Sample records for regression analysis artificial

  1. Artificial Neural Networks: A New Approach to Predicting Application Behavior.

    ERIC Educational Resources Information Center

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    2002-01-01

    Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)

  2. Searching for the main anti-bacterial components in artificial Calculus bovis using UPLC and microcalorimetry coupled with multi-linear regression analysis.

    PubMed

    Zang, Qing-Ce; Wang, Jia-Bo; Kong, Wei-Jun; Jin, Cheng; Ma, Zhi-Jie; Chen, Jing; Gong, Qian-Feng; Xiao, Xiao-He

    2011-12-01

    The fingerprints of artificial Calculus bovis extracts from different solvents were established by ultra-performance liquid chromatography (UPLC) and the anti-bacterial activities of artificial C. bovis extracts on Staphylococcus aureus (S. aureus) growth were studied by microcalorimetry. The UPLC fingerprints were evaluated using hierarchical clustering analysis. Some quantitative parameters obtained from the thermogenic curves of S. aureus growth affected by artificial C. bovis extracts were analyzed using principal component analysis. The spectrum-effect relationships between UPLC fingerprints and anti-bacterial activities were investigated using multi-linear regression analysis. The results showed that peak 1 (taurocholate sodium), peak 3 (unknown compound), peak 4 (cholic acid), and peak 6 (chenodeoxycholic acid) are more significant than the other peaks with the standard parameter estimate 0.453, -0.166, 0.749, 0.025, respectively. So, compounds cholic acid, taurocholate sodium, and chenodeoxycholic acid might be the major anti-bacterial components in artificial C. bovis. Altogether, this work provides a general model of the combination of UPLC chromatography and anti-bacterial effect to study the spectrum-effect relationships of artificial C. bovis extracts, which can be used to discover the main anti-bacterial components in artificial C. bovis or other Chinese herbal medicines with anti-bacterial effects. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Comparison of Logistic Regression and Artificial Neural Network in Low Back Pain Prediction: Second National Health Survey

    PubMed Central

    Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H

    2012-01-01

    Background: The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Methods: Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. Results: The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Conclusions: Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant. PMID:23113198

  4. Comparison of logistic regression and artificial neural network in low back pain prediction: second national health survey.

    PubMed

    Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H

    2012-01-01

    The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant.

  5. Predicting Air Permeability of Handloom Fabrics: A Comparative Analysis of Regression and Artificial Neural Network Models

    NASA Astrophysics Data System (ADS)

    Mitra, Ashis; Majumdar, Prabal Kumar; Bannerjee, Debamalya

    2013-03-01

    This paper presents a comparative analysis of two modeling methodologies for the prediction of air permeability of plain woven handloom cotton fabrics. Four basic fabric constructional parameters namely ends per inch, picks per inch, warp count and weft count have been used as inputs for artificial neural network (ANN) and regression models. Out of the four regression models tried, interaction model showed very good prediction performance with a meager mean absolute error of 2.017 %. However, ANN models demonstrated superiority over the regression models both in terms of correlation coefficient and mean absolute error. The ANN model with 10 nodes in the single hidden layer showed very good correlation coefficient of 0.982 and 0.929 and mean absolute error of only 0.923 and 2.043 % for training and testing data respectively.

  6. Heat and moisture exchangers (HMEs) and heated humidifiers (HHs) in adult critically ill patients: a systematic review, meta-analysis and meta-regression of randomized controlled trials.

    PubMed

    Vargas, Maria; Chiumello, Davide; Sutherasan, Yuda; Ball, Lorenzo; Esquinas, Antonio M; Pelosi, Paolo; Servillo, Giuseppe

    2017-05-29

    The aims of this systematic review and meta-analysis of randomized controlled trials are to evaluate the effects of active heated humidifiers (HHs) and moisture exchangers (HMEs) in preventing artificial airway occlusion and pneumonia, and on mortality in adult critically ill patients. In addition, we planned to perform a meta-regression analysis to evaluate the relationship between the incidence of artificial airway occlusion, pneumonia and mortality and clinical features of adult critically ill patients. Computerized databases were searched for randomized controlled trials (RCTs) comparing HHs and HMEs and reporting artificial airway occlusion, pneumonia and mortality as predefined outcomes. Relative risk (RR), 95% confidence interval for each outcome and I 2 were estimated for each outcome. Furthermore, weighted random-effect meta-regression analysis was performed to test the relationship between the effect size on each considered outcome and covariates. Eighteen RCTs and 2442 adult critically ill patients were included in the analysis. The incidence of artificial airway occlusion (RR = 1.853; 95% CI 0.792-4.338), pneumonia (RR = 932; 95% CI 0.730-1.190) and mortality (RR = 1.023; 95% CI 0.878-1.192) were not different in patients treated with HMEs and HHs. However, in the subgroup analyses the incidence of airway occlusion was higher in HMEs compared with HHs with non-heated wire (RR = 3.776; 95% CI 1.560-9.143). According to the meta-regression, the effect size in the treatment group on artificial airway occlusion was influenced by the percentage of patients with pneumonia (β = -0.058; p = 0.027; favors HMEs in studies with high prevalence of pneumonia), and a trend was observed for an effect of the duration of mechanical ventilation (MV) (β = -0.108; p = 0.054; favors HMEs in studies with longer MV time). In this meta-analysis we found no superiority of HMEs and HHs, in terms of artificial airway occlusion, pneumonia and mortality. A trend favoring HMEs was observed in studies including a high percentage of patients with pneumonia diagnosis at admission and those with prolonged MV. However, the choice of humidifiers should be made according to the clinical context, trying to avoid possible complications and reaching the appropriate performance at lower costs.

  7. Artificial Neural Networks in Policy Research: A Current Assessment.

    ERIC Educational Resources Information Center

    Woelfel, Joseph

    1993-01-01

    Suggests that artificial neural networks (ANNs) exhibit properties that promise usefulness for policy researchers. Notes that ANNs have found extensive use in areas once reserved for multivariate statistical programs such as regression and multiple classification analysis and are developing an extensive community of advocates for processing text…

  8. [Algorithms of artificial neural networks--practical application in medical science].

    PubMed

    Stefaniak, Bogusław; Cholewiński, Witold; Tarkowska, Anna

    2005-12-01

    Artificial Neural Networks (ANN) may be a tool alternative and complementary to typical statistical analysis. However, in spite of many computer applications of various ANN algorithms ready for use, artificial intelligence is relatively rarely applied to data processing. This paper presents practical aspects of scientific application of ANN in medicine using widely available algorithms. Several main steps of analysis with ANN were discussed starting from material selection and dividing it into groups, to the quality assessment of obtained results at the end. The most frequent, typical reasons for errors as well as the comparison of ANN method to the modeling by regression analysis were also described.

  9. Artificial neural network, genetic algorithm, and logistic regression applications for predicting renal colic in emergency settings.

    PubMed

    Eken, Cenker; Bilge, Ugur; Kartal, Mutlu; Eray, Oktay

    2009-06-03

    Logistic regression is the most common statistical model for processing multivariate data in the medical literature. Artificial intelligence models like an artificial neural network (ANN) and genetic algorithm (GA) may also be useful to interpret medical data. The purpose of this study was to perform artificial intelligence models on a medical data sheet and compare to logistic regression. ANN, GA, and logistic regression analysis were carried out on a data sheet of a previously published article regarding patients presenting to an emergency department with flank pain suspicious for renal colic. The study population was composed of 227 patients: 176 patients had a diagnosis of urinary stone, while 51 ultimately had no calculus. The GA found two decision rules in predicting urinary stones. Rule 1 consisted of being male, pain not spreading to back, and no fever. In rule 2, pelvicaliceal dilatation on bedside ultrasonography replaced no fever. ANN, GA rule 1, GA rule 2, and logistic regression had a sensitivity of 94.9, 67.6, 56.8, and 95.5%, a specificity of 78.4, 76.47, 86.3, and 47.1%, a positive likelihood ratio of 4.4, 2.9, 4.1, and 1.8, and a negative likelihood ratio of 0.06, 0.42, 0.5, and 0.09, respectively. The area under the curve was found to be 0.867, 0.720, 0.715, and 0.713 for all applications, respectively. Data mining techniques such as ANN and GA can be used for predicting renal colic in emergency settings and to constitute clinical decision rules. They may be an alternative to conventional multivariate analysis applications used in biostatistics.

  10. Application of artificial neural network to fMRI regression analysis.

    PubMed

    Misaki, Masaya; Miyauchi, Satoru

    2006-01-15

    We used an artificial neural network (ANN) to detect correlations between event sequences and fMRI (functional magnetic resonance imaging) signals. The layered feed-forward neural network, given a series of events as inputs and the fMRI signal as a supervised signal, performed a non-linear regression analysis. This type of ANN is capable of approximating any continuous function, and thus this analysis method can detect any fMRI signals that correlated with corresponding events. Because of the flexible nature of ANNs, fitting to autocorrelation noise is a problem in fMRI analyses. We avoided this problem by using cross-validation and an early stopping procedure. The results showed that the ANN could detect various responses with different time courses. The simulation analysis also indicated an additional advantage of ANN over non-parametric methods in detecting parametrically modulated responses, i.e., it can detect various types of parametric modulations without a priori assumptions. The ANN regression analysis is therefore beneficial for exploratory fMRI analyses in detecting continuous changes in responses modulated by changes in input values.

