Science.gov

Sample records for regional vascular geometry

  1. Geometry optimization of branchings in vascular networks

    NASA Astrophysics Data System (ADS)

    Khamassi, Jamel; Bierwisch, Claas; Pelz, Peter

    2016-06-01

    Progress has been made in developing manufacturing technologies which enable the fabrication of artificial vascular networks for tissue cultivation. However, those networks are rudimentary designed with respect to their geometry. This restricts long-term biological functionality of vascular cells which depends on geometry-related fluid mechanical stimuli and the avoidance of vessel occlusion. In the present work, a bioinspired geometry optimization for branchings in artificial vascular networks has been conducted. The analysis could be simplified by exploiting self-similarity properties of the system. Design rules in the form of two geometrical parameters, i.e., the branching angle and the radius ratio of the daughter branches, are derived using the wall shear stress as command variable. The numerical values of these parameters are within the range of experimental observations. Those design rules are not only beneficial for tissue engineering applications. Moreover, they can be used as indicators for diagnoses of vascular diseases or for the layout of vascular grafts.

  2. Hand Biometric Recognition Based on Fused Hand Geometry and Vascular Patterns

    PubMed Central

    Park, GiTae; Kim, Soowon

    2013-01-01

    A hand biometric authentication method based on measurements of the user's hand geometry and vascular pattern is proposed. To acquire the hand geometry, the thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the lengths and angles of the finger valleys, and the lengths and profiles of the fingers were used, and for the vascular pattern, the direction-based vascular-pattern extraction method was used, and thus, a new multimodal biometric approach is proposed. The proposed multimodal biometric system uses only one image to extract the feature points. This system can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry (the side view of the hand and the back of hand) and vascular-pattern recognition method performs at the score level. The results of our study showed that the equal error rate of the proposed system was 0.06%. PMID:23449119

  3. Effect of ocular shape and vascular geometry on retinal hemodynamics: a computational model.

    PubMed

    Dziubek, Andrea; Guidoboni, Giovanna; Harris, Alon; Hirani, Anil N; Rusjan, Edmond; Thistleton, William

    2016-08-01

    A computational model for retinal hemodynamics accounting for ocular curvature is presented. The model combines (i) a hierarchical Darcy model for the flow through small arterioles, capillaries and small venules in the retinal tissue, where blood vessels of different size are comprised in different hierarchical levels of a porous medium; and (ii) a one-dimensional network model for the blood flow through retinal arterioles and venules of larger size. The non-planar ocular shape is included by (i) defining the hierarchical Darcy flow model on a two-dimensional curved surface embedded in the three-dimensional space; and (ii) mapping the simplified one-dimensional network model onto the curved surface. The model is solved numerically using a finite element method in which spatial domain and hierarchical levels are discretized separately. For the finite element method, we use an exterior calculus-based implementation which permits an easier treatment of non-planar domains. Numerical solutions are verified against suitably constructed analytical solutions. Numerical experiments are performed to investigate how retinal hemodynamics is influenced by the ocular shape (sphere, oblate spheroid, prolate spheroid and barrel are compared) and vascular architecture (four vascular arcs and a branching vascular tree are compared). The model predictions show that changes in ocular shape induce non-uniform alterations of blood pressure and velocity in the retina. In particular, we found that (i) the temporal region is affected the least by changes in ocular shape, and (ii) the barrel shape departs the most from the hemispherical reference geometry in terms of associated pressure and velocity distributions in the retinal microvasculature. These results support the clinical hypothesis that alterations in ocular shape, such as those occurring in myopic eyes, might be associated with pathological alterations in retinal hemodynamics.

  4. Determination of biplane geometry and centerline curvature in vascular imaging

    NASA Astrophysics Data System (ADS)

    Nazareth, Daryl; Hoffmann, Kenneth R.; Walczak, Alan; Dmochowski, Jacek; Guterman, Lee R.; Rudin, Stephen; Bednarek, Daniel R.

    2002-05-01

    Three-dimensional (3-D) vessel trees can provide useful visual and quantitative information during interventional procedures. To calculate the 3-D vasculature from biplane images, the transformation relating the imaging systems (i.e., the rotation matrix R and the translation vector t) must be determined. We have developed a technique to calculate these parameters, which requires only the identification of approximately corresponding vessel regions in the two images. Initial estimates of R and t are generated based on the gantry angles, and then refined using an optimization technique. The objective function to be minimized is determined as follows. For each endpoint of each vessel in the first image, an epipolar line in the second image is generated. The intersection points between these two epipolar lines and the corresponding vessel centerline in the second image are determined. The vessel arclength between these intersection points is calculated as a fraction of the entire vessel region length in the image. This procedure is repeated for every vessel in each image. The value of the objective function is calculated from the sum of these fractions, and is smallest when the total fractional arclength is greatest. The 3-D vasculature is obtained from the optimal R and t using triangulation, and vessel curvature is then determined. This technique was evaluated using simulated curves and vessel centerlines obtained from clinical images, and provided rotational, magnification and relative curvature errors of 1 degree(s), 1% and 14% respectively. Accurate 3-D and curvature measures may be useful in clinical decision making, such as in assessing vessel tortuousity and access, during interventional procedures.

  5. Vascular growth and remodeling coupled with fluid simulation in patient specific geometry

    NASA Astrophysics Data System (ADS)

    Wu, Jiacheng; Shadden, Shawn C.

    2014-11-01

    In this talk, we propose a computational framework to couple vascular growth and remodeling (G&R) with fluid simulation in 3D patient specific geometry. Hyperelastic and anisotropic properties are considered for the vessel wall material. A constrained mixture model is used to represent multiple constituents in the vessel wall. The coupled simulation is divided into two time scales, the longer time scale for G&R and the shorter time scale for fluid dynamics simulation. G&R is simulated to determine the boundary of the fluid domain, the fluid simulation in turn generates wall shear stress and transmural pressure data that regulates G&R. To minimize required computation cost, fluid is only simulated when G&R causes significant vascular geometric change. This coupled model can be used to study the influence of the stress-mediated law parameters on the stability of the vascular tissue growth, and predict progression of vascular diseases such as aneurysm expansion.

  6. Regional quality groups in the Society for Vascular Surgery® Vascular Quality Initiative.

    PubMed

    Woo, Karen; Eldrup-Jorgensen, Jens; Hallett, John W; Davies, Mark G; Beck, Adam; Upchurch, Gilbert R; Weaver, Fred A; Cronenwett, Jack L

    2013-03-01

    The Society for Vascular Surgery Vascular Quality Initiative (SVS VQI) is designed to improve the quality, safety, effectiveness, and cost of vascular health care. The SVS VQI is uniquely organized as a distributed network of regional quality improvement groups across the United States. The regional approach allows for the involvement of a variety of health care professionals, the pooling of available resources and expertise, and serves as a motivating factor for each participating institution. Regional quality group sizes, administrative structure, and meeting logistics vary according to geography and regional needs. This review describes the process of forming, growing, and maintaining a regional quality improvement group of the SVS VQI.

  7. Micro-vascular shape-memory polymer actuators with complex geometries obtained by laser stereolithography

    NASA Astrophysics Data System (ADS)

    Díaz Lantada, Andrés; de Blas Romero, Adrián; Chacón Tanarro, Enrique

    2016-06-01

    In our work we present the complete development process of geometrically complex micro-vascular shape-memory polymer actuators. The complex geometries and three-dimensional networks are designed by means of computer aided design resources. Manufacture is accomplished, in a single step, by means of laser stereolithography, directly from the computer-aided design files with the three dimensional geometries of the different actuators under development. To our knowledge, laser stereolithography is applied here for the first time to the development of shape memory polymer devices with complex geometries and inner micro-vasculatures for their activation using a thermal fluid. Final testing of the developed actuators helps to validate the approach and to put forward some present challenges.

  8. Regionalization of services improves access to emergency vascular surgical care.

    PubMed

    Roche-Nagle, G; Bachynski, K; Nathens, A B; Angoulvant, D; Rubin, B B

    2013-04-01

    Management of vascular surgical emergencies requires rapid access to a vascular surgeon and hospital with the infrastructure necessary to manage vascular emergencies. The purpose of this study was to assess the impact of regionalization of vascular surgery services in Toronto to University Health Network (UHN) and St Michael's Hospital (SMH) on the ability of CritiCall Ontario to transfer patients with life- and limb-threatening vascular emergencies for definitive care. A retrospective review of the CritiCall Ontario database was used to assess the outcome of all calls to CritiCall regarding patients with vascular disease from April 2003 to March 2010. The number of patients with vascular emergencies referred via CritiCall and accepted in transfer by the vascular centers at UHN or SMH increased 500% between 1 April 2003-31 December 2005 and 1 January 2006-31 March 2010. Together, the vascular centers at UHN and SMH accepted 94.8% of the 1002 vascular surgery patients referred via CritiCall from other hospitals between 1 January 2006 and 31 March 2010, and 72% of these patients originated in hospitals outside of the Toronto Central Local Health Integration Network. Across Ontario, the number of physicians contacted before a patient was accepted in transfer fell from 2.9 ± 0.4 before to 1.7 ± 0.3 after the vascular centers opened. In conclusion, the vascular surgery centers at UHN and SMH have become provincial resources that enable the efficient transfer of patients with vascular surgical emergencies from across Ontario. Regionalization of services is a viable model to increase access to emergent care.

  9. Arterio-venous fetoplacental vascular geometry and hemodynamics in the mouse placenta.

    PubMed

    Rennie, Monique Y; Cahill, Lindsay S; Adamson, S Lee; Sled, John G

    2017-10-01

    The fetoplacental vasculature network is essential for the exchange of nutrients, gases and wastes with the maternal circulation and for normal fetal development. The present study quantitatively compares arterial and venous morphological and functional differences in the mouse fetoplacental vascular network. High resolution X-ray micro-computed tomography was used to visualize the 3D geometry of the arterial and venous fetoplacental vasculature in embryonic day 15.5 CD-1 mice (n = 5). Automated image analysis was used to measure the vascular geometry of the approximately 4100 arterial segments and 3200 venous segments per specimen to simulate blood flow through these networks. Both the arterial and venous trees demonstrated a hierarchical branching structure with 8 or 9 (arterial) or 8 (venous) orders. The venous tree was smaller in volume and overall dimensions than the arterial tree. Venous vessel diameters increased more rapidly than arteries with each successive order, leading to lower overall resistance, although the umbilical vein was notably smaller and of higher resistance than these scaling relationships would predict. Simulation of blood flow for these vascular networks showed that 57% of total resistance resides in the umbilical artery and arterial tree, 17% in the capillary bed, and 26% in the venous tree and umbilical vein. A detailed examination of the mouse fetoplacental arterial and venous tree revealed features, such as the distribution of resistance and the dimension of the venous tree, that were both morphologically distinct from other vascular beds and that appeared adapted to the specialized requirements of sustaining a fetus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Regional intensity of vascular care and lower extremity amputation rates

    PubMed Central

    Goodney, Philip P.; Holman, Kerianne; Henke, Peter K.; Travis, Lori L.; Dimick, Justin B.; Stukel, Therese A.; Fisher, Elliott. S.; Birkmeyer, John D.

    2013-01-01

    Objective To examine the relationship between the intensity of vascular care and population-based rate of major lower extremity amputation (above-or below-knee) from vascular disease. Background Because patient-level differences do not fully explain the variation in amputation rate across the United States, we hypothesized that variation in intensity of vascular care may also affect regional rates of amputation. Methods Intensity of vascular care was defined as the proportion of Medicare patients who underwent any vascular procedure in the year prior to amputation, calculated at the regional level (2003–2006), using the 306 hospital referral regions in the Dartmouth Atlas of Healthcare. We examined relationship between intensity of vascular care and major amputation rate, at the regional level, between 2007–2009. Results Amputation rates varied widely by region, from 1 to 27 per 10,000 Medicare patients. Compared to regions in the lowest quintile of amputation rate, patients in the highest quintile were commonly African American (50% versus 13%) and diabetic (38% versus 31%). Intensity of vascular care also varied across regions: fewer than 35% of patients underwent revascularization in the lowest quintile of intensity, while nearly 60% of patients underwent revascularization in the highest quintile. Overall, there was an inverse correlation between intensity of vascular care and amputation rate ranging from R= −0.36 for outpatient diagnostic and therapeutic procedures, to R= −0.87 for inpatient surgical revascularizations. In analyses adjusting for patient characteristics and socioeconomic status, patients in high vascular care regions were significantly less likely to undergo amputation without an antecedent attempt at revascularization (OR 0.37, 95% CI 0.34–0.37, p<0.001). Conclusions The intensity of vascular care provided to patients at risk for amputation varies, and regions with the most intensive vascular care have the lowest amputation rate

  11. Coupled Simulation of Hemodynamics and Vascular Growth and Remodeling in a Subject-Specific Geometry.

    PubMed

    Wu, Jiacheng; Shadden, Shawn C

    2015-07-01

    A computational framework to couple vascular growth and remodeling (G&R) with blood flow simulation in a 3D patient-specific geometry is presented. Hyperelastic and anisotropic properties are considered for the vessel wall material and a constrained mixture model is used to represent multiple constituents in the vessel wall, which was modeled as a membrane. The coupled simulation is divided into two time scales-a longer time scale for G&R and a shorter time scale for fluid dynamics simulation. G&R is simulated to evolve the boundary of the fluid domain, and fluid simulation is in turn used to generate wall shear stress and transmural pressure data that regulates G&R. To minimize required computation cost, the fluid dynamics are only simulated when G&R causes significant vascular geometric change. For demonstration, this coupled model was used to study the influence of stress-mediated growth parameters, and blood flow mechanics, on the behavior of the vascular tissue growth in a model of the infrarenal aorta derived from medical image data.

  12. Demands for vascular access in a renal dialysis unit: implications for a regional vascular unit.

    PubMed

    Eguare, E; Tierney, S; Maher, R; Creamer, M; Grace, P; Cronin, C J; Burke, P

    2006-01-01

    The development of regional dialysis units and the expanding indications for dialysis has led to increased demand for vascular access surgery. Consequently, the provision and maintenance of access, and the management of related complications has created a considerable burden on vascular surgical units in hospitals providing renal replacement therapy (RRT). The objectives of our study were to review our experience with a variety of vascular access modalities for haemodialysis and to quantify the associated surgical workload. We reviewed our experience in a consecutive group of dialysis patients who had access surgery for RRT in a regional hospital setting. Between January 1995 and January 2000, 69 patients entered the long-term dialysis programme in the Mid-Western region (population = 320,000). Of the 158 procedures performed, 138 (87%) were for access creation, and 20 (13%) related to access revision procedures. Twenty patients (29%) developed a total of 30 access related complications. Vascular access procedures accounted for 10% of the vascular surgical workload (1598 procedures) in the five-year period. Vascular access is an important part of the haemodialysis services and surgical expertise should be available at local level to cope with likely demand.

  13. Relationship between regional spending on vascular care and amputation rate

    PubMed Central

    Goodney, Philip P.; Travis, Lori L.; Brooke, Benjamin S.; DeMartino, Randall R.; Goodman, David C.; Fisher, Elliott S.; Birkmeyer, John D.

    2014-01-01

    Importance While lower extremity revascularization is effective in preventing amputation, the relationship between spending on vascular care and regional amputation rates remains unclear. Objective To test the hypothesis that higher regional spending on vascular care is associated with lower amputation rates in patients with severe peripheral arterial disease (PAD). Design Retrospective cohort study. Setting United States Medicare patients, 2003-2010 Participants 18,463 patients who underwent major PAD-related amputation. Exposures Price-adjusted Medicare spending on revascularization procedures and related vascular care in the year before lower extremity amputation, across hospital referral regions. Main Outcome Measure(s) Correlation coefficient between regional spending on vascular care and regional rates of PAD-related amputation. Results Among patients ultimately subject to amputation, 64% were admitted to the hospital in the year prior to amputation for revascularization, wound-related care, or both; 36% were admitted only for their amputation. The mean cost of inpatient care in the year before amputation, including the amputation itself, was $22,405, but varied from $11,077 (Bismarck, North Dakota) to $42,613 (Salinas, California) (p<0.001). Patients in high-spending regions were more likely to undergo vascular procedures in crude analyses (12.0 procedures per 10,000 patients in the lowest quintile of spending, 20.4 procedures per 10,000 patients in the highest quintile of spending, p<0.0001), as well as in risk-adjusted analyses (adjusted OR for receiving a vascular procedure in highest quintile of spending = 3.5, 95 % CI 3.2-3.8, p<0.0001). While revascularization was associated with higher spending (R=0.38, p<0.001), higher spending was not associated with lower regional amputation rates (R=0.10, p=0.06). Regions most aggressive in the use of endovascular interventions which most likely to have high spending (R=0.42, p=0.002) and high amputation rates (R

  14. Vascularized bone graft from the supracondylar region of the femur.

    PubMed

    Doi, Kazuteru; Hattori, Yasunori

    2009-01-01

    Free vascularized thin corticoperiosteal grafts and small periosteal bone grafts harvested from the supracondylar region of the femur are described. These grafts are nourished from the articular branch of the descending genicular artery and vein. Unlike currently used vascularized bone grafts, this graft can be successfully harvested with disturbing the vascularity. Thin corticoperiosteal grafts consist of periosteum with a thin layer of outer cortical bone and include the cambium layer, which has a better osteogenic capacity. This graft is elastic and readily conforms to the recipient bed configuration. Thin corticoperiosteal grafts were used for fracture nonunion of the long bone with smaller bone defect and to treat forty-six patients with avascular necrosis of the body of the talus, scaphoid, and lunate bone.

  15. Guidelines for Surveying Bankfull Channel Geometry and Developing Regional Hydraulic-Geometry Relations for Streams of New York State

    USGS Publications Warehouse

    Powell, Rocky O.; Miller, Sarah J.; Westergard, Britt E.; Mulvihill, Christiane I.; Baldigo, Barry P.; Gallagher, Anne S.; Starr, Richard R.

    2004-01-01

    Many disturbed streams within New York State are being restored in an effort to provide bank and bed stability and thereby decrease sedimentation and erosion. Efforts to identify and provide accurate indicators for stable-channel characteristics for ungaged streams have been hampered by the lack of regional equations or relations that relate drainage area to bankfull discharge and to channel depth, width, and cross-sectional area (bankfull hydraulic-geometry relations). Regional equations are needed to confirm bankfull hydraulic-geometry, assess stream stability, evaluate restoration needs, and verify restoration design for ungaged streams that lack stage-to-discharge ratings or historic peak-flow records. This report presents guidelines for surveying bankfull channel geometry at USGS stream gages and developing regional hydraulic-geometry relations (equations) for wadeable streams in New York. It summarizes methods to (1) compile and assess existing hydrologic, geometric, photographic, and topographic data, (2) conduct stream-reconnaissance inspections, (3) identify channel-bankfull characteristics, (4) conduct longitudinal and cross-section surveys, (5) measure stream discharge, (6) develop and refine bankfull hydraulic-geometry equations, and (7) analyze and assure data completeness and quality. The techniques primarily address wadeable streams with either active or discontinued surface-water and crest-stage gages. The relations can be applied to ungaged or actively gaged streams that are wadeable, and may be extended to non-wadeable streams (with some limitations) if they have drainage areas comparable to those used to develop the relations.

  16. Vascular plants as bioindicators of regional warming in Antarctica.

    PubMed

    Smith, R I Lewis

    1994-09-01

    Monitoring selected populations of the only two native Antarctic vascular plant species (Colobanthus quitensis andDeschampsia antarctica) over a 27-year period has revealed a significant and relatively rapid increase in numbers of individuals and populations at two widely separated localities in the maritime Antarctic. There is strong evidence that this increase is a response to a warming trend in summer air temperatures, which has been evident throughout the region since the late 1940s, enhancing seed maturation, germination and seedling survival. This study provides the only known long-term monitoring data for any terrestrial organisms in Antarc-tica. Because their response to ameliorating conditions is more rapid than that of the dominant cryptogamic groups, Antarctic phanerogams may be useful bioindicators of climate change in West Antarctica.

  17. Evaluation of blood flow distribution asymmetry and vascular geometry in patients with Fontan circulation using 4-D flow MRI.

    PubMed

    Jarvis, Kelly; Schnell, Susanne; Barker, Alex J; Garcia, Julio; Lorenz, Ramona; Rose, Michael; Chowdhary, Varun; Carr, James; Robinson, Joshua D; Rigsby, Cynthia K; Markl, Michael

    2016-10-01

    Asymmetrical caval to pulmonary blood flow is suspected to cause complications in patients with Fontan circulation. The aim of this study was to test the feasibility of 4-D flow MRI for characterizing the relationship between 3-D blood flow distribution and vascular geometry. We hypothesized that both flow distribution and geometry can be calculated with low interobserver variability and will detect a direct relationship between flow distribution and Fontan geometry. Four-dimensional flow MRI was acquired in 10 Fontan patients (age: 16 ± 4 years [mean ± standard deviation], range: 9-21 years). The Fontan connection was isolated by 3-D segmentation to evaluate flow distribution from the inferior vena cava (IVC) and superior vena cava (SVC) to the left and right pulmonary arteries (LPA, RPA) and to characterize geometry (cross-sectional area, caval offset, vessel angle). Flow distribution results indicated SVC flow tended toward the RPA while IVC flow was more evenly distributed (SVC to RPA: 78% ± 28 [9-100], IVC to LPA: 54% ± 28 [4-98]). There was a significant relationship between pulmonary artery cross-sectional area and flow distribution (IVC to RPA: R(2)=0.50, P=0.02; SVC to LPA: R(2)=0.81, P=0.0004). Good agreement was found between observers and for flow distribution when compared to net flow values. Four-dimensional flow MRI was able to detect relationships between flow distribution and vessel geometry. Future studies are warranted to investigate the potential of patient specific hemodynamic analysis to improve diagnostic capability.

  18. ESTIMATING STREAMFLOW AND ASSOCIATED HYDRAULIC GEOMETRY, THE MID-ATLANTIC REGION, USA

    EPA Science Inventory

    Methods to estimate streamflow and channel hydraulic geometry were developed for ungaged streams in the Mid-Atlantic Region. Observed mean annual streamflow and associated hydraulic geometry data from 75 gaging stations located in the Appalachian Plateau, the Ridge and Valley, an...

  19. ESTIMATING STREAMFLOW AND ASSOCIATED HYDRAULIC GEOMETRY, THE MID-ATLANTIC REGION, USA

    EPA Science Inventory

    Methods to estimate streamflow and channel hydraulic geometry were developed for ungaged streams in the Mid-Atlantic Region. Observed mean annual streamflow and associated hydraulic geometry data from 75 gaging stations located in the Appalachian Plateau, the Ridge and Valley, an...

  20. Vascular geometry and oxygen diffusion in the vicinity of artery-vein pairs in the kidney.

    PubMed

    Ngo, Jennifer P; Kar, Saptarshi; Kett, Michelle M; Gardiner, Bruce S; Pearson, James T; Smith, David W; Ludbrook, John; Bertram, John F; Evans, Roger G

    2014-11-15

    Renal arterial-to-venous (AV) oxygen shunting limits oxygen delivery to renal tissue. To better understand how oxygen in arterial blood can bypass renal tissue, we quantified the radial geometry of AV pairs and how it differs according to arterial diameter and anatomic location. We then estimated diffusion of oxygen in the vicinity of arteries of typical geometry using a computational model. The kidneys of six rats were perfusion fixed, and the vasculature was filled with silicone rubber (Microfil). A single section was chosen from each kidney, and all arteries (n = 1,628) were identified. Intrarenal arteries were largely divisible into two "types," characterized by the presence or absence of a close physical relationship with a paired vein. Arteries with a close physical relationship with a paired vein were more likely to have a larger rather than smaller diameter, and more likely to be in the inner-cortex than the mid- or outer cortex. Computational simulations indicated that direct diffusion of oxygen from an artery to a paired vein can only occur when the two vessels have a close physical relationship. However, even in the absence of this close relationship oxygen can diffuse from an artery to periarteriolar capillaries and venules. Thus AV oxygen shunting in the proximal preglomerular circulation is dominated by direct diffusion of oxygen to a paired vein. In the distal preglomerular circulation, it may be sustained by diffusion of oxygen from arteries to capillaries and venules close to the artery wall, which is subsequently transported to renal veins by convection.

  1. Bankfull-channel geometry and discharge curves for the Rocky Mountains Hydrologic Region in Wyoming

    USGS Publications Warehouse

    Foster, Katharine

    2012-01-01

    Regional curves relate bankfull-channel geometry and bankfull discharge to drainage area in regions with similar runoff characteristics and are used to estimate the bankfull discharge and bankfull-channel geometry when the drainage area of a stream is known. One-variable, ordinary least-squares regressions relating bankfull discharge, cross-sectional area, bankfull width, and bankfull mean depth to drainage area were developed from data collected at 35 streamgages in or near Wyoming. Watersheds draining to these streamgages are within the Rocky Mountains Hydrologic Region of Wyoming and neighboring states.

  2. Vascular risk and Aβ interact to reduce cortical thickness in AD vulnerable brain regions

    PubMed Central

    Reed, Bruce R.; Madison, Cindee M.; Wirth, Miranka; Marchant, Natalie L.; Kriger, Stephen; Mack, Wendy J.; Sanossian, Nerses; DeCarli, Charles; Chui, Helena C.; Weiner, Michael W.; Jagust, William J.

    2014-01-01

    Objective: The objective of this study was to define whether vascular risk factors interact with β-amyloid (Aβ) in producing changes in brain structure that could underlie the increased risk of Alzheimer disease (AD). Methods: Sixty-six cognitively normal and mildly impaired older individuals with a wide range of vascular risk factors were included in this study. The presence of Aβ was assessed using [11C]Pittsburgh compound B–PET imaging, and cortical thickness was measured using 3-tesla MRI. Vascular risk was measured with the Framingham Coronary Risk Profile Index. Results: Individuals with high levels of vascular risk factors have thinner frontotemporal cortex independent of Aβ. These frontotemporal regions are also affected in individuals with Aβ deposition, but the latter show additional thinning in parietal cortices. Aβ and vascular risk were found to interact in posterior (especially in parietal) brain regions, where Aβ has its greatest effect. In this way, the negative effect of Aβ in posterior regions is increased by the presence of vascular risk. Conclusion: Aβ and vascular risk interact to enhance cortical thinning in posterior brain regions that are particularly vulnerable to AD. These findings give insight concerning the mechanisms whereby vascular risk increases the likelihood of developing AD and supports the therapeutic intervention of controlling vascular risk for the prevention of AD. PMID:24907234

  3. Variations of vascular distribution in the mandibular anterior lingual region: a high risk of vascular injury during implant surgery.

    PubMed

    Fujita, Shuhei; Ide, Yoshinobu; Abe, Sinichi

    2012-08-01

    To clarify variations of vascular distribution around the mandibular anterior tooth lingual region, an area in which vascular injuries have often been reported during dental implant surgery. The reasons for such injuries in this region are discussed from an anatomical perspective. Anatomical dissections were performed on 100 sides of 50 cadavers used for anatomy education. Ten sides of 5 cadavers were injected intravascularly with methyl methacrylate, and penetration of the mandible was closely evaluated. In the mandibular anterior tooth lingual region, both the sublingual and submental arteries showed various distribution patterns. Distal branches basically penetrated the bone. In the mandibular anterior tooth lingual region, the sublingual and submental arteries traveled from the vicinity of the mylohyoid muscle attachment along the bone surface in an anterosuperior direction. Many of these blood vessels penetrated the alveolar mucosa in the anterior tooth region, and many distal branches of the vessels also finally penetrated the bone. This seems to explain why many vascular injuries are encountered around the mandibular anterior tooth lingual region during implant surgery.

  4. Analysis of normal human retinal vascular network architecture using multifractal geometry

    PubMed Central

    Ţălu, Ştefan; Stach, Sebastian; Călugăru, Dan Mihai; Lupaşcu, Carmen Alina; Nicoară, Simona Delia

    2017-01-01

    AIM To apply the multifractal analysis method as a quantitative approach to a comprehensive description of the microvascular network architecture of the normal human retina. METHODS Fifty volunteers were enrolled in this study in the Ophthalmological Clinic of Cluj-Napoca, Romania, between January 2012 and January 2014. A set of 100 segmented and skeletonised human retinal images, corresponding to normal states of the retina were studied. An automatic unsupervised method for retinal vessel segmentation was applied before multifractal analysis. The multifractal analysis of digital retinal images was made with computer algorithms, applying the standard box-counting method. Statistical analyses were performed using the GraphPad InStat software. RESULTS The architecture of normal human retinal microvascular network was able to be described using the multifractal geometry. The average of generalized dimensions (Dq) for q=0, 1, 2, the width of the multifractal spectrum (Δα=αmax − αmin) and the spectrum arms' heights difference (|Δf|) of the normal images were expressed as mean±standard deviation (SD): for segmented versions, D0=1.7014±0.0057; D1=1.6507±0.0058; D2=1.5772±0.0059; Δα=0.92441±0.0085; |Δf|= 0.1453±0.0051; for skeletonised versions, D0=1.6303±0.0051; D1=1.6012±0.0059; D2=1.5531±0.0058; Δα=0.65032±0.0162; |Δf|= 0.0238±0.0161. The average of generalized dimensions (Dq) for q=0, 1, 2, the width of the multifractal spectrum (Δα) and the spectrum arms' heights difference (|Δf|) of the segmented versions was slightly greater than the skeletonised versions. CONCLUSION The multifractal analysis of fundus photographs may be used as a quantitative parameter for the evaluation of the complex three-dimensional structure of the retinal microvasculature as a potential marker for early detection of topological changes associated with retinal diseases. PMID:28393036

  5. Magnesium regulates intracellular ionized calcium concentration and cell geometry in vascular smooth muscle cells (VSMC)

    SciTech Connect

    Zhang, A.; Cheng, T.P.; Altura, B.M. )

    1991-03-11

    It has been suggested that the extracellular Mg{sup 2+} may modulate contractility of VSMC by controlling the cellular level of free Ca{sup 2+}. The present studies were designed to determine the effects of (Mg{sup 2+}) on the distribution of intracellular free Ca{sup 2+} using digital imaging fluorescence microscopy of Fura-2 fluorescence of single VSMC cultured from rat aortas. When incubated with HEPES buffer solution containing 1.2mM Mg{sup 2+}, the myocytes are spindle-shaped, and the basal level of (Ca{sup 2+}){sub i} estimated from the ratio (F340/F380) is 96.6 {plus minus} 7.9nM with a heterogeneous distribution. (Mg{sup 2+}){sub o} withdrawal from the incubation medium induces consistently a dramatic increment of (Ca{sup 2+}){sub i} up to 579.6 {plus minus} 39.3nM, about a 5.8-fold elevation compared to control experiments. Similarly, lowering (Mg{sup 2+}){sub o} to 0.3mM (the lowest physiological range) elevates (Ca{sup 2+}){sub i} to the intermediate level of 348.0 {plus minus} 31.5nM. However, the heterogeneous distribution of (Ca{sup 2+}){sub i} is still evident when (Mg{sup 2+}){sub o} is lowered. Simultaneously to the (Ca{sup 2+}){sub i} increments, cell shapes were changed. In contrast, elevation of (Mg{sup 2+}){sub o} to 4.8mM was found to decrease (Ca{sup 2+}){sub i} to 72.0 {plus minus} 4.6nM. Removal of (Ca{sup 2+}){sub o}, however, abolished the increments of (Ca{sup 2+}){sub i} induced by (Mg{sup 2+}){sub o} withdrawal. These results demonstrate that (Mg{sup 2+}){sub o} regulated (Ca{sup 2+}){sub i} and geometry of VSMC, probably through controlling plasma membrane permeability to Ca{sup 2+}.

  6. Wall-Less Flow Phantoms with Tortuous Vascular Geometries: Design Principles and a Patient-Specific Model Fabrication Example.

    PubMed

    Ho, Chung Kit; Chee, Adrian J Y; Yiu, Billy Y S; Tsang, Anderson C O; Chow, Kwok Wing; Yu, Alfred C H

    2016-12-06

    Flow phantoms with anatomically realistic geometry and high acoustic compatibility are valuable investigative tools in vascular ultrasound studies. Here, we present a new framework to fabricate ultrasound-compatible flow phantoms to replicate human vasculature that is tortuous, non-planar and branching in nature. This framework is based upon the integration of rapid prototyping and investment casting principles. A pedagogical walkthrough of our engineering protocol is presented in this paper using a patient-specific cerebral aneurysm model as an exemplar demonstration. The procedure for constructing the flow circuit component of the phantoms is also presented, including the design of a programmable flow pump system, the fabrication of blood mimicking fluid, and flow rate calibration. Using polyvinyl alcohol (PVA) cryogel as the tissue mimicking material, phantoms developed with the presented protocol exhibited physiologically relevant acoustic properties (attenuation coefficient: 0.229±0.032 dB/(cm∙MHz); acoustic speed: 1535±2.4 m/s), and their pulsatile flow dynamics closely resembled the flow profile input. As a first application of our developed phantoms, the flow pattern of the patient-specific aneurysm model was visualized by performing high-frame-rate color-encoded speckle imaging (CESI) over multiple time-synchronized scan planes. Persistent recirculation was observed, and the vortex center was found to shift in position over a cardiac cycle, indicating the 3-D nature of flow recirculation inside an aneurysm. These findings suggest that phantoms produced from our reported protocol can serve well as acoustically-compatible test-beds for vascular ultrasound studies, including 3-D flow imaging.

  7. Wall-Less Flow Phantoms With Tortuous Vascular Geometries: Design Principles and a Patient-Specific Model Fabrication Example.

    PubMed

    Ho, Chung Kit; Chee, Adrian J Y; Yiu, Billy Y S; Tsang, Anderson C O; Chow, Kwok Wing; Yu, Alfred C H

    2017-01-01

    Flow phantoms with anatomically realistic geometry and high acoustic compatibility are valuable investigative tools in vascular ultrasound studies. Here, we present a new framework to fabricate ultrasound-compatible flow phantoms to replicate human vasculature that is tortuous, nonplanar, and branching in nature. This framework is based upon the integration of rapid prototyping and investment casting principles. A pedagogical walkthrough of our engineering protocol is presented in this paper using a patient-specific cerebral aneurysm model as an exemplar demonstration. The procedure for constructing the flow circuit component of the phantoms is also presented, including the design of a programmable flow pump system, the fabrication of blood mimicking fluid, and flow rate calibration. Using polyvinyl alcohol cryogel as the tissue mimicking material, phantoms developed with the presented protocol exhibited physiologically relevant acoustic properties [attenuation coefficient: 0.229±0.032 dB/( [Formula: see text]) and acoustic speed: 1535±2.4 m/s], and their pulsatile flow dynamics closely resembled the flow profile input. As a first application of our developed phantoms, the flow pattern of the patient-specific aneurysm model was visualized by performing high-frame-rate color-encoded speckle imaging over multiple time-synchronized scan planes. Persistent recirculation was observed, and the vortex center was found to shift in position over a cardiac cycle, indicating the 3-D nature of flow recirculation inside an aneurysm. These findings suggest that phantoms produced from our reported protocol can serve well as acoustically compatible test beds for vascular ultrasound studies, including 3-D flow imaging.

  8. Relative vascular permeability and vascularity across different regions of the rat nasal mucosa: implications for nasal physiology and drug delivery

    PubMed Central

    Kumar, Niyanta N.; Gautam, Mohan; Lochhead, Jeffrey J.; Wolak, Daniel J.; Ithapu, Vamsi; Singh, Vikas; Thorne, Robert G.

    2016-01-01

    Intranasal administration provides a non-invasive drug delivery route that has been proposed to target macromolecules either to the brain via direct extracellular cranial nerve-associated pathways or to the periphery via absorption into the systemic circulation. Delivering drugs to nasal regions that have lower vascular density and/or permeability may allow more drug to access the extracellular cranial nerve-associated pathways and therefore favor delivery to the brain. However, relative vascular permeabilities of the different nasal mucosal sites have not yet been reported. Here, we determined that the relative capillary permeability to hydrophilic macromolecule tracers is significantly greater in nasal respiratory regions than in olfactory regions. Mean capillary density in the nasal mucosa was also approximately 5-fold higher in nasal respiratory regions than in olfactory regions. Applying capillary pore theory and normalization to our permeability data yielded mean pore diameter estimates ranging from 13–17 nm for the nasal respiratory vasculature compared to <10 nm for the vasculature in olfactory regions. The results suggest lymphatic drainage for CNS immune responses may be favored in olfactory regions due to relatively lower clearance to the bloodstream. Lower blood clearance may also provide a reason to target the olfactory area for drug delivery to the brain. PMID:27558973

  9. Relative vascular permeability and vascularity across different regions of the rat nasal mucosa: implications for nasal physiology and drug delivery.

    PubMed

    Kumar, Niyanta N; Gautam, Mohan; Lochhead, Jeffrey J; Wolak, Daniel J; Ithapu, Vamsi; Singh, Vikas; Thorne, Robert G

    2016-08-25

    Intranasal administration provides a non-invasive drug delivery route that has been proposed to target macromolecules either to the brain via direct extracellular cranial nerve-associated pathways or to the periphery via absorption into the systemic circulation. Delivering drugs to nasal regions that have lower vascular density and/or permeability may allow more drug to access the extracellular cranial nerve-associated pathways and therefore favor delivery to the brain. However, relative vascular permeabilities of the different nasal mucosal sites have not yet been reported. Here, we determined that the relative capillary permeability to hydrophilic macromolecule tracers is significantly greater in nasal respiratory regions than in olfactory regions. Mean capillary density in the nasal mucosa was also approximately 5-fold higher in nasal respiratory regions than in olfactory regions. Applying capillary pore theory and normalization to our permeability data yielded mean pore diameter estimates ranging from 13-17 nm for the nasal respiratory vasculature compared to <10 nm for the vasculature in olfactory regions. The results suggest lymphatic drainage for CNS immune responses may be favored in olfactory regions due to relatively lower clearance to the bloodstream. Lower blood clearance may also provide a reason to target the olfactory area for drug delivery to the brain.

  10. Increased regional vascular albumin permeation in the rat during anaphylaxis

    SciTech Connect

    Leng, W.; Chang, K.; Williamson, J.R.; Jakschik, B.A.

    1989-03-15

    The changes in vascular albumin permeation induced by systemic anaphylaxis were studied simultaneously in 21 different tissues of the same animal. Before Ag challenge sensitized rats were injected i.v. with 125I-albumin (test tracer), 51Cr-RBC (vascular space marker) and 57Co-EDTA (extravascular space marker). The index of vascular permeation used was the tissue to blood isotope ratio (tbir), which was obtained by dividing the ratio of 125I/51Cr counts in each tissue by the ratio of the same isotopes in the arterial blood sample. After Ag challenge, the increase in the tbir varied considerably among the different tissues. The most pronounced increase was noted in the lymph node (ninefold) followed by the aorta and mesentery (six- to sevenfold) and the various parts of the gastrointestinal tract (four- to sixfold). In the skin less than skeletal muscle less than lung less than liver and eye two- to fourfold increases occurred. Relatively minor increases in albumin permeation (less than twofold) were observed in the brain less than kidney less than heart and less than spleen. The testis was the only organ in which no significant change occurred. For some of the tissues there was also an increase in the tbir for 57Co/51Cr (an index of the extracellular fluid space) suggesting edema formation. The highest increase was noted in the aorta (fourfold). Minor increases occurred in the atrium of the heart, stomach, duodenum, and lymph nodes. There was also a 36% increase in hematocrit. Therefore, systemic anaphylaxis caused extensive extravasation of albumin and hemoconcentration.

  11. Non-iatrogenic civilian vascular trauma in a well-defined geographical region in Finland.

    PubMed

    Pöyhönen, R; Suominen, V; Uurto, I; Salenius, J

    2015-10-01

    The purpose of this study was to assess the incidence, treatment and outcome of vascular trauma in a well-defined geographical region in Finland. A retrospective analysis was conducted of patients admitted to Tampere University Hospital (TAUH), Pirkanmaa, Finland, due to vascular trauma between January 2006 and December 2010. Data regarding trauma mechanism, anatomical location, treatment, and short-term outcome were collected from patients' files and vascular register. Altogether, 143 non-iatrogenic vascular traumas occurred during the study period resulting in an annual trauma incidence of 5.8/100,000/year in the TAUH region. The majority of the injuries were located in the upper extremities (N = 83, 58%). Penetrating injuries comprised 58% (83 patients) of all vascular trauma admissions and were significantly more common among men compared to women (83 and 17%, respectively). The majority (N = 93, 65%) of the injuries were treated surgically, while in 15 (11%) patients the trauma was resolved by endovascular means. The remaining 35 (24%) patients were successfully managed conservatively, i.e., by observation or wound exploration only without the need for later (30-day) vascular repair. Two out of 17 patients (12%) with lower extremity vascular trauma required major amputation. Procedure-related complications occurred in five patients. In-hospital and 30-day mortality was zero. This paper demonstrates that the incidence of non-iatrogenic civilian vascular trauma in the Pirkanmaa region is low and mainly caused by penetrating injury. Further, the majority of vascular traumas are still treated surgically. In general, the short-term survival of patients who survive the initial trauma is good.

  12. THREE-DIMENSIONAL GEOMETRIES AND THE ANALYSIS OF H II REGIONS

    SciTech Connect

    Wood, Kenneth; Barnes, J. E.; Ercolano, Barbara; Haffner, L. M.; Reynolds, R. J.; Dale, J.

    2013-06-20

    We compare emission line intensities from photoionization models of smooth and fractal shell geometries for low density H II regions, with particular focus on the low-ionization diagnostic diagram [N II]/H{alpha} versus H{alpha}. Building on previously published models and observations of Barnard's Loop, we show that the observed range of intensities and variations in the line intensity ratios may be reproduced with a three-dimensional shell geometry. Our models adopt solar abundances throughout the model nebula, in contrast with previous one-dimensional modeling which suggested the variations in line intensity ratios could only be reproduced if the heavy element abundances were increased by a factor of {approx}1.4. For spatially resolved H II regions, the multiple sightlines that pierce and sample different ionization and temperature conditions within smooth and fractal shells produce a range of line intensities that are easily overlooked if only the total integrated intensities from the entire nebula model are computed. Our conclusion is that inference of H II region properties, such as elemental abundances, via photoionization models of one-dimensional geometries must be treated with caution and further tested through three-dimensional modeling.

  13. [Cardiac findings and vascular calcification in arteriosclerotic obstructive disease in the pelvis and leg region. I].

    PubMed

    Raue, I; Sauer, I; Voigt, H

    1980-02-15

    In 117 patients with angiographically ascertained arteriosclerotic obstructive disease in the region of pelvis and leg the smoking of cigarettes in a high degree confirmed itself as atherogenic factor of risk. The rate of hypertension of patients with vascular disease was increased in comparison with the average population. In contrast to a control group of test persons who after clinical angiological examination did not give a clue to a vascular disease the patients with vascular diseases shows a significantly higher percentage of radiologically visible calcifications in the region of the abdominal aorta, the iliacal and the peripheral arteries of the legs. The calcification of the vessels were generalized in 85%. Apart from the calcification of the abdominal aorta the sclerosis was visible above all in the vascular are switched after the obstruction. There were no differences between normotonic and hypertonic patients with vascular diseases concerning the state of sclerosis. Clear correlations between the proof of sclerosations of the vessels and the apparative angiologically measurable narrowing of the vascular system are not known. Nevertheless in our opinion the calcification of the arteries of the legs in younger patients may be regarded as a reference to a disturbance of the arterial blood supply which must be clarified. The densitometrically established content of calcium salt in the calcaneus showed a dependance on the formation of collaterals and the state of sclerosis in the corresponding type of obstruction and may give a quantitative measure for the degree of severity of an ischaemic osteoporosis.

  14. [Method for Extracting Vascular Perfusion Region Based on Ultrasound Contrast Agent].

    PubMed

    Shan, Xin; Wen, Yingang; Lin, Tao; Zhu, Xinjian

    2015-10-01

    Vascular perfusion distribution in fibroids contrast-enhanced ultrasound images provides useful pathological and physiological information, because the extraction of the vascular perfusion area can be helpful to quantitative evaluation of uterine fibroids blood supply. The pixel gray scale in vascular perfusion area of fibroids contrast-enhanced ultrasound image sequences is different from that in other regions, and, based on this, we proposed a method of extracting vascular perfusion area of fibroids. Firstly, we denoised the image sequence, and then we used Brox optical flow method to estimate motion of two adjacent frames, based on the results of the displacement field for motion correction. Finally, we extracted vascular perfusion region from the surrounding background based on the differences in gray scale for the magnitude of the rich blood supply area and lack of blood supply area in ultrasound images sequence. The experimental results showed that the algorithm could accurately extract the vascular perfusion area, reach the precision of identification of clinical perfusion area, and only small amount of calculation was needed and the process was fairly simple.

  15. [Experience of Regional Vascular Centre in assisting patients with severe cerebrovascular accidents in Novosibirsk].

    PubMed

    Doronin, B M; Marushak, A A; Popova, T F; Gribacheva, I A; Petrova, E V

    2016-01-01

    The analysis of the work of the neurological department of the Novosibirsk regional vascular center of City Clinical Hospital #1 for the period from 2013 to 2015 was done. We analyzed the annual reports of the regional vascular center, dynamics of cerebrovascular disease patterns, lethality, about the provision of medical care to patients with stroke, the use of high-tech methods of diagnosis and treatment. Ascertain the progress achieved and the perspectives of further improving the quality of care to patients with stroke due to wider use of methods of rehabilitation in the acute stage of stroke.

  16. Regional impacts of urbanization on stream channel geometry: A case study in semiarid southern California

    NASA Astrophysics Data System (ADS)

    Taniguchi, Kristine T.; Biggs, Trent W.

    2015-11-01

    Urbanization often increases storm runoff, peak discharges and rates of stream channel erosion. Coastal California has experienced rapid urbanization over the past several decades and has the potential for stream channel degradation. Several counties in California have implemented Hydromodification Management Plans (HMPs) to protect channels from erosion, but few studies have quantified the impact of urbanization on channel geometry in diverse geological settings at the county scale. A synoptic survey of field sites (N = 56) by the California Environmental Data Exchange Network (CEDEN) and additional field surveys (N = 24) were used to develop regional hydraulic geometry curves relating bankfull cross-sectional area (Axs), width (w), mean depth (d), and discharge (Qbf) to watershed area (Aw) in San Diego County. Regional curves were compared for urban and reference sites and to other regional curves developed for southern California. Multiple regression models were used to identify dominant watershed and channel controls on geometry, including Aw, percent impervious cover (I%), mean annual precipitation, underlying geology, longitudinal slope, hydrologic soil group, and channel particle size. For the reference streams, regional curves were statistically significant for w and Axs (p < 0.05). The regional curves for urban channels (I% > 20%) had significantly larger w, d, Axs, and Qbf for a given watershed size. A majority (68%) of the urban channels and 78% of the small urban channels (Aw < 10 km2) were enlarged. Enlargement of channels in small watersheds disrupted the correlation between Aw and bankfull dimensions, and I% was the only significant predictor of channel geometry in urban watersheds. Channel response differed by channel substrate: sand-bedded channels incised and experienced extreme enlargement of up to 115 × the Axs of reference sites, while gravel-bedded channels widened and showed less enlargement (< 7 × reference Axs). Diverse channel responses

  17. Downstream effects of dams on channel geometry and bottomland vegetation: Regional patterns in the Great Plains

    USGS Publications Warehouse

    Friedman, J.M.; Osterkamp, W.R.; Scott, M.L.; Auble, G.T.

    1998-01-01

    The response of rivers and riparian forests to upstream dams shows a regional pattern related to physiographic and climatic factors that influence channel geometry. We carried out a spatial analysis of the response of channel geometry to 35 dams in the Great Plains and Central Lowlands, USA. The principal response of a braided channel to an upstream dam is channel-narrowing, and the principal response of a meandering channel is a reduction in channel migration rate. Prior to water management, braided channels were most common in the southwestern Plains where sand is abundant, whereas meandering channels were most common in the northern and eastern Plains. The dominant response to upstream dams has been channel-narrowing in the southwestern Plains (e.g., six of nine cases in the High Plains) and reduction in migration rate in the north and east (e.g., all of twelve cases in the Missouri Plateau and Western Lake Regions). Channel-narrowing is associated with a burst of establishment of native and exotic woody riparian pioneer species on the former channel bed. In contrast, reduction in channel migration rate is associated with a decrease in reproduction of woody riparian pioneers. Thus, riparian pioneer forests along large rivers in the southwestern Plains have temporarily increased following dam construction while such forests in the north and east have decreased. These patterns explain apparent contradictions in conclusions of studies that focused on single rivers or small regions and provide a framework for predicting effects of dams on large rivers in the Great Plains and elsewhere. These conclusions are valid only for large rivers. A spatial analysis of channel width along 286 streams ranging in mean annual discharge from 0.004 to 1370 cubic meters per second did not produce the same clear regional pattern, in part because the channel geometries of small and large streams are affected differently by a sandy watershed.

  18. Effects of Regional Topography and Spacecraft Observation Geometry on Surface Soil Moisture Estimation Accuracies

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Akbar, R.; West, R. D.; Colliander, A.; Kim, S.; Dunbar, R. S.

    2015-12-01

    The NASA Soil Moisture Active-Passive Mission (SMAP), launched in January 2015, provides near-daily global surface soil moisture estimates via combined Active Radar and Passive Radiometer observations at various spatial resolutions. The goal of this mission is to enhance our understanding of global carbon and water cycles. This presentation will focus on a comprehensive assessment of the SMAP high resolution radar backscatter data (formally the L1C_S0_HiRes data product) obtained over a 3 km Woody Savanna region in north-central California during a 2.5 month period starting late May 2015. The effects of spacecraft observation geometry (fore- and aft-looks as well as ascending and descending obits) along with regional topography on soil moisture estimation abilities will be examined. Furthermore surface soil moisture retrievals, obtained through utilization of different combinations of observation geometries, will be compared to an existing network of in situsensors. Current electromagnetic scattering and emission models do not properly account for surface topography, therefore physical forward model predictions and observations have unaccounted mismatch errors which also affect soil moisture estimation accuracies. The goal of this study is to quantify these soil moisture prediction errors and highlight the need for new and complete Electromagnetic modeling efforts.

  19. The "postcricoid cushion": observations on the vascular anatomy of the posterior cricoid region.

    PubMed

    Hoff, Stephen R; Koltai, Peter J

    2012-06-01

    To describe the cyclical vascular enlargement that occurs in the postcricoid region during the expiratory phase on an infant's cry, and to consider the anatomic, physiologic, and clinical implications of this phenomenon, which we term the "postcricoid cushion." A total of 125 consecutive office fiber-optic laryngoscopic examinations in children and infants were reviewed for engorgement and vascular discoloration of the postcricoid region. Presence of a postcricoid cushion in relation to patient age was reviewed. A comprehensive literature review was also performed. Tertiary care pediatric hospital. Patients from newborns to 17 years old undergoing laryngoscopy for any reason. Sixty-one percent of the videos showed a postcricoid cushion with cyclical enlargement during crying. Eighty-eight percent of children younger than 24 months had presence of a cushion compared with only 38% of children 24 months or older (P < .001). Twenty-five percent of the cushions had violaceous discoloration that resembled a vascular malformation. Anatomic studies have demonstrated a rich venous plexus in the postcricoid region of the larynx. During the expiratory phase of an infant's cry, there is a cyclical engorgement, occasionally with vascular discoloration, in the postcricoid region at the same level of the venous plexus-the "postcricoid cushion." We propose that during crying, with acute elevation in intrathoracic pressure, there is a filling of the plexus, causing apposition of the postcricoid cushion against the posterior pharyngeal wall, which may serve as a protective barrier to emesis in infants. Our observations relate and differentiate this normal physiologic phenomenon from the rare cases of postcricoid vascular anomalies.

  20. Treatment of large vascular lesions in the orofacial region with the Nd:YAG laser.

    PubMed

    Vesnaver, Ales; Dovsak, David A

    2009-06-01

    Large vascular lesions in the orofacial region are often very difficult to remove. In the 1990s, the neodymium: yttrium-aluminum-garnet (Nd:YAG) laser emerged as a new and effective mode of treatment for vascular lesions. The purpose of this paper was to determine its effectiveness and safety for the treatment of large vascular lesions in the orofacial region. A prospective study was conducted in which 28 patients with large vascular lesions (their surface diameters being more than 3 x 3 cm) in the orofacial region were treated with the Nd:YAG laser by photocoagulation (PhC). Four different modalities of treatment were used: simple transmucosal PhC, transmucosal PhC with the use of compression, simple intralesional PhC, and ultrasound guided intralesional PhC. Follow up was conducted in all of the cases, time until complete healing was recorded, as were postoperative complications. In all of the patients undergoing transmucosal PhC (simple or with the use of compression), tissue sloughing occured within 1-3 days, and the time until complete healing was 3-5 weeks. In patients undergoing intralesional PhC (simple or ultrasound guided), swelling was present for 1 week. There were no cases of inadvertent bleeding. Nine patients required two or more sessions of PhC. Three patients required a corrective surgical procedure as the final step. Two patients required prolonged intubation and one patient a temporary tracheostomy, all due to oedema. Two patients developed a local intraoral infection, which was controlled with broad-spectrum oral antibiotics. If used properly, the Nd:YAG laser is a safe and effective tool for the treatment of large vascular lesions.

  1. THE ROLE OF ACTIVE REGION LOOP GEOMETRY. I. HOW CAN IT AFFECT CORONAL SEISMOLOGY?

    SciTech Connect

    Selwa, M.; Ofman, L.; Solanki, S. K. E-mail: leon.ofman@nasa.gov

    2011-01-01

    We present numerical results of coronal loop oscillation excitation using a three-dimensional (3D) MHD model of an idealized active region (AR) field. The AR is initialized as a potential dipole magnetic configuration with gravitationally stratified density and contains a loop with a higher density than its surroundings. We study different ways of excitation of vertical kink oscillations of this loop by velocity: as an initial condition, and as an impulsive excitation with a pulse of a given position, duration, and amplitude. We vary the geometry of the loop in the 3D MHD model and find that it affects both the period of oscillations and the synthetic observations (difference images) that we get from oscillations. Due to the overestimated effective length of the loop in the case of loops which have maximum separation between their legs above the footpoints (>50% of observed loops), the magnetic field obtained from coronal seismology can also be overestimated. The 3D MHD model shows how the accuracy of magnetic field strength determined from coronal seismology can be improved. We study the damping mechanism of the oscillations and find that vertical kink waves in 3D stratified geometry are damped mainly due to wave leakage in the horizontal direction.

  2. Convective-region geometry as the cause of Uranus' and Neptune's unusual magnetic fields.

    PubMed

    Stanley, Sabine; Bloxham, Jeremy

    2004-03-11

    The discovery of Uranus' and Neptune's non-dipolar, non-axisymmetric magnetic fields destroyed the picture--established by Earth, Jupiter and Saturn--that planetary magnetic fields are dominated by axial dipoles. Although various explanations for these unusual fields have been proposed, the cause of such field morphologies remains unexplained. Planetary magnetic fields are generated by complex fluid motions in electrically conducting regions of the planets (a process known as dynamo action), and so are intimately linked to the structure and evolution of planetary interiors. Determining why Uranus and Neptune have different field morphologies is not only critical for studying the interiors of these planets, but also essential for understanding the dynamics of magnetic-field generation in all planets. Here we present three-dimensional numerical dynamo simulations that model the dynamo source region as a convecting thin shell surrounding a stably stratified fluid interior. We show that this convective-region geometry produces magnetic fields similar in morphology to those of Uranus and Neptune. The fields are non-dipolar and non-axisymmetric, and result from a combination of the stable fluid's response to electromagnetic stress and the small length scales imposed by the thin shell.

  3. Macro-to-micro cortical vascular imaging underlies regional differences in ischemic brain

    NASA Astrophysics Data System (ADS)

    Dziennis, Suzan; Qin, Jia; Shi, Lei; Wang, Ruikang K.

    2015-05-01

    The ability to non-invasively monitor and quantify hemodynamic responses down to the capillary level is important for improved diagnosis, treatment and management of neurovascular disorders, including stroke. We developed an integrated multi-functional imaging system, in which synchronized dual wavelength laser speckle contrast imaging (DWLS) was used as a guiding tool for optical microangiography (OMAG) to test whether detailed vascular responses to experimental stroke in male mice can be evaluated with wide range sensitivity from arteries and veins down to the capillary level. DWLS enabled rapid identification of cerebral blood flow (CBF), prediction of infarct area and hemoglobin oxygenation over the whole mouse brain and was used to guide the OMAG system to hone in on depth information regarding blood volume, blood flow velocity and direction, vascular architecture, vessel diameter and capillary density pertaining to defined regions of CBF in response to ischemia. OMAG-DWLS is a novel imaging platform technology to simultaneously evaluate multiple vascular responses to ischemic injury, which can be useful in improving our understanding of vascular responses under pathologic and physiological conditions, and ultimately facilitating clinical diagnosis, monitoring and therapeutic interventions of neurovascular diseases.

  4. Clinical analysis of Castleman disease (hyaline vascular type) in parotid and neck region.

    PubMed

    Zhong, Lai-ping; Wang, Li-zhen; Ji, Tong; Hu, Yu-hua; Hu, Yong-jie; Ye, Wei-min; Li, Jun; Sun, Jian; Zhu, Han-guang; Li, Jiang; Zhang, Chen-Ping

    2010-03-01

    The aim of this study was to analyze a single institution's experience in clinical diagnosis, treatment, and prognosis of Castleman disease (hyaline vascular type) in the parotid and neck region. From 2004 to 2008, a total of 10 consecutive patients with Castleman disease (hyaline vascular type) in the parotid and neck region underwent surgery were included in this retrospective study. The preoperative examinations, clinical diagnosis, surgical treatment, and prognosis were recorded and analyzed. Of the 10 patients, 4 were males and 6 female; their age ranged from 13 to 54 years with a mean of 26.6 years. The lesion occurred in the parotid region in 3 patients, in the neck region in 5 patients, and in both the parotid and neck regions in 2 patients. Their course of disease ranged from 3 months to 48 months with a mean of 12.5 months; 70% of the patients (7 out of 10) had a course of disease of <12 months. The patients always had no obvious complaint, and the laboratory examinations were almost within the normal limits. Magnetic resonance imaging/angiography were valuable on clinical diagnosis and differential diagnosis. All patients underwent surgical removal of the masses completely. During the follow-up period, which ranged from 9 months to 60 months with a mean of 38.9 months, no recurrence of the lesion occurred, and the quality of life of each patient was good. Castleman disease (hyaline vascular type) in the parotid and neck region is rare, with clinical manifestation and physical examination the same as benign lesions. There is no specific indication in the laboratory tests and imaging examinations; however, magnetic resonance imaging/angiography has potential value on clinical diagnosis and differential diagnosis. Surgical resection is the choice of treatment with good prognosis. Copyright 2010 Mosby, Inc. All rights reserved.

  5. Downstream Variation of Bankfull Geometry for the Continental and Overseas Hydro-Eco-Regions of France.

    NASA Astrophysics Data System (ADS)

    Tamisier, V.; Gob, F.; Thommeret, N.; Bilodeau, C.; Raufaste, S.; Kreutzenberger, K.

    2016-12-01

    Bankfull channel geometry is a fundamental and widely used concept in hydrology, fluvial geomorphology, and ecosystem studies. We develop and compare downstream hydraulic geometry relationships for bankfull channel width (w) and depth (d) as a function of drainage area A, respectively w=aAb (DHGwA) and d=cAf (DHGdA), for the 12 of the 21 French Hydro-Eco-Regions which are defined in terms of climate, topography and geology. The models have been built from a database (CARHYCE) that includes 1500 river reaches for which a unique standardized field protocol was used. River reach morphology was described based on a survey of 15 cross-sections spaced at intervals of one bankfull width. Sediment size and riverine vegetation were also measured and characterized. This database covers a wide range of French river diversity in terms of geomorphic types and anthropogenic impacts. Sampled stream reaches range from 1 to 70 000 km² in drainage area, 1 to 320 m in bankfull width and 0.3 to 8.5 m in bankfull depth. Approximately 500 poorly disturbed reaches were identified from several indices of disturbance at reach and basin scale (large dams, urbanization, channelization, etc.). For these reference sites, drainage areas display strong power-law relationships with both the width and the depth in most Hydro-Eco-Regions, with coefficients of determination (R²) ranging from 0.73 to 0.91 for DHGwA and from 0.57 to 0.77 for DHGdA (p-value < 0.001, t-test). The DHG exponent b and f ranges from 0.36 to 0.5 for DHGwA and from 0.21 to 0.3 for DHGdA. This implies that widths increase more strongly than depths with increasing drainage areas. The relative position of the models are compared to the national model and discussed with regard to the geologic, climatic and topographic characteristics. In Hydro-Eco-Regions which exhibit poor DHG relationships, the role of spatial variability in natural controls (climate, topography and geology) is discussed. Finally, reaches identified as

  6. Flosequinan does not affect systemic and regional vascular responses to simulated orthostatic stress in healthy volunteers.

