that can be linked to tectonic regional processes. On the other hand, the Cabo Norte feature consolidation may impose changes in the sedimentation processes yielding space reduction over the coastal plain accumulation, diminishing of the solid and liquid fluvial discharge and promoting the availability of the local sediment transport over the littoral. The investigation of these processes requires an integrated coastal plain-continental shelf morphological study applying adequate techniques for modification studies and dating ages over short geological time frame, in century scale level.
ERIC Educational Resources Information Center
Texas State Dept. of Commerce, Austin.
In 1993, Texas' 24 quality work force planning committees used a state-developed targeted occupations planning methodology to identify key industries and targeted occupations with the greatest potential for job openings in their respective regions. Between 11 and 20 key industries (13.5 on average) were identified for each region. The following 10…
This presentation, Linking Regional Aerosol Emission Changes with Multiple Impact Measures through Direct and Cloud-Related Forcing Estimates, was given at the STAR Black Carbon 2016 Webinar Series: Accounting for Impact, Emissions, and Uncertainty.
Initializing decadal climate predictions over the North Atlantic region
NASA Astrophysics Data System (ADS)
Matei, Daniela Mihaela; Pohlmann, Holger; Jungclaus, Johann; Müller, Wolfgang; Haak, Helmuth; Marotzke, Jochem
2010-05-01
Decadal climate prediction aims to predict the internally-generated decadal climate variability in addition to externally-forced climate change signal. In order to achieve this it is necessary to start the predictions from the current climate state. In this study we investigate the forecast skill of the North Atlantic decadal climate predictions using two different ocean initialization strategies. First we apply an assimilation of ocean synthesis data provided by the GECCO project (Köhl and Stammer, 2008) as initial conditions for the coupled model ECHAM5/MPI-OM. Hindcast experiments are then performed over the period 1952-2001. An alternative approach is one in which the subsurface ocean temperature and salinity are diagnosed from an ensemble of ocean model runs forced by the NCEP-NCAR atmospheric reanalyzes for the period 1948-2007, then nudge into the coupled model to produce initial conditions for the hindcast experiments. An anomaly coupling scheme is used in both approaches to avoid the hindcast drift and the associated initial shock. Differences between the two assimilation approaches are discussed by comparing them with the observational data in key regions and processes. We asses the skill of the initialized decadal hindcast experiments against the prediction skill of the non-initialized hindcasts simulation. We obtain an overview of the regions with the highest predictability from the regional distribution of the anomaly correlation coefficients and RMSE for the SAT. For the first year the hindcast skill is increased over almost all ocean regions in the NCEP-forced approach. This increase in the hindcast skill for the 1 year lead time is somewhat reduced in the GECCO approach. At lead time 5yr and 10yr, the skill enhancement is still found over the North Atlantic and North Pacific regions. We also consider the potential predictability of the Atlantic Meridional Overturning Circulation (AMOC) and Nordic Seas Overflow by comparing the predicted values to the respective assimilation experiments. Hindcasts of Atlantic MOC and Denmark Strait Overflow show higher predictability than the comparison experiments without initialization and damped persistence predictions up to about 5-6 years.
The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6
NASA Astrophysics Data System (ADS)
Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; Bony, Sandrine; Bretherton, Christopher S.; Chadwick, Robin; Chepfer, Hélène; Douville, Hervé; Good, Peter; Kay, Jennifer E.; Klein, Stephen A.; Marchand, Roger; Medeiros, Brian; Pier Siebesma, A.; Skinner, Christopher B.; Stevens, Bjorn; Tselioudis, George; Tsushima, Yoko; Watanabe, Masahiro
2017-01-01
The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud-climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions How does the Earth system respond to forcing?
and What are the origins and consequences of systematic model biases?
and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO2 forcing and sea surface warming?CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions.
How well do clouds and other relevant variables simulated by models agree with observations?
What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models?
Which models have the most credible representations of processes relevant to the simulation of clouds?
How do clouds and their changes interact with other elements of the climate system?
Impacts of raindrop evaporative cooling on tropical cyclone secondary eyewall formation
NASA Astrophysics Data System (ADS)
Ge, Xuyang; Guan, Liang; Yan, Ziyu
2018-06-01
The impacts of raindrop evaporative cooling on secondary eyewall formation (SEF) of simulated tropical cyclones are investigated using idealized numerical experiments. The results suggest that the raindrop evaporative cooling effect is beneficial to the development of secondary eyewall through the planetary boundary layer (PBL) cold pool process. The evaporative cooling-driven downdrafts bring about the surface cold pool beneath a precipitation cloud. This cold pool dynamics act as a lifting mechanism to trigger the outer convection. The radially outward propagation of spiral rainbands broadens the TC size, by which modifies the surface heat fluxes and thus outer convection. Furthermore, the unbalanced PBL process contributes to the SEF. The radially outward surface outflows forces convection at outer region and thus favors a larger TC size. A larger TC implies an enhanced inertial stability at the outer region, which favors a higher conversion efficiency of diabatic heating to kinetic energy.
Novel strategies in feedforward adaptation to a position-dependent perturbation.
Hinder, Mark R; Milner, Theodore E
2005-08-01
To investigate the control mechanisms used in adapting to position-dependent forces, subjects performed 150 horizontal reaching movements over 25 cm in the presence of a position-dependent parabolic force field (PF). The PF acted only over the first 10 cm of the movement. On every fifth trial, a virtual mechanical guide (double wall) constrained subjects to move along a straight-line path between the start and target positions. Its purpose was to register lateral force to track formation of an internal model of the force field, and to look for evidence of possible alternative adaptive strategies. The force field produced a force to the right, which initially caused subjects to deviate in that direction. They reacted by producing deviations to the left, "into" the force field, as early as the second trial. Further adaptation resulted in rapid exponential reduction of kinematic error in the latter portion of the movement, where the greatest perturbation to the handpath was initially observed, whereas there was little modification of the handpath in the region where the PF was active. Significant force directed to counteract the PF was measured on the first guided trial, and was modified during the first half of the learning set. The total force impulse in the region of the PF increased throughout the learning trials, but it always remained less than that produced by the PF. The force profile did not resemble a mirror image of the PF in that it tended to be more trapezoidal than parabolic in shape. As in previous studies of force-field adaptation, we found that changes in muscle activation involved a general increase in the activity of all muscles, which increased arm stiffness, and selectively-greater increases in the activation of muscles which counteracted the PF. With training, activation was exponentially reduced, albeit more slowly than kinematic error. Progressive changes in kinematics and EMG occurred predominantly in the region of the workspace beyond the force field. We suggest that constraints on muscle mechanics limit the ability of the central nervous system to employ an inverse dynamics model to nullify impulse-like forces by generating mirror-image forces. Consequently, subjects adopted a strategy of slightly overcompensating for the first half of the force field, then allowing the force field to push them in the opposite direction. Muscle activity patterns in the region beyond the boundary of the force field were subsequently adjusted because of the relatively-slow response of the second-order mechanics of muscle impedance to the force impulse.
Evidence of protein-free homology recognition in magnetic bead force-extension experiments
NASA Astrophysics Data System (ADS)
O'Lee, D. J.; Danilowicz, C.; Rochester, C.; Kornyshev, A. A.; Prentiss, M.
2016-07-01
Earlier theoretical studies have proposed that the homology-dependent pairing of large tracts of dsDNA may be due to physical interactions between homologous regions. Such interactions could contribute to the sequence-dependent pairing of chromosome regions that may occur in the presence or the absence of double-strand breaks. Several experiments have indicated the recognition of homologous sequences in pure electrolytic solutions without proteins. Here, we report single-molecule force experiments with a designed 60 kb long dsDNA construct; one end attached to a solid surface and the other end to a magnetic bead. The 60 kb constructs contain two 10 kb long homologous tracts oriented head to head, so that their sequences match if the two tracts fold on each other. The distance between the bead and the surface is measured as a function of the force applied to the bead. At low forces, the construct molecules extend substantially less than normal, control dsDNA, indicating the existence of preferential interaction between the homologous regions. The force increase causes no abrupt but continuous unfolding of the paired homologous regions. Simple semi-phenomenological models of the unfolding mechanics are proposed, and their predictions are compared with the data.
Pre-Finishing of SiC for Optical Applications
NASA Technical Reports Server (NTRS)
Rozzi, Jay; Clavier, Odile; Gagne, John
2011-01-01
13 Manufacturing & Prototyping A method is based on two unique processing steps that are both based on deterministic machining processes using a single-point diamond turning (SPDT) machine. In the first step, a high-MRR (material removal rate) process is used to machine the part within several microns of the final geometry. In the second step, a low-MRR process is used to machine the part to near optical quality using a novel ductile regime machining (DRM) process. DRM is a deterministic machining process associated with conditions under high hydrostatic pressures and very small depths of cut. Under such conditions, using high negative-rake angle cutting tools, the high-pressure region near the tool corresponds to a plastic zone, where even a brittle material will behave in a ductile manner. In the high-MRR processing step, the objective is to remove material with a sufficiently high rate such that the process is economical, without inducing large-scale subsurface damage. A laser-assisted machining approach was evaluated whereby a CO2 laser was focused in advance of the cutting tool. While CVD (chemical vapor deposition) SiC was successfully machined with this approach, the cutting forces were substantially higher than cuts at room temperature under the same machining conditions. During the experiments, the expansion of the part and the tool due to the heating was carefully accounted for. The higher cutting forces are most likely due to a small reduction in the shear strength of the material compared with a larger increase in friction forces due to the thermal softening effect. The key advantage is that the hybrid machine approach has the potential to achieve optical quality without the need for a separate optical finishing step. Also, this method is scalable, so one can easily progress from machining 50-mm-diameter samples to the 250-mm-diameter mirror that NASA desires.
West Florida shelf circulation and temperature budget for the 1999 spring transition
He, Ruoying; Weisberg, Robert H.
2002-01-01
Mid-latitude continental shelves undergo a spring transition as the net surface heat flux changes from cooling to warming. Using in situ data and a numerical circulation model we investigate the circulation and temperature budget on the West Florida Continental Shelf (WFS) for the spring transition of 1999. The model is a regional adaptation of the primitive equation, Princeton Ocean Model forced by NCEP reanalysis wind and heat flux fields and by river inflows. Based on agreements between the modeled and observed fields we use the model to draw inferences on how the surface momentum and heat fluxes affect the seasonal and synoptic scale variability. We account for a strong southeastward current at mid-shelf by the baroclinic response to combined wind and buoyancy forcing, and we show how this local forcing leads to annually occurring cold and low salinity tongues. Through term-by-term analyses of the temperature budget we describe the WFS temperature evolution in spring. Heat flux largely controls the seasonal transition, whereas ocean circulation largely controls the synoptic scale variability. These two processes, however, are closely linked. Bottom topography and coastline geometry are important in generating regions of convergence and divergence. Rivers contribute to the local hydrography and are important ecologically. Along with upwelling, river inflows facilitate frontal aggregation of nutrients and the spring formation of a high concentration chlorophyll plume near the shelf break (the so-called ‘Green River’) coinciding with the cold, low salinity tongues. These features originate by local, shelf-wide forcing; the Loop Current is not an essential ingredient.
GPU accelerated edge-region based level set evolution constrained by 2D gray-scale histogram.
Balla-Arabé, Souleymane; Gao, Xinbo; Wang, Bin
2013-07-01
Due to its intrinsic nature which allows to easily handle complex shapes and topological changes, the level set method (LSM) has been widely used in image segmentation. Nevertheless, LSM is computationally expensive, which limits its applications in real-time systems. For this purpose, we propose a new level set algorithm, which uses simultaneously edge, region, and 2D histogram information in order to efficiently segment objects of interest in a given scene. The computational complexity of the proposed LSM is greatly reduced by using the highly parallelizable lattice Boltzmann method (LBM) with a body force to solve the level set equation (LSE). The body force is the link with image data and is defined from the proposed LSE. The proposed LSM is then implemented using an NVIDIA graphics processing units to fully take advantage of the LBM local nature. The new algorithm is effective, robust against noise, independent to the initial contour, fast, and highly parallelizable. The edge and region information enable to detect objects with and without edges, and the 2D histogram information enable the effectiveness of the method in a noisy environment. Experimental results on synthetic and real images demonstrate subjectively and objectively the performance of the proposed method.
Bin Mustafa, Ammar Safwan; Ishii, Takashi; Matsunaga, Yoshiki; Nakadate, Ryu; Ishii, Hiroyuki; Ogawa, Kouji; Saito, Akiko; Sugawara, Motoaki; Niki, Kiyomi; Takanishi, Atsuo
2013-01-01
Physicians use ultrasound scans to obtain real-time images of internal organs, because such scans are safe and inexpensive. However, people in remote areas face difficulties to be scanned due to aging society and physician's shortage. Hence, it is important to develop an autonomous robotic system to perform remote ultrasound scans. Previously, we developed a robotic system for automatic ultrasound scan focusing on human's liver. In order to make it a completely autonomous system, we present in this paper a way to autonomously localize the epigastric region as the starting position for the automatic ultrasound scan. An image processing algorithm marks the umbilicus and mammary papillae on a digital photograph of the patient's abdomen. Then, we made estimation for the location of the epigastric region using the distances between these landmarks. A supporting algorithm distinguishes rib position from epigastrium using the relationship between force and displacement. We implemented these algorithms with the automatic scanning system into an apparatus: a Mitsubishi Electric's MELFA RV-1 six axis manipulator. Tests on 14 healthy male subjects showed the apparatus located the epigastric region with a success rate of 94%. The results suggest that image recognition was effective in localizing a human body part.
Equatorial superrotation in a thermally driven zonally symmetric circulation
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.
1981-01-01
Near the equator where the Coriolis force vanishes, the momentum balance for the axially symmetric circulation is established between horizontal and vertical diffusion, which, a priori, does not impose constraints on the direction or magnitude of the zonal winds. Solar radiation absorbed at low latitudes is a major force in driving large scale motions with air rising near the equator and falling at higher latitudes. In the upper leg of the meridional cell, angular momentum is redistributed so that the atmosphere tends to subrotate (or corotate) at low latitudes and superrotate at high latitudes. In the lower leg, however, the process is reversed and produces a tendency for the equatorial region to superrotate. The outcome depends on the energy budget which is closely coupled to the momentum budget through the thermal wind equation; a pressure (temperature) maximum is required to sustain equatorial superrotation. Such a condition arises in regions which are convectively unstable and the temperature lapse rate is superadiabatic. It should arise in the tropospheres of Jupiter and Saturn; planetary energy from the interior is carried to higher altitudes where radiation to space becomes important. Upward equatorial motions in the direct and indirect circulations (Ferrel-Thomson type) imposed by insolation can then trap dynamic energy for equatorial heating which can sustain the superrotation of the equatorial region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Yun; Yasunari, Teppei J.; Doherty, Sarah J.
2015-01-01
Light absorbing particles (LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance (a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice (LAPSI) has been identified as one of major forcings affecting climate change, e.g. in the fourth andmore » fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high. In this review paper, we document various technical methods of measuring LAPSI and review the progress made in measuring the LAPSI in Arctic, Tibetan Plateau and other mid-latitude regions. We also report the progress in modeling the mass concentrations, albedo reduction, radiative forcing, andclimatic and hydrological impact of LAPSI at global and regional scales. Finally we identify some research needs for reducing the uncertainties in the impact of LAPSI on global and regional climate and the hydrological cycle.« less
Differentiating climatic and successional influences on long-term development of a marsh
Singer, Darren K.; Jackson, Stephen T.; Madsen, Barbara J.; Wilcox, Douglas A.
1996-01-01
Comparison of long—term records of local wetland vegetation dynamics with regional, climate—forced terrestrial vegetation changes can be used to differentiate the rates and effects of autogenic successional processes and allogenic environmental change on wetland vegetation dynamics. We studied Holocene plant macrofossil and pollen sequences from Portage Marsh, a shallow, 18—ha marsh in northeastern Indiana. Between 10 000 and 5700 yr BP the basin was occupied by a shallow, open lake, while upland vegetation consisted of mesic forests of Pinus, Quercus, Ulmus, and Carya. At 5700 yr BP the open lake was replaced rapidly by a shallow marsh, while simultaneously Quercus savanna developed on the surrounding uplands. The marsh was characterized by periodic drawdowns, and the uplands by periodic fires. Species composition of the marsh underwent further changes between 3000 and 2000 yr BP. Upland pollen spectra at Portage Marsh and other sites in the region shifted towards more mesic vegetation during that period. The consistency and temporal correspondence between the changes in upland vegetation and marsh vegetation indicate that the major vegetational changes in the marsh during the Holocene resulted from hydrologic changes forced by regional climate change. Progressive shallowing of the basin by autogenic accumulation of organic sediment constrained vegetational responses to climate change but did not serve as the direct mechanism of change.
Galloway, Benjamin R.; Popmintchev, Dimitar; Pisanty, Emilio; ...
2016-09-09
Here, we present a semi-classical study of the effects of the Lorentz force on electrons during high harmonic generation in the soft and hard X-ray regions driven by near- and mid-infrared lasers with wavelengths from 0.8 to 20 μm, and at intensities below 10 15 W/cm 2. The transverse extent of the longitudinal Lorentz drift is compared for both Gaussian focus and waveguide geometries. Both geometries exhibit a longitudinal electric field component that cancels the magnetic Lorentz drift in some regions of the focus, once each full optical cycle. We show that the Lorentz force contributes a super-Gaussian scaling whichmore » acts in addition to the dominant high harmonic flux scaling of λ -(5-6) due to quantum diffusion. We predict that the high harmonic yield will be reduced for driving wavelengths > 6 μm, and that the presence of dynamic spatial mode asymmetries results in the generation of both even and odd harmonic orders. Remarkably, we show that under realistic conditions, the recollision process can be controlled and does not shut off completely even for wavelengths >10 μm and recollision energies greater than 15 keV.« less
Large Scale Processes and Extreme Floods in Brazil
NASA Astrophysics Data System (ADS)
Ribeiro Lima, C. H.; AghaKouchak, A.; Lall, U.
2016-12-01
Persistent large scale anomalies in the atmospheric circulation and ocean state have been associated with heavy rainfall and extreme floods in water basins of different sizes across the world. Such studies have emerged in the last years as a new tool to improve the traditional, stationary based approach in flood frequency analysis and flood prediction. Here we seek to advance previous studies by evaluating the dominance of large scale processes (e.g. atmospheric rivers/moisture transport) over local processes (e.g. local convection) in producing floods. We consider flood-prone regions in Brazil as case studies and the role of large scale climate processes in generating extreme floods in such regions is explored by means of observed streamflow, reanalysis data and machine learning methods. The dynamics of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the vertically integrated moisture flux and its divergence field, which are interpreted in a low-dimensional space as obtained by machine learning techniques, particularly supervised kernel principal component analysis. In such reduced dimensional space, clusters are obtained in order to better understand the role of regional moisture recycling or teleconnected moisture in producing floods of a given magnitude. The convective available potential energy (CAPE) is also used as a measure of local convection activities. We investigate for individual sites the exceedance probability in which large scale atmospheric fluxes dominate the flood process. Finally, we analyze regional patterns of floods and how the scaling law of floods with drainage area responds to changes in the climate forcing mechanisms (e.g. local vs large scale).
Calculation of electromagnetic force in electromagnetic forming process of metal sheet
NASA Astrophysics Data System (ADS)
Xu, Da; Liu, Xuesong; Fang, Kun; Fang, Hongyuan
2010-06-01
Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.
Cross flow cyclonic flotation column for coal and minerals beneficiation
Lai, Ralph W.; Patton, Robert A.
2000-01-01
An apparatus and process for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophillic tailings.
2009-05-21
conducted as well as officers from the Armed Forces of the Philippines who served in Mindanao to solicit their experience and educated opinions. Many...284. 5 rulers.‖5 He claims that American colonization built the Moro national identity especially through the education process that was established...during this period. In addition, the Government of the Philippines (GRP) extended the olive branch by educating Moros in universities in Manila and
Small but mighty: the evolutionary dynamics of W and Y sex chromosomes.