  11. Swallowing Mechanics Associated With Artificial Airways, Bolus Properties, and Penetration-Aspiration Status in Trauma Patients.

    PubMed

    Dietsch, Angela M; Rowley, Christopher B; Solomon, Nancy Pearl; Pearson, William G

    2017-09-18

    Artificial airway procedures such as intubation and tracheotomy are common in the treatment of traumatic injuries, and bolus modifications may be implemented to help manage swallowing disorders. This study assessed artificial airway status, bolus properties (volume and viscosity), and the occurrence of laryngeal penetration and/or aspiration in relation to mechanical features of swallowing. Coordinates of anatomical landmarks were extracted at minimum and maximum hyolaryngeal excursion from 228 videofluoroscopic swallowing studies representing 69 traumatically injured U.S. military service members with dysphagia. Morphometric canonical variate and regression analyses examined associations between swallowing mechanics and bolus properties based on artificial airway and penetration-aspiration status. Significant differences in swallowing mechanics were detected between extubated versus tracheotomized (D = 1.32, p < .0001), extubated versus decannulated (D = 1.74, p < .0001), and decannulated versus tracheotomized (D = 1.24, p < .0001) groups per post hoc discriminant function analysis. Tracheotomy-in-situ and decannulated subgroups exhibited increased head/neck extension and posterior relocation of the larynx. Swallowing mechanics associated with (a) penetration-aspiration status and (b) bolus properties were moderately related for extubated and decannulated subgroups, but not the tracheotomized subgroup, per morphometric regression analysis. Specific differences in swallowing mechanics associated with artificial airway status and certain bolus properties may guide therapeutic intervention in trauma-based dysphagia.

  12. Time Series Analysis of Soil Radon Data Using Multiple Linear Regression and Artificial Neural Network in Seismic Precursory Studies

    NASA Astrophysics Data System (ADS)

    Singh, S.; Jaishi, H. P.; Tiwari, R. P.; Tiwari, R. C.

    2017-07-01

    This paper reports the analysis of soil radon data recorded in the seismic zone-V, located in the northeastern part of India (latitude 23.73N, longitude 92.73E). Continuous measurements of soil-gas emission along Chite fault in Mizoram (India) were carried out with the replacement of solid-state nuclear track detectors at weekly interval. The present study was done for the period from March 2013 to May 2015 using LR-115 Type II detectors, manufactured by Kodak Pathe, France. In order to reduce the influence of meteorological parameters, statistical analysis tools such as multiple linear regression and artificial neural network have been used. Decrease in radon concentration was recorded prior to some earthquakes that occurred during the observation period. Some false anomalies were also recorded which may be attributed to the ongoing crustal deformation which was not major enough to produce an earthquake.

  13. Examination of influential observations in penalized spline regression

    NASA Astrophysics Data System (ADS)

    Türkan, Semra

    2013-10-01

    In parametric or nonparametric regression models, the results of regression analysis are affected by some anomalous observations in the data set. Thus, detection of these observations is one of the major steps in regression analysis. These observations are precisely detected by well-known influence measures. Pena's statistic is one of them. In this study, Pena's approach is formulated for penalized spline regression in terms of ordinary residuals and leverages. The real data and artificial data are used to see illustrate the effectiveness of Pena's statistic as to Cook's distance on detecting influential observations. The results of the study clearly reveal that the proposed measure is superior to Cook's Distance to detect these observations in large data set.

  14. The application of artificial neural networks and support vector regression for simultaneous spectrophotometric determination of commercial eye drop contents

    NASA Astrophysics Data System (ADS)

    Valizadeh, Maryam; Sohrabi, Mahmoud Reza

    2018-03-01

    In the present study, artificial neural networks (ANNs) and support vector regression (SVR) as intelligent methods coupled with UV spectroscopy for simultaneous quantitative determination of Dorzolamide (DOR) and Timolol (TIM) in eye drop. Several synthetic mixtures were analyzed for validating the proposed methods. At first, neural network time series, which one type of network from the artificial neural network was employed and its efficiency was evaluated. Afterwards, the radial basis network was applied as another neural network. Results showed that the performance of this method is suitable for predicting. Finally, support vector regression was proposed to construct the Zilomole prediction model. Also, root mean square error (RMSE) and mean recovery (%) were calculated for SVR method. Moreover, the proposed methods were compared to the high-performance liquid chromatography (HPLC) as a reference method. One way analysis of variance (ANOVA) test at the 95% confidence level applied to the comparison results of suggested and reference methods that there were no significant differences between them. Also, the effect of interferences was investigated in spike solutions.

  15. Neural Networks for Readability Analysis.

    ERIC Educational Resources Information Center

    McEneaney, John E.

    This paper describes and reports on the performance of six related artificial neural networks that have been developed for the purpose of readability analysis. Two networks employ counts of linguistic variables that simulate a traditional regression-based approach to readability. The remaining networks determine readability from "visual…

  16. Applications of Some Artificial Intelligence Methods to Satellite Soundings

    NASA Technical Reports Server (NTRS)

    Munteanu, M. J.; Jakubowicz, O.

    1985-01-01

    Hard clustering of temperature profiles and regression temperature retrievals were used to refine the method using the probabilities of membership of each pattern vector in each of the clusters derived with discriminant analysis. In hard clustering the maximum probability is taken and the corresponding cluster as the correct cluster are considered discarding the rest of the probabilities. In fuzzy partitioned clustering these probabilities are kept and the final regression retrieval is a weighted regression retrieval of several clusters. This method was used in the clustering of brightness temperatures where the purpose was to predict tropopause height. A further refinement is the division of temperature profiles into three major regions for classification purposes. The results are summarized in the tables total r.m.s. errors are displayed. An approach based on fuzzy logic which is intimately related to artificial intelligence methods is recommended.

  17. Comparison between artificial neural network and multilinear regression models in an evaluation of cognitive workload in a flight simulator.

    PubMed

    Hannula, Manne; Huttunen, Kerttu; Koskelo, Jukka; Laitinen, Tomi; Leino, Tuomo

    2008-01-01

    In this study, the performances of artificial neural network (ANN) analysis and multilinear regression (MLR) model-based estimation of heart rate were compared in an evaluation of individual cognitive workload. The data comprised electrocardiography (ECG) measurements and an evaluation of cognitive load that induces psychophysiological stress (PPS), collected from 14 interceptor fighter pilots during complex simulated F/A-18 Hornet air battles. In our data, the mean absolute error of the ANN estimate was 11.4 as a visual analog scale score, being 13-23% better than the mean absolute error of the MLR model in the estimation of cognitive workload.

  18. Daily Suspended Sediment Discharge Prediction Using Multiple Linear Regression and Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Uca; Toriman, Ekhwan; Jaafar, Othman; Maru, Rosmini; Arfan, Amal; Saleh Ahmar, Ansari

    2018-01-01

    Prediction of suspended sediment discharge in a catchments area is very important because it can be used to evaluation the erosion hazard, management of its water resources, water quality, hydrology project management (dams, reservoirs, and irrigation) and to determine the extent of the damage that occurred in the catchments. Multiple Linear Regression analysis and artificial neural network can be used to predict the amount of daily suspended sediment discharge. Regression analysis using the least square method, whereas artificial neural networks using Radial Basis Function (RBF) and feedforward multilayer perceptron with three learning algorithms namely Levenberg-Marquardt (LM), Scaled Conjugate Descent (SCD) and Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton (BFGS). The number neuron of hidden layer is three to sixteen, while in output layer only one neuron because only one output target. The mean absolute error (MAE), root mean square error (RMSE), coefficient of determination (R2 ) and coefficient of efficiency (CE) of the multiple linear regression (MLRg) value Model 2 (6 input variable independent) has the lowest the value of MAE and RMSE (0.0000002 and 13.6039) and highest R2 and CE (0.9971 and 0.9971). When compared between LM, SCG and RBF, the BFGS model structure 3-7-1 is the better and more accurate to prediction suspended sediment discharge in Jenderam catchment. The performance value in testing process, MAE and RMSE (13.5769 and 17.9011) is smallest, meanwhile R2 and CE (0.9999 and 0.9998) is the highest if it compared with the another BFGS Quasi-Newton model (6-3-1, 9-10-1 and 12-12-1). Based on the performance statistics value, MLRg, LM, SCG, BFGS and RBF suitable and accurately for prediction by modeling the non-linear complex behavior of suspended sediment responses to rainfall, water depth and discharge. The comparison between artificial neural network (ANN) and MLRg, the MLRg Model 2 accurately for to prediction suspended sediment discharge (kg/day) in Jenderan catchment area.

  19. Use of an Artificial Neural Network to Construct a Model of Predicting Deep Fungal Infection in Lung Cancer Patients.