    PubMed Central

    Duranteau, J; Pussard, E; Edouard, A; Samii, K; Berdeaux, A; Giudicelli, J F

    1992-01-01

    1. The effects of a single oral dose (100 mg) of flosequinan on systemic and regional (forearm, splanchnic and renal) vascular responses to simulated orthostatic stress (lower body negative pressure, LBNP) were investigated in nine healthy male volunteers, in a double-blind, placebo-controlled crossover study. 2. Forty-five minutes after its administration and before LBNP, flosequinan induced a significant decrease in total peripheral and in forearm vascular resistances without any concomitant change in arterial pressure, in heart rate and in the investigated biological parameters (plasma catecholamines, arginine vasopressin and renin activity). 3. After flosequinan and placebo, LBNP induced similar decreases in central venous pressure at all levels of LBNP (-10, -20 and -40 mm Hg) and in pulse pressure at LBNP -40 mm Hg. LBNP-induced increase in forearm vascular resistance was significantly more marked after flosequinan than after placebo at all levels of LBNP, and this was also true for splanchnic vascular resistance but at LBNP -40 mm Hg only. However, inasmuch as the basal values of these two parameters before LBNP were lower after flosequinan than after placebo, their final values after LBNP -40 mm Hg were similar. Finally, LBNP-induced changes in renal vascular resistance, glomerular filtration rate and filtration fraction as well as in plasma catecholamines, arginine vasopressin and renin activity were similar after flosequinan and placebo at all levels of LBNP. 4. Flosequinan affected neither reflex control of heart rate (phenylephrine test) nor non-specific vasoconstrictor responses (cold pressor test). (ABSTRACT TRUNCATED AT 250 WORDS) PMID:1389945

  7. Vascular and degenerative processes differentially affect regional interhemispheric connections in normal aging, mild cognitive impairment, and Alzheimer's disease

    PubMed Central

    Lee, Dong Young; Fletcher, Evan; Martinez, Oliver; Zozulya, Natalia; Kim, Jane; Tran, Jeannie; Buonocore, Michael; Carmichael, Owen; DeCarli, Charles

    2010-01-01

    Background and Purpose Despite the critical importance of the corpus callosum (CC) to the connection between brain hemispheres, little is known about the independent contribution of degenerative and vascular processes to regional changes in the microstructural integrity of the CC. Here, we examine these changes in subjects with mild cognitive impairment (MCI), Alzheimer's disease (AD), and in cognitively normal elderly adults. Methods We used three-dimensional brain MRI with diffusion tensor imaging in 47 AD, 77 MCI, and 107 cognitively normal subjects, and calculated mean fractional anisotropy (FA) values for four CC regions corresponding to four homologous regions of cortical gray matter (GM). To assess vascular and degenerative processes, we also measured cortical GM and white matter hyperintensity (WMH) volume in corresponding regions, along with evaluation of their vascular risk. Results We found that GM volume in anterior and posterior regions was significantly related to FA findings in the corresponding regions of the CC for all three diagnostic groups. Independent of GM volume, frontal WMH volume was also associated with FA values in the corresponding CC regions, but posterior WMH volume was not. Vascular risk was associated with FA of most CC regions, while diagnosis for cognitive state was associated only with FA of the anterior and posterior CC regions. Conclusions We found differential region-specific associations between degenerative and vascular processes and the structural integrity of the CC across the spectrum of cognitive ability. Based on these results, we propose a model to explain regional disruption in the interhemispheric connection. PMID:20595668

  8. Precise renal artery segmentation for estimation of renal vascular dominant regions

    NASA Astrophysics Data System (ADS)

    Wang, Chenglong; Kagajo, Mitsuru; Nakamura, Yoshihiko; Oda, Masahiro; Yoshino, Yasushi; Yamamoto, Tokunori; Mori, Kensaku

    2016-03-01

    This paper presents a novel renal artery segmentation method combining graph-cut and template-based tracking methods and its application to estimation of renal vascular dominant region. For the purpose of giving a computer assisted diagnose for kidney surgery planning, it is important to obtain the correct topological structures of renal artery for estimation of renal vascular dominant regions. Renal artery has a low contrast, and its precise extraction is a difficult task. Previous method utilizing vesselness measure based on Hessian analysis, still cannot extract the tiny blood vessels in low-contrast area. Although model-based methods including superellipsoid model or cylindrical intensity model are low-contrast sensitive to the tiny blood vessels, problems including over-segmentation and poor bifurcations detection still remain. In this paper, we propose a novel blood vessel segmentation method combining a new Hessian-based graph-cut and template modeling tracking method. Firstly, graph-cut algorithm is utilized to obtain the rough segmentation result. Then template model tracking method is utilized to improve the accuracy of tiny blood vessel segmentation result. Rough segmentation utilizing graph-cut solves the bifurcations detection problem effectively. Precise segmentation utilizing template model tracking focuses on the segmentation of tiny blood vessels. By combining these two approaches, our proposed method segmented 70% of the renal artery of 1mm in diameter or larger. In addition, we demonstrate such precise segmentation can contribute to divide renal regions into a set of blood vessel dominant regions utilizing Voronoi diagram method.

  9. Pattern of normal age-related regional differences in white matter microstructure is modified by vascular risk.

    PubMed

    Kennedy, Kristen M; Raz, Naftali

    2009-11-10

    Even successful aging is associated with regional brain shrinkage and deterioration of the cerebral white matter. Aging also brings about an increase in vascular risk, and vascular impairment may be a potential mechanism behind the observed patterns of aging. The goals of this study were to characterize the normal age differences in white matter integrity in several brain regions across the adult life span and to assess the modifying effect of vascular risk on the observed pattern of regional white matter integrity. We estimated fractional anisotropy and diffusivity of white matter in nine cerebral regions of interest in 77 healthy adults (19-84 years old). There was a widespread reduction of white matter anisotropy with age, and prefrontal and occipital regions evidenced the greatest age-related differences. Diffusivity increased with age, and the magnitude of age differences increased beginning with the middle of the fifth decade. Vascular risk factors modified age differences in white matter integrity. Clinically diagnosed and treated arterial hypertension was associated with reduced white matter anisotropy and increased diffusivity beyond the effects of age. In the normotensive participants, elevation of arterial pulse pressure (a surrogate of arterial stiffness) was linked to deterioration of the white matter integrity in the frontal regions. Although the causal role of vascular risk in brain aging is unclear, the observed pattern of effects suggests that vascular risk may drive the expansion of age-related white matter damage from anterior to posterior regions.

  10. Hierarchical Fabrication of Engineered Vascularized Bone Biphasic Constructs via Dual 3D Bioprinting: Integrating Regional Bioactive Factors into Architectural Design.

    PubMed

    Cui, Haitao; Zhu, Wei; Nowicki, Margaret; Zhou, Xuan; Khademhosseini, Ali; Zhang, Lijie Grace

    2016-09-01

    A biphasic artificial vascularized bone construct with regional bioactive factors is presented using dual 3D bioprinting platform technique, thereby forming a large functional bone grafts with organized vascular networks. Biocompatible mussel-inspired chemistry and "thiol-ene" click reaction are used to regionally immobilize bioactive factors during construct fabrication for modulating or improving cellular events. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cell biology of Smad2/3 linker region phosphorylation in vascular smooth muscle.

    PubMed

    Rezaei, Hossein B; Kamato, Danielle; Ansari, Ghazaleh; Osman, Narin; Little, Peter J

    2012-08-01

    The transforming growth factor (TGF)-β superfamily of ligands regulates a diverse set of cellular functions. Transforming growth factor-β induces its biological effects through Type I and Type II transmembrane receptors that have serine/threonine kinase activities and weak tyrosine kinase activity. In vascular smooth muscle, TGF-β binds to the TGF-β Type II receptor (TβRII) at the cell surface, recruiting the Type I receptor (TβRI) to form a heterocomplex. Consequently, after phosphorylation and activation of TβRI, the transcription factors receptor activated (R-) Smad2 and Smad3 are recruited and activated through phosphorylation of C terminal residues. Overall, Smad2/3 and co-Smad4 have similar structures consisting of three regions an N-terminal MH1 domain, a C-terminal MH2 domain and a central linker region. Phosphorylation of the Smad linker region appears to have an important role in the regulation of Smad activity and function. The mitogen-activated protein kinase (MAPK) family, CDK2, CDK4 and calcium-calmodulin dependent kinase are the main kinases that phosphorylate sites in the linker region. The role of the linker region includes enabling the formation of Smad homo-oligomers and provision of phosphorylation sites for MAPK and other kinases. In some instances, linker region phosphorylation regulates the inhibition of the nuclear translocation of Smads. In the present review, we describe TGF-β signalling through Smad2/3 and the importance of the linker region in the regulation and expression of genes induced by TGF-β superfamily ligands in the context of vascular smooth muscle.

  12. Reducing the data: Analysis of the role of vascular geometry on blood flow patterns in curved vessels

    NASA Astrophysics Data System (ADS)

    Alastruey, Jordi; Siggers, Jennifer H.; Peiffer, Véronique; Doorly, Denis J.; Sherwin, Spencer J.

    2012-03-01

    Three-dimensional simulations of blood flow usually produce such large quantities of data that they are unlikely to be of clinical use unless methods are available to simplify our understanding of the flow dynamics. We present a new method to investigate the mechanisms by which vascular curvature and torsion affect blood flow, and we apply it to the steady-state flow in single bends, helices, double bends, and a rabbit thoracic aorta based on image data. By calculating forces and accelerations in an orthogonal coordinate system following the centreline of each vessel, we obtain the inertial forces (centrifugal, Coriolis, and torsional) explicitly, which directly depend on vascular curvature and torsion. We then analyse the individual roles of the inertial, pressure gradient, and viscous forces on the patterns of primary and secondary velocities, vortical structures, and wall stresses in each cross section. We also consider cross-sectional averages of the in-plane components of these forces, which can be thought of as reducing the dynamics of secondary flows onto the vessel centreline. At Reynolds numbers between 50 and 500, secondary motions in the directions of the local normals and binormals behave as two underdamped oscillators. These oscillate around the fully developed state and are coupled by torsional forces that break the symmetry of the flow. Secondary flows are driven by the centrifugal and torsional forces, and these are counterbalanced by the in-plane pressure gradients generated by the wall reaction. The viscous force primarily opposes the pressure gradient, rather than the inertial forces. In the axial direction, and depending on the secondary motion, the curvature-dependent Coriolis force can either enhance or oppose the bulk of the axial flow, and this shapes the velocity profile. For bends with little or no torsion, the Coriolis force tends to restore flow axisymmetry. The maximum circumferential and axial wall shear stresses along the centreline

  13. Experimental diffuse brain injury results in regional alteration of gross vascular morphology independent of neuropathology

    PubMed Central

    Ziebell, Jenna M.; Rowe, Rachel K.; Harrison, Jordan L.; Eakin, Katharine C.; Colburn, Taylor; Willyerd, F. Anthony; Lifshitz, Jonathan

    2016-01-01

    Primary objective A dynamic relationship exists between diffuse traumatic brain injury and changes to the neurovascular unit. The purpose of this study was to evaluate vascular changes during the first week following diffuse TBI. We hypothesized that pathology is associated with modification of the vasculature. Methods Male Sprague-Dawley rats underwent either midline fluid percussion injury or sham-injury. Brain tissue was collected 1d, 2d, or 7d post-injury or sham-injury (n=3/time point). Tissue was collected and stained by de Olmos amino-cupric silver technique to visualize neuropathology, or animals were perfused with AltaBlue casting resin before high-resolution vascular imaging. The average volume, surface area, radius, branching, and tortuosity of the vessels were evaluated across three regions of interest. Results In M2, average vessel volume (p<0.01) and surface area (p<0.05) were significantly larger at 1d relative to 2d, 7d and sham. In S1BF and VPM, no significant differences in the average vessel volume or surface area at any of the post-injury time points were observed. No significant changes in average radius, branching, or tortuosity were observed. Conclusions Preliminary findings suggest gross morphological changes within the vascular network likely represent an acute response to mechanical forces of injury, rather than delayed or chronic pathological processes. PMID:26646974

  14. Experimental diffuse brain injury results in regional alteration of gross vascular morphology independent of neuropathology.

    PubMed

    Ziebell, Jenna M; Rowe, Rachel K; Harrison, Jordan L; Eakin, Katharine C; Colburn, Taylor; Willyerd, F Anthony; Lifshitz, Jonathan

    2016-01-01

    A dynamic relationship exists between diffuse traumatic brain injury and changes to the neurovascular unit. The purpose of this study was to evaluate vascular changes during the first week following diffuse TBI. It was hypothesized that pathology is associated with modification of the vasculature. Male Sprague-Dawley rats underwent either midline fluid percussion injury or sham-injury. Brain tissue was collected 1, 2 or 7 days post-injury or sham-injury (n = 3/time point). Tissue was collected and stained by de Olmos amino-cupric silver technique to visualize neuropathology or animals were perfused with AltaBlue casting resin before high-resolution vascular imaging. The average volume, surface area, radius, branching and tortuosity of the vessels were evaluated across three regions of interest. In M2, average vessel volume (p < 0.01) and surface area (p < 0.05) were significantly larger at 1 day relative to 2 days, 7 days and sham. In S1BF and VPM, no significant differences in the average vessel volume or surface area at any of the post-injury time points were observed. No significant changes in average radius, branching or tortuosity were observed. Preliminary findings suggest gross morphological changes within the vascular network likely represent an acute response to mechanical forces of injury, rather than delayed or chronic pathological processes.

  15. Estimated bankfull discharge for selected Michigan rivers and regional hydraulic geometry curves for estimating bankfull characteristics in southern Michigan rivers

    USGS Publications Warehouse

    Rachol, Cynthia M.; Boley-Morse, Kristine

    2009-01-01

    Regional hydraulic geometry curves are power-function equations that relate riffle dimensions and bankfull discharge to drainage-basin size. They are defined by data collected through surveys conducted at stable stream reaches and can be used to aid watershed managers, design engineers, and others involved in determination of the best course of action for an unstable stream. Hydraulic geometry curves provide a mechanism through which comparisons can be made between riffle dimensions collected at an unstable stream to those collected at stable streams within the same region. In 2005, a study was initiated to delineate regional hydraulic geometry curves for Michigan. After in-office review of 343 U.S. Geological Survey streamgaging stations and an extensive field reconnaissance effort, 44 stable reaches were selected for this study. Detailed surveys that included cross-sectional and longitudinal profiles and pebble counts were conducted at selected streamgages, which were distributed throughout Michigan. By use of survey data from riffle cross sections and water-surface slope, bankfull discharge was estimated and compared to flood-recurrence intervals using regional flood equations. This comparison shows that bankfull discharges in Michigan recur more frequently than every 2 years. Regional hydraulic geometry curves were developed rather than statewide curves owing to large differences in factors that control channel geometry across the State. However, after the data were subdivided according to ecoregions, it was determined that there were enough data to delineate regional hydraulic geometry curves only for the Southern Lower Michigan Ecoregion. For this ecoregion, geometry curve equations and their coefficients of determination are: Width = 8.19 x DA0.44; R2 = 0.69, Depth = 0.67 x DA0.27; R2 = 0.28, Area = 4.38 x DA0.74; R2 = 0.59, where DA is the drainage area and R2 is the coefficient of determination. By use of discharge estimates for the Southern Lower Michigan

  16. Disentangling the determinants of species richness of vascular plants and mammals from national to regional scales.

    PubMed

    Xu, Haigen; Cao, Mingchang; Wu, Yi; Cai, Lei; Cao, Yun; Wu, Jun; Lei, Juncheng; Le, Zhifang; Ding, Hui; Cui, Peng

    2016-02-23

    Understanding the spatial patterns in species richness gets new implication for biodiversity conservation in the context of climate change and intensified human intervention. Here, we created a database of the geographical distribution of 30,519 vascular plant species and 565 mammal species from 2,376 counties across China and disentangled the determinants that explain species richness patterns both at national and regional scales using spatial linear models. We found that the determinants of species richness patterns varied among regions: elevational range was the most powerful predictor for the species richness of plants and mammals across China. However, species richness patterns in the Qinghai-Tibetan Plateau Region (QTR) are quite unique, where net primary productivity was the most important predictor. We also detected that elevational range was positively related to plant species richness when it is less than 1,900 m, whereas the relationship was not significant when elevational range is larger than 1,900 m. It indicated that elevational range often emerges as the predominant controlling factor within the regions where energy is sufficient. The effects of land use on mammal species richness should attract special attention. Our study suggests that region-specific conservation policies should be developed based on the regional features of species richness.

  17. Disentangling the determinants of species richness of vascular plants and mammals from national to regional scales

    PubMed Central

    Xu, Haigen; Cao, Mingchang; Wu, Yi; Cai, Lei; Cao, Yun; Wu, Jun; Lei, Juncheng; Le, Zhifang; Ding, Hui; Cui, Peng

    2016-01-01

    Understanding the spatial patterns in species richness gets new implication for biodiversity conservation in the context of climate change and intensified human intervention. Here, we created a database of the geographical distribution of 30,519 vascular plant species and 565 mammal species from 2,376 counties across China and disentangled the determinants that explain species richness patterns both at national and regional scales using spatial linear models. We found that the determinants of species richness patterns varied among regions: elevational range was the most powerful predictor for the species richness of plants and mammals across China. However, species richness patterns in the Qinghai-Tibetan Plateau Region (QTR) are quite unique, where net primary productivity was the most important predictor. We also detected that elevational range was positively related to plant species richness when it is less than 1,900 m, whereas the relationship was not significant when elevational range is larger than 1,900 m. It indicated that elevational range often emerges as the predominant controlling factor within the regions where energy is sufficient. The effects of land use on mammal species richness should attract special attention. Our study suggests that region-specific conservation policies should be developed based on the regional features of species richness. PMID:26902418

  18. Disentangling the determinants of species richness of vascular plants and mammals from national to regional scales

    NASA Astrophysics Data System (ADS)

    Xu, Haigen; Cao, Mingchang; Wu, Yi; Cai, Lei; Cao, Yun; Wu, Jun; Lei, Juncheng; Le, Zhifang; Ding, Hui; Cui, Peng

    2016-02-01

    Understanding the spatial patterns in species richness gets new implication for biodiversity conservation in the context of climate change and intensified human intervention. Here, we created a database of the geographical distribution of 30,519 vascular plant species and 565 mammal species from 2,376 counties across China and disentangled the determinants that explain species richness patterns both at national and regional scales using spatial linear models. We found that the determinants of species richness patterns varied among regions: elevational range was the most powerful predictor for the species richness of plants and mammals across China. However, species richness patterns in the Qinghai-Tibetan Plateau Region (QTR) are quite unique, where net primary productivity was the most important predictor. We also detected that elevational range was positively related to plant species richness when it is less than 1,900 m, whereas the relationship was not significant when elevational range is larger than 1,900 m. It indicated that elevational range often emerges as the predominant controlling factor within the regions where energy is sufficient. The effects of land use on mammal species richness should attract special attention. Our study suggests that region-specific conservation policies should be developed based on the regional features of species richness.

  19. Functional Region Annotation of Liver CT Image Based on Vascular Tree

    PubMed Central

    Chen, Yufei; Wang, Gang

    2016-01-01

    Anatomical analysis of liver region is critical in diagnosis and treatment of liver diseases. The reports of liver region annotation are helpful for doctors to precisely evaluate liver system. One of the challenging issues is to annotate the functional regions of liver through analyzing Computed Tomography (CT) images. In this paper, we propose a vessel-tree-based liver annotation method for CT images. The first step of the proposed annotation method is to extract the liver region including vessels and tumors from the CT scans. And then a 3-dimensional thinning algorithm is applied to obtain the spatial skeleton and geometric structure of liver vessels. With the vessel skeleton, the topology of portal veins is further formulated by a directed acyclic graph with geometrical attributes. Finally, based on the topological graph, a hierarchical vascular tree is constructed to divide the liver into eight segments according to Couinaud classification theory and thereby annotate the functional regions. Abundant experimental results demonstrate that the proposed method is effective for precise liver annotation and helpful to support liver disease diagnosis. PMID:27891516

  20. Determination of three-dimensional structured objects, vascular structures, and imaging geometry from single-plane and biplane projection images

    NASA Astrophysics Data System (ADS)

    Nazareth, Daryl P.

    Three-dimensional (3D) vessel trees can provide useful visual and quantitative information during interventional procedures. To calculate the 3D vasculature and improve these measurements, we have developed methods for the determination of geometric parameters from single-plane and biplane projection images. Our single-plane technique provides an accurate estimation of the magnification and orientation of objects of known dimensions in vessels by comparing measurements in the images with those in simulated images of modeled objects. Our biplane technique calculates the transformation relating the imaging systems (i.e., the rotation matrix R and the translation vector t) and requires only the identification of approximately corresponding vessel regions in the two images. Initial estimates of R and t are refined using an optimization method. The objective function to be minimized is based on the amount of overlap of corresponding vessel regions in the two images. The 3D vasculature is then obtained from the optimal R and t using triangulation. The accuracy of the 3D vasculature calculations may be further improved when a calibration object, such as a stent, is present in the vasculature and the biplane images, if the required user-indicated points in the stent are highly accurate. We have modified the above biplane technique to incorporate information provided by the stent, by including three additional terms in the objective function. These techniques were evaluated using simulated and phantom images. The single-plane technique provided accuracies of 1% in magnification and 2 degrees in orientation. The biplane technique provided accuracies of 1% and 1 degree, respectively, which was reduced to 0.3% and 0.5 degrees in simulations when a calibration object was present. The results of the biplane technique applied to the phantom indicated that inaccuracies in user indication of the calibration object may propagate into the errors in the 3D vessel tree reconstruction

  1. Fractal regional myocardial blood flows pattern according to metabolism, not vascular anatomy.

    PubMed

    Yipintsoi, Tada; Kroll, Keith; Bassingthwaighte, James B

    2016-02-01

    Regional myocardial blood flows are markedly heterogeneous. Fractal analysis shows strong near-neighbor correlation. In experiments to distinguish control by vascular anatomy vs. local vasomotion, coronary flows were increased in open-chest dogs by stimulating myocardial metabolism (catecholamines + atropine) with and without adenosine. During control states mean left ventricular (LV) myocardial blood flows (microspheres) were 0.5-1 ml·g(-1)·min(-1) and increased to 2-3 ml·g(-1)·min(-1) with catecholamine infusion and to ∼4 ml·g(-1)·min(-1) with adenosine (Ado). Flow heterogeneity was similar in all states: relative dispersion (RD = SD/mean) was ∼25%, using LV pieces 0.1-0.2% of total. During catecholamine infusion local flows increased in proportion to the mean flows in 45% of the LV, "tracking" closely (increased proportionately to mean flow), while ∼40% trended toward the mean. Near-neighbor regional flows remained strongly spatially correlated, with fractal dimension D near 1.2 (Hurst coefficient 0.8). The spatial patterns remain similar at varied levels of metabolic stimulation inferring metabolic dominance. In contrast, adenosine vasodilation increased flows eightfold times control while destroying correlation with the control state. The Ado-induced spatial patterns differed from control but were self-consistent, inferring that with full vasodilation the relaxed arterial anatomy dominates the distribution. We conclude that vascular anatomy governs flow distributions during adenosine vasodilation but that metabolic vasoregulation dominates in normal physiological states.

  2. Diversity in membership and leadership positions in a regional vascular society.

    PubMed

    Satiani, Bhagwan; Vaccaro, Patrick S; Go, Michael R

    2010-04-01

    To determine diversity in the membership and analyze representation of private practitioners and ethnic and racial minorities/women in senior leadership roles in a regional vascular society. The program book distributed at the 2008 annual meeting was used to compile information on membership categories, academic status, gender, and ethnic origin of members. Excluded from further analysis were all but active and senior members (n = 386). Officers for President and current President-Elect (P, n = 31), Secretary (S, n = 10), Treasurer (T, n = 11), and Councilor (C, n = 33) over a 30-year period were scrutinized for similar information. Members were considered to be "academic" if they worked full time at an academic medical center or as faculty at a teaching hospital with a vascular fellowship and national recognition. Private practice (PP) or academic practice (AP) was determined by personal knowledge, mailing address, e-mail address, and search engines. Ethnic and racial origin was determined by name, personal knowledge, or a web search. Of the 386 active and senior members in the society, 86% were white, 13.7% were of various ethnic/racial groups, and 5.7% were women. Sixty-eight percent of members were in PP. Female members were more likely to be in AP compared with male members (68.1% vs 29.6%, P <.0002). White males made up 89.4% of all officers and 94.2% of all senior positions over the 30 years of the society. Seventy officer positions were occupied by those in AP (82.3%) vs 15 positions (18%) for the PP group. For the senior positions, 92.3% were from the AP group compared with the 8% from the PP group. (P < .0036) White male academics (WMAs) (23.7% of membership) occupied 86% of all senior leadership and 57% of C positions compared with 13% and 42%, respectively, for the rest of the membership (P < .0041). Of the 33 C positions, 66.6% were filled by members in AP. Of these 22 AP Councilors, 11 (50%) then moved up to senior leadership positions compared with

  3. Regional MRI Diffusion, White-Matter Hyperintensities, and Cognitive Function in Alzheimer's Disease and Vascular Dementia

    PubMed Central

    Scrascia, Federica; Quattrocchi, Carlo Cosimo; Errante, Yuri; Gangemi, Emma; Curcio, Giuseppe; Ursini, Francesca; Silvestrini, Mauro; Maggio, Paola; Beomonte Zobel, Bruno; Rossini, Paolo Maria; Pasqualetti, Patrizio; Falsetti, Lorenzo; Vernieri, Fabrizio

    2016-01-01

    Background and Purpose An increase in brain water diffusivity as measured using magnetic resonance imaging (MRI) has been recently reported in normal-appearing white matter (NAWM) in patients affected by cognitive impairment. However, it remains to be clarified if this reflects an overt neuronal tissue disruption that leads to degenerative or microvascular lesions. This question was addressed by comparing the regional MRI apparent diffusion coefficients (ADCs) of NAWM in patients affected by Alzheimer's disease (AD) or vascular dementia (VaD). The relationships of ADCs with the white-matter hyperintensity (WMH) burden, carotid atherosclerosis, and cognitive performance were also investigated. Methods Forty-nine AD and 31 VaD patients underwent brain MRI to assess the WMH volume and regional NAWM ADCs, neuropsychological evaluations, and carotid ultrasound to assess the plaque severity and intima-media thickness (IMT). Results Regional ADCs in NAWM did not differ between VaD and AD patients, while the WMH volume was greater in VaD than in AD patients. The ADC in the anterior corpus callosum was related to the WMH volume, while a greater carotid IMT was positively correlated with the temporal ADC and WMH volume. The memory performance was worse in patients with higher temporal ADCs. Constructional praxis scores were related to ADCs in the frontal, and occipital lobes, in the anterior and posterior corpus callosum as well as to the WMH volume. Abstract reasoning was related to frontal, parietal, and temporal ADCs. Conclusions Our data show that higher regional ADCs in NAWM are associated with microcirculatory impairment, as depicted by the WMH volume. Moreover, regional ADCs in NAWM are differently associated with the neuropsychological performances in memory, constructional praxia, and abstract reasoning domains. PMID:27074295

  4. Regional MRI Diffusion, White-Matter Hyperintensities, and Cognitive Function in Alzheimer's Disease and Vascular Dementia.

    PubMed

    Altamura, Claudia; Scrascia, Federica; Quattrocchi, Carlo Cosimo; Errante, Yuri; Gangemi, Emma; Curcio, Giuseppe; Ursini, Francesca; Silvestrini, Mauro; Maggio, Paola; Beomonte Zobel, Bruno; Rossini, Paolo Maria; Pasqualetti, Patrizio; Falsetti, Lorenzo; Vernieri, Fabrizio

    2016-04-01

    An increase in brain water diffusivity as measured using magnetic resonance imaging (MRI) has been recently reported in normal-appearing white matter (NAWM) in patients affected by cognitive impairment. However, it remains to be clarified if this reflects an overt neuronal tissue disruption that leads to degenerative or microvascular lesions. This question was addressed by comparing the regional MRI apparent diffusion coefficients (ADCs) of NAWM in patients affected by Alzheimer's disease (AD) or vascular dementia (VaD). The relationships of ADCs with the white-matter hyperintensity (WMH) burden, carotid atherosclerosis, and cognitive performance were also investigated. Forty-nine AD and 31 VaD patients underwent brain MRI to assess the WMH volume and regional NAWM ADCs, neuropsychological evaluations, and carotid ultrasound to assess the plaque severity and intima-media thickness (IMT). Regional ADCs in NAWM did not differ between VaD and AD patients, while the WMH volume was greater in VaD than in AD patients. The ADC in the anterior corpus callosum was related to the WMH volume, while a greater carotid IMT was positively correlated with the temporal ADC and WMH volume. The memory performance was worse in patients with higher temporal ADCs. Constructional praxis scores were related to ADCs in the frontal, and occipital lobes, in the anterior and posterior corpus callosum as well as to the WMH volume. Abstract reasoning was related to frontal, parietal, and temporal ADCs. Our data show that higher regional ADCs in NAWM are associated with microcirculatory impairment, as depicted by the WMH volume. Moreover, regional ADCs in NAWM are differently associated with the neuropsychological performances in memory, constructional praxia, and abstract reasoning domains.

  5. Variations in plate kinematics and subduction geometries: unifying explanation of Mesozoic and Cenozoic deformation in Rocky Mountains region

    SciTech Connect

    Cross, T.A.; Pilger, R.H. Jr.

    1985-05-01

    The variety of late Mesozoic through early Cenozoic tectonic elements and events in the Rocky Mountains region shows temporal and spatial correspondence with inferred variations in kinematics of plate interactions and geometries of subducted oceanic lithosphere. From this space and time correspondence and current understanding of subduction processes and responses, it is suggested that a unified explanation for the occurrence and genesis of these features. The following tectonic elements and events are regarded as genetic expressions of variations in subduction modes and geometries: (1) the history of igneous activity in the western US, (2) the contrasting styles and loci of deformation along the foreland fold and thrust belt (Sevier style) and the basement-cored uplifts (Laramide style) bordering the northern and eastern margins of the Colorado Plateau, (3) the development and maintenance of the Colorado Plateau as a relatively rigid tectonic block, (4) the timing and geometry of subsidence in the foreland basin, (5) the disjunct history of subsidence and subsequent uplift of the Colorado-Wyoming-Utah (CWU) region beyond the foreland basin, and (6) the initial stability and subsequent subsidence of the High Plains region. During normal subduction, thin-skinned crustal deformation was continuous opposite the convergent margin. During the ensuing period of low-angle subduction, the Colorado Plateau region was underpinned by subducted lithosphere, anomalous subsidence occurred in the CWU locus, and deformation was transferred to the position of greatest contrast in mechanical properties of the crust (the eastern and northern boundaries of the plateau). Decoupling of subducted lithosphere from overlying lithosphere caused uplift and erosional stripping of the CWU region, crustal flexure to the east, and sediment accumulation on the High Plains.

  6. PDZK1 Prevents Neointima Formation via Suppression of Breakpoint Cluster Region Kinase in Vascular Smooth Muscle

    PubMed Central

    Lee, Wan Ru; Sacharidou, Anastasia; Behling-Kelly, Erica; Oltmann, Sarah C.; Zhu, Weifei; Ahmed, Mohamed; Gerard, Robert D.; Hui, David Y.; Abe, Jun-ichi

    2015-01-01

    Scavenger receptor class B, type I (SR-BI) and its adaptor protein PDZK1 mediate responses to HDL cholesterol in endothelium. Whether the receptor-adaptor protein tandem serves functions in other vascular cell types is unknown. The current work determined the roles of SR-BI and PDZK1 in vascular smooth muscle (VSM). To evaluate possible VSM functions of SR-BI and PDZK1 in vivo, neointima formation was assessed 21 days post-ligation in the carotid arteries of wild-type, SR-BI-/- or PDZK1-/- mice. Whereas neointima development was negligible in wild-type and SR-BI-/-, there was marked neointima formation in PDZK1-/- mice. PDZK1 expression was demonstrated in primary mouse VSM cells, and compared to wild-type cells, PDZK1-/- VSM displayed exaggerated proliferation and migration in response to platelet derived growth factor (PDGF). Tandem affinity purification-mass spectrometry revealed that PDZK1 interacts with breakpoint cluster region kinase (Bcr), which contains a C-terminal PDZ binding sequence and is known to enhance responses to PDGF in VSM. PDZK1 interaction with Bcr in VSM was demonstrated by pull-down and by coimmunoprecipitation, and the augmented proliferative response to PDGF in PDZK1-/- VSM was abrogated by Bcr depletion. Furthermore, compared with wild-type Bcr overexpression, the introduction of a Bcr mutant incapable of PDZK1 binding into VSM cells yielded an exaggerated proliferative response to PDGF. Thus, PDZK1 has novel SR-BI-independent function in VSM that affords protection from neointima formation, and this involves PDZK1 suppression of VSM cell proliferation via an inhibitory interaction with Bcr. PMID:25886360

  7. PDZK1 prevents neointima formation via suppression of breakpoint cluster region kinase in vascular smooth muscle.

    PubMed

    Lee, Wan Ru; Sacharidou, Anastasia; Behling-Kelly, Erica; Oltmann, Sarah C; Zhu, Weifei; Ahmed, Mohamed; Gerard, Robert D; Hui, David Y; Abe, Jun-ichi; Shaul, Philip W; Mineo, Chieko

    2015-01-01

    Scavenger receptor class B, type I (SR-BI) and its adaptor protein PDZK1 mediate responses to HDL cholesterol in endothelium. Whether the receptor-adaptor protein tandem serves functions in other vascular cell types is unknown. The current work determined the roles of SR-BI and PDZK1 in vascular smooth muscle (VSM). To evaluate possible VSM functions of SR-BI and PDZK1 in vivo, neointima formation was assessed 21 days post-ligation in the carotid arteries of wild-type, SR-BI-/- or PDZK1-/- mice. Whereas neointima development was negligible in wild-type and SR-BI-/-, there was marked neointima formation in PDZK1-/- mice. PDZK1 expression was demonstrated in primary mouse VSM cells, and compared to wild-type cells, PDZK1-/- VSM displayed exaggerated proliferation and migration in response to platelet derived growth factor (PDGF). Tandem affinity purification-mass spectrometry revealed that PDZK1 interacts with breakpoint cluster region kinase (Bcr), which contains a C-terminal PDZ binding sequence and is known to enhance responses to PDGF in VSM. PDZK1 interaction with Bcr in VSM was demonstrated by pull-down and by coimmunoprecipitation, and the augmented proliferative response to PDGF in PDZK1-/- VSM was abrogated by Bcr depletion. Furthermore, compared with wild-type Bcr overexpression, the introduction of a Bcr mutant incapable of PDZK1 binding into VSM cells yielded an exaggerated proliferative response to PDGF. Thus, PDZK1 has novel SR-BI-independent function in VSM that affords protection from neointima formation, and this involves PDZK1 suppression of VSM cell proliferation via an inhibitory interaction with Bcr.

  8. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions

    PubMed Central

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2011-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO2 range with a p50 of 3.4±0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution. PMID:20859293

  9. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions.

    PubMed

    Kasischke, Karl A; Lambert, Elton M; Panepento, Ben; Sun, Anita; Gelbard, Harris A; Burgess, Robert W; Foster, Thomas H; Nedergaard, Maiken

    2011-01-01

    Oxygen transport imposes a possible constraint on the brain's ability to sustain variable metabolic demands, but oxygen diffusion in the cerebral cortex has not yet been observed directly. We show that concurrent two-photon fluorescence imaging of endogenous nicotinamide adenine dinucleotide (NADH) and the cortical microcirculation exposes well-defined boundaries of tissue oxygen diffusion in the mouse cortex. The NADH fluorescence increases rapidly over a narrow, very low pO(2) range with a p(50) of 3.4 ± 0.6 mm Hg, thereby establishing a nearly binary reporter of significant, metabolically limiting hypoxia. The transient cortical tissue boundaries of NADH fluorescence exhibit remarkably delineated geometrical patterns, which define the limits of tissue oxygen diffusion from the cortical microcirculation and bear a striking resemblance to the ideal Krogh tissue cylinder. The visualization of microvessels and their regional contribution to oxygen delivery establishes penetrating arterioles as major oxygen sources in addition to the capillary network and confirms the existence of cortical oxygen fields with steep microregional oxygen gradients. Thus, two-photon NADH imaging can be applied to expose vascular supply regions and to localize functionally relevant microregional cortical hypoxia with micrometer spatial resolution.

  10. Regional Curves of Bankfull Channel Geometry for Non-Urban Streams in the Piedmont Physiographic Province, Virginia

    USGS Publications Warehouse

    Lotspeich, R. Russell

    2009-01-01

    Natural-channel design involves constructing a stream channel with the dimensions, slope, and plan-view pattern that would be expected to transport water and sediment and yet maintain habitat and aesthetics consistent with unimpaired stream segments, or reaches. Regression relations for bankfull stream characteristics based on drainage area, referred to as 'regional curves,' are used in natural stream channel design to verify field determinations of bankfull discharge and stream channel characteristics. One-variable, ordinary least-squares regressions relating bankfull discharge, bankfull cross-sectional area, bankfull width, bankfull mean depth, and bankfull slope to drainage area were developed on the basis of data collected at 17 streamflow-gaging stations in rural areas with less than 20 percent urban land cover within the basin area (non-urban areas) of the Piedmont Physiographic Province in Virginia. These regional curves can be used to estimate the bankfull discharge and bankfull channel geometry when the drainage area of a watershed is known. Data collected included bankfull cross-sectional geometry, flood-plain geometry, and longitudinal profile data. In addition, particle-size distributions of streambed material were determined, and data on basin characteristics were compiled for each reach. Field data were analyzed to determine bankfull cross-sectional area, bankfull width, bankfull mean depth, bankfull discharge, bankfull channel slope, and D50 and D84 particle sizes at each site. The bankfull geometry from the 17 sites surveyed during this study represents the average of two riffle cross sections for each site. Regional curves developed for the 17 sites had coefficient of determination (R2) values of 0.950 for bankfull cross-sectional area, 0.913 for bankfull width, 0.915 for bankfull mean depth, 0.949 for bankfull discharge, and 0.497 for bankfull channel slope. The regional curves represent conditions for streams with defined channels and bankfull

  11. Four-year experience with a regional program providing simulation-based endovascular training for vascular surgery fellows.

    PubMed

    Dawson, David L; Lee, Eugene S; Hedayati, Nasim; Pevec, William C

    2009-01-01

    High-fidelity procedure simulation has been found useful for training vascular surgery residents in endovascular procedures, but the costs of acquiring, maintaining, and operating simulators represent a barrier to routine use of endovascular simulation in vascular surgery programs. Providing simulation training opportunities through regional centers may make simulation more cost effective, but the costs and benefits of this approach have not been reported previously. We reviewed participation costs in a regional simulation program to provide a benchmark for comparison with other training options. Simulation-based training was offered annually from 2004 to 2007 to the 11 vascular surgery fellowships in Washington, Oregon, California, Arizona, and Utah. Participation was at the discretion of the program directors and fellows. Sessions were designed to offer individualized, hands-on training with 2-4 participants per 2-day session. SimSuite (Medical Simulation Corporation, Denver, Colorado) simulators were used. During the 4-year period, participation by invited programs averaged 75%. Ten of 11 programs in the western United States region participated, with 34 fellows participating during the 4 years of the program. In addition, 2 program directors or faculty attended sessions to participate as learners, and 8 other individuals were allowed to participate (including 7 senior surgery residents and 1 vascular surgery fellow from out of the region). The average participant costs for travel, which include transportation, lodging, and meals, were $571. Simulation facility expenses, which included use of the simulator, computer-based training modules, and instructional support by an educational specialist, averaged $1055 per participant. Surgical faculty spent 12 hours per 2-day session instructing and in other direct educational activities. Costs for this time were not calculated separately. Vascular surgery fellows' participation in simulation training at regional centers

  12. The 3D geometry of regional-scale dolerite saucer complexes and their feeders in the Secunda Complex, Karoo Basin

    NASA Astrophysics Data System (ADS)

    Coetzee, André; Kisters, Alexander

    2016-05-01

    Dolerites in the Karoo Basin of South Africa commonly represent kilometre-scale, interconnected saucer-shaped structures that consist of inner sills, bounded by inclined sheets connected to stratigraphically higher outer sills. Based on information from over 3000 boreholes and mining operations extending over an area of ca. 500 km2 and covering a > 3 km vertical section from Karoo strata into underlying basement rocks, this paper presents the results of a 3D modelling exercise that describes the geometry and spatial relationships of a regional-scale saucer complex, locally referred to as the number 8 sill, from the Secunda (coal mine) Complex in the northern parts of the Karoo Basin. The composite number 8 sill complex consists of three main dolerite saucers (dolerites A to C). These dolerite saucers are hosted by the Karoo Supergroup and the connectivity and geometry of the saucers support a lateral, sill-feeding-sill relationship between dolerite saucers A, B and C. The saucers are underlain and fed by a shallowly-dipping sheet (dolerite D) in the basement rocks below the Karoo sequence. The 3D geometric strata model agrees well with experimental results of saucer formation from underlying feeders in sedimentary basins, but demonstrates a more intricate relationship where a single feeder can give rise to several split level saucers in one regionally extensive saucer complex. More localised dome- or ridge-shape protrusions are common in the flat lying sill parts of the regional-scale saucers. We suggest a mode of emplacement for these kilometre-scale dome- and ridge structures having formed as a result of lobate magma flow processes. Magma lobes, propagating in different directions ahead of the main magma sheet, undergo successive episodes of lobe arrest and inflation. The inflation of lobes initiates failure of the overlying strata and the formation of curved faults. Magma exploiting these faults transgresses the stratigraphy and coalesces to form a ring

  13. Smell and taste in patients with vascular malformation of the extracranial head and neck region.

    PubMed

    Steinbach, Silke; Fasunla, Ayotunde J; Lahme, Carolin M E; Schäfers, Sophia P; Hundt, Walter; Wolf, Petra; Mandic, Robert; Werner, Jochen A; Eivazi, Behfar

    2014-01-01

    Olfactory and gustatory functions have not been investigated in patients with vascular malformation of the extracranial head and neck region with validated smell and taste tests. Although olfactory and gustatory deficiencies are often not outwardly apparent, they substantially affect daily life. Smell and taste tests using sniffin sticks and taste strips were administered in 40 patients. For all age groups and both sexes, odor threshold (THR) values were, on average, lower in patients than in healthy individuals; whereas, values of odor identification and discrimination were not significantly lower. Regarding odor THR, 33 (82.5%) patients were hyposmic. Taste values (sweet, sour, salty, bitter, and total taste) were, on average, lower in patients than in healthy individuals; 21 (52.5%) patients were hypogeusic. Disease duration did not correlate with smell and taste test values. Patients with and without tongue involvement had decreased odor threshold and taste values. No significant differences were identified when taste values on the left and right sides of the tongue were compared in patients without tongue involvement and with unilateral and bilateral tongue involvement. Patients with venous malformations had lower smell test values, and patients with lymphatic malformations had lower taste test values than patients with other malformations. Patients exhibit significantly reduced olfactory and gustatory function even when the nose and/or tongue are not malformed. Patients should be tested with validated smell and taste tests to adequately inform and advise them about overcoming smell and taste deficits.

  14. Recent changes in the treatment of aortoiliac occlusive disease by the Oxford Regional Vascular Service.

    PubMed

    Davies, A H; Ramarakha, P; Collin, J; Morris, P J

    1990-10-01

    Over the four years from 1 January 1985 to 31 December 1988, 192 patients were treated for aortoiliac occlusive disease by the Oxford Regional Vascular Service. The number of patients treated by percutaneous transluminal angioplasty increased from two in the first year of the study to 34 in the third year of the study. This increase was accompanied by a decrease in the proportion of patients treated by aortobifemoral bypass but the proportion of patients treated by extra-anatomic bypass remained constant at around 30 per cent. Twice as many patients were treated in the fourth year as in the first year of the study so that the number of surgical operations increased despite many patients being treated exclusively by percutaneous transluminal angioplasty. The number of patients requiring mandatory treatment for limb salvage increased by 109 per cent and optional treatment for intermittent claudication by 85 per cent. The introduction of percutaneous transluminal angioplasty in Oxford has coincided with an increase in the number of patients presenting with symptomatic aortoiliac occlusive disease and has allowed twice as many people to be treated while the number of aortobifemoral bypass operations has remained unchanged. It is concluded that the introduction of percutaneous transluminal angioplasty has not only generated its own workload but has also led to an increased demand for surgical reconstruction for aortoiliac occlusive disease.

  15. Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment.

    PubMed

    Zhang, Li-Fan

    2013-12-01

    Evidence from recent ground and spaceflight studies with animals and humans supports the notion that microgravity-induced vascular remodeling contributes to postflight orthostatic intolerance. In the vascular beds of lower body, such as in splanchnic and lower limb circulation, resistance vessels would undergo hypotrophy and decrement in myogenic tone and vasoreactivity. Thus, despite the concurrent sympathetic activation, the increase in peripheral vascular resistance would still be compromised while astronauts were re-exposed to Earth's 1-G gravity, since ~75 % of the total vascular conductance lies below the heart. On the contrary, cerebral arteries would undergo hypertrophy and vasoreactivity enhancement due to adaptation to cerebral hypertension, which protects the down-stream microcirculation in the brain during spaceflight. However, the enhanced vasoreactivity of cerebral vessels might also aggravate postflight orthostatic intolerance, particularly after long-duration spaceflight. Animal studies have indicated that the underlying mechanisms may involve ion-channel remodeling in vascular smooth muscle cells and vascular NO-NOS and local renin-angiotensin system (L-RAS). Furthermore, vascular remodeling and associated ion-channel and L-RAS changes can be prevented by a countermeasure of daily short-duration restoring to normal standing posture. These findings substantiate in general the hypothesis that redistribution of transmural pressure along the arterial vasculature due to the removal of gravity might be the primary factor that initiates vascular remodeling in microgravity, and daily short-duration restoring its normal distribution by intermittent artificial gravity (IAG) can effectively prevent the vascular adaptation and hence postflight cardiovascular deconditioning. IAG might also be beneficial in maintaining vascular health during future long-duration space flight.

  16. Subtracted geometry

    NASA Astrophysics Data System (ADS)

    Saleem, Zain Hamid

    In this thesis we study a special class of black hole geometries called subtracted geometries. Subtracted geometry black holes are obtained when one omits certain terms from the warp factor of the metric of general charged rotating black holes. The omission of these terms allows one to write the wave equation of the black hole in a completely separable way and one can explicitly see that the wave equation of a massless scalar field in this slightly altered background of a general multi-charged rotating black hole acquires an SL(2, R) x SL(2, R) x SO(3) symmetry. The "subtracted limit" is considered an appropriate limit for studying the internal structure of the non-subtracted black holes because new 'subtracted' black holes have the same horizon area and periodicity of the angular and time coordinates in the near horizon regions as the original black hole geometry it was constructed from. The new geometry is asymptotically conical and is physically similar to that of a black hole in an asymptotically confining box. We use the different nice properties of these geometries to understand various classically and quantum mechanically important features of general charged rotating black holes.

  17. [Bioresorbable vascular scaffolds: clinical experience of the Emilia-Romagna Region, Italy].

    PubMed

    Menozzi, Alberto; Campo, Gianluca Calogero; Guiducci, Vincenzo; Dall'Ara, Gianni; Santarelli, Andrea; Sbarzaglia, Paolo; Balducelli, Marco; Magnavacchi, Paolo; Sgura, Fabio; Losi, Luciano; Vignali, Luigi; Casella, Gianni; Steffanon, Luigi; Tarantino, Fabio; Saia, Francesco

    2017-02-01

    The bioresorbable vascular scaffold (BRS) technology constitutes the new revolution of the coronary artery disease interventional treatment. Currently, three distinct types of BRSs are available but only one, the Absorb BVS, was on the market in 2013 when the Regional Commission for Medical Devices and the Cardiology and Cardiac Surgery Commission of the Emilia-Romagna Region drew up a technical and scientific essay to provide guidance for the introduction of BRS in public and affiliated health facilities. Five preferential indications were given for use: long coronary lesions (>28 mm), ostial lesions (left main stem excluded), complete revascularization in patients aged <50 years, diffuse disease (>40 mm) or involving the mid/distal left anterior descending (LAD) branch in patients <70 years, spontaneous coronary artery dissection. This survey analyzed data from all the catheterization laboratories in the Emilia-Romagna Region, merged in a unified database. In a 3-year study period, 546 BRS were implanted in 328 patients, corresponding to 1.5% of the drug-eluting stents (DES) used, with a trend towards a progressive increase over time. Initial indications were followed in 200/328 (61.0%) patients (about one third fitting more indications), mainly for treatment of long lesions in vessels >2.5 mm (67%), young patients (31.5%) and mid/distal LAD (28%). In 22.6% of cases the clinical scenario was a ST-segment elevation myocardial infarction, in 39.3% a non-ST-segment elevation acute coronary syndrome. Intracoronary imaging was infrequently used (intravascular ultrasound in 24.7% of cases). In 85 patients (25.9%) a hybrid procedure (BVS/DES) was performed. BRS use has resulted lower than expected, with discrete variability among centers, but according to the initial indications of the Emilia-Romagna Region in the majority of cases. The underuse might have been due to operators' caution in their initial experience. However, the increasing trend may reveal a greater

  18. Downstream hydraulic geometry and channel adjustment during a flood along an ephemeral, arid-region drainage

    NASA Astrophysics Data System (ADS)

    Merritt, David M.; Wohl, Ellen E.

    2003-06-01

    In September 1997, a dissipating tropical storm caused a flood with an estimated maximum discharge of 240 m 3/s along Yuma Wash, an ephemeral braided system draining 186 km 2 in southwest Arizona. Older high-water marks that record a flood peak of 1280 m 3/s provide a reasonable estimate for the probable maximum flood along the wash. Detailed channel cross-sectional surveys during 1995 and again in 1998, <6 months after the 1997 flood, facilitated examination of downstream hydraulic geometry and channel adjustment during the flood. Channel width increased substantially downstream (exponent of 0.78), presumably because of low bank resistance, whereas hydraulic depth and velocity had modest downstream increases (0.15 and 0.14, respectively). Channel aggradation generally occurred along wider, braided reaches; moreover, degradation occurred in narrow reaches with fewer channels. Aggradation and degradation also appeared to be governed by a threshold relationship between flow depth and vegetated bars. Degradation occurred where flow was confined within a channel or subchannel. At discharges sufficiently high to overtop vegetated bars, greater roughness facilitated sediment deposition and channels aggraded. A discriminant function correctly classified nearly 90% of the cross-sections as scoured or filled using a single hydraulic variable, maximum depth of flow during the dissipating tropical storm.

  19. Effects of the Geometry of the Line-forming Region on the Properties of Cyclotron Resonant Scattering Lines

    NASA Astrophysics Data System (ADS)

    Isenberg, Michael; Lamb, D. Q.; Wang, John C. L.

    1998-10-01

    We use a Monte Carlo radiative transfer code to examine the dependence of the properties of cyclotron resonant scattering lines on the spatial geometry and the optical depth of the line-forming region. We focus most of our attention on a line-forming region that is a plane-parallel slab threaded by a uniform magnetic field oriented at an angle Ψ to the slab normal. We also consider a cylindrical line-forming region with the magnetic field oriented along the cylinder axis. In both cases, the line-forming region contains an electron-proton plasma at the equilibrium Compton temperature, TC, and the field strength is ~1012 gauss. We consider geometries in which the photon source illuminates the line-forming region from below and in which the photon source is embedded in the line-forming region. The former may correspond to a line-forming region in the magnetosphere of a neutron star, illuminated from below, the latter to a line-forming region on or near the surface of a neutron star as in an accretion column. We calculate the cyclotron line spectra produced by line-forming regions having a range of Thomson optical depths from τTo = 8 × 10-4 to τTo = 10. Our findings have implications for accretion-powered pulsars and gamma-ray bursters. In particular, the absence of pronounced shoulders on both sides of the cyclotron first harmonic line in the spectra of accretion-powered pulsars suggests that the line-forming region is either illuminated from below or has a large optical depth (Thomson optical depth τTo >~ 10). However, we (like earlier workers) find that models in which the line-forming region is either a static slab or a static cylinder and has a large optical depth are unable to explain the modest equivalent widths WE of the cyclotron lines in the observed spectra of accretion-powered pulsars. In addition, we find that approximating the injected photon spectrum as a Wien spectrum, an approximation made by almost all workers to date, is not valid because of the

  20. Solids flow pattern in the exit region of a CFB -- Furnace influence of exit geometry

    SciTech Connect

    Johnsson, F.; Leckner, B.; Vrager, A.

    1999-07-01

    The effect of the exit geometry on the flow pattern in a circulating fluidized bed (CFB) riser was studied in a cold 1/9 scale model of the Chalmers 12 MW CFB boiler. The model, which is made of transparent perspex, was operated according to the simplified scaling laws proposed by Glicksman et al. (1993). 12 different exit configurations were compared at different fluidization velocities. Two bed materials were used: iron and steel. In order to verify the scaling laws, vertical pressure and density profiles, net solids flux and pressure fluctuations measured in the model were compared with corresponding results from the 12 MW boiler. The exit configurations were evaluated by comparing the net solids fluxes and the vertical pressure and density profiles of the riser. The overall flow behavior of the scale-model was found to be similar to that of the boiler: A dense bottom bed, a splash zone and a transport zone could be identified. The dynamics (in-bed pressure fluctuations) of the bottom bed were in agreement with those of the boiler. Differences between net solids fluxes during operation with different exits were in some cases of an order of magnitude. However, there were almost no difference in solids flux between an abrupt exit, an extended exit (such as that of the boiler) and an enhanced extension. A decrease in the net solids flux (increase in the internal back-mixing) could be obtained by inserting obstacles in the upper part of the riser, and an increase in the net solids flux was achieved by narrowing the duct from the riser to the cyclone inlet (increasing the average velocity in the duct). The original configuration of the duct with an inclined bottom results in back-mixing from the duct to the furnace, thereby reducing the net (external) solids flux.

  1. Impact of baseline geometry in processing of regional networks on resulting coordinates and ZTD time series

    NASA Astrophysics Data System (ADS)

    Stepniak, Katarzyna; Bock, Olivier; Wielgosz, Pawel

    2017-04-01

    The goal of this work is to determine the most accurate and homogeneous processing strategy to reprocess ground-based GNSS data from national networks for precise positioning and climate monitoring applications. We investigate the influence of the network geometry design strategy on the estimated coordinates of permanent stations and Zenith Total Delay (ZTD) time series. Three variants of processing were carried out and analyzed: 1) pre-defined network which usually contains baseline skeletons of reference stations and baselines to secondary stations forming a star-like structures with the main nodes connected to the reference skeleton; 2) the standard "obs-max" strategy available in Bernese GNSS Software; 3) a newly developed baselines design strategy optimized for ZTD estimation. The study shows that the network design has a strong impact especially on the quality and continuity of ZTD estimates. In case of sub-daily gaps in the measurements at reference stations, small clusters of stations can be disconnected from the main network in the first network strategy. This has little impact on coordinates, but offsets of a few centimeters in ZTD estimates and spikes in their formal errors can appear at all stations of the disconnected cluster. It is also responsible for significant discontinuities in the estimated ZTD series. Using the new developed network design strategy the reprocessed ZTD time series as well as time series of station positions are much more continuous and homogeneous in comparison to the standard approaches. Moreover, a post-processing screening procedure applied for ZTD and coordinates was applied to remove remaining outliers in time series. As a final screening and validation step, GNSS ZTD estimates were compared to ERA-Interim. The agreement between GNSS and ERA-Interim results with the new baseline design strategy and screening show a significant improvement.

  2. On the Geometry of the X-Ray--Emitting Region in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Stern, Boris E.; Poutanen, Juri; Svensson, Roland; Sikora, Marek; Begelman, Mitchell C.

    1995-08-01

    For the first time, detailed radiative transfer calculations of Comptonized X-ray and gamma -ray radiation in a hot pair plasma above a cold accretion disk are performed using two independent codes and methods. The simulations include both energy and pair balance as well as reprocessing of the X- and gamma -rays by the cold disk. We study both plane-parallel coronae as well as active dissipation regions having shapes of hemispheres and pill boxes located on the disk surface. It is shown, contrary to earlier claims, that plane-parallel coronae in pair balance have difficulties in self-consistently reproducing the ranges of 2--20 keV spectral slopes, high-energy cutoffs, and compactnesses inferred from observations of type 1 Seyfert galaxies. Instead, the observations are consistent with the X-rays coming from a number of individual active regions located on the surface of the disk. A number of effects such as anisotropic Compton scattering, the reflection hump, feedback to the soft photon source by reprocessing, and an active region in pair equilibrium all conspire to produce the observed ranges of X-ray slopes, high-energy cutoffs, and compactnesses. The spread in spectral X-ray slopes can be caused by a spread in the properties of the active regions such as their compactnesses and their elevations above the disk surface. Simplified models invoking isotropic Comptonization in spherical clouds are no longer sufficient when interpreting the data.

  3. 3D Reconstruction of Chick Embryo Vascular Geometries Using Non-invasive High-Frequency Ultrasound for Computational Fluid Dynamics Studies.

    PubMed

    Tan, Germaine Xin Yi; Jamil, Muhammad; Tee, Nicole Gui Zhen; Zhong, Liang; Yap, Choon Hwai

    2015-11-01

    Recent animal studies have provided evidence that prenatal blood flow fluid mechanics may play a role in the pathogenesis of congenital cardiovascular malformations. To further these researches, it is important to have an imaging technique for small animal embryos with sufficient resolution to support computational fluid dynamics studies, and that is also non-invasive and non-destructive to allow for subject-specific, longitudinal studies. In the current study, we developed such a technique, based on ultrasound biomicroscopy scans on chick embryos. Our technique included a motion cancelation algorithm to negate embryonic body motion, a temporal averaging algorithm to differentiate blood spaces from tissue spaces, and 3D reconstruction of blood volumes in the embryo. The accuracy of the reconstructed models was validated with direct stereoscopic measurements. A computational fluid dynamics simulation was performed to model fluid flow in the generated construct of a Hamburger-Hamilton (HH) stage 27 embryo. Simulation results showed that there were divergent streamlines and a low shear region at the carotid duct, which may be linked to the carotid duct's eventual regression and disappearance by HH stage 34. We show that our technique has sufficient resolution to produce accurate geometries for computational fluid dynamics simulations to quantify embryonic cardiovascular fluid mechanics.

  4. A Survey of Reynolds Number and Wing Geometry Effects on Lift Characteristics in the Low Speed Stall Region

    NASA Technical Reports Server (NTRS)

    Polhamus, Edward C.

    1996-01-01

    This paper presents a survey of the effects of Reynolds number on the low- speed lift characteristics of wings encountering separated flows at their leading and side edges, with emphasis on the region near the stall. The influence of leading-edge profile and Reynolds number on the stall characteristics of two- dimensional airfoils are reviewed first to provide a basis for evaluating three- dimensional effects associated with various wing planforms. This is followed by examples of the effects of Reynolds number and geometry on the lift characteristics near the stall for a series of three-dimensional wings typical of those suitable for high-speed aircraft and missiles. Included are examples of the effects of wing geometry on the onset and spanwise progression of turbulent reseparation near the leading edge and illustrations of the degree to which simplified theoretical approaches can be useful in defining the influence of the various geometric parameters. Also illustrated is the manner in which the Reynolds number and wing geometry parameters influence whether the turbulent reseparation near the leading edge results in a sudden loss of lift, as in the two-dimensional case, or the formation of a leading-edge vortex with Rs increase in lift followed by a gentle stall as in the highly swept wing case. Particular emphasis is placed on the strong influence of 'induced camber' on the development of turbulent reseparation. R is believed that the examples selected for this report may be useful in evaluating viscous flow solutions by the new computational methods based on the Navier-Stokes equations as well as defining fruitful research areas for the high-Reynolds-number wind tunnels.

  5. Contrasting roles of leukemia inhibitory factor in murine bone development and remodeling involve region-specific changes in vascularization.

    PubMed

    Poulton, Ingrid J; McGregor, Narelle E; Pompolo, Sueli; Walker, Emma C; Sims, Natalie A

    2012-03-01

    We describe here distinct functions of leukemia inhibitory factor (LIF) in bone development/growth and adult skeletal homeostasis. In the growth plate and developing neonate bones, LIF deficiency enhanced vascular endothelial growth factor (VEGF) levels, enlarged blood vessel formation, and increased the formation of "giant" osteoclasts/chondroclasts that rapidly destroyed the mineralized regions of the growth plate and developing neonatal bone. Below this region, osteoblasts formed large quantities of woven bone. In contrast, in adult bone undergoing remodeling osteoclast formation was unaffected by LIF deficiency, whereas osteoblast formation and function were both significantly impaired, resulting in osteopenia. Consistent with LIF promoting osteoblast commitment, enhanced marrow adipocyte formation was also observed in adult LIF null mice, and adipocytic differentiation of murine stromal cells was delayed by LIF treatment. LIF, therefore, controls vascular size and osteoclast differentiation during the transition of cartilage to bone, whereas an anatomically separate LIF-dependent pathway regulates osteoblast and adipocyte commitment in bone remodeling.

  6. Error regions in quantum state tomography: computational complexity caused by geometry of quantum states

    NASA Astrophysics Data System (ADS)

    Suess, Daniel; Rudnicki, Łukasz; maciel, Thiago O.; Gross, David

    2017-09-01

    The outcomes of quantum mechanical measurements are inherently random. It is therefore necessary to develop stringent methods for quantifying the degree of statistical uncertainty about the results of quantum experiments. For the particularly relevant task of quantum state tomography, it has been shown that a significant reduction in uncertainty can be achieved by taking the positivity of quantum states into account. However—the large number of partial results and heuristics notwithstanding—no efficient general algorithm is known that produces an optimal uncertainty region from experimental data, while making use of the prior constraint of positivity. Here, we provide a precise formulation of this problem and show that the general case is NP-hard. Our result leaves room for the existence of efficient approximate solutions, and therefore does not in itself imply that the practical task of quantum uncertainty quantification is intractable. However, it does show that there exists a non-trivial trade-off between optimality and computational efficiency for error regions. We prove two versions of the result: one for frequentist and one for Bayesian statistics.

  7. Determining the Narrow-Line Region Geometry of Mrk 3 with Gemini/NIFS

    NASA Astrophysics Data System (ADS)

    Pope, Crystal L.; Fischer, Travis C.; Crenshaw, D. Michael

    2015-01-01

    We present a study of the narrow-line region (NLR) and inner disk of the Seyfert 2 Mrk 3, based on observations from the Gemini Near-Infrared Integral Field Spectrometer (NIFS). Mrk 3 exhibits emission-line knots within the NLR that are in the shape of a backward S, which is likely due to dust/gas spirals in the galaxy's disk that have been illuminated by the AGN's ionizing bicone. With our NIFS observations, we determine the kinematics of Mrk 3 using an automated Bayesian model selection algorithm. Comparing the NLR kinematics measured with NIFS to those previously measured with the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS), we are able to test the accuracy of our previous kinematic outflow model.

  8. Ultraviolet variability of NGC 5548 - Dynamics of the continuum production region and geometry of the broad-line region

    NASA Technical Reports Server (NTRS)

    Krolik, J. H.; Horne, Keith; Kallman, T. R.; Malkan, M. A.; Edelson, R. A.

    1991-01-01

    Data from the 1989-1990 IUE monitoring of the Seyfert galaxy NGC 5548 are used here to analyze the continuum variability properties of the galaxy and to derive the structure or its emission-line region. The mean shape of the UV continuum is well fit by an accretion disk model with a given black hole mass and an additional component required to reproduce the observed soft X-ray flux. The continuum fluctuation power spectrum is very steep, with most of the variance coming from about 1 yr time scales. The entire optical/UV continuum rises and falls almost simultaneously, so that the logarithmic slope of the power spectrum is nearly the same for all bands, but the flux at higher photon frequencies varies with larger amplitude. The emission-line material around the nucleus may best be described by a highly ionized inner zone of high and nearly constant pressure that stretches about 4-14 light-days from the center and an outer, more weakly ionized zone of considerably lower ionization at least 20-30 light-days out.