Mank, Judith E
2012-01-01
Although sex chromosomes have been the focus of a great deal of scientific scrutiny, most interest has centred on understanding the evolution and relative importance of X and Z chromosomes. By contrast, the sex-limited W and Y chromosomes have received far less attention, both because of their generally degenerate nature and the difficulty in studying non-recombining and often highly heterochromatic genomic regions. However, recent theory and empirical evidence suggest that the W and Y chromosomes play a far more important role in sex-specific fitness traits than would be expected based on their size alone, and this importance may explain the persistence of some Y and W chromosomes in the face of powerful degradative forces. In addition to their role in fertility and fecundity, the sex-limited nature of these genomic regions results in unique evolutionary forces acting on Y and W chromosomes, implicating them as potentially major contributors to sexual selection and speciation. Recent empirical studies have borne out these predictions and revealed that some W and Y chromosomes play a vital role in key sex-specific evolutionary processes.
Small but mighty: the evolutionary dynamics of W and Y sex chromosomes
2012-01-01
Although sex chromosomes have been the focus of a great deal of scientific scrutiny, most interest has centred on understanding the evolution and relative importance of X and Z chromosomes. By contrast, the sex-limited W and Y chromosomes have received far less attention, both because of their generally degenerate nature and the difficulty in studying non-recombining and often highly heterochromatic genomic regions. However, recent theory and empirical evidence suggest that the W and Y chromosomes play a far more important role in sex-specific fitness traits than would be expected based on their size alone, and this importance may explain the persistence of some Y and W chromosomes in the face of powerful degradative forces. In addition to their role in fertility and fecundity, the sex-limited nature of these genomic regions results in unique evolutionary forces acting on Y and W chromosomes, implicating them as potentially major contributors to sexual selection and speciation. Recent empirical studies have borne out these predictions and revealed that some W and Y chromosomes play a vital role in key sex-specific evolutionary processes. PMID:22038285
Wojtas-Niziurski, Wojciech; Meng, Yilin; Roux, Benoit; Bernèche, Simon
2013-01-01
The potential of mean force describing conformational changes of biomolecules is a central quantity that determines the function of biomolecular systems. Calculating an energy landscape of a process that depends on three or more reaction coordinates might require a lot of computational power, making some of multidimensional calculations practically impossible. Here, we present an efficient automatized umbrella sampling strategy for calculating multidimensional potential of mean force. The method progressively learns by itself, through a feedback mechanism, which regions of a multidimensional space are worth exploring and automatically generates a set of umbrella sampling windows that is adapted to the system. The self-learning adaptive umbrella sampling method is first explained with illustrative examples based on simplified reduced model systems, and then applied to two non-trivial situations: the conformational equilibrium of the pentapeptide Met-enkephalin in solution and ion permeation in the KcsA potassium channel. With this method, it is demonstrated that a significant smaller number of umbrella windows needs to be employed to characterize the free energy landscape over the most relevant regions without any loss in accuracy. PMID:23814508
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Yongkang; De Sales, Fernando; Lau, William K. -M.
The Sahel climate system had experienced one of the strongest interdecadal climate variabilities and the longest drought on the planet in the twentieth century. Most modeling studies on the decadal variability of the Sahel climate so far have focused on the role of anomalies in either sea surface temperature (SST), land surface processes, or aerosols concentration. The Second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) is designed to improve understanding of the possible roles and feedback of SST, land use land cover change (LULCC), and aerosols forcings in the Sahel climate system at seasonal to decadal scales.more » The WAMME II strategy is to apply observationally based anomaly forcing, i.e., “idealized but realistic” forcing, in simulations by general circulation models’ (GCMs) and regional climate models’ (RCMs) to test the relative impacts of such forcings in producing/amplifying the Sahelian seasonal and decadal climate variability, including the 20th century drought. To test individual ocean’s SST effect, a special approach in the experimental design is taken to avoid undermine its effect. This is the first multi-model experiment specifically designed to simultaneously evaluate relative contributions of multiple-external forcings to the Sahel drought. This paper presents the major results and preliminary findings of the WAMME II SST experiment, including each ocean’s contribution to the global SST effect, as well as comparison of the SST effect with the LULCC effect. The common empirical orthogonal functions and other analyses are applied to assess and comprehend the discrepancies among the models. In general, the WAMME II models have reached a consensus on SST’s major contribution to the great Sahel drought and show that with the maximum possible SST forcing, it can produce up to 60% of the absolute amount of precipitation difference between the 1980s and the 1950s. This paper has 3 also delineated the role of SSTs in triggering and maintaining the Sahel drought, suggesting a potential predictability of WAM development linked to SST. Among different ocean basins, the Pacific and Indian Ocean SSTs have the greatest impact on the 1980s drought. The WAMME II, however, fails to reach a consensus on the role of the Mediterranean Sea SST. The changes in circulation, moisture flux convergence, and associated surface energy balances are the main mechanisms for the SST effect. The paper also compares the SST effect with the LULCC effects. It is shown that the prescribed land forcing produces about 40% of the precipitation difference between the 1980s and the 1950s, which is less than SST contribution but still of first order in the Sahel climate system. The role of land surface processes in responding to and amplifying the drought has also been identified. The results demonstrate that catastrophic consequences likely occur in the regional climate when SST anomalies in individual ocean basins and in land conditions combine synergistically to favor drought. Due to limited ensemble members, aerosol effects are not compared. Since the SST and land forcing in the real world are likely smaller than specified in this study, further investigations on the effects of aerosols as well as of other external forcings, such as greenhouse gases, and of atmospheric internal variability, are necessary. Moreover, although the WAMEE II models support a general consensus on SST and LULCC effects, there are still large discrepancies in how these models produce the Sahel drought in the 1980s. Better atmospheric observational and analysis data including more processes and components are necessary to validate and constrain models, and to guide further model development and improvement.« less
NASA Astrophysics Data System (ADS)
González-Dávila, Melchor; Magdalena Santana Casiano, J.; Machín, Francisco
2017-08-01
Coastal upwellings along the eastern margins of major ocean basins represent regions of large ecological and economic importance due to the high biological productivity. The role of these regions for the global carbon cycle makes them essential in addressing climate change. The physical forcing of upwelling processes that favor production in these areas are already being affected by global warming, which will modify the intensity of upwelling and, consequently, the carbon dioxide cycle. Here, we present monthly high-resolution surface experimental data for temperature and partial pressure of carbon dioxide in one of the four most important upwelling regions of the planet, the Mauritanian-Cap Vert upwelling region, from 2005 to 2012. This data set provides direct evidence of seasonal and interannual changes in the physical and biochemical processes. Specifically, we show an upwelling intensification and an increase of 0.6 Tg yr-1 in CO2 outgassing due to increased wind speed, despite increased primary productivity. This increase in CO2 outgassing together with the observed decrease in sea surface temperature at the location of the Mauritanian Cap Blanc, 21° N, produced a pH rate decrease of -0.003 ± 0.001 yr-1.
Observation-Driven Estimation of the Spatial Variability of 20th Century Sea Level Rise
NASA Astrophysics Data System (ADS)
Hamlington, B. D.; Burgos, A.; Thompson, P. R.; Landerer, F. W.; Piecuch, C. G.; Adhikari, S.; Caron, L.; Reager, J. T.; Ivins, E. R.
2018-03-01
Over the past two decades, sea level measurements made by satellites have given clear indications of both global and regional sea level rise. Numerous studies have sought to leverage the modern satellite record and available historic sea level data provided by tide gauges to estimate past sea level rise, leading to several estimates for the 20th century trend in global mean sea level in the range between 1 and 2 mm/yr. On regional scales, few attempts have been made to estimate trends over the same time period. This is due largely to the inhomogeneity and quality of the tide gauge network through the 20th century, which render commonly used reconstruction techniques inadequate. Here, a new approach is adopted, integrating data from a select set of tide gauges with prior estimates of spatial structure based on historical sea level forcing information from the major contributing processes over the past century. The resulting map of 20th century regional sea level rise is optimized to agree with the tide gauge-measured trends, and provides an indication of the likely contributions of different sources to regional patterns. Of equal importance, this study demonstrates the sensitivities of this regional trend map to current knowledge and uncertainty of the contributing processes.
Landslide caracteristics determination using bayesian inversion and seismic recording
NASA Astrophysics Data System (ADS)
Mangeney, A.; Moretti, L.; Capdeville, Y.; Stutzmann, E.; Bodin, T.; Bouchut, F.
2014-12-01
Gravitational instabilities, such as landslides, avalanches, or debris flows, play a key role in erosional processes and represent one of the major natural hazards in mountainous, coastal, and volcanic regions. Despite the great amount of field, experimental and numerical work devoted to this problem, the understanding of the physical processes at work in gravitational flows is still an open issue, in particular due to the lack of observations relevant to their dynamics. In this context, the seismic signal generated by gravitational flows is a unique opportunity to obtain information on their dynamics and characteristics. Here we present the study of the 1997 Boxing Day landslide that occurred in Montserrat. We accessed the force applied by the landslide to the ground surface responsible of the seismic waves by inverting the seismic waveform recorded (force-time function). This force was then used as a constraint in a bayesian inversion problem where the forward problem is the force-time function calculation obtained by simulating the landslide with the SHALTOP model (mangeney et al., 2007). With this method, we are able to give an estimate of the rheology (friction coefficient) and the initial shape of the collapsing mass. The volume retrieved is very similar to that obtained by field observations. The friction coefficient determined is also similar to that constrained by former studies or to that predicted by empirical laws (Lucas et al., 2014). Furthermore the method permits to give an estimate of the error made on these parameters.
Zhang, S L; Xue, F; Wu, R; Cui, J; Jiang, Z M; Yang, X J
2009-04-01
Conductive atomic force microscopy has been employed to study the topography and conductance distribution of individual GeSi quantum dots (QDs) and quantum rings (QRs) during the transformation from QDs to QRs by depositing an Si capping layer on QDs. The current distribution changes significantly with the topographic transformation during the Si capping process. Without the capping layer, the QDs are dome-shaped and the conductance is higher at the ring region between the center and boundary than that at the center. After capping with 0.32 nm Si, the shape of the QDs changes to pyramidal and the current is higher at both the center and the arris. When the Si capping layer increases to 2 nm, QRs are formed and the current of individual QRs is higher at the rim than that at the central hole. By comparing the composition distributions obtained by scanning Auger microscopy and atomic force microscopy combined with selective chemical etching, the origin of the current distribution change is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedotov, S.A.
Using geophysical data, the mechanism of deep-seated magmatic and volcanic activity was studied in the region of the island arcs and associated structures. Data on magmatic activity below the volcanic belt of East Kamchatka, obtained during geophysical investigations, mainly during detailed seismological investigations and deep seismic sounding, provide evidence for an association between the volcanoes and the processes in the Pacific Ocean focal layer of earthquakes, and for the accumulation of magmas below the volcanic belt at depths less than 60 km. Anomalous columnar bodies more than 5 to 7 km across were found linking the volcanoes with the focalmore » layer. There was also a very large concentration of convective heat flow and volatiles in the magma columns feeding the volcanoes. As to the role of different forces in the uprise of magmas into the volcanoes, hydrostatic forces probably predominate in the asthenosphere, supplemented by tectonic pressure in the lithosphere and forces associated with boiling of magmas during release of volatiles in the crust, especially in its upper layers.« less
Dynamic Contact Angle at the Nanoscale: A Unified View.
Lukyanov, Alex V; Likhtman, Alexei E
2016-06-28
Generation of a dynamic contact angle in the course of wetting is a fundamental phenomenon of nature. Dynamic wetting processes have a direct impact on flows at the nanoscale, and therefore, understanding them is exceptionally important to emerging technologies. Here, we reveal the microscopic mechanism of dynamic contact angle generation. It has been demonstrated using large-scale molecular dynamics simulations of bead-spring model fluids that the main cause of local contact angle variations is the distribution of microscopic force acting at the contact line region. We were able to retrieve this elusive force with high accuracy. It has been directly established that the force distribution can be solely predicted on the basis of a general friction law for liquid flow at solid surfaces by Thompson and Troian. The relationship with the friction law provides both an explanation of the phenomenon of dynamic contact angle and a methodology for future predictions. The mechanism is intrinsically microscopic, universal, and irreducible and is applicable to a wide range of problems associated with wetting phenomena.
A New Paradigm for Assessing the Role of Agriculture in the Climate System and in Climate Change
NASA Technical Reports Server (NTRS)
Pielke, Roger A., Sr.; Adegoke, Jimmy O.; Chase, Thomas N.; Marshall, Curtis H.; Matsui, Toshihisa; Niyogi, Dev
2007-01-01
This paper discusses the diverse climate forcings that impact agricultural systems, and contrasts the current paradigm of using global models downscaled to agricultural areas (a top-down approach) with a new paradigm that first assesses the vulnerability of agricultural activities to the spectrum of environmental risk including climate (a bottom-up approach). To illustrate the wide spectrum of climate forcings, regional climate forcings are presented including land-use/land-cover change and the influence of aerosols on radiative and biogeochemical fluxes and cloud/precipitation processes, as well as how these effects can be teleconnected globally. Examples are presented of the vulnerability perspective, along with a small survey of the perceived drought impacts in a local area, in which a wide range of impacts for the same precipitation deficits are found. This example illustrates why agricultural assessments of risk to climate change and variability and of other environmental risks should start with a bottom-up perspective.
NASA Astrophysics Data System (ADS)
Li, Zaoyang; Qi, Xiaofang; Liu, Lijun; Zhou, Genshu
2018-02-01
The alternating current (AC) in the resistance heater for generating heating power can induce a magnetic field in the silicon melt during directional solidification (DS) of silicon ingots. We numerically study the influence of such a heater-generating magnetic field on the silicon melt flow and temperature distribution in an industrial DS process. 3D simulations are carried out to calculate the Lorentz force distribution as well as the melt flow and heat transfer in the entire DS furnace. The pattern and intensity of silicon melt flow as well as the temperature distribution are compared for cases with and without Lorentz force. The results show that the Lorentz force induced by the heater-generating magnetic field is mainly distributed near the top and side surfaces of the silicon melt. The melt flow and temperature distribution, especially those in the upper part of the silicon region, can be influenced significantly by the magnetic field.
Using Climate Models to Evaluate Mechanisms of Glacial Inception
NASA Technical Reports Server (NTRS)
Oglesby, Robert J.; Arnold, James E. (Technical Monitor)
2001-01-01
The initiation and subsequent growth of an ice sheet or large glacier is based on two primary factors: 1. Most fundamentally, a region must exist with a positive net snow accumulation, that is, cold season snowfall exceeds warm season snowmelt. Because snow can melt very rapidly, in a practical sense this probably means that little or no snow melt should occur in the warm season (mountain glaciers being one possible exception). 2. When sufficient ice builds in a region with a positive net snow accumulation, the ice will flow into adjoining regions with a negative mass balance. Feedbacks can also then arise between the emerging ice sheet and the overall climate, which, among other effects, may cause the mass balance in that region to turn positive. A key question is the relative importance of these two factors. In particular, is it possible for a large lowland region to experience a positive mass balance, such that the ice sheet can arise largely 'in-situ'? Or instead are uplands necessary, such that essentially mountain glaciers form first, and then, under the right conditions, grow and coalesce, eventually spreading out into the lowlands? This is probably the single most fundamental question to be addressed in the modeling of glacial inception. Other key questions then focus on how the (upland or low-land) positive mass balance is obtained at some times, but not others (the ice sheets are not continuously present). For Northern Hemisphere ice sheets in particular, what climatic conditions can lead to abundant winter snowfall in the Canadian Arctic and northern Labrador in conjunction with cool summertime conditions? Are both required, or will cool summer conditions alone suffice? Conversely, are a few years of abnormally heavy snowfall all that is required to trigger glacial inception? A major need at present is for carefully constructed climate model studies aimed at addressing these questions. A successful strategy will almost certainly require more than just a global model; while the global climate model might be necessary to properly simulate large-scale forcing, such models have insufficient spatial resolution to adequately address the roles of topography and the nature of the land surface. Necessary also is the use of a high-resolution regional climate model (in conjunction with a global model). Possible forcing mechanisms of Pleistocene ice ages are well known (e.g., orbital forcing; CO2 fluctuations) but we must understand and be able to successfully model the actual processes involved in glacial inception before we can fully understand the true roles played by these forcing mechanisms.
A consistent model for tsunami actions on buildings
NASA Astrophysics Data System (ADS)
Foster, A.; Rossetto, T.; Eames, I.; Chandler, I.; Allsop, W.
2016-12-01
The Japan (2011) and Indian Ocean (2004) tsunami resulted in significant loss of life, buildings, and critical infrastructure. The tsunami forces imposed upon structures in coastal regions are initially due to wave slamming, after which the quasi-steady flow of the sea water around buildings becomes important. An essential requirement in both design and loss assessment is a consistent model that can accurately predict these forces. A model suitable for predicting forces in the in the quasi-steady range has been established as part of a systematic programme of research by the UCL EPICentre to understand the fundamental physical processes of tsunami actions on buildings, and more generally their social and economic consequences. Using the pioneering tsunami generator at HR Wallingford, this study considers the influence of unsteady flow conditions on the forces acting upon a rectangular building occupying 10-80% of a channel for 20-240 second wave periods. A mathematical model based upon basic open-channel flow principles is proposed, which provides empirical estimates for drag and hydrostatic coefficients. A simple force prediction equation, requiring only basic flow velocity and wave height inputs is then developed, providing good agreement with the experimental results. The results of this study demonstrate that the unsteady forces from the very long waves encountered during tsunami events can be predicted with a level of accuracy and simplicity suitable for design and risk assessment.
Conductive atomic force microscopy measurements of nanopillar magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Evarts, E. R.; Hogg, C.; Bain, J. A.; Majetich, S. A.
2009-03-01
Magnetic tunnel junctions have been studied extensively for their magnetoresistance and potential uses in magnetic logic and data storage devices, but little is known about how their performance will scale with size. Here we examined the electronic behavior of 12 nm diameter magnetic tunnel junctions fabricated by a novel nanomasking process. Scanning electron microscopy images indicated feature diameter of 12 nm, and atomic force microscopy showed a height of 5 nm suggesting that unmasked regions have been milled on average to the oxide barrier layer, and areas should have the remnants of the free layer exposed with no remaining nanoparticle. Electrical contact was made to individual nanopillars using a doped-diamond-coated atomic force microscopy probe with a 40 nm radius of curvature at the tip. Off pillar we observed a resistance of 8.1 x 10^5 φ, while on pillar we found a resistance of 2.85 x 10^6 φ. Based on the RA product for this film, 120 φ-μm^2, a 12 nm diameter cylinder with perfect contact would have a resistance of 1.06 x 10^6 φ. The larger experimental value is consistent with a smaller contact area due to damaging the pillar during the ion milling process. The magnetoresistance characteristics of these magnetic tunnel junctions will be discussed.
Conditions for Destabilizing Pickering emulsions using external electric fields
NASA Astrophysics Data System (ADS)
Hwang, Kyuho; Singh, Pushpendra; Aubry, Nadine
2009-11-01
Fine particles are readily adsorbed at fluid-fluid interfaces, and can be used as stabilizers in emulsion technology by preventing adjacent drops from coalescing with each other. We investigate a new technique to destabilize such emulsions, or Pickering emulsions, by applying an external electric field. Experiments show that the latter has two effects: (i) the drops elongate in the direction of the electric field, (ii) the local particle density varies on the drop surface due to the dielectrophoretic (DEP) force acting on the particles. It is shown that the latter is the dominant factor in the destabilization process. Particularly, the success of the method depends on the values of certain dimensionless parameters; specifically, the ratio of the work done by the dielectrophoretic force must be larger than the work done by the buoyant force. Moreover, drops do not coalesce through the regions where the particles locally cluster, whether those are gathered at the poles or at the equator of the drops. As particles move, particle-free openings form on the drop's surface, which allow for adjacent drops to merge. This process takes place even if the particles are fully packed on the drops' surfaces as particles get ejected from the clustering areas due to a buckling phenomenon.