    PubMed

    Chen, Jian; Chen, Jie; Ding, Hong-Yan; Pan, Qin-Shi; Hong, Wan-Dong; Xu, Gang; Yu, Fang-You; Wang, Yu-Min

    2015-01-01

    The statistical methods to analyze and predict the related dangerous factors of deep fungal infection in lung cancer patients were several, such as logic regression analysis, meta-analysis, multivariate Cox proportional hazards model analysis, retrospective analysis, and so on, but the results are inconsistent. A total of 696 patients with lung cancer were enrolled. The factors were compared employing Student's t-test or the Mann-Whitney test or the Chi-square test and variables that were significantly related to the presence of deep fungal infection selected as candidates for input into the final artificial neural network analysis (ANN) model. The receiver operating characteristic (ROC) and area under curve (AUC) were used to evaluate the performance of the artificial neural network (ANN) model and logistic regression (LR) model. The prevalence of deep fungal infection from lung cancer in this entire study population was 32.04%(223/696), deep fungal infections occur in sputum specimens 44.05% (200/454). The ratio of candida albicans was 86.99% (194/223) in the total fungi. It was demonstrated that older (≥65 years), use of antibiotics, low serum albumin concentrations (≤37.18 g /L), radiotherapy, surgery, low hemoglobin hyperlipidemia (≤93.67 g /L), long time of hospitalization (≥14 days) were apt to deep fungal infection and the ANN model consisted of the seven factors. The AUC of ANN model (0.829±0.019) was higher than that of LR model (0.756±0.021). The artificial neural network model with variables consisting of age, use of antibiotics, serum albumin concentrations, received radiotherapy, received surgery, hemoglobin, time of hospitalization should be useful for predicting the deep fungal infection in lung cancer.

  20. Expanding the occupational health methodology: A concatenated artificial neural network approach to model the burnout process in Chinese nurses.

    PubMed

    Ladstätter, Felix; Garrosa, Eva; Moreno-Jiménez, Bernardo; Ponsoda, Vicente; Reales Aviles, José Manuel; Dai, Junming

    2016-01-01

    Artificial neural networks are sophisticated modelling and prediction tools capable of extracting complex, non-linear relationships between predictor (input) and predicted (output) variables. This study explores this capacity by modelling non-linearities in the hardiness-modulated burnout process with a neural network. Specifically, two multi-layer feed-forward artificial neural networks are concatenated in an attempt to model the composite non-linear burnout process. Sensitivity analysis, a Monte Carlo-based global simulation technique, is then utilised to examine the first-order effects of the predictor variables on the burnout sub-dimensions and consequences. Results show that (1) this concatenated artificial neural network approach is feasible to model the burnout process, (2) sensitivity analysis is a prolific method to study the relative importance of predictor variables and (3) the relationships among variables involved in the development of burnout and its consequences are to different degrees non-linear. Many relationships among variables (e.g., stressors and strains) are not linear, yet researchers use linear methods such as Pearson correlation or linear regression to analyse these relationships. Artificial neural network analysis is an innovative method to analyse non-linear relationships and in combination with sensitivity analysis superior to linear methods.

  1. Science of Test Research Consortium: Year Two Final Report

    DTIC Science & Technology

    2012-10-02

    July 2012. Analysis of an Intervention for Small Unmanned Aerial System ( SUAS ) Accidents, submitted to Quality Engineering, LQEN-2012-0056. Stone... Systems Engineering. Wolf, S. E., R. R. Hill, and J. J. Pignatiello. June 2012. Using Neural Networks and Logistic Regression to Model Small Unmanned ...Human Retina. 6. Wolf, S. E. March 2012. Modeling Small Unmanned Aerial System Mishaps using Logistic Regression and Artificial Neural Networks. 7

  2. Effects of artificial sweeteners on body weight, food and drink intake.

    PubMed

    Polyák, Eva; Gombos, K; Hajnal, B; Bonyár-Müller, K; Szabó, Sz; Gubicskó-Kisbenedek, A; Marton, K; Ember, I

    2010-12-01

    Artificial sweeteners are widely used all over the world. They may assist in weight management, prevention of dental caries, control of blood glucose of diabetics, and also can be used to replace sugar in foods. In the animal experimentation mice were given oral doses of water solutions of table top artificial sweeteners (saccharin, cyclamate based, acesulfame-K based, and aspartame) the amount of maximum Acceptable Daily Intake (ADI) ad libitum. The controls received only tap water with the same drinking conditions as the treated groups. The mice were fed chow ad libitum.We measured food intake and body weight once a week, water and solutions of artificial sweeteners intake twice a week. The data were analysed by statistical methods (T-probe, regression analysis).Consumption of sweeteners resulted in significantly increased body weight; however, the food intake did not change.These results question the effect of non-caloric artificial sweeteners on weight-maintenance or body weight decrease.

  3. AGSuite: Software to conduct feature analysis of artificial grammar learning performance.

    PubMed

    Cook, Matthew T; Chubala, Chrissy M; Jamieson, Randall K

    2017-10-01

    To simplify the problem of studying how people learn natural language, researchers use the artificial grammar learning (AGL) task. In this task, participants study letter strings constructed according to the rules of an artificial grammar and subsequently attempt to discriminate grammatical from ungrammatical test strings. Although the data from these experiments are usually analyzed by comparing the mean discrimination performance between experimental conditions, this practice discards information about the individual items and participants that could otherwise help uncover the particular features of strings associated with grammaticality judgments. However, feature analysis is tedious to compute, often complicated, and ill-defined in the literature. Moreover, the data violate the assumption of independence underlying standard linear regression models, leading to Type I error inflation. To solve these problems, we present AGSuite, a free Shiny application for researchers studying AGL. The suite's intuitive Web-based user interface allows researchers to generate strings from a database of published grammars, compute feature measures (e.g., Levenshtein distance) for each letter string, and conduct a feature analysis on the strings using linear mixed effects (LME) analyses. The LME analysis solves the inflation of Type I errors that afflicts more common methods of repeated measures regression analysis. Finally, the software can generate a number of graphical representations of the data to support an accurate interpretation of results. We hope the ease and availability of these tools will encourage researchers to take full advantage of item-level variance in their datasets in the study of AGL. We moreover discuss the broader applicability of the tools for researchers looking to conduct feature analysis in any field.

  4. Use of Gene Expression Programming in regionalization of flow duration curve

    NASA Astrophysics Data System (ADS)

    Hashmi, Muhammad Z.; Shamseldin, Asaad Y.

    2014-06-01

    In this paper, a recently introduced artificial intelligence technique known as Gene Expression Programming (GEP) has been employed to perform symbolic regression for developing a parametric scheme of flow duration curve (FDC) regionalization, to relate selected FDC characteristics to catchment characteristics. Stream flow records of selected catchments located in the Auckland Region of New Zealand were used. FDCs of the selected catchments were normalised by dividing the ordinates by their median value. Input for the symbolic regression analysis using GEP was (a) selected characteristics of normalised FDCs; and (b) 26 catchment characteristics related to climate, morphology, soil properties and land cover properties obtained using the observed data and GIS analysis. Our study showed that application of this artificial intelligence technique expedites the selection of a set of the most relevant independent variables out of a large set, because these are automatically selected through the GEP process. Values of the FDC characteristics obtained from the developed relationships have high correlations with the observed values.

  5. Reconstructing missing daily precipitation data using regression trees and artificial neural networks

    USDA-ARS?s Scientific Manuscript database

    Incomplete meteorological data has been a problem in environmental modeling studies. The objective of this work was to develop a technique to reconstruct missing daily precipitation data in the central part of Chesapeake Bay Watershed using regression trees (RT) and artificial neural networks (ANN)....

  6. Reconstructing missing daily precipitation data using regression trees and artificial neural networks

    USDA-ARS?s Scientific Manuscript database

    Missing meteorological data have to be estimated for agricultural and environmental modeling. The objective of this work was to develop a technique to reconstruct the missing daily precipitation data in the central part of the Chesapeake Bay Watershed using regression trees (RT) and artificial neura...

  7. Predictive capacity of sperm quality parameters and sperm subpopulations on field fertility after artificial insemination in sheep.

    PubMed

    Santolaria, P; Vicente-Fiel, S; Palacín, I; Fantova, E; Blasco, M E; Silvestre, M A; Yániz, J L

    2015-12-01

    This study was designed to evaluate the relevance of several sperm quality parameters and sperm population structure on the reproductive performance after cervical artificial insemination (AI) in sheep. One hundred and thirty-nine ejaculates from 56 adult rams were collected using an artificial vagina, processed for sperm quality assessment and used to perform 1319 AI. Analyses of sperm motility by computer-assisted sperm analysis (CASA), sperm nuclear morphometry by computer-assisted sperm morphometry analysis (CASMA), membrane integrity by acridine orange-propidium iodide combination and sperm DNA fragmentation using the sperm chromatin dispersion test (SCD) were performed. Clustering procedures using the sperm kinematic and morphometric data resulted in the classification of spermatozoa into three kinematic and three morphometric sperm subpopulations. Logistic regression procedures were used, including fertility at AI as the dependent variable (measured by lambing, 0 or 1) and farm, year, month of AI, female parity, female lambing-treatment interval, ram, AI technician and sperm quality parameters (including sperm subpopulations) as independent factors. Sperm quality variables remaining in the logistic regression model were viability and VCL. Fertility increased for each one-unit increase in viability (by a factor of 1.01) and in VCL (by a factor of 1.02). Multiple linear regression analyses were also performed to analyze the factors possibly influencing ejaculate fertility (N=139). The analysis yielded a significant (P<0.05) relationship between sperm viability and ejaculate fertility. The discriminant ability of the different semen variables to predict field fertility was analyzed using receiver operating characteristic (ROC) curve analysis. Sperm viability and VCL showed significant, albeit limited, predictive capacity on field fertility (0.57 and 0.54 Area Under Curve, respectively). The distribution of spermatozoa in the different subpopulations was not related to fertility. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Predicting risk for portal vein thrombosis in acute pancreatitis patients: A comparison of radical basis function artificial neural network and logistic regression models.