  9. The Plasma Parameters and Geometry of Cool and Warm Active Region Loops

    NASA Astrophysics Data System (ADS)

    Xie, Haixia; Madjarska, Maria S.; Li, Bo; Huang, Zhenghua; Xia, Lidong; Wiegelmann, Thomas; Fu, Hui; Mou, Chaozhou

    2017-06-01

    How the solar corona is heated to high temperatures remains an unsolved mystery in solar physics. In the present study we analyze observations of 50 whole active region loops taken with the Extreme-ultraviolet Imaging Spectrometer on board the Hinode satellite. Eleven loops were classified as cool loops (<1 MK) and 39 as warm loops (1-2 MK). We study their plasma parameters, such as densities, temperatures, filling factors, nonthermal velocities, and Doppler velocities. We combine spectroscopic analysis with linear force-free magnetic field extrapolation to derive the 3D structure and positioning of the loops, their lengths and heights, and the magnetic field strength along the loops. We use density-sensitive line pairs from Fe xii, Fe xiii, Si x, and Mg vii ions to obtain electron densities by taking special care of intensity background subtraction. The emission measure loci method is used to obtain the loop temperatures. We find that the loops are nearly isothermal along the line of sight. Their filling factors are between 8% and 89%. We also compare the observed parameters with the theoretical Rosner-Tucker-Vaiana (RTV) scaling law. We find that most of the loops are in an overpressure state relative to the RTV predictions. In a follow-up study, we will report a heating model of a parallel-cascade-based mechanism and will compare the model parameters with the loop plasma and structural parameters derived here.

  10. Evaluation of adipose-derived stromal vascular fraction from the lateral tailhead, inguinal region, and mesentery of horses

    PubMed Central

    Metcalf, Garrett L.; McClure, Scott R.; Hostetter, Jesse M.; Martinez, Rudy F.; Wang, Chong

    2016-01-01

    Use of mesenchymal stem cells (MSCs) found in the stromal vascular fraction (SVF) of equine adipose tissue has promising applications for regenerative therapies. The most commonly used source of equine adipose tissue is the subcutaneous tailhead. The objective of this study was to compare 3 adipose depot sites in horses and determine the viability and cellular yield, capillary density, gene expression for selected markers, and colony-forming unit fibroblasts (CFU-Fs) in adipose tissue taken from these sites. Adipose tissue was excised from the area lateral to the tailhead, the inguinal region, and the small colon mesentery of 6 horses. Lipoaspirate was also collected from the area lateral to the tailhead. Stromal vascular fraction (SVF) was prepared in duplicate from the 3 different adipose tissue depots. The total nucleated and dead cell counts was determined manually using a hemocytometer and percent viability was calculated. Mass and volume of adipose were determined in order to calculate density and factor-VIII immunohistochemical staining was used to determine vascular density in the excisional adipose tissue samples from each horse. Quantitative polymerase chain reaction (qPCR) was used to quantify gene expression for selected cellular markers from each site. There were significant differences in viability, yield of nucleated cells/gram of adipose tissue, vascular density, gene expression, and CFU-Fs among adipose depots. Adipose from the mesentery yielded the highest number of nucleated cells/gram of tissue and the highest vascular density and percentage of CFU-Fs. In the horse, both the anatomical site of collection and the method of tissue collection significantly impact the yield and composition of cells in the SVF. Further study is needed to assess whether one adipose source is superior for harvesting mesenchymal stem cells (MSCs) and whether the differences among sources are clinically relevant for in-vivo treatment of musculoskeletal injuries in horses

  11. Evaluation of adipose-derived stromal vascular fraction from the lateral tailhead, inguinal region, and mesentery of horses.

    PubMed

    Metcalf, Garrett L; McClure, Scott R; Hostetter, Jesse M; Martinez, Rudy F; Wang, Chong

    2016-10-01

    Use of mesenchymal stem cells (MSCs) found in the stromal vascular fraction (SVF) of equine adipose tissue has promising applications for regenerative therapies. The most commonly used source of equine adipose tissue is the subcutaneous tailhead. The objective of this study was to compare 3 adipose depot sites in horses and determine the viability and cellular yield, capillary density, gene expression for selected markers, and colony-forming unit fibroblasts (CFU-Fs) in adipose tissue taken from these sites. Adipose tissue was excised from the area lateral to the tailhead, the inguinal region, and the small colon mesentery of 6 horses. Lipoaspirate was also collected from the area lateral to the tailhead. Stromal vascular fraction (SVF) was prepared in duplicate from the 3 different adipose tissue depots. The total nucleated and dead cell counts was determined manually using a hemocytometer and percent viability was calculated. Mass and volume of adipose were determined in order to calculate density and factor-VIII immunohistochemical staining was used to determine vascular density in the excisional adipose tissue samples from each horse. Quantitative polymerase chain reaction (qPCR) was used to quantify gene expression for selected cellular markers from each site. There were significant differences in viability, yield of nucleated cells/gram of adipose tissue, vascular density, gene expression, and CFU-Fs among adipose depots. Adipose from the mesentery yielded the highest number of nucleated cells/gram of tissue and the highest vascular density and percentage of CFU-Fs. In the horse, both the anatomical site of collection and the method of tissue collection significantly impact the yield and composition of cells in the SVF. Further study is needed to assess whether one adipose source is superior for harvesting mesenchymal stem cells (MSCs) and whether the differences among sources are clinically relevant for in-vivo treatment of musculoskeletal injuries in horses.

  12. Neural and humoral control of regional vascular beds via A1 adenosine receptors located in the nucleus tractus solitarii

    PubMed Central

    McClure, Joseph M.; O'Leary, Donal S.

    2011-01-01

    Our previous studies showed that stimulation of adenosine A1 receptors located in the nucleus of the solitary tract (NTS) exerts counteracting effects on the iliac vascular bed: activation of the adrenal medulla and β-adrenergic vasodilation vs. sympathetic and vasopressinergic vasoconstriction. Because NTS A1 adenosine receptors inhibit baroreflex transmission in the NTS and contribute to the pressor component of the HDR, we hypothesized that these receptors also contribute to the redistribution of blood from the visceral to the muscle vasculature via prevailing sympathetic and vasopressinergic vasoconstriction in the visceral (renal and mesenteric) vascular beds and prevailing β-adrenergic vasodilation in the somatic (iliac) vasculature. To test this hypothesis, we compared the A1 adenosine-receptor-mediated effects of each vasoactive factor triggered by NTS A1 adenosine receptor stimulation [N6-cyclopentyladenosine (CPA), 330 pmol in 50 nl] on the regional vascular responses in urethane/chloralose-anesthetized rats. The single-factor effects were separated using adrenalectomy, β-adrenergic blockade, V1 vasopressin receptor blockade, and sinoaortic denervation. In intact animals, initial vasodilation was followed by large, sustained vasoconstriction with smaller responses observed in renal vs. mesenteric and iliac vascular beds. The initial β-adrenergic vasodilation prevailed in the iliac vs. mesenteric and renal vasculature. The large and sustained vasopressinergic vasoconstriction was similar in all vascular beds. Small sympathetic vasoconstriction was observed only in the iliac vasculature in this setting. We conclude that, although A1 adenosine-receptor-mediated β-adrenergic vasodilation may contribute to the redistribution of blood from the visceral to the muscle vasculature, this effect is overridden by sympathetic and vasopressinergic vasoconstriction. PMID:21148476

  13. EXTINCTION AND DUST GEOMETRY IN M83 H II REGIONS: AN HUBBLE SPACE TELESCOPE/WFC3 STUDY

    SciTech Connect

    Liu, Guilin; Calzetti, Daniela; Hong, Sungryong; Whitmore, Bradley; Chandar, Rupali; O'Connell, Robert W.; Blair, William P.; Cohen, Seth H.; Kim, Hwihyun; Frogel, Jay A.

    2013-12-01

    We present Hubble Space Telescope/WFC3 narrow-band imaging of the starburst galaxy M83 targeting the hydrogen recombination lines (Hβ, Hα, and Paβ), which we use to investigate the dust extinction in the H II regions. We derive extinction maps with 6 pc spatial resolution from two combinations of hydrogen lines (Hα/Hβ and Hα/Paβ), and show that the longer wavelengths probe larger optical depths, with A{sub V} values larger by ≳1 mag than those derived from the shorter wavelengths. This difference leads to a factor ≳2 discrepancy in the extinction-corrected Hα luminosity, a significant effect when studying extragalactic H II regions. By comparing these observations to a series of simple models, we conclude that a large diversity of absorber/emitter geometric configurations can account for the data, implying a more complex physical structure than the classical foreground ''dust screen'' assumption. However, most data points are bracketed by the foreground screen and a model where dust and emitters are uniformly mixed. When averaged over large (≳100-200 pc) scales, the extinction becomes consistent with a ''dust screen'', suggesting that other geometries tend to be restricted to more local scales. Moreover, the extinction in any region can be described by a combination of the foreground screen and the uniform mixture model with weights of 1/3 and 2/3 in the center (≲2 kpc), respectively, and 2/3 and 1/3 for the rest of the disk. This simple prescription significantly improves the accuracy of the dust extinction corrections and can be especially useful for pixel-based analyses of galaxies similar to M83.

  14. Geometry of miocene extensional deformation, lower Colorado River Region, Southeastern California and Southwestern Arizona: Evidence for the presence of a regional low-angle normal fault

    NASA Technical Reports Server (NTRS)

    Tosdal, R. M.; Sherrod, D. R.

    1985-01-01

    The geometry of Miocene extensional deformation, which changes along a 120 km-long, northeast-trending transect from the southestern Chocolate Mountains, southeastern California, to the Trigo and southern Dome Rock Mountains, southwestern Arizona is discussed. Based upon regional differences in the structural response to extension and estimated extensional strain, the transet can be divided into three northwesterly-trending structural domains. From southwest to northeast, these domains are: (1) southestern Chocolate-southernmost Trigo Mountains; (2) central to northern Trigo Mountains; and (3) Trigo Peaks-southern Dome Rock Mountains. All structures formed during the deformation are brittle in style; fault rocks are composed of gouge, cohesive gouge, and local microbreccia. In each structural domain, exposed lithologic units are composed of Mesozoic crystalline rocks unconformably overlain by Oligocene to Early Miocene volcanic and minor interbedded sedimentary rocks. Breccia, conglomerate, and sandstone deposited synchronously with regional extension locally overlie the volcanic rocks. Extensional deformation largely postdated the main phase of volcanic activity, but rare rhyolitic tuff and flows interbedded with the syndeformational clastic rocks suggest that deformation began during the waning stages of valcanism. K-Ar isotopic ages indicate that deformation occurred in Miocene time, between about 22 and m.y. ago.

  15. A brief history of vascularized free flaps in the oral and maxillofacial region.

    PubMed

    Steel, Ben J; Cope, Martin R

    2015-04-01

    Vascularized free flaps are now the reference standard for the reconstruction of defects after cancer resection in oral and maxillofacial surgery and other specialties and have an interesting and surprisingly long history. We reviewed the history of free flap use in oral and maxillofacial surgery and show their place in the wider context of surgical progress. An overview is given of both soft tissue and bony reconstruction in the pre-free flap era and the development of vascular anastomosis and microsurgery--one of the main foundations of free flap surgery. The emergence of free flaps from 1959 through to the early 1970s is documented. The history of 19 of the more common free flaps used in oral and maxillofacial surgery is described, from the jejunal flap in 1959 through to the posterior tibial artery flap in 1985. For each, the origin and first reported use in the head and neck are discussed. Free flap surgery has continued to evolve, with developments in perforator and chimeric flaps, and new flaps continue to be described. An appreciation of the surgical history is important in understanding where we are today. Our review should give the practicing surgeon an idea of the origins of the currently used techniques.

  16. Reduction of vascular and permeable regions in solid tumors detected by macromolecular contrast magnetic resonance imaging after treatment with antiangiogenic agent TNP-470.

    PubMed

    Bhujwalla, Zaver M; Artemov, Dmitri; Natarajan, Kshama; Solaiyappan, Meiyappan; Kollars, Peggy; Kristjansen, Paul E G

    2003-01-01

    The availability of noninvasive techniques to detect the effects of antiangiogenic agents is critically important for optimizing treatment of cancer with these agents. Magnetic resonance imaging (MRI) is one such noninvasive technique that is routinely used clinically. In this study, we have evaluated the use of MRI of the intravascular contrast agent albumin-GdDTPA to detect the effects of the antiangiogenic agent TNP-470 on the vascular volume and permeability of the MatLyLu prostate cancer model. TNP-470-treated tumors demonstrated a significant decrease of vascular volume, as well as a significant reduction in vascular and permeable regions, compared with volume-matched control tumors. Although the fractional volume of permeable regions in the tumor decreased, the average value of tumor permeability did not decrease significantly. This was attributable to increase in permeability in some regions of the tumor. These regions were mostly associated with low vascular volume. ELISA assays of control and treated MatLyLu tumors also detected a significant increase of vascular endothelial growth factor in the TNP-470-treated tumors. MRI detected significant changes in tumor vascular characteristics after treatment with TNP-470.

  17. Quantifying the genetic influence on mammalian vascular tree structure

    PubMed Central

    Glenny, Robb; Bernard, Susan; Neradilek, Blazej; Polissar, Nayak

    2007-01-01

    The ubiquity of fractal vascular trees throughout the plant and animal kingdoms is postulated to be due to evolutionary advantages conferred through efficient distribution of nutrients to multicellular organisms. The implicit, and untested, assertion in this theory is that the geometry of vascular trees is heritable. Because vascular trees are constructed through the iterative use of signaling pathways modified by local factors at each step of the branching process, we sought to investigate how genetic and nongenetic influences are balanced to create vascular trees and the regional distribution of nutrients through them. We studied the spatial distribution of organ blood flow in armadillos because they have genetically identical littermates, allowing us to quantify the genetic influence. We determined that the regional distribution of blood flow is strongly correlated between littermates (r2 = 0.56) and less correlated between unrelated animals (r2 = 0.36). Using an ANOVA model, we estimate that 67% of the regional variability in organ blood flow is genetically controlled. We also used fractal analysis to characterize the distribution of organ blood flow and found shared patterns within the lungs and hearts of related animals, suggesting common control over the vascular development of these two organs. We conclude that the geometries of fractal vascular trees are heritable and could be selected through evolutionary pressures. Furthermore, considerable postgenetic modifications may allow vascular trees to adapt to local factors and provide a flexibility that would not be possible in a rigid system. PMID:17420477

  18. Neuronal nitric oxide synthase inhibition and regional sympathetic nerve discharge: implications for peripheral vascular control.

    PubMed

    Copp, Steven W; Hirai, Daniel M; Sims, Gabrielle E; Fels, Richard J; Musch, Timothy I; Poole, David C; Kenney, Michael J

    2013-05-01

    Neuronal nitric oxide (NO) synthase (nNOS) inhibition with systemically administered S-methyl-l-thiocitrulline (SMTC) elevates mean arterial pressure (MAP) and reduces rat hindlimb skeletal muscle and renal blood flow. We tested the hypothesis that those SMTC-induced cardiovascular effects resulted, in part, from increased sympathetic nerve discharge (SND). MAP, HR, and lumbar and renal SND (direct nerve recordings) were measured in 9 baroreceptor (sino-aortic)-denervated rats for 20min each following both saline and SMTC (0.56mg/kg i.v.). SMTC increased MAP (peak ΔMAP: 50±8mmHg, p<0.01) compared to saline. Lumbar and renal SND were not different between saline and SMTC conditions at any time (p>0.05). The ΔSND between saline and SMTC conditions for the lumbar and renal nerves were not different from zero (peak ΔSND, lumbar: 2.0±6.8%; renal: 9.7±9.0%, p>0.05 versus zero for both). These data support that SMTC-induced reductions in skeletal muscle and renal blood flow reported previously reflect peripheral nNOS-derived NO vascular control as opposed to increased sympathetic vasoconstriction. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Cross-Scale Analysis of the Region Effect on Vascular Plant Species Diversity in Southern and Northern European Mountain Ranges

    PubMed Central

    Lenoir, Jonathan; Gégout, Jean-Claude; Guisan, Antoine; Vittoz, Pascal; Wohlgemuth, Thomas; Zimmermann, Niklaus E.; Dullinger, Stefan; Pauli, Harald; Willner, Wolfgang; Grytnes, John-Arvid; Virtanen, Risto; Svenning, Jens-Christian

    2010-01-01

    Background The divergent glacial histories of southern and northern Europe affect present-day species diversity at coarse-grained scales in these two regions, but do these effects also penetrate to the more fine-grained scales of local communities? Methodology/Principal Findings We carried out a cross-scale analysis to address this question for vascular plants in two mountain regions, the Alps in southern Europe and the Scandes in northern Europe, using environmentally paired vegetation plots in the two regions (n = 403 in each region) to quantify four diversity components: (i) total number of species occurring in a region (total γ-diversity), (ii) number of species that could occur in a target plot after environmental filtering (habitat-specific γ-diversity), (iii) pair-wise species compositional turnover between plots (plot-to-plot β-diversity) and (iv) number of species present per plot (plot α-diversity). We found strong region effects on total γ-diversity, habitat-specific γ-diversity and plot-to-plot β-diversity, with a greater diversity in the Alps even towards distances smaller than 50 m between plots. In contrast, there was a slightly greater plot α-diversity in the Scandes, but with a tendency towards contrasting region effects on high and low soil-acidity plots. Conclusions/Significance We conclude that there are strong regional differences between coarse-grained (landscape- to regional-scale) diversity components of the flora in the Alps and the Scandes mountain ranges, but that these differences do not necessarily penetrate to the finest-grained (plot-scale) diversity component, at least not on acidic soils. Our findings are consistent with the contrasting regional Quaternary histories, but we also consider alternative explanatory models. Notably, ecological sorting and habitat connectivity may play a role in the unexpected limited or reversed region effect on plot α-diversity, and may also affect the larger-scale diversity components. For

  20. Vascular Cures

    MedlinePlus

    ... Contact Us Vascular Disease What is Vascular Disease? Education and Awareness Vascular Diseases Abdominal Aortic Aneurysm Aortic Dissection Arteriovenous Malformation Atherosclerosis Buerger's Disease Carotid Artery Disease ...

  1. Effect of electrochemical treatment on high-flow vascular malformations in the maxillofacial region.

    PubMed

    Xue, Lei; Qin, Xing-Jun; Wang, Xu-Kai; Wang, Hua; Jia, Rui; Zhai, Qin-Kai

    2011-12-01

    We explored the effect of electrochemical therapy for the treatment of high-flow venous malformations in the maxillofacial region in 32 patients. We used a method of anaesthesia that was suitable to the site and size of the lesion, and then inserted platinum needles into the lesion in a sterile environment. We protected the normal skin by inserting the cannulas into plastic sheaths, and connected the needles to an electrochemical machine. The common voltage, electric current, and amount of electricity were 6-8 V, 80-100 mA, and 10-20 C/cm(2), respectively. During a follow up period of two months to three years, 18 (56%) patients had a complete response, and 14 a partial response (44%). Electrochemical treatment is a simple, relatively atraumatic method of dealing with high-flow venous malformations that leaves no scars.

  2. Regional cerebral blood flow and cerebrovascular reactivity in Alzheimer's disease and vascular dementia assessed by arterial spinlabeling magnetic resonance imaging.

    PubMed

    Gao, Yong-Zhe; Zhang, Jun-Jian; Liu, Hui; Wu, Guang-Yao; Xiong, Li; Shu, Min

    2013-02-01

    Hemodynamic disturbance in cerebral blood flow (CBF) is common in both Alzheimer's disease (AD) and vascular dementia (VaD).The aim of this study is to investigate the different patterns of regional cerebral blood flow (rCBF) change and cerebrovascular reactivity (CVR) in these two types of dementia. Mean flow velocity (MFV) of middle cerebral artery and rCBF were measured by Transcranial Doppler ultrasound (TCD) and arterial spin-labeling (ASL) magnetic resonance, separately. CVR was evaluated by MFV or rCBF change in response to 5% CO2 inhalation. The ASL results showed that, rCBF was significantly lower in both the bilateral frontal and temporal lobes in AD group and lower in left frontal and temporal white matter in patients with VaD. CVR calculated by rCBF was impaired more severely in bilateral frontal cortices in AD. Conversely, TCD tests failed to demonstrate significant difference in MFV and CVR between the two groups. It is concluded that the different patterns detected by ASL in resting rCBF change and cerebrovascular reactivity in response to carbogen inhalation may serve as a potential marker to distinguish AD and VaD.

  3. New insights on active fault geometries in the Mentawai region of Sumatra, Indonesia, from broadband waveform modeling of earthquake source parameters

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Wei, Shengji; Bradley, Kyle Edward

    2017-04-01

    Global earthquake catalogs provide important first-order constraints on the geometries of active faults. However, the precision of location and focal mechanism parameters in modern global catalogs is typically insufficient to resolve the detailed geometry of many important faults. This issue is particularly critical in subduction zone region, where most great earthquakes take place. The current Slab1.0 have smooth fault geometries, and cannot adequately address local structural complexities that are critical for understanding earthquake rupture pattern, coseismic slip distribution, and interseismic coupling and etc. However, more detailed information about fault geometries can be obtained by careful relocation and modeling waveform of earthquake sequences. Here, we refine the geometry of two active faults in the Mentawai region offshore of Sumatra, Indonesia. This region is a seismic gap in the Sumatran subduction zone, where the 2007 Mw8.4 Bengkulu and 2010 Mw7.8 Mentawai earthquake sequences have partially ruptured the frictionally locked megathrust but a great earthquake has not yet to occur. In addition, two smaller earthquakes in 2005 (Mw6.9) and 2009 (Mw6.7) with steeply dipping fault plane solutions have been identified as backthrust events by Singh et al. (2010) based on structural constraints from seismic reflection profiles. Wiseman et al. (2011) provided geodetic evidence to support the statement that these two earthquake sequences occurred on a major backthrust fault underlying the forearc islands. However, the combination of a small number of focal mechanisms in the available catalog and large uncertainties in both earthquake locations and fault plane solutions severely limits our understanding of the geometry of both the megathrust and backthrust faults. We take advantage of the global seismic stations and conduct broadband waveform modeling for medium size earthquakes (M>4.5) to refine their source parameters, which include location, in particular

  4. Leaf hydraulics II: vascularized tissues.

    PubMed

    Rockwell, Fulton E; Holbrook, N Michele; Stroock, Abraham D

    2014-01-07

    Current models of leaf hydration employ an Ohm's law analogy of the leaf as an ideal capacitor, neglecting the resistance to flow between cells, or treat the leaf as a plane sheet with a source of water at fixed potential filling the mid-plane, neglecting the discrete placement of veins as well as their resistance. We develop a model of leaf hydration that considers the average conductance of the vascular network to a representative areole (region bounded by the vascular network), and represent the volume of tissue within the areole as a poroelastic composite of cells and air spaces. Solutions to the 3D flow problem are found by numerical simulation, and these results are then compared to 1D models with exact solutions for a range of leaf geometries, based on a survey of temperate woody plants. We then show that the hydration times given by these solutions are well approximated by a sum of the ideal capacitor and plane sheet times, representing the time for transport through the vasculature and tissue respectively. We then develop scaling factors relating this approximate solution to the 3D model, and examine the dependence of these scaling factors on leaf geometry. Finally, we apply a similar strategy to reduce the dimensions of the steady state problem, in the context of peristomatal transpiration, and consider the relation of transpirational gradients to equilibrium leaf water potential measurements. © 2013 Published by Elsevier Ltd. All rights reserved.

  5. Neuropeptide deficient mice have attenuated nociceptive, vascular, and inflammatory changes in a tibia fracture model of complex regional pain syndrome

    PubMed Central

    2012-01-01

    Background Distal limb fracture in man can induce a complex regional pain syndrome (CRPS) with pain, warmth, edema, and cutaneous inflammation. In the present study substance P (SP, Tac1−/−) and CGRP receptor (RAMP1−/−) deficient mice were used to investigate the contribution of neuropeptide signaling to CRPS-like changes in a tibia fracture mouse model. Wildtype, Tac1−/−, and RAMP1−/− mice underwent tibia fracture and casting for 3 weeks, then the cast was removed and hindpaw mechanical allodynia, unweighting, warmth, and edema were tested over time. Hindpaw skin was collected at 3 weeks post-fracture for immunoassay and femurs were collected for micro-CT analysis. Results Wildtype mice developed hindpaw allodynia, unweighting, warmth, and edema at 3 weeks post-fracture, but in the Tac1−/− fracture mice allodynia and unweighting were attenuated and there was no warmth and edema. RAMP1−/− fracture mice had a similar presentation, except there was no reduction in hindpaw edema. Hindpaw skin TNFα, IL-1β, IL-6 and NGF levels were up-regulated in wildtype fracture mice at 3 weeks post-fracture, but in the Tac1−/− and RAMP1−/− fracture mice only IL-6 was increased. The epidermal keratinocytes were the cellular source for these inflammatory mediators. An IL-6 receptor antagonist partially reversed post-fracture pain behaviors in wildtype mice. Conclusions In conclusion, both SP and CGRP are critical neuropeptide mediators for the pain behaviors, vascular abnormalities, and up-regulated innate immune responses observed in the fracture hindlimb. We postulate that the residual pain behaviors observed in the Tac1−/− and RAMP1−/− fracture mice are attributable to the increased IL-6 levels observed in the hindpaw skin after fracture. PMID:23191958

  6. Development of regional curves relating bankfull-channel geometry and discharge to drainage area for streams in Pennsylvania and selected areas of Maryland

    USGS Publications Warehouse

    Chaplin, Jeffrey J.

    2005-01-01

    Natural-stream designs are commonly based on the dimensions of the bankfull channel, which is capable of conveying discharges that transport sediment without excessive erosion or deposition. Regional curves relate bankfull-channel geometry and discharge to drainage area in watersheds with similar runoff characteristics and commonly are utilized by practitioners of natural-stream design to confirm or refute selection of the field-identified bankfull channel. Data collected from 66 streamflow-gaging stations and associated stream reaches between December 1999 and December 2003 were used in one-variable ordinary least-squares regression analyses to develop regional curves relating drainage area to cross-sectional area, discharge, width, and mean depth of the bankfull channel. Watersheds draining to these stations are predominantly within the Piedmont, Ridge and Valley, and Appalachian Plateaus Physiographic Provinces of Pennsylvania and northern Maryland. Statistical analyses of physiography, percentage of watershed area underlain by carbonate bedrock, and percentage of watershed area that is glaciated indicate that carbonate bedrock, not physiography or glaciation, has a controlling influence on the slope of regional curves. Regional curves developed from stations in watersheds underlain by 30 percent or less carbonate bedrock generally had steeper slopes than the corresponding relations developed from watersheds underlain by greater than 30 percent carbonate bedrock. In contrast, there is little evidence to suggest that regional curves developed from stations in the Piedmont or Ridge and Valley Physiographic Province are different from the corresponding relations developed from stations in the Appalachian Plateaus Physiographic Province. On the basis of these findings, regional curves are presented to represent two settings that are independent of physiography: (1) noncarbonate settings characterized by watersheds with carbonate bedrock underlying 30 percent or less

  7. Three-dimensional velocity structure around Tehri region of the Garhwal Lesser Himalaya: constraints on geometry of the underthrusting Indian plate

    NASA Astrophysics Data System (ADS)

    Kanaujia, Jyotima; Kumar, Ashwani; Gupta, S. C.

    2016-05-01

    We investigate the upper crustal velocity structure beneath the Tehri region of the Garhwal Himalaya. The investigated region is situated within the 700-km-long central seismic gap of the Himalaya that has experienced three gap-filling earthquakes since 1991 including the recent 2015 Nepal earthquake (Mw 7.8). The local tomographic inversion is based on a data set of 1365 events collected from 2008 January to 2012 December by a 12-station local network that covers an area of about 100 × 80 km around Tehri Dam. We perform a simultaneous inversion for P- and S-wave velocity anomalies. Tomograms are interpreted in the backdrop of the regional geological and tectonic framework of the region. The spatial distribution of relocated events from the 3-D velocity model has shed new light on the pattern of seismicity in the vicinity of the Main Central thrust (MCT), and has elucidated the structure of the underthrusting Indian plate. Our model exhibits a significant negative velocity anomaly up to ˜5 per cent beneath the central part of the Garhwal Inner Lesser Himalaya, and a P-wave low velocity anomaly near the Chamoli region. The seismicity zone around the Chamoli region may be attributed to the presence of fluid-filled rocks. Furthermore, an area with ˜3-4 per cent positive velocity anomaly is delineated to the northwest of the Uttarkashi thrust in the vicinity of the MCT. Significant findings of the study include: a flat-ramp-flat-type subsurface geometry of the underthrusting Indian plate below the Garhwal Himalaya, high-velocity images representing the trend and configuration of Delhi-Haridwar ridge below the Sub Himalaya and Lesser Himalaya and a seismically active zone representing geometrical asperity on the basement thrust in the vicinity of the MCT.

  8. Spectropolarimetry of V854 Centauri at minimum light - Clues to the geometry of the dust and emission-line region

    NASA Technical Reports Server (NTRS)

    Whitney, Barbara A.; Clayton, Geoffrey C.; Schulte-Ladbeck, Regina E.; Meade, Marilyn R.

    1992-01-01

    The RCB star V854 Cen is observed during a very deep decline (Delta m = 8.2) at the AAT. The continuum polarization is very high, ranging from 14 percent at 4200 A to about 4 percent at 6500 A. The polarization decreases across the emission lines, but the polarized flux remains constant. This indicates that the emission lines are unpolarized, so the emission probably arises in a region unobscured by dust. In such a deep minimum, the visible continuum flux is probably almost entirely scattered light, which explains its high polarization. The scattered flux may arise in the same clouds contributing to the observed IR flux if the albedo is low and the grains forward throwing. The emission-line spectrum itself is very unusual for an RCB star in decline, with strong C2 bands and Balmer lines.

  9. Spectropolarimetry of V854 Centauri at minimum light - Clues to the geometry of the dust and emission-line region

    NASA Technical Reports Server (NTRS)

    Whitney, Barbara A.; Clayton, Geoffrey C.; Schulte-Ladbeck, Regina E.; Meade, Marilyn R.

    1992-01-01

    The RCB star V854 Cen is observed during a very deep decline (Delta m = 8.2) at the AAT. The continuum polarization is very high, ranging from 14 percent at 4200 A to about 4 percent at 6500 A. The polarization decreases across the emission lines, but the polarized flux remains constant. This indicates that the emission lines are unpolarized, so the emission probably arises in a region unobscured by dust. In such a deep minimum, the visible continuum flux is probably almost entirely scattered light, which explains its high polarization. The scattered flux may arise in the same clouds contributing to the observed IR flux if the albedo is low and the grains forward throwing. The emission-line spectrum itself is very unusual for an RCB star in decline, with strong C2 bands and Balmer lines.

  10. Molecular Geometry.

    ERIC Educational Resources Information Center

    Desseyn, H. O.; And Others

    1985-01-01

    Compares linear-nonlinear and planar-nonplanar geometry through the valence-shell electron pairs repulsion (V.S.E.P.R.), Mulliken-Walsh, and electrostatic force theories. Indicates that although the V.S.E.P.R. theory has more advantages for elementary courses, an explanation of the best features of the different theories offers students a better…

  11. Molecular Geometry.

    ERIC Educational Resources Information Center

    Desseyn, H. O.; And Others

    1985-01-01

    Compares linear-nonlinear and planar-nonplanar geometry through the valence-shell electron pairs repulsion (V.S.E.P.R.), Mulliken-Walsh, and electrostatic force theories. Indicates that although the V.S.E.P.R. theory has more advantages for elementary courses, an explanation of the best features of the different theories offers students a better…

  12. Linear gyrokinetic simulations of microinstabilities within the pedestal region of H-mode NSTX discharges in a highly shaped geometry

    DOE PAGES

    Coury, M.; Guttenfelder, W.; Mikkelsen, D. R.; ...

    2016-06-30

    Linear (local) gyrokinetic predictions of edge microinstabilities in highly shaped, lithiated and non-lithiated NSTX discharges are reported using the gyrokinetic code GS2. Microtearing modes dominate the non-lithiated pedestal top. The stabilization of these modes at the lithiated pedestal top enables the electron temperature pedestal to extend further inwards, as observed experimentally. Kinetic ballooning modes are found to be unstable mainly at the mid-pedestal of both types of discharges, with un- stable trapped electron modes nearer the separatrix region. At electron wavelengths, ETG modes are found to be unstable from mid-pedestal outwards for ηe, exp ~2.2 with higher growth rates formore » the lithiated discharge. Near the separatrix, the critical temperature gradient for driving ETG modes is reduced in the presence of lithium, re ecting the reduction of the lithiated density gradients observed experimentally. A preliminary linear study in the edge of non-lithiated discharges shows that the equilibrium shaping alters the electrostatic modes stability, found more unstable at high plasma shaping.« less

  13. Linear gyrokinetic simulations of microinstabilities within the pedestal region of H-mode NSTX discharges in a highly shaped geometry

    SciTech Connect

    Coury, M.; Guttenfelder, W.; Mikkelsen, D. R.; Canik, J. M.; Canal, G. P.; Diallo, A.; Kaye, S.; Kramer, G. J.; Maingi, R.

    2016-06-30

    Linear (local) gyrokinetic predictions of edge microinstabilities in highly shaped, lithiated and non-lithiated NSTX discharges are reported using the gyrokinetic code GS2. Microtearing modes dominate the non-lithiated pedestal top. The stabilization of these modes at the lithiated pedestal top enables the electron temperature pedestal to extend further inwards, as observed experimentally. Kinetic ballooning modes are found to be unstable mainly at the mid-pedestal of both types of discharges, with un- stable trapped electron modes nearer the separatrix region. At electron wavelengths, ETG modes are found to be unstable from mid-pedestal outwards for ηe, exp ~2.2 with higher growth rates for the lithiated discharge. Near the separatrix, the critical temperature gradient for driving ETG modes is reduced in the presence of lithium, re ecting the reduction of the lithiated density gradients observed experimentally. A preliminary linear study in the edge of non-lithiated discharges shows that the equilibrium shaping alters the electrostatic modes stability, found more unstable at high plasma shaping.

  14. Linear gyrokinetic simulations of microinstabilities within the pedestal region of H-mode NSTX discharges in a highly shaped geometry

    SciTech Connect

    Coury, M.; Guttenfelder, W.; Mikkelsen, D. R.; Canik, J. M.; Canal, G. P.; Diallo, A.; Kaye, S.; Kramer, G. J.; Maingi, R.

    2016-06-30

    Linear (local) gyrokinetic predictions of edge microinstabilities in highly shaped, lithiated and non-lithiated NSTX discharges are reported using the gyrokinetic code GS2. Microtearing modes dominate the non-lithiated pedestal top. The stabilization of these modes at the lithiated pedestal top enables the electron temperature pedestal to extend further inwards, as observed experimentally. Kinetic ballooning modes are found to be unstable mainly at the mid-pedestal of both types of discharges, with un- stable trapped electron modes nearer the separatrix region. At electron wavelengths, ETG modes are found to be unstable from mid-pedestal outwards for ηe, exp ~2.2 with higher growth rates for the lithiated discharge. Near the separatrix, the critical temperature gradient for driving ETG modes is reduced in the presence of lithium, re ecting the reduction of the lithiated density gradients observed experimentally. A preliminary linear study in the edge of non-lithiated discharges shows that the equilibrium shaping alters the electrostatic modes stability, found more unstable at high plasma shaping.

  15. An Infrared Study of the Dust Properties and Geometry of the Arched Filaments H ii Region with SOFIA/FORCAST

    NASA Astrophysics Data System (ADS)

    Hankins, M. J.; Lau, R. M.; Morris, M. R.; Herter, T. L.

    2017-03-01

    Massive stellar clusters provide radiation (˜ {10}7{--}{10}8 {L}⊙ ) and winds (˜1000 km s-1) that act to heat dust and shape their surrounding environment. In this paper, the Arched Filaments in the Galactic center were studied to better understand the influence of the Arches cluster on its nearby interstellar medium (ISM). The Arched Filaments were observed with the Faint Object InfraRed CAMera for the SOFIA Telescope at 19.7, 25.2, 31.5, and 37.1 μm. Color-temperature maps of the region created with the 25.2 and 37.1 μm data reveal relatively uniform dust temperatures (70-100 K) over the extent of the filaments (˜25 pc). Distances between the cluster and the filaments were calculated assuming equilibrium heating of standard-size ISM dust grains (˜0.1 μm). The distances inferred by this method are in conflict with the projected distance between the filaments and the cluster, although this inconsistency can be explained if the characteristic grain size in the filaments is smaller (˜0.01 μm) than typical values. DustEM models of selected locations within the filaments show evidence of depleted abundances of polycyclic aromatic hydrocarbons (PAHs) by factors of ˜1.6-10 by mass compared to the diffuse ISM. The evidence for both PAH depletion and a smaller characteristic grain size points to processing of the ISM within the filaments. We argue that the eroding of dust grains within the filaments is not likely attributable to the radiation or winds from the Arches cluster, but may be related to the physical conditions in the Galactic center.

  16. Regional early and progressive loss of brain pericytes but not vascular smooth muscle cells in adult mice with disrupted platelet-derived growth factor receptor-β signaling

    PubMed Central

    Nikolakopoulou, Angeliki Maria; Zhao, Zhen; Montagne, Axel

    2017-01-01

    Pericytes regulate key neurovascular functions of the brain. Studies in pericyte-deficient transgenic mice with aberrant signaling between endothelial-derived platelet-derived growth factor BB (PDGF-BB) and platelet-derived growth factor receptor β (PDGFRβ) in pericytes have contributed to better understanding of the role of pericytes in the brain. Here, we studied PdgfrβF7/F7 mice, which carry seven point mutations that disrupt PDGFRβ signaling causing loss of pericytes and vascular smooth muscle cells (VSMCs) in the developing brain. We asked whether these mice have a stable or progressive vascular phenotype after birth, and whether both pericyte and VSMCs populations are affected in the adult brain. We found an early and progressive region-dependent loss of brain pericytes, microvascular reductions and blood-brain barrier (BBB) breakdown, which were more pronounced in the cortex, hippocampus and striatum than in the thalamus, whereas VSMCs population remained unaffected at the time when pericyte loss was already established. For example, compared to age-matched controls, PdgfrβF7/F7 mice between 4–6 and 36–48 weeks of age developed a region-dependent loss in pericyte coverage (22–46, 24–44 and 4–31%) and cell numbers (36–49, 34–64 and 11–36%), reduction in capillary length (20–39, 13–46 and 1–30%), and an increase in extravascular fibrinogen-derived deposits (3.4–5.2, 2.8–4.1 and 0–3.6-fold) demonstrating BBB breakdown in the cortex, hippocampus and thalamus, respectively. Capillary reductions and BBB breakdown correlated with loss of pericyte coverage. Our data suggest that PdgfrβF7/F7 mice develop an aggressive and rapid vascular phenotype without appreciable early involvement of VSMCs, therefore providing a valuable model to study regional effects of pericyte loss on brain vascular and neuronal functions. This model could be a useful tool for future studies directed at understanding the role of pericytes in the pathogenesis

  17. Modeling of Tracer Transport Delays for Improved Quantification of Regional Pulmonary 18F-FDG Kinetics, Vascular Transit Times, and Perfusion

    PubMed Central

    Wellman, Tyler J.; Winkler, Tilo; Vidal Melo, Marcos F.

    2015-01-01

    18F-FDG-PET is increasingly used to assess pulmonary inflammatory cell activity. However, current models of pulmonary 18F-FDG kinetics do not account for delays in 18F-FDG transport between the plasma sampling site and the lungs. We developed a three-compartment model of 18F-FDG kinetics that includes a delay between the right heart and the local capillary blood pool, and used this model to estimate regional pulmonary perfusion. We acquired dynamic 18F-FDG scans in 12 mechanically ventilated sheep divided into control and lung injury groups (n=6 each). The model was fit to tracer kinetics in three isogravitational regions-of-interest to estimate regional lung transport delays and regional perfusion. 13NN bolus infusion scans were acquired during a period of apnea to measure regional perfusion using an established reference method. The delayed input function model improved description of 18F-FDG kinetics (lower Akaike Information Criterion) in 98% of studied regions. Local transport delays ranged from 2.0–13.6s, averaging 6.4±2.9s, and were highest in non-dependent regions. Estimates of regional perfusion derived from model parameters were highly correlated with perfusion measurements based on 13NN-PET (R2=0.92, p<0.001). By incorporating local vascular transports delays, this model of pulmonary 18F-FDG kinetics allows for simultaneous assessment of regional lung perfusion, transit times, and inflammation. PMID:25940652

  18. Regional and Stage-Specific Effects of Prospectively Purified Vascular Cells on the Adult V-SVZ Neural Stem Cell Lineage

    PubMed Central

    Crouch, Elizabeth E.; Liu, Chang; Silva-Vargas, Violeta

    2015-01-01

    Adult neural stem cells reside in specialized niches. In the ventricular-subventricular zone (V-SVZ), quiescent neural stem cells (qNSCs) become activated (aNSCs), and generate transit amplifying cells (TACs), which give rise to neuroblasts that migrate to the olfactory bulb. The vasculature is an important component of the adult neural stem cell niche, but whether vascular cells in neurogenic areas are intrinsically different from those elsewhere in the brain is unknown. Moreover, the contribution of pericytes to the neural stem cell niche has not been defined. Here, we describe a rapid FACS purification strategy to simultaneously isolate primary endothelial cells and pericytes from brain microregions of nontransgenic mice using CD31 and CD13 as surface markers. We compared the effect of purified vascular cells from a neurogenic (V-SVZ) and non-neurogenic brain region (cortex) on the V-SVZ stem cell lineage in vitro. Endothelial and pericyte diffusible signals from both regions differentially promote the proliferation and neuronal differentiation of qNSCs, aNSCs, and TACs. Unexpectedly, diffusible cortical signals had the most potent effects on V-SVZ proliferation and neurogenesis, highlighting the intrinsic capacity of non-neurogenic vasculature to support stem cell behavior. Finally, we identify PlGF-2 as an endothelial-derived mitogen that promotes V-SVZ cell proliferation. This purification strategy provides a platform to define the functional and molecular contribution of vascular cells to stem cell niches and other brain regions under different physiological and pathological states. PMID:25788671

  19. Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage.

    PubMed

    Crouch, Elizabeth E; Liu, Chang; Silva-Vargas, Violeta; Doetsch, Fiona

    2015-03-18

    Adult neural stem cells reside in specialized niches. In the ventricular-subventricular zone (V-SVZ), quiescent neural stem cells (qNSCs) become activated (aNSCs), and generate transit amplifying cells (TACs), which give rise to neuroblasts that migrate to the olfactory bulb. The vasculature is an important component of the adult neural stem cell niche, but whether vascular cells in neurogenic areas are intrinsically different from those elsewhere in the brain is unknown. Moreover, the contribution of pericytes to the neural stem cell niche has not been defined. Here, we describe a rapid FACS purification strategy to simultaneously isolate primary endothelial cells and pericytes from brain microregions of nontransgenic mice using CD31 and CD13 as surface markers. We compared the effect of purified vascular cells from a neurogenic (V-SVZ) and non-neurogenic brain region (cortex) on the V-SVZ stem cell lineage in vitro. Endothelial and pericyte diffusible signals from both regions differentially promote the proliferation and neuronal differentiation of qNSCs, aNSCs, and TACs. Unexpectedly, diffusible cortical signals had the most potent effects on V-SVZ proliferation and neurogenesis, highlighting the intrinsic capacity of non-neurogenic vasculature to support stem cell behavior. Finally, we identify PlGF-2 as an endothelial-derived mitogen that promotes V-SVZ cell proliferation. This purification strategy provides a platform to define the functional and molecular contribution of vascular cells to stem cell niches and other brain regions under different physiological and pathological states. Copyright © 2015 the authors 0270-6474/15/354528-12$15.00/0.

  20. Synergistic Therapeutic Effect of Three-Dimensional Stem Cell Clusters and Angiopoietin-1 on Promoting Vascular Regeneration in Ischemic Region.

    PubMed

    Kang, Jung-Mi; Yoon, Jeong-Kee; Oh, Seong-Ja; Kim, Byung-Soo; Kim, Sang-Heon

    2017-09-26

    Peripheral artery disease (PAD) is an ischemic disease characterized by reduced blood flow to the legs, feet, and hands. Human mesenchymal stem cells are an attractive cell source to treat PAD in regenerative medicine. However, in clinical applications, the use of adult stem cells has several limitations, such as low cell viability and low therapeutic efficiency. In this study, we described an innovative method of culturing three-dimensional stem cell clusters (Angiocluster™ [AC]), demonstrated the potential for ACs to differentiate into vascular cells, and assessed the synergistic effects of ACs and angiopoietin-1 (Ang-1) on angiogenesis in ischemic animal models. ACs were formed by culturing human adipose-derived stem cells (hASCs) on a maltose-binding protein-linked basic fibroblast growth factor-immobilized polystyrene surface. ACs released various angiogenic factors, such as vascular endothelial growth factor and interleukin-8, and could differentiate into endothelial lineage cells. However, ACs did not secrete Ang-1, which is an essential component of vascular maturation and anti-inflammation. ACs were combined with Ang-1 and were transplanted into the ischemic lesions of mice for 28 days. Most of the mice receiving the AC + Ang-1 treatment exhibited limb salvage and exhibited similar blood perfusion ratio compared to normal limb. The combination therapy of AC and Ang-1 enhanced angiogenic efficacy by increasing blood vessel regeneration and facilitating the implantation of stem cells into host vessels. Importantly, fibrotic collagen was observed in most of the groups after 28 days of treatment, except for the AC + Ang-1 group. This indicates that the combination therapy is synergistic in minimizing ischemic fibrosis and muscle degeneration. Our results demonstrate that the combination therapy significantly enhanced tissue regeneration and angiogenic efficacy of hASCs and may have wide applications in regenerative medicine.

  1. Linkages of fluvial terrace formation and geometry to Milankovitch-scale climate change revealed by the chronostratigraphy of the Colorado River above Moab, UT, and regional correlations

    NASA Astrophysics Data System (ADS)

    Jochems, A. P.; Pederson, J. L.

    2012-12-01

    deposits also form during pulses of dryland tributary sediment loading with markedly different timing (M3y and M4). Conversely, we suggest incision is driven by higher peak flows, such as during the current interglacial. In terms of strath/fill geometry, the spatial patterns of terraces in the study area rule out any simple climate versus tectonic relationship. Rather, local canyon geometry, bedrock resistance, and neotectonics control terrace form. For example, thick (7-13 m) fill terraces are unexpectedly found in broad Professor Valley, whereas thin (2-3 m) strath terraces are found in the canyon upstream. Long-profile survey data show that terraces may exhibit warping on the flanks of the Cache Valley graben and other potentially active salt tectonic features of the Paradox Basin. This and variations in local bedrock properties obfuscate any climate-related information within terrace form itself. In summary, Colorado River terraces were formed in response to glacial-interglacial hydrology changes in the headwaters and also during different periods of increased local sediment loading from the plateau drylands. Terrace form is not simply related to regional climate or tectonics, but instead to variable local valley geometry and neotectonics.

  2. Vascular Diseases

    MedlinePlus

    The vascular system is the body's network of blood vessels. It includes the arteries, veins and capillaries that carry ... to and from the heart. Problems of the vascular system are common and can be serious. Arteries ...

  3. Statistical modeling of the arterial vascular tree

    NASA Astrophysics Data System (ADS)

    Beck, Thomas; Godenschwager, Christian; Bauer, Miriam; Bernhardt, Dominik; Dillmann, Rüdiger

    2011-03-01

    Automatic examination of medical images becomes increasingly important due to the rising amount of data. Therefore automated methods are required which combine anatomical knowledge and robust segmentation to examine the structure of interest. We propose a statistical model of the vascular tree based on vascular landmarks and unbranched vessel sections. An undirected graph provides anatomical topology, semantics, existing landmarks and attached vessel sections. The atlas was built using semi-automatically generated geometric models of various body regions ranging from carotid arteries to the lower legs. Geometric models contain vessel centerlines as well as orthogonal cross-sections in equidistant intervals with the vessel contour having the form of a polygon path. The geometric vascular model is supplemented by anatomical landmarks which are not necessarily related to the vascular system. These anatomical landmarks define point correspondences which are used for registration with a Thin-Plate-Spline interpolation. After the registration process, the models were merged to form the statistical model which can be mapped to unseen images based on a subset of anatomical landmarks. This approach provides probability distributions for the location of landmarks, vessel-specific geometric properties including shape, expected radii and branching points and vascular topology. The applications of this statistical model include model-based extraction of the vascular tree which greatly benefits from vessel-specific geometry description and variation ranges. Furthermore, the statistical model can be applied as a basis for computer aided diagnosis systems as indicator for pathologically deformed vessels and the interaction with the geometric model is significantly more user friendly for physicians through anatomical names.

  4. Angiogenic imbalance and diminished matrix metalloproteinase-2 and -9 underlie regional decreases in uteroplacental vascularization and feto-placental growth in hypertensive pregnancy.

    PubMed

    Dias-Junior, Carlos A; Chen, Juanjuan; Cui, Ning; Chiang, Charles L; Zhu, Minglin; Ren, Zongli; Possomato-Vieira, Jose S; Khalil, Raouf A

    2017-09-11

    Preeclampsia is a form of hypertension-in-pregnancy (HTN-Preg) with unclear mechanism. Generalized reduction of uterine perfusion pressure (RUPP) could be an initiating event leading to uteroplacental ischemia, angiogenic imbalance, and HTN-Preg. Additional regional differences in uteroplacental blood flow could further affect the pregnancy outcome and increase the risk of preeclampsia in twin or multiple pregnancy, but the mechanisms involved are unclear. To test the hypothesis that regional differences in angiogenic balance and matrix metalloproteinases (MMPs) underlie regional uteroplacental vascularization and feto-placental development, we compared fetal and placental growth, and placental and myoendometrial vascularization in the proximal, middle and distal regions of the uterus (in relation to the iliac bifurcation) in normal pregnant (Preg) and RUPP rats. Maternal blood pressure and plasma anti-angiogenic soluble fms-like tyrosine kinase-1 (sFlt-1)/placenta growth factor (PIGF) ratio were higher, and average placentae number, placenta weight, litter size, and pup weight were less in RUPP than Preg rats. The placenta and pup number and weight were reduced, while the number and diameter of placental and adjacent myoendometrial arteries, and MMP-2 and MMP-9 levels/activity were increased, and sFlt-1/PlGF ratio was decreased in distal vs proximal uterus of Preg rats. In RUPP rats, the placenta and pup number and weight, the number and diameter of placental and myoendometrial arteries, and MMP-2 and -9 levels/activity were decreased, and sFlt-1/PlGF ratio was increased in distal vs proximal uterus. Treatment with sFlt-1 or RUPP placenta extract decreased MMP-2 and MMP-9 in distal segments of Preg uterus, and treatment with PIGF or Preg placenta extract restored MMP levels in distal segments of RUPP uterus. Thus, in addition to the general reduction in placental and fetal growth during uteroplacental ischemia, localized angiogenic imbalance and diminished MMP-2

  5. Quantification of regions of interest in swath sonar backscatter images using grey-level and shape geometry descriptors: the TargAn software

    NASA Astrophysics Data System (ADS)

    Fakiris, Elias; Papatheodorou, George

    2012-06-01

    In this paper, the TargAn software package that is dedicated to parameterizing regions of interest (ROIs) in greyscale images that reflect backscatter information derived by marine geo-acoustical instrumentation (e.g. Side Scan Sonar and Multi-Beam Echo-Sounder) is presented. The ROIs, whose boundaries are marked out either manually or via simple segmentation techniques, are analyzed for as many as 37 features. The adopted and developed methodologies lead to the extraction of: (1) grey-level intensity (1st order) and texture analysis statistics estimated from the inner ROI, (2) descriptors that measure the separation of the ROI in comparison to the intensity characteristics of the peripheral seabed, (3) shape geometry descriptors of the ROI's boundary itself and (4) regional statistics of distinct (segmented) objects possibly included in the ROI. TargAn is implemented in Matlab with a graphical user interface that helps the user to have control over the digitization, segmentation and feature extraction processes involved. It also provides tools for the construction of compact geo-databases, suitable for geostatistical analysis and visualization in popular Geographical Information Systems, concerning the extracted descriptors and the geographic features (e.g. ROIs' boundaries, skeletons, segmented objects) that have been considered for ROIs' analyses. The TargAn software is particularly useful when large amounts of image ROIs need to be objectively quantified and is demonstrated through two case studies regarding Side Scan Sonar imageries. The first one concerns the quantification of marine biohabitats (coralline formations) while the second exhibits the geometrical analysis of pockmarks.

  6. Modeling of Tracer Transport Delays for Improved Quantification of Regional Pulmonary ¹⁸F-FDG Kinetics, Vascular Transit Times, and Perfusion.

    PubMed

    Wellman, Tyler J; Winkler, Tilo; Vidal Melo, Marcos F

    2015-11-01

    ¹⁸F-FDG-PET is increasingly used to assess pulmonary inflammatory cell activity. However, current models of pulmonary ¹⁸F-FDG kinetics do not account for delays in ¹⁸F-FDG transport between the plasma sampling site and the lungs. We developed a three-compartment model of ¹⁸F-FDG kinetics that includes a delay between the right heart and the local capillary blood pool, and used this model to estimate regional pulmonary perfusion. We acquired dynamic ¹⁸F-FDG scans in 12 mechanically ventilated sheep divided into control and lung injury groups (n = 6 each). The model was fit to tracer kinetics in three isogravitational regions-of-interest to estimate regional lung transport delays and regional perfusion. ¹³NN bolus infusion scans were acquired during a period of apnea to measure regional perfusion using an established reference method. The delayed input function model improved description of ¹⁸F-FDG kinetics (lower Akaike Information Criterion) in 98% of studied regions. Local transport delays ranged from 2.0 to 13.6 s, averaging 6.4 ± 2.9 s, and were highest in non-dependent regions. Estimates of regional perfusion derived from model parameters were highly correlated with perfusion measurements based on ¹³NN-PET (R² = 0.92, p < 0.001). By incorporating local vascular transports delays, this model of pulmonary ¹⁸F-FDG kinetics allows for simultaneous assessment of regional lung perfusion, transit times, and inflammation.

  7. Regional-scale geometry of the central Skellefte district, northern Sweden—results from 2.5D potential field modeling along three previously acquired seismic profiles

    NASA Astrophysics Data System (ADS)

    Tavakoli, Saman; Bauer, Tobias E.; Elming, Sten-Åke; Thunehed, Hans; Weihed, Pär

    2012-10-01

    The Skellefte district in northern Sweden is one of the most important mining districts in Europe hosting approximately 80 volcanic massive sulfide (VMS) deposits. Due to its economical importance, geological and geophysical studies were carried out in order to create an image of the geometry of the upper crustal structure and integral geological elements and to evaluate their relationship to mineral deposits. Consequently, seismic reflection data along three sub-parallel profiles were acquired during 2009-2010 to map the spatial relationships between the geological structures down to a depth of ~ 4.5 km. Although these seismic studies helped researchers understand the regional relationship between geologic units in the central Skellefte district (CSD), the seismic reflection data did not succeed entirely in mapping the lithological contacts in the area. In this study, the model derived from the seismic reflection data was examined by using 2.5D modeling of potential field data (down to a 5 km depth) constrained by physical properties of the rocks and surface geology. Moreover, we modeled gravity and magnetic data along the non-reflective or poorly reflective parts of the seismic profiles to identify major lithological contacts and shear zones in the CSD, which could not be modeled on the basis of the seismic reflection data. Gravity and magnetic data helped reveal the spatial relationship between the Skellefte volcanic rocks, Vargfors group meta-sedimentary rocks and two meta­intrusive complexes. Results suggest a maximum depth extent of 2.1 km for the tectonic contact at the southern border of the Jörn granitoid. Furthermore, this north-dipping Skellefte-Jörn contact coincides closely with magnetic lows and gravity highs, which implies that the Jörn intrusive rocks have a greater thickness than the underlying basalt. Further to the NW, gravity and magnetic data suggest a depth extent of 2 km for the Gallejaur complex, which coincides with a set of gently

  8. Multimodal cardiovascular magnetic resonance quantifies regional variation in vascular structure and function in patients with coronary artery disease: Relationships with coronary disease severity

    PubMed Central

    2011-01-01

    Background Cardiovascular magnetic resonance (CMR) of the vessel wall is highly reproducible and can evaluate both changes in plaque burden and composition. It can also measure aortic compliance and endothelial function in a single integrated examination. Previous studies have focused on patients with pre-identified carotid atheroma. We define these vascular parameters in patients presenting with coronary artery disease and test their relations to its extent and severity. Methods and Results 100 patients with CAD [single-vessel (16%); two-vessel (39%); and three-vessel (42%) non-obstructed coronary arteries (3%)] were studied. CAD severity and extent was expressed as modified Gensini score (mean modified score 12.38 ± 5.3). A majority of carotid plaque was located in the carotid bulb (CB). Atherosclerosis in this most diseased segment correlated modestly with the severity and extent of CAD, as expressed by the modified Gensini score (R = 0.251, P < 0.05). Using the AHA plaque classification, atheroma class also associated with CAD severity (rho = 0.26, P < 0.05). The distal descending aorta contained the greatest plaque, which correlated with the degree of CAD (R = 0.222; P < 0.05), but with no correlation with the proximal descending aorta, which was relatively spared (R = 0.106; P = n. s.). Aortic distensibility varied along its length with the ascending aorta the least distensible segment. Brachial artery FMD was inversely correlated with modified Gensini score (R = -0.278; P < 0.05). In multivariate analysis, distal descending aorta atheroma burden, distensibility of the ascending aorta, carotid atheroma class and FMD were independent predictors of modified Gensini score. Conclusions Multimodal vascular CMR shows regional abnormalities of vascular structure and function that correlate modestly with the degree and extent of CAD. PMID:22017860

  9. Fault strength in Marmara region inferred from the geometry of the principle stress axes and fault orientations: A case study for the Prince's Islands fault segment

    NASA Astrophysics Data System (ADS)

    Pinar, Ali; Coskun, Zeynep; Mert, Aydin; Kalafat, Dogan

    2015-04-01

    The general consensus based on historical earthquake data point out that the last major moment release on the Prince's islands fault was in 1766 which in turn signals an increased seismic risk for Istanbul Metropolitan area considering the fact that most of the 20 mm/yr GPS derived slip rate for the region is accommodated mostly by that fault segment. The orientation of the Prince's islands fault segment overlaps with the NW-SE direction of the maximum principle stress axis derived from the focal mechanism solutions of the large and moderate sized earthquakes occurred in the Marmara region. As such, the NW-SE trending fault segment translates the motion between the two E-W trending branches of the North Anatolian fault zone; one extending from the Gulf of Izmit towards Çınarcık basin and the other extending between offshore Bakırköy and Silivri. The basic relation between the orientation of the maximum and minimum principal stress axes, the shear and normal stresses, and the orientation of a fault provides clue on the strength of a fault, i.e., its frictional coefficient. Here, the angle between the fault normal and maximum compressive stress axis is a key parameter where fault normal and fault parallel maximum compressive stress might be a necessary and sufficient condition for a creeping event. That relation also implies that when the trend of the sigma-1 axis is close to the strike of the fault the shear stress acting on the fault plane approaches zero. On the other hand, the ratio between the shear and normal stresses acting on a fault plane is proportional to the coefficient of frictional coefficient of the fault. Accordingly, the geometry between the Prince's islands fault segment and a maximum principal stress axis matches a weak fault model. In the frame of the presentation we analyze seismological data acquired in Marmara region and interpret the results in conjuction with the above mentioned weak fault model.

  10. Enrichment Activities for Geometry.

    ERIC Educational Resources Information Center

    Usiskin, Zalman

    1983-01-01

    Enrichment activities that teach about geometry as they instruct in geometry are given for some significant topics. The facets of geometry included are tessellations, round robin tournaments, geometric theorems on triangles, and connections between geometry and complex numbers. (MNS)

  11. Vascular pattern formation in plants.

    PubMed

    Scarpella, Enrico; Helariutta, Ykä

    2010-01-01

    Reticulate tissue systems exist in most multicellular organisms, and the principles underlying the formation of cellular networks have fascinated philosophers, mathematicians, and biologists for centuries. In particular, the beautiful and varied arrangements of vascular tissues in plants have intrigued mankind since antiquity, yet the organizing signals have remained elusive. Plant vascular tissues form systems of interconnected cell files throughout the plant body. Vascular cells are aligned with one another along continuous lines, and vascular tissues differentiate at reproducible positions within organ environments. However, neither the precise path of vascular differentiation nor the exact geometry of vascular networks is fixed or immutable. Several recent advances converge to reconcile the seemingly conflicting predictability and plasticity of vascular tissue patterns. A control mechanism in which an apical-basal flow of signal establishes a basic coordinate system for body axis formation and vascular strand differentiation, and in which a superimposed level of radial organizing cues elaborates cell patterns, would generate a reproducible tissue configuration in the context of an underlying robust, self-organizing structure, and account for the simultaneous regularity and flexibility of vascular tissue patterns.

  12. What Is Vascular Disease?

    MedlinePlus

    ... Donors Corporate Sponsors Donor Privacy Policy What Is Vascular Disease? What Is Vascular Disease? Vascular disease is any abnormal condition of ... steps to prevent vascular disease here. Understanding the Vascular System Your vascular system – the highways of the ...

  13. Genetic Pathways of Vascular Calcification

    PubMed Central

    Bowman, Marion A. Hofmann; McNally, Elizabeth M.

    2012-01-01

    Vascular calcification is an independent risk factor for cardiovascular disease. Arterial calcification of the aorta, coronary, carotid and peripheral arteries becomes more prevalent with age. Genomewide association studies have identified regions of the genome linked to vascular calcification, and these same regions are linked to myocardial infarction risk. The 9p21 region linked to vascular disease and inflammation also associates with vascular calcification. In addition to these common variants, rare genetic defects can serve as primary triggers of accelerated and premature calcification. Infancy-associated calcific disorders are caused by loss of function mutations in ENPP1 an enzyme that produces extracellular pyrophosphate. Adult onset vascular calcification is linked to mutations NTE5, another enzyme that regulates extracellular phosphate metabolism. Common conditions that secondarily enhance vascular calcification include atherosclerosis, metabolic dysfunction, diabetes, and impaired renal clearance. Oxidative stress and vascular inflammation, along with biophysical properties, converge with these predisposing factors to promote soft tissue mineralization. Vascular calcification is accompanied by an osteogenic profile, and this osteogenic conversion is seen within the vascular smooth muscle itself as well as the matrix. Herein we will review the genetic causes of medial calcification in the smooth muscle layer, focusing on recent discoveries of gene mutations that regulate extracellular matrix phosphate production and the role of S100 proteins as promoters of vascular calcification. PMID:23040839

  14. [End-tidal CO2 as a predictive index of regional perfusion and its relation to aortic flow. A clinical study during peripheral vascular surgery].