Field-Assisted Contact Line Motion in Thin Films.
Ghosh, Udita Uday; DasGupta, Sunando
2018-04-25
The balance of intermolecular and surface forces plays a critical role in the transport phenomena near the contact line region of an extended meniscus in several technologically important processes. Externally applied fields can alter the equilibrium and stability of the meniscus with concomitant effects on its shape and spreading characteristics and may even lead to an oscillation. This feature article provides a detailed account of the present and past efforts in exploring the behavior of curved thin liquid films subjected to mild thermal perturbations, heat input, and electrical and magnetic fields for pure as well as colloidal suspensions, including the effects of particle charge and polarity. The shape-dependent intermolecular force field has been evaluated in situ by a nonobtrusive optical technique utilizing the interference phenomena and subsequent image processing. The critical role of disjoining pressure is identified along with the determination of the Hamaker constant. The spatial and temporal variations of the capillary forces are evaluated for the advancing and receding menisci. The Maxwell-stress-induced enhanced spreading during electrowetting, at relatively low voltages, and that due to the application of a magnetic field are discussed with respect to their distinctly different characteristics and application potentials. The use of the augmented Young-Laplace equation elicited additional insights into the fundamental physics for flow in ultrathin liquid films.
NASA Astrophysics Data System (ADS)
Harrop, Bryce E.; Ma, Po-Lun; Rasch, Philip J.; Neale, Richard B.; Hannay, Cecile
2018-04-01
Precipitation is an important climate quantity that is critically relevant to society. In spite of intense efforts, significant precipitation biases remain in most climate models. One pervasive and persistent bias found in many general circulation models occurs in the Tropical West Pacific where northern hemisphere summer-time precipitation is often underestimated compared to observations. Using the DOE-E3SM model, the inclusion of a missing process, convective gustiness, is shown to reduce those biases through a net increase in surface evaporation. Gustiness in surface wind fields is assumed to arise empirically in proportion to the intensity of convective precipitation. The increased evaporation can be treated as an increase in the moist static energy forcing into the atmosphere. A Normalized Gross Moist Stability (NGMS) framework (which characterizes the relationship between convective forcing and convective response) is used to explore the processes responsible for the precipitation bias, and the impact of the gustiness parameterization in reducing that bias. Because the NGMS of the Tropical West Pacific is less than unity in the E3SMv1 model, the increase in energy forcing amplifies the increase in precipitation to exceed that of the evaporative flux. Convective gustiness favors increased precipitation in regions where the resolved surface winds are weak and convection is present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrop, Bryce E.; Ma, Po -Lun; Rasch, Philip J.
Precipitation is an important climate quantity that is critically relevant to society. In spite of intense efforts, significant precipitation biases remain in most climate models. One pervasive and persistent bias found in many general circulation models occurs in the Tropical West Pacific where northern hemisphere summer-time precipitation is often underestimated compared to observations. Using the DOE-E3SM model, the inclusion of a missing process, convective gustiness, is shown to reduce those biases through a net increase in surface evaporation. Gustiness in surface wind fields is assumed to arise empirically in proportion to the intensity of convective precipitation. The increased evaporation canmore » be treated as an increase in the moist static energy forcing into the atmosphere. A Normalized Gross Moist Stability (NGMS) framework (which characterizes the relationship between convective forcing and convective response) is used to explore the processes responsible for the precipitation bias, and the impact of the gustiness parameterization in reducing that bias. Because the NGMS of the Tropical West Pacific is less than unity in the E3SMv1 model, the increase in energy forcing amplifies the increase in precipitation to exceed that of the evaporative flux. Convective gustiness favors increased precipitation in regions where the resolved surface winds are weak and convection is present.« less
Harrop, Bryce E.; Ma, Po -Lun; Rasch, Philip J.; ...
2018-03-12
Precipitation is an important climate quantity that is critically relevant to society. In spite of intense efforts, significant precipitation biases remain in most climate models. One pervasive and persistent bias found in many general circulation models occurs in the Tropical West Pacific where northern hemisphere summer-time precipitation is often underestimated compared to observations. Using the DOE-E3SM model, the inclusion of a missing process, convective gustiness, is shown to reduce those biases through a net increase in surface evaporation. Gustiness in surface wind fields is assumed to arise empirically in proportion to the intensity of convective precipitation. The increased evaporation canmore » be treated as an increase in the moist static energy forcing into the atmosphere. A Normalized Gross Moist Stability (NGMS) framework (which characterizes the relationship between convective forcing and convective response) is used to explore the processes responsible for the precipitation bias, and the impact of the gustiness parameterization in reducing that bias. Because the NGMS of the Tropical West Pacific is less than unity in the E3SMv1 model, the increase in energy forcing amplifies the increase in precipitation to exceed that of the evaporative flux. Convective gustiness favors increased precipitation in regions where the resolved surface winds are weak and convection is present.« less
Challenges and opportunities for improved understanding of regional climate dynamics
NASA Astrophysics Data System (ADS)
Collins, Matthew; Minobe, Shoshiro; Barreiro, Marcelo; Bordoni, Simona; Kaspi, Yohai; Kuwano-Yoshida, Akira; Keenlyside, Noel; Manzini, Elisa; O'Reilly, Christopher H.; Sutton, Rowan; Xie, Shang-Ping; Zolina, Olga
2018-01-01
Dynamical processes in the atmosphere and ocean are central to determining the large-scale drivers of regional climate change, yet their predictive understanding is poor. Here, we identify three frontline challenges in climate dynamics where significant progress can be made to inform adaptation: response of storms, blocks and jet streams to external forcing; basin-to-basin and tropical-extratropical teleconnections; and the development of non-linear predictive theory. We highlight opportunities and techniques for making immediate progress in these areas, which critically involve the development of high-resolution coupled model simulations, partial coupling or pacemaker experiments, as well as the development and use of dynamical metrics and exploitation of hierarchies of models.
NASA Astrophysics Data System (ADS)
Voges-Schwieger, Kathrin; Hübner, Sven; Behrens, Bernd-Arno
2011-05-01
Metastable austenitic stainless steels change their lattice during forming operations by strain-induced alpha'-martensite formation. Temperatures below T = 20° C can accelerate the phase transformation while temperatures above T = 60° C may suppress the formation of martensite during the forming operation. In past investigations, the effect of high-strength martensitic regions in an austenitic ductile lattice was used in crash relevant parts for transportation vehicles. The local martensitic regions act as reinforcements leading to an increase in crash energy absorption. Moreover, they control the folding behavior as well as the force-distance-characteristic and increase the buckling resistance. This paper deals with a concerted thermomechanical drawing process to increase the local formation of alpha'-martensite caused by low temperatures.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.; Herrero, F. A.; Spencer, N. W.; Varosi, F.; Pesnell, W. D.
1990-01-01
This paper presents some numerical experiments performed with the TFM to study the various wave components excited in the auroral regions that propagate through the thermosphere and lower atmosphere, and to demonstrate the properties of realistic source geometries. The model is applied to the interpretation of satellite measurements, and gravity waves seen in the thermosphere of Venus are discussed. Gravity waves are prominent in the terrestrial thermosphere polar region and can be excited by perturbations in Joule heating and Lorentz force due to magnetospheric processes. Observations from the Dynamics Explorer-2 satellite are used to illustrate the complexity of the phenomenon and to review the TFM that is utilized.
ASEAN and Indochina: A Strategy for Regional Stability in the 1980’s.
1984-12-01
regional powers. The resultant regional balance of power is precarious, unstable, and ever threatens to deteriorate into armed conflict. The unequal...an armed force that is capable of large scale defense. Ironically, while ostensibly defensively motivated, these efforts have resulted in a war machine... resulted in the atmosphere of tense uncertainty in Southeast Asia today. In contrast to Vietnamese motivations for their force -- structure, the other
Assessment of Regional Explosion Discriminants Using Data Sets of Unparalleled Spatial Sampling
2012-10-31
Air Force Research Laboratory AFRL ...Final Report APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. AIR FORCE RESEARCH LABORATORY Space Vehicles...Directorate 3550 Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 Approved for public release; distribution
Transport processes near coastal ocean outfalls
Noble, M.A.; Sherwood, C.R.; Lee, Hooi-Ling; Xu, Jie; Dartnell, P.; Robertson, G.; Martini, M.
2001-01-01
The central Southern California Bight is an urbanized coastal ocean where complex topography and largescale atmospheric and oceanographic forcing has led to numerous sediment-distribution patterns. Two large embayments, Santa Monica and San Pedro Bays, are connected by the short, very narrow shelf off the Palos Verdes peninsula. Ocean-sewage outfalls are located in the middle of Santa Monica Bay, on the Palos Verdes shelf and at the southeastern edge of San Pedro Bay. In 1992, the US Geological Survey, together with allied agencies, began a series of programs to determine the dominant processes that transport sediment and associated pollutants near the three ocean outfalls. As part of these programs, arrays of instrumented moorings that monitor currents, waves, water clarity, water density and collect resuspended materials were deployed on the continental shelf and slope information was also collected on the sediment and contaminant distributions in the region. The data and models developed for the Palos Verdes shelf suggest that the large reservoir of DDT/DDE in the coastal ocean sediments will continue to be exhumed and transported along the shelf for a long time. On the Santa Monica shelf, very large internal waves, or bores, are generated at the shelf break. The near-bottom currents associated with these waves sweep sediments and the associated contaminants from the shelf onto the continental slope. A new program underway on the San Pedro shelf will determine if water and contaminants from a nearby ocean outfall are transported to the local beaches by coastal ocean processes. The large variety of processes found that transport sediments and contaminants in this small region of the continental margin suggest that in regions with complex topography, local processes change markedly over small spatial scales. One cannot necessarily infer that the dominant transport processes will be similar even in adjacent regions.
Black carbon radiative forcing over the Tibetan Plateau
NASA Astrophysics Data System (ADS)
He, Cenlin; Li, Qinbin; Liou, Kuo-Nan; Takano, Yoshi; Gu, Yu; Qi, Ling; Mao, Yuhao; Leung, L. Ruby
2014-11-01
We estimate the snow albedo forcing and direct radiative forcing (DRF) of black carbon (BC) in the Tibetan Plateau using a global chemical transport model in conjunction with a stochastic snow model and a radiative transfer model. The annual mean BC snow albedo forcing is 2.9 W m-2 averaged over snow-covered plateau regions, which is a factor of 3 larger than the value over global land snowpack. BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing, and coated BC increases the forcing by 30-50% compared with uncoated BC aggregates, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. The annual BC DRF at the top of the atmosphere is 2.3 W m-2 with uncertainties of -70-85% in the plateau after scaling the modeled BC absorption optical depth to Aerosol Robotic Network observations. The BC forcings are attributed to emissions from different regions.
Radiative effect of anthropogenic dust ageing
NASA Astrophysics Data System (ADS)
Klingmueller, K.; Lelieveld, J.; Karydis, V.; Stenchikov, G. L.
2017-12-01
The chemical ageing of mineral dust mixing due to the uptake of air pollution affects the optical and hygroscopical properties of the dust particles and their atmospheric residence time. This results in an anthropogenic radiative forcing associated with mineral dust despite the natural origin of most dust particles. Using the atmospheric chemistry-climate model EMAC with a detailed parametrisation of chemical ageing and an emission scheme accounting for the chemical composition of desert soils, we study the direct radiative forcing globally and regionally. Preliminary results indicate large positive and negative forcings, depending on the region. The predominantly negative top of atmosphere forcing over large parts of the dust belt, from West Africa to East Asia, reaches about -2 W / m2 south of the Sahel, in contrast to positive forcings over India and the western Atlantic. Globally averaged, these forcings partially counterbalance, resulting in a negative forcing of -0.04 to -0.05 W / m2, nevertheless representing a considerable fraction of the total dust forcing.
The Impact of ENSO on Extratropical Low Frequency Noise in Seasonal Forecasts
NASA Technical Reports Server (NTRS)
Schubert, Siegfried D.; Suarez, Max J.; Chang, Yehui; Branstator, Grant
2000-01-01
This study examines the uncertainty in forecasts of the January-February-March (JFM) mean extratropical circulation, and how that uncertainty is modulated by the El Nino/Southern Oscillation (ENSO). The analysis is based on ensembles of hindcasts made with an Atmospheric General Circulation Model (AGCM) forced with sea surface temperatures observed during; the 1983 El Nino and 1989 La Nina events. The AGCM produces pronounced interannual differences in the magnitude of the extratropical seasonal mean noise (intra-ensemble variability). The North Pacific, in particular, shows extensive regions where the 1989 seasonal mean noise kinetic energy (SKE), which is dominated by a "PNA-like" spatial structure, is more than twice that of the 1983 forecasts. The larger SKE in 1989 is associated with a larger than normal barotropic conversion of kinetic energy from the mean Pacific jet to the seasonal mean noise. The generation of SKE due to sub-monthly transients also shows substantial interannual differences, though these are much smaller than the differences in the mean flow conversions. An analysis of the Generation of monthly mean noise kinetic energy (NIKE) and its variability suggests that the seasonal mean noise is predominantly a statistical residue of variability resulting from dynamical processes operating on monthly and shorter times scales. A stochastically-forced barotropic model (linearized about the AGCM's 1983 and 1989 base states) is used to further assess the role of the basic state, submonthly transients, and tropical forcing, in modulating the uncertainties in the seasonal AGCM forecasts. When forced globally with spatially-white noise, the linear model generates much larger variance for the 1989 base state, consistent with the AGCM results. The extratropical variability for the 1989 base state is dominanted by a single eigenmode, and is strongly coupled with forcing over tropical western Pacific and the Indian Ocean, again consistent with the AGCM results. Linear calculations that include forcing from the AGCM variance of the tropical forcing and submonthly transients show a small impact on the variability over the Pacific/North American region compared with that of the base state differences.
2011-01-01
The mission of the Armed Forces Health Surveillance Center, Division of Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) is to support global public health and to counter infectious disease threats to the United States Armed Forces, including newly identified agents or those increasing in incidence. Enteric diseases are a growing threat to U.S. forces, which must be ready to deploy to austere environments where the risk of exposure to enteropathogens may be significant and where routine prevention efforts may be impractical. In this report, the authors review the recent activities of AFHSC-GEIS partner laboratories in regards to enteric disease surveillance, prevention and response. Each partner identified recent accomplishments, including support for regional networks. AFHSC/GEIS partners also completed a Strengths, Weaknesses, Opportunities and Threats (SWOT) survey as part of a landscape analysis of global enteric surveillance efforts. The current strengths of this network include excellent laboratory infrastructure, equipment and personnel that provide the opportunity for high-quality epidemiological studies and test platforms for point-of-care diagnostics. Weaknesses include inconsistent guidance and a splintered reporting system that hampers the comparison of data across regions or longitudinally. The newly chartered Enterics Surveillance Steering Committee (ESSC) is intended to provide clear mission guidance, a structured project review process, and central data management and analysis in support of rationally directed enteric disease surveillance efforts. PMID:21388567
Loading of the Medial Meniscus in the ACL deficient knee: a Multibody Computational Study
Razu, Swithin
2017-01-01
The menisci of the knee reduce tibiofemoral contact pressures and aid in knee lubrication and nourishment. Meniscal injury occurs in half of knees sustaining anterior cruciate ligament injury and the vast majority of tears in the medial meniscus transpire in the posterior horn region. In this study, computational multibody models of the knee were derived from medical images and passive leg motion for two female subjects. The models were validated against experimental measures available in the literature and then used to evaluate medial meniscus contact force and internal hoop tension. The models predicted that the loss of anterior cruciate ligament (ACL) constraint increased contact and hoop forces in the medial menisci by a factor of 4 when a 100 N anterior tibial force was applied. Contact forces were concentrated in the posterior horn and hoop forces were also greater in this region. No differences were found in contact or hoop tension between the intact and ACL deficient (ACLd) knees when only a 5 Nm external tibial torque was applied about the long axis of the tibia. Combining a 100 N anterior tibial force and a 5 Nm external tibial torque increased posterior horn contact and hoop forces, even in the intact knee. The results of this study show that the posterior horn region of the medial meniscus experiences higher contact forces and hoop tension, making this region more susceptible to injury, especially with the loss of anterior tibia motion constraint provided by the ACL. The contribution of the dMCL in constraining posterior medial meniscus motion, at the cost of higher posterior horn hoop tension, is also demonstrated. PMID:28089224
Loading of the medial meniscus in the ACL deficient knee: A multibody computational study.
Guess, Trent M; Razu, Swithin
2017-03-01
The menisci of the knee reduce tibiofemoral contact pressures and aid in knee lubrication and nourishment. Meniscal injury occurs in half of knees sustaining anterior cruciate ligament injury and the vast majority of tears in the medial meniscus transpire in the posterior horn region. In this study, computational multibody models of the knee were derived from medical images and passive leg motion for two female subjects. The models were validated against experimental measures available in the literature and then used to evaluate medial meniscus contact force and internal hoop tension. The models predicted that the loss of anterior cruciate ligament (ACL) constraint increased contact and hoop forces in the medial menisci by a factor of 4 when a 100N anterior tibial force was applied. Contact forces were concentrated in the posterior horn and hoop forces were also greater in this region. No differences were found in contact or hoop tension between the intact and ACL deficient (ACLd) knees when only a 5Nm external tibial torque was applied about the long axis of the tibia. Combining a 100N anterior tibial force and a 5Nm external tibial torque increased posterior horn contact and hoop forces, even in the intact knee. The results of this study show that the posterior horn region of the medial meniscus experiences higher contact forces and hoop tension, making this region more susceptible to injury, especially with the loss of anterior tibia motion constraint provided by the ACL. The contribution of the dMCL in constraining posterior medial meniscus motion, at the cost of higher posterior horn hoop tension, is also demonstrated. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Distinct dynamical patterns that distinguish willed and forced actions.
Garcia Dominguez, Luis; Kostelecki, Wojciech; Wennberg, Richard; Perez Velazquez, Jose L
2011-03-01
The neural pathways for generating willed actions have been increasingly investigated since the famous pioneering work by Benjamin Libet on the nature of free will. To better understand what differentiates the brain states underlying willed and forced behaviours, we performed a study of chosen and forced actions over a binary choice scenario. Magnetoencephalography recordings were obtained from six subjects during a simple task in which the subject presses a button with the left or right finger in response to a cue that either (1) specifies the finger with which the button should be pressed or (2) instructs the subject to press a button with a finger of their own choosing. Three independent analyses were performed to investigate the dynamical patterns of neural activity supporting willed and forced behaviours during the preparatory period preceding a button press. Each analysis offered similar findings in the temporal and spatial domains and in particular, a high accuracy in the classification of single trials was obtained around 200 ms after cue presentation with an overall average of 82%. During this period, the majority of the discriminatory power comes from differential neural processes observed bilaterally in the parietal lobes, as well as some differences in occipital and temporal lobes, suggesting a contribution of these regions to willed and forced behaviours.
Design of fluidic self-assembly bonds for precise component positioning
NASA Astrophysics Data System (ADS)
Ramadoss, Vivek; Crane, Nathan B.
2008-02-01
Self Assembly is a promising alternative to conventional pick and place robotic assembly of micro components. Its benefits include parallel integration of parts with low equipment costs. Various approaches to self assembly have been demonstrated, yet demanding applications like assembly of micro-optical devices require increased positioning accuracy. This paper proposes a new method for design of self assembly bonds that addresses this need. Current methods have zero force at the desired assembly position and low stiffness. This allows small disturbance forces to create significant positioning errors. The proposed method uses a substrate assembly feature to provide a high accuracy alignment guide to the part. The capillary bond region of the part and substrate are then modified to create a non-zero positioning force to maintain the part in the desired assembly position. Capillary force models show that this force aligns the part to the substrate assembly feature and reduces sensitivity of part position to process variation. Thus, the new configuration can substantially improve positioning accuracy of capillary self-assembly. This will result in a dramatic decrease in positioning errors in the micro parts. Various binding site designs are analyzed and guidelines are proposed for the design of an effective assembly bond using this new approach.