    PubMed

    Fei, Yang; Hu, Jian; Gao, Kun; Tu, Jianfeng; Li, Wei-Qin; Wang, Wei

    2017-06-01

    To construct a radical basis function (RBF) artificial neural networks (ANNs) model to predict the incidence of acute pancreatitis (AP)-induced portal vein thrombosis. The analysis included 353 patients with AP who had admitted between January 2011 and December 2015. RBF ANNs model and logistic regression model were constructed based on eleven factors relevant to AP respectively. Statistical indexes were used to evaluate the value of the prediction in two models. The predict sensitivity, specificity, positive predictive value, negative predictive value and accuracy by RBF ANNs model for PVT were 73.3%, 91.4%, 68.8%, 93.0% and 87.7%, respectively. There were significant differences between the RBF ANNs and logistic regression models in these parameters (P<0.05). In addition, a comparison of the area under receiver operating characteristic curves of the two models showed a statistically significant difference (P<0.05). The RBF ANNs model is more likely to predict the occurrence of PVT induced by AP than logistic regression model. D-dimer, AMY, Hct and PT were important prediction factors of approval for AP-induced PVT. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Support vector regression and artificial neural network models for stability indicating analysis of mebeverine hydrochloride and sulpiride mixtures in pharmaceutical preparation: A comparative study

    NASA Astrophysics Data System (ADS)

    Naguib, Ibrahim A.; Darwish, Hany W.

    2012-02-01

    A comparison between support vector regression (SVR) and Artificial Neural Networks (ANNs) multivariate regression methods is established showing the underlying algorithm for each and making a comparison between them to indicate the inherent advantages and limitations. In this paper we compare SVR to ANN with and without variable selection procedure (genetic algorithm (GA)). To project the comparison in a sensible way, the methods are used for the stability indicating quantitative analysis of mixtures of mebeverine hydrochloride and sulpiride in binary mixtures as a case study in presence of their reported impurities and degradation products (summing up to 6 components) in raw materials and pharmaceutical dosage form via handling the UV spectral data. For proper analysis, a 6 factor 5 level experimental design was established resulting in a training set of 25 mixtures containing different ratios of the interfering species. An independent test set consisting of 5 mixtures was used to validate the prediction ability of the suggested models. The proposed methods (linear SVR (without GA) and linear GA-ANN) were successfully applied to the analysis of pharmaceutical tablets containing mebeverine hydrochloride and sulpiride mixtures. The results manifest the problem of nonlinearity and how models like the SVR and ANN can handle it. The methods indicate the ability of the mentioned multivariate calibration models to deconvolute the highly overlapped UV spectra of the 6 components' mixtures, yet using cheap and easy to handle instruments like the UV spectrophotometer.

  10. A comparative study between nonlinear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence

    USDA-ARS?s Scientific Manuscript database

    Non-linear regression techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks present interesting and alternative features for such modeling purposes. In this work, a univariate hydrothermal-time based Weibull m...

  11. Estimating soil temperature using neighboring station data via multi-nonlinear regression and artificial neural network models.

    PubMed

    Bilgili, Mehmet; Sahin, Besir; Sangun, Levent

    2013-01-01

    The aim of this study is to estimate the soil temperatures of a target station using only the soil temperatures of neighboring stations without any consideration of the other variables or parameters related to soil properties. For this aim, the soil temperatures were measured at depths of 5, 10, 20, 50, and 100 cm below the earth surface at eight measuring stations in Turkey. Firstly, the multiple nonlinear regression analysis was performed with the "Enter" method to determine the relationship between the values of target station and neighboring stations. Then, the stepwise regression analysis was applied to determine the best independent variables. Finally, an artificial neural network (ANN) model was developed to estimate the soil temperature of a target station. According to the derived results for the training data set, the mean absolute percentage error and correlation coefficient ranged from 1.45% to 3.11% and from 0.9979 to 0.9986, respectively, while corresponding ranges of 1.685-3.65% and 0.9988-0.9991, respectively, were obtained based on the testing data set. The obtained results show that the developed ANN model provides a simple and accurate prediction to determine the soil temperature. In addition, the missing data at the target station could be determined within a high degree of accuracy.

  12. Quantitative structure-activity relationship study of P2X7 receptor inhibitors using combination of principal component analysis and artificial intelligence methods.

    PubMed

    Ahmadi, Mehdi; Shahlaei, Mohsen

    2015-01-01

    P2X7 antagonist activity for a set of 49 molecules of the P2X7 receptor antagonists, derivatives of purine, was modeled with the aid of chemometric and artificial intelligence techniques. The activity of these compounds was estimated by means of combination of principal component analysis (PCA), as a well-known data reduction method, genetic algorithm (GA), as a variable selection technique, and artificial neural network (ANN), as a non-linear modeling method. First, a linear regression, combined with PCA, (principal component regression) was operated to model the structure-activity relationships, and afterwards a combination of PCA and ANN algorithm was employed to accurately predict the biological activity of the P2X7 antagonist. PCA preserves as much of the information as possible contained in the original data set. Seven most important PC's to the studied activity were selected as the inputs of ANN box by an efficient variable selection method, GA. The best computational neural network model was a fully-connected, feed-forward model with 7-7-1 architecture. The developed ANN model was fully evaluated by different validation techniques, including internal and external validation, and chemical applicability domain. All validations showed that the constructed quantitative structure-activity relationship model suggested is robust and satisfactory.

  13. Quantitative structure–activity relationship study of P2X7 receptor inhibitors using combination of principal component analysis and artificial intelligence methods

    PubMed Central

    Ahmadi, Mehdi; Shahlaei, Mohsen

    2015-01-01

    P2X7 antagonist activity for a set of 49 molecules of the P2X7 receptor antagonists, derivatives of purine, was modeled with the aid of chemometric and artificial intelligence techniques. The activity of these compounds was estimated by means of combination of principal component analysis (PCA), as a well-known data reduction method, genetic algorithm (GA), as a variable selection technique, and artificial neural network (ANN), as a non-linear modeling method. First, a linear regression, combined with PCA, (principal component regression) was operated to model the structure–activity relationships, and afterwards a combination of PCA and ANN algorithm was employed to accurately predict the biological activity of the P2X7 antagonist. PCA preserves as much of the information as possible contained in the original data set. Seven most important PC's to the studied activity were selected as the inputs of ANN box by an efficient variable selection method, GA. The best computational neural network model was a fully-connected, feed-forward model with 7−7−1 architecture. The developed ANN model was fully evaluated by different validation techniques, including internal and external validation, and chemical applicability domain. All validations showed that the constructed quantitative structure–activity relationship model suggested is robust and satisfactory. PMID:26600858

  14. Predicting Final GPA of Graduate School Students: Comparing Artificial Neural Networking and Simultaneous Multiple Regression

    ERIC Educational Resources Information Center

    Anderson, Joan L.

    2006-01-01

    Data from graduate student applications at a large Western university were used to determine which factors were the best predictors of success in graduate school, as defined by cumulative graduate grade point average. Two statistical models were employed and compared: artificial neural networking and simultaneous multiple regression. Both models…

  15. Logistic Regression Analysis of the Response of Winter Wheat to Components of Artificial Freezing Episodes

    USDA-ARS?s Scientific Manuscript database

    Improvement of cold tolerance of winter wheat (Triticum aestivum L.) through breeding methods has been problematic. A better understanding of how individual wheat cultivars respond to components of the freezing process may provide new information that can be used to develop more cold tolerance culti...