    PubMed

    Petrucci, N; Muchada, R

    1993-06-01

    Using a new haemodynamic monitoring system, we prospectively measured the end-tidal carbon dioxide (ETCO2) and the aortic blood flow (ABF) in 7 patients undergoing major vascular surgery to evaluate the usefulness of ETCO2 as a predictive indicator of regional blood flow. Previous studies demonstrated a high correlation between ETCO2 and Cardiac Output during CPR (r = 0.79), this allows us to conclude that ETCO2, under conditions of constant ventilation, reflects the circulatory status. We investigated the relationship between ETCO2 and ABF, and our observations confirmed that the two parameters undergo highly significant variations (p < 0.001), but low correlation was found (r = 0.15), so the increase in ETCO2 after aortic declamping depended on re-perfusion of ischaemic regions. The ETCO2 concentration increased immediately in 6 patients after declamping (p < 0.05). In 1 patient, the increase wasn't significant, but he underwent a new operation because of malfunction of the prosthesis. Our findings suggest that ETCO2 monitoring may provide clinically useful information about regional perfusion that can be used to guide therapy.

  15. Vascular Disorders

    MedlinePlus

    ... a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Vascular Disorders Email to a friend * required fields From * To * DESCRIPTION Vascular disorders are problems with arteries and veins. Arteries are pipes that bring oxygen-rich blood from the heart to the fingers. Veins ...

  16. Geometry in the Computer Age.

    ERIC Educational Resources Information Center

    Scott, Paul

    1988-01-01

    Discusses the use of computer graphics in the teaching of geometry. Describes five types of geometry: Euclidean geometry, transformation geometry, coordinate geometry, three-dimensional geometry, and geometry of convex sets. (YP)

  17. Vascular rings.

    PubMed

    Backer, Carl L; Mongé, Michael C; Popescu, Andrada R; Eltayeb, Osama M; Rastatter, Jeffrey C; Rigsby, Cynthia K

    2016-06-01

    The term vascular ring refers to congenital vascular anomalies of the aortic arch system that compress the esophagus and trachea, causing symptoms related to those two structures. The most common vascular rings are double aortic arch and right aortic arch with left ligamentum. Pulmonary artery sling is rare and these patients need to be carefully evaluated for frequently associated tracheal stenosis. Another cause of tracheal compression occurring only in infants is the innominate artery compression syndrome. In the current era, the diagnosis of a vascular ring is best established by CT imaging that can accurately delineate the anatomy of the vascular ring and associated tracheal pathology. For patients with a right aortic arch there recently has been an increased recognition of a structure called a Kommerell diverticulum which may require resection and transfer of the left subclavian artery to the left carotid artery. A very rare vascular ring is the circumflex aorta that is now treated with the aortic uncrossing operation. Patients with vascular rings should all have an echocardiogram because of the incidence of associated congenital heart disease. We also recommend bronchoscopy to assess for additional tracheal pathology and provide an assessment of the degree of tracheomalacia and bronchomalacia. The outcomes of surgical intervention are excellent and most patients have complete resolution of symptoms over a period of time. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Comprehensive Virus Detection Using Next Generation Sequencing in Grapevine Vascular Tissues of Plants Obtained from the Wine Regions of Bohemia and Moravia (Czech Republic)

    PubMed Central

    2016-01-01

    Comprehensive next generation sequencing virus detection was used to detect the whole spectrum of viruses and viroids in selected grapevines from the Czech Republic. The novel NGS approach was based on sequencing libraries of small RNA isolated from grapevine vascular tissues. Eight previously partially-characterized grapevines of diverse varieties were selected and subjected to analysis: Chardonnay, Laurot, Guzal Kara, and rootstock Kober 125AA from the Moravia wine-producing region; plus Müller-Thurgau and Pinot Noir from the Bohemia wine-producing region, both in the Czech Republic. Using next generation sequencing of small RNA, the presence of 8 viruses and 2 viroids were detected in a set of eight grapevines; therefore, confirming the high effectiveness of the technique in plant virology and producing results supporting previous data on multiple infected grapevines in Czech vineyards. Among the pathogens detected, the Grapevine rupestris vein feathering virus and Grapevine yellow speckle viroid 1 were recorded in the Czech Republic for the first time. PMID:27959951

  19. Comprehensive Virus Detection Using Next Generation Sequencing in Grapevine Vascular Tissues of Plants Obtained from the Wine Regions of Bohemia and Moravia (Czech Republic).

    PubMed

    Eichmeier, Aleš; Komínková, Marcela; Komínek, Petr; Baránek, Miroslav

    2016-01-01

    Comprehensive next generation sequencing virus detection was used to detect the whole spectrum of viruses and viroids in selected grapevines from the Czech Republic. The novel NGS approach was based on sequencing libraries of small RNA isolated from grapevine vascular tissues. Eight previously partially-characterized grapevines of diverse varieties were selected and subjected to analysis: Chardonnay, Laurot, Guzal Kara, and rootstock Kober 125AA from the Moravia wine-producing region; plus Müller-Thurgau and Pinot Noir from the Bohemia wine-producing region, both in the Czech Republic. Using next generation sequencing of small RNA, the presence of 8 viruses and 2 viroids were detected in a set of eight grapevines; therefore, confirming the high effectiveness of the technique in plant virology and producing results supporting previous data on multiple infected grapevines in Czech vineyards. Among the pathogens detected, the Grapevine rupestris vein feathering virus and Grapevine yellow speckle viroid 1 were recorded in the Czech Republic for the first time.

  20. Vascular Tumors

    PubMed Central

    Sepulveda, Abel; Buchanan, Edward P.

    2014-01-01

    Vascular anomalies are divided into two main groups: tumors and malformations. Vascular tumors are a large and complex group of lesions, especially for clinicians with none or little experience in this field. In the past, these lesions caused a great deal of confusion because many appear analogous to the naked eye. Thankfully, recent advances in diagnostic techniques have helped the medical community to enhance our comprehension, accurately label, diagnose, and treat these lesions. In this article, we will review the most frequent vascular tumors and provide the reader with the tools to properly label, diagnose, and manage these complex lesions. PMID:25045329

  1. Vascular Dementia

    MedlinePlus

    ... dementia is a general term describing problems with reasoning, planning, judgment, memory and other thought processes caused ... dementia. Whether a stroke affects your thinking and reasoning depends on your stroke's severity and location. Vascular ...

  2. Ultrasound -- Vascular

    MedlinePlus

    ... ultrasound uses sound waves to evaluate the body’s circulatory system and help identify blockages in the arteries and ... is a useful way of evaluating the body's circulatory system. Vascular ultrasound is performed to: help monitor the ...

  3. Vascular Cures

    MedlinePlus

    ... patient to vascular research and care. It combines digital health tools for people to manage their own health with online education and communities, and improves communication between doctors, patients ...

  4. Ultrasound -- Vascular

    MedlinePlus

    ... ultrasound uses sound waves to evaluate the body’s circulatory system and help identify blockages and detect blood clots. ... is a useful way of evaluating the body's circulatory system. Vascular ultrasound is performed to: help monitor the ...

  5. The supraorbital region revisited: An anatomic exploration of the neuro-vascular bundle with regard to frontal migraine headache.

    PubMed

    Berchtold, Valeria; Stofferin, Hannes; Moriggl, Bernhard; Brenner, Erich; Pauzenberger, Reinhard; Konschake, Marko

    2017-09-01

    Recent findings on the pathogenesis of frontal migraine headache support, besides a central vasogenic cause, an alternative peripheral mechanism involving compressed craniofacial nerves. This is further supported by the efficiency of botulinum toxin injections as a new treatment option in frontal migraine headache patients. The supraorbital regions of 22 alcohol-glycerine-embalmed facial halves of both sexes were dissected. Both the supratrochlear and supraorbital nerves (STN and SON, respectively) were identified, and their relationship with the corrugator supercilii muscle (CSM) was investigated by dissection and ultrasound. The course of both nerves was defined, and the interaction between the supraorbital artery (SOA) and SON was determined. We discovered a new possible compression point of the STN passing through the orbital septum and verified previously described compression points of both STN and SON. Osteofibrous channels used by the STN and SON were found constantly. We described the varying topography of the STN and CSM, the SON and CSM, and the SON and SOA. Further, we provide an algorithm for the ultrasound visualization of the supraorbital neurovascular bundle. Our data support the hypothesis of a peripheral mechanism for frontal migraine headache because of following potential irritation points: first, the CSM is constantly perforated by the SON and frequently by the STN; second, the topographic proximity between SOA and SON and the osteofibrous channels is used by the SON and STN; and third, the STN passes through the orbital septum. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Focal toxicity of oxysterols in vascular smooth muscle cell culture. A model of the atherosclerotic core region.

    PubMed Central

    Guyton, J. R.; Black, B. L.; Seidel, C. L.

    1990-01-01

    Cell necrosis and reactive cellular processes in and near the atherosclerotic core region might result from short-range interactions with toxic lipids. To model these interactions in cell culture, focal crystalline deposits of cholestane-3 beta,5 alpha,6 beta-triol, 25-OH cholesterol, and cholesterol were overlaid by a collagen gel, on which canine aortic smooth muscle cells were seeded. Oxysterols, but not cholesterol, caused focally decreased plating efficiency and cell death, leading to the formation of a persistent circular gap in the cell culture. Cholestanetriol was largely removed from the culture dishes over 3 to 4 weeks, whereas cholesterol and 25-OH cholesterol were largely retained. Smooth muscle cells were motile even in proximity to oxysterol crystals, with occasional suicidal migration toward the crystals. Chemoattraction, however, could not be demonstrated. Despite toxicity, cholestanetriol did not appear to alter the fraction of cells exhibiting 3H-thymidine uptake, even in areas close to the crystals. Thus, oxysterols may be toxic to some cells, without causing major impairment of the migration and proliferation of nearby cells. This would allow the simultaneous occurrence of cell death and proliferation evident in atherosclerosis. Images Figure 2 Figure 4 Figure 5 PMID:2201200

  7. Role of the 3'-untranslated region of human endothelin-1 in vascular endothelial cells. Contribution to transcript lability and the cellular heat shock response.

    PubMed

    Mawji, Imtiaz A; Robb, G Brett; Tai, Sharon C; Marsden, Philip A

    2004-03-05

    Endothelin-1 (ET-1) is a potent vasoconstrictor peptide expressed in the vascular endothelium. Stringent control over ET-1 expression is achieved through a highly regulated promoter and rapid mRNA turnover. Since little is known about mechanisms governing ET-1 post-transcriptional regulation, and changes in ET-1 mRNA stability are implicated in disease processes, we characterized these pathways using a variety of functional approaches. We expressed human ET-1 and luciferase transcripts with or without a wild type ET-1 3'-untranslated region (3'-UTR) and found that the 3'-UTR had potent mRNA destabilizing activity. Deletion analysis localized this activity to two domains of the 3'-UTR we have termed destabilizing elements 1 and 2 (DE1 and DE2). Mutational studies revealed that DE1 functions as an AU-rich element (ARE) dependent on a 100-nucleotide region. This activity was further localized to a 10-nucleotide region at position 978-987 of the 3'-UTR. Depletion of AUF1 by RNA interference up-regulated ET-1 in endothelial cells suggesting AUF1-dependent regulation. Since AUF1 functions through the ubiquitin-proteasome pathway, we disrupted this pathway with heat shock and proteasome inhibitor in endothelial cells and observed stabilization of endogenous ET-1 mRNA. Chimeric transcripts bearing wild type ET-1 3'-UTRs were also stabilized in response to proteasome inhibition whereas DE1 mutants failed to respond. Taken together, these findings suggest a complex model of ARE-mediated mRNA turnover dependent on two 3'-UTR domains, DE1 and DE2. Furthermore, DE1 functions as an ARE directing mRNA half-life through the proteasome. Finally, this data provides evidence for a novel pathway of ET-1 mRNA stabilization by heat shock.

  8. The pathobiology of vascular dementia

    PubMed Central

    Iadecola, Costantino

    2013-01-01

    Vascular cognitive impairment defines alterations in cognition, ranging from subtle deficits to full-blown dementia, attributable to cerebrovascular causes. Often coexisting with Alzheimer’s disease, mixed vascular and neurodegenerative dementia has emerged as the leading cause of age-related cognitive impairment. Central to the disease mechanism is the crucial role that cerebral blood vessels play in brain health, not only for the delivery of oxygen and nutrients, but also for the trophic signaling that links inextricably the well being of neurons and glia to that of cerebrovascular cells. This review will examine how vascular damage disrupts these vital homeostatic interactions, focusing on the hemispheric white matter, a region at heightened risk for vascular damage, and on the interplay between vascular factors and Alzheimer’s disease. Finally, preventative and therapeutic prospects will be examined, highlighting the importance of midlife vascular risk factor control in the prevention of late-life dementia. PMID:24267647

  9. Florabank1: a grid-based database on vascular plant distribution in the northern part of Belgium (Flanders and the Brussels Capital region)

    PubMed Central

    Landuyt, Wouter Van; Vanhecke, Leo; Brosens, Dimitri

    2012-01-01

    Abstract Florabank1 is a database that contains distributional data on the wild flora (indigenous species, archeophytes and naturalised aliens) of Flanders and the Brussels Capital Region. It holds about 3 million records of vascular plants, dating from 1800 till present. Furthermore, it includes ecological data on vascular plant species, redlist category information, Ellenberg values, legal status, global distribution, seed bank etc. The database is an initiative of “Flo.Wer” (www.plantenwerkgroep.be), the Research Institute for Nature and Forest (INBO: www.inbo.be) and the National Botanic Garden of Belgium (www.br.fgov.be). Florabank aims at centralizing botanical distribution data gathered by both professional and amateur botanists and to make these data available to the benefit of nature conservation, policy and scientific research. The occurrence data contained in Florabank1 are extracted from checklists, literature and herbarium specimen information. Of survey lists, the locality name (verbatimLocality), species name, observation date and IFBL square code, the grid system used for plant mapping in Belgium (Van Rompaey 1943), is recorded. For records dating from the period 1972–2004 all pertinent botanical journals dealing with Belgian flora were systematically screened. Analysis of herbarium specimens in the collection of the National Botanic Garden of Belgium, the University of Ghent and the University of Liège provided interesting distribution knowledge concerning rare species, this information is also included in Florabank1. The data recorded before 1972 is available through the Belgian GBIF node (http://data.gbif.org/datasets/resource/10969/), not through FLORABANK1, to avoid duplication of information. A dedicated portal providing access to all published Belgian IFBL records at this moment is available at: http://projects.biodiversity.be/ifbl All data in Florabank1 is georeferenced. Every record holds the decimal centroid coordinates of the IFBL

  10. Geometry in Medias Res

    ERIC Educational Resources Information Center

    Cukier, Mimi; Asdourian, Tony; Thakker, Anand

    2012-01-01

    Geometry provides a natural window into what it is like to do mathematics. In the world of geometry, playful experimentation is often more fruitful than following a procedure, and logic plus a few axioms can open new worlds. Nonetheless, teaching a geometry course in a way that combines both rigor and play can be difficult. Many geometry courses…

  11. Geometry in Medias Res

    ERIC Educational Resources Information Center

    Cukier, Mimi; Asdourian, Tony; Thakker, Anand

    2012-01-01

    Geometry provides a natural window into what it is like to do mathematics. In the world of geometry, playful experimentation is often more fruitful than following a procedure, and logic plus a few axioms can open new worlds. Nonetheless, teaching a geometry course in a way that combines both rigor and play can be difficult. Many geometry courses…

  12. Vascular ring

    MedlinePlus

    ... Stanton BF, St Geme JW, Schor NF. Other congenital heart and vascular malformations. In: Kliegman RM, Stanton BF, St Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, ... AN. Congenital heart disease. In: Mann DL, Zipes DP, Libby ...

  13. What Is Vascular Disease?

    MedlinePlus

    ... Contact Us Vascular Disease What is Vascular Disease? Education and Awareness Vascular Diseases Abdominal Aortic Aneurysm Aortic Dissection Arteriovenous Malformation Atherosclerosis Buerger's Disease Carotid Artery Disease ...

  14. Vascular Disease Foundation

    MedlinePlus

    ... Contact Us Vascular Disease What is Vascular Disease? Education and Awareness Vascular Diseases Abdominal Aortic Aneurysm Aortic Dissection Arteriovenous Malformation Atherosclerosis Buerger's Disease Carotid Artery Disease ...

  15. Learning Geometry through Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Forsythe, Sue

    2007-01-01

    In this article, the author investigates effective teaching and learning of geometrical concepts using dynamic geometry software (DGS). Based from her students' reactions to her project, the author found that her students' understanding of the concepts was better than if they had learned geometry through paper-based tasks. However, mixing computer…

  16. Learning Geometry through Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Forsythe, Sue

    2007-01-01

    In this article, the author investigates effective teaching and learning of geometrical concepts using dynamic geometry software (DGS). Based from her students' reactions to her project, the author found that her students' understanding of the concepts was better than if they had learned geometry through paper-based tasks. However, mixing computer…

  17. The analysis of historical earthquakes of the North Anatolian Fault in the Marmara Region, Turkey for the last 15 centuries based on intensity and continuous Coulomb scenarios: Implications for the fault geometry and the interaction of individual earthqua

    NASA Astrophysics Data System (ADS)

    Yaltırak, Cenk; Şahin, Murat

    2016-04-01

    In this study we evaluated the historical earthquakes of the Marmara Region totally in three-stages. In first stage, historical earthquakes were compiled from the available catalogues and classified according to their spatial distribution, whereas only the ones, related with the active northern branch of the North Anatolian Fault (NAF) were selected. Then, the next phase of classification was made to relate historical data to the ancient and historical settlements, for which a kind of shake map was produced for each event. In the second stage, three different fault models, suggested for the geometry of the NAF in the Marmara Region, were integrated into a GIS database. Mw magnitudes were calculated for each fault segment by using lengths, seismogenic depths, and slip-rates of fault segments. In the third stage, the revised digital geological map of the Marmara Region were compiled based on 1:500k conventional maps and were used to estimate the Vs30 distribution within a grid of 750x750 m. Modified Mercalli Intensity (MMI) maps were produced for each earthquake scenario, depending on the geometry of different fault models, calculated model magnitudes and intensity distributions. Moreover, we tested the surface ruptures of each earthquake scenarios by using the Coulomb stress change model for historical data covering a time era between AD 478 and 2016 in assumption with a constant horizontal slip rate of 19 mma-1 for all fault segments. As conclusion, the horsetail-fault geometry (Yaltırak, 2002) among all 3 fault models yielded the best fit to the distribution of intensities and coulomb models.

  18. Measurement of arterial input function of 17O water tracer in rat carotid artery by using a region-defined (REDE) implanted vascular RF coil.

    PubMed

    Zhang, Xiaoliang; Zhu, Xiao-Hong; Tian, Runxia; Zhang, Yi; Merkle, Hellmut; Chen, Wei

    2003-07-01

    A method of determining arterial input function (AIF) by continuously detecting the (17)O MR signal changes of (17)O-labeled water tracer in the rat carotid artery using a region-defined (REDE) implanted vascular RF coil at 9.4 Tesla is reported. This coil has a compact physical size of 1 mm inner diameter, 3 mm outer diameter and 11 mm in length. It can be readily implanted into the rat neck and wrapped around the rat carotid artery for achieving adequate MR detection sensitivity for determining AIF with minimal surgical trauma. Water phantom and in vivo MR experiments were conducted for validating the coil's performance. A signal-to-noise ratio of approximately 20:1 was achieved for the (17)O signal acquired from naturally abundant H(2)(17)O in a small amount of blood (approximately 7 microl) inside the rat carotid artery with an acquisition time of 11 s. The REDE RF coil design electromagnetically isolates the rat carotid artery from surrounding tissues and ensures that the MR signal detected by the RF coil is only attributable to the artery blood. It also minimizes the electromagnetic coupling between the implanted RF coil and a head surface coil tuned at the same operating frequency (two-coil configuration). This configuration allowed simultaneous measurements of dynamic changes of (17)O MR signal of the H(2)(17)O tracer in both rat carotid artery and brain. Compared to most contemporary MR approaches, the REDE implanted RF provides a simple, accurate, and promising solution for determination of AIF in small experimental animals.

  19. Geometry and Erdkinder.

    ERIC Educational Resources Information Center

    McDonald, Nathaniel J.

    2001-01-01

    Chronicles a teacher's first year teaching geometry at the Hershey Montessori Farm School in Huntsburg, Ohio. Instructional methods relied on Euclid primary readings and combined pure abstract logic with practical applications of geometry on the land. The course included geometry background imparted by Montessori elementary materials as well as…

  20. Geometry and Erdkinder.

    ERIC Educational Resources Information Center

    McDonald, Nathaniel J.

    2001-01-01

    Chronicles a teacher's first year teaching geometry at the Hershey Montessori Farm School in Huntsburg, Ohio. Instructional methods relied on Euclid primary readings and combined pure abstract logic with practical applications of geometry on the land. The course included geometry background imparted by Montessori elementary materials as well as…

  1. Vascular injury in the United kingdom.

    PubMed

    Stannard, Adam; Brohi, Karim; Tai, Nigel

    2011-03-01

    Surgeons working within the United Kingdom's National Health Service have an established history of clinical innovation, research, and development in the field of vascular surgery but lack a unified trauma system to deliver optimal care for patients with vascular injury. The low incidence of vascular trauma, combined with lack of regional trauma systems, works against optimal delivery of care to the polytrauma patient. Providing care, robust data capture, and opportunities for training and education in vascular injury lag behind other elective domains of vascular practice. The challenge is to define ideal care pathways, referral networks, and standards of practice and to integrate the care of such patients. In 2010, a trauma system for London was introduced; it has provided vascular surgeons with a unique opportunity to study and advance the care of patients with vascular injury. This article discusses developing trauma network issues, particularly the organization and evolution of vascular trauma services in the United Kingdom.

  2. Geometry, Student's Text, Part II, Unit 14.

    ERIC Educational Resources Information Center

    Allen, Frank B.; And Others

    Unit 14 in the SMSG secondary school mathematics series is a student text covering the following topics in geometry: areas of polygonal regions, similarity, circles and spheres, characterization of sets, constructions, areas of circles and sectors, volumes of solids, and plane coordinate geometry. Appendices cover Eratosthenes' measurement of the…

  3. A Novel Tumor-Promoting Function Residing in the 5′ Non-coding Region of vascular endothelial growth factor mRNA

    PubMed Central

    Masuda, Kiyoshi; Teshima-Kondo, Shigetada; Mukaijo, Mina; Yamagishi, Naoko; Nishikawa, Yoshiko; Nishida, Kensei; Kawai, Tomoko; Rokutan, Kazuhito

    2008-01-01

    Background Vascular endothelial growth factor-A (VEGF) is one of the key regulators of tumor development, hence it is considered to be an important therapeutic target for cancer treatment. However, clinical trials have suggested that anti-VEGF monotherapy was less effective than standard chemotherapy. On the basis of the evidence, we hypothesized that vegf mRNA may have unrecognized function(s) in cancer cells. Methods and Findings Knockdown of VEGF with vegf-targeting small-interfering (si) RNAs increased susceptibility of human colon cancer cell line (HCT116) to apoptosis caused with 5-fluorouracil, etoposide, or doxorubicin. Recombinant human VEGF165 did not completely inhibit this apoptosis. Conversely, overexpression of VEGF165 increased resistance to anti-cancer drug-induced apoptosis, while an anti-VEGF165-neutralizing antibody did not completely block the resistance. We prepared plasmids encoding full-length vegf mRNA with mutation of signal sequence, vegf mRNAs lacking untranslated regions (UTRs), or mutated 5′UTRs. Using these plasmids, we revealed that the 5′UTR of vegf mRNA possessed anti-apoptotic activity. The 5′UTR-mediated activity was not affected by a protein synthesis inhibitor, cycloheximide. We established HCT116 clones stably expressing either the vegf 5′UTR or the mutated 5′UTR. The clones expressing the 5′UTR, but not the mutated one, showed increased anchorage-independent growth in vitro and formed progressive tumors when implanted in athymic nude mice. Microarray and quantitative real-time PCR analyses indicated that the vegf 5′UTR-expressing tumors had up-regulated anti-apoptotic genes, multidrug-resistant genes, and growth-promoting genes, while pro-apoptotic genes were down-regulated. Notably, expression of signal transducers and activators of transcription 1 (STAT1) was markedly repressed in the 5′UTR-expressing tumors, resulting in down-regulation of a STAT1-responsive cluster of genes (43 genes). As a result, the

  4. Structural geometry of the source region for the 2013 Mw 6.6 Lushan earthquake: Implication for earthquake hazard assessment along the Longmen Shan

    NASA Astrophysics Data System (ADS)

    Li, Yiquan; Jia, Dong; Wang, Maomao; Shaw, John H.; He, Jiankun; Lin, Aiming; Xiong, Lin; Rao, Gang

    2014-03-01

    The 2013 Mw 6.6 Lushan earthquake occurred in the Longmen Shan fold-and-thrust belt, Sichuan Province, China, near the five-year anniversary of the devastating 2008 Mw 7.8 Wenchuan earthquake. To define the fault that generated the 2013 earthquake and its relationship with the Beichuan fault, which ruptured in the Wenchuan earthquake, we construct several cross sections and a 3D structural model. The sections and models reveal that the main-shock of the Lushan earthquake occurred on a portion of the Range Front blind thrust (RFBT) and that the structural geometry of this fault varies along strike. The Lushan main-shock occurred at a location along the strike of the fault where the geologic shortening and total fault slip are greatest. A lateral ramp of the RFBT appears to coincide with the northern limit of aftershocks from the Lushan earthquake, leading to a 75 km seismic gap between the Wenchuan earthquake and the 2013 earthquake sequence. Although both the Wenchuan and Lushan earthquakes occurred within the Longmen Shan fold-and-thrust belt, different faults generated the two events. Based on this structural characterization and analysis of the aftershocks of the Wenchuan and Lushan earthquakes, we suggest that the Lushan earthquake may have been triggered by the 2008 rupture but is best considered as an independent event rather than an aftershock of the Wenchuan earthquake. The RFBT that generated the Lushan earthquake is linked to a detachment that extends into the Sichuan basin along the Triassic evaporite layer. The coulomb stress change simulation suggests that other faults linked to this detachment may have been loaded by the 2008 and 2013 earthquake, posing the risk of future earthquakes along the Longmen Shan and in the densely populated Sichuan basin.

  5. Regional seismic reflection line, southern Illinois Basin, provides new data on Cambrian rift geometry, Hicks Dome genesis, and the Fluorspar Area Fault Complex

    SciTech Connect

    Potter, C.J.; Goldhaber, M.B.; Taylor, C.D. ); Heigold, P.C. )

    1992-01-01

    Detailed studies of the subsurface structure of the Cambrian Reelfoot rift (RFR) in the Midwestern US provide important insights into continental rifting processes and into the structural fabric of a zone of modern intracratonic seismicity (New Madrid zone). High-quality oil industry seismic reflection data show that in the area of transition between the RFR and the Rough Creek Graben (RCG) the geometry of the Cambrian rift system is that of a half-graben that thickens to the southeast. This contrasts with the northward-thickening half-graben observed to the east in the RCG and with the more symmetric graben to the south in the RFR. An 82.8-km segment of a northwest-southeast seismic reflection profile in southeastern Illinois and western Kentucky shows that near Hicks Dome, Illinois, Middle and Lower Cambrian syn-rift sedimentary rocks occupy about 0.35 s (two-way travel time) on the seismic reflection section (corresponding to a thickness of about 970 m). This stratigraphic interval occupies about 0.45 s (1,250 m) near the Ohio river and is thickest against the Tabb Fault System (TFS) in Kentucky, where it occupies 0.7 s (1,940 m). The seismic data show that in this part of the Cambrian rift the master fault was part of the TFS and that normal displacement on the TFS continued through middle Paleozoic time. The seismic data also provide new information on the late Paleozoic development of Hicks-Dome and the surrounding Fluorspar Area Fault Complex (FAFC) in southeastern Illinois and western Kentucky. A series of grabens and horsts in the FAFC document a late Paleozoic reactivation of the RFR. Comparison of the reflection data with surface mineralization patterns shows that in most cases mineralized graben-bounding faults clearly cut basement or are splays from faults that cut basement.

  6. Vascular dementia

    PubMed Central

    Korczyn, Amos D; Vakhapova, Veronika; Grinberg, Lea T

    2012-01-01

    The epidemic grow of dementia causes great concern for the society. It is customary to consider Alzheimer’s disease (AD) as the most common cause of dementia, followed by vascular dementia (VaD). This dichotomous view of a neurodegenerative disease as opposed to brain damage caused by extrinsic factors led to separate lines of research in these two entities. Indeed, accumulated data suggest that the two disorders have additive effects and probably interact; however it is still unknown to what degree. Furthermore, epidemiological studies have shown “vascular” risk factors to be associated with AD. Therefore, a clear distinction between AD and VaD cannot be made in most cases, and is furthermore unhelpful. In the absence of efficacious treatment for the neurodegenerative process, special attention must be given to vascular component, even in patients with presumed mixed pathology. Symptomatic treatment of VaD and AD are similar, although the former is less effective. For prevention of dementia it is important to treat aggressively all factors, even in stroke survivors who do not show evidence of cognitive decline,. In this review, we will give a clinical and pathological picture of the processes leading to VaD and discuss it interaction with AD. PMID:22575403

  7. Development of regional curves of bankfull-channel geometry and discharge for streams in the non-urban, Piedmont Physiographic Province, Pennsylvania and Maryland

    USGS Publications Warehouse

    Cinotto, Peter J.

    2003-01-01

    Stream-restoration projects utilizing natural stream designs frequently are based on the bankfull-channel characteristics of stream reaches that can accommodate streamflow and sediment transport without excessive erosion or deposition and lie within a watershed that has similar runoff characteristics. The bankfull channel at an ungaged impaired site or reference reach is identified by use of field indicators and is confirmed with tools such as regional curves. Channel dimensions were surveyed at 14 streamflow-measurement stations operated by the U.S. Geological Survey (USGS) in the Gettysburg-Newark Lowland Section, Piedmont Lowland Section, and the Piedmont Upland Section of the Piedmont Physiographic Province1 in Pennsylvania and Maryland. From the surveyed channel dimensions, regional curves were developed from regression analyses of the relations between drainage area and the cross-sectional area, mean depth, width, and streamflow of the bankfull channel at these sites. Bankfull cross-sectional area and bankfull discharge have the strongest relation to drainage area as evidenced by R2 values of 0.94 and 0.93, respectively. The relation between bankfull crosssectional area and drainage area has a p-value of less than 0.001; no p-value is presented for the relation between bankfull discharge and drainage area because of a non-normal residual distribution. The relation between bankfull width and drainage area has an R2 value of 0.80 and a p-value of less than 0.001 indicating a moderate linear relation between all stations. The relation between bankfull mean depth and drainage area, with an R2 value of 0.72 and a p-value of less than 0.001, also indicates a moderate linear relation between all stations. The concept of regional curves can be a valuable tool to support efforts in stream restoration. Practitioners of stream restoration need to recognize it as such and realize the limitations. The small number of USGS streamflow-measurement stations available for

  8. Extending dark optical trapping geometries.

    PubMed

    Arnold, Aidan S

    2012-07-01

    New counterpropagating geometries are presented for localizing ultracold atoms in the dark regions created by the interference of Laguerre-Gaussian laser beams. In particular dark helices, an "optical revolver," axial lattices of rings, and axial lattices of ring lattices of rings are considered and a realistic scheme for achieving phase stability is explored. The dark nature of these traps will enable their use as versatile tools for low-decoherence atom interferometry with zero differential light shifts.

  9. Developments in special geometry

    NASA Astrophysics Data System (ADS)

    Mohaupt, Thomas; Vaughan, Owen

    2012-02-01

    We review the special geometry of Script N = 2 supersymmetric vector and hypermultiplets with emphasis on recent developments and applications. A new formulation of the local c-map based on the Hesse potential and special real coordinates is presented. Other recent developments include the Euclidean version of special geometry, and generalizations of special geometry to non-supersymmetric theories. As applications we disucss the proof that the local r-map and c-map preserve geodesic completeness, and the construction of four- and five-dimensional static solutions through dimensional reduction over time. The shared features of the real, complex and quaternionic version of special geometry are stressed throughout.

  10. The Beauty of Geometry

    ERIC Educational Resources Information Center

    Morris, Barbara H.

    2004-01-01

    This article describes a geometry project that used the beauty of stained-glass-window designs to teach middle school students about geometric figures and concepts. Three honors prealgebra teachers and a middle school mathematics gifted intervention specialist created a geometry project that covered the curriculum and also assessed students'…

  11. Twistors to twisted geometries

    SciTech Connect

    Freidel, Laurent; Speziale, Simone

    2010-10-15

    In a previous paper we showed that the phase space of loop quantum gravity on a fixed graph can be parametrized in terms of twisted geometries, quantities describing the intrinsic and extrinsic discrete geometry of a cellular decomposition dual to the graph. Here we unravel the origin of the phase space from a geometric interpretation of twistors.

  12. Geometry + Technology = Proof

    ERIC Educational Resources Information Center

    Lyublinskaya, Irina; Funsch, Dan

    2012-01-01

    Several interactive geometry software packages are available today to secondary school teachers. An example is The Geometer's Sketchpad[R] (GSP), also known as Dynamic Geometry[R] software, developed by Key Curriculum Press. This numeric based technology has been widely adopted in the last twenty years, and a vast amount of creativity has been…

  13. Euclidean Geometry via Programming.

    ERIC Educational Resources Information Center

    Filimonov, Rossen; Kreith, Kurt

    1992-01-01

    Describes the Plane Geometry System computer software developed at the Educational Computer Systems laboratory in Sofia, Bulgaria. The system enables students to use the concept of "algorithm" to correspond to the process of "deductive proof" in the development of plane geometry. Provides an example of the software's capability…

  14. Geometry of multihadron production

    SciTech Connect

    Bjorken, J.D.

    1994-10-01

    This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions.

  15. Geometry + Technology = Proof

    ERIC Educational Resources Information Center

    Lyublinskaya, Irina; Funsch, Dan

    2012-01-01

    Several interactive geometry software packages are available today to secondary school teachers. An example is The Geometer's Sketchpad[R] (GSP), also known as Dynamic Geometry[R] software, developed by Key Curriculum Press. This numeric based technology has been widely adopted in the last twenty years, and a vast amount of creativity has been…

  16. Vascular permeability, vascular hyperpermeability and angiogenesis

    PubMed Central

    Nagy, Janice A.; Benjamin, Laura; Zeng, Huiyan; Dvorak, Ann M.

    2008-01-01

    The vascular system has the critical function of supplying tissues with nutrients and clearing waste products. To accomplish these goals, the vasculature must be sufficiently permeable to allow the free, bidirectional passage of small molecules and gases and, to a lesser extent, of plasma proteins. Physiologists and many vascular biologists differ as to the definition of vascular permeability and the proper methodology for its measurement. We review these conflicting views, finding that both provide useful but complementary information. Vascular permeability by any measure is dramatically increased in acute and chronic inflammation, cancer, and wound healing. This hyperpermeability is mediated by acute or chronic exposure to vascular permeabilizing agents, particularly vascular permeability factor/vascular endothelial growth factor (VPF/VEGF, VEGF-A). We demonstrate that three distinctly different types of vascular permeability can be distinguished, based on the different types of microvessels involved, the composition of the extravasate, and the anatomic pathways by which molecules of different size cross-vascular endothelium. These are the basal vascular permeability (BVP) of normal tissues, the acute vascular hyperpermeability (AVH) that occurs in response to a single, brief exposure to VEGF-A or other vascular permeabilizing agents, and the chronic vascular hyperpermeability (CVH) that characterizes pathological angiogenesis. Finally, we list the numerous (at least 25) gene products that different authors have found to affect vascular permeability in variously engineered mice and classify them with respect to their participation, as far as possible, in BVP, AVH and CVH. Further work will be required to elucidate the signaling pathways by which each of these molecules, and others likely to be discovered, mediate the different types of vascular permeability. PMID:18293091

  17. Variable geometry trusses

    NASA Technical Reports Server (NTRS)

    Robertshaw, H. H.; Reinholtz, C. F.

    1989-01-01

    Vibration control and kinematic control with variable-geometry trusses are covered. The analytical approach taken is to model each actuator with lumped masses and model a beam with finite elements, including in each model the generalized reaction forces from the beam on the actuator or vice versa. It is concluded that, from an operational standpoint, the variable-geometry truss actuator is more favorable than the inertia-type actuator. A spatial variable-geometry truss is used to test out rudimentary robotic tasks.

  18. Proof in Transformation Geometry

    ERIC Educational Resources Information Center

    Bell, A. W.

    1971-01-01

    The first of three articles showing how inductively-obtained results in transformation geometry may be organized into a deductive system. This article discusses two approaches to enlargement (dilatation), one using coordinates and the other using synthetic methods. (MM)

  19. What Is Geometry?

    ERIC Educational Resources Information Center

    Chern, Shiing-Shen

    1990-01-01

    Discussed are the major historical developments of geometry. Euclid, Descartes, Klein's Erlanger Program, Gaus and Riemann, globalization, topology, Elie Cartan, and an application to molecular biology are included as topics. (KR)

  20. Gingerbread-House Geometry.

    ERIC Educational Resources Information Center

    Emenaker, Charles E.

    1999-01-01

    Describes a sixth-grade interdisciplinary geometry unit based on Charles Dickens's "A Christmas Carol". Focuses on finding area, volume, and perimeter, and working with estimation, decimals, and fractions in the context of making gingerbread houses. (ASK)

  1. Flyby Geometry Optimization Tool

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.

    2007-01-01

    The Flyby Geometry Optimization Tool is a computer program for computing trajectories and trajectory-altering impulsive maneuvers for spacecraft used in radio relay of scientific data to Earth from an exploratory airplane flying in the atmosphere of Mars.

  2. Proof in Transformation Geometry

    ERIC Educational Resources Information Center

    Bell, A. W.

    1971-01-01

    The first of three articles showing how inductively-obtained results in transformation geometry may be organized into a deductive system. This article discusses two approaches to enlargement (dilatation), one using coordinates and the other using synthetic methods. (MM)

  3. What Is Geometry?

    ERIC Educational Resources Information Center

    Chern, Shiing-Shen

    1990-01-01

    Discussed are the major historical developments of geometry. Euclid, Descartes, Klein's Erlanger Program, Gaus and Riemann, globalization, topology, Elie Cartan, and an application to molecular biology are included as topics. (KR)

  4. Facilitating Understandings of Geometry.

    ERIC Educational Resources Information Center

    Pappas, Christine C.; Bush, Sara

    1989-01-01

    Illustrates some learning encounters for facilitating first graders' understanding of geometry. Describes some of children's approaches using Cuisenaire rods and teacher's intervening. Presents six problems involving various combinations of Cuisenaire rods and cubes. (YP)

  5. Gingerbread-House Geometry.

    ERIC Educational Resources Information Center

    Emenaker, Charles E.

    1999-01-01

    Describes a sixth-grade interdisciplinary geometry unit based on Charles Dickens's "A Christmas Carol". Focuses on finding area, volume, and perimeter, and working with estimation, decimals, and fractions in the context of making gingerbread houses. (ASK)

  6. Vascular development in Arabidopsis.

    PubMed

    Ye, Zheng-Hua; Freshour, Glenn; Hahn, Michael G; Burk, David H; Zhong, Ruiqin

    2002-01-01

    Vascular tissues, xylem and phloem, form a continuous network throughout the plant body for transport of water, minerals, and food. Characterization of Arabidopsis mutants defective in various aspects of vascular formation has demonstrated that Arabidopsis is an ideal system for investigating the molecular mechanisms controlling vascular development. The processes affected in these mutants include initiation or division of procambium or vascular cambium, formation of continuous vascular cell files, differentiation of procambium or vascular cambium into vascular tissues, cell elongation, patterned secondary wall thickening, and biosynthesis of secondary walls. Identification of the genes affected by some of these mutations has revealed essential roles in vascular development for a cytokinin receptor and several factors mediating auxin transport or signaling. Mutational studies have also identified a number of Arabidopsis mutants defective in leaf venation pattern or vascular tissue organization in stems. Genetic evidence suggests that the vascular tissue organization is regulated by the same positional information that determines organ polarity.

  7. Software Geometry in Simulations

    NASA Astrophysics Data System (ADS)

    Alion, Tyler; Viren, Brett; Junk, Tom

    2015-04-01

    The Long Baseline Neutrino Experiment (LBNE) involves many detectors. The experiment's near detector (ND) facility, may ultimately involve several detectors. The far detector (FD) will be significantly larger than any other Liquid Argon (LAr) detector yet constructed; many prototype detectors are being constructed and studied to motivate a plethora of proposed FD designs. Whether it be a constructed prototype or a proposed ND/FD design, every design must be simulated and analyzed. This presents a considerable challenge to LBNE software experts; each detector geometry must be described to the simulation software in an efficient way which allows for multiple authors to easily collaborate. Furthermore, different geometry versions must be tracked throughout their use. We present a framework called General Geometry Description (GGD), written and developed by LBNE software collaborators for managing software to generate geometries. Though GGD is flexible enough to be used by any experiment working with detectors, we present it's first use in generating Geometry Description Markup Language (GDML) files to interface with LArSoft, a framework of detector simulations, event reconstruction, and data analyses written for all LAr technology users at Fermilab. Brett is the other of the framework discussed here, the General Geometry Description (GGD).

  8. SOC and Fractal Geometry

    NASA Astrophysics Data System (ADS)

    McAteer, R. T. J.

    2013-06-01

    When Mandelbrot, the father of modern fractal geometry, made this seemingly obvious statement he was trying to show that we should move out of our comfortable Euclidean space and adopt a fractal approach to geometry. The concepts and mathematical tools of fractal geometry provides insight into natural physical systems that Euclidean tools cannot do. The benet from applying fractal geometry to studies of Self-Organized Criticality (SOC) are even greater. SOC and fractal geometry share concepts of dynamic n-body interactions, apparent non-predictability, self-similarity, and an approach to global statistics in space and time that make these two areas into naturally paired research techniques. Further, the iterative generation techniques used in both SOC models and in fractals mean they share common features and common problems. This chapter explores the strong historical connections between fractal geometry and SOC from both a mathematical and conceptual understanding, explores modern day interactions between these two topics, and discusses how this is likely to evolve into an even stronger link in the near future.

  9. Common Geometry Module

    SciTech Connect

    Tautges, Timothy J.

    2005-01-01

    The Common Geometry Module (CGM) is a code library which provides geometry functionality used for mesh generation and other applications. This functionality includes that commonly found in solid modeling engines, like geometry creation, query and modification; CGM also includes capabilities not commonly found in solid modeling engines, like geometry decomposition tools and support for shared material interfaces. CGM is built upon the ACIS solid modeling engine, but also includes geometry capability developed beside and on top of ACIS. CGM can be used as-is to provide geometry functionality for codes needing this capability. However, CGM can also be extended using derived classes in C++, allowing the geometric model to serve as the basis for other applications, for example mesh generation. CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms. CGM also indudes support for loading ACIS models on parallel computers, using MPI-based communication. Future plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks. CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available to ACIS licensees on request.

  10. Simultaneous imaging of blood flow dynamics and vascular remodelling during development.

    PubMed

    Ghaffari, Siavash; Leask, Richard L; Jones, Elizabeth A V

    2015-12-01

    Normal vascular development requires blood flow. Time-lapse imaging techniques have revolutionised our understanding of developmental biology, but measuring changes in blood flow dynamics has met with limited success. Ultrasound biomicroscopy and optical coherence tomography can concurrently image vascular structure and blood flow velocity, but these techniques lack the resolution to accurately calculate fluid forces such as shear stress. This is important because hemodynamic forces are biologically active and induce changes in the expression of genes important for vascular development. Regional variations in shear stress, rather than the overall level, control processes such as vessel enlargement and regression during vascular remodelling. We present a technique to concurrently visualise vascular remodelling and blood flow dynamics. We use an avian embryonic model and inject an endothelial-specific dye and fluorescent microspheres. The motion of the microspheres is captured with a high-speed camera and the velocity of the blood flow in and out of the region of interest is quantified by micro-particle image velocitymetry (µPIV). The vessel geometry and flow are used to numerically solve the flow physics with computational fluid dynamics (CFD). Using this technique, we can analyse changes in shear stress, pressure drops and blood flow velocities over a period of 10 to 16 h. We apply this to study the relationship between shear stress and chronic changes in vessel diameter during embryonic development, both in normal development and after TGFβ stimulation. This technique allows us to study the interaction of biomolecular and biomechanical signals during vascular remodelling using an in vivo developmental model. © 2015. Published by The Company of Biologists Ltd.

  11. Plant Vascular Biology 2013: vascular trafficking.

    PubMed

    Ursache, Robertas; Heo, Jung-Ok; Helariutta, Ykä

    2014-04-01

    About 200 researchers from around the world attended the Third International Conference on Plant Vascular Biology (PVB 2013) held in July 2013 at the Rantapuisto Conference Center, in Helsinki, Finland (http://www.pvb2013.org). The plant vascular system, which connects every organ in the mature plant, continues to attract the interest of researchers representing a wide range of disciplines, including development, physiology, systems biology, and computational biology. At the meeting, participants discussed the latest research advances in vascular development, long- and short-distance vascular transport and long-distance signalling in plant defence, in addition to providing a context for how these studies intersect with each other. The meeting provided an opportunity for researchers working across a broad range of fields to share ideas and to discuss future directions in the expanding field of vascular biology. In this report, the latest advances in understanding the mechanism of vascular trafficking presented at the meeting have been summarized.

  12. Integrable Background Geometries

    NASA Astrophysics Data System (ADS)

    Calderbank, David M. J.

    2014-03-01

    This work has its origins in an attempt to describe systematically the integrable geometries and gauge theories in dimensions one to four related to twistor theory. In each such dimension, there is a nondegenerate integrable geometric structure, governed by a nonlinear integrable differential equation, and each solution of this equation determines a background geometry on which, for any Lie group G, an integrable gauge theory is defined. In four dimensions, the geometry is selfdual conformal geometry and the gauge theory is selfdual Yang-Mills theory, while the lower-dimensional structures are nondegenerate (i.e., non-null) reductions of this. Any solution of the gauge theory on a k-dimensional geometry, such that the gauge group H acts transitively on an ℓ-manifold, determines a (k+ℓ)-dimensional geometry (k+ℓ≤4) fibering over the k-dimensional geometry with H as a structure group. In the case of an ℓ-dimensional group H acting on itself by the regular representation, all (k+ℓ)-dimensional geometries with symmetry group H are locally obtained in this way. This framework unifies and extends known results about dimensional reductions of selfdual conformal geometry and the selfdual Yang-Mills equation, and provides a rich supply of constructive methods. In one dimension, generalized Nahm equations provide a uniform description of four pole isomonodromic deformation problems, and may be related to the {SU}(∞) Toda and dKP equations via a hodograph transformation. In two dimensions, the {Diff}(S^1) Hitchin equation is shown to be equivalent to the hyperCR Einstein-Weyl equation, while the {SDiff}(Σ^2) Hitchin equation leads to a Euclidean analogue of Plebanski's heavenly equations. In three and four dimensions, the constructions of this paper help to organize the huge range of examples of Einstein-Weyl and selfdual spaces in the literature, as well as providing some new ! ones. The nondegenerate reductions have a long ancestry. More ! recently

  13. Contact Geometry of Curves

    NASA Astrophysics Data System (ADS)

    Vassiliou, Peter J.

    2009-10-01

    Cartan's method of moving frames is briefly recalled in the context of immersed curves in the homogeneous space of a Lie group G. The contact geometry of curves in low dimensional equi-affine geometry is then made explicit. This delivers the complete set of invariant data which solves the G-equivalence problem via a straightforward procedure, and which is, in some sense a supplement to the equivariant method of Fels and Olver. Next, the contact geometry of curves in general Riemannian manifolds (M,g) is described. For the special case in which the isometries of (M,g) act transitively, it is shown that the contact geometry provides an explicit algorithmic construction of the differential invariants for curves in M. The inputs required for the construction consist only of the metric g and a parametrisation of structure group SO(n); the group action is not required and no integration is involved. To illustrate the algorithm we explicitly construct complete sets of differential invariants for curves in the Poincaré half-space H3 and in a family of constant curvature 3-metrics. It is conjectured that similar results are possible in other Cartan geometries.

  14. Geometry of membrane fission.

    PubMed

    Frolov, Vadim A; Escalada, Artur; Akimov, Sergey A; Shnyrova, Anna V

    2015-01-01

    Cellular membranes define the functional geometry of intracellular space. Formation of new membrane compartments and maintenance of complex organelles require division and disconnection of cellular membranes, a process termed membrane fission. Peripheral membrane proteins generally control membrane remodeling during fission. Local membrane stresses, reflecting molecular geometry of membrane-interacting parts of these proteins, sum up to produce the key membrane geometries of fission: the saddle-shaped neck and hour-glass hemifission intermediate. Here, we review the fundamental principles behind the translation of molecular geometry into membrane shape and topology during fission. We emphasize the central role the membrane insertion of specialized protein domains plays in orchestrating fission in vitro and in cells. We further compare individual to synergistic action of the membrane insertion during fission mediated by individual protein species, proteins complexes or membrane domains. Finally, we describe how local geometry of fission intermediates defines the functional design of the protein complexes catalyzing fission of cellular membranes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Detection of edges using local geometry

    NASA Technical Reports Server (NTRS)

    Gualtieri, J. A.; Manohar, M.

    1989-01-01

    Researchers described a new representation, the local geometry, for early visual processing which is motivated by results from biological vision. This representation is richer than is often used in image processing. It extracts more of the local structure available at each pixel in the image by using receptive fields that can be continuously rotated and that go to third order spatial variation. Early visual processing algorithms such as edge detectors and ridge detectors can be written in terms of various local geometries and are computationally tractable. For example, Canny's edge detector has been implemented in terms of a local geometry of order two, and a ridge detector in terms of a local geometry of order three. The edge detector in local geometry was applied to synthetic and real images and it was shown using simple interpolation schemes that sufficient information is available to locate edges with sub-pixel accuracy (to a resolution increase of at least a factor of five). This is reasonable even for noisy images because the local geometry fits a smooth surface - the Taylor series - to the discrete image data. Only local processing was used in the implementation so it can readily be implemented on parallel mesh machines such as the MPP. Researchers expect that other early visual algorithms, such as region growing, inflection point detection, and segmentation can also be implemented in terms of the local geometry and will provide sufficiently rich and robust representations for subsequent visual processing.

  16. Pulpal vascular changes in inflammation.

    PubMed

    Takahashi, K

    1992-01-01

    Changes in pulpal vessels in experimentally induced acute and chronic pulpitis in dog tooth were investigated using corrosive resin casts and scanning electron microscopic examination. Following a cavity preparation without water spray, increased permeability of blood vessels occurred in the primary stage of acute pulpitis. This was evidenced by the extravasation of resin from the vessel. This phenomenon was found initially in the venular network as well as in the capillary network located under the dentin. The morphological change was minimal in the vascular network underneath the cavity. This is in contrast to an expanded and tortuous vascular network representing an ulceration which was found around an abscess in chronic pulpitis. Furthermore, formation of vascular loops and AVAlc close to the inflamed region may represent a protective change in the pulp against inflammation.

  17. Inhibition of the stress response to breast cancer surgery by regional anesthesia and analgesia does not affect vascular endothelial growth factor and prostaglandin E2.

    PubMed

    O'Riain, S C; Buggy, D J; Kerin, M J; Watson, R W G; Moriarty, D C

    2005-01-01

    Angiogenesis is essential for breast cancer metastases formation and is mediated by vascular endothelial growth factor (VEGF) and prostaglandin E2 (PGE2). We hypothesized that serum levels of VEGF and PGE2 are increased by the stress response to breast cancer surgery and attenuated by paravertebral anesthesia and analgesia (PVAA). Thirty women undergoing mastectomy were enrolled in this prospective, randomized study, to receive general anesthesia (GA) and postoperative opioid analgesia (morphine 0.1 mg/kg bolus and patient-controlled infusion) or GA and PVAA (72-h infusion). All patients received rectal diclofenac. Venous blood samples were taken preoperatively and at 4 and 24 h postoperatively for serum glucose, cortisol, C-reactive protein, VEGF, and PGE2. PVAA inhibited the surgical stress response, as indicated by significantly less plasma glucose, cortisol, and C-reactive protein. VEGF and PGE2 values did not differ significantly between the groups. Mean (SD) percentage change in VEGF at 4 and 24 h respectively were 3% +/- 44% versus 9% +/- 80%, P=0.29 and 5% +/- 43% versus -10% +/- 63%, P=0.41 for patients with combined general and PVAA and GA alone, respectively. Mean percentage change in postoperative PGE2 at 4 and 24 h respectively was 10% +/- 17% versus 11% +/- 69%, P=0.29 and 34% +/- 19% versus 47% +/- 18%, P=0.15. We conclude that despite inhibiting the surgical stress response, PVAA had no effect on serum levels of putative breast cancer angiogenic factors, VEGF and PGE2.

  18. Students Discovering Spherical Geometry Using Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Guven, Bulent; Karatas, Ilhan

    2009-01-01

    Dynamic geometry software (DGS) such as Cabri and Geometers' Sketchpad has been regularly used worldwide for teaching and learning Euclidean geometry for a long time. The DGS with its inductive nature allows students to learn Euclidean geometry via explorations. However, with respect to non-Euclidean geometries, do we need to introduce them to…

  19. Students Discovering Spherical Geometry Using Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Guven, Bulent; Karatas, Ilhan

    2009-01-01

    Dynamic geometry software (DGS) such as Cabri and Geometers' Sketchpad has been regularly used worldwide for teaching and learning Euclidean geometry for a long time. The DGS with its inductive nature allows students to learn Euclidean geometry via explorations. However, with respect to non-Euclidean geometries, do we need to introduce them to…

  20. Geometry and Cloaking Devices

    NASA Astrophysics Data System (ADS)

    Ochiai, T.; Nacher, J. C.

    2011-09-01

    Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.

  1. Primary vascular access.

    PubMed

    Gibbons, C P

    2006-05-01

    Primary vascular access is usually achievable by a distal autogenous arterio-venous fistula (AVF). This article describes the approach to vascular access planning, the usual surgical options and the factors affecting patency.

  2. Society for Vascular Medicine

    MedlinePlus

    ... Certification with this new online course from the Society for Vascular Medicine. Learn more. Looking for a ... jobs are listed right now. Copyright © 2016 The Society for Vascular Medicine. All Rights Reserved.

  3. Vascular Access for Hemodialysis

    MedlinePlus

    ... designed for long-term use include the arteriovenous (AV) fistula and the AV graft. A third type of vascular access—the ... term use. What is an arteriovenous fistula? An AV fistula is a connection, made by a vascular ...

  4. Geometry of spinor regularization

    NASA Technical Reports Server (NTRS)

    Hestenes, D.; Lounesto, P.

    1983-01-01

    The Kustaanheimo theory of spinor regularization is given a new formulation in terms of geometric algebra. The Kustaanheimo-Stiefel matrix and its subsidiary condition are put in a spinor form directly related to the geometry of the orbit in physical space. A physically significant alternative to the KS subsidiary condition is discussed. Derivations are carried out without using coordinates.

  5. Sliding vane geometry turbines

    DOEpatents

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  6. Listening to Geometry

    ERIC Educational Resources Information Center

    Cooper, Brett D.; Barger, Rita

    2009-01-01

    The many connections between music and mathematics are well known. The length of a plucked string determines its tone, the time signature of a piece of music is a ratio, and note durations are measured in fractions. One connection commonly overlooked is that between music and geometry--specifically, geometric transformations, including…

  7. GEOMETRY, TENTATIVE GUIDES.

    ERIC Educational Resources Information Center

    KLIER, KATHERINE M.

    PRESENTED IS A FUSED COURSE IN PLANE, SOLID, AND COORDINATE GEOMETRY. ELEMENTARY SET THEORY, LOGIC, AND THE PRINCIPLE OF SEPARATION PROVIDE UNIFYING THREADS THROUGHOUT THE TEXT. THE TWO CURRICULUM GUIDES HAVE BEEN PREPARED FOR USE WITH TWO DIFFERENT TEXTS. EITHER CURRICULUM GUIDE MAY BE USED DEPENDING UPON THE CHOICE OF THE TEACHER AND THE NEEDS…

  8. The Helen of Geometry

    ERIC Educational Resources Information Center

    Martin, John

    2010-01-01

    The cycloid has been called the Helen of Geometry, not only because of its beautiful properties but also because of the quarrels it provoked between famous mathematicians of the 17th century. This article surveys the history of the cycloid and its importance in the development of the calculus.

  9. Core Geometry Manual.

    ERIC Educational Resources Information Center

    Hirata, Li Ann

    Core Geometry is a course offered in the Option Y sequence of the high school mathematics program described by the Hawaii State Department of Education's guidelines. The emphasis of this course is on the general awareness and use of the relationships among points, lines, and figures in planes and space. This sample course is based on the…

  10. Emergent Hyperbolic Network Geometry

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Rahmede, Christoph

    2017-02-01

    A large variety of interacting complex systems are characterized by interactions occurring between more than two nodes. These systems are described by simplicial complexes. Simplicial complexes are formed by simplices (nodes, links, triangles, tetrahedra etc.) that have a natural geometric interpretation. As such simplicial complexes are widely used in quantum gravity approaches that involve a discretization of spacetime. Here, by extending our knowledge of growing complex networks to growing simplicial complexes we investigate the nature of the emergent geometry of complex networks and explore whether this geometry is hyperbolic. Specifically we show that an hyperbolic network geometry emerges spontaneously from models of growing simplicial complexes that are purely combinatorial. The statistical and geometrical properties of the growing simplicial complexes strongly depend on their dimensionality and display the major universal properties of real complex networks (scale-free degree distribution, small-world and communities) at the same time. Interestingly, when the network dynamics includes an heterogeneous fitness of the faces, the growing simplicial complex can undergo phase transitions that are reflected by relevant changes in the network geometry.

  11. Emergent Hyperbolic Network Geometry.

    PubMed

    Bianconi, Ginestra; Rahmede, Christoph

    2017-02-07

    A large variety of interacting complex systems are characterized by interactions occurring between more than two nodes. These systems are described by simplicial complexes. Simplicial complexes are formed by simplices (nodes, links, triangles, tetrahedra etc.) that have a natural geometric interpretation. As such simplicial complexes are widely used in quantum gravity approaches that involve a discretization of spacetime. Here, by extending our knowledge of growing complex networks to growing simplicial complexes we investigate the nature of the emergent geometry of complex networks and explore whether this geometry is hyperbolic. Specifically we show that an hyperbolic network geometry emerges spontaneously from models of growing simplicial complexes that are purely combinatorial. The statistical and geometrical properties of the growing simplicial complexes strongly depend on their dimensionality and display the major universal properties of real complex networks (scale-free degree distribution, small-world and communities) at the same time. Interestingly, when the network dynamics includes an heterogeneous fitness of the faces, the growing simplicial complex can undergo phase transitions that are reflected by relevant changes in the network geometry.

  12. The Geometry of Viruses.

    ERIC Educational Resources Information Center

    Case, Christine L.

    1991-01-01

    Presented is an activity in which students make models of viruses, which allows them to visualize the shape of these microorganisms. Included are some background on viruses, the biology and geometry of viruses, directions for building viruses, a comparison of cells and viruses, and questions for students. (KR)

  13. Origami, Geometry and Art

    ERIC Educational Resources Information Center

    Wares, Arsalan; Elstak, Iwan

    2017-01-01

    The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…

  14. Making Solid Geometry Solid.

    ERIC Educational Resources Information Center

    Hartz, Viggo

    1981-01-01

    Allowing students to use a polystyrene cutter to fashion their own three-dimensional models is suggested as a means of allowing individuals to experience problems and develop ideas related to solid geometry. A list of ideas that can lead to mathematical discovery is provided. (MP)

  15. Emergent Hyperbolic Network Geometry

    PubMed Central

    Bianconi, Ginestra; Rahmede, Christoph

    2017-01-01

    A large variety of interacting complex systems are characterized by interactions occurring between more than two nodes. These systems are described by simplicial complexes. Simplicial complexes are formed by simplices (nodes, links, triangles, tetrahedra etc.) that have a natural geometric interpretation. As such simplicial complexes are widely used in quantum gravity approaches that involve a discretization of spacetime. Here, by extending our knowledge of growing complex networks to growing simplicial complexes we investigate the nature of the emergent geometry of complex networks and explore whether this geometry is hyperbolic. Specifically we show that an hyperbolic network geometry emerges spontaneously from models of growing simplicial complexes that are purely combinatorial. The statistical and geometrical properties of the growing simplicial complexes strongly depend on their dimensionality and display the major universal properties of real complex networks (scale-free degree distribution, small-world and communities) at the same time. Interestingly, when the network dynamics includes an heterogeneous fitness of the faces, the growing simplicial complex can undergo phase transitions that are reflected by relevant changes in the network geometry. PMID:28167818

  16. Making Solid Geometry Solid.

    ERIC Educational Resources Information Center

    Hartz, Viggo

    1981-01-01

    Allowing students to use a polystyrene cutter to fashion their own three-dimensional models is suggested as a means of allowing individuals to experience problems and develop ideas related to solid geometry. A list of ideas that can lead to mathematical discovery is provided. (MP)

  17. Listening to Geometry

    ERIC Educational Resources Information Center

    Cooper, Brett D.; Barger, Rita

    2009-01-01

    The many connections between music and mathematics are well known. The length of a plucked string determines its tone, the time signature of a piece of music is a ratio, and note durations are measured in fractions. One connection commonly overlooked is that between music and geometry--specifically, geometric transformations, including…

  18. Fractal geometry of music.

    PubMed Central

    Hsü, K J; Hsü, A J

    1990-01-01

    Music critics have compared Bach's music to the precision of mathematics. What "mathematics" and what "precision" are the questions for a curious scientist. The purpose of this short note is to suggest that the mathematics is, at least in part, Mandelbrot's fractal geometry and the precision is the deviation from a log-log linear plot. PMID:11607061

  19. Teaching Geometry with Tangrams.

    ERIC Educational Resources Information Center

    Russell, Dorothy S.; Bologna, Elaine M.

    1982-01-01

    Geometry is viewed as the most neglected area of the elementary school mathematics curriculum. Tangram activities provide numerous worthwhile mathematical experiences for children. A method of constructing tangrams through paper folding is followed by suggested spatial visualization, measurement, and additional activities. (MP)

  20. Geoff Giles and Geometry

    ERIC Educational Resources Information Center

    Fielker, David

    2007-01-01

    Geoff Giles died suddenly in 2005. He was a highly original thinker in the field of geometry teaching. As early as 1964, when teaching at Strathallen School in Perth, he was writing in "MT27" about constructing tessellations by modifying the sides of triangles and (irregular) quadrilaterals to produce what he called "trisides" and "quadrisides".…

  1. Origami, Geometry and Art

    ERIC Educational Resources Information Center

    Wares, Arsalan; Elstak, Iwan

    2017-01-01

    The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and algebra. The activity can be used as a context for illustrating how algebra…

  2. The Geometry of Viruses.

    ERIC Educational Resources Information Center

    Case, Christine L.