Mesoscale Simulations of Gravity Waves During the 2008-2009 Major Stratospheric Sudden Warming
NASA Technical Reports Server (NTRS)
Limpasuvan, Varavut; Alexander, M. Joan; Orsolini, Yvan J.; Wu, Dong L.; Xue, Ming; Richter, Jadwiga H.; Yamashita, Chihoko
2011-01-01
A series of 24 h mesoscale simulations (of 10 km horizontal and 400 m vertical resolution) are performed to examine the characteristics and forcing of gravity waves (GWs) relative to planetary waves (PWs) during the 2008-2009 major stratospheric sudden wam1ing (SSW). Just prior to SSW occurrence, widespread westward propagating GWs are found along the vortex's edge and associated predominantly with major topographical features and strong near-surface winds. Momentum forcing due to GWs surpasses PW forcing in the upper stratosphere and tends to decelerate the polar westerly jet in excess of 30 m/s/d. With SSW onset, PWs dominate the momentum forcing, providing decelerative effects in excess of 50 m/s/d throughout the upper polar stratosphere. GWs related to topography become less widespread largely due to incipient wind reversal as the vortex starts to elongate. During the SSW maturation and early recovery, the polar vortex eventually splits and both wave signatures and forcing greatly subside. Nonetheless, during SSW, westward and eastward propagating GWs are found in the polar region and may be generated in situ by flow adjustment processes in the stratosphere or by secondary GW breaking. The simulated large-scale features agree well with those resolved in satellite observations and analysis products.
NASA Astrophysics Data System (ADS)
Yang, Shun-Chung; Zhang, Jing; Sohrin, Yoshiki; Ho, Tung-Yuan
2018-07-01
We measured dissolved and particulate Cd isotopic composition in the water column of a meridional transect across the Kuroshio-Oyashio Extension region in a Japanese GEOTRACES cruise to investigate the relative influence of physical and biogeochemical processes on Cd cycling in the Northwestern Pacific Ocean. Located at 30-50°N along 165°E, the transect across the extension region possesses dramatic hydrographic contrast. Cold surface water and a relatively narrow and shallow thermocline characterizes the Oyashio Extension region in contrast to a relatively warm and highly stratified surface water and thermocline in the Kuroshio Extension region. The contrasting hydrographic distinction at the study site provides us with an ideal platform to investigate the spatial variations of Cd isotope fractionation systems in the ocean. Particulate samples demonstrated biologically preferential uptake of light Cd isotopes, and the fractionation effect varied dramatically in the surface water of the two regions, with relatively large fractionation factors in the Oyashio region. Based on the relationship of dissolved Cd concentrations and isotopic composition, we found that a closed system fractionation model can reasonably explain the relationship in the Kuroshio region. However, using dissolved Cd isotopic data, either a closed system or steady-state open system fractionation model may explain the relationship in the surface water of the Oyashio region. Particulate δ114/110Cd data further supports that the surface water of the Oyashio region matches a steady-state open system model more closely. Contrary to the surface water, the distribution of potential density exhibits comparable patterns with Cd elemental and isotopic composition in the thermocline and deep water in the two extension regions, showing that physical processes are the dominant forcing controlling Cd cycling in the deep waters. The results demonstrate that Cd isotope fractionation can match either a closed or open system Rayleigh fractionation model, depending on the relative contribution of physical and biogeochemical processes on its cycling.
NASA Astrophysics Data System (ADS)
Suraj, Md Sanam; Aggarwal, Rajiv; Arora, Monika
2017-09-01
We have studied the restricted four-body problem (R4BP) with the effect of the small perturbation in the Coriolis and centrifugal forces on the libration points and zero velocity curves (ZVCs). Further, we have supposed that all the primaries are set in an equilateral triangle configuration, moving in the circular orbits around their common centre of mass. We have observed that the effect of the small perturbation in centrifugal force has a substantial effect on the location of libration points but a small perturbation in the Coriolis force has no impact on the location of libration points. But the stability of the libration points is highly influenced by the effect of the small perturbation in the Coriolis force. It is observed that as the Coriolis parameter increases, the libration points become stable. Further, it is found that the effect of the small perturbation in the centrifugal force has a substantial influence on the regions of possible motion. Also, when the effect of small perturbation in the centrifugal force increases the forbidden region decreases; here the motion is not possible for the infinitesimal mass. It is observed when the value of the Jacobian constant decreases, the regions of possible motion increase. In addition, we have also discussed how small perturbations in the Coriolis and centrifugal forces influence the Newton-Raphson basins of convergence.
Takeda, Tomotaka; Shibusawa, Mami; Sudal, Osamu; Nakajima, Kazunori; Ishigami, Keiichi; Sakatani, Kaoru
2010-01-01
The purpose of this study was to elucidate the influence of bite force control on oxygenated hemoglobin (OxyHb) levels in regional cerebral blood flow as an indicator of brain activity in the premotor area. Healthy right-handed volunteers with no subjective or objective symptoms of problems of the stomatognathic system or cervicofacial region were included. Functional near-infrared spectroscopy (fNIRS) was used to determine OxyHb levels in the premotor area during bite force control. A bite block equipped with an occlusal force sensor was prepared to measure clenching at the position where the right upper and lower canine cusps come into contact. Intensity of clenching was shown on a display and feedback was provided to the subjects. Intensity was set at 20, 50 and 80% of maximum voluntary teeth clenching force. To minimize the effect of the temporal muscle on the working side of the jaw, the fNIRS probes were positioned contralaterally, in the left region. The findings of this study are: activation of the premotor area with bite force control was noted in all subjects, and in the group analysis OxyHb in the premotor cortex was significantly increased as the clenching strengthened at 20, 50 and 80% of maximum voluntary clenching force. These results suggest there is a possibility that the premotor area is involved in bite force control.
32 CFR 644.27 - Authority to issue Real Estate Directives.
Code of Federal Regulations, 2012 CFR
2012-07-01
... vested in the Real Property Division, Directorate of Engineering and Services, HQ, USAF. Major Air Commands and Air Force Regional Civil Engineers may issue Real Estate Directives for acquisitions not... Air Force Regional Civil Engineers. The numbers will be in a consecutive series for each Division and...
32 CFR 644.27 - Authority to issue Real Estate Directives.
Code of Federal Regulations, 2014 CFR
2014-07-01
... vested in the Real Property Division, Directorate of Engineering and Services, HQ, USAF. Major Air Commands and Air Force Regional Civil Engineers may issue Real Estate Directives for acquisitions not... Air Force Regional Civil Engineers. The numbers will be in a consecutive series for each Division and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... DEPARTMENT OF DEFENSE Department of Air Force Intent To Prepare an Environmental Impact Statement for the Gulf Regional Airspace Strategic Initiative (GRASI) Landscape Initiative AGENCY: Department of... Airspace Strategic Initiative (GRASI) Landscape Initiative (GLI) is a U.S Air Force-led partnership with...
32 CFR 644.27 - Authority to issue Real Estate Directives.
Code of Federal Regulations, 2010 CFR
2010-07-01
... vested in the Real Property Division, Directorate of Engineering and Services, HQ, USAF. Major Air Commands and Air Force Regional Civil Engineers may issue Real Estate Directives for acquisitions not... Air Force Regional Civil Engineers. The numbers will be in a consecutive series for each Division and...
Tectonics and seismicity of the southern Washington Cascade range
Stanley, W.D.; Johnson, S.Y.; Qamar, A.I.; Weaver, C.S.; Williams, J.M.
1996-01-01
Geophysical, geological, and seismicity data are combined to develop a transpressional strain model for the southern Washington Cascades region. We use this model to explain oblique fold and fault systems, transverse faults, and a linear seismic zone just west of Mt. Rainier known as the western Rainier zone. We also attempt to explain a concentration of earthquakes that connects the northwest-trending Mount St. Helens seismic zone to the north-trending western Rainier zone. Our tectonic model illustrates the pervasive effects of accretionary processes, combined with subsequent transpressive forces generated by oblique subduction, on Eocene to present crustal processes, such as seismicity and volcanism.
Accelerated lamellar disintegration in eutectoid steel
NASA Astrophysics Data System (ADS)
Mishra, Shakti; Mishra, Alok; Show, Bijay Kumar; Maity, Joydeep
2017-04-01
The fastest kinetics of lamellar disintegration (predicted duration of 44 min) in AISI 1080 steel is obtained with a novel approach of incomplete austenitisation-based cyclic heat treatment involving forced air cooling with an air flow rate of 8.7 m3 h-1. A physical model for process kinetics is proposed that involves lamellar fragmentation, lamellar thickening, divorced eutectoid growth and generation of new lamellar faults in remaining cementite lamellae in each cycle. Lamellar fragmentation is accentuated with faster rate of cooling through generation of more intense lamellar faults; but divorced eutectoid growth is ceased. Accordingly, as compared to still air cooling, much faster kinetics of lamellar disintegration is obtained by forced air cooling together with the generation of much smaller submicroscopic cementite particles (containing more proportion of plate-shaped non-spheroids) in divorced eutectoid region.
NASA Astrophysics Data System (ADS)
Werner, Micha; Westerhoff, Rogier; Moore, Catherine
2017-04-01
Quantitative estimates of recharge due to precipitation excess are an important input to determining sustainable abstraction of groundwater resources, as well providing one of the boundary conditions required for numerical groundwater modelling. Simple water balance models are widely applied for calculating recharge. In these models, precipitation is partitioned between different processes and stores; including surface runoff and infiltration, storage in the unsaturated zone, evaporation, capillary processes, and recharge to groundwater. Clearly the estimation of recharge amounts will depend on the estimation of precipitation volumes, which may vary, depending on the source of precipitation data used. However, the partitioning between the different processes is in many cases governed by (variable) intensity thresholds. This means that the estimates of recharge will not only be sensitive to input parameters such as soil type, texture, land use, potential evaporation; but mainly to the precipitation volume and intensity distribution. In this paper we explore the sensitivity of recharge estimates due to difference in precipitation volumes and intensity distribution in the rainfall forcing over the Canterbury region in New Zealand. We compare recharge rates and volumes using a simple water balance model that is forced using rainfall and evaporation data from; the NIWA Virtual Climate Station Network (VCSN) data (which is considered as the reference dataset); the ERA-Interim/WATCH dataset at 0.25 degrees and 0.5 degrees resolution; the TRMM-3B42 dataset; the CHIRPS dataset; and the recently releases MSWEP dataset. Recharge rates are calculated at a daily time step over the 14 year period from the 2000 to 2013 for the full Canterbury region, as well as at eight selected points distributed over the region. Lysimeter data with observed estimates of recharge are available at four of these points, as well as recharge estimates from the NGRM model, an independent model constructed using the same base data and forced with the VCSN precipitation dataset. Results of the comparison of the rainfall products show that there are significant differences in precipitation volume between the forcing products; in the order of 20% at most points. Even more significant differences can be seen, however, in the distribution of precipitation. For the VCSN data wet days (defined as >0.1mm precipitation) occur on some 20-30% of days (depending on location). This is reasonably reflected in the TRMM and CHIRPS data, while for the re-analysis based products some 60%to 80% of days are wet, albeit at lower intensities. These differences are amplified in the recharge estimates. At most points, volumetric differences are in the order of 40-60%, though difference may range into several orders of magnitude. The frequency distributions of recharge also differ significantly, with recharge over 0.1 mm occurring on 4-6% of days for the VCNS, CHIRPS, and TRMM datasets, but up to the order of 12% of days for the re-analysis data. Comparison against the lysimeter data show estimates to be reasonable, in particular for the reference datasets. Surprisingly some estimates of the lower resolution re-analysis datasets are reasonable, though this does seem to be due to lower recharge being compensated by recharge occurring more frequently. These results underline the importance of correct representation of rainfall volumes, as well as of distribution, particularly when evaluating possible changes to for example changes in precipitation intensity and volume. This holds for precipitation data derived from satellite based and re-analysis products, but also for interpolated data from gauges, where the distribution of intensities is strongly influenced by the interpolation process.
Accuracy of buffered-force QM/MM simulations of silica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peguiron, Anke; Moras, Gianpietro; Colombi Ciacchi, Lucio
2015-02-14
We report comparisons between energy-based quantum mechanics/molecular mechanics (QM/MM) and buffered force-based QM/MM simulations in silica. Local quantities—such as density of states, charges, forces, and geometries—calculated with both QM/MM approaches are compared to the results of full QM simulations. We find the length scale over which forces computed using a finite QM region converge to reference values obtained in full quantum-mechanical calculations is ∼10 Å rather than the ∼5 Å previously reported for covalent materials such as silicon. Electrostatic embedding of the QM region in the surrounding classical point charges gives only a minor contribution to the force convergence. Whilemore » the energy-based approach provides accurate results in geometry optimizations of point defects, we find that the removal of large force errors at the QM/MM boundary provided by the buffered force-based scheme is necessary for accurate constrained geometry optimizations where Si–O bonds are elongated and for finite-temperature molecular dynamics simulations of crack propagation. Moreover, the buffered approach allows for more flexibility, since special-purpose QM/MM coupling terms that link QM and MM atoms are not required and the region that is treated at the QM level can be adaptively redefined during the course of a dynamical simulation.« less
WANG, ZHI-XIANG; ZHANG, WEI; WU, CHUN; LEI, HONGXING; CIEPLAK, PIOTR; DUAN, YONG
2014-01-01
Based on the AMBER polarizable model (ff02), we have reoptimized the parameters related to the main-chain (Φ, Ψ) torsion angles by fitting to the Boltzmann-weighted average quantum mechanical (QM) energies of the important regions (i.e., β, PII, αR, and αL regions). Following the naming convention of the AMBER force field series, this release will be called ff02pol.rl The force field has been assessed both by energetic comparison against the QM data and by the replica exchange molecular dynamics simulations of short alanine peptides in water. For Ace-Ala-Nme, the simulated populations in the β, PII and αR regions were approximately 30, 43, and 26%, respectively. For Ace-(Ala)7-Nme, the populations in these three regions were approximately 24, 49, and 26%. Both were in qualitative agreement with the NMR and CD experimental conclusions. In comparison with the previous force field, ff02pol.rl demonstrated good balance among these three important regions. The optimized torsion parameters, together with those in ff02, allow us to carry out simulations on proteins and peptides with the consideration of polarization. PMID:16526038
Numerical modeling of landslides and generated seismic waves: The Bingham Canyon Mine landslides
NASA Astrophysics Data System (ADS)
Miallot, H.; Mangeney, A.; Capdeville, Y.; Hibert, C.
2016-12-01
Landslides are important natural hazards and key erosion processes. They create long period surface waves that can be recorded by regional and global seismic networks. The seismic signals are generated by acceleration/deceleration of the mass sliding over the topography. They consist in a unique and powerful tool to detect, characterize and quantify the landslide dynamics. We investigate here the processes at work during the two massive landslides that struck the Bingham Canyon Mine on the 10th April 2013. We carry a combined analysis of the generated seismic signals and the landslide processes computed with a 3D modeling on a complex topography. Forces computed by broadband seismic waveform inversion are used to constrain the study and particularly the force-source and the bulk dynamic. The source time function are obtained by a 3D model (Shaltop) where rheological parameters can be adjusted. We first investigate the influence of the initial shape of the sliding mass which strongly affects the whole landslide dynamic. We also see that the initial shape of the source mass of the first landslide constrains pretty well the second landslide source mass. We then investigate the effect of a rheological parameter, the frictional angle, that strongly influences the resulted computed seismic source function. We test here numerous friction laws as the frictional Coulomb law and a velocity-weakening friction law. Our results show that the force waveform fitting the observed data is highly variable depending on these different choices.
NASA Astrophysics Data System (ADS)
Si, D.; Hu, A.
2017-12-01
The interdecadal oceanic variabilities can be generated from both internal and external processes, and these variabilities can significantly modulate our climate on global and regional scale, such as the warming slowdown in the early 21st century, and the rainfall in East Asia. By analyzing simulations from a unique Community Earth System Model (CESM) Large Ensemble (CESM_LE) project, we show that the Interdecadal Pacific Oscillation (IPO) is primarily an internally generated oceanic variability, while the Atlantic Multidecadal Oscillation (AMO) may be an oceanic variability generated by internal oceanic processes and modulated by external forcings in the 20th century. Although the observed relationship between IPO and the Yangtze-Huaihe River valley (YHRV) summer rainfall in China is well simulated in both the preindustrial control and 20th century ensemble, none of the 20th century ensemble members can reproduce the observed time evolution of both IPO and YHRV due to the unpredictable nature of IPO on multidecade timescale. On the other hand, although CESM_LE cannot reproduce the observed relationship between AMO and Huanghe River valley (HRV) summer rainfall of China in the preindustrial control simulation, this relationship in the 20th century simulations is well reproduced, and the chance to reproduce the observed time evolution of both AMO and HRV rainfall is about 30%, indicating the important role of the interaction between the internal processes and the external forcing to realistically simulate the AMO and HRV rainfall.
NASA Astrophysics Data System (ADS)
Li, X.; Zhu, J.; Xie, S. P.
2017-12-01
After the launch of the TOPEX/Poseidon satellite since 1992, a series of regional sea level changes have been observed. The northwestern Pacific is among the most rapid sea-level-rise regions all over the world. The rising peak occurs around 40°N, with the value reaching 15cm in the past two decades. Moreover, when investigating the projection of global sea level changes using CMIP5 rcp simulations, we found that the northwestern Pacific remains one of the most rapid sea-level-rise regions in the 21st century. To investigate the physical dynamics of present and future sea level changes over the Pacific, we performed a series of numerical simulations with a hierarchy of climate models, including earth system model, ocean model, and atmospheric models, with different complexity. Simulation results indicate that this regional sea level change during the past two decades is mainly caused by the shift of the Kuroshio, which is largely driven by the surface wind anomaly associated with an intensified and northward shifted north Pacific sub-tropical high. Further analysis and simulations show that these changes of sub-tropical high can be primarily attributed to the regional SST forcing from the Pacific Decadal Oscillation, and the remote SST forcings from the tropical Atlantic and the Indian Ocean. In the rcp scenario, on the other hand, two processes are crucial. Firstly, the meridional temperature SST gradient drives a northward wind anomaly across the equator, raising the sea level all over the North Pacific. Secondly, the atmospheric circulation changes around the sub-tropical Pacific further increase the sea level of the North Western Pacific. The coastal region around the Northwest Pacific is the most densely populated region around the world, therefore more attention must be paid to the sea level changes over this region, as suggested by our study.
NASA Astrophysics Data System (ADS)
Tanaka, T.; Watanabe, M.; Den, M.; Fujita, S.; Ebihara, Y.; Kikuchi, T.; Hashimoto, K. K.; Kataoka, R.
2016-09-01
In this paper, we try to elucidate the generation mechanism of the field-aligned current (FAC) and coexisting convection. From the comparison between the theoretical prediction and the state of numerical solution from the high-resolution global simulation, we obtain the following conclusions about the distribution of dynamo, the magnetic field structure along the flow path that diverges Poynting flux, and energy conversion promoting the generation of electromagnetic energy. The dynamo for the region 1 FAC, which is in the high-latitude-side cusp-mantle region, has a structure in which magnetic field is compressed along the convection path by the slow mode motion. The dynamo for the region 2 FAC is in the ring current region at the inner edge of the plasma sheet, and has a structure in which magnetic field is curved outward along the convection path. Under these structures, electromagnetic energy is generated from the work done by pressure gradient force, in both dynamos for the region 1 and region 2 FACs. In these generation processes of the FACs, the excitation of convection and the formation of pressure regimes occur as interdependent processes. This structure leads to a modification in the way of understanding the Dungey's convection. Generation of the FAC through the formation of pressure regimes is essential even for the case of substorm onset.
Modeling of combustion processes of stick propellants via combined Eulerian-Lagrangian approach
NASA Technical Reports Server (NTRS)
Kuo, K. K.; Hsieh, K. C.; Athavale, M. M.