  16. Comparison of Prediction Model for Cardiovascular Autonomic Dysfunction Using Artificial Neural Network and Logistic Regression Analysis

    PubMed Central

    Zeng, Fangfang; Li, Zhongtao; Yu, Xiaoling; Zhou, Linuo

    2013-01-01

    Background This study aimed to develop the artificial neural network (ANN) and multivariable logistic regression (LR) analyses for prediction modeling of cardiovascular autonomic (CA) dysfunction in the general population, and compare the prediction models using the two approaches. Methods and Materials We analyzed a previous dataset based on a Chinese population sample consisting of 2,092 individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN and LR analysis, and were tested in the validation set. Performances of these prediction models were then compared. Results Univariate analysis indicated that 14 risk factors showed statistically significant association with the prevalence of CA dysfunction (P<0.05). The mean area under the receiver-operating curve was 0.758 (95% CI 0.724–0.793) for LR and 0.762 (95% CI 0.732–0.793) for ANN analysis, but noninferiority result was found (P<0.001). The similar results were found in comparisons of sensitivity, specificity, and predictive values in the prediction models between the LR and ANN analyses. Conclusion The prediction models for CA dysfunction were developed using ANN and LR. ANN and LR are two effective tools for developing prediction models based on our dataset. PMID:23940593

  17. The application of data mining techniques to oral cancer prognosis.

    PubMed

    Tseng, Wan-Ting; Chiang, Wei-Fan; Liu, Shyun-Yeu; Roan, Jinsheng; Lin, Chun-Nan

    2015-05-01

    This study adopted an integrated procedure that combines the clustering and classification features of data mining technology to determine the differences between the symptoms shown in past cases where patients died from or survived oral cancer. Two data mining tools, namely decision tree and artificial neural network, were used to analyze the historical cases of oral cancer, and their performance was compared with that of logistic regression, the popular statistical analysis tool. Both decision tree and artificial neural network models showed superiority to the traditional statistical model. However, as to clinician, the trees created by the decision tree models are relatively easier to interpret compared to that of the artificial neural network models. Cluster analysis also discovers that those stage 4 patients whose also possess the following four characteristics are having an extremely low survival rate: pN is N2b, level of RLNM is level I-III, AJCC-T is T4, and cells mutate situation (G) is moderate.

  18. Comparison of dental implant stabilities by impact response and resonance frequencies using artificial bone.

    PubMed

    Kim, Dae-Seung; Lee, Woo-Jin; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe; Kim, Tae-Il; Yi, Won-Jin

    2014-06-01

    We compared implant stability as determined by the peak frequency from the impact response with the implant stability quotient (ISQ) by resonance frequency analysis (RFA) in various artificial bone conditions. The clinical bone conditions were simulated using an artificial bone material with different cortical thicknesses and trabecular densities. The artificial bone material was solid, rigid polyurethane. The polyurethane foam of 0.8g/cm(3) density was used for the cortical bone layer, and that of 0.08, 0.16, 0.24, 0.32, and 0.48g/cm(3) densities for the trabecular bone layer. The cortical bone material of 4 different thicknesses (1.4, 1.6, 1.8, and 2.0mm) was attached to the trabecular bone with varying density. Two types of dental implants (10 and 13mm lengths of 4.0mm diameter) were placed into the artificial bone blocks. An inductive sensor was used to measure the vibration caused by tapping the adapter-implant assembly. The peak frequency of the power spectrum of the impact response was used as the criterion for implant stability. The ISQ value was also measured for the same conditions. The stability, as measured by peak frequency (SPF) and ISQ value, increased as the trabecular density and the cortical density increased in linear regression analysis. The SPF and ISQ values were highly correlated with each other when the trabecular bone density and cortical bone thickness changed (Pearson correlation=0.90, p<0.01). The linear regression of the SPF with the cortical bone thickness showed higher goodness of fit (R(2) measure) than the ISQ value with the cortical bone thickness. The SPF could differentiate implantation conditions as many as the ISQ value when the trabecular bone density and the cortical density changed. However, the ISQ value was not consistent with the general stability tendency in some conditions. The SPF showed better consistency and differentiability with implant stability than the ISQ value by resonance frequency analysis in the various implantation conditions. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data.

    PubMed

    Balabin, Roman M; Smirnov, Sergey V

    2011-04-29

    During the past several years, near-infrared (near-IR/NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields from petroleum to biomedical sectors. The NIR spectrum (above 4000 cm(-1)) of a sample is typically measured by modern instruments at a few hundred of wavelengths. Recently, considerable effort has been directed towards developing procedures to identify variables (wavelengths) that contribute useful information. Variable selection (VS) or feature selection, also called frequency selection or wavelength selection, is a critical step in data analysis for vibrational spectroscopy (infrared, Raman, or NIRS). In this paper, we compare the performance of 16 different feature selection methods for the prediction of properties of biodiesel fuel, including density, viscosity, methanol content, and water concentration. The feature selection algorithms tested include stepwise multiple linear regression (MLR-step), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), moving window partial least squares regression (MWPLS), (modified) changeable size moving window partial least squares (CSMWPLS/MCSMWPLSR), searching combination moving window partial least squares (SCMWPLS), successive projections algorithm (SPA), uninformative variable elimination (UVE, including UVE-SPA), simulated annealing (SA), back-propagation artificial neural networks (BP-ANN), Kohonen artificial neural network (K-ANN), and genetic algorithms (GAs, including GA-iPLS). Two linear techniques for calibration model building, namely multiple linear regression (MLR) and partial least squares regression/projection to latent structures (PLS/PLSR), are used for the evaluation of biofuel properties. A comparison with a non-linear calibration model, artificial neural networks (ANN-MLP), is also provided. Discussion of gasoline, ethanol-gasoline (bioethanol), and diesel fuel data is presented. The results of other spectroscopic techniques application, such as Raman, ultraviolet-visible (UV-vis), or nuclear magnetic resonance (NMR) spectroscopies, can be greatly improved by an appropriate feature selection choice. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Using artificial intelligence to predict the risk for posterior capsule opacification after phacoemulsification.

    PubMed

    Mohammadi, Seyed-Farzad; Sabbaghi, Mostafa; Z-Mehrjardi, Hadi; Hashemi, Hassan; Alizadeh, Somayeh; Majdi, Mercede; Taee, Farough

    2012-03-01

    To apply artificial intelligence models to predict the occurrence of posterior capsule opacification (PCO) after phacoemulsification. Farabi Eye Hospital, Tehran, Iran. Clinical-based cross-sectional study. The posterior capsule status of eyes operated on for age-related cataract and the need for laser capsulotomy were determined. After a literature review, data polishing, and expert consultation, 10 input variables were selected. The QUEST algorithm was used to develop a decision tree. Three back-propagation artificial neural networks were constructed with 4, 20, and 40 neurons in 2 hidden layers and trained with the same transfer functions (log-sigmoid and linear transfer) and training protocol with randomly selected eyes. They were then tested on the remaining eyes and the networks compared for their performance. Performance indices were used to compare resultant models with the results of logistic regression analysis. The models were trained using 282 randomly selected eyes and then tested using 70 eyes. Laser capsulotomy for clinically significant PCO was indicated or had been performed 2 years postoperatively in 40 eyes. A sample decision tree was produced with accuracy of 50% (likelihood ratio 0.8). The best artificial neural network, which showed 87% accuracy and a positive likelihood ratio of 8, was achieved with 40 neurons. The area under the receiver-operating-characteristic curve was 0.71. In comparison, logistic regression reached accuracy of 80%; however, the likelihood ratio was not measurable because the sensitivity was zero. A prototype artificial neural network was developed that predicted posterior capsule status (requiring capsulotomy) with reasonable accuracy. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  1. Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America

    NASA Astrophysics Data System (ADS)

    Soares dos Santos, T.; Mendes, D.; Rodrigues Torres, R.

    2016-01-01

    Several studies have been devoted to dynamic and statistical downscaling for analysis of both climate variability and climate change. This paper introduces an application of artificial neural networks (ANNs) and multiple linear regression (MLR) by principal components to estimate rainfall in South America. This method is proposed for downscaling monthly precipitation time series over South America for three regions: the Amazon; northeastern Brazil; and the La Plata Basin, which is one of the regions of the planet that will be most affected by the climate change projected for the end of the 21st century. The downscaling models were developed and validated using CMIP5 model output and observed monthly precipitation. We used general circulation model (GCM) experiments for the 20th century (RCP historical; 1970-1999) and two scenarios (RCP 2.6 and 8.5; 2070-2100). The model test results indicate that the ANNs significantly outperform the MLR downscaling of monthly precipitation variability.

  2. Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America

    NASA Astrophysics Data System (ADS)

    dos Santos, T. S.; Mendes, D.; Torres, R. R.

    2015-08-01

    Several studies have been devoted to dynamic and statistical downscaling for analysis of both climate variability and climate change. This paper introduces an application of artificial neural networks (ANN) and multiple linear regression (MLR) by principal components to estimate rainfall in South America. This method is proposed for downscaling monthly precipitation time series over South America for three regions: the Amazon, Northeastern Brazil and the La Plata Basin, which is one of the regions of the planet that will be most affected by the climate change projected for the end of the 21st century. The downscaling models were developed and validated using CMIP5 model out- put and observed monthly precipitation. We used GCMs experiments for the 20th century (RCP Historical; 1970-1999) and two scenarios (RCP 2.6 and 8.5; 2070-2100). The model test results indicate that the ANN significantly outperforms the MLR downscaling of monthly precipitation variability.