    1991-01-01

    Presented is an activity in which students make models of viruses, which allows them to visualize the shape of these microorganisms. Included are some background on viruses, the biology and geometry of viruses, directions for building viruses, a comparison of cells and viruses, and questions for students. (KR)

  3. Gravity is Geometry.

    ERIC Educational Resources Information Center

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  4. Geometry and physics

    PubMed Central

    Atiyah, Michael; Dijkgraaf, Robbert; Hitchin, Nigel

    2010-01-01

    We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology. PMID:20123740

  5. Geoff Giles and Geometry

    ERIC Educational Resources Information Center

    Fielker, David

    2007-01-01

    Geoff Giles died suddenly in 2005. He was a highly original thinker in the field of geometry teaching. As early as 1964, when teaching at Strathallen School in Perth, he was writing in "MT27" about constructing tessellations by modifying the sides of triangles and (irregular) quadrilaterals to produce what he called "trisides" and "quadrisides".…

  6. Gravity is Geometry.

    ERIC Educational Resources Information Center

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  7. Advanced geometries and regimes

    SciTech Connect

    Bulanov, S. S.; Bulanov, S. V.; Turchetti, G.; Limpouch, J.; Klimo, O.; Psikal, J.; Margarone, D.; Korn, G.

    2013-07-26

    We review and discuss different schemes of laser ion acceleration as well as advanced target geometries in connection with the development of the laser-driven proton source for hadron therapy of oncological diseases, which is a part of the ELIMED project.

  8. Geometry of PDE's. IV

    NASA Astrophysics Data System (ADS)

    Prástaro, Agostino

    2008-02-01

    Following our previous results on this subject [R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(I): Webs on PDE's and integral bordism groups. The general theory, Adv. Math. Sci. Appl. 17 (2007) 239-266; R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(II): Webs on PDE's and integral bordism groups. Applications to Riemannian geometry PDE's, Adv. Math. Sci. Appl. 17 (2007) 267-285; A. Prástaro, Geometry of PDE's and Mechanics, World Scientific, Singapore, 1996; A. Prástaro, Quantum and integral (co)bordism in partial differential equations, Acta Appl. Math. (5) (3) (1998) 243-302; A. Prástaro, (Co)bordism groups in PDE's, Acta Appl. Math. 59 (2) (1999) 111-201; A. Prástaro, Quantized Partial Differential Equations, World Scientific Publishing Co, Singapore, 2004, 500 pp.; A. Prástaro, Geometry of PDE's. I: Integral bordism groups in PDE's, J. Math. Anal. Appl. 319 (2006) 547-566; A. Prástaro, Geometry of PDE's. II: Variational PDE's and integral bordism groups, J. Math. Anal. Appl. 321 (2006) 930-948; A. Prástaro, Th.M. Rassias, Ulam stability in geometry of PDE's, Nonlinear Funct. Anal. Appl. 8 (2) (2003) 259-278; I. Stakgold, Boundary Value Problems of Mathematical Physics, I, The MacMillan Company, New York, 1967; I. Stakgold, Boundary Value Problems of Mathematical Physics, II, Collier-MacMillan, Canada, Ltd, Toronto, Ontario, 1968], integral bordism groups of the Navier-Stokes equation are calculated for smooth, singular and weak solutions, respectively. Then a characterization of global solutions is made on this ground. Enough conditions to assure existence of global smooth solutions are given and related to nullity of integral characteristic numbers of the boundaries. Stability of global solutions are related to some characteristic numbers of the space-like Cauchy dataE Global solutions of variational problems constrained by (NS) are classified by means of suitable integral bordism groups too.

  9. Temporal changes in mammalian target of rapamycin (mTOR) and phosphorylated-mTOR expressions in the hippocampal CA1 region of rat with vascular dementia

    PubMed Central

    Park, Jin-A

    2017-01-01

    Mammalian target of rapamycin (mTOR) has an important role in various biological processes in cells. In the present study, we investigated temporal changes in mTOR and phosphorylated-mTOR (p-mTOR) expressions in the rat hippocampal CA1 region following chronic cerebral hypoperfusion (CCH) induced by permanent bilateral common carotid arteries occlusion (2VO). The mTOR immunoreactivity in the pyramidal neurons and mTOR protein level in the hippocampal CA1 region were markedly decreased at 21 and 28 days after 2VO surgery. However, p-mTOR protein expression was significantly increased at 7 days following CCH but then decreased with time. The results indicate that mTOR and p-mTOR expressions change in the hippocampal CA1 region after 2VO surgery and that reduced expressions of mTOR and p-mTOR may be closely related to the CCH-induced neuronal damage in the hippocampal CA1 region. PMID:27297423

  10. Vascular restoration therapy and bioresorbable vascular scaffold

    PubMed Central

    Wang, Yunbing; Zhang, Xingdong

    2014-01-01

    This article describes the evolution of minimally invasive intervention technologies for vascular restoration therapy from early-stage balloon angioplasty in 1970s, metallic bare metal stent and metallic drug-eluting stent technologies in 1990s and 2000s, to bioresorbable vascular scaffold (BVS) technology in large-scale development in recent years. The history, the current stage, the challenges and the future of BVS development are discussed in detail as the best available approach for vascular restoration therapy. The criteria of materials selection, design and processing principles of BVS, and the corresponding clinical trial results are also summarized in this article. PMID:26816624

  11. Vascular restoration therapy and bioresorbable vascular scaffold.

    PubMed

    Wang, Yunbing; Zhang, Xingdong

    2014-11-01

    This article describes the evolution of minimally invasive intervention technologies for vascular restoration therapy from early-stage balloon angioplasty in 1970s, metallic bare metal stent and metallic drug-eluting stent technologies in 1990s and 2000s, to bioresorbable vascular scaffold (BVS) technology in large-scale development in recent years. The history, the current stage, the challenges and the future of BVS development are discussed in detail as the best available approach for vascular restoration therapy. The criteria of materials selection, design and processing principles of BVS, and the corresponding clinical trial results are also summarized in this article.

  12. Initiation of vascular development.

    PubMed

    Ohashi-Ito, Kyoko; Fukuda, Hiroo

    2014-06-01

    The initiation of vascular development occurs during embryogenesis and the development of lateral organs, such as lateral roots and leaves. Understanding the mechanism underlying the initiation of vascular development has been an important goal of plant biologists. Auxin flow is a crucial factor involved in the initiation of vascular development. In addition, recent studies have identified key factors that regulate the establishment of vascular initial cells in embryos and roots. In this review, we summarize the recent findings in this field and discuss the initiation of vascular development.

  13. Multifocal vascular lesions.

    PubMed

    Levin, Laura E; Lauren, Christine T

    2016-09-01

    Multifocal vascular lesions are important to recognize and appropriately diagnose. Generally first noticed on the skin, multifocal vascular lesions may have systemic involvement. Distinguishing among the different types of multifocal vascular lesions is often based on clinical features; however, radiological imaging and/or biopsy are frequently needed to identify distinct features and guide treatment. Knowledge of the systemic associations that can occur with different vascular anomalies may reduce life-threatening complications, such as coagulopathy, bleeding, cardiac compromise, and neurologic sequelae. This review provides a synopsis of the epidemiology, pathogenesis, presentation, workup, and treatment of several well-recognized multifocal vascular tumors and malformations.

  14. Honeycomb Geometry: Applied Mathematics in Nature.

    ERIC Educational Resources Information Center

    Roberts, William J.

    1984-01-01

    Study and exploration of the hexagonal shapes found in honeycombs is suggested as an interesting topic for geometry classes. Students learn that the hexagonal pattern maximizes the enclosed region and minimizes the wax needed for construction, while satisfying the bees' cell-size constraint. (MNS)

  15. Honeycomb Geometry: Applied Mathematics in Nature.

    ERIC Educational Resources Information Center

    Roberts, William J.

    1984-01-01

    Study and exploration of the hexagonal shapes found in honeycombs is suggested as an interesting topic for geometry classes. Students learn that the hexagonal pattern maximizes the enclosed region and minimizes the wax needed for construction, while satisfying the bees' cell-size constraint. (MNS)

  16. Geometry of thermodynamic control.

    PubMed

    Zulkowski, Patrick R; Sivak, David A; Crooks, Gavin E; DeWeese, Michael R

    2012-10-01

    A deeper understanding of nonequilibrium phenomena is needed to reveal the principles governing natural and synthetic molecular machines. Recent work has shown that when a thermodynamic system is driven from equilibrium then, in the linear response regime, the space of controllable parameters has a Riemannian geometry induced by a generalized friction tensor. We exploit this geometric insight to construct closed-form expressions for minimal-dissipation protocols for a particle diffusing in a one-dimensional harmonic potential, where the spring constant, inverse temperature, and trap location are adjusted simultaneously. These optimal protocols are geodesics on the Riemannian manifold and reveal that this simple model has a surprisingly rich geometry. We test these optimal protocols via a numerical implementation of the Fokker-Planck equation and demonstrate that the friction tensor arises naturally from a first-order expansion in temporal derivatives of the control parameters, without appealing directly to linear response theory.

  17. Cylindrical geometry hall thruster

    DOEpatents

    Raitses, Yevgeny; Fisch, Nathaniel J.

    2002-01-01

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.

  18. E 8 geometry

    NASA Astrophysics Data System (ADS)

    Cederwall, Martin; Rosabal, J. A.

    2015-07-01

    We investigate exceptional generalised diffeomorphisms based on E 8(8) in a geometric setting. The transformations include gauge transformations for the dual gravity field. The surprising key result, which allows for a development of a tensor formalism, is that it is possible to define field-dependent transformations containing connection, which are covariant. We solve for the spin connection and construct a curvature tensor. A geometry for the Ehlers symmetry SL( n + 1) is sketched. Some related issues are discussed.

  19. Emergent geometry, emergent forces

    NASA Astrophysics Data System (ADS)

    Selesnick, S. A.

    2017-10-01

    We give a brief account of some aspects of Finkelstein’s quantum relativity, namely an extension of it that derives elements of macroscopic geometry and the Lagrangians of the standard model including gravity from a presumed quantum version of spacetime. These emerge as collective effects in this quantal substrate. Our treatment, which is largely self-contained, differs mathematically from that originally given by Finkelstein. Dedicated to the memory of David Ritz Finkelstein

  20. Freezing in confined geometries

    NASA Technical Reports Server (NTRS)

    Sokol, P. E.; Ma, W. J.; Herwig, K. W.; Snow, W. M.; Wang, Y.; Koplik, Joel; Banavar, Jayanth R.

    1992-01-01

    Results of detailed structural studies, using elastic neutron scattering, of the freezing of liquid O2 and D2 in porous vycor glass, are presented. The experimental studies have been complemented by computer simulations of the dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls. Results point to a new simple physical interpretation of freezing in confined geometries.

  1. Freezing in confined geometries

    NASA Technical Reports Server (NTRS)

    Sokol, P. E.; Ma, W. J.; Herwig, K. W.; Snow, W. M.; Wang, Y.; Koplik, Joel; Banavar, Jayanth R.

    1992-01-01

    Results of detailed structural studies, using elastic neutron scattering, of the freezing of liquid O2 and D2 in porous vycor glass, are presented. The experimental studies have been complemented by computer simulations of the dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls. Results point to a new simple physical interpretation of freezing in confined geometries.

  2. Integral geometry and holography

    SciTech Connect

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James

    2015-10-27

    We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS3/CFT2 correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulk curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS3 whose kinematic space is two-dimensional de Sitter space.

  3. Noncommutative geometry and arithmetics

    NASA Astrophysics Data System (ADS)

    Almeida, P.

    2009-09-01

    We intend to illustrate how the methods of noncommutative geometry are currently used to tackle problems in class field theory. Noncommutative geometry enables one to think geometrically in situations in which the classical notion of space formed of points is no longer adequate, and thus a “noncommutative space” is needed; a full account of this approach is given in [3] by its main contributor, Alain Connes. The class field theory, i.e., number theory within the realm of Galois theory, is undoubtedly one of the main achievements in arithmetics, leading to an important algebraic machinery; for a modern overview, see [23]. The relationship between noncommutative geometry and number theory is one of the many themes treated in [22, 7-9, 11], a small part of which we will try to put in a more down-to-earth perspective, illustrating through an example what should be called an “application of physics to mathematics,” and our only purpose is to introduce nonspecialists to this beautiful area.

  4. Poisson-Riemannian geometry

    NASA Astrophysics Data System (ADS)

    Beggs, Edwin J.; Majid, Shahn

    2017-04-01

    We study noncommutative bundles and Riemannian geometry at the semiclassical level of first order in a deformation parameter λ, using a functorial approach. This leads us to field equations of 'Poisson-Riemannian geometry' between the classical metric, the Poisson bracket and a certain Poisson-compatible connection needed as initial data for the quantisation of the differential structure. We use such data to define a functor Q to O(λ2) from the monoidal category of all classical vector bundles equipped with connections to the monoidal category of bimodules equipped with bimodule connections over the quantised algebra. This is used to 'semiquantise' the wedge product of the exterior algebra and in the Riemannian case, the metric and the Levi-Civita connection in the sense of constructing a noncommutative geometry to O(λ2) . We solve our field equations for the Schwarzschild black-hole metric under the assumption of spherical symmetry and classical dimension, finding a unique solution and the necessity of nonassociativity at order λ2, which is similar to previous results for quantum groups. The paper also includes a nonassociative hyperboloid, nonassociative fuzzy sphere and our previously algebraic bicrossproduct model.

  5. Emergent Complex Network Geometry

    PubMed Central

    Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra

    2015-01-01

    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems. PMID:25985280

  6. Integral geometry and holography

    DOE PAGES

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; ...

    2015-10-27

    We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS3/CFT2 correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulkmore » curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS3 whose kinematic space is two-dimensional de Sitter space.« less

  7. Infection of Vascular Endothelial Cells with Human Cytomegalovirus under Fluid Shear Stress Reveals Preferential Entry and Spread of Virus in Flow Conditions Simulating Atheroprone Regions of the Artery

    PubMed Central

    DuRose, Jenny B.; Li, Julie; Chien, Shu

    2012-01-01

    Atherosclerosis is a major pathogenic factor in cardiovascular diseases, which are the leading cause of mortality in developed countries. While risk factors for atherosclerosis tend to be systemic, the distribution of atherosclerotic plaques within the vasculature is preferentially located at branch points and curves where blood flow is disturbed and shear stress is low. It is now widely accepted that hemodynamic factors can modulate endothelial gene expression and function and influence the pathophysiological changes associated with atherosclerosis. Human cytomegalovirus (HCMV), a ubiquitous pathogen, has long been proposed as a risk factor for atherosclerosis. To date, the role of HCMV in atherogenesis has been explored only in static conditions, and it is not known how HCMV infection is influenced by the physiological context of flow. In this study, we utilized a parallel-plate flow system to simulate the effects of shear stresses in different regions of the vasculature in vitro. We found that endothelial cells cultured under low shear stress, which simulates the flow condition of atheroprone regions in vivo, are more permissive to HCMV infection than cells experiencing high shear stress or static conditions. Cells exposed to low shear stress show increased entry of HCMV compared to cells exposed to high shear stress or static conditions. Viral structural gene expression, viral titers, and viral spread are also enhanced in endothelial cells exposed to low shear stress. These results suggest that hemodynamic factors modulate HCMV infection of endothelial cells, thus providing new insights into the induction/acceleration of atherosclerosis by HCMV. PMID:23055562

  8. Covariance of lichen and vascular plant floras

    USGS Publications Warehouse

    Bennett, J.P.; Wetmore, C.M.

    1999-01-01

    The geographic relationships among taxonomic groups are important to study to determine patterns of biodiversity and whether or not associations occur between large groups, e.g., birds and vascular plants. This study was undertaken to determine relationships between higher plants and lower plants, specifically vascular plant and lichen floras in nine national parks of the Great Lakes region. No significant relationship was found between vascular plant floras and lichen floras in this area, which spans 1200 km longitudinally, or between an additional 19 areas from North America that were less than 1000 km(2) in area. For areas larger than 1000 km(2), however, a significant positive relationship existed for 33 areas that span one to approximately 150 million km(2). The ratio of numbers of vascular plants to lichens appeared to average just over 6 across the 33 areas. In the Great Lakes parks, between 28-30% of either the vascular plant or lichen species were singletons (occurring in only one park), but the parks that contained the most singletons were not congruent: Isle Royale had the most singleton lichens, while Indiana Dunes had the most vascular plant singletons. Fewer lichen species (2%) than vascular plants (4%) occurred in all nine parks. Latitude appeared to explain some of the variation between the two groups: vascular plants decreased with increasing latitude, while lichens increased.

  9. Specific enhancement of vascular endothelial growth factor (VEGF) production in ischemic region by alprostadil--potential therapeutic application in pharmaceutical regenerative medicine.

    PubMed

    Inoue, Hajime; Aihara, Masaki; Tomioka, Miyuki; Watabe, Yu-ichi

    2013-01-01

    Alprostadil (lipo-PGE1) is a drug delivery system preparation. This preparation is applied to treat refractory skin ulcers and arteriosclerosis obliterans. We investigated the effects of alprostadil by using the earflap ischemic model. The following results were obtained: 1) Treatment with alprostadil significantly increased the VEGF contents in an ischemic ear; 2) Treatment with alprostadil resulted in strongly expressed VEGF levels only in the ischemic region; 3) Image analysis revealed a significant increase in the number of vessel bypasses and paths after flap creation with alprostadil administration compared to the vehicle-treated ears. The results suggest that it may be possible to apply alprostadil as one device for regenerative medical technology.

  10. Retroperitoneal vascular malformation mimicking incarcerated inguinal hernia.

    PubMed

    Dubey, Indu Bhushan; Sharma, Anuj; Singh, Ajay Kumar; Mohanty, Debajyoti

    2011-01-01

    A 30-year-old man presented to the Department of Surgery with a painful groin swelling on right side. Exploration revealed a reddish-blue hemangiomatous mass in the scrotum extending through inguinal canal into the retroperitoneum. On further dissection swelling was found to be originating from right external iliac vein. The swelling was excised after ligating all vascular connections. The histopathological examination of excised mass confirmed the diagnosis of venous variety of vascular malformation. This is the first reported case of vascular malformation arising from retroperitoneum and extending into inguinoscrotal region, presenting as incarcerated inguinal hernia.

  11. Kinematic dynamos in spheroidal geometries

    NASA Astrophysics Data System (ADS)

    Ivers, D. J.

    2017-10-01

    The kinematic dynamo problem is solved numerically for a spheroidal conducting fluid of possibly large aspect ratio with an insulating exterior. The solution method uses solenoidal representations of the magnetic field and the velocity by spheroidal toroidal and poloidal fields in a non-orthogonal coordinate system. Scaling of coordinates and fields to a spherical geometry leads to a modified form of the kinematic dynamo problem with a geometric anisotropic diffusion and an anisotropic current-free condition in the exterior, which is solved explicitly. The scaling allows the use of well-developed spherical harmonic techniques in angle. Dynamo solutions are found for three axisymmetric flows in oblate spheroids with semi-axis ratios 1≤a/c≤25. For larger aspect ratios strong magnetic fields may occur in any region of the spheroid, depending on the flow, but the external fields for all three flows are weak and concentrated near the axis or periphery of the spheroid.

  12. Geometry of spinning Ellis wormholes

    NASA Astrophysics Data System (ADS)

    Chew, Xiao Yan; Kleihaus, Burkhard; Kunz, Jutta

    2016-11-01

    We give a detailed account of the properties of spinning Ellis wormholes, supported by a phantom field. The general set of solutions depends on three parameters, associated with the size of the throat, the rotation, and the symmetry of the solutions. For symmetric wormholes the global charges possess the same values in both asymptotic regions, while this is no longer the case for nonsymmetric wormholes. We present mass formulas for these wormholes, study their quadrupole moments, and discuss the geometry of their throat and their ergoregion. We demonstrate, that these wormholes possess limiting configurations corresponding to an extremal Kerr black hole. Moreover, we analyze the geodesics of these wormholes, and show that they possess bound orbits.

  13. Semiclassical geometry of charged black holes

    SciTech Connect

    Frolov, Andrei V.; Kristjansson, Kristjan R.; Thorlacius, Larus

    2005-07-15

    At the classical level, two-dimensional dilaton gravity coupled to an abelian gauge field has charged black hole solutions, which have much in common with four-dimensional Reissner-Nordstroem black holes, including multiple asymptotic regions, timelike curvature singularities, and Cauchy horizons. The black hole spacetime is, however, significantly modified by quantum effects, which can be systematically studied in this two-dimensional context. In particular, the back-reaction on the geometry due to pair-creation of charged fermions destabilizes the inner horizon and replaces it with a spacelike curvature singularity. The semiclassical geometry has the same global topology as an electrically neutral black hole.

  14. Thin shells joining local cosmic string geometries

    NASA Astrophysics Data System (ADS)

    Eiroa, Ernesto F.; Rubín de Celis, Emilio; Simeone, Claudio

    2016-10-01

    In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a thin shell surrounding a cosmic string or an empty region with Minkowski metric, and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters.

  15. Difference in the trajectory of change in bone geometry as measured by hip structural analysis in the narrow neck, intertrochanteric region, and femoral shaft between men and women following hip fracture.

    PubMed

    Rathbun, Alan M; Shardell, Michelle; Orwig, Denise; Hebel, J Richard; Hicks, Gregory E; Beck, Thomas J; Magaziner, Jay; Hochberg, Marc C

    2016-11-01

    Prior studies have shown that women have declines in bone structure and strength after hip fracture, but it is unclear whether men sustain similar changes. Therefore, the objective was to examine sex differences in proximal femur geometry following hip fracture. Hip structural analysis was used to derive metrics of bone structure and strength: aerial bone mineral density, cross-sectional bone area (CSA), cortical outer diameter, section modulus (SM), and buckling ratio (BR) from dual-energy x-ray absorptiometry scans performed at baseline (within 22days of hospital admission), two, six, or twelve months after hip fracture in men and women (n=282) enrolled in the Baltimore Hip Studies 7th cohort. Weighted estimating equations were used to evaluate sex differences at the narrow neck (NN), intertrochanteric (IT), and femoral shaft (FS). Men had significantly different one year NN changes compared to women in CSA: -6.33% (-12.47, -0.20) vs. 1.37% (-3.31, 6.43), P=0.049; SM: -4.98% (-11.08, 1.10) vs. 3.94% (-2.51, 10.42), P=0.042; and BR: 7.50% (0.65, 14.36) vs. -1.20% (-6.41, 4.00), P=0.044. One year IT changes displayed similar patterns, but the sex differences were not statistically significant for CSA: -4.07% (-10.83, 2.67) vs. 0.41% (-3.41, 4.24), P=0.252; SM: -4.78% (-12.10, 5.53) vs. -0.31 (-4.74, 4.11), P=0.287; and BR: 4.59% (-0.65, 9.84) vs. 1.52% (-4.23, 7.28), P=0.425. Differences in FS geometric parameters were even smaller in magnitude and not significantly different by sex. Women generally experienced non-significant increases in bone tissue and strength following hip fracture, while men had structural declines that were statistically greater at the NN region. Reductions in the mechanical strength of the proximal femur after hip fracture could put men at higher risk for subsequent fractures of the contralateral hip. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Local geometry of isoscalar surfaces.

    PubMed

    Dopazo, César; Martín, Jesús; Hierro, Juan

    2007-11-01

    An inert dynamically passive scalar in a constant density fluid forced by a statistically homogeneous field of turbulence has been investigated using the results of a 256(3) grid direct numerical simulation. Mixing characteristics are characterized in terms of either principal curvatures or mean and Gauss curvatures. The most probable small-scale scalar geometries are flat and tilelike isosurfaces. Preliminary correlations between flow and scalar small-scale structures associate highly curved saddle points with large-strain regions and elliptic points with vorticity-dominated zones. The concavity of the scalar profiles along the isosurface normal coordinate xn correlates well with negative mean curvatures, Gauss curvatures displaying any sign, which correspond to scalar minima, tiles, or saddle points; on the other hand, convexity along xn is associated with positive mean curvatures, Gauss curvatures ranging from negative to positive signs, featuring maxima, tiles, or saddle points; inflection points along xn correlate well with small values of the mean curvature and zero or negative values of kg, corresponding to plane isosurfaces or saddle points with curvatures of equal and opposite signs. Small values of the scalar gradient are associated with elliptic points, either concave or convex (kg>0) , for both concave and convex scalar profiles along xn. Large values of the scalar gradient (or, equivalently, scalar fluctuation dissipation rates) are generally connected with small values of the Gauss curvature (either flat or moderate-curvature tilelike local geometries), with both concave and convex scalar profiles along xn equally probable. Vortical local flow structures correlate well with small and moderate values of the scalar gradient, while strain-dominated regions are associated with large values.

  17. Nanomedicine approaches in vascular disease: a review.

    PubMed

    Gupta, Anirban Sen

    2011-12-01

    Nanomedicine approaches have revolutionized the treatment of cancer and vascular diseases, where the limitations of rapid nonspecific clearance, poor biodistribution and harmful side effects associated with direct systemic drug administration can be overcome by packaging the agents within sterically stabilized, long-circulating nanovehicles that can be further surface-modified with ligands to actively target cellular/molecular components of the disease. With significant advancements in genetics, proteomics, cellular and molecular biology and biomaterials engineering, the nanomedicine strategies have become progressively refined regarding the modulation of surface and bulk chemistry of the nanovehicles, control of drug release kinetics, manipulation of nanoconstruct geometry and integration of multiple functionalities on single nanoplatforms. The current review aims to capture the various nanomedicine approaches directed specifically toward vascular diseases during the past two decades. Analysis of the promises and limitations of these approaches will help identify and optimize vascular nanomedicine systems to enhance their efficacy and clinical translation in the future. Nanomedicine-based approaches have had a major impact on the treatment and diagnosis of malignancies and vascular diseases. This review discusses various nanomedicine approaches directed specifically toward vascular diseases during the past two decades, highlighting their advantages, limitations and offering new perspectives on future applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Imaging Pediatric Vascular Lesions

    PubMed Central

    Nguyen, Tuyet A.; Krakowski, Andrew C.; Naheedy, John H.; Kruk, Peter G.

    2015-01-01

    Vascular anomalies are commonly encountered in pediatric and dermatology practices. Most of these lesions are benign and easy to diagnose based on history and clinical exam alone. However, in some cases the diagnosis may not be clear. This may be of particular concern given that vascular anomalies may occasionally be associated with an underlying syndrome, congenital disease, or serious, life-threatening condition. Defining the type of vascular lesion early and correctly is particularly important to determine the optimal approach to management and treatment of each patient. The care of pediatric patients often requires collaboration from a multitude of specialties including pediatrics, dermatology, plastic surgery, radiology, ophthalmology, and neurology. Although early characterization of vascular lesions is important, consensus guidelines regarding the evaluation and imaging of vascular anomalies does not exist to date. Here, the authors provide an overview of pediatric vascular lesions, current classification systems for characterizing these lesions, the various imaging modalities available, and recommendations for appropriate imaging evaluation. PMID:26705446

  19. Graded geometry and Poisson reduction

    SciTech Connect

    Cattaneo, A. S.; Zambon, M.

    2009-02-02

    The main result extends the Marsden-Ratiu reduction theorem in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof. Further, we provide an alternative algebraic proof for the main result.

  20. Computer-Aided Geometry Modeling

    NASA Technical Reports Server (NTRS)

    Shoosmith, J. N. (Compiler); Fulton, R. E. (Compiler)

    1984-01-01

    Techniques in computer-aided geometry modeling and their application are addressed. Mathematical modeling, solid geometry models, management of geometric data, development of geometry standards, and interactive and graphic procedures are discussed. The applications include aeronautical and aerospace structures design, fluid flow modeling, and gas turbine design.

  1. Teaching of Geometry in Bulgaria

    ERIC Educational Resources Information Center

    Bankov, Kiril

    2013-01-01

    Geometry plays an important role in the school mathematics curriculum all around the world. Teaching of geometry varies a lot (Hoyls, Foxman, & Kuchemann, 2001). Many countries revise the objectives, the content, and the approaches to the geometry in school. Studies of the processes show that there are not common trends of these changes…

  2. Geometrie verstehen: statisch - kinematisch

    NASA Astrophysics Data System (ADS)

    Kroll, Ekkehard

    Dem Allgemeinen steht begrifflich das Besondere gegenüber. In diesem Sinne sind allgemeine Überlegungen zum Verstehen von Mathematik zu ergänzen durch Untersuchungen hinsichtlich des Verstehens der einzelnen mathematischen Disziplinen, insbesondere der Geometrie. Hier haben viele Schülerinnen und Schüler Probleme. Diese rühren hauptsächlich daher, dass eine fertige geometrische Konstruktion in ihrer statischen Präsentation auf Papier nicht mehr die einzelnen Konstruktionsschritte erkennen lässt; zum Nachvollzug müssen sie daher ergänzend in einer Konstruktionsbeschreibung festgehalten werden.

  3. Models of molecular geometry.

    PubMed

    Gillespie, Ronald J; Robinson, Edward A

    2005-05-01

    Although the structure of almost any molecule can now be obtained by ab initio calculations chemists still look for simple answers to the question "What determines the geometry of a given molecule?" For this purpose they make use of various models such as the VSEPR model and qualitative quantum mechanical models such as those based on the valence bond theory. The present state of such models, and the support for them provided by recently developed methods for analyzing calculated electron densities, are reviewed and discussed in this tutorial review.

  4. Diffusion in quantum geometry

    NASA Astrophysics Data System (ADS)

    Calcagni, Gianluca

    2012-08-01

    The change of the effective dimension of spacetime with the probed scale is a universal phenomenon shared by independent models of quantum gravity. Using tools of probability theory and multifractal geometry, we show how dimensional flow is controlled by a multiscale fractional diffusion equation, and physically interpreted as a composite stochastic process. The simplest example is a fractional telegraph process, describing quantum spacetimes with a spectral dimension equal to 2 in the ultraviolet and monotonically rising to 4 towards the infrared. The general profile of the spectral dimension of the recently introduced multifractional spaces is constructed for the first time.

  5. Is fractal geometry useful in medicine and biomedical sciences?

    PubMed

    Heymans, O; Fissette, J; Vico, P; Blacher, S; Masset, D; Brouers, F

    2000-03-01

    Fractal geometry has become very useful in the understanding of many phenomena in various fields such as astrophysics, economy or agriculture and recently in medicine. After a brief intuitive introduction to the basis of fractal geometry, the clue is made about the correlation between Df and the complexity or the irregularity of a structure. However, fractal analysis must be applied with certain caution in natural objects such as bio-medical ones. The cardio-vascular system remains one of the most important fields of application of these kinds of approach. Spectral analysis of the R-R interval, morphology of the distal coronary arteries constitute two examples. Other very interesting applications are founded in bacteriology, medical imaging or ophthalmology. In our institution, we apply fractal analysis in order to quantitate angiogenesis and other vascular processes.

  6. [Frequency and causes of vascular complications requiring surgery in patients without primary vascular disease].

    PubMed

    Pongratz, J; Reeps, C; Eckstein, H-H

    2011-10-01

    Arterial and venous vascular injuries are known but rare complications of severe multiple traumatised patients but are meanwhile more frequently induced iatrogenically. However there are only few reports about incidence, causes, surgical techniques and prognosis of these vascular emergencies. We have therefore analysed the causes, type of therapy, localisation of injury, primary dis-ease, morbidity and mortality of all vascular emergencies in patients without preexisting vascular disease. 2.9 % of all vascular repairs in our unit had to be performed for cases of iatrogenic (87 %) and non-iatrogenic (13 %) vascular complications. The overall mortality and major complication rate of these intrahospital iatrogenically aquired lesions were 4.8 % and 5 %, respectively, which are clearly below those of extrahospital vascular injuries. Thereby the observed increase of iatrogenic vascular injuries seems to be due to the increase in complex and even catheter-based techniques in modern therapy. The iliacofemoral region was affected in 45 % of the cases, in 50 % complex reconstructions and specific surgical skills were needed for the repair. This article on the incidence of and reasons for vascular iatrogenic lesions shows the importance of a planned management for the prognosis of these injuries.

  7. Vascular Cognitive Impairment.

    PubMed

    Dichgans, Martin; Leys, Didier

    2017-02-03

    Cerebrovascular disease typically manifests with stroke, cognitive impairment, or both. Vascular cognitive impairment refers to all forms of cognitive disorder associated with cerebrovascular disease, regardless of the specific mechanisms involved. It encompasses the full range of cognitive deficits from mild cognitive impairment to dementia. In principle, any of the multiple causes of clinical stroke can cause vascular cognitive impairment. Recent work further highlights a role of microinfarcts, microhemorrhages, strategic white matter tracts, loss of microstructural tissue integrity, and secondary neurodegeneration. Vascular brain injury results in loss of structural and functional connectivity and, hence, compromise of functional networks within the brain. Vascular cognitive impairment is common both after stroke and in stroke-free individuals presenting to dementia clinics, and vascular pathology frequently coexists with neurodegenerative pathology, resulting in mixed forms of mild cognitive impairment or dementia. Vascular dementia is now recognized as the second most common form of dementia after Alzheimer's disease, and there is increasing awareness that targeting vascular risk may help to prevent dementia, even of the Alzheimer type. Recent advances in neuroimaging, neuropathology, epidemiology, and genetics have led to a deeper understanding of how vascular disease affects cognition. These new findings provide an opportunity for the present reappraisal of vascular cognitive impairment. We further briefly address current therapeutic concepts.

  8. Core geometry in perspective

    PubMed Central

    Dillon, Moira R.; Spelke, Elizabeth S.

    2015-01-01

    Research on animals, infants, children, and adults provides evidence that distinct cognitive systems underlie navigation and object recognition. Here we examine whether and how these systems interact when children interpret 2D edge-based perspectival line drawings of scenes and objects. Such drawings serve as symbols early in development, and they preserve scene and object geometry from canonical points of view. Young children show limits when using geometry both in non-symbolic tasks and in symbolic map tasks that present 3D contexts from unusual, unfamiliar points of view. When presented with the familiar viewpoints in perspectival line drawings, however, do children engage more integrated geometric representations? In three experiments, children successfully interpreted line drawings with respect to their depicted scene or object. Nevertheless, children recruited distinct processes when navigating based on the information in these drawings, and these processes depended on the context in which the drawings were presented. These results suggest that children are flexible but limited in using geometric information to form integrated representations of scenes and objects, even when interpreting spatial symbols that are highly familiar and faithful renditions of the visual world. PMID:25441089

  9. Proterozoic Geomagnetic Field Geometry

    NASA Astrophysics Data System (ADS)

    Panzik, J. E.; Evans, D. A.

    2011-12-01

    Pre-Mesozoic continental reconstructions and paleoclimatic inferences from paleomagnetism rely critically upon the assumption of a time-averaged geocentric axial dipole (GAD) magnetic field. We have been testing the GAD assumption and localized non-dipole components in a different manner, by observing directional variations within the Matachewan, Mackenzie and Franklin dyke swarms. Large dyke swarms, commonly emplaced within a few million years, provide the necessary broad areal coverage to perform a test of global geomagnetic field geometry. Our analysis varies the quadrupole and octupole values of the generalized paleolatitude equation to determine a minimal angular dispersion and maximum precision of paleopoles from each dyke swarm. As a control, paleomagnetic data from the central Atlantic magmatic province (CAMP) show the sensitivities of our method to non-GAD contributions to the ancient geomagnetic field. Within the uncertainties, CAMP data are consistent with independent estimates of non-GAD contributions derived from global tectonic reconstructions (Torsvik & Van der Voo, 2002). Current results from the three Proterozoic dyke swarms all have best fits that are non-dipolar, but they differ in their optimal quadrupole/ octupole components. Treated together under the hypothesis of a static Proterozoic field geometry, the data allow a pure GAD geodynamo within the uncertainty of the method. Current results were performed using Fisherian statistics, but Bingham statistics will be included to account for the ellipticity of data.

  10. Locally vascularized pelvic accessory spleen.

    PubMed

    Iorio, F; Frantellizzi, V; Drudi, Francesco M; Maghella, F; Liberatore, M

    2016-01-01

    Polysplenism and accessory spleen are congenital, usually asymptomatic anomalies. A rare case of polysplenism with ectopic spleen in pelvis of a 67-year-old, Caucasian female is reported here. A transvaginal ultrasound found a soft well-defined homogeneous and vascularized mass in the left pelvis. Patient underwent MRI evaluation and contrast-CT abdominal scan: images with parenchymal aspect, similar to spleen were obtained. Abdominal scintigraphy with 99mTc-albumin nanocolloid was performed and pelvic region was studied with planar scans and SPECT. The results showed the presence of an uptake area of the radiopharmaceutical in the pelvis, while the spleen was normally visualized. These findings confirmed the presence of an accessory spleen with an artery originated from the aorta and a vein that joined with the superior mesenteric vein. To our knowledge, in the literature, there is just only one case of a true ectopic, locally vascularized spleen in the pelvis.

  11. Emergence of matched airway and vascular trees from fractal rules.

    PubMed

    Glenny, Robb W

    2011-04-01

    The bronchial, arterial, and venous trees of the lung are complex interwoven structures. Their geometries are created during fetal development through common processes of branching morphogenesis. Insights from fractal geometry suggest that these extensively arborizing trees may be created through simple recursive rules. Mathematical models of Turing have demonstrated how only a few proteins could interact to direct this branching morphogenesis. Development of the airway and vascular trees could, therefore, be considered an example of emergent behavior as complex structures are created from the interaction of only a few processes. However, unlike inanimate emergent structures, the geometries of the airway and vascular trees are highly stereotyped. This review will integrate the concepts of emergence, fractals, and evolution to demonstrate how the complex branching geometries of the airway and vascular trees are ideally suited for gas exchange in the lung. The review will also speculate on how the heterogeneity of blood flow and ventilation created by the vascular and airway trees is overcome through their coordinated construction during fetal development.

  12. 3D Reconstruction of Coronary Artery Vascular Smooth Muscle Cells

    PubMed Central

    Luo, Tong; Chen, Huan; Kassab, Ghassan S.

    2016-01-01

    Aims The 3D geometry of individual vascular smooth muscle cells (VSMCs), which are essential for understanding the mechanical function of blood vessels, are currently not available. This paper introduces a new 3D segmentation algorithm to determine VSMC morphology and orientation. Methods and Results A total of 112 VSMCs from six porcine coronary arteries were used in the analysis. A 3D semi-automatic segmentation method was developed to reconstruct individual VSMCs from cell clumps as well as to extract the 3D geometry of VSMCs. A new edge blocking model was introduced to recognize cell boundary while an edge growing was developed for optimal interpolation and edge verification. The proposed methods were designed based on Region of Interest (ROI) selected by user and interactive responses of limited key edges. Enhanced cell boundary features were used to construct the cell’s initial boundary for further edge growing. A unified framework of morphological parameters (dimensions and orientations) was proposed for the 3D volume data. Virtual phantom was designed to validate the tilt angle measurements, while other parameters extracted from 3D segmentations were compared with manual measurements to assess the accuracy of the algorithm. The length, width and thickness of VSMCs were 62.9±14.9μm, 4.6±0.6μm and 6.2±1.8μm (mean±SD). In longitudinal-circumferential plane of blood vessel, VSMCs align off the circumferential direction with two mean angles of -19.4±9.3° and 10.9±4.7°, while an out-of-plane angle (i.e., radial tilt angle) was found to be 8±7.6° with median as 5.7°. Conclusions A 3D segmentation algorithm was developed to reconstruct individual VSMCs of blood vessel walls based on optical image stacks. The results were validated by a virtual phantom and manual measurement. The obtained 3D geometries can be utilized in mathematical models and leads a better understanding of vascular mechanical properties and function. PMID:26882342

  13. Changing the Structure Boundary Geometry

    SciTech Connect

    Karasev, Viktor; Dzlieva, Elena; Ivanov, Artyom

    2008-09-07

    Analysis of previously obtained results shows that hexagonal crystal lattice is the dominant type of ordering, in particular, in striated glow discharges. We explore the possibility for changing the dust distribution in horizontal cross sections of relatively highly ordered structures in a glow-discharge. Presuming that boundary geometry can affect dust distribution, we used cylindrical coolers held at 0 deg. C and placed against a striation containing a structure, to change the geometry of its outer boundary. By varying the number of coolers, their positions, and their separations from the tube wall, azimuthally asymmetric thermophoretic forces can be used to form polygonal boundaries and vary the angles between their segments (in a horizontal cross section). The corner in the structure's boundary of 60 deg. stimulates formation of hexagonal cells. The structure between the supported parallel boundaries is also characterized by stable hexagonal ordering. We found that a single linear boundary segment does not give rise to any sizable domain, but generates a lattice extending from the boundary (without edge defects). A square lattice can be formed by setting the angle equal to 90 deg. . However, angles of 45 deg. and 135 deg. turned out easier to form. Square lattice was created by forming a near-135 deg. corner with four coolers. It was noted that no grain ordering is observed in the region adjacent to corners of angles smaller than 30 deg. , which do not promote ordering into cells of any shape. Thus, manipulation of a structure boundary can be used to change dust distribution, create structures free of the ubiquitous edge defects that destroy orientation order, and probably change the crystal lattice type.

  14. A combination of spatial and recursive temporal filtering for noise reduction when using region of interest (ROI) fluoroscopy for patient dose reduction in image guided vascular interventions with significant anatomical motion

    NASA Astrophysics Data System (ADS)

    Setlur Nagesh, S. V.; Khobragade, P.; Ionita, C.; Bednarek, D. R.; Rudin, S.

    2015-03-01

    Because x-ray based image-guided vascular interventions are minimally invasive they are currently the most preferred method of treating disorders such as stroke, arterial stenosis, and aneurysms; however, the x-ray exposure to the patient during long image-guided interventional procedures could cause harmful effects such as cancer in the long run and even tissue damage in the short term. ROI fluoroscopy reduces patient dose by differentially attenuating the incident x-rays outside the region-of-interest. To reduce the noise in the dose-reduced regions previously recursive temporal filtering was successfully demonstrated for neurovascular interventions. However, in cardiac interventions, anatomical motion is significant and excessive recursive filtering could cause blur. In this work the effects of three noise-reduction schemes, including recursive temporal filtering, spatial mean filtering, and a combination of spatial and recursive temporal filtering, were investigated in a simulated ROI dose-reduced cardiac intervention. First a model to simulate the aortic arch and its movement was built. A coronary stent was used to simulate a bioprosthetic valve used in TAVR procedures and was deployed under dose-reduced ROI fluoroscopy during the simulated heart motion. The images were then retrospectively processed for noise reduction in the periphery, using recursive temporal filtering, spatial filtering and a combination of both. Quantitative metrics for all three noise reduction schemes are calculated and are presented as results. From these it can be concluded that with significant anatomical motion, a combination of spatial and recursive temporal filtering scheme is best suited for reducing the excess quantum noise in the periphery. This new noise-reduction technique in combination with ROI fluoroscopy has the potential for substantial patient-dose savings in cardiac interventions.

  15. A Combination of Spatial and Recursive Temporal Filtering for Noise Reduction when Using Region of Interest (ROI) Fluoroscopy for Patient Dose Reduction in Image Guided Vascular Interventions with Significant Anatomical Motion

    PubMed Central

    Nagesh, S.V. Setlur; Khobragade, P.; Ionita, C.; Bednarek, D.R; Rudin, S.

    2015-01-01

    Because x-ray based image-guided vascular interventions are minimally invasive they are currently the most preferred method of treating disorders such as stroke, arterial stenosis, and aneurysms; however, the x-ray exposure to the patient during long image-guided interventional procedures could cause harmful effects such as cancer in the long run and even tissue damage in the short term. ROI fluoroscopy reduces patient dose by differentially attenuating the incident x-rays outside the region-of-interest. To reduce the noise in the dose-reduced regions previously recursive temporal filtering was successfully demonstrated for neurovascular interventions. However, in cardiac interventions, anatomical motion is significant and excessive recursive filtering could cause blur. In this work the effects of three noise-reduction schemes, including recursive temporal filtering, spatial mean filtering, and a combination of spatial and recursive temporal filtering, were investigated in a simulated ROI dose-reduced cardiac intervention. First a model to simulate the aortic arch and its movement was built. A coronary stent was used to simulate a bio-prosthetic valve used in TAVR procedures and was deployed under dose-reduced ROI fluoroscopy during the simulated heart motion. The images were then retrospectively processed for noise reduction in the periphery, using recursive temporal filtering, spatial filtering and a combination of both. Quantitative metrics for all three noise reduction schemes are calculated and are presented as results. From these it can be concluded that with significant anatomical motion, a combination of spatial and recursive temporal filtering scheme is best suited for reducing the excess quantum noise in the periphery. This new noise-reduction technique in combination with ROI fluoroscopy has the potential for substantial patient-dose savings in cardiac interventions. PMID:26900203

  16. A Combination of Spatial and Recursive Temporal Filtering for Noise Reduction when Using Region of Interest (ROI) Fluoroscopy for Patient Dose Reduction in Image Guided Vascular Interventions with Significant Anatomical Motion.

    PubMed

    Nagesh, S V Setlur; Khobragade, P; Ionita, C; Bednarek, D R; Rudin, S

    2015-02-21

    Because x-ray based image-guided vascular interventions are minimally invasive they are currently the most preferred method of treating disorders such as stroke, arterial stenosis, and aneurysms; however, the x-ray exposure to the patient during long image-guided interventional procedures could cause harmful effects such as cancer in the long run and even tissue damage in the short term. ROI fluoroscopy reduces patient dose by differentially attenuating the incident x-rays outside the region-of-interest. To reduce the noise in the dose-reduced regions previously recursive temporal filtering was successfully demonstrated for neurovascular interventions. However, in cardiac interventions, anatomical motion is significant and excessive recursive filtering could cause blur. In this work the effects of three noise-reduction schemes, including recursive temporal filtering, spatial mean filtering, and a combination of spatial and recursive temporal filtering, were investigated in a simulated ROI dose-reduced cardiac intervention. First a model to simulate the aortic arch and its movement was built. A coronary stent was used to simulate a bio-prosthetic valve used in TAVR procedures and was deployed under dose-reduced ROI fluoroscopy during the simulated heart motion. The images were then retrospectively processed for noise reduction in the periphery, using recursive temporal filtering, spatial filtering and a combination of both. Quantitative metrics for all three noise reduction schemes are calculated and are presented as results. From these it can be concluded that with significant anatomical motion, a combination of spatial and recursive temporal filtering scheme is best suited for reducing the excess quantum noise in the periphery. This new noise-reduction technique in combination with ROI fluoroscopy has the potential for substantial patient-dose savings in cardiac interventions.

  17. Critique of information geometry

    SciTech Connect

    Skilling, John

    2014-12-05

    As applied to probability, information geometry fails because probability distributions do not form a metric space. Probability theory rests on a compelling foundation of elementary symmetries, which also support information (aka minus entropy, Kullback-Leibler) H(p;q) as the unique measure of divergence from source probability distribution q to destination p. Because the only compatible connective H is from≠to asymmetric, H(p;q)≠H(q;p), there can be no compatible geometrical distance (which would necessarily be from=to symmetric). Hence there is no distance relationship compatible with the structure of probability theory. Metrics g and densities sqrt(det(g)) interpreted as prior probabilities follow from the definition of distance, and must fail likewise. Various metrics and corresponding priors have been proposed, Fisher's being the most popular, but all must behave unacceptably. This is illustrated with simple counter-examples.

  18. Noncommutative geometry of Zitterbewegung

    NASA Astrophysics Data System (ADS)

    Eckstein, Michał; Franco, Nicolas; Miller, Tomasz

    2017-03-01

    Drawing from the advanced mathematics of noncommutative geometry, we model a "classical" Dirac fermion propagating in a curved spacetime. We demonstrate that the inherent causal structure of the model encodes the possibility of Zitterbewegung—the "trembling motion" of the fermion. We recover the well-known frequency of Zitterbewegung as the highest possible speed of change in the fermion's "internal space." Furthermore, we show that the bound does not change in the presence of an external electromagnetic field and derive its explicit analogue when the mass parameter is promoted to a Yukawa field. We explain the universal character of the model and discuss a table-top experiment in the domain of quantum simulation to test its predictions.

  19. Geometry from Gauge Theory

    SciTech Connect

    Correa, Diego H.; Silva, Guillermo A.

    2008-07-28

    We discuss how geometrical and topological aspects of certain (1/2)-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents.

  20. Magnetism in curved geometries

    DOE PAGES

    Streubel, Robert; Fischer, Peter; Kronast, Florian; ...

    2016-08-17

    Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii–Moriya-like interaction. Asmore » a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. Finally, these recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.« less

  1. Magnetism in curved geometries

    SciTech Connect

    Streubel, Robert; Fischer, Peter; Kronast, Florian; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri; Schmidt, Oliver G.; Makarov, Denys

    2016-08-17

    Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii–Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. Finally, these recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.

  2. Magnetism in curved geometries

    NASA Astrophysics Data System (ADS)

    Streubel, Robert; Fischer, Peter; Kronast, Florian; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri; Schmidt, Oliver G.; Makarov, Denys

    2016-09-01

    Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii-Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. These recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.

  3. [Vascular factors in glaucoma].

    PubMed

    Mottet, B; Aptel, F; Geiser, M; Romanet, J P; Chiquet, C

    2015-12-01

    The exact pathophysiology of glaucoma is not fully understood. Understanding of the vascular pathophysiology of glaucoma requires: knowing the techniques for measuring ocular blood flow and characterizing the topography of vascular disease and the mechanisms involved in this neuropathy. A decreased mean ocular perfusion pressure and a loss of vascular autoregulation are implicated in glaucomatous disease. Early decrease in ocular blood flow has been identified in primary open-angle glaucoma and normal pressure glaucoma, contributing to the progression of optic neuropathy. The vascular damage associated with glaucoma is present in various vascular territories within the eye (from the ophthalmic artery to the retina) and is characterized by a decrease in basal blood flow associated with a dysfunction of vasoregulation.

  4. The role of the vascular dendritic cell network in atherosclerosis

    PubMed Central

    Alberts-Grill, Noah; Denning, Timothy L.; Rezvan, Amir

    2013-01-01

    A complex role has been described for dendritic cells (DCs) in the potentiation and control of vascular inflammation and atherosclerosis. Resident vascular DCs are found in the intima of atherosclerosis-prone vascular regions exposed to disturbed blood flow patterns. Several phenotypically and functionally distinct vascular DC subsets have been described. The functional heterogeneity of these cells and their contributions to vascular homeostasis, inflammation, and atherosclerosis are only recently beginning to emerge. Here, we review the available literature, characterizing the origin and function of known vascular DC subsets and their important role contributing to the balance of immune activation and immune tolerance governing vascular homeostasis under healthy conditions. We then discuss how homeostatic DC functions are disrupted during atherogenesis, leading to atherosclerosis. The effectiveness of DC-based “atherosclerosis vaccine” therapies in the treatment of atherosclerosis is also reviewed. We further provide suggestions for distinguishing DCs from macrophages and discuss important future directions for the field. PMID:23552284

  5. Generalized Kähler Geometry

    NASA Astrophysics Data System (ADS)

    Gualtieri, Marco

    2014-10-01

    Generalized Kähler geometry is the natural analogue of Kähler geometry, in the context of generalized complex geometry. Just as we may require a complex structure to be compatible with a Riemannian metric in a way which gives rise to a symplectic form, we may require a generalized complex structure to be compatible with a metric so that it defines a second generalized complex structure. We prove that generalized Kähler geometry is equivalent to the bi-Hermitian geometry on the target of a 2-dimensional sigma model with (2, 2) supersymmetry. We also prove the existence of natural holomorphic Courant algebroids for each of the underlying complex structures, and that these split into a sum of transverse holomorphic Dirac structures. Finally, we explore the analogy between pre-quantum line bundles and gerbes in the context of generalized Kähler geometry.

  6. Thermodynamics of Asymptotically Conical Geometries.

    PubMed

    Cvetič, Mirjam; Gibbons, Gary W; Saleem, Zain H

    2015-06-12

    We study the thermodynamical properties of a class of asymptotically conical geometries known as "subtracted geometries." We derive the mass and angular momentum from the regulated Komar integral and the Hawking-Horowitz prescription and show that they are equivalent. By deriving the asymptotic charges, we show that the Smarr formula and the first law of thermodynamics hold. We also propose an analog of Christodulou-Ruffini inequality. The analysis can be generalized to other asymptotically conical geometries.

  7. Planetary Image Geometry Library

    NASA Technical Reports Server (NTRS)

    Deen, Robert C.; Pariser, Oleg

    2010-01-01

    The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

  8. Vascular Access in Children

    SciTech Connect

    Krishnamurthy, Ganesh Keller, Marc S.

    2011-02-15

    Establishment of stable vascular access is one of the essential and most challenging procedures in a pediatric hospital. Many clinical specialties provide vascular service in a pediatric hospital. At the top of the 'expert procedural pyramid' is the pediatric interventional radiologist, who is best suited and trained to deliver this service. Growing awareness regarding the safety and high success rate of vascular access using image guidance has led to increased demand from clinicians to provide around-the-clock vascular access service by pediatric interventional radiologists. Hence, the success of a vascular access program, with the pediatric interventional radiologist as the key provider, is challenging, and a coordinated multidisciplinary team effort is essential for success. However, there are few dedicated pediatric interventional radiologists across the globe, and also only a couple of training programs exist for pediatric interventions. This article gives an overview of the technical aspects of pediatric vascular access and provides useful tips for obtaining vascular access in children safely and successfully using image guidance.

  9. Arginase and vascular aging

    PubMed Central

    Santhanam, Lakshmi; Christianson, David W.; Nyhan, Daniel; Berkowitz, Dan E.

    2008-01-01

    Vascular and associated ventricular stiffness is one of the hallmarks of the aging cardiovascular system. Both an increase in reactive oxygen species production and a decrease in nitric oxide (NO) bioavailability contribute to the endothelial dysfunction that underlies this vascular stiffness, independent of other age-related vascular pathologies such as atherosclerosis. The activation/upregulation of arginase appears to be an important contributor to age-related endothelial dysfunction by a mechanism that involves substrate (l-arginine) limitation for NO synthase (NOS) 3 and therefore NO synthesis. Not only does this lead to impaired NO production but also it contributes to the enhanced production of reactive oxygen species by NOS. Although arginase abundance is increased in vascular aging models, it appears that posttranslational modification by S-nitrosylation of the enzyme enhances its activity as well. The S-nitrosylation is mediated by the induction of NOS2 in the endothelium. Furthermore, arginase activation contributes to aging-related vascular changes by mechanisms that are not directly related to changes in NO signaling, including polyamine-dependent vascular smooth muscle proliferation and collagen synthesis. Taken together, arginase may represent an as yet elusive target for the modification of age-related vascular and ventricular stiffness contributing to cardiovascular morbidity and mortality. PMID:18719233

  10. Visualizing vascular structures in virtual environments

    NASA Astrophysics Data System (ADS)

    Wischgoll, Thomas

    2013-01-01

    In order to learn more about the cause of coronary heart diseases and develop diagnostic tools, the extraction and visualization of vascular structures from volumetric scans for further analysis is an important step. By determining a geometric representation of the vasculature, the geometry can be inspected and additional quantitative data calculated and incorporated into the visualization of the vasculature. To provide a more user-friendly visualization tool, virtual environment paradigms can be utilized. This paper describes techniques for interactive rendering of large-scale vascular structures within virtual environments. This can be applied to almost any virtual environment configuration, such as CAVE-type displays. Specifically, the tools presented in this paper were tested on a Barco I-Space and a large 62x108 inch passive projection screen with a Kinect sensor for user tracking.

  11. Investigating Fractal Geometry Using LOGO.

    ERIC Educational Resources Information Center

    Thomas, David A.

    1989-01-01

    Discusses dimensionality in Euclidean geometry. Presents methods to produce fractals using LOGO. Uses the idea of self-similarity. Included are program listings and suggested extension activities. (MVL)

  12. A Computational Approach to Model Vascular Adaptation During Chronic Hemodialysis: Shape Optimization as a Substitute for Growth Modeling

    NASA Astrophysics Data System (ADS)

    Mahmoudzadeh Akherat, S. M. Javid; Boghosian, Michael; Cassel, Kevin; Hammes, Mary

    2015-11-01

    End-stage-renal disease patients depend on successful long-term hemodialysis via vascular access, commonly facilitated via a Brachiocephalic Fistula (BCF). The primary cause of BCF failure is Cephalic Arch Stenosis (CAS). It is believed that low Wall Shear Stress (WSS) regions, which occur because of the high flow rates through the natural bend in the cephalic vein, create hemodynamic circumstances that trigger the onset and development of Intimal Hyperplasia (IH) and subsequent CAS. IH is hypothesized to be a natural effort to reshape the vessel, aiming to bring the WSS values back to a physiologically acceptable range. We seek to explore the correlation between regions of low WSS and subsequent IH and CAS in patient-specific geometries. By utilizing a shape optimization framework, a method is proposed to predict cardiovascular adaptation that could potentially be an alternative to vascular growth and remodeling. Based on an objective functional that seeks to alter the vessel shape in such a way as to readjust the WSS to be within the normal physiological range, CFD and shape optimization are then coupled to investigate whether the optimal shape evolution is correlated with actual patient-specific geometries thereafter. Supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (R01 DK90769).

  13. Geometry of blind thrusts

    SciTech Connect

    Kligfield, R.; Geiser, P.; Geiser, J.

    1985-01-01

    Blind thrusts are structures which at no time in their history broke the erosion surface and along which displacement progressively changes upwards. Faults of the stiff layer along which displacement progressively decreases to zero (tip) are one prominent type of blind thrust structure. Shortening above such tips is accommodated entirely by folding whereas shortening below the tip is partitioned between folding and faulting. For these types of faults it is possible to determine the original length of the stiff layer for balancing purposes. A systematic methodology for line length and area restoration is outlined for determining blind thrust geometry. Application of the methodology is particularly suitable for use with microcomputers. If the folded form of the cover is known along with the position of the fault and its tip, then it is possible to locate hanging and footwall cutoffs. If the fault trajectory, tip, and a single hanging wall footwall cutoff pair are known, then the folded form of the cover layer can be determined. In these constructions it is necessary to specify pin lines for balancing purposes. These pin lines may or may not have a zero displacement gradient, depending upon the amount of simple shear deformation. Examples are given from both Laramide structures of the western USA and the Appalachians.

  14. Vascular anomalies in children.

    PubMed

    Weibel, L

    2011-11-01

    Vascular anomalies are divided in two major categories: tumours (such as infantile hemangiomas) and malformations. Hemangiomas are common benign neoplasms that undergo a proliferative phase followed by stabilization and eventual spontaneous involution, whereas vascular malformations are rare structural anomalies representing morphogenetic errors of developing blood vessels and lymphatics. It is important to properly diagnose vascular anomalies early in childhood because of their distinct differences in morbidity, prognosis and need for a multidisciplinary management. We discuss a number of characteristic clinical features as clues for early diagnosis and identification of associated syndromes.

  15. Geometry Guided Segmentation

    NASA Astrophysics Data System (ADS)

    Dunn, Stanley M.; Liang, Tajen

    1989-03-01

    Our overall goal is to develop an image understanding system for automatically interpreting dental radiographs. This paper describes the module that integrates the intrinsic image data to form the region adjacency graph that represents the image. The specific problem is to develop a robust method for segmenting the image into small regions that do not overlap anatomical boundaries. Classical algorithms for finding homogeneous regions (i.e., 2 class segmentation or connected components) will not always yield correct results since blurred edges can cause adjacent anatomical regions to be labeled as one region. This defect is a problem in this and other applications where an object count is necessary. Our solution to the problem is to guide the segmentation by intrinsic properties of the constituent objects. The module takes a set of intrinsic images as arguments. A connected components-like algorithm is performed, but the connectivity relation is not 4- or 8-neighbor connectivity in binary images; the connectivity is defined in terms of the intrinsic image data. We shall describe both the classical method and the modified segmentation procedures, and present experiments using both algorithms. Our experiments show that for the dental radiographs a segmentation using gray level data in conjunction with edges of the surfaces of teeth give a robust and reliable segmentation.

  16. Mutant copper-zinc superoxide dismutase associated with amyotrophic lateral sclerosis binds to adenine/uridine-rich stability elements in the vascular endothelial growth factor 3′-untranslated region

    PubMed Central

    Li, Xuelin; Lu, Liang; Bush, Donald J.; Zhang, Xiaowen; Zheng, Lei; Suswam, Esther A.; King, Peter H.

    2009-01-01

    Vascular endothelial growth factor (VEGF) is a neurotrophic factor essential for maintenance of motor neurons. Loss of this factor produces a phenotype similar to amyotrophic lateral sclerosis (ALS). We recently showed that ALS-producing mutations of Cu/Zn-superoxide dismutase (SOD1) disrupt post-transcriptional regulation of VEGF mRNA, leading to significant loss of expression. Mutant SOD1 was present in the ribonucleoprotein complex associated with adenine/uridine-rich elements (ARE) of the VEGF 3′-untranslated region (UTR). Here, we show by electrophoretic mobility shift assay that mutant SOD1 bound directly to the VEGF 3′-UTR with a predilection for AREs similar to the RNA stabilizer HuR. SOD1 mutants A4V and G37R showed higher affinity for the ARE than L38V or G93A. Wild-type SOD1 bound very weakly with an apparent Kd 11- to 72-fold higher than mutant forms. Mutant SOD1 showed an additional lower shift with VEGF ARE that was accentuated in the metal-free state. A similar pattern of binding was observed with AREs of tumor necrosis factor-α and interleukin-8, except only a single shift predominated. Using an ELISA-based assay, we demonstrated that mutant SOD1 competes with HuR and neuronal HuC for VEGF 3′-UTR binding. To define potential RNA-binding domains, we truncated G37R, G93A and wild-type SOD1 and found that peptides from the N-terminal portion of the protein that included amino acids 32-49 could recapitulate the binding pattern of full-length protein. Thus, the strong RNA-binding affinity conferred by ALS-associated mutations of SOD1 may contribute to the post-transcriptional dysregulation of VEGF mRNA. PMID:19196430

  17. The influence of size, shape and vessel geometry on nanoparticle distribution

    PubMed Central

    Tan, Jifu; Shah, Samar; Thomas, Antony; Ou-Yang, H. Daniel

    2012-01-01

    Nanoparticles (NPs) are emerging as promising carrier platforms for targeted drug delivery and imaging probes. To evaluate the delivery efficiency, it is important to predict the distribution of NPs within blood vessels. NP size, shape and vessel geometry are believed to influence its biodistribution in circulation. Whereas, the effect of size on nanoparticle distribution has been extensively studied, little is known about the shape and vessel geometry effect. This paper describes a computational model for NP transport and distribution in a mimetic branched blood vessel using combined NP Brownian dynamics and continuum fluid mechanics approaches. The simulation results indicate that NPs with smaller size and rod shape have higher binding capabilities as a result of smaller drag force and larger contact area. The binding dynamics of rod-shaped NPs is found to be dependent on their initial contact points and orientations to the wall. Higher concentration of NPs is observed in the bifurcation area compared to the straight section of the branched vessel. Moreover, it is found that Péclet number plays an important role in determining the fraction of NPs deposited in the branched region and the straight section. Simulation results also indicate that NP binding decreases with increased shear rate. Dynamic NP re-distribution from low to high shear rates is observed due to the non-uniform shear stress distribution over the branched channel. This study would provide valuable information for NP distribution in a complex vascular network. PMID:23554583

  18. Calcium intake, vascular calcification, and vascular disease.

    PubMed

    Spence, Lisa A; Weaver, Connie M

    2013-01-01

    Recent research has reported a possible link between calcium supplementation and increased risk of cardiovascular disease and its endpoints in healthy, older adults. To evaluate the current evidence regarding the impact of calcium supplementation on cardiovascular disease risk and to address research gaps, the present review was conducted. Systematic reviews and meta-analyses were included, when available, along with original articles. The articles included in the review were obtained from PubMed using the following search terms: calcium intake, calcium supplementation, cardiovascular disease, myocardial infarction, mortality, and vascular calcification. The majority of the studies reviewed demonstrated no statistically significant adverse or beneficial effect of calcium supplementation on cardiovascular disease or its endpoints. While some studies indicate a possible increased risk, there is a lack of consensus on these findings and a need exists to further elucidate a mechanism. More experimental data are necessary to understand the impact of calcium intake, both levels and sources, on vascular calcification and vascular disease. The use of (41)C kinetic modeling in the Ossabaw swine provides an approach for assessing soft tissue calcification in an atherosclerotic and normal state to address research gaps.