1988-01-01
This research is motivated by the improved ballistic performance of large-caliber guns using stick propellant charges. A comprehensive theoretical model for predicting the flame spreading, combustion, and grain deformation phenomena of long, unslotted stick propellants is presented. The formulation is based upon a combined Eulerian-Lagrangian approach to simulate special characteristics of the two phase combustion process in a cartridge loaded with a bundle of sticks. The model considers five separate regions consisting of the internal perforation, the solid phase, the external interstitial gas phase, and two lumped parameter regions at either end of the stick bundle. For the external gas phase region, a set of transient one-dimensional fluid-dynamic equations using the Eulerian approach is obtained; governing equations for the stick propellants are formulated using the Lagrangian approach. The motion of a representative stick is derived by considering the forces acting on the entire propellant stick. The instantaneous temperature and stress fields in the stick propellant are modeled by considering the transient axisymmetric heat conduction equation and dynamic structural analysis.
Lightning Forcing in Global Fire Models: The Importance of Temporal Resolution
NASA Astrophysics Data System (ADS)
Felsberg, A.; Kloster, S.; Wilkenskjeld, S.; Krause, A.; Lasslop, G.
2018-01-01
In global fire models, lightning is typically prescribed from observational data with monthly mean temporal resolution while meteorological forcings, such as precipitation or temperature, are prescribed in a daily resolution. In this study, we investigate the importance of the temporal resolution of the lightning forcing for the simulation of burned area by varying from daily to monthly and annual mean forcing. For this, we utilize the vegetation fire model JSBACH-SPITFIRE to simulate burned area, forced with meteorological and lightning data derived from the general circulation model ECHAM6. On a global scale, differences in burned area caused by lightning forcing applied in coarser temporal resolution stay below 0.55% compared to the use of daily mean forcing. Regionally, however, differences reach up to 100%, depending on the region and season. Monthly averaged lightning forcing as well as the monthly lightning climatology cause differences through an interaction between lightning ignitions and fire prone weather conditions, accounted for by the fire danger index. This interaction leads to decreased burned area in the boreal zone and increased burned area in the Tropics and Subtropics under the coarser temporal resolution. The exclusion of interannual variability, when forced with the lightning climatology, has only a minor impact on the simulated burned area. Annually averaged lightning forcing causes differences as a direct result of the eliminated seasonal characteristics of lightning. Burned area is decreased in summer and increased in winter where fuel is available. Regions with little seasonality, such as the Tropics and Subtropics, experience an increase in burned area.
NASA Astrophysics Data System (ADS)
Han, W.; Li, Y.; Shinoda, T.; Wang, C.; Ravichandran, M.; Wang, J. W.
2014-12-01
Intraseasonal sea surface temperature (SST) variability over the Seychelles-Chagos thermocline ridge (SCTR) induced by boreal wintertime Madden-Julian oscillations (MJOs) is investigated by performing a series of OGCM experiments with improved model configuration and the recently available high quality satellite forcing fields. The impact of the ocean interannual variation of the thermocline depth -represented by the depth of 20C isotherm (D20) - in the SCTR is also assessed. The OGCM main run solution agrees well with the observations. The results show that for the 2001-2011 period, surface shortwave radiation (SWR), turbulent heat fluxes associated with wind speed, and wind stress-driven ocean dynamical processes are all important in causing the MJO-related intraseasonal SST variability in the SCTR region. Overall, forcing by SWR contributes ~31%, and forcing by winds (via both surface turbulent heat flux and ocean dynamics) contributes ~62%. The contribution of turbulent heat flux associated with wind speed is ~39% and that of wind-stress driven ocean dynamics is ~23%. The contribution of ocean dynamics, however, is considerably larger during strong ("prime") MJO events under "strong" thermocline condition. The overall effect of interannual variability of D20 on intraseasonal SST during 2001-2011 is significant in the eastern part of the SCTR (70E-85E), where the intraseasonal SST amplitudes are strengthened by about 20%. In general, a shallower/deeper SCTR favors larger/smaller SST responses to the MJO forcing. In the eastern SCTR, both the heat flux forcing and entrainment are greatly amplified under the strong SCTR condition, but only slightly suppressed under the weak SCTR condition, leading to an overall strengthening effect on intraseasonal SST variability.
NASA Astrophysics Data System (ADS)
Kwon, Sangwoo; Yang, Woochul; Choi, Yun Kyong; Park, Jung Keuck
2014-05-01
Atomic force microscopy (AFM) is utilized in many studies for measuring the structure and the physical characteristics of soft and bio materials. In particular, the force spectroscopy function in the AFM system allows us to explore the mechanical properties of bio cells. In this study, we probe the variation in the membrane hardness of human neuroblastoma SH-SY5Y cells (SH-cells) before and after differentiation by using force spectroscopy. The SH-cell, which is usually differentiated by using a chemical treatment with retinoic acid (RA), is a neuronal cell line employed widely as an in-vitro model for neuroscience research. In force spectroscopy, the force-distance curves are obtained from both the original and the RA-treated cells while the AFM tip approaches and pushes on the cell membranes. The slope deduced from linear region in the force-distance curve is the spring constant and corresponds to the hardness of the cell membrane. The spring constant of the RA-treated cells (0.597 ± 0.010 nN/nm) was smaller than that of the original cells (0.794 ± 0.010 nN/nm), reflecting a hardness decrease in the cells differentiated with the RA treatments. The results clearly demonstrated that the differentiated cells are softer than the original cells. The change in the elasticity of the differentiated cells might be caused by morphological modification during differentiation process. We suggest that force spectroscopy can be employed as a novel method to determine the degree of differentiation of stem cells into various functional cells.
Effect of coating on properties of esthetic orthodontic nickel-titanium wires.
Iijima, Masahiro; Muguruma, Takeshi; Brantley, William; Choe, Han-Cheol; Nakagaki, Susumu; Alapati, Satish B; Mizoguchi, Itaru
2012-03-01
To determine the effect of coating on the properties of two esthetic orthodontic nickel-titanium wires. Woowa (polymer coating; Dany Harvest) and BioForce High Aesthetic Archwire (metal coating; Dentsply GAC) with cross-section dimensions of 0.016 × 0.022 inches were selected. Noncoated posterior regions of the anterior-coated Woowa and uncoated Sentalloy were used for comparison. Nominal coating compositions were determined by x-ray fluorescence (JSX-3200, JOEL). Cross-sectioned and external surfaces were observed with a scanning electron microscope (SEM; SSX-550, Shimadzu) and an atomic force microscope (SPM-9500J2, Shimadzu). A three-point bending test (12-mm span) was carried out using a universal testing machine (EZ Test, Shimadzu). Hardness and elastic modulus of external and cross-sectioned surfaces were obtained by nanoindentation (ENT-1100a, Elionix; n = 10). Coatings on Woowa and BioForce High Aesthetic Archwire contained 41% silver and 14% gold, respectively. The coating thickness on Woowa was approximately 10 µm, and the coating thickness on BioForce High Aesthetic Archwire was much smaller. The surfaces of both coated wires were rougher than the noncoated wires. Woowa showed a higher mean unloading force than the noncoated Woowa, although BioForce High Aesthetic Archwire showed a lower mean unloading force than Sentalloy. While cross-sectional surfaces of all wires had similar hardness and elastic modulus, values for the external surface of Woowa were smaller than for the other wires. The coating processes for Woowa and BioForce High Aesthetic Archwire influence bending behavior and surface morphology.
A micro-scale cutting model for UD CFRP composites with thermo-mechanical coupling
Cheng, Hui; Gao, Jiaying; Kafka, Orion Landauer; ...
2017-09-23
Cutting a unidirectional carbon fiber-reinforced polymer (UD CFRP) structure is the basic unit for CFRP machining, which is a complex thermal-mechanically coupled process. To reveal the deformation mechanism and predict cutting force in UD CFRP micro cutting, a micro-scale fracture model for UD CFRP cutting with thermal-mechanical coupling is demonstrated in this paper, which captures the failure modes for fibers, matrix and the interface based on a micro-level RVE using a relatively simple damage based fracture method. The thermal-mechanical coupling model at the micro scale is developed on the basis of the plastic energy dissipation and frictional heating during cutting.more » Failure models for the fiber, matrix and interface region are applied depending on the material properties of each of these three phases. Numerical simulations based on the above model with different fiber orientations were performed to predict the deformation and forces of different components in UD CFRP. Cutting experiments with the same fiber orientations as considered in the simulations were carried out to validate the force and deformation results. The predicted force and deformation patterns match well with evidence from our experiments. In general, the cutting force is larger than the thrust force regardless of fiber orientation. The cutting force reaches a maximum as the fiber orientation approaches 90 , but thrust forces do not vary substantially across cases. When the fiber orientation is acute, the deformation of fibers is much smaller than when the cutting angle is obtuse. Surface roughness follows the same trend with cutting angle as fiber deformation.« less
A micro-scale cutting model for UD CFRP composites with thermo-mechanical coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Hui; Gao, Jiaying; Kafka, Orion Landauer
Cutting a unidirectional carbon fiber-reinforced polymer (UD CFRP) structure is the basic unit for CFRP machining, which is a complex thermal-mechanically coupled process. To reveal the deformation mechanism and predict cutting force in UD CFRP micro cutting, a micro-scale fracture model for UD CFRP cutting with thermal-mechanical coupling is demonstrated in this paper, which captures the failure modes for fibers, matrix and the interface based on a micro-level RVE using a relatively simple damage based fracture method. The thermal-mechanical coupling model at the micro scale is developed on the basis of the plastic energy dissipation and frictional heating during cutting.more » Failure models for the fiber, matrix and interface region are applied depending on the material properties of each of these three phases. Numerical simulations based on the above model with different fiber orientations were performed to predict the deformation and forces of different components in UD CFRP. Cutting experiments with the same fiber orientations as considered in the simulations were carried out to validate the force and deformation results. The predicted force and deformation patterns match well with evidence from our experiments. In general, the cutting force is larger than the thrust force regardless of fiber orientation. The cutting force reaches a maximum as the fiber orientation approaches 90 , but thrust forces do not vary substantially across cases. When the fiber orientation is acute, the deformation of fibers is much smaller than when the cutting angle is obtuse. Surface roughness follows the same trend with cutting angle as fiber deformation.« less
PIXE investigation of aerosol composition over the Zambian Copperbelt
NASA Astrophysics Data System (ADS)
Meter, S. L.; Formenti, P.; Piketh, S. J.; Annegarn, H. J.; Kneen, M. A.
1999-04-01
Atmospheric sulphate aerosol concentrations are of interest in climate change studies because of their negative climate forcing potential. Quantification of their forcing strength requires the compilation of global sulphur emission inventories to determine the magnitude of regional sources. We report on measurements of the ambient aerosol concentrations in proximity to a copper refinery in the central African Copperbelt, along the border of Zambia and the Democratic Republic of the Congo. This region is historically regarded as one of the largest African sources of sulphate aerosols. Sulphate is produced by oxidation in the atmosphere of SO 2 emitted during the pyrometallurgical processing of Cu-Co sulphide ores. Since the last quantification of sulphur emissions (late 1960s), there has been large-scale reduction in copper production and more frequent use of the leaching technique with negligible sulphur emissions. Samples were collected over four weeks, November-December 1996, at Kitwe, Zambia. A low volume two-stage time-resolving aerosol sampler (streaker) was used. Coarse and fine mode aerosols were separated at >2.5 and >10 μmad. Hourly elemental concentrations were determined by 3.2 MeV PIXE, and routinely yielded Si, S, K, Ca, Ti, Mn, Fe, Cu and Zn, above detection limits. Si, K, Ca and Fe (major crustal components) dominated the coarse elemental mass. In the fine stage, S and Si accounted for up to 80% of the measured mass, and S alone up to 60%. Time series analysis allowed the division of sulphur and crustal elements (Si, K, Ca, Fe) between (i) background concentrations representative of synoptic scale air masses; and (ii) contributions from local sources, i.e., copper smelter and re-suspended soil dust. Short duration episodes of S concentrations, up to 26 μg/m 3, were found simultaneously with enhanced Cu, Fe and Zn. Contributions from individual pyrometallurgic processes and the cobalt slag dump could be distinguished from the elemental signatures. Periods of diminished sulphur concentrations were also identified, indicating a well-mixed regional air mass. These results will contribute towards validating global climate model predictions of aerosol forcing over central Africa.
NASA Astrophysics Data System (ADS)
Zhu, B.; Lin, J.; Yuan, X.; Li, Y.; Shen, C.
2016-12-01
The role of turbulent acceleration and heating in the fractal magnetic reconnection of solar flares is still not clear, especially at the X-point in the diffusion region. At virtual test aspect, it is hardly to quantitatively analyze the vortex generation, turbulence evolution, particle acceleration and heating in the magnetic islands coalesce in fractal manner, formatting into largest plasmid and ejection process in diffusion region through classical magnetohydrodynamics numerical method. With the development of physical particle numerical method (particle in cell method [PIC], Lattice Boltzmann method [LBM]) and high performance computing technology in recently two decades. Kinetic simulation has developed into an effectively manner to exploring the role of magnetic field and electric field turbulence in charged particles acceleration and heating process, since all the physical aspects relating to turbulent reconnection are taken into account. In this paper, the LBM based lattice DxQy grid and extended distribution are added into charged-particles-to-grid-interpolation of PIC based finite difference time domain scheme and Yee Grid, the hybrid PIC-LBM simulation tool is developed to investigating turbulence acceleration on TIANHE-2. The actual solar coronal condition (L≈105Km,B≈50-500G,T≈5×106K, n≈108-109, mi/me≈500-1836) is applied to study the turbulent acceleration and heating in solar flare fractal current sheet. At stage I, magnetic islands shrink due to magnetic tension forces, the process of island shrinking halts when the kinetic energy of the accelerated particles is sufficient to halt the further collapse due to magnetic tension forces, the particle energy gain is naturally a large fraction of the released magnetic energy. At stage II and III, the particles from the energized group come in to the center of the diffusion region and stay longer in the area. In contract, the particles from non energized group only skim the outer part of the diffusion regions. At stage IV, the magnetic reconnection type nanoplasmid (200km) stop expanding and carrying enough energy to eject particles as constant velocity. Last, the role of magnetic field turbulence and electric field turbulence in electron and ion acceleration at the diffusion regions in solar flare fractural current sheet is given.
Electron acceleration by surface plasma waves in double metal surface structure
NASA Astrophysics Data System (ADS)
Liu, C. S.; Kumar, Gagan; Singh, D. B.; Tripathi, V. K.
2007-12-01
Two parallel metal sheets, separated by a vacuum region, support a surface plasma wave whose amplitude is maximum on the two parallel interfaces and minimum in the middle. This mode can be excited by a laser using a glass prism. An electron beam launched into the middle region experiences a longitudinal ponderomotive force due to the surface plasma wave and gets accelerated to velocities of the order of phase velocity of the surface wave. The scheme is viable to achieve beams of tens of keV energy. In the case of a surface plasma wave excited on a single metal-vacuum interface, the field gradient normal to the interface pushes the electrons away from the high field region, limiting the acceleration process. The acceleration energy thus achieved is in agreement with the experimental observations.
Upper-Ocean Heat Balance Processes and the Walker Circulation in CMIP5 Model Projections
NASA Technical Reports Server (NTRS)
Robertson, F. R.; Roberts, J. B.; Funk, C.; Lyon, B.; Ricciardulli, L.
2012-01-01
Considerable uncertainty remains as to the importance of mechanisms governing decadal and longer variability of the Walker Circulation, its connection to the tropical climate system, and prospects for tropical climate change in the face of anthropogenic forcing. Most contemporary climate models suggest that in response to elevated CO2 and a warmer but more stratified atmosphere, the required upward mass flux in tropical convection will diminish along with the Walker component of the tropical mean circulation as well. Alternatively, there is also evidence to suggest that the shoaling and increased vertical stratification of the thermocline in the eastern Pacific will enable a muted SST increase there-- preserving or even enhancing some of the dynamical forcing for the Walker cell flow. Over the past decade there have been observational indications of an acceleration in near-surface easterlies, a strengthened Pacific zonal SST gradient, and globally-teleconnected dislocations in precipitation. But is this evidence in support of an ocean dynamical thermostat process posited to accompany anthropogenic forcing, or just residual decadal fluctuations associated with variations in warm and cold ENSO events and other stochastic forcing? From a modeling perspective we try to make headway on this question by examining zonal variations in surface energy fluxes and dynamics governing tropical upper ocean heat content evolution in the WCRP CMIP5 model projections. There is some diversity among model simulations; for example, the CCSM4 indicates net ocean warming over the IndoPacific region while the CSIRO model concentrates separate warming responses over the central Pacific and Indian Ocean regions. The models, as with observations, demonstrate strong local coupling between variations in column water vapor, downward surface longwave radiation and SST; but the spatial patterns of changes in the sign of this relationship differ among models and, for models as a whole, with observations. Our analysis focuses initially on probing the inter-model differences in energy fluxes / transports and Walker Circulation response to forcing. We then attempt to identify statistically the El Nino- / La Nina-related ocean heat content variability unique to each model and regress out the associated energy flux, ocean heat transport and Walker response on these shorter time scales for comparison to that of the anthropogenic signals.
NASA Astrophysics Data System (ADS)
Pillai, Priya Ramachandran
Emissions of greenhouse gases (GHG) and primary release and secondary formation of aerosols alter the earth's radiative balance and therefore have important climatic implications. Savings in carbon dioxide (CO2) emissions accomplished by replacing fossil fuels with biofuels may increase the nitrous oxide (N2O) emissions. Among various atmospheric trace gases, N2O, irrespective of its low atmospheric concentration, is the fourth most important gas in causing the global greenhouse effect. Major processes, those affect the concentration of atmospheric N2O, are soil microbial activities leading to nitrification and denitrification. Therefore, anthropogenic activities such as industrial emissions, and agricultural practices including application of nitrogenous fertilizers, land use changes, biomass combustion all contribute to the atmospheric N2O concentration. The emission rates of N2O related to biofuel production depend on the nitrogen (N) fertilizer uptake efficiency of biofuel crops. However, crops with less N demand, such as switchgrass may have more favorable climate impacts when compared to crops with high N demands, such as corn. Despite its wide environmental tolerance, the regional adaptability of the potential biofuel crop switch grass varies considerably. Therefore, it is important to regionally quantify the GHG emissions and crop yield in response to N-fertilization. A major objective of this study is to quantify soil emissions of N2O from switchgrass and corn fields as a function of N-fertilization. The roles of soil moisture and soil temperature on N2O fluxes were analyzed. These N2O observations may be used to parameterize the biogeochemical models to better understand the impact of different N2O emission scenarios. This study allows for improvements in climate models that focus on understanding the environmental impacts of the climate change mitigation strategy of replacing fossil fuels with biofuels. As a second major objective, the top of the atmosphere (TOA) shortwave aerosol direct radiative forcing (SWARF) by regionally nucleated particles over a forest site in the Southeastern United States was estimated. Particle size distributions (aerodynamic diameter, Dp 10.2 nm to 250 nm), total number concentrations of nucleation mode (Dp < 25 nm) and fine mode (25 < Dp < 250 nm) particles, and growth rates were analyzed to identify regional nucleation events during November 2005 to September 2007. Shortwave flux from Clouds and Earth's Radiant Energy System (CERES) and aerosol optical depth at 550 nm (AOD, tau550) from Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Earth Observing System (EOS) Terra satellite were used to estimate SWARF. AOD was highest (0.38 +/- 0.20) in summer (period of highest particle growth rate) and lowest (0.06 +/- 0.05) in winter (period of lowest particle growth rate). The nucleation day SWARF forcing was -24 +/- 11 Wm-2 in summer and -15 +/- 19 Wm-2 in spring. The radiative forcing efficiency was lower (-54 Wm-2, tau550 -1) in summer (period of highest tau550 and organic PM2.5 concentrations) as compared to spring (-93 Wm-2, tau550 -1). The results show that, during spring and summer 2006 and 2007, the radiative forcing efficiency of regionally nucleated aerosols was -73 Wm-2, tau550 -1. Formations of particles during regional nucleation events introduced significant radiative forcing that need to examine for other regions of the globe where intense regional nucleation events occur frequently.