  3. PREDICTION OF MALIGNANT BREAST LESIONS FROM MRI FEATURES: A COMPARISON OF ARTIFICIAL NEURAL NETWORK AND LOGISTIC REGRESSION TECHNIQUES

    PubMed Central

    McLaren, Christine E.; Chen, Wen-Pin; Nie, Ke; Su, Min-Ying

    2009-01-01

    Rationale and Objectives Dynamic contrast enhanced MRI (DCE-MRI) is a clinical imaging modality for detection and diagnosis of breast lesions. Analytical methods were compared for diagnostic feature selection and performance of lesion classification to differentiate between malignant and benign lesions in patients. Materials and Methods The study included 43 malignant and 28 benign histologically-proven lesions. Eight morphological parameters, ten gray level co-occurrence matrices (GLCM) texture features, and fourteen Laws’ texture features were obtained using automated lesion segmentation and quantitative feature extraction. Artificial neural network (ANN) and logistic regression analysis were compared for selection of the best predictors of malignant lesions among the normalized features. Results Using ANN, the final four selected features were compactness, energy, homogeneity, and Law_LS, with area under the receiver operating characteristic curve (AUC) = 0.82, and accuracy = 0.76. The diagnostic performance of these 4-features computed on the basis of logistic regression yielded AUC = 0.80 (95% CI, 0.688 to 0.905), similar to that of ANN. The analysis also shows that the odds of a malignant lesion decreased by 48% (95% CI, 25% to 92%) for every increase of 1 SD in the Law_LS feature, adjusted for differences in compactness, energy, and homogeneity. Using logistic regression with z-score transformation, a model comprised of compactness, NRL entropy, and gray level sum average was selected, and it had the highest overall accuracy of 0.75 among all models, with AUC = 0.77 (95% CI, 0.660 to 0.880). When logistic modeling of transformations using the Box-Cox method was performed, the most parsimonious model with predictors, compactness and Law_LS, had an AUC of 0.79 (95% CI, 0.672 to 0.898). Conclusion The diagnostic performance of models selected by ANN and logistic regression was similar. The analytic methods were found to be roughly equivalent in terms of predictive ability when a small number of variables were chosen. The robust ANN methodology utilizes a sophisticated non-linear model, while logistic regression analysis provides insightful information to enhance interpretation of the model features. PMID:19409817

  4. Assessment of triglyceride and cholesterol in overweight people based on multiple linear regression and artificial intelligence model.

    PubMed

    Ma, Jing; Yu, Jiong; Hao, Guangshu; Wang, Dan; Sun, Yanni; Lu, Jianxin; Cao, Hongcui; Lin, Feiyan

    2017-02-20

    The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people. A total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC. The results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function (P < 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant (P < 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch. In conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people.

  5. Titanium Ions Release from an Innovative Titanium-Magnesium Composite: an in Vitro Study.

    PubMed

    Stanec, Zlatko; Halambek, Jasna; Maldini, Krešimir; Balog, Martin; Križik, Peter; Schauperl, Zdravko; Ćatić, Amir

    2016-03-01

    The innovative titanium-magnesium composite (Ti-Mg) was produced by powder metallurgy (P/M) method and is characterized in terms of corrosion behavior. Two groups of experimental material, 1 mass% (Ti-1Mg) and 2 mass% (Ti-2Mg) of magnesium in titanium matrix, were tested and compared to commercially pure titanium (CP Ti). Immersion test and chemical analysis of four solutions: artificial saliva; artificial saliva pH 4; artificial saliva with fluoride and Hank balanced salt solution were performed after 42 days of immersion, using inductively coupled plasma mass spectrometry (ICP-MS) to detect the amount of released titanium ions (Ti). SEM and EDS analysis were used for surface characterization. The difference between the results from different test solutions was assessed by ANOVA and Newman-Keuls test at p<0.05. The influence of predictor variables was found by multiple regression analysis. The results of the present study revealed a low corrosion rate of titanium from the experimental Ti-Mg group. Up to 46 and 23 times lower dissolution of Ti from Ti-1Mg and Ti-2Mg, respectively was observed compared to the control group. Among the tested solutions, artificial saliva with fluorides exhibited the highest corrosion effect on all specimens tested. SEM micrographs showed preserved dual phase surface structure and EDS analysis suggested a favorable surface bioactivity. In conclusion, Ti-Mg produced by P/M as a material with better corrosion properties when compared to CP Ti is suggested.

  6. Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Monteiro, Sildomar Takahashi; Minekawa, Yohei; Kosugi, Yukio; Akazawa, Tsuneya; Oda, Kunio

    Hyperspectral image data provides a powerful tool for non-destructive crop analysis. This paper investigates a hyperspectral image data-processing method to predict the sweetness and amino acid content of soybean crops. Regression models based on artificial neural networks were developed in order to calculate the level of sucrose, glucose, fructose, and nitrogen concentrations, which can be related to the sweetness and amino acid content of vegetables. A performance analysis was conducted comparing regression models obtained using different preprocessing methods, namely, raw reflectance, second derivative, and principal components analysis. This method is demonstrated using high-resolution hyperspectral data of wavelengths ranging from the visible to the near infrared acquired from an experimental field of green vegetable soybeans. The best predictions were achieved using a nonlinear regression model of the second derivative transformed dataset. Glucose could be predicted with greater accuracy, followed by sucrose, fructose and nitrogen. The proposed method provides the possibility to provide relatively accurate maps predicting the chemical content of soybean crop fields.

  7. Artificial Neural Network for the Prediction of Chromosomal Abnormalities in Azoospermic Males.

    PubMed

    Akinsal, Emre Can; Haznedar, Bulent; Baydilli, Numan; Kalinli, Adem; Ozturk, Ahmet; Ekmekçioğlu, Oğuz

    2018-02-04

    To evaluate whether an artifical neural network helps to diagnose any chromosomal abnormalities in azoospermic males. The data of azoospermic males attending to a tertiary academic referral center were evaluated retrospectively. Height, total testicular volume, follicle stimulating hormone, luteinising hormone, total testosterone and ejaculate volume of the patients were used for the analyses. In artificial neural network, the data of 310 azoospermics were used as the education and 115 as the test set. Logistic regression analyses and discriminant analyses were performed for statistical analyses. The tests were re-analysed with a neural network. Both logistic regression analyses and artificial neural network predicted the presence or absence of chromosomal abnormalities with more than 95% accuracy. The use of artificial neural network model has yielded satisfactory results in terms of distinguishing patients whether they have any chromosomal abnormality or not.

  8. Artificial intelligence models for predicting iron deficiency anemia and iron serum level based on accessible laboratory data.

    PubMed

    Azarkhish, Iman; Raoufy, Mohammad Reza; Gharibzadeh, Shahriar

    2012-06-01

    Iron deficiency anemia (IDA) is the most common nutritional deficiency worldwide. Measuring serum iron is time consuming, expensive and not available in most hospitals. In this study, based on four accessible laboratory data (MCV, MCH, MCHC, Hb/RBC), we developed an artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS) to diagnose the IDA and to predict serum iron level. Our results represent that the neural network analysis is superior to ANFIS and logistic regression models in diagnosing IDA. Moreover, the results show that the ANN is likely to provide an accurate test for predicting serum iron levels with high accuracy and acceptable precision.

  9. Building a Decision Support System for Inpatient Admission Prediction With the Manchester Triage System and Administrative Check-in Variables.

    PubMed

    Zlotnik, Alexander; Alfaro, Miguel Cuchí; Pérez, María Carmen Pérez; Gallardo-Antolín, Ascensión; Martínez, Juan Manuel Montero

    2016-05-01

    The usage of decision support tools in emergency departments, based on predictive models, capable of estimating the probability of admission for patients in the emergency department may give nursing staff the possibility of allocating resources in advance. We present a methodology for developing and building one such system for a large specialized care hospital using a logistic regression and an artificial neural network model using nine routinely collected variables available right at the end of the triage process.A database of 255.668 triaged nonobstetric emergency department presentations from the Ramon y Cajal University Hospital of Madrid, from January 2011 to December 2012, was used to develop and test the models, with 66% of the data used for derivation and 34% for validation, with an ordered nonrandom partition. On the validation dataset areas under the receiver operating characteristic curve were 0.8568 (95% confidence interval, 0.8508-0.8583) for the logistic regression model and 0.8575 (95% confidence interval, 0.8540-0. 8610) for the artificial neural network model. χ Values for Hosmer-Lemeshow fixed "deciles of risk" were 65.32 for the logistic regression model and 17.28 for the artificial neural network model. A nomogram was generated upon the logistic regression model and an automated software decision support system with a Web interface was built based on the artificial neural network model.

  10. Binding affinity toward human prion protein of some anti-prion compounds - Assessment based on QSAR modeling, molecular docking and non-parametric ranking.