  19. Uterine Vascular Lesions

    PubMed Central

    Vijayakumar, Abhishek; Srinivas, Amruthashree; Chandrashekar, Babitha Moogali; Vijayakumar, Avinash

    2013-01-01

    Vascular lesions of the uterus are rare; most reported in the literature are arteriovenous malformations (AVMs). Uterine AVMs can be congenital or acquired. In recent years, there has been an increasing number of reports of acquired vascular lesions of the uterus following pregnancy, abortion, cesarean delivery, and curettage. It can be seen from these reports that there is confusion concerning the terminology of uterine vascular lesions. There is also a lack of diagnostic criteria and management guidelines, which has led to an increased number of unnecessary invasive procedures (eg, angiography, uterine artery embolization, hysterectomy for abnormal vaginal bleeding). This article familiarizes readers with various vascular lesions of the uterus and their management. PMID:24340126

  20. Conformal Lorentz geometry revisited

    NASA Astrophysics Data System (ADS)

    Teleman, Kostake

    1996-02-01

    . We also show that Mach's principle on inertial motions receives an explanation in our theory by considering the particular geodesic paths, for which one of the partners of an interacting pair is fixed and sent to infinity. In fact we study a dynamical system (W,L) which presents some formal and topological similarities with a system of two particles interacting gravitationally. (W,L) is the only conformally invariant relativistic two-point dynamical system. At the end we show that W can be naturally regarded as the base of a principal GL(2,C)-bundle which comes with a natural connection. We study this bundle from differential geometric point of view. Physical interpretations will be discussed in a future paper. This text is an improvement of a previous version, which was submitted under the title ``Hypertwistor Geometry.'' [See, K. Teleman, ``Hypertwistor Geometry (abstract),'' 14th International Conference on General Relativity and Gravitation, Florence, Italy, 1995.] The change of the title and many other improvements are due to the valuable comments of the referee, who also suggested the author to avoid hazardous interpretations.

  1. Vascular Malformations: A Review

    PubMed Central

    Cox, Joshua A.; Bartlett, Erica; Lee, Edward I.

    2014-01-01

    Identification and treatment of vascular malformations is a challenging endeavor for physicians, especially given the great concern and anxiety created for patients and their families. The goal of this article is to provide a review of vascular malformations, organized by subtype, including capillary, venous, lymphatic and arteriovenous malformations. Only by developing a clear understanding of the clinical aspects, diagnostic tools, imaging modalities, and options for intervention will appropriate care be provided and results maximized. PMID:25045330

  2. [Complex vascular access].

    PubMed

    Mangiarotti, G; Cesano, G; Thea, A; Hamido, D; Pacitti, A; Segoloni, G P

    1998-03-01

    Availability of a proper vascular access is a basic condition for a proper extracorporeal replacement in end-stage chronic renal failure. However, biological factors, management and other problems, may variously condition their middle-long term survival. Therefore, personal experience of over 25 years has been critically reviewed in order to obtain useful information. In particular "hard" situations necessitating complex procedures have been examined but, if possible, preserving the peripherical vascular features.

  3. GPS: Geometry, Probability, and Statistics

    ERIC Educational Resources Information Center

    Field, Mike

    2012-01-01

    It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…

  4. Sex Differences in Geometry Achievement.

    ERIC Educational Resources Information Center

    Dees, Roberta L.

    The following questions are addressed: (1) Are there sex differences in achievement, either in entering knowledge of geometry in the fall, or in achievement in acquiring standard geometry content by year's end? (2) Are there sex differences in the performance of students on the van Hiele test, either at the beginning or end of the year? and (3)…

  5. GPS: Geometry, Probability, and Statistics

    ERIC Educational Resources Information Center

    Field, Mike

    2012-01-01

    It might be said that for most occupations there is now less of a need for mathematics than there was say fifty years ago. But, the author argues, geometry, probability, and statistics constitute essential knowledge for everyone. Maybe not the geometry of Euclid, but certainly geometrical ways of thinking that might enable us to describe the world…

  6. Linguistic geometry for autonomous navigation

    SciTech Connect

    Stilman, B.

    1995-09-01

    To discover the inner properties of human expert heuristics, which were successful in a certain class of complex control systems, we develop a formal theory, the Linguistic Geometry. This paper reports two examples of application of Linguistic Geometry to autonomous navigation of aerospace vehicles that demonstrate dramatic search reduction.

  7. Resident vascular progenitor cells.

    PubMed

    Torsney, Evelyn; Xu, Qingbo

    2011-02-01

    Homeostasis of the vessel wall is essential for maintaining its function, including blood pressure and patency of the lumen. In physiological conditions, the turnover rate of vascular cells, i.e. endothelial and smooth muscle cells, is low, but markedly increased in diseased situations, e.g. vascular injury after angioplasty. It is believed that mature vascular cells have an ability to proliferate to replace lost cells normally. On the other hand, recent evidence indicates stem/progenitor cells may participate in vascular repair and the formation of neointimal lesions in severely damaged vessels. It was found that all three layers of the vessels, the intima, media and adventitia, contain resident progenitor cells, including endothelial progenitor cells, mesenchymal stromal cells, Sca-1+ and CD34+ cells. Data also demonstrated that these resident progenitor cells could differentiate into a variety of cell types in response to different culture conditions. However, collective data were obtained mostly from in vitro culture assays and phenotypic marker studies. There are many unanswered questions concerning the mechanism of cell differentiation and the functional role of these cells in vascular repair and the pathogenesis of vascular disease. In the present review, we aim to summarize the data showing the presence of the resident progenitor cells, to highlight possible signal pathways orchestrating cell differentiation toward endothelial and smooth muscle cells, and to discuss the data limitations, challenges and controversial issues related to the role of progenitors. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".

  8. Vascular compression syndromes.

    PubMed

    Czihal, Michael; Banafsche, Ramin; Hoffmann, Ulrich; Koeppel, Thomas

    2015-11-01

    Dealing with vascular compression syndromes is one of the most challenging tasks in Vascular Medicine practice. This heterogeneous group of disorders is characterised by external compression of primarily healthy arteries and/or veins as well as accompanying nerval structures, carrying the risk of subsequent structural vessel wall and nerve damage. Vascular compression syndromes may severely impair health-related quality of life in affected individuals who are typically young and otherwise healthy. The diagnostic approach has not been standardised for any of the vascular compression syndromes. Moreover, some degree of positional external compression of blood vessels such as the subclavian and popliteal vessels or the celiac trunk can be found in a significant proportion of healthy individuals. This implies important difficulties in differentiating physiological from pathological findings of clinical examination and diagnostic imaging with provocative manoeuvres. The level of evidence on which treatment decisions regarding surgical decompression with or without revascularisation can be relied on is generally poor, mostly coming from retrospective single centre studies. Proper patient selection is critical in order to avoid overtreatment in patients without a clear association between vascular compression and clinical symptoms. With a focus on the thoracic outlet-syndrome, the median arcuate ligament syndrome and the popliteal entrapment syndrome, the present article gives a selective literature review on compression syndromes from an interdisciplinary vascular point of view.

  9. Combat related vascular trauma.

    PubMed

    Mishwani, Ahmad Hussain; Ghaffar, Abdul; Janjua, Sarfaraz

    2012-04-01

    To determine the frequency and pattern of different types of vascular injuries, their management and surgical complications. Case series. Combined Military Hospital, Peshawar, from August 2008 to August 2010. All patients of vascular injuries were included. Traumatic amputation, amputation for extensive soft tissue, or nerve injury, death due to reasons other than vascular injuries or Mangled Extremity Severity Score (MESS > 7) were excluded from study. Data included patient profile, time and date of admission, place, site, type and mechanism of injury, associated injuries, vital signs, treatment, type of vascular repair and outcome. Decision to operate was mainly based on clinical diagnosis and hand-held Doppler finding. There were 170 vascular injuries in 96 patients; 76.4% were arterial and 23.5% were venous. Gunshot wounds was main cause (54%) and extremities were the commonest site (85%). Arteries were repaired in 87% and veins in 40% cases. Venous interposition graft was the preferred method of repair. The overall limb salvage rate was 95%. Thrombosis and infection of the graft and repair were the main causes of secondary amputation. Haemorrhage, reperfusion injury and infection were the main causes of death. Every effort should be made to repair an injured artery to preserve a limb and life. Tourniquet, prophylactic fasciotomy and vascular shunts play an important role. Management of life threatening injuries, unstable fracture of long bones and debridement before definitive repair of artery is important.

  10. Dynamic Adaption of Vascular Morphology

    PubMed Central

    Okkels, Fridolin; Jacobsen, Jens Christian Brings

    2012-01-01

    The structure of vascular networks adapts continuously to meet changes in demand of the surrounding tissue. Most of the known vascular adaptation mechanisms are based on local reactions to local stimuli such as pressure and flow, which in turn reflects influence from the surrounding tissue. Here we present a simple two-dimensional model in which, as an alternative approach, the tissue is modeled as a porous medium with intervening sharply defined flow channels. Based on simple, physiologically realistic assumptions, flow-channel structure adapts so as to reach a configuration in which all parts of the tissue are supplied. A set of model parameters uniquely determine the model dynamics, and we have identified the region of the best-performing model parameters (a global optimum). This region is surrounded in parameter space by less optimal model parameter values, and this separation is characterized by steep gradients in the related fitness landscape. Hence it appears that the optimal set of parameters tends to localize close to critical transition zones. Consequently, while the optimal solution is stable for modest parameter perturbations, larger perturbations may cause a profound and permanent shift in systems characteristics. We suggest that the system is driven toward a critical state as a consequence of the ongoing parameter optimization, mimicking an evolutionary pressure on the system. PMID:23060814

  11. Vascularized Nerve Grafts and Vascularized Fascia for Upper Extremity Nerve Reconstruction

    PubMed Central

    Kostopoulos, Vasileios K.

    2009-01-01

    Since 1976, experimental and clinical studies have suggested the superiority of vascularized nerve grafts. In this study, a 27-year experience of the senior author is presented regarding vascularized nerve grafts and fascia for complex upper extremity nerve reconstruction. The factors influencing outcomes as well as a comparison with conventional nerve grafts is presented. Since 1981, 21 vascularized nerve grafts, other than vascularized ulnar nerve, were used for reconstruction of nerve injuries in the upper extremity. Indications were prolonged denervation time, failure of the previously used conventional nerve grafts, and excessive scar in the recipient site. Injury was in the hand/wrist area (n = 5), in the forearm (n = 4), in the elbow (n = 2), in the arm (n = 4), or in the plexus (n = 6). Vascularized sural (n = 9), saphenous (n = 8), superficial radial (n = 3), and peroneal (superficial and deep) nerves were used. The mean follow-up was 31.4 months. Vascularized nerve grafts for upper extremity injuries provided good to excellent sensory return in severely scarred upper extremities in patients in whom conventional nerve grafts had failed. They have also provided relief of causalgia after painful neuroma resection and motor function recovery in selective cases even for above the elbow injuries. Small diameter vascularized nerve grafts should be considered for bridging long nerve gaps in regions of excessive scar or for reconstructions where conventional nerve grafts have failed. PMID:19381727

  12. Antioxidants and vascular health.

    PubMed

    Bielli, Alessandra; Scioli, Maria Giovanna; Mazzaglia, Donatella; Doldo, Elena; Orlandi, Augusto

    2015-12-15

    Oxygen free radicals and other reactive oxygen species (ROS) are common products of normal aerobic cellular metabolism, but high levels of ROS lead to oxidative stress and cellular damage. Increased production of ROS favors vascular dysfunction, inducing altered vascular permeability and inflammation, accompanied by the loss of vascular modulatory function, the imbalance between vasorelaxation and vasoconstriction, and the aberrant expression of inflammatory adhesion molecules. Inflammatory stimuli promote oxidative stress generated from the increased activity of mitochondrial nicotinamide adenine dinucleotide phosphate oxidase, particularly of the Nox4 isoform, with the consequent impairment of mitochondrial β-oxidation. Vascular dysfunction due to the increase in Nox4 activity and ROS overproduction leads to the progression of cardiovascular diseases, diabetes, inflammatory bowel disease, and neurological disorders. Considerable research into the development of effective antioxidant therapies using natural derivatives or new synthetic molecules has been conducted. Antioxidants may prevent cellular damage by reducing ROS overproduction or interfering in reactions that involve ROS. Vitamin E and ascorbic acid are well known as natural antioxidants that counteract lipid peroxidative damage by scavenging oxygen-derived free radicals, thus restoring vascular function. Recently, preliminary studies on natural antioxidants such as goji berries, thymus, rosemary, green tea ginseng, and garlic have been conducted for their efficacy in preventing vascular damage. N-acetyl-cysteine and propionyl-L-carnitine are synthetic compounds that regulate ROS production by replacing endogenous antioxidants in both endothelial and smooth muscle cells. In this review, we consider the molecular mechanisms underlying the generation of oxidative stress-induced vascular dysfunction as well as the beneficial effects of antioxidant therapies.

  13. Determining Fault Geometries From Surface Displacements

    NASA Astrophysics Data System (ADS)

    Volkov, D.; Voisin, C.; Ionescu, I. R.

    2017-02-01

    We introduce a new algorithm for determining the geometry of active parts of faults. This algorithm uses surface measurements of displacement fields and local modeling of the Earth's crust as a half-space elastic medium. The numerical method relies on iterations alternating non-linear steps for recovering the geometry and linear steps for reconstructing slip fields. Our algorithm greatly improves upon past attempts at reconstructing fault profiles. We argue that these past attempts suffered from either the restrictive assumption that the geometry of faults can be derived using only uniformly constant slips or that they relied on arbitrary assumptions on the statistics of the reconstruction error. We test this algorithm on the 2006 Guerrero, Mexico, slow slip event (SSE) and on the 2009 SSE for the same region. These events occurred on a relatively well-known subduction zone, whose geometry was derived from seismicity and gravimetric techniques, see Kostoglodov et al. (Geophys Res Lett 23(23):3385-3388, 1996), Pardo and Suarez (J Geophys Res 100(B7):357-373, 1995), Singh and Pardo (Geophys Res Lett 20(14):1483-1486, 1993), so our results can be compared to known benchmarks. Our derived geometry is found to be consistent with these benchmarks regarding dip and strike angles and the positioning of the North American Trench. In addition, our derived slip distribution is also consistent with previous studies (all done with an assumed fixed geometry), see Larson et al. (Geophys Res Lett 34(13), 2007), Bekaert et al. (J Geophys Res: Solid Earth 120(2):1357-1375, 2015), Radiguet et al. (Geophys J Int 184(2):816-828, 2011, J Geophys Res 2012), Rivet et al. (Geophys Res Lett 38(8), 2011), Vergnolle et al. (J Geophys Res: Solid Earth 115(B8), 2010), Walpersdorf et al. Geophys Res Lett 38(15), 2011), to name a few. We believe that the new computational inverse method introduced in this paper holds great promise for applications to blind inversion cases, where both geometry and

  14. Determining Fault Geometries From Surface Displacements

    NASA Astrophysics Data System (ADS)

    Volkov, D.; Voisin, C.; Ionescu, I. R.

    2017-04-01

    We introduce a new algorithm for determining the geometry of active parts of faults. This algorithm uses surface measurements of displacement fields and local modeling of the Earth's crust as a half-space elastic medium. The numerical method relies on iterations alternating non-linear steps for recovering the geometry and linear steps for reconstructing slip fields. Our algorithm greatly improves upon past attempts at reconstructing fault profiles. We argue that these past attempts suffered from either the restrictive assumption that the geometry of faults can be derived using only uniformly constant slips or that they relied on arbitrary assumptions on the statistics of the reconstruction error. We test this algorithm on the 2006 Guerrero, Mexico, slow slip event (SSE) and on the 2009 SSE for the same region. These events occurred on a relatively well-known subduction zone, whose geometry was derived from seismicity and gravimetric techniques, see Kostoglodov et al. (Geophys Res Lett 23(23):3385-3388, 1996), Pardo and Suarez (J Geophys Res 100(B7):357-373, 1995), Singh and Pardo (Geophys Res Lett 20(14):1483-1486, 1993), so our results can be compared to known benchmarks. Our derived geometry is found to be consistent with these benchmarks regarding dip and strike angles and the positioning of the North American Trench. In addition, our derived slip distribution is also consistent with previous studies (all done with an assumed fixed geometry), see Larson et al. (Geophys Res Lett 34(13), 2007), Bekaert et al. (J Geophys Res: Solid Earth 120(2):1357-1375, 2015), Radiguet et al. (Geophys J Int 184(2):816-828, 2011, J Geophys Res 2012), Rivet et al. (Geophys Res Lett 38(8), 2011), Vergnolle et al. (J Geophys Res: Solid Earth 115(B8), 2010), Walpersdorf et al. Geophys Res Lett 38(15), 2011), to name a few. We believe that the new computational inverse method introduced in this paper holds great promise for applications to blind inversion cases, where both geometry and

  15. Non-local geometry inside Lifshitz horizon

    NASA Astrophysics Data System (ADS)

    Hu, Qi; Lee, Sung-Sik

    2017-07-01

    Based on the quantum renormalization group, we derive the bulk geometry that emerges in the holographic dual of the fermionic U( N ) vector model at a nonzero charge density. The obstruction that prohibits the metallic state from being smoothly deformable to the direct product state under the renormalization group flow gives rise to a horizon at a finite radial coordinate in the bulk. The region outside the horizon is described by the Lifshitz geometry with a higher-spin hair determined by microscopic details of the boundary theory. On the other hand, the interior of the horizon is not described by any Riemannian manifold, as it exhibits an algebraic non-locality. The non-local structure inside the horizon carries the information on the shape of the filled Fermi sea.

  16. Dewetting processes in a cylindrical geometry.

    PubMed

    Callegari, G; Calvo, A; Hulin, J P

    2005-03-01

    Dewetting of liquid films of water-glycerol solutions of different viscosities has been studied experimentally in PVC cylindrical tubes. In contrast with plane surfaces, the dewetting capillary number Ca(vd) increases with the film thickness ho over a large part of the experimental range and follows a same global trend independent of viscosity as a function of ho. This increase is only partly explained by variations of the capillary driving force predicted in a recent theoretical work for a cylindrical geometry. An additional explanation is suggested, based on different spatial distributions of the viscous dissipation in the dewetting bump in the planar and cylindrical geometries. This mechanism is investigated for films of different thicknesses in a numerical model assuming a polynomial variation of the liquid thickness with distance in the bump region.

  17. Vascular tissue engineering by computer-aided laser micromachining.

    PubMed

    Doraiswamy, Anand; Narayan, Roger J

    2010-04-28

    Many conventional technologies for fabricating tissue engineering scaffolds are not suitable for fabricating scaffolds with patient-specific attributes. For example, many conventional technologies for fabricating tissue engineering scaffolds do not provide control over overall scaffold geometry or over cell position within the scaffold. In this study, the use of computer-aided laser micromachining to create scaffolds for vascular tissue networks was investigated. Computer-aided laser micromachining was used to construct patterned surfaces in agarose or in silicon, which were used for differential adherence and growth of cells into vascular tissue networks. Concentric three-ring structures were fabricated on agarose hydrogel substrates, in which the inner ring contained human aortic endothelial cells, the middle ring contained HA587 human elastin and the outer ring contained human aortic vascular smooth muscle cells. Basement membrane matrix containing vascular endothelial growth factor and heparin was to promote proliferation of human aortic endothelial cells within the vascular tissue networks. Computer-aided laser micromachining provides a unique approach to fabricate small-diameter blood vessels for bypass surgery as well as other artificial tissues with complex geometries.

  18. CATIA-GDML geometry builder

    NASA Astrophysics Data System (ADS)

    Belogurov, S.; Berchun, Yu; Chernogorov, A.; Malzacher, P.; Ovcharenko, E.; Semennikov, A.

    2011-12-01

    Due to conceptual difference between geometry descriptions in Computer-Aided Design (CAD) systems and particle transport Monte Carlo (MC) codes direct conversion of detector geometry in either direction is not feasible. An original set of tools has been developed for building a GEANT4/ROOT compatible geometry in the CATIA CAD system and exchanging it with mentioned MC packages using GDML file format. A Special structure of a CATIA product tree, a wide range of primitives, different types of multiple volume instantiation, and supporting macros have been implemented.

  19. An improved combinatorial geometry model for arbitrary geometry in DSMC

    NASA Astrophysics Data System (ADS)

    Kargaran, H.; Minuchehr, A.; Zolfaghari, A.

    2017-03-01

    This paper focuses on a new direct simulation Monte Carlo (DSMC) code based on combinatorial geometry (CG) for simulation of any rarefied gas flow. The developed code, called DgSMC-A, has been supplied with an improved CG modeling able to significantly optimize the particle-tracking process, resulting in a highly reduced runtime compared to the conventional codes. The improved algorithm inserts a grid over the geometry and saves those grid elements containing some part of the geometry border. Since only a small part of a grid is engaged with the geometry border, significant time can be saved using the proposed algorithm. Embedding the modified algorithm in the DgSMC-A resulted in a fast, robust and self-governing code needless to any mesh generator. The code completely handles complex geometries created with first-and second-order surfaces. In addition, we developed a new surface area calculator in the CG methodology for complex geometries based on the Monte Carlo method with acceptable accuracy. Several well-known test cases are examined to indicate the code ability to deal with a wide range of realistic problems. Results are also found to be in good agreement with references and experimental data.

  20. Novel paradigms for dialysis vascular access: downstream vascular biology--is there a final common pathway?

    PubMed

    Lee, Timmy

    2013-12-01

    Vascular access dysfunction is a major cause of morbidity and mortality in hemodialysis patients. The most common cause of vascular access dysfunction is venous stenosis from neointimal hyperplasia within the perianastomotic region of an arteriovenous fistula and at the graft-vein anastomosis of an arteriovenous graft. There have been few, if any, effective treatments for vascular access dysfunction because of the limited understanding of the pathophysiology of venous neointimal hyperplasia formation. This review will (1) describe the histopathologic features of hemodialysis access stenosis; (2) discuss novel concepts in the pathogenesis of neointimal hyperplasia development, focusing on downstream vascular biology; (3) highlight future novel therapies for treating downstream biology; and (4) discuss future research areas to improve our understanding of downstream biology and neointimal hyperplasia development.

  1. Novel Paradigms for Dialysis Vascular Access: Downstream Vascular Biology–Is There a Final Common Pathway?

    PubMed Central

    2013-01-01

    Summary Vascular access dysfunction is a major cause of morbidity and mortality in hemodialysis patients. The most common cause of vascular access dysfunction is venous stenosis from neointimal hyperplasia within the perianastomotic region of an arteriovenous fistula and at the graft-vein anastomosis of an arteriovenous graft. There have been few, if any, effective treatments for vascular access dysfunction because of the limited understanding of the pathophysiology of venous neointimal hyperplasia formation. This review will (1) describe the histopathologic features of hemodialysis access stenosis; (2) discuss novel concepts in the pathogenesis of neointimal hyperplasia development, focusing on downstream vascular biology; (3) highlight future novel therapies for treating downstream biology; and (4) discuss future research areas to improve our understanding of downstream biology and neointimal hyperplasia development. PMID:23990166

  2. Reduced Macular Vascular Density in Myopic Eyes

    PubMed Central

    Fan, Hua; Chen, Hao-Yu; Ma, Hong-Jie; Chang, Zheng; Yin, Hai-Quan; Ng, Danny Siu-Chun; Cheung, Carol Y; Hu, Shan; Xiang, Xiang; Tang, Shi-Bo; Li, Shuang-Nong

    2017-01-01

    Background: Morphological changes of the vasculature system in patients with myopia have been observed by Doppler ultrasound and fundus fluorescein angiography (FFA); however, these studies have limitations. Doppler ultrasound provides low-resolution images which are mainly obtained from visualized large vessels, and FFA is an invasive examination. Optic coherence tomography (OCT) angiography is a noninvasive, high-resolution measurement for vascular density. The purpose of this study was to investigate the change of vascular density in myopic eyes using OCT angiography. Methods: This cross-sectional study includes a total of 91 eyes from 47 participants including control, moderate, and high myopia that were evaluated by OCT angiography. Patients with myopia were recruited from the Refractive Department, Shenzhen Aier Eye Hospital, from August 5, 2015 to April 1, 2016. Emmetropic eyes were from healthy volunteers. The vascular density at macula and optic disc regions, ganglion cell complex (GCC) thickness, and retinal nerve fiber layer (RNFL) thickness were measured. Their relationships with axial length (AL) and refractive error were analyzed. One-way analysis of variance (ANOVA), Pearson's correlation, and generalized estimating equation were used for statistical analysis. Results: Both superficial and deep macular vascular density were highest in control (25.64% ± 3.76% and 37.12% ± 3.66%, respectively), then in moderate myopia (21.15% ± 5.33% and 35.35% ± 5.50%, respectively), and lowest in high myopia group (19.64% ± 3.87% and 32.81% ± 6.29%, respectively) (F = 13.74 and 4.57, respectively; both P < 0.001). Both superficial (β = −0.850 and 0.460, respectively) and deep (β = −0.766 and 0.396, respectively) macular vascular density were associated with AL and spherical equivalent (all P < 0.001). Superficial macular vascular density was associated with GCC thickness (β = 0.244, P = 0.040), independent of spherical equivalent. The vascular density in

  3. Unstructured Cartesian/prismatic grid generation for complex geometries

    NASA Technical Reports Server (NTRS)

    Karman, Steve L., Jr.

    1995-01-01

    The generation of a hybrid grid system for discretizing complex three dimensional (3D) geometries is described. The primary grid system is an unstructured Cartesian grid automatically generated using recursive cell subdivision. This grid system is sufficient for computing Euler solutions about extremely complex 3D geometries. A secondary grid system, using triangular-prismatic elements, may be added for resolving the boundary layer region of viscous flows near surfaces of solid bodies. This paper describes the grid generation processes used to generate each grid type. Several example grids are shown, demonstrating the ability of the method to discretize complex geometries, with very little pre-processing required by the user.

  4. In vivo vascular hallmarks of diffuse leukoaraiosis.

    PubMed

    Uh, Jinsoo; Yezhuvath, Uma; Cheng, Yamei; Lu, Hanzhang

    2010-07-01

    To characterize multiple patterns of vascular changes in leukoaraiosis using in vivo magnetic resonance imaging (MRI) techniques. We measured cerebral blood flow (CBF), cerebrovascular reactivity (CVR), and blood-brain-barrier (BBB) leakage in a group of 33 elderly subjects (age: 72.3 +/- 6.8 years, 17 males, 16 females). Leukoaraiosis brain regions were identified in each subject using fluid-attenuated inversion-recovery (FLAIR) MRI. Vascular parameters in the leukoaraiosis regions were compared to those in the normal-appearing white matter (NAWM) regions. Vascular changes in leukoaraiosis were also compared to structural damage as assessed by diffusion tensor imaging. CBF and CVR in leukoaraiosis regions were found to be 39.7 +/- 5.2% (P < 0.001) and 52.5 +/- 11.6% (P = 0.005), respectively, of those in NAWM. In subjects who did not have significant leukoaraiosis, CBF and CVR in regions with high risk for leukoaraiosis showed a slight reduction compared to the other white matter regions. Significant BBB leakage was also detected (P = 0.003) in leukoaraiosis and the extent of BBB leakage was positively correlated with mean diffusivity. In addition, CVR in NAWM was lower than that in white matter of subjects without significant leukoaraiosis. Leukoaraiosis was characterized by reduced CBF, CVR, and a leakage in the BBB. (c) 2010 Wiley-Liss, Inc.

  5. The geometry of our world

    NASA Astrophysics Data System (ADS)

    Lotay, Jason

    2017-04-01

    Jason Lotay explains how mathematicians studying special geometries are collaborating with physicists to explore M-theory, an 11-dimensional description of the world that unifies the various string theories

  6. Emergent geometry from quantized spacetime

    SciTech Connect

    Yang, Hyun Seok; Sivakumar, M.

    2010-08-15

    We examine the picture of emergent geometry arising from a mass-deformed matrix model. Because of the mass deformation, a vacuum geometry turns out to be a constant curvature spacetime such as d-dimensional sphere and (anti-)de Sitter spaces. We show that the mass-deformed matrix model giving rise to the constant curvature spacetime can be derived from the d-dimensional Snyder algebra. The emergent geometry beautifully confirms all the rationale inferred from the algebraic point of view that the d-dimensional Snyder algebra is equivalent to the Lorentz algebra in (d+1)-dimensional flat spacetime. For example, a vacuum geometry of the mass-deformed matrix model is completely described by a G-invariant metric of coset manifolds G/H defined by the Snyder algebra. We also discuss a nonlinear deformation of the Snyder algebra.

  7. Roles of starting geometries in quantum mechanics studies of cellobiose

    USDA-ARS?s Scientific Manuscript database

    A relaxed HF/6 31G(d) energy surface was constructed for the fraction of phi,psi space that contains most geometries from crystals of molecules similar to cellobiose. Two regions around other minima were examined with unconstrained B3LYP/6 31+G(d) minimizations, as were two sub regions covered by th...

  8. Drift waves in stellarator geometry

    SciTech Connect

    Persson, M.; Nadeem, M.; Lewandowski, J.L.V.; Gardner, H.J.

    2000-02-07

    Drift waves are investigated in a real three-dimensional stellarator geometry. A linear system, based on the cold ion fluid model and a ballooning mode formalism, is solved numerically in the geometry of the stellarator H1-NF. The spectra of stable and unstable modes, as well as localization, are discussed. The dependence of the spectrum of the unstable modes on the wavevector, plasma density variation, and the location in the plasma is presented.

  9. Novel paradigms for dialysis vascular access: upstream hemodynamics and vascular remodeling in dialysis access stenosis.

    PubMed

    Remuzzi, Andrea; Ene-Iordache, Bogdan

    2013-12-01

    Failure of hemodialysis access is caused mostly by venous intimal hyperplasia, a fibro-muscular thickening of the vessel wall. The pathogenesis of venous neointimal hyperplasia in primary arteriovenous fistulae consists of processes that have been identified as upstream and downstream events. Upstream events are the initial events producing injury of the endothelial layer (surgical trauma, hemodynamic shear stress, vessel wall injury due to needle punctures, etc.). Downstream events are the responses of the vascular wall at the endothelial injury that consist of a cascade of processes including leukocyte adhesion, migration of smooth muscle cells from the media to the intimal layer, and proliferation. In arteriovenous fistulae, the stenoses occur in specific sites, consistently related to the local hemodynamics determined by the vessel geometry and blood flow pattern. Recent findings that the localization of these sites matches areas of disturbed flow may add new insights into the pathogenesis of neointimal hyperplasia in the venous side of vascular access after the creation of the anastomosis. The detailed study of fluid flow motion acting on the vascular wall in anastomosed vessels and in the arm vasculature at the patient-specific level may help to elucidate the role of hemodynamics in vascular remodeling and neointimal hyperplasia formation. These computational approaches may also help in surgical planning for the amelioration of clinical outcome. This review aims to discuss the role of the disturbed flow condition in acting as upstream event in the pathogenesis of venous intimal hyperplasia and in producing subsequent local vascular remodeling in autogenous arteriovenous fistulae used for hemodialysis access. The potential use of blood flow analysis in the management of vascular access is also discussed.

  10. The Common Geometry Module (CGM).

    SciTech Connect

    Tautges, Timothy James

    2004-12-01

    The Common Geometry Module (CGM) is a code library which provides geometry functionality used for mesh generation and other applications. This functionality includes that commonly found in solid modeling engines, like geometry creation, query and modification; CGM also includes capabilities not commonly found in solid modeling engines, like geometry decomposition tools and support for shared material interfaces. CGM is built upon the ACIS solid modeling engine, but also includes geometry capability developed beside and on top of ACIS. CGM can be used as-is to provide geometry functionality for codes needing this capability. However, CGM can also be extended using derived classes in C++, allowing the geometric model to serve as the basis for other applications, for example mesh generation. CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms. CGM also includes support for loading ACIS models on parallel computers, using MPI-based communication. Future plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks. CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available to ACIS licensees on request.

  11. [Vascularization of hepatoceliular carcinoma].

    PubMed

    Tumanova, U N; Shchegolev, A I

    2015-01-01

    The paper gives the data available in the literature on vascularization of hepatocellular carcinoma (HCC). Sinusoidal capillarization and unpaired arteries are shown to play an important role in the development and progression of HCC. The density of microvessels detected by immunohistochemical techniques is a morphological indicator of the degree of angiogenic processes. Higher-grade HCC is followed by changes in its vascularization and concurrent with a progressive increase in the proportion of blood entering along the hepatic artery. The morphological indicators of microvessel density are recommended to use as addi- tional criteria for determining the prognosis of the disease, designing targeted anti-angiogenic drugs, and evaluating the efficiency of performed therapy.

  12. [Bisphosphonates for vascular calcification].

    PubMed

    Tanaka, Yoshiya; Okada, Yosuke

    2007-03-01

    Recent progress in basic research has revealed certain similarities between processes of bone calcification and calcifications of vascular tissues which contribute to several cardiovascular diseases. Bisphosphonates, which are inhibitors of bone resorption that are widely used to treat osteoporosis, also inhibit cholesterol biosynthesis, differentiation of macrophage to foam cell, differentiation of smooth muscle cells to osteoblast-like cells in certain stimuli during calcification processes of vessels. These findings extend the link between bone remodeling and vascular calcification, opening perspectives toward novel therapeutic strategies, however, current evidence is not conclusive and further research is necessary to confirm these actions in the clinical setting.

  13. Assignment of vascular endothelial growth factor (VEGF) and placenta growth factor (PIGF) genes to human chromosome 6p12-p21 and 14q24-q31 regions, respectively

    SciTech Connect

    Mattei, M.G.; Borg, J.P.; Rosnet, O.

    1996-02-15

    This article reports on the localization of two growth factor genes: vascular endothelial growth factor (VEGF) to human chromosome 6p12-p21 and placenta growth factor (PlGF) to human chromosome 14q24-q31. Such genetic mapping may aid in the identification of genes and mutations responsible for hereditary disorders. 8 refs., 1 fig.

  14. Dynamics and geometry near resonant bifurcations

    NASA Astrophysics Data System (ADS)

    Broer, Henk W.; Holtman, Sijbo J.; Vegter, Gert; Vitolo, Renato

    2011-02-01

    This paper provides an overview of the universal study of families of dynamical systems undergoing a Hopf-Neĭmarck-Sacker bifurcation as developed in [1-4]. The focus is on the local resonance set, i.e., regions in parameter space for which periodic dynamics occurs. A classification of the corresponding geometry is obtained by applying Poincaré-Takens reduction, Lyapunov-Schmidt reduction and contact-equivalence singularity theory, equivariant under an appropriate cyclic group. It is a classical result that the local geometry of these sets in the nondegenerate case is given by an Arnol'd resonance tongue. In a mildly degenerate situation a more complicated geometry given by a singular perturbation of a Whitney umbrella is encountered. Our approach also provides a skeleton for the local resonant Hopf-Neĭmarck-Sacker dynamics in the form of planar Poincaré-Takens vector fields. To illustrate our methods a leading example is used: A periodically forced generalized Duffing-Van der Pol oscillator.

  15. Mapping the internal geometry of tactile space.

    PubMed

    Longo, Matthew R; Golubova, Olga

    2017-10-01

    A large body of research has shown spatial distortions in the perception of tactile distances on the skin. For example, perceived tactile distance is increased on sensitive compared to less sensitive skin regions, and larger for stimuli oriented along the medio-lateral axis than the proximo-distal axis of the limbs. In this study we aimed to investigate the spatial coherence of these distortions by reconstructing the internal geometry of tactile space using multidimensional scaling (MDS). Participants made verbal estimates of the perceived distance between 2 touches applied sequentially to locations on their left hand. In Experiment 1 we constructed perceptual maps of the dorsum of the left hand, which showed a good fit to the actual configuration of stimulus locations. Critically, these maps also showed clear evidence of spatial distortion, being stretched along the medio-lateral hand axis. Experiment 2 replicated this result and showed that no such distortion is apparent on the palmar surface of the hand. These results show that distortions in perceived tactile distance can be characterized by geometrically simple and coherent deformations of tactile space. We suggest that the internal geometry of tactile space is shaped by the geometry of receptive fields in somatosensory cortex. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Visceral adiposopathy: a vascular perspective

    PubMed Central

    Farb, Melissa G.; Gokce, Noyan

    2015-01-01

    Obesity has emerged as one of the most critical health care problems globally that is associated with the development of insulin resistance, type 2 diabetes mellitus, metabolic dysfunction and cardiovascular disease. Central adiposity with intra-abdominal deposition of visceral fat, in particular, has been closely linked to cardiometabolic consequences of obesity. Increasing epidemiological, clinical and experimental data suggest that both adipose tissue quantity and perturbations in its quality termed “adiposopathy” contribute to mechanisms of cardiometabolic disease. The current review discusses regional differences in adipose tissue characteristics and highlights profound abnormalities in vascular endothelial function and angiogenesis that are manifest within the visceral adipose tissue milieu of obese individuals. Clinical data demonstrate up-regulation of pro-inflammatory and pro-atherosclerotic mediators in dysfunctional adipose tissue that may support pathological vascular changes not only locally in fat but also in multiple organ systems, including coronary and peripheral circulations, potentially contributing to mechanisms of obesity-related cardiovascular disease. PMID:25781557

  17. Reactive-infiltration instability in radial geometry

    NASA Astrophysics Data System (ADS)

    Grodzki, Piotr; Szymczak, Piotr

    2015-04-01

    A planar dissolution front propagating through a homogeneous porous matrix is unstable with respect to small variations in local permeability; regions of high permeability dissolve faster because of enhanced transport of reactants, which leads to increased rippling of the front. This phenomenon, usually referred to known as reactive-infiltration instability is an important mechanism for pattern development in geology, with a range of morphologies and scales, from cave systems running for hundreds of miles to laboratory acidization on the scale of centimeters. In general, this instability is characterized by two length scales: the diffusive length (D/v) and the reactant penetration length (v/r), where v is the Darcy velocity, D - the diffusion constant and r - the dissolution rate. If the latter scale is much smaller than the former one can adopt the so-called thin front limit, where the interface is treated as a discontinuity in porosity, with a completely dissolved phase on one side and an undissolved phase on the other. Linear stability analysis for this case has been carried out by Chadam et al. [1], and the corresponding dispersion relation shows that long wavelengths are unstable, whereas short wavelengths are stabilized by diffusion. In their derivation, Chadam et al. have considered a linear geometry with a uniform pressure gradient applied along one of the directions. However, in many cases (e.g. in the acidization techniques used in oil industry) the reactive fluids are injected through a well and thus the relevant geometry is radial rather than linear. Motivated by this, we have carried out the linear stability analysis of the reactive-infiltration problem in radial geometry, with the fluid injection at the centre of the system. We stay within the thin-front limit and derive the corresponding dispersion relation, which shows the stable regions for both the long-wavelength and short-wavelength modes, and the unstable region in between. Next, we study how

  18. Subaperture stitching tolerancing for annular ring geometry.

    PubMed

    Smith, Greg A; Burge, James H

    2015-09-20

    Subaperture stitching is an economical way to extend small-region, high-resolution interferometric metrology to cover large-aperture optics. Starting from system geometry and measurement noise knowledge, this work derives an analytical expression for how noise in an annular ring of subapertures leads to large-scale errors in the computed stitched surface. These errors scale as sin(πp/M)(-2) where p is the number of sine periods around the annular full-aperture and M is the number of subaperture measurements. Understanding how low-spatial-frequency surface errors arise from subaperture noise is necessary for tolerancing systems which use subaperture stitching.

  19. Nonthrombogenic polymer vascular prosthesis.

    PubMed

    Nojiri, C; Senshu, K; Okano, T

    1995-01-01

    Although many synthetic vascular grafts have been developed and evaluated experimentally or clinically, none of them have met long-term patency when applied as a small diameter vascular substitute. We have recently developed a small caliber vascular graft (3 mm i.d.) using a nonthrombogenic polymer coating. The graft consists of three layered structures: Dacron for the outer layer, polyurethane in the middle layer, and a HEMA/styrene block copolymer (HEMA-st) coating for the inner layer. HEMA-st is an amphiphilic block copolymer composed of 2-hydroxyethyl methacrylate and styrene which has demonstrated improved blood compatibility over existing biomedical polymers in both in vitro and ex vivo experiments. Ten grafts were evaluated in a dog bilateral carotid replacement model. The grafts were electively retrieved at 7, 14, 30, 92, and 372 days after implantation. All grafts were patent without detectable thrombi along the graft length including anastomotic sites. Scanning electron micrographs of retrieved graft lumen showed fairly clean surfaces covered with a homogenous protein-like layer without microthrombi or endothelial cell lining. The thickness of the surface protein layer measured by a transmission electron microscopy was what can be described as monolayer protein adsorption regardless of implantation periods of as much as 372 days. A stable monolayer adsorbed protein layer formed on HEMA-st surfaces demonstrated nonthrombogenic activities in vivo and secure long-term patency of small caliber vascular grafts with the absence of an endothelial cell lining.

  20. Hypercholesterolaemia and vascular dementia.

    PubMed

    Appleton, Jason P; Scutt, Polly; Sprigg, Nikola; Bath, Philip M

    2017-07-15

    Vascular dementia (VaD) is the second commonest cause of dementia. Stroke is the leading cause of disability in adults in developed countries, the second major cause of dementia and the third commonest cause of death. Traditional vascular risk factors-diabetes, hypercholesterolaemia, hypertension and smoking-are implicated as risk factors for VaD. The associations between cholesterol and small vessel disease (SVD), stroke, cognitive impairment and subsequent dementia are complex and as yet not fully understood. Similarly, the effects of lipids and lipid-lowering therapy on preventing or treating dementia remain unclear; the few trials that have assessed lipid-lowering therapy for preventing (two trials) or treating (four trials) dementia found no evidence to support the use of lipid-lowering therapy for these indications. It is appropriate to treat those patients with vascular risk factors that meet criteria for lipid-lowering therapy for the primary and secondary prevention of cardiovascular and cerebrovascular events, and in line with current guidelines. Managing the individual patient in a holistic manner according to his or her own vascular risk profile is recommended. Although the paucity of randomized controlled evidence makes for challenging clinical decision making, it provides multiple opportunities for on-going and future research, as discussed here. © 2017 The Author(s).

  1. Heart and vascular services

    MedlinePlus

    ... may be done to diagnose, monitor or treat diseases of the circulatory and vascular system include: Cardiac CT for calcium scoring Cardiac MRI ... Cardiac rehabilitation is therapy used to prevent heart disease from getting worse. It is usually recommended after major heart-related events such ... Boateng S, Sanborn T. ...

  2. Pathogenesis of Vascular Anomalies

    PubMed Central

    Boon, Laurence M.; Ballieux, Fanny; Vikkula, Miikka

    2010-01-01

    Vascular anomalies are localized defects of vascular development. Most of them occur sporadically, i.e. there is no familial history of lesions, yet in a few cases clear inheritance is observed. These inherited forms are often characterized by multifocal lesions that are mainly small in size and increase in number with patient’s age. On the basis of these inherited forms, molecular genetic studies have unraveled a number of inherited mutations giving direct insight into the pathophysiological cause and the molecular pathways that are implicated. Genetic defects have been identified for hereditary haemorrhagic telangiectasia (HHT), inherited cutaneomucosal venous malformation (VMCM), glomuvenous malformation (GVM), capillary malformation - arteriovenous malformation (CM-AVM), cerebral cavernous malformation (CCM) and some isolated and syndromic forms of primary lymphedema. We focus on these disorders, the implicated mutated genes and the underlying pathogenic mechanisms. We also call attention to the concept of Knudson’s double-hit mechanism to explain incomplete penetrance and the large clinical variation in expressivity of inherited vascular anomalies. This variability renders the making of correct diagnosis of the rare inherited forms difficult. Yet, the identification of the pathophysiological causes and pathways involved in them has had an unprecedented impact on our thinking of their etiopathogenesis, and has opened the doors towards a more refined classification of vascular anomalies. It has also made it possible to develop animal models that can be tested for specific molecular therapies, aimed at alleviating the dysfunctions caused by the aberrant genes and proteins. PMID:21095468

  3. Amputation in vascular disease.

    PubMed Central

    Robinson, K.

    1980-01-01

    The management of vascular amputees in the Roehampton Limb Surgery Unit since its opening in 1975 is outlined and the results in 167 cases presented. Of the 35 patients over the age of 80, 57% were walking independently at the time of their discharge from the unit. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7377693

  4. Synthetic vascular prostheses.

    PubMed

    Struszczyk, Marcin H; Bednarek, Paweł; Raczyński, Krzysztof

    2002-01-01

    Polyethyleneterephthalate (PET), and to a lesser extent Teflon have become the major synthetic grafting material. Unlike nylon, Ivalon, and Vinyon-N which lose their tensile strength after implantation, PET and Teflon remain essentially unchanged even after long periods. TRICOMED S.A. produces the family of the knitted vascular implants Dallon made from PET fibres including: Dallon, Dallon H, Tricogel. Both Dallon and Dallon H are manufactured in a form of double (external and internal) velour surface using multifilament yarn and having optimal graft design (a variety of sizes and lengths). The velour surface gives the surface a velvety, plush texture, which improves tissue in--growth. Moreover, Dallon H is a unique vascular prostheses showing the increase in the blood susceptibility that is useful for 4 times less blood demand during preclotting as compared with standard prosthesis. Tricogel graft is made of thin-wall prostheses sealed with the porcine gelatin that provides intraoperative tightness (without preclotting) and the optimal healing process. Hydrophilic behavior of the graft is observed as an instant moistening of the surface with patient's blood and as sweating. The blood stream does not dissolve nor washes away the gelatin but causes the gelatin film to swell, which makes a better tightness. The work will describe the properties of manmade vascular grafts as well as their applications in the vascular surgery.

  5. Vascular wall extracellular matrix proteins and vascular diseases

    PubMed Central

    Xu, Junyan; Shi, Guo-Ping

    2014-01-01

    Extracellular matrix proteins form the basic structure of blood vessels. Along with providing basic structural support to blood vessels, matrix proteins interact with different sets of vascular cells via cell surface integrin or non-integrin receptors. Such interactions induce vascular cell de novo synthesis of new matrix proteins during blood vessel development or remodeling. Under pathological conditions, vascular matrix proteins undergo proteolytic processing, yielding bioactive fragments to influence vascular wall matrix remodeling. Vascular cells also produce alternatively spliced variants that induce vascular cell production of different matrix proteins to interrupt matrix homeostasis, leading to increased blood vessel stiffness; vascular cell migration, proliferation, or death; or vascular wall leakage and rupture. Destruction of vascular matrix proteins leads to vascular cell or blood-borne leukocyte accumulation, proliferation, and neointima formation within the vascular wall; blood vessels prone to uncontrolled enlargement during blood flow diastole; tortuous vein development; and neovascularization from existing pathological tissue microvessels. Here we summarize discoveries related to blood vessel matrix proteins within the past decade from basic and clinical studies in humans and animals — from expression to cross-linking, assembly, and degradation under physiological and vascular pathological conditions, including atherosclerosis, aortic aneurysms, varicose veins, and hypertension. PMID:25045854

  6. A Comment on Molecular Geometry

    NASA Astrophysics Data System (ADS)

    Gomba, Frank J.

    1999-12-01

    A method of determining the correct molecular geometry of simple molecules and ions with one central atom is proposed. While the usual method of determining the molecular geometry involves first drawing the Lewis structure, this method can be used without doing so. In fact, the Lewis structure need not be drawn at all. The Lewis structure may be drawn as the final step, with the geometry of the simple molecule or ion already established. In the case of diatomic molecules, any atom may be used as the central atom. When hydrogen is present in a multiatom molecule or ion, this method "naturally" eliminates choosing hydrogen; but, any other atom may be used as the central atom to determine the correct geometry. The Lewis structure can then be used to determine the formal charges on the atoms. In this way there is a check on the selection of the central atom, should the correct Lewis structure be desired. Thus, it assumes that one is familiar with both Lewis structures and the valence shell electron pair repulsion (VSEPR) approach to bonding. The approach suggested in this paper will give rapid and accurate molecular geometries, and it is fun !!!

  7. Heterogeneity in vascular smooth muscle cell embryonic origin in relation to adult structure, physiology, and disease

    PubMed Central

    Pfaltzgraff, Elise R.; Bader, David M.

    2015-01-01

    Regional differences in vascular physiology and disease response exist throughout the vascular tree. While these differences in physiology and disease correspond to regional vascular environmental conditions, there is also compelling evidence that the embryonic origins of the smooth muscle inherent to the vessels may play a role. Here we review what is known regarding the role of embryonic origin of vascular smooth muscle cells during vascular development. The focus of this review is to highlight the heterogeneity in the origins of vascular smooth muscle cells and the resulting regional physiologies of the vessels. Our goal is to stimulate future investigation into this area and provide a better understanding of vascular organogenesis and disease. PMID:25546231

  8. Parallel cardiac and vascular adaptation in hypertension.

    PubMed

    Roman, M J; Saba, P S; Pini, R; Spitzer, M; Pickering, T G; Rosen, S; Alderman, M H; Devereux, R B

    1992-12-01

    Although vascular damage in the noncoronary circulation is a major cause of complications in hypertension, relatively little is known of the in vivo geometry and function of the arterial circulation in patients with uncomplicated hypertension or of their relation to left ventricular hypertrophy, a marker of enhanced risk of cardiovascular complications. Wall thickness and internal diameter of the common carotid artery and the presence of atherosclerosis within the extracranial carotid arteries were determined by ultrasound in 43 asymptomatic hypertensive patients and 43 normotensive subjects matched for sex, age, and body size. Vascular stiffness was estimated from simultaneous superimposed carotid pressure waveforms obtained with an external solid-state transducer. Left ventricular size and function were determined echocardiographically. Compared with normal subjects, hypertensive patients had greater left ventricular absolute and relative wall thicknesses, left ventricular mass, and carotid absolute and relative wall thicknesses (p < 0.005). Carotid intimal-medial thickness exceeded the 95th percentile of normal values in 28% of hypertensive patients (p < 0.01). Carotid atherosclerosis was equally prevalent within the two blood pressure groups and was associated with older age, larger left ventricular and carotid wall thicknesses, and carotid diameter. Despite similar carotid pulse pressures, vascular stiffness was significantly increased in the hypertensive patients. Among the population as a whole, significant relations existed between cardiac and vascular wall thicknesses and internal dimensions. In multivariate analyses, these relations were statistically independent of age and blood pressure. The present study documents the presence of geometric and functional changes within the common carotid artery in uncomplicated hypertension that parallel findings within the left ventricle. The potential contribution of these changes to the cardiovascular complications

  9. Modern advances in vascular trauma.

    PubMed

    Callcut, Rachael A; Mell, Matthew W

    2013-08-01

    Early diagnosis and intervention are paramount for improving the likelihood of a favorable outcome for traumatic vascular injuries. As technology has rapidly diversified, the diagnostic and therapeutic approaches available for vascular injuries have evolved. Mortality and morbidity from vascular injury have declined over the last decade. The use of vascular shunts and tourniquets has become standard of care in military medicine. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Electrodynamics and Spacetime Geometry: Foundations

    NASA Astrophysics Data System (ADS)

    Cabral, Francisco; Lobo, Francisco S. N.

    2016-11-01

    We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We review the foundations of classical electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations. These relations introduce the conformal part of the metric and allow the study of electrodynamics for specific spacetime geometries. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.

  11. Conventionalism and integrable Weyl geometry

    NASA Astrophysics Data System (ADS)

    Pucheu, M. L.

    2015-03-01

    Since the appearance of Einstein's general relativity, gravitation has been associated to the space-time curvature. This theory introduced a geometrodynamic language which became a convenient tool to predict matter behaviour. However, the properties of space-time itself cannot be measurable by experiments. Taking Poincaré idea that the geometry of space-time is merely a convention, we show that the general theory of relativity can be completely reformulated in a more general setting, a generalization of Riemannian geometry, namely, the Weyl integrable geometry. The choice of this new mathematical language implies, among other things, that the path of particles and light rays should now correspond to Weylian geodesies. Such modification in the dynamic of bodies brings a new perception of physical phenomena that we will explore.

  12. DOGBONE GEOMETRY FOR RECIRCULATING ACCELERATORS.

    SciTech Connect

    BERG,J.S.; JOHNSTONE,C.; SUMMERS,D.

    2001-06-18

    Most scenarios for accelerating muons require recirculating acceleration. A racetrack shape for the accelerator requires particles with lower energy in early passes to traverse almost the same length of arc as particles with the highest energy. This extra arc length may lead to excess decays and excess cost. Changing the geometry to a dogbone shape, where there is a single linac and the beam turns completely around at the end of the linac, returning to the same end of the linac from which it exited, addresses this problem. In this design, the arc lengths can be proportional to the particle's momentum. This paper proposes an approximate cost model for a recirculating accelerator, attempts to make cost-optimized designs for both racetrack and dogbone geometries, and demonstrates that the dogbone geometry does appear to be more cost effective.

  13. Quantum geometry and gravitational entropy

    SciTech Connect

    Simon, Joan; Balasubramanian, Vijay; Czech, Bart Iomiej; Larjo, Klaus; Marolf, Donald; Simon, Joan

    2007-05-29

    Most quantum states have wavefunctions that are widely spread over the accessible Hilbert space and hence do not have a good description in terms of a single classical geometry. In order to understand when geometric descriptions are possible, we exploit the AdS/CFT correspondence in the half-BPS sector of asymptotically AdS_5 x S5 universes. In this sector we devise a"coarse-grained metric operator" whose eigenstates are well described by a single spacetime topology and geometry. We show that such half-BPS universes have a non-vanishing entropy if and only if the metric is singular, and that the entropy arises from coarse-graining the geometry. Finally, we use our entropy formula to find the most entropic spacetimes with fixed asymptotic moments beyond the global charges.

  14. Nernst branes from special geometry

    NASA Astrophysics Data System (ADS)

    Dempster, P.; Errington, D.; Mohaupt, T.

    2015-05-01

    We construct new black brane solutions in U(1) gauged N = 2 supergravity with a general cubic prepotential, which have entropy density s ˜ T 1/3 as T → 0 and thus satisfy the Nernst Law. By using the real formulation of special geometry, we are able to obtain analytical solutions in closed form as functions of two parameters, the temperature T and the chemical potential μ. Our solutions interpolate between hyperscaling violating Lifshitz geometries with ( z, θ) = (0 , 2) at the horizon and ( z, θ) = (1 , -1) at infinity. In the zero temperature limit, where the entropy density goes to zero, we recover the extremal Nernst branes of Barisch et al, and the parameters of the near horizon geometry change to ( z, θ) = (3 , 1).

  15. Electrodynamics and Spacetime Geometry: Foundations

    NASA Astrophysics Data System (ADS)

    Cabral, Francisco; Lobo, Francisco S. N.

    2017-02-01

    We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We review the foundations of classical electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations. These relations introduce the conformal part of the metric and allow the study of electrodynamics for specific spacetime geometries. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.

  16. Vascular imaging in the elderly.

    PubMed

    Kalva, Sanjeeva P; Mueller, Peter R

    2008-07-01

    Though a myriad of vascular conditions affect the elderly, atherosclerosis remains the most common vascular disorder, followed by venous thromboembolism and varicose veins. In this article, the authors discuss the imaging of atherosclerosis affecting various vascular territories and pay special attention to the elderly population. The authors also discuss imaging findings of segmental arterial mediolysis, giant cell arteritis, and venous thromboembolism.

  17. Individualized Geometry: A Geometry Unit for the Intermediate Grades.

    ERIC Educational Resources Information Center

    Geissler, Dennis; Larson, Richard

    This geometry unit for the intermediate grades is based on the Holt Mathematics Series (levels 3-6), using the concepts of Individually Guided Education (IGE). It is divided into seven levels, one for grade 3 and two each for grades 4-6. Each is designed for both individual and group learning. A vocabulary list is used as a key for activities; a…

  18. Aspirin for vascular dementia

    PubMed Central

    Rands, Gianetta; Orrell, Martin

    2014-01-01

    Background Aspirin is widely prescribed for patients with a diagnosis of vascular dementia. In a survey of UK geriatricians and psychiatrists 80% of patients with clinical diagnoses of vascular dementia were prescribed aspirin. However, a number of queries remain unanswered. Is there convincing evidence that aspirin benefits patients with vascular dementia? Does aspirin affect cognition and behaviour, or improve prognosis? Does the risk of cerebral or gastric haemorrhage outweigh any benefit? Objectives To assess the randomised trial evidence for efficacy and safety of aspirin in the treatment of vascular dementia. Search methods We searched ALOIS: the Cochrane Dementia and Cognitive Improvement Group’s Specialized Register on 12 March 2012 using the terms: aspirin OR “acetylsalicylic acid”. ALOIS contains records of clinical trials identified from monthly searches of a number of major healthcare databases, numerous trial registries and grey literature sources. In addition, relevant websites were searched and some journals were handsearched. Specialists in the field were approached for unpublished material and any publications found were searched for additional references. Selection criteria Randomised controlled trials investigating the effect of aspirin for vascular dementia were eligible for inclusion. Data collection and analysis Retrieved studies were analysed independently by both review authors. Methodology and results were critically appraised and outcomes scanned included cognition, behavioural change, mortality and institutionalisation. Main results No trials were eligible for inclusion in this review. Authors’ conclusions The most recent search for references to relevant research was carried out in March 2012. No trials were found for inclusion in this systematic review. Low-dose aspirin is frequently used as ‘treatment as normal’ in control groups and as a baseline treatment in pharmacological trials. There is still no good evidence that

  19. The Vascular Depression Hypothesis: Mechanisms Linking Vascular Disease with Depression

    PubMed Central

    Taylor, Warren D.; Aizenstein, Howard J.; Alexopoulos, George S.

    2013-01-01

    The ‘Vascular Depression’ hypothesis posits that cerebrovascular disease may predispose, precipitate, or perpetuate some geriatric depressive syndromes. This hypothesis stimulated much research that has improved our understanding of the complex relationships between late-life depression (LLD), vascular risk factors, and cognition. Succinctly, there are well-established relationships between late-life depression, vascular risk factors, and cerebral hyperintensities, the radiological hallmark of vascular depression. Cognitive dysfunction is common in late-life depression, particularly executive dysfunction, a finding predictive of poor antidepressant response. Over time, progression of hyperintensities and cognitive deficits predicts a poor course of depression and may reflect underlying worsening of vascular disease. This work laid the foundation for examining the mechanisms by which vascular disease influences brain circuits and influences the development and course of depression. We review data testing the vascular depression hypothesis with a focus on identifying potential underlying vascular mechanisms. We propose a disconnection hypothesis, wherein focal vascular damage and white matter lesion location is a crucial factor influencing neural connectivity that contributes to clinical symptomatology. We also propose inflammatory and hypoperfusion hypotheses, concepts that link underlying vascular processes with adverse effects on brain function that influence the development of depression. Testing such hypotheses will not only inform the relationship between vascular disease and depression but also provide guidance on the potential repurposing of pharmacological agents that may improve late-life depression outcomes. PMID:23439482

  20. PREFACE: Algebra, Geometry, and Mathematical Physics 2010

    NASA Astrophysics Data System (ADS)

    Stolin, A.; Abramov, V.; Fuchs, J.; Paal, E.; Shestopalov, Y.; Silvestrov, S.

    2012-02-01

    This proceedings volume presents results obtained by the participants of the 6th Baltic-Nordic workshop 'Algebra, Geometry, and Mathematical Physics (AGMP-6)' held at the Sven Lovén Centre for Marine Sciences in Tjärnö, Sweden on October 25-30, 2010. The Baltic-Nordic Network AGMP 'Algebra, Geometry, and Mathematical Physics' http://www.agmp.eu was created in 2005 on the initiative of two Estonian universities and two Swedish universities: Tallinn University of Technology represented by Eugen Paal (coordinator of the network), Tartu University represented by Viktor Abramov, Lund University represented by Sergei Silvestrov, and Chalmers University of Technology and the University of Gothenburg represented by Alexander Stolin. The goal was to promote international and interdisciplinary cooperation between scientists and research groups in the countries of the Baltic-Nordic region in mathematics and mathematical physics, with special emphasis on the important role played by algebra and geometry in modern physics, engineering and technologies. The main activities of the AGMP network consist of a series of regular annual international workshops, conferences and research schools. The AGMP network also constitutes an important educational forum for scientific exchange and dissimilation of research results for PhD students and Postdocs. The network has expanded since its creation, and nowadays its activities extend beyond countries in the Baltic-Nordic region to universities in other European countries and participants from elsewhere in the world. As one of the important research-dissimilation outcomes of its activities, the network has a tradition of producing high-quality research proceedings volumes after network events, publishing them with various international publishers. The PDF also contains the following: List of AGMP workshops and other AGMP activities Main topics discussed at AGMP-6 Review of AGMP-6 proceedings Acknowledgments List of Conference Participants

  1. Geometry, topology, and string theory

    SciTech Connect

    Varadarajan, Uday

    2003-01-01

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.