NASA Astrophysics Data System (ADS)
Rowley, C. D.; Hogan, P. J.; Martin, P.; Thoppil, P.; Wei, M.
2017-12-01
An extended range ensemble forecast system is being developed in the US Navy Earth System Prediction Capability (ESPC), and a global ocean ensemble generation capability to represent uncertainty in the ocean initial conditions has been developed. At extended forecast times, the uncertainty due to the model error overtakes the initial condition as the primary source of forecast uncertainty. Recently, stochastic parameterization or stochastic forcing techniques have been applied to represent the model error in research and operational atmospheric, ocean, and coupled ensemble forecasts. A simple stochastic forcing technique has been developed for application to US Navy high resolution regional and global ocean models, for use in ocean-only and coupled atmosphere-ocean-ice-wave ensemble forecast systems. Perturbation forcing is added to the tendency equations for state variables, with the forcing defined by random 3- or 4-dimensional fields with horizontal, vertical, and temporal correlations specified to characterize different possible kinds of error. Here, we demonstrate the stochastic forcing in regional and global ensemble forecasts with varying perturbation amplitudes and length and time scales, and assess the change in ensemble skill measured by a range of deterministic and probabilistic metrics.
NASA Astrophysics Data System (ADS)
Choi, Hyun-Jung; Lee, Hwa Woon; Jeon, Won-Bae; Lee, Soon-Hwan
2012-01-01
This study evaluated an atmospheric and air quality model of the spatial variability in low-level coastal winds and ozone concentration, which are affected by sea surface temperature (SST) forcing with different thermal gradients. Several numerical experiments examined the effect of sea surface SST forcing on the coastal atmosphere and air quality. In this study, the RAMS-CAMx model was used to estimate the sensitivity to two different resolutions of SST forcing during the episode day as well as to simulate the low-level coastal winds and ozone concentration over a complex coastal area. The regional model reproduced the qualitative effect of SST forcing and thermal gradients on the coastal flow. The high-resolution SST derived from NGSST-O (New Generation Sea Surface Temperature Open Ocean) forcing to resolve the warm SST appeared to enhance the mean response of low-level winds to coastal regions. These wind variations have important implications for coastal air quality. A higher ozone concentration was forecasted when SST data with a high resolution was used with the appropriate limitation of temperature, regional wind circulation, vertical mixing height and nocturnal boundary layer (NBL) near coastal areas.
Measurement and modeling of moist processes
NASA Technical Reports Server (NTRS)
Cotton, William; Starr, David; Mitchell, Kenneth; Fleming, Rex; Koch, Steve; Smith, Steve; Mailhot, Jocelyn; Perkey, Don; Tripoli, Greg
1993-01-01
The keynote talk summarized five years of work simulating observed mesoscale convective systems with the RAMS (Regional Atmospheric Modeling System) model. Excellent results are obtained when simulating squall line or other convective systems that are strongly forced by fronts or other lifting mechanisms. Less highly forced systems are difficult to model. The next topic in this colloquium was measurement of water vapor and other constituents of the hydrologic cycle. Impressive accuracy was shown measuring water vapor with both the airborne DIAL (Differential Absorption Lidar) system and the the ground-based Raman Lidar. NMC's plans for initializing land water hydrology in mesoscale models was presented before water vapor measurement concepts for GCIP were discussed. The subject of using satellite data to provide mesoscale moisture and wind analyses was next. Recent activities in modeling of moist processes in mesoscale systems was reported on. These modeling activities at the Canadian Atmospheric Environment Service (AES) used a hydrostatic, variable-resolution grid model. Next the spatial resolution effects of moisture budgets was discussed; in particular, the effects of temporal resolution on heat and moisture budgets for cumulus parameterization. The conclusion of this colloquium was on modeling scale interaction processes.
1992-04-03
10. SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. 11. TITLE (Include Security Classification) ASEAN...region is a consequence of the stability, coordination and team work of ASEAN. With a reduction of U.S. forces presence in the area, the key to securing...fastest-growing regions in the world today. The stability in the region is a consequence of the stability, coordination and team work of ASEAN. With a
Joint Task Force National Capital Region Medical: Integration of Education, Training, and Research
2009-05-01
Defense established the Joint Task Force National Capital Region Medical (JTF CapMed ) on the National Naval Medical Center campus in Bethesda, Maryland in...transfor- mation of military health services in the National Capital Area including education, training, and research activities. JTF CAPMED ...BACKGROUND JTF CapMed was established to lead the integration of mili- tary health care in the National Capital Region. The Command is charged with overseeing
PHOTOPHORETIC LEVITATION AND TRAPPING OF DUST IN THE INNER REGIONS OF PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNally, Colin P.; McClure, Melissa K., E-mail: cmcnally@nbi.dk, E-mail: mmcclure@eso.org
In protoplanetary disks, the differential gravity-driven settling of dust grains with respect to gas and with respect to grains of varying sizes determines the observability of grains, and sets the conditions for grain growth and eventually planet formation. In this work, we explore the effect of photophoresis on the settling of large dust grains in the inner regions of actively accreting protoplanetary disks. Photophoretic forces on dust grains result from the collision of gas molecules with differentially heated grains. We undertake one-dimensional dust settling calculations to determine the equilibrium vertical distribution of dust grains in each column of the disk.more » In the process we introduce a new treatment of the photophoresis force which is consistent at all optical depths with the representation of the radiative intensity field in a two-stream radiative transfer approximation. The levitation of large dust grains creates a photophoretic dust trap several scale heights above the mid-plane in the inner regions of the disk where the dissipation of accretion energy is significant. We find that differential settling of dust grains is radically altered in these regions of the disk, with large dust grains trapped in a layer below the stellar irradiation surface, where the dust to gas mass ratio can be enhanced by a factor of a hundred for the relevant particles. The photophoretic trapping effect has a strong dependence on particle size and porosity.« less
Understanding the Hydrodynamics of a Coastal Wetland with an Integrated Distributed Model
NASA Astrophysics Data System (ADS)
Zhang, Y.; Li, W.; Sun, G.
2017-12-01
Coastal wetlands linking ocean and terrestrial landscape provide important ecosystem services including flood mitigation, fresh water supply, erosion control, carbon sequestration, and wildlife habitats. Wetland hydrology is the major driving force for wetland formation, structure, function, and ecosystem services. The dynamics of wetland hydrology and energy budget are strongly affected by frequent inundation and drying of wetland soil and vegetation due to tide, sea level rise (SLR) and climatic variability (change). However, the quantitative representation of how the energy budget and groundwater variation of coastal wetlands respond to frequent water level fluctuation is limited, especially at regional scales. This study developed a physically based distributed wetland hydrological model by integrating coastal processes and considering the inundation influence on energy budget and ET. Analysis using in situ measurements and satellite data for a coastal wetland in North Carolina confirm that the model sufficiently captures the wetland hydrologic behaviors. The validated model was then applied to examine the wetland hydrodynamics under a 30-year historical climate forcing (1985-2014) for the wetland region. The simulation reveals that 43% of the study area has inundation events, 63% of which has a frequency higher than 50% each year. The canopy evaporation and transpiration decline dramatically when the inundation level exceeds the canopy height. Additionally, inundation causes about 10% increase of the net shortwave radiation. This study also demonstrates that the critical wetland zones highly influenced by the coastal processes spans 300-800 m from the coastline. The model developed in the study offers a new tool for understanding the complex wetland hydrodynamics in response to natural and human-induced disturbances at landscape to regional scales.
Partitioning the Water Budget in a Glacierized Basin
NASA Astrophysics Data System (ADS)
O'Neel, S.; Sass, L.; McGrath, D.; McNeil, C.; Myers, K. F.; Bergstrom, A.; Koch, J. C.; Ostman, J. S.; Arendt, A. A.; LeWinter, A.; Larsen, C. F.; Marshall, H. P.
2017-12-01
Glaciers couple to the ecosystems in which they reside through their mass balance and subsequent runoff. The unique timing and composition of glacier runoff notably impacts ecological and socio-economically important processes, including thermal modulation of streams, nearshore primary production, and groundwater exchange. Predicting how these linkages will evolve as glaciers continue to retreat requires a better understanding of basin- to region-scale water budgets. Here we develop a partitioned water balance for Alaska's Wolverine Glacier basin for 2016. Our presentation will highlight mass-balance forcing and sensitivity, as well as analyses of hydrometric and geochemical partitioning. These observations provide constraints for hypsometry-based regional projections of glacier change, which form the basis of future biogeochemical scenarios. Local climate records show relatively minor warming and drying over the 1967 -2016 interval, yet the impact on the glacier was substantial; the average annual balance rate over the study interval is -0.5 m/yr. We performed a sensitivity experiment that suggests that elevation-independent processes drive first-order variability in glacier-wide mass balance solutions Analysis of runoff and precipitation data suggest that previously ignored components of the hydrologic cycle (groundwater, evapotranspiration, off-glacier snowpack storage, and snow redistribution) may substantially contribute to the basin wide water budget. Initial geochemical assessments (carbon, water isotopes, major ions) highlight unique source signatures (glacier-derived, snow-melt, groundwater), which will be further explored using a mixing model approach. Applying a range of climate forcings over centennial time-scales suggests the regional equilibrium line altitude is likely to increase by more than 100 m, which will result in extensive glacier area losses. Such changes will likely modify the runoff from this basin by increasing inter-annual streamflow variability and increasing the fraction of runoff delivered early in the melt season.
NASA Astrophysics Data System (ADS)
Gaillard, Marie-Jose; Kaplan, Jed O.; Kleinen, Thomas; Brigitte Nielsen, Anne; Poska, Anneli; Samuelsson, Patrick; Strandberg, Gustav; Trondman, Anna-Kari
2015-04-01
We reviewed the recent published scientific literature on land cover-climate interactions at the global and regional spatial scales with the aim to assess whether it is convincingly demonstrated that anthropogenic land-cover change (ALCC) has been (over the last centuries and millennia) a significant climate forcing at the global scale, and more specifically at the scale of the Baltic Sea catchment area. The conclusions from this review are as follows: i) anthropogenic land-cover change (ALCC) is one of the few climate forcings for which the net direction of the climate response in the past is still not known. The uncertainty is due to the often counteracting temperature responses to the many biogeophysical effects, and to the biogeochemical vs biogeophysical effects; ii) there is no indication that deforestation in the Baltic Sea area since AD 1850 would have been a major cause of the recent climate warming in the region through a positive biogeochemical feedback; iii) several model studies suggest that boreal reforestation might not be an effective climate warming mitigation tool as it might lead to increased warming through biogeophysical processes; iv) palaeoecological studies indicate a major transformation of the landscape by anthropogenic activities in the southern zone of the study region occurring between 6000 and 3000/2500 calendar years before present (cal. BP) (1) ; v) the only modelling study so far of the biogeophysical effects of past ALCCs on regional climate in Europe suggests that a deforestation of the magnitude of that reconstructed for the past (between 6000 and 200 cal BP) can produce changes in winter and summer temperatures of +/- 1°, the sign of the change depending on the season and the region (2). Thus, if ALCC and their biogeophysical effects did matter in the past, they should matter today and in the future. A still prevailing idea is that planting trees will mitigate climate warming through biogeochemical effects. Therefore, there is still an urgent need to better understand the biogeophysical effects on regional and continental climate of afforestation in the hemiboreal and boreal regions, and their significance in relation to the biogeochemical effects. (1) Trondman, A.-K. et al. (2014) Global Change Biology (2014), doi: 10.1111/gcb.12737 (2) Strandberg, G. et al. (2014) Climate of the Past 10, 661-680.
NASA Astrophysics Data System (ADS)
Mueter, Franz J.; Broms, Cecilie; Drinkwater, Kenneth F.; Friedland, Kevin D.; Hare, Jonathan A.; Hunt, George L., Jr.; Melle, Webjørn; Taylor, Maureen
2009-04-01
As part of the international MENU collaboration, we compared and contrasted ecosystem responses to climate-forced oceanographic variability across several high latitude regions of the North Pacific (Eastern Bering Sea (EBS) and Gulf of Alaska (GOA)) and North Atlantic Oceans (Gulf of Maine/Georges Bank (GOM/GB) and the Norwegian/Barents Seas (NOR/BAR)). Differences in the nitrate content of deep source waters and incoming solar radiation largely explain differences in average primary productivity among these ecosystems. We compared trends in productivity and abundance at various trophic levels and their relationships with sea-surface temperature. Annual net primary production generally increases with annual mean sea-surface temperature between systems and within the EBS, BAR, and GOM/GB. Zooplankton biomass appears to be controlled by both top-down (predation by fish) and bottom-up forcing (advection, SST) in the BAR and NOR regions. In contrast, zooplankton in the GOM/GB region showed no evidence of top-down forcing but appeared to control production of major fish populations through bottom-up processes that are independent of temperature variability. Recruitment of several fish stocks is significantly and positively correlated with temperature in the EBS and BAR, but cod and pollock recruitment in the EBS has been negatively correlated with temperature since the 1977 shift to generally warmer conditions. In each of the ecosystems, fish species showed a general poleward movement in response to warming. In addition, the distribution of groundfish in the EBS has shown a more complex, non-linear response to warming resulting from internal community dynamics. Responses to recent warming differ across systems and appear to be more direct and more pronounced in the higher latitude systems where food webs and trophic interactions are simpler and where both zooplankton and fish species are often limited by cold temperatures.
Seasonal change of topology and resilience of ecological networks in wetlandscapes
NASA Astrophysics Data System (ADS)
Bin, Kim; Park, Jeryang
2017-04-01
Wetlands distributed in a landscape provide various ecosystem services including habitat for flora and fauna, hydrologic controls, and biogeochemical processes. Hydrologic regime of each wetland at a given landscape varies by hydro-climatic and geological conditions as well as the bathymetry, forming a certain pattern in the wetland area distribution and spatial organization. However, its large-scale pattern also changes over time as this wetland complex is subject to stochastic hydro-climatic forcing in various temporal scales. Consequently, temporal variation in the spatial structure of wetlands inevitably affects the dispersal ability of species depending on those wetlands as habitat. Here, we numerically show (1) the spatiotemporal variation of wetlandscapes by forcing seasonally changing stochastic rainfall and (2) the corresponding ecological networks which either deterministically or stochastically forming the dispersal ranges. We selected four vernal pool regions with distinct climate conditions in California. The results indicate that the spatial structure of wetlands in a landscape by measuring the wetland area frequency distribution changes by seasonal hydro-climatic condition but eventually recovers to the initial state. However, the corresponding ecological networks, which the structure and function change by the change of distances between wetlands, and measured by degree distribution and network efficiency, may not recover to the initial state especially in the regions with high seasonal dryness index. Moreover, we observed that the changes in both the spatial structure of wetlands in a landscape and the corresponding ecological networks exhibit hysteresis over seasons. Our analysis indicates that the hydrologic and ecological resilience of a wetlandcape may be low in a dry region with seasonal hydro-climatic forcing. Implications of these results for modelling ecological networks depending on hydrologic systems especially for conservation purposes are discussed.
PARALLEL EVOLUTION OF QUASI-SEPARATRIX LAYERS AND ACTIVE REGION UPFLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandrini, C. H.; Cristiani, G. D.; Nuevo, F. A.
2015-08-10
Persistent plasma upflows were observed with Hinode’s EUV Imaging Spectrometer (EIS) at the edges of active region (AR) 10978 as it crossed the solar disk. We analyze the evolution of the photospheric magnetic and velocity fields of the AR, model its coronal magnetic field, and compute the location of magnetic null-points and quasi-sepratrix layers (QSLs) searching for the origin of EIS upflows. Magnetic reconnection at the computed null points cannot explain all of the observed EIS upflow regions. However, EIS upflows and QSLs are found to evolve in parallel, both temporarily and spatially. Sections of two sets of QSLs, calledmore » outer and inner, are found associated to EIS upflow streams having different characteristics. The reconnection process in the outer QSLs is forced by a large-scale photospheric flow pattern, which is present in the AR for several days. We propose a scenario in which upflows are observed, provided that a large enough asymmetry in plasma pressure exists between the pre-reconnection loops and lasts as long as a photospheric forcing is at work. A similar mechanism operates in the inner QSLs; in this case, it is forced by the emergence and evolution of the bipoles between the two main AR polarities. Our findings provide strong support for the results from previous individual case studies investigating the role of magnetic reconnection at QSLs as the origin of the upflowing plasma. Furthermore, we propose that persistent reconnection along QSLs does not only drive the EIS upflows, but is also responsible for the continuous metric radio noise-storm observed in AR 10978 along its disk transit by the Nançay Radio Heliograph.« less
Electrical image of passive mantle upwelling beneath the northern East Pacific Rise.
Key, Kerry; Constable, Steven; Liu, Lijun; Pommier, Anne
2013-03-28
Melt generated by mantle upwelling is fundamental to the production of new oceanic crust at mid-ocean ridges, yet the forces controlling this process are debated. Passive-flow models predict symmetric upwelling due to viscous drag from the diverging tectonic plates, but have been challenged by geophysical observations of asymmetric upwelling that suggest anomalous mantle pressure and temperature gradients, and by observations of concentrated upwelling centres consistent with active models where buoyancy forces give rise to focused convective flow. Here we use sea-floor magnetotelluric soundings at the fast-spreading northern East Pacific Rise to image mantle electrical structure to a depth of about 160 kilometres. Our data reveal a symmetric, high-conductivity region at depths of 20-90 kilometres that is consistent with partial melting of passively upwelling mantle. The triangular region of conductive partial melt matches passive-flow predictions, suggesting that melt focusing to the ridge occurs in the porous melting region rather than along the shallower base of the thermal lithosphere. A deeper conductor observed east of the ridge at a depth of more than 100 kilometres is explained by asymmetric upwelling due to viscous coupling across two nearby transform faults. Significant electrical anisotropy occurs only in the shallowest mantle east of the ridge axis, where high vertical conductivity at depths of 10-20 kilometres indicates localized porous conduits. This suggests that a coincident seismic-velocity anomaly is evidence of shallow magma transport channels rather than deeper off-axis upwelling. We interpret the mantle electrical structure as evidence that plate-driven passive upwelling dominates this ridge segment, with dynamic forces being negligible.
Climate effects of reducing black carbon emissions: Dependence on location of emission
NASA Astrophysics Data System (ADS)
Fuglestvedt, J.; Berntsen, T.; Myhre, G.; Rive, N. A.; Rypdal, K.; Gerland, S.; Pedersen, C.; Strøm, J.
2006-12-01
The role played by emissions of black carbon aerosols (BC) on the Earth's climate is diverse and the overall effect is still quite uncertain: Black carbon not only absorbs sunlight (direct effect), but it also has a semi- direct effect on clouds, and when deposited on snow and ice it changes the reflectivity (albedo) of the ground surface. These mechanisms generally have a warming effect on the climate. This poster presents a Norwegian project that focus on the net effect of current BC emissions and future possible reductions in emissions of BC aerosols, taking into account scientific, economic, and political perspectives on the inclusion of BC in climate policies. Thus, the scope of the project is interdisciplinary and includes observations in the Arctic, model simulations of dispersion of BC aerosols, its radiative forcing and climate effects. Some initial results from measurements of BC content in snow from the Norwegian Arctic and corresponding measurements for surface reflectance will be presented. The radiative forcing of BC emissions from different geographical regions differs due to differences in the removal processes (i.e. the lifetime) and the amount of solar radiation available for absorption (depends on latitude, clouds, and surface albedo). The atmospheric burdens and RF (of the direct effect) of regional BC emissions from fossil fuel sources have been calculated by the global chemical transport model Oslo-CTM2 and a radiative transfer model, and first results of time-integrated RF per unit of emission (equivalent to absolute GWPs) are presented. Future plans including i) analysis of cost effective emission reduction strategies, taking into account regional differences the forcing efficiencies, but also cost estimates for BC reductions in the different regions, and ii) an evaluation of the climate effects of the emission reductions through model simulations, including climatic, economic and political perspectives exploring obstacles and opportunities will also be presented.