    PubMed

    Kovačević, Strahinja; Karadžić, Milica; Podunavac-Kuzmanović, Sanja; Jevrić, Lidija

    2018-01-01

    The present study is based on the quantitative structure-activity relationship (QSAR) analysis of binding affinity toward human prion protein (huPrP C ) of quinacrine, pyridine dicarbonitrile, diphenylthiazole and diphenyloxazole analogs applying different linear and non-linear chemometric regression techniques, including univariate linear regression, multiple linear regression, partial least squares regression and artificial neural networks. The QSAR analysis distinguished molecular lipophilicity as an important factor that contributes to the binding affinity. Principal component analysis was used in order to reveal similarities or dissimilarities among the studied compounds. The analysis of in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters was conducted. The ranking of the studied analogs on the basis of their ADMET parameters was done applying the sum of ranking differences, as a relatively new chemometric method. The main aim of the study was to reveal the most important molecular features whose changes lead to the changes in the binding affinities of the studied compounds. Another point of view on the binding affinity of the most promising analogs was established by application of molecular docking analysis. The results of the molecular docking were proven to be in agreement with the experimental outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes

    NASA Astrophysics Data System (ADS)

    Mekanik, F.; Imteaz, M. A.; Gato-Trinidad, S.; Elmahdi, A.

    2013-10-01

    In this study, the application of Artificial Neural Networks (ANN) and Multiple regression analysis (MR) to forecast long-term seasonal spring rainfall in Victoria, Australia was investigated using lagged El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) as potential predictors. The use of dual (combined lagged ENSO-IOD) input sets for calibrating and validating ANN and MR Models is proposed to investigate the simultaneous effect of past values of these two major climate modes on long-term spring rainfall prediction. The MR models that did not violate the limits of statistical significance and multicollinearity were selected for future spring rainfall forecast. The ANN was developed in the form of multilayer perceptron using Levenberg-Marquardt algorithm. Both MR and ANN modelling were assessed statistically using mean square error (MSE), mean absolute error (MAE), Pearson correlation (r) and Willmott index of agreement (d). The developed MR and ANN models were tested on out-of-sample test sets; the MR models showed very poor generalisation ability for east Victoria with correlation coefficients of -0.99 to -0.90 compared to ANN with correlation coefficients of 0.42-0.93; ANN models also showed better generalisation ability for central and west Victoria with correlation coefficients of 0.68-0.85 and 0.58-0.97 respectively. The ability of multiple regression models to forecast out-of-sample sets is compatible with ANN for Daylesford in central Victoria and Kaniva in west Victoria (r = 0.92 and 0.67 respectively). The errors of the testing sets for ANN models are generally lower compared to multiple regression models. The statistical analysis suggest the potential of ANN over MR models for rainfall forecasting using large scale climate modes.

  12. Collapse susceptibility mapping in karstified gypsum terrain (Sivas basin - Turkey) by conditional probability, logistic regression, artificial neural network models

    NASA Astrophysics Data System (ADS)

    Yilmaz, Isik; Keskin, Inan; Marschalko, Marian; Bednarik, Martin

    2010-05-01

    This study compares the GIS based collapse susceptibility mapping methods such as; conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) applied in gypsum rock masses in Sivas basin (Turkey). Digital Elevation Model (DEM) was first constructed using GIS software. Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index- TWI, stream power index- SPI, Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from CP, LR and ANN models, and they were then compared by means of their validations. Area Under Curve (AUC) values obtained from all three methodologies showed that the map obtained from ANN model looks like more accurate than the other models, and the results also showed that the artificial neural networks is a usefull tool in preparation of collapse susceptibility map and highly compatible with GIS operating features. Key words: Collapse; doline; susceptibility map; gypsum; GIS; conditional probability; logistic regression; artificial neural networks.

  13. Air Quality Forecasting through Different Statistical and Artificial Intelligence Techniques

    NASA Astrophysics Data System (ADS)

    Mishra, D.; Goyal, P.

    2014-12-01

    Urban air pollution forecasting has emerged as an acute problem in recent years because there are sever environmental degradation due to increase in harmful air pollutants in the ambient atmosphere. In this study, there are different types of statistical as well as artificial intelligence techniques are used for forecasting and analysis of air pollution over Delhi urban area. These techniques are principle component analysis (PCA), multiple linear regression (MLR) and artificial neural network (ANN) and the forecasting are observed in good agreement with the observed concentrations through Central Pollution Control Board (CPCB) at different locations in Delhi. But such methods suffers from disadvantages like they provide limited accuracy as they are unable to predict the extreme points i.e. the pollution maximum and minimum cut-offs cannot be determined using such approach. Also, such methods are inefficient approach for better output forecasting. But with the advancement in technology and research, an alternative to the above traditional methods has been proposed i.e. the coupling of statistical techniques with artificial Intelligence (AI) can be used for forecasting purposes. The coupling of PCA, ANN and fuzzy logic is used for forecasting of air pollutant over Delhi urban area. The statistical measures e.g., correlation coefficient (R), normalized mean square error (NMSE), fractional bias (FB) and index of agreement (IOA) of the proposed model are observed in better agreement with the all other models. Hence, the coupling of statistical and artificial intelligence can be use for the forecasting of air pollutant over urban area.

  14. Using GA-Ridge regression to select hydro-geological parameters influencing groundwater pollution vulnerability.

    PubMed

    Ahn, Jae Joon; Kim, Young Min; Yoo, Keunje; Park, Joonhong; Oh, Kyong Joo

    2012-11-01

    For groundwater conservation and management, it is important to accurately assess groundwater pollution vulnerability. This study proposed an integrated model using ridge regression and a genetic algorithm (GA) to effectively select the major hydro-geological parameters influencing groundwater pollution vulnerability in an aquifer. The GA-Ridge regression method determined that depth to water, net recharge, topography, and the impact of vadose zone media were the hydro-geological parameters that influenced trichloroethene pollution vulnerability in a Korean aquifer. When using these selected hydro-geological parameters, the accuracy was improved for various statistical nonlinear and artificial intelligence (AI) techniques, such as multinomial logistic regression, decision trees, artificial neural networks, and case-based reasoning. These results provide a proof of concept that the GA-Ridge regression is effective at determining influential hydro-geological parameters for the pollution vulnerability of an aquifer, and in turn, improves the AI performance in assessing groundwater pollution vulnerability.

  15. Titanium Ions Release from an Innovative Titanium-Magnesium Composite: an in Vitro Study

    PubMed Central

    Halambek, Jasna; Maldini, Krešimir; Balog, Martin; Križik, Peter; Schauperl, Zdravko; Ćatić, Amir

    2016-01-01

    Background The innovative titanium-magnesium composite (Ti-Mg) was produced by powder metallurgy (P/M) method and is characterized in terms of corrosion behavior. Material and methods Two groups of experimental material, 1 mass% (Ti-1Mg) and 2 mass% (Ti-2Mg) of magnesium in titanium matrix, were tested and compared to commercially pure titanium (CP Ti). Immersion test and chemical analysis of four solutions: artificial saliva; artificial saliva pH 4; artificial saliva with fluoride and Hank balanced salt solution were performed after 42 days of immersion, using inductively coupled plasma mass spectrometry (ICP-MS) to detect the amount of released titanium ions (Ti). SEM and EDS analysis were used for surface characterization. Results The difference between the results from different test solutions was assessed by ANOVA and Newman-Keuls test at p<0.05. The influence of predictor variables was found by multiple regression analysis. The results of the present study revealed a low corrosion rate of titanium from the experimental Ti-Mg group. Up to 46 and 23 times lower dissolution of Ti from Ti-1Mg and Ti-2Mg, respectively was observed compared to the control group. Among the tested solutions, artificial saliva with fluorides exhibited the highest corrosion effect on all specimens tested. SEM micrographs showed preserved dual phase surface structure and EDS analysis suggested a favorable surface bioactivity. Conclusion In conclusion, Ti-Mg produced by P/M as a material with better corrosion properties when compared to CP Ti is suggested. PMID:27688425

  16. Forecasting hourly PM(10) concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management.

    PubMed

    Paschalidou, Anastasia K; Karakitsios, Spyridon; Kleanthous, Savvas; Kassomenos, Pavlos A

    2011-02-01

    In the present work, two types of artificial neural network (NN) models using the multilayer perceptron (MLP) and the radial basis function (RBF) techniques, as well as a model based on principal component regression analysis (PCRA), are employed to forecast hourly PM(10) concentrations in four urban areas (Larnaca, Limassol, Nicosia and Paphos) in Cyprus. The model development is based on a variety of meteorological and pollutant parameters corresponding to the 2-year period between July 2006 and June 2008, and the model evaluation is achieved through the use of a series of well-established evaluation instruments and methodologies. The evaluation reveals that the MLP NN models display the best forecasting performance with R (2) values ranging between 0.65 and 0.76, whereas the RBF NNs and the PCRA models reveal a rather weak performance with R (2) values between 0.37-0.43 and 0.33-0.38, respectively. The derived MLP models are also used to forecast Saharan dust episodes with remarkable success (probability of detection ranging between 0.68 and 0.71). On the whole, the analysis shows that the models introduced here could provide local authorities with reliable and precise predictions and alarms about air quality if used on an operational basis.

  17. Classifying machinery condition using oil samples and binary logistic regression

    NASA Astrophysics Data System (ADS)

    Phillips, J.; Cripps, E.; Lau, John W.; Hodkiewicz, M. R.