  2. Geometry of generalized depolarizing channels

    SciTech Connect

    Burrell, Christian K.

    2009-10-15

    A generalized depolarizing channel acts on an N-dimensional quantum system to compress the 'Bloch ball' in N{sup 2}-1 directions; it has a corresponding compression vector. We investigate the geometry of these compression vectors and prove a conjecture of Dixit and Sudarshan [Phys. Rev. A 78, 032308 (2008)], namely, that when N=2{sup d} (i.e., the system consists of d qubits), and we work in the Pauli basis then the set of all compression vectors forms a simplex. We extend this result by investigating the geometry in other bases; in particular we find precisely when the set of all compression vectors forms a simplex.

  3. RSRM Propellant Grain Geometry Modification

    NASA Technical Reports Server (NTRS)

    Schorr, Andrew A.; Endicott, Joni B.; McCool, Alex (Technical Monitor)

    2000-01-01

    This document is composed of viewgraphs about the RSRM propellant grain geometry modification project, which hopes to improve personnel and system safety by modifying propellant grain geometry to improve structural factors of safety. Using techniques such as Finite Element Analysis to determine blend radii required to reduce localized stresses, and ballistic predictions to ensure that the ballistics, ignition transient and Block Model have not been adversely affected, the project hopes to build and test FSM-10 with a new design, and determine flight effectivity pending successful test evaluation.

  4. A Method for Visualization of Fine Retinal Vascular Pulsation Using Nonmydriatic Fundus Camera Synchronized with Electrocardiogram

    PubMed Central

    Kumar, Dinesh Kant; Aliahmad, Behzad; Hao, Hao; Che Azemin, Mohd Zulfaezal; Kawasaki, Ryo

    2013-01-01

    Pulsatile changes in retinal vascular geometry over the cardiac cycle have clinical implication for diagnosis of ocular and systemic vascular diseases. In this study, we report a Vesselness Mapping of Retinal Image Sequence (VMRS) methodology to visualize the vessel pulsation and quantify the pulsatile motions in the cardiac cycle. Retinal images were recorded in an image sequence corresponding to 8 segments of the cardiac cycle using a nonmydriatic fundus camera (Canon CR45, Canon Inc., Japan) modified with ECG-synchronization. Individual cross-sectional vessel diameters were measured separately and the significance of the variations was tested statistically by repeated measures analysis of variance (ANOVA). The graders observed an improved quality of vessel pulsation on a wide region around the optic disk using the VMRS. Individual cross- sectional vessel diameter measurement after visualization of pulsatile motions resulted in the detection of more significant diameter change for both arterioles (3.3 μm, P = 0.001) and venules (6.6 μm, P < 0.001) compared to individual measurement without visualization of the pulsatile motions (all P values > 0.05), showing an increase of 2.1 μm and 4.7 μm for arterioles and venules, respectively. PMID:24558608

  5. Prediction of melt geometry in laser cutting

    NASA Astrophysics Data System (ADS)

    Tani, Giovanni; Tomesani, Luca; Campana, Giampaolo

    2003-03-01

    In this paper, an analytical model for the evaluation of the melt film geometry in laser cutting of steels is developed. Using as basis, a previous model for kerf geometry estimation developed by the authors, with both reactive and non-reactive process gases, the film thickness and velocity were determined as a function of the kerf depth in the cutting plate. Two criteria were then adopted to predict the quality of the laser cutting operation: the first is based on a minimum acceptable value of the ejection speed of the melt from the bottom of the kerf, the second on the occlusion of the kerf itself due to an excess of molten material in the boundary layer at the kerf width. These criteria determined a feasibility region in the domain of the process and material variables, such as cutting speed, assistant gas pressure, laser beam power and material characteristics. These factors may be successfully used to build a process-planning tool for parameters optimisation and setting, in order to achieve a satisfactory process quality. The model response is in excellent agreement with the feasibility regions reported from experimental data by various authors and demonstrates a relationship between the occurrence of dross adhesion and the two different mechanisms predicted for such a phenomenon were: unsatisfactory ejection speed of the melt film from the bottom of the kerf and occlusion of the kerf.

  6. Diverse imaging characteristics of a mandibular intraosseous vascular lesion.

    PubMed

    Handa, Hina; Naidu, Giridhar S; Dara, Balaji Gandhi Babu; Deshpande, Ashwini; Raghavendra, Raju

    2014-03-01

    Intraosseous vascular lesions of the maxillofacial region are rare, and the differential diagnosis of intraosseous vascular malformations from other jaw lesions can be challenging. In the present case, magnetic resonance imaging and three-dimensional computed tomographic angiography (CTA) was used for diagnosis, and the lesion was treated wih surgical excision. Diverse characteristics such as the "honeycomb" and "sunburst" radiographic appearances and the absence of major peripheral feeder vessels in the CTA were noted. Intraosseous vascular malformations have a varied radiographic appearance, and the nomenclature of these lesions is equally diverse, with several overlapping terms. Pathologists do not generally differentiate among intraosseous vascular lesions on the basis of histopathology, although these lesions may present with contrasting immunohistochemical and clinical behaviors requiring varied treatment strategies. This case report highlights the need for multiple imaging modalities to differentiate among vascular lesions, as well as to better understand the behaviors of these unique lesions.

  7. Plant Vascular Biology 2010

    SciTech Connect

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  8. Pelvic Vascular Malformations

    PubMed Central

    Christenson, Brian M.; Gipson, Matthew G.; Smith, Mitchell T.

    2013-01-01

    Vascular malformations (VMs) comprise a wide spectrum of lesions that are classified by content and flow characteristics. These lesions, occurring in both focal and diffuse forms, can involve any organ and tissue plane and can cause significant morbidity in both children and adults. Since treatment strategy depends on the type of malformation, correct diagnosis and classification of a vascular lesion are crucial. Slow-flow VMs (venous and lymphatic malformations) are often treated by sclerotherapy, whereas fast-flow lesions (arteriovenous malformations) are generally managed with embolization. In addition, some cases of VMs are best treated surgically. This review will present an overview of VMs in the female pelvis as well as a discussion of endovascular therapeutic techniques. PMID:24436563

  9. [Vascular endothelial Barrier Function].

    PubMed

    Ivanov, A N; Puchinyan, D M; Norkin, I A

    2015-01-01

    Endothelium is an important regulator of selective permeability of the vascular wall for different molecules and cells. This review summarizes current data on endothelial barrier function. Endothelial glycocalyx structure, its function and role in the molecular transport and leukocytes migration across the endothelial barrier are discussed. The mechanisms of transcellular transport of macromolecules and cell migration through endothelial cells are reviewed. Special section of this article addresses the structure and function of tight and adherens endothelial junction, as well as their importance for the regulation of paracellular transport across the endothelial barrier. Particular attention is paid to the signaling mechanism of endothelial barrier function regulation and the factors that influence on the vascular permeability.

  10. Vascular trauma historical notes.

    PubMed

    Rich, Norman M

    2011-03-01

    This article provides a brief historical review of treatment of vascular trauma. Although methods for ligation came into use in the second century, this knowledge was lost during the Dark Ages and did not come back until the Renaissance. Many advances in vascular surgery occurred during the Balkan Wars, World War I, and World War II, although without antibiotics and blood banking, the philosophy of life over limb still ruled. Documenting and repairing both arteries and veins became more common during the Korean and Vietnam conflicts. Increased documentation has revealed that the current conflicts have resulted in more arterial injuries than in previous wars, likely because of improved body armor, improvised explosive device attacks, tourniquet use, and improved medical evacuation time. This brief review emphasizes the great value of mentorship and the legacy of the management of arterial and venous injuries to be passed on.

  11. Brain Vascular Imaging Techniques

    PubMed Central

    Laviña, Bàrbara

    2016-01-01

    Recent major improvements in a number of imaging techniques now allow for the study of the brain in ways that could not be considered previously. Researchers today have well-developed tools to specifically examine the dynamic nature of the blood vessels in the brain during development and adulthood; as well as to observe the vascular responses in disease situations in vivo. This review offers a concise summary and brief historical reference of different imaging techniques and how these tools can be applied to study the brain vasculature and the blood-brain barrier integrity in both healthy and disease states. Moreover, it offers an overview on available transgenic animal models to study vascular biology and a description of useful online brain atlases. PMID:28042833

  12. Modeling Cerebral Vascular Injury

    DTIC Science & Technology

    2016-01-01

    Using a pressure gradient to drive the blood flow, and the external pressure induced by a blast wave through the surrounding brain elements, an...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Many numerical models for the brain do not include the vascular structures within the brain and thus...are incapable of predicting damage to the cerebral vasculature. The presence of the vasculature within the brain produces a reinforcing effect and

  13. Teaching Activity-Based Taxicab Geometry

    ERIC Educational Resources Information Center

    Ada, Tuba

    2013-01-01

    This study aimed on the process of teaching taxicab geometry, a non-Euclidean geometry that is easy to understand and similar to Euclidean geometry with its axiomatic structure. In this regard, several teaching activities were designed such as measuring taxicab distance, defining a taxicab circle, finding a geometric locus in taxicab geometry, and…

  14. Teaching Activity-Based Taxicab Geometry

    ERIC Educational Resources Information Center

    Ada, Tuba

    2013-01-01

    This study aimed on the process of teaching taxicab geometry, a non-Euclidean geometry that is easy to understand and similar to Euclidean geometry with its axiomatic structure. In this regard, several teaching activities were designed such as measuring taxicab distance, defining a taxicab circle, finding a geometric locus in taxicab geometry, and…

  15. Vascular Cambium Development

    PubMed Central

    Nieminen, Kaisa; Blomster, Tiina; Helariutta, Ykä; Mähönen, Ari Pekka

    2015-01-01

    Secondary phloem and xylem tissues are produced through the activity of vascular cambium, the cylindrical secondary meristem which arises among the primary plant tissues. Most dicotyledonous species undergo secondary development, among them Arabidopsis. Despite its small size and herbaceous nature, Arabidopsis displays prominent secondary growth in several organs, including the root, hypocotyl and shoot. Together with the vast genetic resources and molecular research methods available for it, this has made Arabidopsis a versatile and accessible model organism for studying cambial development and wood formation. In this review, we discuss and compare the development and function of the vascular cambium in the Arabidopsis root, hypocotyl, and shoot. We describe the current understanding of the molecular regulation of vascular cambium and compare it to the function of primary meristems. We conclude with a look at the future prospects of cambium research, including opportunities provided by phenotyping and modelling approaches, complemented by studies of natural variation and comparative genetic studies in perennial and woody plant species. PMID:26078728

  16. Vascular Lumen Formation

    PubMed Central

    Lammert, Eckhard; Axnick, Jennifer

    2012-01-01

    The vascular system developed early in evolution. It is required in large multicellular organisms for the transport of nutrients, oxygen, and waste products to and from tissues. The vascular system is composed of hollow tubes, which have a high level of complexity in vertebrates. Vasculogenesis describes the de novo formation of blood vessels, e.g., aorta formation in vertebrate embryogenesis. In contrast, angiogenesis is the formation of blood vessels from preexisting ones, e.g., sprouting of intersomitic blood vessels from the aorta. Importantly, the lumen of all blood vessels in vertebrates is lined and formed by endothelial cells. In both vasculogenesis and angiogenesis, lumen formation takes place in a cord of endothelial cells. It involves a complex molecular mechanism composed of endothelial cell repulsion at the cell–cell contacts within the endothelial cell cords, junctional rearrangement, and endothelial cell shape change. As the vascular system also participates in the course of many diseases, such as cancer, stroke, and myocardial infarction, it is important to understand and make use of the molecular mechanisms of blood vessel formation to better understand and manipulate the pathomechanisms involved. PMID:22474612

  17. Exploring Fractal Geometry with Children.

    ERIC Educational Resources Information Center

    Vacc, Nancy Nesbitt

    1999-01-01

    Heightens the awareness of elementary school teachers, teacher educators, and teacher-education researchers of possible applications of fractal geometry with children and, subsequently, initiates discussion about the appropriateness of including this new mathematics in the elementary curriculum. Presents activities for exploring children's…

  18. Teaching Geometry According to Euclid.

    ERIC Educational Resources Information Center

    Hartshorne, Robin

    2000-01-01

    This essay contains some reflections and questions arising from encounters with the text of Euclid's Elements. The reflections arise out of the teaching of a course in Euclidean and non-Euclidean geometry to undergraduates. It is concluded that teachers of such courses should read Euclid and ask questions, then teach a course on Euclid and later…

  19. Generative CAI in Analytical Geometry.

    ERIC Educational Resources Information Center

    Uttal, William R.; And Others

    A generative computer-assisted instruction system is being developed to tutor students in analytical geometry. The basis of this development is the thesis that a generative teaching system can be developed by establishing and then stimulating a simplified, explicit model of the human tutor. The goal attempted is that of a computer environment…

  20. 3DHZETRN: Inhomogeneous Geometry Issues

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.

    2017-01-01

    Historical methods for assessing radiation exposure inside complicated geometries for space applications were limited by computational constraints and lack of knowledge associated with nuclear processes occurring over a broad range of particles and energies. Various methods were developed and utilized to simplify geometric representations and enable coupling with simplified but efficient particle transport codes. Recent transport code development efforts, leading to 3DHZETRN, now enable such approximate methods to be carefully assessed to determine if past exposure analyses and validation efforts based on those approximate methods need to be revisited. In this work, historical methods of representing inhomogeneous spacecraft geometry for radiation protection analysis are first reviewed. Two inhomogeneous geometry cases, previously studied with 3DHZETRN and Monte Carlo codes, are considered with various levels of geometric approximation. Fluence, dose, and dose equivalent values are computed in all cases and compared. It is found that although these historical geometry approximations can induce large errors in neutron fluences up to 100 MeV, errors on dose and dose equivalent are modest (<10%) for the cases studied here.

  1. Foucault pendulum through basic geometry

    NASA Astrophysics Data System (ADS)

    von Bergmann, Jens; von Bergmann, HsingChi

    2007-10-01

    We provide a thorough explanation of the Foucault pendulum that utilizes its underlying geometry on a level suitable for science students not necessarily familiar with calculus. We also explain how the geometrically understood Foucault pendulum can serve as a prototype for more advanced phenomena in physics known as Berry's phase or geometric phases.

  2. Analogical Reasoning in Geometry Education

    ERIC Educational Resources Information Center

    Magdas, Ioana

    2015-01-01

    The analogical reasoning isn't used only in mathematics but also in everyday life. In this article we approach the analogical reasoning in Geometry Education. The novelty of this article is a classification of geometrical analogies by reasoning type and their exemplification. Our classification includes: analogies for understanding and setting a…

  3. Exploring Bundling Theory with Geometry

    ERIC Educational Resources Information Center

    Eckalbar, John C.

    2006-01-01

    The author shows how instructors might successfully introduce students in principles and intermediate microeconomic theory classes to the topic of bundling (i.e., the selling of two or more goods as a package, rather than separately). It is surprising how much students can learn using only the tools of high school geometry. To be specific, one can…

  4. Instructional Identities of Geometry Students

    ERIC Educational Resources Information Center

    Aaron, Wendy Rose; Herbst, Patricio

    2012-01-01

    We inspect the hypothesis that geometry students may be oriented toward how they expect that the teacher will evaluate them as students or otherwise oriented to how they expect that their work will give them opportunities to do mathematics. The results reported here are based on a mixed-methods analysis of twenty-two interviews with high school…

  5. General Relativity: Geometry Meets Physics

    ERIC Educational Resources Information Center

    Thomsen, Dietrick E.

    1975-01-01

    Observing the relationship of general relativity and the geometry of space-time, the author questions whether the rest of physics has geometrical explanations. As a partial answer he discusses current research on subatomic particles employing geometric transformations, and cites the existence of geometrical definitions of physical quantities such…

  6. Exploring Fractal Geometry with Children.

    ERIC Educational Resources Information Center

    Vacc, Nancy Nesbitt

    1999-01-01

    Heightens the awareness of elementary school teachers, teacher educators, and teacher-education researchers of possible applications of fractal geometry with children and, subsequently, initiates discussion about the appropriateness of including this new mathematics in the elementary curriculum. Presents activities for exploring children's…

  7. Generative CAI in Analytical Geometry.

    ERIC Educational Resources Information Center

    Uttal, William R.; And Others

    A generative computer-assisted instruction system is being developed to tutor students in analytical geometry. The basis of this development is the thesis that a generative teaching system can be developed by establishing and then stimulating a simplified, explicit model of the human tutor. The goal attempted is that of a computer environment…

  8. Teaching Geometry According to Euclid.

    ERIC Educational Resources Information Center

    Hartshorne, Robin

    2000-01-01

    This essay contains some reflections and questions arising from encounters with the text of Euclid's Elements. The reflections arise out of the teaching of a course in Euclidean and non-Euclidean geometry to undergraduates. It is concluded that teachers of such courses should read Euclid and ask questions, then teach a course on Euclid and later…

  9. General Relativity: Geometry Meets Physics

    ERIC Educational Resources Information Center

    Thomsen, Dietrick E.

    1975-01-01

    Observing the relationship of general relativity and the geometry of space-time, the author questions whether the rest of physics has geometrical explanations. As a partial answer he discusses current research on subatomic particles employing geometric transformations, and cites the existence of geometrical definitions of physical quantities such…

  10. Improving Student Reasoning in Geometry

    ERIC Educational Resources Information Center

    Wong, Bobson; Bukalov, Larisa

    2013-01-01

    In their years of teaching geometry, Wong and Bukalov realized that the greatest challenge has been getting students to improve their reasoning. Many students have difficulty writing formal proofs--a task that requires a good deal of reasoning. Wong and Bukalov reasoned that the solution was to divide the lessons into parallel tasks, allowing…

  11. Signature geometry and quantum engineering

    NASA Astrophysics Data System (ADS)

    Samociuk, Stefan

    2013-09-01

    As the operating frequency of electromagnetic based devices increase, physical design geometry is playing an ever more important role. Evidence is considered in support of a relationship between the dimensionality of primitive geometric forms, such as transistors, and corresponding electromagnetic coupling efficiency. The industry of electronics is defined as the construction of devices by the patterning of primitive forms to physical materials. Examples are given to show the evolution of these primitives, down to nano scales, are requiring exacting geometry and three dimensional content. Consideration of microwave monolithic integrated circuits,(MMIC), photonics and metamaterials,(MM), support this trend and also add new requirements of strict geometric periodicity and multiplicity. Signature geometries,(SG), are characterized by distinctive attributes and examples are given. The transcendent form transcode algorithm, (TTA) is introduced as a multi dimensional SG and its use in designing photonic integrated circuits and metamaterials is discussed . A creative commons licensed research database, TRANSFORM, containing TTA geometries in OASIS file formats is described. An experimental methodology for using the database is given. Multidimensional SG and extraction of three dimensional cross sections as primitive forms is discussed as a foundation for quantum engineering and the exploitation of phenomena other than the electromagnetic.

  12. Math Sense: Algebra and Geometry.

    ERIC Educational Resources Information Center

    Howett, Jerry

    This book is designed to help students gain the range of math skills they need to succeed in life, work, and on standardized tests; overcome math anxiety; discover math as interesting and purposeful; and develop good number sense. Topics covered in this book include algebra and geometry. Lessons are organized around four strands: (1) skill lessons…

  13. Dielectric flashover with triple point shielding in a coaxial geometry.

    PubMed

    Benwell, A; Kovaleski, S D; Gahl, J

    2007-11-01

    Increasing performance of vacuum insulator barriers is a common goal in pulsed power. Insulating performance is continually being improved while new methods are developed. Triple point shielding techniques have been shown to increase flashover voltage, but the role of cathode versus anode shielding is still not fully understood. Open circuit flashover characteristics were obtained for a coaxial geometry to view the effects of triple point shielding for this geometry. The tests included applying various combinations of triple point shields on zero and +45 degrees insulators. Shielding was tested at the cathode triple point outside of the dielectric and at the anode triple point inside the dielectric. The role of anode versus cathode triple point shielding was examined. Flashover voltage was observed to increase when either a cathode or anode triple point shield was applied; however, adding a shield to both regions lowered the flashover threshold. Both triple point regions were found to be important and dependent on each other for some coaxial geometries.

  14. Geometry in transition: a model of emergent geometry.

    PubMed

    Delgadillo-Blando, Rodrigo; O'Connor, Denjoe; Ydri, Badis

    2008-05-23

    We study a three matrix model with global SO(3) symmetry containing at most quartic powers of the matrices. We find an exotic line of discontinuous transitions with a jump in the entropy, characteristic of a 1st order transition, yet with divergent critical fluctuations and a divergent specific heat with critical exponent alpha=1/2. The low temperature phase is a geometrical one with gauge fields fluctuating on a round sphere. As the temperature increased the sphere evaporates in a transition to a pure matrix phase with no background geometrical structure. Both the geometry and gauge fields are determined dynamically. It is not difficult to invent higher dimensional models with essentially similar phenomenology. The model presents an appealing picture of a geometrical phase emerging as the system cools and suggests a scenario for the emergence of geometry in the early Universe.

  15. Adaptive Geometry Shader Tessellation for Massive Geometry Display

    DTIC Science & Technology

    2015-03-01

    necessary to prepare complex models for use in analysis and visualization tasks. We investigated several avenues for high-speed visualization and worked to...geometry, visualization 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 22 19a. NAME OF RESPONSIBLE...Introduction and Background 1 2. Approach 2 3. Speed Improvements in the Visual Simulation Laboratory 2 4. Ray Tracing 4 5. Sharing Display Technologies

  16. Retinal Vascular Changes are a Marker for Cerebral Vascular Diseases.

    PubMed

    Moss, Heather E

    2015-07-01

    The retinal circulation is a potential marker of cerebral vascular disease because it shares origin and drainage with the intracranial circulation and because it can be directly visualized using ophthalmoscopy. Cross-sectional and cohort studies have demonstrated associations between chronic retinal and cerebral vascular disease, acute retinal and cerebral vascular disease, and chronic retinal vascular disease and acute cerebral vascular disease. In particular, certain qualitative features of retinopathy, retinal artery occlusion, and increased retinal vein caliber are associated with concurrent and future cerebrovascular events. These associations persist after accounting for confounding variables known to be disease-causing in both circulations, which supports the potential use of retinal vasculature findings to stratify individuals with regards to cerebral vascular disease risk.

  17. [Estrogens and vascular thrombosis].

    PubMed

    Colmou, A

    1982-09-01

    The incidence of thromboses among young women has increased with widespread use of oral contraceptives (OCs) due to the significant thromboembolic risk of estrogen. Estrogens intervene at the vascular, platelet, and plasma levels as a function of hormonal variations in the menstrual cycle, increasing the aggregability of the platelets and thrombocytes, accelerating the formation of clots, and decreasing the amount of antithrombin III. Estrogens are used in medicine to treat breast and prostate cancers and in gynecology to treat dysmenorrhea, during the menopause, and in contraception. Smoking, cardiovascular disease and hypertension, hypercholesterolemia, and diabetes are contraindicators to estrogen use. Thrombosis refers to blockage of a blood vessel by a clot or thrombus. Before estrogens are prescribed, a history of phlebitis, obesity, hyperlipidemia, or significant varicosities should be ruled out. A history of venous thrombosis, hyperlipoproteinemia, breast nodules, serious liver condition, allergies to progesterone, and some ocular diseases of vascular origin definitively rule out treatment with estrogens. A family history of infarct, embolism, diabetes, cancer, or vascular accidents at a young age signals a need for greater patient surveillance. All patients receiving estrogens should be carefully observed for signs of hypertension, hypercholesterolemia, hypercoagulability, or diabetes. Nurses have a role to play in carefully eliciting the patient's history of smoking, personal and family medical problems, and previous and current laboratory results, as well as in informing the patients of the risks and possible side effects of OCs, especially for those who smoke. Nurses should educate patients receiving estrogens, especially those with histories of circulatory problems, to avoid standing in 1 position for prolonged periods, avoid heat which is a vasodilator, avoid obesity, excercise regularly, wear appropriate footgear, and follow other good health

  18. Scaling laws of vascular trees: of form and function.

    PubMed

    Kassab, Ghassan S

    2006-02-01

    The branching pattern and vascular geometry of biological tree structure are complex. Here we show that the design of all vascular trees for which there exist morphometric data in the literature (e.g., coronary, pulmonary; vessels of various skeletal muscles, mesentery, omentum, and conjunctiva) obeys a set of scaling laws that are based on the hypothesis that the cost of construction of the tree structure and operation of fluid conduction is minimized. The laws consist of scaling relationships between 1) length and vascular volume of the tree, 2) lumen diameter and blood flow rate in each branch, and 3) diameter and length of vessel branches. The exponent of the diameter-flow rate relation is not necessarily equal to 3.0 as required by Murray's law but depends on the ratio of metabolic to viscous power dissipation of the tree of interest. The major significance of the present analysis is to show that the design of various vascular trees of different organs and species can be deduced on the basis of the minimum energy hypothesis and conservation of energy under steady-state conditions. The present study reveals the similarity of nature's scaling laws that dictate the design of various vascular trees and the underlying physical and physiological principles.

  19. Impact of Endografting on the Thoracic Aortic Anatomy: Comparative Analysis of the Aortic Geometry before and after the Endograft Implantation

    SciTech Connect

    Midulla, Marco; Moreno, Ramiro; Negre-Salvayre, Anne; Nicoud, Franc; Pruvo, Jean Pierre; Haulon, Stephan; Rousseau, Hervé

    2013-03-13

    PurposeAlthough the widespread acceptance of thoracic endovascular aortic repair (TEVAR) as a first-line treatment option for a multitude of thoracic aortic diseases, little is known about the consequences of the device implantation on the native aortic anatomy. We propose a comparative analysis of the pre- and postoperative geometry on a clinical series of patients and discuss the potential clinical implicationsMethodsCT pre- and postoperative acquisitions of 30 consecutive patients treated by TEVAR for different pathologies (20 thoracic aortic aneurysms, 6 false aneurysms, 3 penetrating ulcers, 1 traumatic rupture) were used to model the vascular geometry. Pre- and postoperative geometries were compared for each patient by pairing and matching the 3D models. An implantation site was identified, and focal differences were detected and described.ResultsSegmentation of the data sets was successfully performed for all 30 subjects. Geometry differences between the pre- and postoperative meshes were depicted in 23 patients (76 %). Modifications at the upper implantation site were detected in 14 patients (47 %), and among them, the implantation site involved the arch (Z0–3) in 11 (78 %).ConclusionModeling the vascular geometry on the basis of imaging data offers an effective tool to perform patient-specific analysis of the vascular geometry before and after the treatment. Future studies will evaluate the consequences of these changes on the aortic function.

  20. That's Life!—The Geometry of π Electron Clouds

    NASA Astrophysics Data System (ADS)

    Hameroff, Stuart

    The following sections are included: * What is Life? * Protoplasm: Water, Gels and Solid Non-polar Regions * Van der Waals Forces * Kekule's Dream and π Electron Resonance * Proteins—The Engines of Life * Anesthesia and Consciousness * Cytoskeletal Geometry: Microtubules, Cilia and Flagella * Decoherence * Conclusion * Acknowledgements * References * Appendix 1 Quantum computing in DNA ΰ electron stacks * Appendix 2 Penrose-Hameroff Orch OR model

  1. [Cervical vascular penetrating trauma].

    PubMed

    Etl, S; Hafer, G; Mundinger, A

    2000-01-01

    The case of a 25 year old male with a stab wound of common carotid artery and the internal jugular vein is reported. He was admitted in severe hemorrhagic shock and immediately treated successfully by arterial reconstruction by means of a venous patch. Mild, declining neurological deficits correlated in magnetic resonance imaging with disturbances in the perfusion area of the medial cerebral artery. A survey of the literature shows that the fast repair of the carotid artery is clearly to be given preference to ligature. First can be executed successfully in exceptional emergency cases also by non-carotid surgeons, if basic vascular-surgical techniques are controlled.

  2. Beyond core knowledge: Natural geometry

    PubMed Central

    Spelke, Elizabeth; Lee, Sang Ah; Izard, Véronique

    2010-01-01

    For many centuries, philosophers and scientists have pondered the origins and nature of human intuitions about the properties of points, lines, and figures on the Euclidean plane, with most hypothesizing that a system of Euclidean concepts either is innate or is assembled by general learning processes. Recent research from cognitive and developmental psychology, cognitive anthropology, animal cognition, and cognitive neuroscience suggests a different view. Knowledge of geometry may be founded on at least two distinct, evolutionarily ancient, core cognitive systems for representing the shapes of large-scale, navigable surface layouts and of small-scale, movable forms and objects. Each of these systems applies to some but not all perceptible arrays and captures some but not all of the three fundamental Euclidean relationships of distance (or length), angle, and direction (or sense). Like natural number (Carey, 2009), Euclidean geometry may be constructed through the productive combination of representations from these core systems, through the use of uniquely human symbolic systems. PMID:20625445

  3. Geometry-invariant resonant cavities

    NASA Astrophysics Data System (ADS)

    Liberal, I.; Mahmoud, A. M.; Engheta, N.

    2016-03-01

    Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modelling to everyday life devices. The eigenfrequencies of conventional cavities are a function of their geometry, and, thus, the size and shape of a resonant cavity is selected to operate at a specific frequency. Here we demonstrate theoretically the existence of geometry-invariant resonant cavities, that is, resonators whose eigenfrequencies are invariant with respect to geometrical deformations of their external boundaries. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, such as epsilon-near-zero media, which enable decoupling of the temporal and spatial field variations in the lossless limit. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices.

  4. Tin clusters adopt prolate geometries

    NASA Astrophysics Data System (ADS)

    Shvartsburg, Alexandre A.; Jarrold, Martin F.

    1999-08-01

    We have characterized the structures of Snn cations up to n=68 using ion mobility measurements. Up to n~35, tin clusters track the prolate growth pattern previously found for Sin and Gen. However, the detailed size-dependent variations start deviating from those observed for Sin above n=14 and Gen above n=21. Over the n~35-65 size range, tin clusters gradually rearrange towards near-spherical geometries, passing through several intermediate structural families. Two or three isomers are resolved for some sizes in the n=18-49 range. The observed geometries are independent of the He buffer gas temperature between 78 and 378 K and are not affected by collisional annealing.

  5. Geometry-invariant resonant cavities

    PubMed Central

    Liberal, I.; Mahmoud, A. M.; Engheta, N.

    2016-01-01

    Resonant cavities are one of the basic building blocks in various disciplines of science and technology, with numerous applications ranging from abstract theoretical modelling to everyday life devices. The eigenfrequencies of conventional cavities are a function of their geometry, and, thus, the size and shape of a resonant cavity is selected to operate at a specific frequency. Here we demonstrate theoretically the existence of geometry-invariant resonant cavities, that is, resonators whose eigenfrequencies are invariant with respect to geometrical deformations of their external boundaries. This effect is obtained by exploiting the unusual properties of zero-index metamaterials, such as epsilon-near-zero media, which enable decoupling of the temporal and spatial field variations in the lossless limit. This new class of resonators may inspire alternative design concepts, and it might lead to the first generation of deformable resonant devices. PMID:27010103

  6. Experimental Probes of Spacetime Geometries

    SciTech Connect

    Hewett, JoAnne

    2009-07-10

    A novel approach which exploits the geometry of extra spacetime dimensions has been recently proposed as a means to resolving the hierarchy problem, i.e., the large energy gap that separates the electroweak scale and the scale where gravity becomes strong. I will describe two models of this type: one where the apparent hierarchy is generated by a large volume for the extra dimensions, and a second where the observed hierarchy is created by an exponential warp factor which arises from a non-factorizable geometry. Both scenarios have concrete and distinctive phenomenological tests at the TeV scale. I will describe the classes of low-energy and collider signatures for both models, summarize the present constraints from experiment, and examine the ability of future accelerators to probe their parameter space.

  7. Information geometry of Boltzmann machines.

    PubMed

    Amari, S; Kurata, K; Nagaoka, H

    1992-01-01

    A Boltzmann machine is a network of stochastic neurons. The set of all the Boltzmann machines with a fixed topology forms a geometric manifold of high dimension, where modifiable synaptic weights of connections play the role of a coordinate system to specify networks. A learning trajectory, for example, is a curve in this manifold. It is important to study the geometry of the neural manifold, rather than the behavior of a single network, in order to know the capabilities and limitations of neural networks of a fixed topology. Using the new theory of information geometry, a natural invariant Riemannian metric and a dual pair of affine connections on the Boltzmann neural network manifold are established. The meaning of geometrical structures is elucidated from the stochastic and the statistical point of view. This leads to a natural modification of the Boltzmann machine learning rule.

  8. Dynamics, Spectral Geometry and Topology

    SciTech Connect

    Burghelea, Dan

    2011-02-10

    The paper is an informal report on joint work with Stefan Haller on Dynamics in relation with Topology and Spectral Geometry. By dynamics one means a smooth vector field on a closed smooth manifold; the elements of dynamics of concern are the rest points, instantons and closed trajectories. One discusses their counting in the case of a generic vector field which has some additional properties satisfied by a still very large class of vector fields.

  9. Core foundations of abstract geometry.

    PubMed

    Dillon, Moira R; Huang, Yi; Spelke, Elizabeth S

    2013-08-27

    Human adults from diverse cultures share intuitions about the points, lines, and figures of Euclidean geometry. Do children develop these intuitions by drawing on phylogenetically ancient and developmentally precocious geometric representations that guide their navigation and their analysis of object shape? In what way might these early-arising representations support later-developing Euclidean intuitions? To approach these questions, we investigated the relations among young children's use of geometry in tasks assessing: navigation; visual form analysis; and the interpretation of symbolic, purely geometric maps. Children's navigation depended on the distance and directional relations of the surface layout and predicted their use of a symbolic map with targets designated by surface distances. In contrast, children's analysis of visual forms depended on the size-invariant shape relations of objects and predicted their use of the same map but with targets designated by corner angles. Even though the two map tasks used identical instructions and map displays, children's performance on these tasks showed no evidence of integrated representations of distance and angle. Instead, young children flexibly recruited geometric representations of either navigable layouts or objects to interpret the same spatial symbols. These findings reveal a link between the early-arising geometric representations that humans share with diverse animals and the flexible geometric intuitions that give rise to human knowledge at its highest reaches. Although young children do not appear to integrate core geometric representations, children's use of the abstract geometry in spatial symbols such as maps may provide the earliest clues to the later construction of Euclidean geometry.

  10. Acute cerebral vascular accident associated with hyperperfusion.

    PubMed

    Soin, J S; Burdine, J A

    1976-01-01

    Cerebral radionuclide angiography can demonstrate decreased or normal radioactivity in the affected region during the arterial phase in patients who have sustained a cerebral vascular accident and thus enhances the diagnostic specificity of the static brain image. In an occasional patient, however, a seemingly paradoxical pattern of regional hyperperfusion with a return to normal or subnormal perfusion following the acute phase has been observed. This phenomenon, called "luxury perfusion," has been defined using intra-arterial 133Xe for semiquantitative cerebral blood flow measurements and should be kept in mind as a potentially misleading cerebral imaging pattern.

  11. The unassigned distance geometry problem

    DOE PAGES

    Duxbury, P. M.; Granlund, L.; Gujarathi, S. R.; ...

    2015-11-19

    Studies of distance geometry problems (DGP) have focused on cases where the vertices at the ends of all or most of the given distances are known or assigned, which we call assigned distance geometry problems (aDGPs). In this contribution we consider the unassigned distance geometry problem (uDGP) where the vertices associated with a given distance are unknown, so the graph structure has to be discovered. uDGPs arises when attempting to find the atomic structure of molecules and nanoparticles using X-ray or neutron diffraction data from non-crystalline materials. Rigidity theory provides a useful foundation for both aDGPs and uDGPs, though itmore » is restricted to generic realizations of graphs, and key results are summarized. Conditions for unique realization are discussed for aDGP and uDGP cases, build-up algorithms for both cases are described and experimental results for uDGP are presented.« less

  12. Geometry of statistical target detection

    NASA Astrophysics Data System (ADS)

    Basener, William F.; Allen, Brian; Bretney, Kristen

    2017-01-01

    This paper presents an investigation into the underlying geometry and performance of various statistical target detection algorithms for hyperspectral imagery, presents results from algorithm testing, and investigates general trends and observable principles for understanding performance. Over the variety of detection algorithms, there is no universally best performing algorithm. In our test, often top performing algorithms on one class of targets obtain mediocre results on another class of targets. However, there are two clear trends: quadratic detectors such as ACE generally performed better than linear ones especially for subpixel targets (our top 15 scoring algorithms were quadratic detectors), and using anomaly detection to prescreen image spectra improved the performance of the quadratic detectors (8 of our top 9 scoring algorithms using anomaly prescreening). We also demonstrate that simple combinations of detection algorithms can outperform single algorithms in practice. In our derivation of detection algorithms, we provide exposition on the underlying mathematical geometry of the algorithms. That geometry is then used to investigate differences in algorithm performance. Tests are conducted using imagery and targets freely available online. The imagery was acquired over Cooke City, Montana, a small town near Yellowstone National Park, using the HyMap V/NIR/SWIR sensor with 126 spectral bands. There are three vehicle and four fabric targets located in the town and surrounding area.

  13. Hyperbolic geometry of complex networks.

    PubMed

    Krioukov, Dmitri; Papadopoulos, Fragkiskos; Kitsak, Maksim; Vahdat, Amin; Boguñá, Marián

    2010-09-01

    We develop a geometric framework to study the structure and function of complex networks. We assume that hyperbolic geometry underlies these networks, and we show that with this assumption, heterogeneous degree distributions and strong clustering in complex networks emerge naturally as simple reflections of the negative curvature and metric property of the underlying hyperbolic geometry. Conversely, we show that if a network has some metric structure, and if the network degree distribution is heterogeneous, then the network has an effective hyperbolic geometry underneath. We then establish a mapping between our geometric framework and statistical mechanics of complex networks. This mapping interprets edges in a network as noninteracting fermions whose energies are hyperbolic distances between nodes, while the auxiliary fields coupled to edges are linear functions of these energies or distances. The geometric network ensemble subsumes the standard configuration model and classical random graphs as two limiting cases with degenerate geometric structures. Finally, we show that targeted transport processes without global topology knowledge, made possible by our geometric framework, are maximally efficient, according to all efficiency measures, in networks with strongest heterogeneity and clustering, and that this efficiency is remarkably robust with respect to even catastrophic disturbances and damages to the network structure.

  14. Vascular Distribution of Nanomaterials

    PubMed Central

    Stapleton, Phoebe A.; Nurkiewicz, Timothy R.

    2014-01-01

    Once considered primarily occupational, novel nanotechnology innovation and application has led to widespread domestic use and intentional biomedical exposures. With these exciting advances, the breadth and depth of toxicological considerations must also be expanded. The vascular system interacts with every tissue in the body, striving to homeostasis. Engineered nanomaterials (ENM) have been reported to distribute in many different organs and tissues. However, these observations have tended to use approaches requiring tissue homogenization and/or gross organ analyses. These techniques, while effective in establishing presence, preclude an exact determination of where ENM are deposited within a tissue. It is necessary to identify this exact distribution and deposition of ENM throughout the cardiovascular system, with respect to vascular hemodynamics and in vivo/ in vitro ENM modifications taken into account if nanotechnology is to achieve its full potential. Distinct levels of the vasculature will first be described as individual compartments. Then the vasculature will be considered as a whole. These unique compartments and biophysical conditions will be discussed in terms of their propensity to favor ENM deposition. Understanding levels of the vasculature will also be discussed. Ultimately, future studies must verify the mechanisms speculated on and presented herein. PMID:24777845

  15. History of vascular access.

    PubMed

    Dudrick, Stanley J

    2006-01-01

    Milestones in the history of the development of vascular access and the subsequent advances in practical clinical applications of the knowledge, techniques, technology, and experience to the beneficial management of a variety of patients are described. The original achievements are presented and briefly discussed primarily, but not exclusively, in relationship to the successful development of parenteral nutrition (PN). Beginning with the discovery of the circulation of blood, landmark events, resulting from astute observations, experimentation, and ingenious technological advances, are summarized or outlined chronologically over the past 4 centuries, with emphasis on the many recent accomplishments of basic and clinical scientists during the past 6 decades. Brief descriptions of several seminal contributions to safe and effective IV access, management, and therapy acknowledge and recognize the historical highlights that have allowed a complex and potentially hazardous therapeutic modality to evolve into a commonly applied useful adjunct to our current inpatient and outpatient armamentarium. A comprehensive list of references documents the highlights of the development of vascular access for the student of history.

  16. Tumoral and Choroidal Vascularization

    PubMed Central

    Jost, Maud; Maillard, Catherine; Lecomte, Julie; Lambert, Vincent; Tjwa, Marc; Blaise, Pierre; Alvarez Gonzalez, Maria-Luz; Bajou, Khalid; Blacher, Silvia; Motte, Patrick; Humblet, Chantal; Defresne, Marie Paule; Thiry, Marc; Frankenne, Francis; Gothot, André; Carmeliet, Peter; Rakic, Jean-Marie; Foidart, Jean-Michel; Noël, Agnès

    2007-01-01

    An adequate balance between serine proteases and their plasminogen activator inhibitor-1 (PAI-1) is critical for pathological angiogenesis. PAI-1 deficiency in mice is associated with impaired choroidal neovascularization (CNV) and tumoral angiogenesis. In the present work, we demonstrate unexpected differences in the contribution of bone marrow (BM)-derived cells in these two processes regulated by PAI-1. PAI-1−/− mice grafted with BM-derived from wild-type mice were able to support laser-induced CNV formation but not skin carcinoma vascularization. Engraftment of irradiated wild-type mice with PAI-1−/− BM prevented CNV formation, demonstrating the crucial role of PAI-1 delivered by BM-derived cells. In contrast, the transient infiltration of tumor transplants by local PAI-1-producing host cells rather than by BM cells was sufficient to rescue tumor growth and angiogenesis in PAI-1-deficient mice. These data identify PAI-1 as a molecular determinant of a local permissive soil for tumor angiogenesis. Altogether, the present study demonstrates that different cellular mechanisms contribute to PAI-1-regulated tumoral and CNV. PAI-1 contributes to BM-dependent choroidal vascularization and to BM-independent tumor growth and angiogenesis. PMID:17717143

  17. Anaesthesia for vascular emergencies.

    PubMed

    Ellard, L; Djaiani, G

    2013-01-01

    Patients presenting with vascular emergencies including acute aortic syndrome, ruptured thoracic or abdominal aortic aneurysms, thoracic aortic trauma and acute lower limb ischaemia have a high risk of peri-operative morbidity and mortality. Although anatomical suitability is not universal, endovascular surgery may improve mortality and the results of ongoing randomised controlled trials are awaited. Permissive hypotension pre-operatively should be the standard of care with the systolic blood pressure kept to 50-100 mmHg as long as consciousness is maintained. The benefit of local anaesthesia over general anaesthesia is not definitive and this decision should be tailored for a given patient and circumstance. Cerebrospinal fluid drainage for prevention of paraplegia is often impractical in the emergency setting and is not backed by strong evidence; however, it should be considered postoperatively if symptoms develop. We discuss the pertinent anaesthetic issues when a patient presents with a vascular emergency and the impact that endovascular repair has on anaesthetic management. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.

  18. Vascular-derived kinins and local control of vascular tone.

    PubMed

    Nolly, H; Damiani, M T; Miatello, R

    1994-08-01

    The vascular wall itself, through a complex interplay of endocrine, neurocrine and autoparacrine mechanisms, plays an active role in vascular homeostasis. The endothelial cell senses humoral and hemodynamic changes and responds by secreting a variety of metabolically active substances that act locally causing either vasodilatation or vasoconstriction. Kallikrein (KK) and the mRNA for KK are present in arteries and veins. Vascular KK releases kinins from kininogen which circulate in plasma and is also present in vascular tissue. Vascular-derived kinins induce vasodilatation through the release of endothelial compounds (prostacyclin, EDRFs and cytochrome P-450). Disturbance in the delicate balance between vasodilators and vasoconstrictors may play a role in the development of hypertension. Vascular kallikrein (VKK) was significantly (P < 0.05) elevated after 2 weeks of development of renovascular and mineralocorticoid hypertension, and blood pressure was only slightly elevated. However, VKK decreased in both experimental models when blood pressure was increased. It is possible that the increase in VKK in the early stages resulted in increased local vasodilatory activity, thus counteracting the rise in blood pressure. As hypertension developed, KK was significantly decreased in arteries. The decrease in arterial KK during established hypertension is most likely secondary to high blood pressure. When the endothelium is damaged by high blood pressure, diabetes, excessive LDL cholesterol or cigarette smoking, a net imbalance favoring vasoconstriction, proliferation and migration of cells and increased lipid deposition predisposes to specific vascular diseases. Converting enzyme inhibitors (CEI) blunt the proliferative response of vascular smooth muscle cells after endothelial injury. The cardiovascular protective effects of CEI are mediated in part by the antihypertrophic, antihyperplastic and antithrombotic effects of kinins. The vascular kallikrein-kinin system has a

  19. Remote-controlled vascular interventional surgery robot.

    PubMed

    Wang, Tianmiao; Zhang, Dapeng; Da, Liu

    2010-06-01

    Conventional vascular interventional surgery (VIS) is manually performed under fluoroscopic guidance, requiring lead protection for the surgeons. A remote-control vascular interventional surgery robot (VISR) which can remotely, safely and precisely perform VIS would have clear advantages. Our robot adopts a master-slave structure. The surgeon sits at the master site, sending controlling instructions to the robot fixed at the slave site, then the robot translates these instructions into catheter motion. The robotic mechanism consists of a supporting manipulator and a catheter navigator; the former adjusts the robot's spatial position, while the latter controls the translation and rotation of the catheter. A 3D vascular model is reconstructed so that the surgeon can perform surgical planning easily. In addition, the tactile force between catheter tip and blood vessel is measured, which prevents the surgeon damaging delicate vessels. In glass model and animal experiments, the surgeon remotely controlled VISR, which inserted a catheter into predefined targets, and the robotic surgery time was measured. The robot was initially tested on a transparent glass vascular model. Under robotic manipulation, the catheter can enter an arbitrary branch of the vascular model and catheter motion can meet the requirements of clinical VIS. Then robotic surgery was performed successfully in an adult dog. Surgery time to access each of the five targets, viz. renal artery, left atrium, right atrium, left ventricle and right ventricle, was measured. Compared with conventional manual surgery, robotic surgery time is a little longer. The experiments show the feasibility and safety of the VISR to facilitate navigation, position precisely and control catheters to specific regions. The VISR system offers surgeon radiation safety and minimizes surgeon-based error. (c) 2010 John Wiley & Sons, Ltd.

  20. Vascular cognitive impairment and dementia

    PubMed Central

    Gorelick, Philip B.; Counts, Scott E.; Nyenhuis, David

    2016-01-01

    Vascular contributions to cognitive impairment are receiving heightened attention as potentially modifiable factors for dementias of later life. These factors have now been linked not only to vascular cognitive disorders but also Alzheimer’s disease. In this chapter we review 3 related topics that address vascular contributions to cognitive impairment: 1. vascular pathogenesis and mechanisms; 2. neuropsychological and neuroimaging phenotypic manifestations of cerebrovascular disease; and 3. prospects for prevention of cognitive impairment of later life based on cardiovascular and stroke risk modification.1 PMID:26704177

  1. Mesoscopic Modeling of Thrombus Formation and Growth: Platelet Deposition in Complex Geometries

    NASA Astrophysics Data System (ADS)

    Yazdani, Alireza; Karniadakis, George

    2014-11-01

    Haemodynamics and blood rheology are important contributing factors to thrombus formation at a vulnerable vessel wall, and adhesion of platelets to a vascular surface, particularly in regions of flow stagnation, recirculation and reattachment is significantly important in formation of thrombi. For example, haemodynamic micro-environment can have effects on thrombosis inside the atherosclerotic plaques and aneurysms. To study these effects, we have developed and validated a model for platelet aggregation in blood flow using Dissipative Particle Dynamics (DPD) method. In this model platelets are considered as single DPD particles interacting with each other via Morse potential once activated. We assign an activation delay time to each platelet such that they remain passive during that time. We investigate the effect of different geometries on platelet aggregation by considering arterial stenosis at different levels of occlusion, and aneurysms of different shapes and sizes. The results show a marked increase in platelet aggregation within the boundaries of deceleration zone by increasing the degree of stenosis. Further, we observe enhanced platelet margination and wall deposition in the presence of red blood cells.

  2. Network geometry with flavor: From complexity to quantum geometry.

    PubMed

    Bianconi, Ginestra; Rahmede, Christoph

    2016-03-01

    Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d-dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s=-1,0,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d. In d=1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d>1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t. Interestingly the NGF remains fully classical but its

  3. Network geometry with flavor: From complexity to quantum geometry

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Rahmede, Christoph

    2016-03-01

    Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but

  4. The Effect of Geometry Instruction with Dynamic Geometry Software; GeoGebra on Van Hiele Geometry Understanding Levels of Students

    ERIC Educational Resources Information Center

    Kutluca, Tamer

    2013-01-01

    The aim of this study is to investigate the effect of dynamic geometry software GeoGebra on Van Hiele geometry understanding level of students at 11th grade geometry course. The study was conducted with pre and posttest control group quasi-experimental method. The sample of the study was 42 eleventh grade students studying in the spring term of…

  5. Geometry in the mechanics of origami

    NASA Astrophysics Data System (ADS)

    Dias, Marcelo A.; Santangelo, Christian D.

    2012-02-01

    We present a mechanical model for curved fold origami in which the bending energies of developable regions are balanced with a phenomenological energy for the crease. The latter energy comes into play as a source of geometric frustration, allowing us to study shape formation by prescribing crease patterns. For a single fold annular configuration, we show how geometry forces a symmetry breaking of the ground state by increasing the width of the ribbon. We extend our model to study multiple fold structures, where we derive geometrical constraints that can be written as recursive relations to build the surface from valley to mountain, and so on. We also suggest a mechanical model for single vertex folds, mapping this problem to an elastica on the sphere.

  6. Simulating Irregular Source Geometries for Ionian Plumes

    SciTech Connect

    McDoniel, W. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.

    2011-05-20

    Volcanic plumes on Io respresent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D Direct Simulation Monte Carlo (DSMC) method is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. A rectangular slit and a semicircular half annulus are simulated to illustrate general principles, especially the effects of vent curvature on deposition ring structure. Then two possible models for the giant plume Pele are presented. One is a curved line source corresponding to an IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire caldera. The former is seen to produce the features seen in observations of Pele's ring, but with an error in orientation. The latter corrects the error in orientation, but loses some structure. A hybrid simulation of 3D slit flow is also discussed.

  7. Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs.

    PubMed

    Elomaa, Laura; Yang, Yunzhi Peter

    2017-01-10

    There is a great need for engineered vascular grafts among patients with cardiovascular diseases who are in need of bypass therapy and lack autologous healthy blood vessels. In addition, because of the severe worldwide shortage of organ donors, there is an increasing need for engineered vascularized tissue constructs as an alternative to organ transplants. Additive manufacturing (AM) offers great advantages and flexibility of fabrication of cell-laden, multimaterial, and anatomically shaped vascular grafts and vascularized tissue constructs. Various inkjet-, extrusion-, and photocrosslinking-based AM techniques have been applied to the fabrication of both self-standing vascular grafts and porous, vascularized tissue constructs. This review discusses the state-of-the-art research on the use of AM for vascular applications and the key criteria for biomaterials in the AM of both acellular and cellular constructs. We envision that new smart printing materials that can adapt to their environment and encourage rapid endothelialization and remodeling will be the key factor in the future for the successful AM of personalized and dynamic vascular tissue applications.

  8. Development and Application of Agglomerated Multigrid Methods for Complex Geometries

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.

    2010-01-01

    We report progress in the development of agglomerated multigrid techniques for fully un- structured grids in three dimensions, building upon two previous studies focused on efficiently solving a model diffusion equation. We demonstrate a robust fully-coarsened agglomerated multigrid technique for 3D complex geometries, incorporating the following key developments: consistent and stable coarse-grid discretizations, a hierarchical agglomeration scheme, and line-agglomeration/relaxation using prismatic-cell discretizations in the highly-stretched grid regions. A signi cant speed-up in computer time is demonstrated for a model diffusion problem, the Euler equations, and the Reynolds-averaged Navier-Stokes equations for 3D realistic complex geometries.

  9. 219 vascular fellows' perception of the future of vascular surgery.

    PubMed

    Hingorani, Anil P; Ascher, Enrico; Marks, Natalie; Shiferson, Alexander; Puggioni, Alessandra; Tran, Victor; Patel, Nirav; Jacob, Theresa

    2009-01-01

    In an attempt to identify the fellows' concerns about the future of the field of vascular surgery, we conducted a survey consisting of 22 questions at an annual national meeting in March from 2004 to 2007. In order to obtain accurate data, all surveys were kept anonymous. The fellows were asked (1) what type of practice they anticipated they would be in, (2) what the new training paradigm for fellows should be, (3) to assess their expectation of the needed manpower with respect to the demand for vascular surgeons, (4) what were major threats to the future of vascular surgery, (5) whether they had heard of and were in favor of the American Board of Vascular Surgery (ABVS), (6) who should be able to obtain vascular privileges, and (7) about their interest in an association for vascular surgical trainees. Of 273 attendees, 219 (80%) completed the survey. Males made up 87% of those surveyed, and 60% were between the ages of 31 and 35 years. Second-year fellows made up 82% of those surveyed. Those expecting to join a private, academic, or mixed practice made up 35%, 28%, and 20% of the respondents, respectively, with 71% anticipating entering a 100% vascular practice. Forty percent felt that 5 years of general surgery with 2 years of vascular surgery should be the training paradigm, while 45% suggested 3 and 3 years, respectively. A majority, 79%, felt that future demand would exceed the available manpower, while 17% suggested that manpower would meet demand. The major challenges to the future of vascular surgery were felt to be competition from cardiology (82%) or radiology (30%) and lack of an independent board (29%). Seventeen percent were not aware of the ABVS, and only 2% were against it; 71% suggested that vascular privileges be restricted to board-certified vascular surgeons. Seventy-six percent were interested in forming an association for vascular trainees to address the issues of the future job market (67%), endovascular training during fellowship (56

  10. Vascular anatomy of the spinal cord

    SciTech Connect

    Thron, A.K.

    1988-01-01

    The book summarizes the anatomic guidelines of external blood supply to the spinal cord. The basic principles of arterial supply and venous drainage are illustrated by explicit schemes for quick orientation. In the first part of the book, systematic radiologic-anatomic investigations of the superficial and deep vessels of all segments of the spinal cord are introduced. The microvascular morphology is portrayed by numerous microradiographic sections in all three dimensions without overshadowing. The three-dimensional representation of the vascular architecture illustrates elementary outlines and details of arterial territories, anastomotic cross-linking as well as the capillary system, particularly the hitherto unknown structure of the medullary venous system with its functionally important anastomoses and varying regional structures. These often now radiologic-anatomic findings are discussed as to their functional and pathophysiologic impact and constitute the basic on which to improve one's understanding of vascular syndromes of the spinal cord.

  11. A Whirlwind Tour of Computational Geometry.

    ERIC Educational Resources Information Center

    Graham, Ron; Yao, Frances

    1990-01-01

    Described is computational geometry which used concepts and results from classical geometry, topology, combinatorics, as well as standard algorithmic techniques such as sorting and searching, graph manipulations, and linear programing. Also included are special techniques and paradigms. (KR)

  12. Different pattern of carotid and myocardial changes according to left ventricular geometry in hypertensive patients.

    PubMed

    Park, H E; Youn, T-J; Kim, H-K; Kim, Y-J; Sohn, D-W; Oh, B-H; Park, Y-B; Cho, G-Y

    2013-01-01

    The relation between left ventricular (LV) hypertrophy and LV function is well known. However, less is known about the vascular changes influenced by LV geometry. We sought to investigate the relationship of LV geometry to carotid arterial and LV function. A total of 476 hypertensive patients were prospectively recruited. All subjects underwent echocardiography and carotid ultrasound. LV geometry is categorized into four groups according to relative wall thickness (RWT) and LV mass index (LVMI). Concentric LV geometry was associated with increased carotid intima-media thickness (IMT), β-stiffness, and lower strain. All of the carotid parameters showed a stepwise change according to RWT of LV, whereas LV function was worse in hypertrophic geometry, as reflected by significantly lower systolic mitral annular velocity, higher left atrial volume index and E/E' ratio (P<0.001). By multivariate analysis after adjustment for clinical and laboratory parameters, IMT was independently associated with RWT, whereas myocardial function was independently associated with LVMI. Carotid arterial function and IMT showed worse values in concentric geometry, whereas LV systolic and diastolic function were worse in hypertrophic geometry, suggesting a discrepancy between carotid arterial and LV function in hypertensive patients.

  13. Methods for the correction of vascular artifacts in PET O-15 water brain-mapping studies

    SciTech Connect

    Chen, K.; Reiman, E.M. |; Lawson, M.; Yun, L.S.; Bandy, D.

    1996-12-01

    While positron emission tomographic (PET) measurements of regional cerebral blood flow (rCBF) can be used to map brain regions that are involved in normal and pathological human behaviors, measurements in the anteromedial temporal lobe can be confounded by the combined effects of radiotracer activity in neighboring arteries and partial-volume averaging. The authors now describe two simple methods to address this vascular artifact. One method utilizes the early frames of a dynamic PET study, while the other method utilizes a coregistered magnetic resonance image (MRI) to characterize the vascular region of interest (VROI). Both methods subsequently assign a common value to each pixel in the VROI for the control scan and the activation scan. To study the vascular artifact and to demonstrate the ability of the proposed methods correcting the vascular artifact, four dynamic PET scans were performed in a single subject during the same behavioral state. For each of the four scans, a vascular scan containing vascular activity was computed as the summation of the images acquired 0--60 s after radiotracer administrations, and a control scan containing minimal vascular activity was computed as the summation of the images acquired 20--80 s after radiotracer administration. t-score maps calculated from the four pairs of vascular and control scans were used to characterize regional blood flow differences related to vascular activity before and after the applications of each vascular artifact correction method. Both methods eliminated the observed differences in vascular activity, as well as the vascular artifact observed in the anteromedial temporal lobes. Using PET data from a study of normal human emotion, these methods permitted us to identify rCBF increases in the anteromedial temporal lobe free from the potentially confounding, combined effects of vascular activity and partial-volume averaging.

  14. Vascular Surgical Emergencies: How will Future Surgeons be Trained?

    PubMed Central

    Richards, T; Pittathankal, AA; Kahn, PY; Magee, TR; Lewis, MH; Galland, RB

    2006-01-01

    INTRODUCTION We wished to assess whether pattern and impact of emergency vascular surgical referrals has altered since a previous study in 1990. Following introduction of shift working patterns, we wished to assess how these changes may affect vascular training and vascular on-call cover. PATIENTS AND METHODS Prospective survey of emergency vascular referrals at two district general hospitals (DGH-R and DGH-L) in 2003. DGH-R received only regional referrals whereas DGH-L also received ‘next day’ referrals from a smaller hospital. Results were compared between centres and with a previous study undertaken at DGH-R in 1990. RESULTS From 1990 to 2003 emergency vascular referrals at DGH-R increased by 51% (53 to 80). The number seen at DGH-R and DGH-L were similar in 2003. There were significantly more out-of-hours referrals in DGH-R than DGH-L (59% versus 35%; P = 0.0123). Referrals were more likely to be seen initially by the vascular team at DGH-L than DGH-R (80% versus 47%, P < 0.0001). CONCLUSIONS Vascular emergency referrals have increased. A trainee was likely to see more emergency referrals at DGH-L than DGH-R. This may impact on future training. PMID:17132313

  15. The Geometry of Quasar Outflows

    NASA Astrophysics Data System (ADS)

    Ganguly, Rajib

    2012-10-01

    Quasar outflows are important for understanding the accretion and growth processes of the central black hole, but also potentially play a role in feedback to the galaxy, halting star formation and infall of gas. A big uncertainty lies in the geometry and density of these outflows, especially as a function of ionization and velocity. We aim to tackle this using the archival COS M grating spectra of 266 quasars. We separate the geometry of outflows into two parts: the solid angle subtended around the black hole, and the distance of the outflow from the central engine. Large numbers of quasars with high resolution spectra are required for each aspect of this statistical investigation. First, we will determine which/how many absorption-line systems are intrinsic through both partial covering methods and statistical assessments. Second, we will consider the incidence of intrinsic absorbers as a function of quasar property {e.g., radio-loudness, SED shape, black hole mass, bolometric luminosity}. This will reveal what determines the solid angle. This can only be done at moderate redshifts where quasars with a larger range of properties are observable, and hence requires HST/COS. Third, we will use the wide range of diagnostic lines to constrain the physical conditions of the absorbers. We will target the CIII*1175 complex and apply photoionization models to constrain the densities and ionization parameters. This will provide the largest set yet of intrinsic absorbers with systematic distance constraints. In tandem with the solid angles, this work will inform models regarding the geometry of quasar outflows.

  16. Cable equation for general geometry.

    PubMed

    López-Sánchez, Erick J; Romero, Juan M

    2017-02-01

    The cable equation describes the voltage in a straight cylindrical cable, and this model has been employed to model electrical potential in dendrites and axons. However, sometimes this equation might give incorrect predictions for some realistic geometries, in particular when the radius of the cable changes significantly. Cables with a nonconstant radius are important for some phenomena, for example, discrete swellings along the axons appear in neurodegenerative diseases such as Alzheimers, Parkinsons, human immunodeficiency virus associated dementia, and multiple sclerosis. In this paper, using the Frenet-Serret frame, we propose a generalized cable equation for a general cable geometry. This generalized equation depends on geometric quantities such as the curvature and torsion of the cable. We show that when the cable has a constant circular cross section, the first fundamental form of the cable can be simplified and the generalized cable equation depends on neither the curvature nor the torsion of the cable. Additionally, we find an exact solution for an ideal cable which has a particular variable circular cross section and zero curvature. For this case we show that when the cross section of the cable increases the voltage decreases. Inspired by this ideal case, we rewrite the generalized cable equation as a diffusion equation with a source term generated by the cable geometry. This source term depends on the cable cross-sectional area and its derivates. In addition, we study different cables with swelling and provide their numerical solutions. The numerical solutions show that when the cross section of the cable has abrupt changes, its voltage is smaller than the voltage in the cylindrical cable. Furthermore, these numerical solutions show that the voltage can be affected by geometrical inhomogeneities on the cable.