Calculations of Aerosol Radiative Forcing in the SAFARI Region from MODIS Data
NASA Technical Reports Server (NTRS)
Remer, L. A.; Ichoku, C.; Kaufman, Y. J.; Chu, D. A.
2003-01-01
SAFARI 2000 provided the opportunity to validate MODIS aerosol retrievals and to correct any assumptions in the retrieval process. By comparing MODIS retrievals with ground-based sunphotometer data, we quantified the degree to which the MODIS algorithm underestimated the aerosol optical thickness. This discrepancy was attributed to underestimating the degree of light absorption by the southern African smoke aerosol. Correcting for this underestimation of absorption, produces more realistic aerosol retrievals that allow various applications of the MODIS aerosol products. One such application is the calculation of the aerosol radiative forcing at the top and bottom of the atmosphere. The combination of MODIS accuracy, coverage, resolution and the ability to separate fine and coarse mode make this calculation substantially advanced over previous attempts with other satellites. We focus on the oceans adjacent to southern Africa and use a solar radiative transfer model to perform the flux calculations. The forcing at the top of atmosphere is calculated to be 10 W/sq m, while the forcing at the surface is -26 W/sq m. These results resemble those calculated from INDOEX data, and are most sensitive to assumptions of aerosol absorption, the same parameter that initially interfered with our retrievals.
Localised task-dependent motor-unit recruitment in the masseter.
Schindler, H J; Hellmann, D; Giannakopoulos, N N; Eiglsperger, U; van Dijk, J P; Lapatki, B G
2014-07-01
Localised motor-unit (MU) recruitment in the masseter was analysed in this study. We investigated whether differential activation behaviour, which has already been reported for distant masseter regions, can also be detected in small muscle subvolumes at the level of single MUs. Two bipolar fine-wire electrodes and an intra-oral 3D bite-force transmitter were used to record intra-muscular electromyograms (EMG) resulting from controlled bite-forces of 10 healthy human subjects (mean age 24.1 ± 1.2 years). Two-hundred and seventeen decomposed MUs were organised into localised MU task groups with different (P < 0.001) force-direction-specific behaviour. Proportions of MUs involved in one, two, three or four examined tasks were 46%, 31%, 18% and 5%, respectively. This study provides evidence of the ability of the neuromuscular system to modify the mechanical output of small masseter subvolumes by differential control of adjacent MUs belonging to distinct task groups. Localised differential activation behaviour of the masseter may be the crucial factor enabling highly flexible and efficient adjustment of the muscle activity in response to complex local biomechanical needs, for example, continually varying bite-forces during the demanding masticatory process. © 2014 John Wiley & Sons Ltd.
2015-10-01
journal articles and papers, and is referenced in the text. 15. SUBJECT TERMS high entropy alloys, titanium, inertia welding 16. SECURITY...Backscatter electron image and (b) inverse pole figure map of the IFW region showing transition from a flat (right) to wavy (left) weld interface...appearance. The weld interface is outlined by a white line in figure (b). The LSHR alloy is below the IFW interface and it is darker than the Mar-M247
2015-08-01
the brigades, and that DOD and the Department of State coordinate on providing passports to the brigades. Both concurred with the recommendations...Army and the Department of State have not agreed on a process for providing official passports to brigade personnel before their employment period. As...a result, the brigades have faced challenges in obtaining passports that have limited their ability to deploy the appropriate personnel to Africa
1998-01-01
consisted of a videomicroscopy system and a tactile stimulator system. By using this setup, real-time images from the contact region as wvell as the... Videomicroscopy system . 4.3.2 Tactile stimulator svsteln . 4.3.3 Real-time imaging setup. 4.3.4 Active and passive touch experiments. 4.3.5...contact process is an important step. In this study, therefore, a videomicroscopy system was built’to visualize the contact re- gion of the fingerpad
Global and regional sea level rise scenarios for the United States
Sweet, W.; Kopp, R.E.; Weaver, C.P.; Obeysekera, J; Horton, Radley M.; Thieler, E. Robert; Zervas, C.
2017-01-01
level (RSL, which includes both ocean-level change and vertical land motion) projections for the United States associated with an updated set of GMSL scenarios. In addition to supporting the longer-term Task Force effort, this new product will be an important input into the USGCRP Sustained Assessment process and upcoming Fourth National Climate Assessment (NCA4) due in 2018. This report also serves as a keytechnical input into the in-progress USGCRP Climate Science Special Report (CSSR).
Model of the discrete destruction process of a solid body
NASA Astrophysics Data System (ADS)
Glagolev, V. V.; Markin, A. A.
2018-03-01
Destruction is considered as a discrete thermomechanical process, in which the deformation of a solid body is achieved by changing the boundary stresses acting on the part of the volume being destroyed with the external load unchanged. On the basis of the proposed concept, a model for adhesive stratification of a composite material is constructed. When adhesive stratification is used, the stress state of one or two boundaries of the adhesive layer changes to zero if the bonds with the joined body are broken. As a result of the stratification, the interaction between the part of the composite, which may include an adhesive layer and the rest of the body stops. When solving the elastoplastic problem of cohesive stratification, the region in which the destruction criterion is achieved is identified. With the help of a repeated solution of the problem of subcritical deformation with the known law of motion of the boundary of the region, the distribution of the load (nodal forces) acting from the region to the body is located. The next step considers the change in the stress–strain state of the body in the process of destruction of the selected area. The elastoplastic problem is solved with a simple unloading of the formed surface of the body and preservation of the external load corresponding to the beginning of the process of destruction.
The effect of black carbon (BC) on climate forcing is potentially important, but its estimates have large uncertainties due to a lack of sufficient observational data. The BC mass concentration in the southeastern US was measured at a regionally representative site, Mount Gibb...
40 CFR 261.143 - Financial assurance condition.
Code of Federal Regulations, 2011 CFR
2011-07-01
... reasons. (6) The owner or operator must maintain the policy in full force and effect until the Regional... force and effect in the event that on or before the date of expiration: (i) The Regional Administrator... description of how all excluded hazardous secondary materials will be recycled or sent for recycling, and how...
40 CFR 261.143 - Financial assurance condition.
Code of Federal Regulations, 2014 CFR
2014-07-01
... reasons. (6) The owner or operator must maintain the policy in full force and effect until the Regional... force and effect in the event that on or before the date of expiration: (i) The Regional Administrator... description of how all excluded hazardous secondary materials will be recycled or sent for recycling, and how...
40 CFR 261.143 - Financial assurance condition.
Code of Federal Regulations, 2013 CFR
2013-07-01
... reasons. (6) The owner or operator must maintain the policy in full force and effect until the Regional... force and effect in the event that on or before the date of expiration: (i) The Regional Administrator... description of how all excluded hazardous secondary materials will be recycled or sent for recycling, and how...
40 CFR 261.143 - Financial assurance condition.
Code of Federal Regulations, 2012 CFR
2012-07-01
... reasons. (6) The owner or operator must maintain the policy in full force and effect until the Regional... force and effect in the event that on or before the date of expiration: (i) The Regional Administrator... description of how all excluded hazardous secondary materials will be recycled or sent for recycling, and how...
40 CFR 261.143 - Financial assurance condition.
Code of Federal Regulations, 2010 CFR
2010-07-01
... reasons. (6) The owner or operator must maintain the policy in full force and effect until the Regional... force and effect in the event that on or before the date of expiration: (i) The Regional Administrator... description of how all excluded hazardous secondary materials will be recycled or sent for recycling, and how...
General Urban Warfare Amphibious Logistics Applications. Volume 4. Operational Plans.
1983-06-23
region. b. Enemy Forces (1) Enem Situation. Survivors and stragglers from the MRB (Rein) that originally defended SYN City are still present in the city in...requirements and priorities in this region. b. Enemy Forces (1) Enem Situation. Survivors and stragglers from the MRB (Rein) that originally defended SYN City
NASA Astrophysics Data System (ADS)
Warner, J. C.; Armstrong, B. N.; He, R.; Zambon, J. B.; Olabarrieta, M.; Voulgaris, G.; Kumar, N.; Haas, K. A.
2012-12-01
Understanding processes responsible for coastal change is important for managing both our natural and economic coastal resources. Coastal processes respond from both local scale and larger regional scale forcings. Understanding these processes can lead to significant insight into how the coastal zone evolves. Storms are one of the primary driving forces causing coastal change from a coupling of wave and wind driven flows. Here we utilize a numerical modeling approach to investigate these dynamics of coastal storm impacts. We use the Coupled Ocean - Atmosphere - Wave - Sediment Transport (COAWST) Modeling System that utilizes the Model Coupling Toolkit to exchange prognostic variables between the ocean model ROMS, atmosphere model WRF, wave model SWAN, and the Community Sediment Transport Modeling System (CSTMS) sediment routines. The models exchange fields of sea-surface temperature, ocean currents, water levels, bathymetry, wave heights, lengths, periods, bottom orbital velocities, and atmospheric surface heat and momentum fluxes, atmospheric pressure, precipitation, and evaporation. Data fields are exchanged using regridded flux conservative sparse matrix interpolation weights computed from the SCRIP spherical coordinate remapping interpolation package. We describe the modeling components and the model field exchange methods. As part of the system, the wave and ocean models run with cascading, refined, spatial grids to provide increased resolution, scaling down to resolve nearshore wave driven flows simulated by the vortex force formulation, all within selected regions of a larger, coarser-scale coastal modeling system. The ocean and wave models are driven by the atmospheric component, which is affected by wave dependent ocean-surface roughness and sea surface temperature which modify the heat and momentum fluxes at the ocean-atmosphere interface. We describe the application of the modeling system to several regions of multi-scale complexity to identify the significance of larger scale forcing cascading down to smaller scales and to investigate the interactions of the coupled system with increasing degree of model-model interactions. Three examples include the impact of Hurricane Ivan in 2004 in the Gulf of Mexico, Hurricane Ida in 2009 that evolved into a tropical storm on the US East coast, and passage of strong cold fronts across the US southeast. Results identify that hurricane intensity is extremely sensitive to sea-surface temperature, with a reduction in intensity when the atmosphere is coupled to the ocean model due to rapid cooling of the ocean from the surface through the mixed layer. Coupling of the ocean to the atmosphere also results in decreased boundary layer stress and coupling of the waves to the atmosphere results in increased sea-surface stress. Wave results are sensitive to both ocean and atmospheric coupling due to wave-current interactions with the ocean and wave-growth from the atmospheric wind stress. Sediment resuspension at regional scale during the hurricane is controlled by shelf width and wave propagation during hurricane approach. Results from simulation of passage of cold fronts suggest that synoptic meteorological systems can strongly impact surf zone and inner shelf response, therefore act as a strong driver for long term littoral sediment transport. We will also present some of the challenges faced to develop the modeling system.
Hirano, Yoshinori; Amano, Yu; Yonemura, Shigenobu; Hakoshima, Toshio
2018-05-01
Mechanotransduction by α-catenin facilitates the force-dependent development of adherens junctions (AJs) by recruiting vinculin to reinforce actin anchoring of AJs. The α-catenin mechanotransducing action is facilitated by its force-sensing device region that autoinhibits the vinculin-binding site 1 (VBS1). Here, we report the high-resolution structure of the force-sensing device region of α-catenin, which shows the autoinhibited form comprised of helix bundles E, F and G. The cryptic VBS1 is embedded into helix bundle E stabilized by direct interactions with the autoinhibitory region forming helix bundles F and G. Our molecular dissection study showed that helix bundles F and G are stable in solution in each isolated form, whereas helix bundle E that contains VBS1 is unstable and intrinsically disordered in solution in the isolated form. We successfully identified key residues mediating the autoinhibition and produced mutated α-catenins that display variable force sensitivity and autoinhibition. Using these mutants, we demonstrate both in vitro and in vivo that, in the absence of this stabilization, the helix bundle containing VBS1 would adopt an unfolded form, thus exposing VBS for vinculin binding. We provide evidence for importance of mechanotransduction with the intrinsic force sensitivity for vinculin recruitment to adherens junctions of epithelial cell sheets with mutated α-catenins. © 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Linking initial microstructure and local response during quasistatic granular compaction
Hurley, R. C.; Lind, J.; Pagan, D. C.; ...
2017-07-24
In this study, we performed experiments combining three-dimensional x-ray diffraction and x-ray computed tomography to explore the relationship between microstructure and local force and strain during quasistatic granular compaction. We found that initial void space around a grain and contact coordination number before compaction can be used to predict regions vulnerable to above-average local force and strain at later stages of compaction. We also found correlations between void space around a grain and coordination number, and between grain stress and maximum interparticle force, at all stages of compaction. Finally, we observed grains that fracture to have an above-average initial localmore » void space and a below-average initial coordination number. In conclusion, our findings provide (1) a detailed description of microstructure evolution during quasistatic granular compaction, (2) an approach for identifying regions vulnerable to large values of strain and interparticle force, and (3) methods for identifying regions of a material with large interparticle forces and coordination numbers from measurements of grain stress and local porosity.« less
NASA Astrophysics Data System (ADS)
Paulsen, G. E.; Nielsen, S. B.; Hansen, D. L.
The vertical movements during a regional stress reversal in a rifted basin or on a passive continental margin are examined using a numerical 2D thermo-mechanical finite element model with a visco-elastic-plastic rheology. Three different physical mechanisms are recognized in small-scale vertical movements at small inplane force variations: elastic dilatation, elastic flexure, and permanent deformation. Their rela- tive importance depend on the applied force, the duration of the force, and the thermal structure of the lithosphere. Elastic material dilatation occurs whenever the stress state changes. A reversal from extension to compression therefore immediately leads to elastic dilatation, and re- sults in an overall subsidence of the entire profile. Simultaneously with dilatation the lithosphere reacts with flexure. The significance of the flexural component strongly depends on the thermal structure of the lithosphere. The polarity and amplitude of the flexure depends on the initial (before compression) loading of the lithosphere. Gener- ally, the flexural effects lead to subsidence of the overdeep in the landward part of the basin and a small amount of uplift at the basin flanks. The amplitudes of the flexural response are small and comparable with the amplitudes of the elastic dilatation. With continuing compression permanent deformation and lithospheric thickening becomes increasingly important. Ultimately, the thickened part of the lithosphere stands out as an inverted zone. The amount of permanent deformation is directly connected with the size and duration of the applied force, but even a relatively small force leads to inversion tectonics in the landward part of the basin. The conclusions are: 1) small stress induced vertical movements in rift basins and at passive continental margins are the result of a complex interaction of at least three different processes, 2) the total sediment loaded amplitudes resulting from these pro- cesses are small (2-300 m) for inplane forces up to 1.5·1012 N/m.
Nawabi, Danyal H; Tucker, Scott; Schafer, Kevin A; Zuiderbaan, Hendrik Aernout; Nguyen, Joseph T; Wickiewicz, Thomas L; Imhauser, Carl W; Pearle, Andrew D
2016-10-01
The femoral insertion of the anterior cruciate ligament (ACL) has direct and indirect fiber types located within the respective high (anterior) and low (posterior) regions of the femoral footprint. The fibers in the high region of the ACL footprint carry more force and are more isometric than the fibers in the low region of the ACL footprint. Controlled laboratory study. Ten fresh-frozen cadaveric knees were mounted to a robotic manipulator. A 134-N anterior force at 30° and 90° of flexion and combined valgus (8 N·m) and internal (4 N·m) rotation torques at 15° of flexion were applied simulating tests of anterior and rotatory stability. The ACL was sectioned at the femoral footprint by detaching either the higher band of fibers neighboring the lateral intercondylar ridge in the region of the direct insertion or the posterior, crescent-shaped fibers in the region of the indirect insertion, followed by the remainder of the ACL. The kinematics of the ACL-intact knee was replayed, and the reduction in force due to each sectioned portion of insertion fibers was measured. Isometry was assessed at anteromedial, center, and posterolateral locations within the high and low regions of the femoral footprint. With an anterior tibial force at 30° of flexion, the high fibers carried 83.9% of the total anterior ACL load compared with 16.1% in the low fibers (P < .001). The high fibers also carried more anterior force than the low fibers at 90° of flexion (95.2% vs 4.8%; P < .001). Under combined torques at 15° of flexion, the high fibers carried 84.2% of the anterior ACL force compared with 15.8% in the low fibers (P < .001). Virtual ACL fibers placed at the anteromedial portion of the high region of the femoral footprint were the most isometric, with a maximum length change of 3.9 ± 1.5 mm. ACL fibers located high within the femoral footprint bear more force during stability testing and are more isometric during flexion than low fibers. It may be advantageous to create a "higher" femoral tunnel during ACL reconstruction at the lateral intercondylar ridge. © 2016 The Author(s).
Convective Systems Over the South China Sea: Cloud-Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Shie, C.-L.; Johnson, D.; Simpson, J.; Braun, S.; Johnson, R.; Ciesielski, P. E.; Starr, David OC. (Technical Monitor)
2002-01-01
The South China Sea Monsoon Experiment (SCSMEX) was conducted in May-June 1998. One of its major objectives is to better understand the key physical processes for the onset and evolution of the summer monsoon over Southeast Asia and southern China. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, ships, wind profilers, radiometers, etc.) during SCSMEX provided a first attempt at investigating the detailed characteristics of convective storms and air pattern changes associated with monsoons over the South China Sea region. SCSMEX also provided rainfall estimates which allows for comparisons with those obtained from the Tropical Rainfall Measuring Mission (TRMM), a low earth orbit satellite designed to measure rainfall from space. The Goddard Cumulus Ensemble (GCE) model (with 1-km grid size) is used to understand and quantify the precipitation processes associated with the summer monsoon over the South China Sea. This is the first (loud-resolving model used to simulate precipitation processes in this particular region. The GCE-model results captured many of the observed precipitation characteristics because it used a fine grid size. For example, the temporal variation of the simulated rainfall compares quite well to the sounding-estimated rainfall variation. The time and domain-averaged temperature (heating/cooling) and water vapor (drying/ moistening) budgets are in good agreement with observations. The GCE-model-simulated rainfall amount also agrees well with TRMM rainfall data. The results show there is more evaporation from the ocean surface prior to the onset of the monsoon than after the on-et of monsoon when rainfall increases. Forcing due to net radiation (solar heating minus longwave cooling) is responsible for about 25% of the precipitation in SCSMEX The transfer of heat from the ocean into the atmosphere does not contribute significantly to the rainfall in SCSMEX. Model sensitivity tests indicated that total rain production is reduced 17-18% in runs neglecting the ice phase. The SCSMEX results are compared to other GCE-model-simulated weather systems that developed during other field campaigns (i.e., west Pacific warm pool region, eastern Atlantic region and central USA). Large-scale forcing vie temperature and water vapor tendency, is the major energy source for net condensation in the tropical cases. The effects of large-scale cooling exceed that of large-scale moistening in the west pacific warm pool region and eastern Atlantic region. For SCSMEX, however, the effects of large-scale moistening predominate. Net radiation and sensible and latent hc,it fluxes play a much more important role in the central USA.
NASA Astrophysics Data System (ADS)
Green, R. O.; Realmuto, V. J.; Thompson, D. R.; Mahowald, N. M.; Pérez García-Pando, C.; Miller, R. L.; Clark, R. N.; Swayze, G. A.; Okin, G. S.
2015-12-01
Mineral dust emitted from the Earth's surface is a principal contributor to direct radiative forcing over the arid regions, where shifts in climate have a significant impact on agriculture, precipitation, and desert encroachment around the globe. Dust particles contribute to both positive and negative forcing, depending on the composition of the particles. Particle composition is a function of the surface mineralogy of dust source regions, but poor knowledge of surface mineralogy on regional to global scales limits the skill of Earth System models to predict shifts in regional climate around the globe. Earth System models include the source, emission, transport and deposition phases of the dust cycle. In addition to direct radiative forcing contributions, mineral dust impacts include indirect radiative forcing, modification of the albedo and melting rates of snow and ice, kinetics of tropospheric photochemistry, formation and deposition of acidic aerosols, supply of nutrients to aquatic and terrestrial ecosystems, and impact on human health and safety. We demonstrate the ability to map mineral dust source composition in the Salton Sea dust source region with imaging spectroscopy measurements acquired as part of the NASA HyspIRI preparatory airborne campaign. These new spectroscopically derived compositional measurements provide a six orders of magnitude improvement over current atlases for this dust source region and provide a pathfinder example for a remote measurement approach to address this critical dust composition gap for global Earth System models.
NASA Astrophysics Data System (ADS)
Booth, B.; Dunstone, N.; Halloran, P. R.; Andrews, T.; Bellouin, N.; Martin, E. R.
2014-12-01
Historical variations in North Atlantic SSTs have been a key driver of regional climate change - linked to drought frequency in the Sahel, Amazon and American Mid-West, rainfall and heat waves in Europe and frequency of Atlantic tropical storms. Traditionally these SST variations were deemed to arise from internally generated ocean variability. We present results from recent studies (Booth et al, 2012, Dunstone, 2013) that identify a mechanism via which volcanic and industrial aerosols could explain a large fraction of observed Atlantic variability, and its associated climate impacts. This work has prompted a lot of subsequent discussion about the relative contribution of ocean generated and external forced variability in the Atlantic. Here we present new results, that extend this earlier work, by looking at forced variability in the CMIP5 modelling context. This provides new insights into the potential externally forced role aerosols may play in the real world. CMIP5 models that represent aerosol-cloud interactions tend to have stronger correlations to observed variations in SSTs, but disagree on the magnitude of forced variability that they explain. We can link this contribution to the magnitude of aerosol forcing in each of these models - a factor that is both dependent on the aerosol parameterisation and the representation of boundary layer cloud in this region. This suggests that whether aerosols have played a larger or smaller role in historical Atlantic variability is tied to whether aerosols have a larger or smaller aerosol forcing (particularly indirect) in the real world. This in turn suggests that benefits of reducing current aerosol uncertainty are likely to extend beyond better estimates of global forcing, to providing a clearer picture of the past aerosol driven role in historical regional climate change.
Controlling for Landform Age When Determining the Settlement History of the Kuril Islands
MacInnes, Breanyn; Fitzhugh, Ben; Holman, Darryl
2014-01-01
Archaeological investigations of settlement patterns in dynamic landscapes can be strongly biased by the evolution of the Earth’s surface. The Kuril Island volcanic arc exemplifies such a dynamic landscape, where landscape-modifying geological forces were active during settlement, including sea-level changes, tectonic emergence, volcanic eruptive processes, coastal aggradation, and dune formation. With all these ongoing processes, in this paper we seek to understand how new landscape formation in the Holocene might bias archaeological interpretations of human settlement in the Kurils. Resolving this issue is fundamental to any interpretation of human settlement history derived from the distribution and age of archaeological sites from the region. On the basis of a comparison of landform ages and earliest archaeological occupation ages on those landforms, we conclude that landform creation did not significantly bias our aggregate archaeological evidence for earliest settlement. Some sections of the archipelago have larger proportions of landform creation dates closer to archaeological evidence of settlement and undoubtedly some archaeological sites have been lost to geomorphic processes. However, comparisons between regions reveal comparable archaeological establishment patterns irrespective of geomorphic antiquity. PMID:25684855
US Drought-Heat Wave Relationships in Past Versus Current Climates
NASA Astrophysics Data System (ADS)
Cheng, L.; Hoerling, M. P.; Eischeid, J.; Liu, Z.
2017-12-01
This study explores the relationship between droughts and heat waves over various regions of the contiguous United States that are distinguished by so-called energy-limited versus water-limited climatologies. We first examine the regional sensitivity of heat waves to soil moisture variability under 19th century climate conditions, and then compare to sensitivities under current climate that has been subjected to human-induced change. Our approach involves application of the conditional statistical framework of vine copula. Vine copula is known for its flexibility in reproducing various dependence structures exhibited by climate variables. Here we highlight its feature for evaluating the importance of conditional relationships between variables and processes that capture underlying physical factors involved in their interdependence during drought/heat waves. Of particular interest is identifying changes in coupling strength between heat waves and land surface conditions that may yield more extreme events as a result of land surface feedbacks. We diagnose two equilibrium experiments a coupled climate model (CESM1), one subjected to Year-1850 external forcing and the other to Year-2000 radiative forcing. We calculate joint heat wave/drought relationships for each climate state, and also calculate their change as a result of external radiative forcing changes across this 150-yr period. Our results reveal no material change in the dependency between heat waves and droughts, aside from small increases in coupling strength over the Great Plains. Overall, hot U.S. summer droughts of 1850-vintage do not become hotter in the current climate -- aside from the warming contribution of long-term climate change, in CESM1. The detectability of changes in hotter droughts as a consequence of anthropogenic forced changes in this single effect, i.e. coupling strength between soil moisture and hot summer temperature, is judged to be low at this time.
Liquid film drag out in the presence of molecular forces
NASA Astrophysics Data System (ADS)
Schmidhalter, I.; Cerro, R. L.; Giavedoni, M. D.; Saita, F. A.
2013-03-01
From a practical as well as a conceptual point of view, one of the most interesting problems of physicochemical hydrodynamics is the drag out of a liquid film by a moving solid out of a pool of liquid. The basic problem, sometimes denoted the Landau-Levich problem [L. Landau and B. Levich, "Dragging of a liquid by a moving plate," Acta Physicochim. USSR 17, 42-54 (1942)], involves an interesting blend of capillary and viscous forces plus a matching of the static solution for capillary rise with a numerical solution of the film evolution equation, neglecting gravity, on the downstream region of the flow field. The original solution describes experimental data for a wide range of Capillary numbers but fails to match results for large and very small Capillary numbers. Molecular level forces are introduced to create an augmented version of the film evolution equation to show the effect of van der Waals forces at the lower range of Capillary numbers. A closed form solution for static capillary rise, including molecular forces, was matched with a numerical solution of the augmented film evolution equation in the dynamic meniscus region. Molecular forces do not sensibly modify the static capillary rise region, since film thicknesses are larger than the range of influence of van der Waals forces, but are determinant in shaping the downstream dynamic meniscus of the very thin liquid films. As expected, a quantitatively different level of disjoining pressure for different values of molecular constants remains in the very thin liquid film far downstream. Computational results for a wide range of Capillary numbers and Hamaker constants show a clear transition towards a region where the film thickness becomes independent of the coating speed.
Numerical simulation of aerodynamic performance of a couple multiple units high-speed train
NASA Astrophysics Data System (ADS)
Niu, Ji-qiang; Zhou, Dan; Liu, Tang-hong; Liang, Xi-feng
2017-05-01
In order to determine the effect of the coupling region on train aerodynamic performance, and how the coupling region affects aerodynamic performance of the couple multiple units trains when they both run and pass each other in open air, the entrance of two such trains into a tunnel and their passing each other in the tunnel was simulated in Fluent 14.0. The numerical algorithm employed in this study was verified by the data of scaled and full-scale train tests, and the difference lies within an acceptable range. The results demonstrate that the distribution of aerodynamic forces on the train cars is altered by the coupling region; however, the coupling region has marginal effect on the drag and lateral force on the whole train under crosswind, and the lateral force on the train cars is more sensitive to couple multiple units compared to the other two force coefficients. It is also determined that the component of the coupling region increases the fluctuation of aerodynamic coefficients for each train car under crosswind. Affected by the coupling region, a positive pressure pulse was introduced in the alternating pressure produced by trains passing by each other in the open air, and the amplitude of the alternating pressure was decreased by the coupling region. The amplitude of the alternating pressure on the train or on the tunnel was significantly decreased by the coupling region of the train. This phenomenon did not alter the distribution law of pressure on the train and tunnel; moreover, the effect of the coupling region on trains passing by each other in the tunnel is stronger than that on a single train passing through the tunnel.
Paths from meso to submesoscale processes in the western Mediterranean Sea
NASA Astrophysics Data System (ADS)
Capó, Esther; Mason, Evan; Hernández-Carrasco, Ismael; Orfila, Alejandro
2017-04-01
In this work we characterize the mesoscale dynamics in the western Mediterranean (WMed) by analyzing the different contributions to the kinetic energy budgets using a 20 year high-resolution numerical model. The length of the numerical solution allows us to consider statistically stationary state of the ocean, a necessary condition for using the quantification of energy budgets as a tool for analyzing dynamical processes. To identify and characterize the different submesoscale processes, we isolate the terms in the energy balance equations (the Lorenz Energy Cycle, LEC, equations) responsible for the production (conversion and generation) of the eddy kinetic energy (EKE). Firstly, by comparing the predominance of each conversion term among the others, three different submesoscale instabilities can be identified in a certain region: baroclinic, barotropic and Kelvin-Helmholtz type. Conversely, given the crucial role of the wind forcing in the dynamics of this area, the generation of kinetic energy by surface winds has been also considered. Finally, a regional analysis of the EKE production terms permits the identification of the areas dominated by submesoscale activity. As will be shown in this work those areas are located near the main currents, and submesoscale processes are strongly influenced by sharp bathymetry-flow interaction.
Yongqiang Liu
2005-01-01
Simulations are performed to understand the importance of smoke from biomass burning in tropical South America to regional radiation and climate. The National Center for Atmospheric Research (NCAR) regional climate model coupled with the NCAR column radiative model is used to estimate smoke direct radiative forcing and consequent atmospheric perturbations during a...
ERIC Educational Resources Information Center
Umemiya, Naoki
2008-01-01
This article analyses the characteristics and driving forces of regional quality assurance activity in Southeast Asia, which has been actively promoted in recent years by the ASEAN University Network, an organisation for higher education under the auspices of the Association of Southeast Asian Nations (ASEAN). There are now more collaborative…
Socioeconomic Background, Education, and Labor Force Outcomes: Evidence from a Regional US Sample
ERIC Educational Resources Information Center
Caro, Daniel H.; Cortina, Kai S.; Eccles, Jacquelynne S.
2015-01-01
This paper examines the long-term association of family socioeconomic status (SES), educational, and labor force outcomes in a regional US longitudinal sample (N = 2264). The results offer insights into the mechanisms underlying the role of family SES in transitions from secondary schooling to early work experiences. It was found that the academic…
The forces on a single interacting Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Thu, Nguyen Van
2018-04-01
Using double parabola approximation for a single Bose-Einstein condensate confined between double slabs we proved that in grand canonical ensemble (GCE) the ground state with Robin boundary condition (BC) is favored, whereas in canonical ensemble (CE) our system undergoes from ground state with Robin BC to the one with Dirichlet BC in small-L region and vice versa for large-L region and phase transition in space of the ground state is the first order. The surface tension force and Casimir force are also considered in both CE and GCE in detail.
Qi, Lei; Yue, Lei; Feng, Deqin; Qi, Fengxia
2017-01-01
Abstract Unlike stable RNAs that require processing for maturation, prokaryotic cellular mRNAs generally follow an ‘all-or-none’ pattern. Herein, we used a 5΄ monophosphate transcript sequencing (5΄P-seq) that specifically captured the 5΄-end of processed transcripts and mapped the genome-wide RNA processing sites (PSSs) in a methanogenic archaeon. Following statistical analysis and stringent filtration, we identified 1429 PSSs, among which 23.5% and 5.4% were located in 5΄ untranslated region (uPSS) and intergenic region (iPSS), respectively. A predominant uridine downstream PSSs served as a processing signature. Remarkably, 5΄P-seq detected overrepresented uPSS and iPSS in the polycistronic operons encoding ribosomal proteins, and the majority upstream and proximal ribosome binding sites, suggesting a regulatory role of processing on translation initiation. The processed transcripts showed increased stability and translation efficiency. Particularly, processing within the tricistronic transcript of rplA-rplJ-rplL enhanced the translation of rplL, which can provide a driving force for the 1:4 stoichiometry of L10 to L12 in the ribosome. Growth-associated mRNA processing intensities were also correlated with the cellular ribosomal protein levels, thereby suggesting that mRNA processing is involved in tuning growth-dependent ribosome synthesis. In conclusion, our findings suggest that mRNA processing-mediated post-transcriptional regulation is a potential mechanism of ribosomal protein synthesis and stoichiometry. PMID:28520982
Ling, Xue; Wang, Yusheng; Li, Xide
2014-10-01
An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects of the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li-Etsion-Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.
NASA Astrophysics Data System (ADS)
Ling, Xue; Wang, Yusheng; Li, Xide
2014-10-01
An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects of the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li-Etsion-Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.
Forced and Internal Multi-Decadal Variability in the North Atlantic and their Climate Impacts
NASA Astrophysics Data System (ADS)
Ting, M.
2017-12-01
Atlantic Multidecadal Variability (AMV), a basin-wide North Atlantic sea surface temperature warming or cooling pattern varying on decadal and longer time scales, is one of the most important climate variations in the Atlantic basin. The AMV has shown to be associated with significant climate impacts regionally and globally, from Atlantic hurricane activities, frequency and severity of droughts across North America, as well as rainfall anomalies across the African Sahel and northeast Brazil. Despite the important impacts of the AMV, its mechanisms are not completely understood. In particular, it is not clear how much of the historical Atlantic SST fluctuations were forced by anthropogenic sources such as greenhouse warming and aerosol cooling, versus driven internally by changes in the coupled ocean-atmosphere processes in the Atlantic. Using climate models such as the NCAR large ensemble simulations, we were able to successfully separate the forced and internally generated North Atlantic sea surface temperature anomalies through a signal-to-noise maximizing Empirical Orthogonal Function (S/N EOF) analysis method. Two forced modes were identified with one representing a hemispherical symmetric mode and one asymmetric mode. The symmetric mode largely represents the greenhouse forced component while the asymmetric mode resembles the anthropogenic aerosol forcing. When statistically removing both of the forced modes, the residual multidecadal Atlantic SST variability shows a very similar structure as the AMV in the preindustrial simulation. The distinct climate impacts of each of these modes are also identified and the implications and challenges for decadal climate prediction will be discussed.
David, Allan E.; Cole, Adam J.; Chertok, Beata; Park, Yoon Shin; Yang, Victor C.
2011-01-01
Magnetic nanoparticles (MNP) continue to draw considerable attention as potential diagnostic and therapeutic tools in the fight against cancer. Although many interacting forces present themselves during magnetic targeting of MNP to tumors, most theoretical considerations of this process ignore all except for the magnetic and drag forces. Our validation of a simple in vitro model against in vivo data, and subsequent reproduction of the in vitro results with a theoretical model indicated that these two forces do indeed dominate the magnetic capture of MNP. However, because nanoparticles can be subject to aggregation, and large MNP experience an increased magnetic force, the effects of surface forces on MNP stability cannot be ignored. We accounted for the aggregating surface forces simply by measuring the size of MNP retained from flow by magnetic fields, and utilized this size in the mathematical model. This presumably accounted for all particle-particle interactions, including those between magnetic dipoles. Thus, our “corrected” mathematical model provided a reasonable estimate of not only fractional MNP retention, but also predicted the regions of accumulation in a simulated capillary. Furthermore, the model was also utilized to calculate the effects of MNP size and spatial location, relative to the magnet, on targeting of MNPs to tumors. This combination of an in vitro model with a theoretical model could potentially assist with parametric evaluations of magnetic targeting, and enable rapid enhancement and optimization of magnetic targeting methodologies. PMID:21295085
Adaptive enhanced sampling by force-biasing using neural networks
NASA Astrophysics Data System (ADS)
Guo, Ashley Z.; Sevgen, Emre; Sidky, Hythem; Whitmer, Jonathan K.; Hubbell, Jeffrey A.; de Pablo, Juan J.
2018-04-01
A machine learning assisted method is presented for molecular simulation of systems with rugged free energy landscapes. The method is general and can be combined with other advanced sampling techniques. In the particular implementation proposed here, it is illustrated in the context of an adaptive biasing force approach where, rather than relying on discrete force estimates, one can resort to a self-regularizing artificial neural network to generate continuous, estimated generalized forces. By doing so, the proposed approach addresses several shortcomings common to adaptive biasing force and other algorithms. Specifically, the neural network enables (1) smooth estimates of generalized forces in sparsely sampled regions, (2) force estimates in previously unexplored regions, and (3) continuous force estimates with which to bias the simulation, as opposed to biases generated at specific points of a discrete grid. The usefulness of the method is illustrated with three different examples, chosen to highlight the wide range of applicability of the underlying concepts. In all three cases, the new method is found to enhance considerably the underlying traditional adaptive biasing force approach. The method is also found to provide improvements over previous implementations of neural network assisted algorithms.
NASA Astrophysics Data System (ADS)
Calvo, J.; López, J. A.; Martín, F.; Morales, G.; Pascual, R.
2009-09-01
On 23th and 24th of January 2009, the extra-tropical cyclone Klaus crossed the north of Spain and the south of France producing several deaths and generalized damages. The cyclone of Atlantic origin underwent an explosive deepening of more than 1 hPa per hour at the surface level. Catalonia region was affected by gale-force winds and hurricane gusts. The Atlantic depression underwent a process called explosive cyclogenesis (when a surface cyclone deepens at a rate higher than 1 hPa/hr over 24 hours, approximately) in front of the Spanish Atlantic coasts. In this study we focus on its impact in the Catalonia areas where both synoptic and local effects were important. Also we evaluate the performance of the numerical weather prediction model outputs against observed data.
Effect of orientation on electrically conducting thermoplastic composite properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genetti, W.B.; Grady, B.P.
1996-10-01
Properties of electrically conducting composites made from low density polyethylene (LDPE), high density polyethylene (HDPE), and polypropylene (PP) filled with nickel flake are being studied as a function of nickel concentration and draw ratio. The effect on electrical conduction, crystallinity, melt temperature, tensile modulus, and elongation at break are being tested. The melt temperature increases with increasing nickel concentration. The electrical conduction increases slowly with increased nickel concentration to the percolation volume fraction, then increases sharply. Orientation by uniaxial stretching of the films should allow conductive pathways to form throughout the polymer more easily by forcing particles closer together, thusmore » reducing the percolation volume fraction. This process could be caused by both alignment of the polymer chains and by stress induced crystallization that forces the particles into smaller amorphous regions.« less
NASA Astrophysics Data System (ADS)
Hawkins, L. R.; Rupp, D. E.; Li, S.; Sarah, S.; McNeall, D. J.; Mote, P.; Betts, R. A.; Wallom, D.
2017-12-01
Changing regional patterns of surface temperature, precipitation, and humidity may cause ecosystem-scale changes in vegetation, altering the distribution of trees, shrubs, and grasses. A changing vegetation distribution, in turn, alters the albedo, latent heat flux, and carbon exchanged with the atmosphere with resulting feedbacks onto the regional climate. However, a wide range of earth-system processes that affect the carbon, energy, and hydrologic cycles occur at sub grid scales in climate models and must be parameterized. The appropriate parameter values in such parameterizations are often poorly constrained, leading to uncertainty in predictions of how the ecosystem will respond to changes in forcing. To better understand the sensitivity of regional climate to parameter selection and to improve regional climate and vegetation simulations, we used a large perturbed physics ensemble and a suite of statistical emulators. We dynamically downscaled a super-ensemble (multiple parameter sets and multiple initial conditions) of global climate simulations using a 25-km resolution regional climate model HadRM3p with the land-surface scheme MOSES2 and dynamic vegetation module TRIFFID. We simultaneously perturbed land surface parameters relating to the exchange of carbon, water, and energy between the land surface and atmosphere in a large super-ensemble of regional climate simulations over the western US. Statistical emulation was used as a computationally cost-effective tool to explore uncertainties in interactions. Regions of parameter space that did not satisfy observational constraints were eliminated and an ensemble of parameter sets that reduce regional biases and span a range of plausible interactions among earth system processes were selected. This study demonstrated that by combining super-ensemble simulations with statistical emulation, simulations of regional climate could be improved while simultaneously accounting for a range of plausible land-atmosphere feedback strengths.