  17. The fractal geometry of life.

    PubMed

    Losa, Gabriele A

    2009-01-01

    The extension of the concepts of Fractal Geometry (Mandelbrot [1983]) toward the life sciences has led to significant progress in understanding complex functional properties and architectural / morphological / structural features characterising cells and tissues during ontogenesis and both normal and pathological development processes. It has even been argued that fractal geometry could provide a coherent description of the design principles underlying living organisms (Weibel [1991]). Fractals fulfil a certain number of theoretical and methodological criteria including a high level of organization, shape irregularity, functional and morphological self-similarity, scale invariance, iterative pathways and a peculiar non-integer fractal dimension [FD]. Whereas mathematical objects are deterministic invariant or self-similar over an unlimited range of scales, biological components are statistically self-similar only within a fractal domain defined by upper and lower limits, called scaling window, in which the relationship between the scale of observation and the measured size or length of the object can be established (Losa and Nonnenmacher [1996]). Selected examples will contribute to depict complex biological shapes and structures as fractal entities, and also to show why the application of the fractal principle is valuable for measuring dimensional, geometrical and functional parameters of cells, tissues and organs occurring within the vegetal and animal realms. If the criteria for a strict description of natural fractals are met, then it follows that a Fractal Geometry of Life may be envisaged and all natural objects and biological systems exhibiting self-similar patterns and scaling properties may be considered as belonging to the new subdiscipline of "fractalomics".

  18. Cable equation for general geometry

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Erick J.; Romero, Juan M.

    2017-02-01

    The cable equation describes the voltage in a straight cylindrical cable, and this model has been employed to model electrical potential in dendrites and axons. However, sometimes this equation might give incorrect predictions for some realistic geometries, in particular when the radius of the cable changes significantly. Cables with a nonconstant radius are important for some phenomena, for example, discrete swellings along the axons appear in neurodegenerative diseases such as Alzheimers, Parkinsons, human immunodeficiency virus associated dementia, and multiple sclerosis. In this paper, using the Frenet-Serret frame, we propose a generalized cable equation for a general cable geometry. This generalized equation depends on geometric quantities such as the curvature and torsion of the cable. We show that when the cable has a constant circular cross section, the first fundamental form of the cable can be simplified and the generalized cable equation depends on neither the curvature nor the torsion of the cable. Additionally, we find an exact solution for an ideal cable which has a particular variable circular cross section and zero curvature. For this case we show that when the cross section of the cable increases the voltage decreases. Inspired by this ideal case, we rewrite the generalized cable equation as a diffusion equation with a source term generated by the cable geometry. This source term depends on the cable cross-sectional area and its derivates. In addition, we study different cables with swelling and provide their numerical solutions. The numerical solutions show that when the cross section of the cable has abrupt changes, its voltage is smaller than the voltage in the cylindrical cable. Furthermore, these numerical solutions show that the voltage can be affected by geometrical inhomogeneities on the cable.

  19. Civil War vascular injuries.

    PubMed

    Blaisdell, F William

    2005-01-01

    As the result of the insistence of the Surgeon General during the United States Civil War, there was extensive documentation of injuries to major blood vessels and their resulting complications. The specific treatment of vascular injuries during the Civil War was ligation of the injured vessel or amputation. This was before there was any knowledge of the cause and prevention of infection. Overall, the results were dismal, with a mortality rate of nearly 60% for the more than 1000 soldiers treated by arterial ligation. The most important contribution of these medical reports was to define how the injuries should be diagnosed and managed. Many of the principles that developed as the result of this post-war review are as valid today as they were then. Unfortunately, it seems that many of these lessons have had to be relearned by the surgeons who have participated in each of our subsequent military conflicts.

  20. Isolated Vascular Vertigo

    PubMed Central

    2014-01-01

    Strokes in the distribution of the posterior circulation may present with vertigo, imbalance, and nystagmus. Although the vertigo due to a posterior circulation stroke is usually associated with other neurologic symptoms or signs, small infarcts involving the cerebellum or brainstem can develop vertigo without other localizing symptoms. Approximately 11% of the patients with an isolated cerebellar infarction present with isolated vertigo, nystagmus, and postural unsteadiness mimicking acute peripheral vestibular disorders. The head impulse test can differentiate acute isolated vertigo associated with cerebellar strokes (particularly within the territory of the posterior inferior cerebellar artery) from more benign disorders involving the inner ear. Acute audiovestibular loss may herald impending infarction in the territory of anterior inferior cerebellar artery. Appropriate bedside evaluation is superior to MRIs for detecting central vascular vertigo syndromes. This article reviews the keys to diagnosis of acute isolated vertigo syndrome due to posterior circulation strokes involving the brainstem and cerebellum. PMID:25328871

  1. Vascular access for hemodialysis.

    PubMed

    Vanholder, R; Ringoir, S

    1994-04-01

    Indwelling central venous catheters were consecutively used as access for acute and chronic hemodialysis, emergency treatment of pulmonary fluid overload, intoxication and electrolyte disturbances, plasmapheresis, and semiacute continuous dialysis strategies, such as continuous arteriovenous hemofiltration (CAVH). Modification in catheter structure also made it possible to use this access for long-term treatment (e.g., surgically insertable catheters [Hickman], soft large-bore catheters for blind insertion). We discuss the remaining open questions in this field: Which is the insertion site of preference (i.e., subclavian, femoral, or deep jugular)? Should we prefer stiff or soft catheters? Should soft catheters be positioned surgically or is blind insertion by nonsurgeons as adequate? Is it necessary to couple catheter insertion to adjuvant techniques, such as echographic guidance, to reduce complications? Is the currently used polymer structure of the catheters acceptable? Should catheter dialysis be used with single or double vascular access?

  2. Geometry in the Early Years: A Commentary

    ERIC Educational Resources Information Center

    Dindyal, Jaguthsing

    2015-01-01

    The primary goal of this paper is to provide a commentary on the teaching and learning of geometry in the early years of schooling with the set of papers in this issue as a guiding factor. It is structured around issues about geometry education of young learners, such as: what should we teach in geometry and why; representation of geometrical…

  3. Preservice Primary School Teachers' Elementary Geometry Knowledge

    ERIC Educational Resources Information Center

    Marchis, Iuliana

    2012-01-01

    Geometrical notions and properties occur in real-world problems, thus Geometry has an important place in school Mathematics curricula. Primary school curricula lays the foundation of Geometry knowledge, pupils learn Geometry notions and properties by exploring their environment. Thus it is very important that primary school teachers have a good…

  4. Teaching Geometry: An Experiential and Artistic Approach.

    ERIC Educational Resources Information Center

    Ogletree, Earl J.

    The view that geometry should be taught at every grade level is promoted. Primary and elementary school children are thought to rarely have any direct experience with geometry, except on an incidental basis. Children are supposed to be able to learn geometry rather easily, so long as the method and content are adapted to their development and…

  5. Geometry: Career Related Units. Teacher's Edition.

    ERIC Educational Resources Information Center

    Pierro, Mike; And Others

    Using six geometry units as resource units, the document explores 22 math-related careers. The authors intend the document to provide senior high school students with career orientation and exploration experiences while they learn geometry skills. The units are to be considered as a part of a geometry course, not a course by themselves. The six…

  6. Students' Misconceptions and Errors in Transformation Geometry

    ERIC Educational Resources Information Center

    Ada, Tuba; Kurtulus, Aytac

    2010-01-01

    This study analyses the students' performances in two-dimensional transformation geometry and explores the mistakes made by the students taking the analytic geometry course given by researchers. An examination was given to students of Education Faculties who have taken the analytic geometry course at Eskisehir Osmangazi University in Turkey. The…

  7. Geometry in the Early Years: A Commentary

    ERIC Educational Resources Information Center

    Dindyal, Jaguthsing

    2015-01-01

    The primary goal of this paper is to provide a commentary on the teaching and learning of geometry in the early years of schooling with the set of papers in this issue as a guiding factor. It is structured around issues about geometry education of young learners, such as: what should we teach in geometry and why; representation of geometrical…

  8. Engaging All Students with "Impossible Geometry"

    ERIC Educational Resources Information Center

    Wiest, Lynda R.; Ayebo, Abraham; Dornoo, Michael D.

    2010-01-01

    Geometry is an area in which Australian students performed particularly poorly on the 2007 Trends in International Mathematics and Science Study (TIMSS). One innovative area of recreational geometry that has rich potential to engage and challenge a wide variety of students is "impossible geometry." An impossible geometric object is a…

  9. Worldsheet geometries of ambitwistor string

    NASA Astrophysics Data System (ADS)

    Ohmori, Kantaro

    2015-06-01

    Mason and Skinner proposed the ambitwistor string theory which directly reproduces the formulas for the amplitudes of massless particles proposed by Cachazo, He and Yuan. In this paper we discuss geometries of the moduli space of worldsheets associated to the bosonic or the RNS ambitwistor string. Further, we investigate the factorization properties of the amplitudes when an internal momentum is near on-shell in the abstract CFT language. Along the way, we propose the existence of the ambitwistor strings with three or four fermionic worldsheet currents.

  10. Complex geometry and string theory

    NASA Astrophysics Data System (ADS)

    Morozov, A. Y.; Perelomov, A. M.

    1990-06-01

    The analytic properties of string theory are reviewed. It is demonstrated that the theory of strings is connected with contemporary fields of complex geometry. A massless classical point-like particle which moves in Minkowski space of D dimensions is considered. The formulation used to develop string theory is based on the Polyakov approach. In order to find the quantum scattering amplitude in the Polyakov approach, the functional integral over all Riemannian surfaces is calculated. The simplest case of the amplitude of vacuum-vacuum transitions Z of a closed string is considered. The description of linear bundles in the divisor terms is given.

  11. Quanta of geometry and unification

    NASA Astrophysics Data System (ADS)

    Chamseddine, Ali H.

    2016-11-01

    This is a tribute to Abdus Salam’s memory whose insight and creative thinking set for me a role model to follow. In this contribution I show that the simple requirement of volume quantization in spacetime (with Euclidean signature) uniquely determines the geometry to be that of a noncommutative space whose finite part is based on an algebra that leads to Pati-Salam grand unified models. The Standard Model corresponds to a special case where a mathematical constraint (order one condition) is satisfied. This provides evidence that Salam was a visionary who was generations ahead of his time.

  12. Bondi accretion in trumpet geometries

    NASA Astrophysics Data System (ADS)

    Miller, August J.; Baumgarte, Thomas W.

    2017-02-01

    The Bondi solution, which describes the radial inflow of a gas onto a non-rotating black hole, provides a powerful test for numerical relativistic codes. However, the Bondi solution is usually derived in Schwarzschild coordinates, which are not well suited for dynamical spacetime evolutions. Instead, many current numerical relativistic codes adopt moving-puncture coordinates, which render black holes in trumpet geometries. Here we transform the Bondi solution into trumpet coordinates, which result in regular expressions for the fluid flow extending into the black-hole interior. We also evolve these solutions numerically and demonstrate their usefulness for testing and calibrating numerical codes.

  13. Quanta of Geometry and Unification

    NASA Astrophysics Data System (ADS)

    Chamseddine, Ali H.

    This is a tribute to Abdus Salam's memory whose insight and creative thinking set for me a role model to follow. In this contribution I show that the simple requirement of volume quantization in space-time (with Euclidean signature) uniquely determines the geometry to be that of a noncommutative space whose finite part is based on an algebra that leads to Pati-Salam grand unified models. The Standard Model corresponds to a special case where a mathematical constraint (order one condition) is satisfied. This provides evidence that Salam was a visionary who was generations ahead of his time.

  14. Regular polygons in taxicab geometry

    NASA Astrophysics Data System (ADS)

    Hanson, J. R.

    2014-10-01

    A polygon of n sides will be called regular in taxicab geometry if it has n equal angles and n sides of equal taxicab length. This paper will show that there are no regular taxicab triangles and no regular taxicab pentagons. The sets of taxicab rectangles and taxicab squares will be shown to be the same, respectively, as the sets of Euclidean rectangles and Euclidean squares. A method of construction for a regular taxicab 2n-gon for any n will be demonstrated.

  15. Geometry of physical dispersion relations

    NASA Astrophysics Data System (ADS)

    Rätzel, Dennis; Rivera, Sergio; Schuller, Frederic P.

    2011-02-01

    To serve as a dispersion relation, a cotangent bundle function must satisfy three simple algebraic properties. These conditions are derived from the inescapable physical requirements that local matter field dynamics must be predictive and allow for an observer-independent notion of positive energy. Possible modifications of the standard relativistic dispersion relation are thereby severely restricted. For instance, the dispersion relations associated with popular deformations of Maxwell theory by Gambini-Pullin or Myers-Pospelov are not admissible. Dispersion relations passing the simple algebraic checks derived here correspond to physically admissible Finslerian refinements of Lorentzian geometry.

  16. [Banks of vascular homografts].

    PubMed

    Polvani, G L; Guarino, A; Pompilio, G; Parolari, A; Piccolo, G; Sala, A; Biglioli, P

    2001-01-01

    We define as Banking of the tissues all the procedures that include the finding, preparation, conservation and distribution of the homograft. The vascular homografts are taken and put into a solution of transportation at +4 degrees C and kept at this temperature till their arrival at the Bank. The following step is the dissection of the homograft which will have to be performed as quickly as possible at most 24 hours after the taking in conditions of maximum sterility. At the Italian Homograft Bank at Centro Cardiologico, the vascular homografts are kept at +4 degrees C for 96 hours on average with antibiotics. After a phase of sterilization at +4 degrees C the tissue is frozen according to a homogeneous and controlled thermic decrease and stored at -150 degrees C/-180 degrees C in fumes of liquid nitrogen till the moment of their employment allowing a long term conservation. The aim of all these procedures of cryopreservation is to keep the structural and functional integrity of cells and tissues. The thermic decrease of the tissues must occur so that to avoid all the damages of the cellular vitality and functionality and especially of the tissue structure in toto. In order to limitate these events some cryoprotector agents are employed because they reduce the concentration of the solutes, the cellular dehydration, the formation of micro-macro crystals. Another step to establish if the homograft is proper is the study of bacteriological and viral aspects. The viral screenings are performed on the donor's blood and the bacteriological tests are performed on the tissue and on the liquids. For each phase of the banking a series of information about the donor and about the tissues are recorded and filed both on paper and database so that to grant always a right conduct of the material.

  17. Accreditation status and geographic location of outpatient vascular testing facilities among Medicare beneficiaries: the VALUE (Vascular Accreditation, Location & Utilization Evaluation) study.

    PubMed

    Rundek, Tatjana; Brown, Scott C; Wang, Kefeng; Dong, Chuanhui; Farrell, Mary Beth; Heller, Gary V; Gornik, Heather L; Hutchisson, Marge; Needleman, Laurence; Benenati, James F; Jaff, Michael R; Meier, George H; Perese, Susana; Bendick, Phillip; Hamburg, Naomi M; Lohr, Joann M; LaPerna, Lucy; Leers, Steven A; Lilly, Michael P; Tegeler, Charles; Alexandrov, Andrei V; Katanick, Sandra L

    2014-10-01

    There is limited information on the accreditation status and geographic distribution of vascular testing facilities in the US. The Centers for Medicare & Medicaid Services (CMS) provide reimbursement to facilities regardless of accreditation status. The aims were to: (1) identify the proportion of Intersocietal Accreditation Commission (IAC) accredited vascular testing facilities in a 5% random national sample of Medicare beneficiaries receiving outpatient vascular testing services; (2) describe the geographic distribution of these facilities. The VALUE (Vascular Accreditation, Location & Utilization Evaluation) Study examines the proportion of IAC accredited facilities providing vascular testing procedures nationally, and the geographic distribution and utilization of these facilities. The data set containing all facilities that billed Medicare for outpatient vascular testing services in 2011 (5% CMS Outpatient Limited Data Set (LDS) file) was examined, and locations of outpatient vascular testing facilities were obtained from the 2011 CMS/Medicare Provider of Services (POS) file. Of 13,462 total vascular testing facilities billing Medicare for vascular testing procedures in a 5% random Outpatient LDS for the US in 2011, 13% (n=1730) of facilities were IAC accredited. The percentage of IAC accredited vascular testing facilities in the LDS file varied significantly by US region, p<0.0001: 26%, 12%, 11%, and 7% for the Northeast, South, Midwest, and Western regions, respectively. Findings suggest that the proportion of outpatient vascular testing facilities that are IAC accredited is low and varies by region. Increasing the number of accredited vascular testing facilities to improve test quality is a hypothesis that should be tested in future research. © The Author(s) 2014.

  18. Hybrid haemodialysis vascular access salvage.

    PubMed

    Potisek, Maja; Ključevšek, Tomaž; Leskovar, Boštjan

    2017-03-01

    A well-functioning vascular access is essential for successful haemodialysis in patients with end-stage kidney failure. Sometimes, when we have exploited all conventional ways of vascular access salvage, we have to find a unique solution to preserve it.

  19. Vascular complications of transsphenoidal surgery.

    PubMed

    Laws, E R

    1999-08-01

    Vascular complication of transsphenoidal surgery can lead to mortality and serious morbidity. In a series of 3,061 transsphenoidal operations for pituitary disease, 24 such complications were encountered, seven of which were fatal. The anatomic substrate for such complications is discussed, along with technical aspects of surgery and other methods for the avoidance of vascular complications.

  20. Vascularity in the reptilian spectacle.

    PubMed

    Mead, A W

    1976-07-01

    Vascularization of the spectacle or brille of the reptile was demonstrated by biomicroscopy, histology, fluorescein (in vivo), and Microfil silicone rubber (in situ) injections. This unusual vascularity provides new evidence for reassessment of the origin and development of this structure, and a useful tool with which to do so.

  1. Angiographic analysis of animal model aneurysms treated with novel polyurethane asymmetric vascular stent (P-AVS): feasibility study

    NASA Astrophysics Data System (ADS)

    Ionita, Ciprian N.; Dohatcu, Andreea; Sinelnikov, Andrey; Sherman, Jason; Keleshis, Christos; Paciorek, Ann M.; Hoffmann, K. R.; Bednarek, D. R.; Rudin, S.

    2009-02-01

    Image-guided endovascular intervention (EIGI), using new flow modifying endovascular devices for intracranial aneurysm treatment is an active area of stroke research. The new polyurethane-asymmetric vascular stent (P-AVS), a vascular stent partially covered with a polyurethane-based patch, is used to cover the aneurysm neck, thus occluding flow into the aneurysm. This study involves angiographic imaging of partially covered aneurysm orifices. This particular situation could occur when the vascular geometry does not allow full aneurysm coverage. Four standard in-vivo rabbit-model aneurysms were investigated; two had stent patches placed over the distal region of the aneurysm orifice while the other two had stent patches placed over the proximal region of the aneurysm orifice. Angiographic analysis was used to evaluate aneurysm blood flow before and immediately after stenting and at four-week follow-up. The treatment results were also evaluated using histology on the aneurysm dome and electron microscopy on the aneurysm neck. Post-stenting angiographic flow analysis revealed aneurysmal flow reduction in all cases with faster flow in the distally-covered case and very slow flow and prolonged pooling for proximal-coverage. At follow-up, proximally-covered aneurysms showed full dome occlusion. The electron microscopy showed a remnant neck in both distally-placed stent cases but complete coverage in the proximally-placed stent cases. Thus, direct flow (impingement jet) removal from the aneurysm dome, as indicated by angiograms in the proximally-covered case, was sufficient to cause full aneurysm healing in four weeks; however, aneurysm healing was not complete for the distally-covered case. These results support further investigations into the treatment of aneurysms by flow-modification using partial aneurysm-orifice coverage.

  2. Global geometry of two-dimensional charged black holes

    SciTech Connect

    Frolov, Andrei V.; Kristjansson, Kristjan R.; Thorlacius, Larus

    2006-06-15

    The semiclassical geometry of charged black holes is studied in the context of a two-dimensional dilaton gravity model where effects due to pair-creation of charged particles can be included in a systematic way. The classical mass-inflation instability of the Cauchy horizon is amplified and we find that gravitational collapse of charged matter results in a spacelike singularity that precludes any extension of the spacetime geometry. At the classical level, a static solution describing an eternal black hole has timelike singularities and multiple asymptotic regions. The corresponding semiclassical solution, on the other hand, has a spacelike singularity and a Penrose diagram like that of an electrically neutral black hole. Extremal black holes are destabilized by pair-creation of charged particles. There is a maximally charged solution for a given black hole mass but the corresponding geometry is not extremal. Our numerical data exhibits critical behavior at the threshold for black hole formation.

  3. Arterial vascularization patterns of the splenium: An anatomical study.

    PubMed

    Kahilogullari, G; Comert, A; Ozdemir, M; Brohi, R A; Ozgural, O; Esmer, A F; Egemen, N; Karahan, S T

    2013-09-01

    The aim of this study was to provide detailed information about the arterial vascularization of the splenium of the corpus callosum (CC). The splenium is unique in that it is part of the largest commissural tract in the brain and a region in which pathologies are seen frequently. An exact description of the arterial vascularization of this part of the CC remains under debate. Thirty adult human brains (60 hemispheres) were obtained from routine autopsies. Cerebral arteries were separately cannulated and injected with colored latex. Then, the brains were fixed in formaldehyde, and dissections were performed using a surgical microscope. The diameter of the arterial branches supplying the splenium of the CC at their origin was investigated, and the vascularization patterns of these branches were observed. Vascular supply to the splenium was provided by the anterior pericallosal artery (40%) from the anterior circulation and by the posterior pericallosal artery (88%) and posterior accessory pericallosal artery (50%) from the posterior circulation. The vascularization pattern of the splenium differs in each hemisphere and is usually supplied by multiple branches. The arterial vascularization of the splenium of the CC was studied comprehensively considering the ongoing debate and the inadequacy of the studies on this issue currently available in the literature. This anatomical knowledge is essential during the treatment of pathologies in this region and especially for splenial arteriovenous malformations.

  4. BOLD Granger causality reflects vascular anatomy.

    PubMed

    Webb, J Taylor; Ferguson, Michael A; Nielsen, Jared A; Anderson, Jeffrey S

    2013-01-01

    A number of studies have tried to exploit subtle phase differences in BOLD time series to resolve the order of sequential activation of brain regions, or more generally the ability of signal in one region to predict subsequent signal in another region. More recently, such lag-based measures have been applied to investigate directed functional connectivity, although this application has been controversial. We attempted to use large publicly available datasets (FCON 1000, ADHD 200, Human Connectome Project) to determine whether consistent spatial patterns of Granger Causality are observed in typical fMRI data. For BOLD datasets from 1,240 typically developing subjects ages 7-40, we measured Granger causality between time series for every pair of 7,266 spherical ROIs covering the gray matter and 264 seed ROIs at hubs of the brain's functional network architecture. Granger causality estimates were strongly reproducible for connections in a test and replication sample (n=620 subjects for each group), as well as in data from a single subject scanned repeatedly, both during resting and passive video viewing. The same effect was even stronger in high temporal resolution fMRI data from the Human Connectome Project, and was observed independently in data collected during performance of 7 task paradigms. The spatial distribution of Granger causality reflected vascular anatomy with a progression from Granger causality sources, in Circle of Willis arterial inflow distributions, to sinks, near large venous vascular structures such as dural venous sinuses and at the periphery of the brain. Attempts to resolve BOLD phase differences with Granger causality should consider the possibility of reproducible vascular confounds, a problem that is independent of the known regional variability of the hemodynamic response.

  5. BOLD Granger Causality Reflects Vascular Anatomy

    PubMed Central

    Webb, J. Taylor; Ferguson, Michael A.; Nielsen, Jared A.; Anderson, Jeffrey S.

    2013-01-01

    A number of studies have tried to exploit subtle phase differences in BOLD time series to resolve the order of sequential activation of brain regions, or more generally the ability of signal in one region to predict subsequent signal in another region. More recently, such lag-based measures have been applied to investigate directed functional connectivity, although this application has been controversial. We attempted to use large publicly available datasets (FCON 1000, ADHD 200, Human Connectome Project) to determine whether consistent spatial patterns of Granger Causality are observed in typical fMRI data. For BOLD datasets from 1,240 typically developing subjects ages 7–40, we measured Granger causality between time series for every pair of 7,266 spherical ROIs covering the gray matter and 264 seed ROIs at hubs of the brain’s functional network architecture. Granger causality estimates were strongly reproducible for connections in a test and replication sample (n=620 subjects for each group), as well as in data from a single subject scanned repeatedly, both during resting and passive video viewing. The same effect was even stronger in high temporal resolution fMRI data from the Human Connectome Project, and was observed independently in data collected during performance of 7 task paradigms. The spatial distribution of Granger causality reflected vascular anatomy with a progression from Granger causality sources, in Circle of Willis arterial inflow distributions, to sinks, near large venous vascular structures such as dural venous sinuses and at the periphery of the brain. Attempts to resolve BOLD phase differences with Granger causality should consider the possibility of reproducible vascular confounds, a problem that is independent of the known regional variability of the hemodynamic response. PMID:24349569

  6. Pattern Dynamics in Taylor Vortex Flow with Double Hourglass Geometry

    NASA Astrophysics Data System (ADS)

    Wiener, Richard; Olsen, Thomas

    2005-11-01

    In previous investigations ootnotetextWiener et al., Phys. Rev. E 55, 5489 (1997) & Phys. Rev. Lett. 83, 2340 (1999) we have demonstrated experimentally that Taylor vortex flow in an hourglass geometry undergoes a period-doubling cascade to chaotic pattern dynamics that can be controlled by proportional feedback with small perturbations. The hourglass geometry creates a spatial ramp in the Reynolds number. This results in a region of supercritical vortex flow between regions of subcritical structureless flow that provide the pattern with soft boundaries that allow for persistent dynamics. For a range of reduced Reynolds numbers, the Taylor vortex pattern exhibits persistent dynamics consisting of drifting and stretching vortices punctuated with phase slips. Each phase slip corresponds to the generation of a new vortex pair. We are currently investigating the phase dynamics of Tayor vortex flow with a double hourglass geometry which consists of two regions of supercritical flow in which phase slips occur, separated by a narrow region of subcritical flow. Initial results indicate that at some reduced Reynolds numbers there is synchronization between the vortex dynamics in the two regions, both in the temporal occurrence of the phase slips as well as the drift directions of the vortices.

  7. Social media in vascular surgery.

    PubMed

    Indes, Jeffrey E; Gates, Lindsay; Mitchell, Erica L; Muhs, Bart E

    2013-04-01

    There has been a tremendous growth in the use of social media to expand the visibility of various specialties in medicine. The purpose of this paper is to describe the latest updates on some current applications of social media in the practice of vascular surgery as well as existing limitations of use. This investigation demonstrates that the use of social networking sites appears to have a positive impact on vascular practice, as is evident through the incorporation of this technology at the Cleveland Clinic and by the Society for Vascular Surgery into their approach to patient care and physician communication. Overall, integration of social networking technology has current and future potential to be used to promote goals, patient awareness, recruitment for clinical trials, and professionalism within the specialty of vascular surgery. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  8. Vascular surgery: the European perspective.

    PubMed

    Harris, P

    1999-09-01

    Isaac Newton, among others, observed that 'we see so far because we are standing upon the shoulders of giants'. In vascular surgery most of the giants have been European, and this is a heritage which we as Europeans can take pride in and build upon if we chose to do so. As in other areas of life, commitment is essential in order to influence the future. For vascular surgeons in Europe this means active participation in the European scientific societies for vascular surgery and in the UEMS. The main value of the EBSQ.VASC assessments to date has been to expose the uneven standards of training in vascular surgery within the European Union. Only if action follows to address these inequalities will the tactics of the European Board of Vascular Surgery be vindicated.

  9. Caffeine's Vascular Mechanisms of Action

    PubMed Central

    Echeverri, Darío; Montes, Félix R.; Cabrera, Mariana; Galán, Angélica; Prieto, Angélica

    2010-01-01

    Caffeine is the most widely consumed stimulating substance in the world. It is found in coffee, tea, soft drinks, chocolate, and many medications. Caffeine is a xanthine with various effects and mechanisms of action in vascular tissue. In endothelial cells, it increases intracellular calcium stimulating the production of nitric oxide through the expression of the endothelial nitric oxide synthase enzyme. Nitric oxide is diffused to the vascular smooth muscle cell to produce vasodilation. In vascular smooth muscle cells its effect is predominantly a competitive inhibition of phosphodiesterase, producing an accumulation of cAMP and vasodilation. In addition, it blocks the adenosine receptors present in the vascular tissue to produce vasoconstriction. In this paper the main mechanisms of action of caffeine on the vascular tissue are described, in which it is shown that caffeine has some cardiovascular properties and effects which could be considered beneficial. PMID:21188209

  10. Renal osteodystrophy and vascular calcification.

    PubMed

    Arcidiacono, T; Paloschi, V; Rainone, F; Terranegra, A; Dogliotti, E; Aloia, A; Soldati, L; Vezzoli, G

    2009-01-01

    Chronic kidney disease (CKD) is characterized by phosphate retention and reduced synthesis of 1.25(OH)2-vitamin D stimulating parathyroid hyperplasia. These changes cause a complex osteopathy, defined as renal osteodystrophy, and vascular calcification. Renal osteodystrophy increases the risk of fracture and causes deformities and disability. Vascular calcification occurs in a large proportion of hemodialysis patients and is a marker of arteriopathy. Calcifying arteriopathy induces arterial stiffness and contributes to the high cardiovascular mortality and morbidity among CKD patients. Vascular calcification results from a process of local bone formation induced by osteoblast-like cells developing in the vascular wall from resident cells. Osteoblast differentiation of resident vascular cells may be mediated by metabolic factors and may be induced by high concentrations of phosphate. Therefore, phosphate retention appears as the most detrimental factor affecting arteries in CKD patients. There is no specific therapy to revert soft tissue calcification, but calcification must be prevented in the early stages of CKD.

  11. Tumor vascularity and hematogenous metastasis in experimental murine intraocular melanoma.

    PubMed Central

    Grossniklaus, H E

    1998-01-01

    PURPOSE: The purpose of this study is to test the hypothesis that primary tumor vascularity in a murine model of intraocular melanoma positively correlates with the development and hematogenous spread of metastasis. METHODS: Forty 12-week-old C57BL6 mice were inoculated in either the anterior chamber (AC) or posterior compartment (PC) of 1 eye with 5 x 10(5) cells/microL of Queens tissue culture melanoma cells. The inoculated eye was enucleated at 2 weeks; the mice were sacrificed at 4 weeks postinoculation, and necropsies were performed. The enucleated eyes were examined for histologic and ultrastructural features, including relationship of tumor cells to tumor vascular channels, vascular pattern, and mean vascular density. RESULTS: Melanoma grew and was confined to the eye in 12 of 20 AC eyes and 10 of 20 PC eyes. Histologic and electron microscopic examination showed tumor invasion into vascular channels. Five of 12 AC tumors (42%) and 8 of 10 PC tumors (80%) metastasized. All of the AC tumors, but none of the PC tumors, that distantly metastasized also metastasized to ipsilateral cervical lymph nodes (P = .00535). There was no statistically significant difference of vascular pattern between the melanomas that did and did not metastasize to lungs in the PC group (P = .24), although there was a significant difference in the AC group (P = .02). Tumors with high-grade vascular patterns were more likely to metastasize than tumors with low-grade vascular patterns in the AC group. The mean vascular density positively correlated with the presence and number of metastases in both groups (P = .0000 and P < .001, respectively). There was no statistically significant difference of vascular pattern and mean vascular density for AC versus PC melanoma (P = .97). CONCLUSIONS: The rate of metastasis in this murine intraocular melanoma model positively correlates with primary tumor vascularity. The melanoma metastasizes via invasion of tumor vascular channels. AC melanoma also

  12. Pressurized vascular systems for self-healing materials

    PubMed Central

    Hamilton, A. R.; Sottos, N. R.; White, S. R.

    2012-01-01

    An emerging strategy for creating self-healing materials relies on embedded vascular networks of microchannels to transport reactive fluids to regions of damage. Here we investigate the use of active pumping for the pressurized delivery of a two-part healing system, allowing a small vascular system to deliver large volumes of healing agent. Different pumping strategies are explored to improve the mixing and subsequent polymerization of healing agents in the damage zone. Significant improvements in the number of healing cycles and in the overall healing efficiency are achieved compared with prior passive schemes that use only capillary forces for the delivery of healing agents. At the same time, the volume of the vascular system required to achieve this superior healing performance is significantly reduced. In the best case, nearly full recovery of fracture toughness is attained throughout 15 cycles of damage and healing, with a vascular network constituting just 0.1 vol% of the specimen. PMID:21957119

  13. Pressurized vascular systems for self-healing materials.

    PubMed

    Hamilton, A R; Sottos, N R; White, S R

    2012-05-07

    An emerging strategy for creating self-healing materials relies on embedded vascular networks of microchannels to transport reactive fluids to regions of damage. Here we investigate the use of active pumping for the pressurized delivery of a two-part healing system, allowing a small vascular system to deliver large volumes of healing agent. Different pumping strategies are explored to improve the mixing and subsequent polymerization of healing agents in the damage zone. Significant improvements in the number of healing cycles and in the overall healing efficiency are achieved compared with prior passive schemes that use only capillary forces for the delivery of healing agents. At the same time, the volume of the vascular system required to achieve this superior healing performance is significantly reduced. In the best case, nearly full recovery of fracture toughness is attained throughout 15 cycles of damage and healing, with a vascular network constituting just 0.1 vol% of the specimen.

  14. Fuzzy Logic for Incidence Geometry

    PubMed Central

    2016-01-01

    The paper presents a mathematical framework for approximate geometric reasoning with extended objects in the context of Geography, in which all entities and their relationships are described by human language. These entities could be labelled by commonly used names of landmarks, water areas, and so forth. Unlike single points that are given in Cartesian coordinates, these geographic entities are extended in space and often loosely defined, but people easily perform spatial reasoning with extended geographic objects “as if they were points.” Unfortunately, up to date, geographic information systems (GIS) miss the capability of geometric reasoning with extended objects. The aim of the paper is to present a mathematical apparatus for approximate geometric reasoning with extended objects that is usable in GIS. In the paper we discuss the fuzzy logic (Aliev and Tserkovny, 2011) as a reasoning system for geometry of extended objects, as well as a basis for fuzzification of the axioms of incidence geometry. The same fuzzy logic was used for fuzzification of Euclid's first postulate. Fuzzy equivalence relation “extended lines sameness” is introduced. For its approximation we also utilize a fuzzy conditional inference, which is based on proposed fuzzy “degree of indiscernibility” and “discernibility measure” of extended points. PMID:27689133

  15. Entanglement classification with algebraic geometry

    NASA Astrophysics Data System (ADS)

    Sanz, M.; Braak, D.; Solano, E.; Egusquiza, I. L.

    2017-05-01

    We approach multipartite entanglement classification in the symmetric subspace in terms of algebraic geometry, its natural language. We show that the class of symmetric separable states has the structure of a Veronese variety and that its k-secant varieties are SLOCC invariants. Thus SLOCC classes gather naturally into families. This classification presents useful properties such as a linear growth of the number of families with the number of particles, and nesting, i.e. upward consistency of the classification. We attach physical meaning to this classification through the required interaction length of parent Hamiltonians. We show that the states W N and GHZ N are in the same secant family and that, effectively, the former can be obtained in a limit from the latter. This limit is understood in terms of tangents, leading to a refinement of the previous families. We compute explicitly the classification of symmetric states with N≤slant4 qubits in terms of both secant families and its refinement using tangents. This paves the way to further use of projective varieties in algebraic geometry to solve open problems in entanglement theory.

  16. Weyl gravity and Cartan geometry

    NASA Astrophysics Data System (ADS)

    Attard, J.; François, J.; Lazzarini, S.

    2016-04-01

    We point out that the Cartan geometry known as the second-order conformal structure provides a natural differential geometric framework underlying gauge theories of conformal gravity. We are concerned with two theories: the first one is the associated Yang-Mills-like Lagrangian, while the second, inspired by [1], is a slightly more general one that relaxes the conformal Cartan geometry. The corresponding gauge symmetry is treated within the Becchi-Rouet-Stora-Tyutin language. We show that the Weyl gauge potential is a spurious degree of freedom, analogous to a Stueckelberg field, that can be eliminated through the dressing field method. We derive sets of field equations for both the studied Lagrangians. For the second one, they constrain the gauge field to be the "normal conformal Cartan connection.''Finally, we provide in a Lagrangian framework a justification of the identification, in dimension 4, of the Bach tensor with the Yang-Mills current of the normal conformal Cartan connection, as proved in [2].

  17. Turbine engine variable geometry device

    NASA Technical Reports Server (NTRS)

    Rogo, Casimir (Inventor); Lenz, Herman N. (Inventor)

    1985-01-01

    A variable geometry device for use with the turbine nozzle of a turbine engine of the type having a support housing and a combustion chamber contained within the support housing. A pair of spaced walls in the support housing define an annular and radially extending nozzle passageway. The outer end of the nozzle passageway is open to the combustion chamber while the inner end of the nozzle passageway is open to one or more turbine stages. A plurality of circumferentially spaced nozzle vanes are mounted to one of the spaced walls and protrude across the nozzle passageway. An annular opening is formed around the opposite spaced wall and an annular ring is axially slidably mounted within the opening. A motor is operatively connected to this ring and, upon actuation, axially displaces the ring within the nozzle passageway. In addition, the ring includes a plurality of circumferentially spaced slots which register with the nozzle vanes so that the vane geometry remains the same despite axial displacement of the ring.

  18. Target Detection Using Fractal Geometry

    NASA Technical Reports Server (NTRS)

    Fuller, J. Joseph

    1991-01-01

    The concepts and theory of fractal geometry were applied to the problem of segmenting a 256 x 256 pixel image so that manmade objects could be extracted from natural backgrounds. The two most important measurements necessary to extract these manmade objects were fractal dimension and lacunarity. Provision was made to pass the manmade portion to a lookup table for subsequent identification. A computer program was written to construct cloud backgrounds of fractal dimensions which were allowed to vary between 2.2 and 2.8. Images of three model space targets were combined with these backgrounds to provide a data set for testing the validity of the approach. Once the data set was constructed, computer programs were written to extract estimates of the fractal dimension and lacunarity on 4 x 4 pixel subsets of the image. It was shown that for clouds of fractal dimension 2.7 or less, appropriate thresholding on fractal dimension and lacunarity yielded a 64 x 64 edge-detected image with all or most of the cloud background removed. These images were enhanced by an erosion and dilation to provide the final image passed to the lookup table. While the ultimate goal was to pass the final image to a neural network for identification, this work shows the applicability of fractal geometry to the problems of image segmentation, edge detection and separating a target of interest from a natural background.

  19. Geometry and the quantum: basics

    NASA Astrophysics Data System (ADS)

    Chamseddine, Ali H.; Connes, Alain; Mukhanov, Viatcheslav

    2014-12-01

    Motivated by the construction of spectral manifolds in noncommutative geometry, we introduce a higher degree Heisenberg commutation relation involving the Dirac operator and the Feynman slash of scalar fields. This commutation relation appears in two versions, one sided and two sided. It implies the quantization of the volume. In the one-sided case it implies that the manifold decomposes into a disconnected sum of spheres which will represent quanta of geometry. The two sided version in dimension 4 predicts the two algebras M 2(ℍ) and M 4(ℂ) which are the algebraic constituents of the Standard Model of particle physics. This taken together with the non-commutative algebra of functions allows one to reconstruct, using the spectral action, the Lagrangian of gravity coupled with the Standard Model. We show that any connected Riemannian Spin 4-manifold with quantized volume > 4 (in suitable units) appears as an irreducible representation of the two-sided commutation relations in dimension 4 and that these representations give a seductive model of the "particle picture" for a theory of quantum gravity in which both the Einstein geometric standpoint and the Standard Model emerge from Quantum Mechanics. Physical applications of this quantization scheme will follow in a separate publication.

  20. Quanta of geometry: noncommutative aspects.

    PubMed

    Chamseddine, Ali H; Connes, Alain; Mukhanov, Viatcheslav

    2015-03-06

    In the construction of spectral manifolds in noncommutative geometry, a higher degree Heisenberg commutation relation involving the Dirac operator and the Feynman slash of real scalar fields naturally appears and implies, by equality with the index formula, the quantization of the volume. We first show that this condition implies that the manifold decomposes into disconnected spheres, which will represent quanta of geometry. We then refine the condition by involving the real structure and two types of geometric quanta, and show that connected spin manifolds with large quantized volume are then obtained as solutions. The two algebras M_{2}(H) and M_{4}(C) are obtained, which are the exact constituents of the standard model. Using the two maps from M_{4} to S^{4} the four-manifold is built out of a very large number of the two kinds of spheres of Planckian volume. We give several physical applications of this scheme such as quantization of the cosmological constant, mimetic dark matter, and area quantization of black holes.

  1. Fuzzy Logic for Incidence Geometry.

    PubMed

    Tserkovny, Alex

    The paper presents a mathematical framework for approximate geometric reasoning with extended objects in the context of Geography, in which all entities and their relationships are described by human language. These entities could be labelled by commonly used names of landmarks, water areas, and so forth. Unlike single points that are given in Cartesian coordinates, these geographic entities are extended in space and often loosely defined, but people easily perform spatial reasoning with extended geographic objects "as if they were points." Unfortunately, up to date, geographic information systems (GIS) miss the capability of geometric reasoning with extended objects. The aim of the paper is to present a mathematical apparatus for approximate geometric reasoning with extended objects that is usable in GIS. In the paper we discuss the fuzzy logic (Aliev and Tserkovny, 2011) as a reasoning system for geometry of extended objects, as well as a basis for fuzzification of the axioms of incidence geometry. The same fuzzy logic was used for fuzzification of Euclid's first postulate. Fuzzy equivalence relation "extended lines sameness" is introduced. For its approximation we also utilize a fuzzy conditional inference, which is based on proposed fuzzy "degree of indiscernibility" and "discernibility measure" of extended points.

  2. Quanta of Geometry: Noncommutative Aspects

    NASA Astrophysics Data System (ADS)

    Chamseddine, Ali H.; Connes, Alain; Mukhanov, Viatcheslav

    2015-03-01

    In the construction of spectral manifolds in noncommutative geometry, a higher degree Heisenberg commutation relation involving the Dirac operator and the Feynman slash of real scalar fields naturally appears and implies, by equality with the index formula, the quantization of the volume. We first show that this condition implies that the manifold decomposes into disconnected spheres, which will represent quanta of geometry. We then refine the condition by involving the real structure and two types of geometric quanta, and show that connected spin manifolds with large quantized volume are then obtained as solutions. The two algebras M2(H ) and M4(C ) are obtained, which are the exact constituents of the standard model. Using the two maps from M4 to S4 the four-manifold is built out of a very large number of the two kinds of spheres of Planckian volume. We give several physical applications of this scheme such as quantization of the cosmological constant, mimetic dark matter, and area quantization of black holes.

  3. Citicoline in vascular cognitive impairment and vascular dementia after stroke.

    PubMed

    Alvarez-Sabín, Jose; Román, Gustavo C

    2011-01-01

    Cognitive decline after stroke is more common than stroke recurrence. Stroke doubles the risk of dementia and is a major contributor to vascular cognitive impairment and vascular dementia. Neuropathological studies in most cases of dementia in the elderly reveal a large load of vascular ischemic brain lesions mixed with a lesser contribution of neurodegenerative lesions of Alzheimer disease. Nonetheless, few pharmacological studies have addressed vascular cognitive impairment and vascular dementia after stroke. Citicoline has demonstrated neuroprotective effects in acute stroke and has been shown to improve cognition in patients with chronic cerebrovascular disease and in some patients with Alzheimer disease. A recent trial lasting 6 months in patients with first-ever ischemic stroke showed that citicoline prevented cognitive decline after stroke with significant improvement of temporal orientation, attention, and executive function. Experimentally, citicoline exhibits neuroprotective effects and enhances neural repair. Citicoline appears to be a safe and promising alternative to improve stroke recovery and could be indicated in patients with vascular cognitive impairment, vascular dementia, and Alzheimer disease with significant cerebrovascular disease.

  4. Symbiotic Stars: the Geometry of the Radio Emitting Regions

    NASA Astrophysics Data System (ADS)

    Kenny, Harold Timothy

    1995-01-01

    Radio emission from symbiotic stars is examined to determine the density, distribution, and dynamics of material in the circumstellar nebulae. AT observations have been made of four southern systems with declinations <-55^circ (BI Cru, He 2-106, HD 149427, and RR Tel). Four northern objects have been observed both at the VLA and MERLIN (HM Sge, V1016 Cyg, AG Peg and Z And). Observations are analysed in terms of the the STB model (Seaquist, Taylor and Button 1984), and various CW ("Colliding Winds") models. Three configurations of CW models are considered: the "CWc" (concentric) model; the "CWb" (binary) model; and the "CWo" (orbital) model. The CWc and CWb models derive from earlier works (Kwok, Purton and Fitzgerald 1978; Kwok 1987a; Girard and Willson 1987), and various refinements and extensions are introduced here: e.g. the treatment of thermal pressure in the unshocked stellar winds, and the derivation of densities and thicknesses for the interaction zones. The CWo model is essentially original. The radio morphologies and spectra of the observed systems are well explained in terms of the models considered. The southern systems are consistent with the STB model and also with the CWb model. The binary separations indicated for BI Cru and He 2-106 ({~}3000D kpc AU) are, however, much larger than appropriate for known processes of accretional heating of the hot component. Z And is consistent with both a simple STB model, and with a modified STB model including a "no-recombination" (NR) shell. AG Peg is well explained by the CWo model, with variable hot component mass loss. HM Sge and V1016 Cyg are interpreted with reference to a combined STB/CW model.

  5. San Andreas fault geometry in the Parkfield, California, region

    USGS Publications Warehouse

    Simpson, R.W.; Barall, M.; Langbein, J.; Murray, J.R.; Rymer, M.J.

    2006-01-01

    In map view, aftershocks of the 2004 Parkfield earthquake lie along a line that forms a straighter connection between San Andreas fault segments north and south of the Parkfield reach than does the mapped trace of the fault itself. A straightedge laid on a geologic map of Central California reveals a ???50-km-long asymmetric northeastward warp in the Parkfield reach of the fault. The warp tapers gradually as it joins the straight, creeping segment of the San Andreas to the north-west, but bends abruptly across Cholame Valley at its southeast end to join the straight, locked segment that last ruptured in 1857. We speculate that the San Andreas fault surface near Parkfield has been deflected in its upper ???6 km by nonelastic behavior of upper crustal rock units. These units and the fault surface itself are warped during periods between large 1857-type earthquakes by the presence of the 1857-locked segment to the south, which buttresses intermittent coseismic and continuous aseismic slip on the Parkfield reach. Because of nonelastic behavior, the warping is not completely undone when an 1857-type event occurs, and the upper portion of the three-dimensional fault surface is slowly ratcheted into an increasingly prominent bulge. Ultimately, the fault surface probably becomes too deformed for strike-slip motion, and a new, more vertical connection to the Earth's surface takes over, perhaps along the Southwest Fracture Zone. When this happens a wedge of material currently west of the main trace will be stranded on the east side of the new main trace.

  6. [Modeling of species distribution using topography and remote sensing data, with vascular plants of the Tukuringra Range low mountain belt (Zeya state Nature Reserve, Amur Region) as a case study].

    PubMed

    Dudov, S V

    2016-01-01

    On the basis of maximum entropy method embedded in MaxEnt software, the cartographic models are designed for spatial distribution of 63 species of vascular plants inhabiting low mountain belt of the Tukuringra Range. Initial data for modeling were actual points of a species occurrence, data on remote sensing (multispectral space snapshots by Landsat), and a digital topographic model. It is found out that the structure of factors contributing to the model is related to species ecological amplitude. The distribution of stenotopic species is determined, mainly, by the topography, which thermal and humidity conditions of habitats are associated with. To the models for eurytopic species, variables formed on the basis of remote sensing contribute significantly, those variables encompassing the parameters of the soil-vegetable cover. In course of the obtained models analyzing, three principal groups of species are revealed that have similar distribution pattern. Species of the first group are restricted in their distribution by the slopes of the. River Zeya and River Giluy gorges. Species of the second group are associated with the southern macroslope of the range and with southern slopes of large rivers' valleys. The third group incorporates those species that are distributed over the whole territory under study.

  7. Euclidean and fractal geometry of microvascular networks in normal and neoplastic pituitary tissue.

    PubMed

    Di Ieva, Antonio; Grizzi, Fabio; Gaetani, Paolo; Goglia, Umberto; Tschabitscher, Manfred; Mortini, Pietro; Rodriguez y Baena, Riccardo

    2008-07-01

    In geometrical terms, tumour vascularity is an exemplary anatomical system that irregularly fills a three-dimensional Euclidean space. This physical characteristic and the highly variable shapes of the vessels lead to considerable spatial and temporal heterogeneity in the delivery of oxygen, nutrients and drugs, and the removal of metabolites. Although these biological characteristics are well known, quantitative analyses of newly formed vessels in two-dimensional histological sections still fail to view their architecture as a non-Euclidean geometrical entity, thus leading to errors in visual interpretation and discordant results from different laboratories concerning the same tumour. We here review the literature concerning microvessel density estimates (a Euclidean-based approach quantifying vascularity in normal and neoplastic pituitary tissues) and compare the results. We also discuss the limitations of Euclidean quantitative analyses of vascularity and the helpfulness of a fractal geometry-based approach as a better means of quantifying normal and neoplastic pituitary microvasculature.

  8. Differential Geometry Based Multiscale Models

    PubMed Central

    Wei, Guo-Wei

    2010-01-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that

  9. Differential geometry based multiscale models.

    PubMed

    Wei, Guo-Wei

    2010-08-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are

  10. Visualizing MCNP Tally Segment Geometry and Coupling Results with ABAQUS

    SciTech Connect

    J. R. Parry; J. A. Galbraith

    2007-11-01

    The Advanced Graphite Creep test, AGC-1, is planned for irradiation in the Advanced Test Reactor (ATR) in support of the Next Generation Nuclear Plant program. The experiment requires very detailed neutronics and thermal hydraulics analyses to show compliance with programmatic and ATR safety requirements. The MCNP model used for the neutronics analysis required hundreds of tally regions to provide the desired detail. A method for visualizing the hundreds of tally region geometries and the tally region results in 3 dimensions has been created to support the AGC-1 irradiation. Additionally, a method was created which would allow ABAQUS to access the results directly for the thermal analysis of the AGC-1 experiment.

  11. Vascular access in oncology patients.

    PubMed

    Gallieni, Maurizio; Pittiruti, Mauro; Biffi, Roberto

    2008-01-01

    Adequate vascular access is of paramount importance in oncology patients. It is important in the initial phase of surgical treatment or chemotherapy, as well as in the chronic management of advanced cancer and in the palliative care setting. We present an overview of the available vascular access devices and of the most relevant issues regarding insertion and management of vascular access. Particular emphasis is given to the use of ultrasound guidance as the preferred technique of insertion, which has dramatically decreased insertion-related complications. Vascular access management has considerably improved after the publication of effective guidelines for the appropriate nursing of the vascular device, which has reduced the risk of late complications, such as catheter-related bloodstream infection. However, many areas of clinical practice are still lacking an evidence-based background, such as the choice of the most appropriate vascular access device in each clinical situation, as well as prevention and treatment of thrombosis. We suggest an approach to the choice of the most appropriate vascular access device for the oncology patient, based on the literature available to date.

  12. Vascular parkinsonism: Deconstructing a syndrome

    PubMed Central

    Vizcarra, Joaquin A.; Lang, Anthony E.; Sethi, Kapil D; Espay, Alberto J.

    2015-01-01

    Progressive ambulatory impairment and abnormal white matter signal on neuroimaging come together under the diagnostic umbrella of vascular parkinsonism. A critical appraisal of the literature, however, suggests that (1) no abnormal structural imaging pattern is specific to vascular parkinsonism; (2) there is poor correlation between brain magnetic resonance imaging hyperintensities and microangiopathic brain disease and parkinsonism from available clinicopathologic data; (3) pure parkinsonism from vascular injury (“definite” vascular parkinsonism) consistently results from ischemic or hemorrhagic strokes involving the substantia nigra and/or nigrostriatal pathway but sparing the striatum itself, the cortex, and the intervening white matter; and (4) many cases reported as vascular parkinsonism may represent pseudovascular parkinsonism (e.g., Parkinson disease or another neurodegenerative parkinsonism such as progressive supranuclear palsy with non-specific neuroimaging signal abnormalities), vascular pseudoparkinsonism (e.g., akinetic mutism due to bilateral mesial frontal strokes or apathetic depression from bilateral striatal lacunar strokes), or pseudovascular pseudoparkinsonism (e.g., higher-level gait disorders, including normal pressure hydrocephalus with transependimal exudate). These syndromic designations are preferable over vascular parkinsonism until pathology or validated biomarkers confirm the underlying nature and relevance of the leukoaraiosis. PMID:25997420

  13. Contemporary vascular smartphone medical applications.

    PubMed

    Carter, Thomas; O'Neill, Stephen; Johns, Neil; Brady, Richard R W

    2013-08-01

    Use of smartphones and medical mHealth applications (apps) within the clinical environment provides a potential means for delivering elements of vascular care. This article reviews the contemporary availability of apps specifically themed to major vascular diseases and the opportunities and concerns regarding their integration into practice. Smartphone apps relating to major vascular diseases were identified from the app stores for the 6 most popular smartphone platforms, including iPhone, Android, Blackberry, Nokia, Windows, and Samsung. Search terms included peripheral artery (arterial) disease, varicose veins, aortic aneurysm, carotid artery disease, amputation, ulcers, hyperhydrosis, thoracic outlet syndrome, vascular malformation, and lymphatic disorders. Forty-nine vascular-themed apps were identified. Sixteen (33%) were free of charge. Fifteen apps (31%) had customer satisfaction ratings, but only 3 (6%) had greater than 100. Only 13 apps (27%) had documented medical professional involvement in their design or content. The integration of apps into the delivery of care has the potential to benefit vascular health care workers and patients. However, high-quality apps designed by clinicians with vascular expertise are currently lacking and represent an area of concern in the mHealth market. Improvement in the quality and reliability of these apps will require the development of robust regulation. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. [The future of vascular medicine].

    PubMed

    Kroeger, K; Luther, B

    2014-10-01

    In the future vascular medicine will still have a great impact on health of people. It should be noted that the aging of the population does not lead to a dramatic increase in patient numbers, but will be associated with a changing spectrum of co-morbidities. In addition, vascular medical research has to include the intensive care special features of vascular patients, the involvement of vascular medicine in a holistic concept of fast-track surgery, a geriatric-oriented intensive monitoring and early geriatric rehabilitation. For the future acceptance of vascular medicine as a separate subject area under delimitation of cardiology and radiology is important. On the other hand, the subject is so complex and will become more complex in future specialisations that mixing of surgery and angiology is desirable, with the aim to preserve the vascular surgical knowledge and skills on par with the medical and interventional measures and further develop them. Only large, interdisciplinary guided vascular centres will be able to provide timely diagnosis and therapy, to deal with the growing multi-morbidity of the patient, to perform complex therapies even in an acute emergency and due to sufficient number of cases to present with well-trained and experienced teams. These requirements are mandatory to decrease patients' mortality step by step.

  15. Vascular Injuries: Trends in Management

    PubMed Central

    Wani, Mohd Lateef; Ahangar, Ab Gani; Ganie, Farooq Ahmad; Wani, Shadab Nabi; Wani, Nasir-ud-din

    2012-01-01

    Abstract Vascular injury presents a great challenge to the emergency resident because these injuries require urgent intervention to prevent loss of life or limb. Sometimes serious vascular injury presents with only subtle or occult signs or symptoms. The patient may present weeks or months after initial injury with symptoms of vascular insufficiency, embolization, pseudoaneurysm, arteriovenous fistula etc. Although the majority of vascular injuries are caused by penetrating trauma from gunshot wounds, stabbing or blast injury, the possibility of vascular injury needs to be considered in patients presenting with displaced long bone fractures, crush injury, prolonged immobilization in a fixed position by tight casts or bandages and various invasive procedures. iatrogenic vascular injuries constitute about 10% of cases in most series; however the incidence is an increasing trend because more endovascular procedures such as angioplasty and cardiac catheterization are being performed routinely. Civilian trauma is more frequently seen in young males. However, it can occur at any age due to road accidents, firearms, bomb blasts and diagnostic procedures. Most of the time, civilian trauma causes less tissue damage. There is an epidemic of vascular injuries in Kashmir valley because of problems in law and order in the past two decades. This review deals with the topic in detail. PMID:24350103

  16. Changes to the geometry and fluid mechanics of the carotid siphon in the pediatric Moyamoya disease.

    PubMed

    Jamil, Muhammad; Tan, Germaine Xin Yi; Huq, Mehnaz; Kang, Heidi; Lee, Zhi Rui; Tang, Phua Hwee; Hu, Xi Hong; Yap, Choon Hwai

    2016-12-01

    The Moyamoya disease is a cerebrovascular disease that causes occlusion of the distal end of the internal carotid artery, leading to the formation of multiple tiny collateral arteries. To date, the pathogenesis of Moyamoya is unknown. Improved understanding of the changes to vascular geometry and fluid mechanics of the carotid siphon during disease may improve understanding of the pathogenesis, prognosis techniques and disease management. A retrospective analysis of Magnetic Resonance Angiography (MRA) images was performed for Moyamoya pediatric patients (MMD) (n = 23) and control (Ctrl) pediatric patients (n = 20). The Ctrl group was composed of patients who complained of headache and had normal MRA. We performed segmentation of MRA images to quantify geometric parameters of the artery. Computational fluid dynamics (CFD) was performed to quantify the hemodynamic parameters. MMD internal carotid and carotid siphons were smaller in cross-sectional areas, and shorter in curved vascular length. Vascular curvature remained constant over age and vascular size and did not change between Ctrl and MMD, but MMD carotid siphon had lower tortuosity in the posterior bend, and higher torsion in the anterior bend. Wall shear stress and secondary flows were significantly lower in MMD, but the ratio of secondary flow kinetic energy to primary flow kinetic energy were similar between MMD and Ctrl. There were alterations to both the geometry and the flow mechanics of the carotid siphons of Moyamoya patients but it is unclear whether hemodynamics is the cause or the effect of morphological changes observed.

  17. Engineering design of artificial vascular junctions for 3D printing.

    PubMed

    Han, Xiaoxiao; Bibb, Richard; Harris, Russell

    2016-06-20

    Vascular vessels, including arteries, veins and capillaries, are being printed using additive manufacturing technologies, also known as 3D printing. This paper demonstrates that it is important to follow the vascular design by nature as close as possible when 3D printing artificial vascular branches. In previous work, the authors developed an algorithm of computational geometry for constructing smooth junctions for 3D printing. In this work, computational fluid dynamics (CFDs) is used to compare the wall shear stress and blood velocity field for the junctions of different designs. The CFD model can reproduce the expected wall shear stress at locations remote from the junction. For large vessels such as veins, it is shown that ensuring the smoothness of the junction and using smaller joining angles as observed in nature is very important to avoid high wall shear stress and recirculation. The issue is however less significant for capillaries. Large joining angles make no difference to the hemodynamic behavior, which is also consistent with the fact that most capillary junctions have large joining angles. The combination of the CFD analysis and the junction construction method form a complete design method for artificial vascular vessels that can be 3D printed using additive manufacturing technologies.

  18. Vascularized bone grafts for the treatment of carpal bone pathology.

    PubMed

    Derby, Brian M; Murray, Peter M; Shin, Alexander Y; Bueno, Reuben A; Mathoulin, Christophe L; Ade, Tim; Neumeister, Michael W

    2013-03-01

    Primary bone healing fails to occur in 5-15 % of scaphoid bones that undergo fracture fixation. Untreated, occult fractures result in nonunion up to 12 % of the time. Conventional bone grafting is the accepted management in the treatment algorithm of scaphoid nonunion if the proximal pole is vascularized. Osteonecrosis of the proximal scaphoid pole intuitively suggests a need for transfer of the vascularized bone to the nonunion site. Scaphoid nonunion treatment aims to prevent biological and mechanical subsidence of the involved bone, destabilization of the carpus, and early degenerative changes associated with scaphoid nonunion advanced collapse. Pedicled distal radius and free vascularized bone grafts (VBGs) offer hand surgeons an alternative treatment option in the management of carpal bone nonunion. VBGs are also indicated in the treatment of avascular necrosis of the scaphoid (Preiser's disease), lunate (Kienböck's disease), and capitate. Relative contraindications to pedicled dorsal radius vascularized bone grafting include humpback deformity, carpal instability, or collapse. The free medial femoral condyle bone graft has offered a novel treatment option for the humpback deformity to restore geometry of the carpus, otherwise not provided by pedicled grafts. In general, VBGs are contraindicated in the setting of a carpal bone without an intact cartilaginous shell, in advanced carpal collapse with degenerative changes, and in attempts to salvage small or collapsed bone fragments. Wrist salvage procedures are generally accepted as the more definitive treatment option under such circumstances. This manuscript offers a current review of the techniques and outcomes of VBGs to the carpal bones.

  19. Mannose-binding geometry of pradimicin A.

    PubMed

    Nakagawa, Yu; Doi, Takashi; Taketani, Takara; Takegoshi, K; Igarashi, Yasuhiro; Ito, Yukishige

    2013-08-05

    Pradimicins (PRMs) and benanomicins are the only family of non-peptidic natural products with lectin-like properties, that is, they recognize D-mannopyranoside (Man) in the presence of Ca(2+) ions. Coupled with their unique Man binding ability, they exhibit antifungal and anti-HIV activities through binding to Man-containing glycans of pathogens. Notwithstanding the great potential of PRMs as the lectin mimics and therapeutic leads, their molecular basis of Man recognition has yet to be established. Their aggregate-forming propensity has impeded conventional interaction analysis in solution, and the analytical difficulty is exacerbated by the existence of two Man binding sites in PRMs. In this work, we investigated the geometry of the primary Man binding of PRM-A, an original member of PRMs, by the recently developed analytical strategy using the solid aggregate composed of the 1:1 complex of PRM-A and Man. Evaluation of intermolecular distances by solid-state NMR spectroscopy revealed that the C2-C4 region of Man is in close contact with the primary binding site of PRM-A, while the C1 and C6 positions of Man are relatively distant. The binding geometry was further validated by co-precipitation experiments using deoxy-Man derivatives, leading to the proposal that PRM-A binds not only to terminal Man residues at the non-reducing end of glycans, but also to internal 6-substituted Man residues. The present study provides new insights into the molecular basis of Man recognition and glycan specificity of PRM-A. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. UNDERSTANDING THE GEOMETRY OF ASTROPHYSICAL MAGNETIC FIELDS

    SciTech Connect

    Broderick, Avery E.; Blandford, Roger D.

    2010-08-01

    Faraday rotation measurements have provided an invaluable technique for probing the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13(RM/1 rad m{sup -2}){sup 1/4}(B/1 G){sup 1/2} MHz, the character of Faraday rotation changes, entering what we term the 'super-adiabatic regime' in which the rotation measure (RM) is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing RMs at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, {nu}{sub SA}, depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of {nu}{sub SA} range from 10 kHz (below the ionospheric cutoff, but above the heliospheric cutoff) to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved active galactic nuclei, including the black holes at the center of the Milky Way (Sgr A*) and M81, {nu}{sub SA} ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.