    2015-08-01

    The era of big data has resulted in an explosion of condition monitoring information. The result is an increasing motivation to automate the costly and time consuming human elements involved in the classification of machine health. When working with industry it is important to build an understanding and hence some trust in the classification scheme for those who use the analysis to initiate maintenance tasks. Typically "black box" approaches such as artificial neural networks (ANN) and support vector machines (SVM) can be difficult to provide ease of interpretability. In contrast, this paper argues that logistic regression offers easy interpretability to industry experts, providing insight to the drivers of the human classification process and to the ramifications of potential misclassification. Of course, accuracy is of foremost importance in any automated classification scheme, so we also provide a comparative study based on predictive performance of logistic regression, ANN and SVM. A real world oil analysis data set from engines on mining trucks is presented and using cross-validation we demonstrate that logistic regression out-performs the ANN and SVM approaches in terms of prediction for healthy/not healthy engines.

  18. A comparative analysis of predictive models of morbidity in intensive care unit after cardiac surgery - part II: an illustrative example.

    PubMed

    Cevenini, Gabriele; Barbini, Emanuela; Scolletta, Sabino; Biagioli, Bonizella; Giomarelli, Pierpaolo; Barbini, Paolo

    2007-11-22

    Popular predictive models for estimating morbidity probability after heart surgery are compared critically in a unitary framework. The study is divided into two parts. In the first part modelling techniques and intrinsic strengths and weaknesses of different approaches were discussed from a theoretical point of view. In this second part the performances of the same models are evaluated in an illustrative example. Eight models were developed: Bayes linear and quadratic models, k-nearest neighbour model, logistic regression model, Higgins and direct scoring systems and two feed-forward artificial neural networks with one and two layers. Cardiovascular, respiratory, neurological, renal, infectious and hemorrhagic complications were defined as morbidity. Training and testing sets each of 545 cases were used. The optimal set of predictors was chosen among a collection of 78 preoperative, intraoperative and postoperative variables by a stepwise procedure. Discrimination and calibration were evaluated by the area under the receiver operating characteristic curve and Hosmer-Lemeshow goodness-of-fit test, respectively. Scoring systems and the logistic regression model required the largest set of predictors, while Bayesian and k-nearest neighbour models were much more parsimonious. In testing data, all models showed acceptable discrimination capacities, however the Bayes quadratic model, using only three predictors, provided the best performance. All models showed satisfactory generalization ability: again the Bayes quadratic model exhibited the best generalization, while artificial neural networks and scoring systems gave the worst results. Finally, poor calibration was obtained when using scoring systems, k-nearest neighbour model and artificial neural networks, while Bayes (after recalibration) and logistic regression models gave adequate results. Although all the predictive models showed acceptable discrimination performance in the example considered, the Bayes and logistic regression models seemed better than the others, because they also had good generalization and calibration. The Bayes quadratic model seemed to be a convincing alternative to the much more usual Bayes linear and logistic regression models. It showed its capacity to identify a minimum core of predictors generally recognized as essential to pragmatically evaluate the risk of developing morbidity after heart surgery.

  19. Artificial neural networks environmental forecasting in comparison with multiple linear regression technique: From heavy metals to organic micropollutants screening in agricultural soils

    NASA Astrophysics Data System (ADS)

    Bonelli, Maria Grazia; Ferrini, Mauro; Manni, Andrea

    2016-12-01

    The assessment of metals and organic micropollutants contamination in agricultural soils is a difficult challenge due to the extensive area used to collect and analyze a very large number of samples. With Dioxins and dioxin-like PCBs measurement methods and subsequent the treatment of data, the European Community advises the develop low-cost and fast methods allowing routing analysis of a great number of samples, providing rapid measurement of these compounds in the environment, feeds and food. The aim of the present work has been to find a method suitable to describe the relations occurring between organic and inorganic contaminants and use the value of the latter in order to forecast the former. In practice, the use of a metal portable soil analyzer coupled with an efficient statistical procedure enables the required objective to be achieved. Compared to Multiple Linear Regression, the Artificial Neural Networks technique has shown to be an excellent forecasting method, though there is no linear correlation between the variables to be analyzed.

  20. Sugar-sweetened and artificially sweetened beverage consumption and risk of type 2 diabetes in men123

    PubMed Central

    de Koning, Lawrence; Malik, Vasanti S; Rimm, Eric B; Willett, Walter C

    2011-01-01

    Background: Sugar-sweetened beverages are risk factors for type 2 diabetes; however, the role of artificially sweetened beverages is unclear. Objective: The objective was to examine the associations of sugar- and artificially sweetened beverages with incident type 2 diabetes. Design: An analysis of healthy men (n = 40,389) from the Health Professionals Follow-Up Study, a prospective cohort study, was performed. Cumulatively averaged intakes of sugar-sweetened (sodas, fruit punches, lemonades, fruit drinks) and artificially sweetened (diet sodas, diet drinks) beverages from food-frequency questionnaires were tested for associations with type 2 diabetes by using Cox regression. Results: There were 2680 cases over 20 y of follow-up. After age adjustment, the hazard ratio (HR) for the comparison of the top with the bottom quartile of sugar-sweetened beverage intake was 1.25 (95% CI: 1.11, 1.39; P for trend < 0.01). After adjustment for confounders, including multivitamins, family history, high triglycerides at baseline, high blood pressure, diuretics, pre-enrollment weight change, dieting, total energy, and body mass index, the HR was 1.24 (95% CI: 1.09, 1.40; P for trend < 0.01). Intake of artificially sweetened beverages was significantly associated with type 2 diabetes in the age-adjusted analysis (HR: 1.91; 95% CI: 1.72, 2.11; P for trend < 0.01) but not in the multivariate-adjusted analysis (HR: 1.09; 95% CI: 0.98, 1.21; P for trend = 0.13). The replacement of one serving of sugar-sweetened beverage with 1 cup (≈237 mL) of coffee was associated with a risk reduction of 17%. Conclusion: Sugar-sweetened beverage consumption is associated with a significantly elevated risk of type 2 diabetes, whereas the association between artificially sweetened beverages and type 2 diabetes was largely explained by health status, pre-enrollment weight change, dieting, and body mass index. PMID:21430119

  1. Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks.

    PubMed

    Hsieh, Chung-Ho; Lu, Ruey-Hwa; Lee, Nai-Hsin; Chiu, Wen-Ta; Hsu, Min-Huei; Li, Yu-Chuan Jack

    2011-01-01

    Diagnosing acute appendicitis clinically is still difficult. We developed random forests, support vector machines, and artificial neural network models to diagnose acute appendicitis. Between January 2006 and December 2008, patients who had a consultation session with surgeons for suspected acute appendicitis were enrolled. Seventy-five percent of the data set was used to construct models including random forest, support vector machines, artificial neural networks, and logistic regression. Twenty-five percent of the data set was withheld to evaluate model performance. The area under the receiver operating characteristic curve (AUC) was used to evaluate performance, which was compared with that of the Alvarado score. Data from a total of 180 patients were collected, 135 used for training and 45 for testing. The mean age of patients was 39.4 years (range, 16-85). Final diagnosis revealed 115 patients with and 65 without appendicitis. The AUC of random forest, support vector machines, artificial neural networks, logistic regression, and Alvarado was 0.98, 0.96, 0.91, 0.87, and 0.77, respectively. The sensitivity, specificity, positive, and negative predictive values of random forest were 94%, 100%, 100%, and 87%, respectively. Random forest performed better than artificial neural networks, logistic regression, and Alvarado. We demonstrated that random forest can predict acute appendicitis with good accuracy and, deployed appropriately, can be an effective tool in clinical decision making. Copyright © 2011 Mosby, Inc. All rights reserved.

  2. Nonparametric methods for drought severity estimation at ungauged sites

    NASA Astrophysics Data System (ADS)

    Sadri, S.; Burn, D. H.

    2012-12-01

    The objective in frequency analysis is, given extreme events such as drought severity or duration, to estimate the relationship between that event and the associated return periods at a catchment. Neural networks and other artificial intelligence approaches in function estimation and regression analysis are relatively new techniques in engineering, providing an attractive alternative to traditional statistical models. There are, however, few applications of neural networks and support vector machines in the area of severity quantile estimation for drought frequency analysis. In this paper, we compare three methods for this task: multiple linear regression, radial basis function neural networks, and least squares support vector regression (LS-SVR). The area selected for this study includes 32 catchments in the Canadian Prairies. From each catchment drought severities are extracted and fitted to a Pearson type III distribution, which act as observed values. For each method-duration pair, we use a jackknife algorithm to produce estimated values at each site. The results from these three approaches are compared and analyzed, and it is found that LS-SVR provides the best quantile estimates and extrapolating capacity.

  3. Consumption of fast food, sugar-sweetened beverages, artificially-sweetened beverages and allostatic load among young adults.

    PubMed

    van Draanen, Jenna; Prelip, Michael; Upchurch, Dawn M

    2018-06-01

    This study investigates the associations between recent consumption of fast foods, sugar-sweetened beverages, and artificially-sweetened beverages on level of allostatic load, a measure of cumulative biological risk, in young adults in the US. Data from Wave IV of the National Longitudinal Study of Adolescent to Adult Health were analyzed. Negative binomial regression models were used to estimate the associations between consumption of fast foods, sugar-sweetened, and artificially-sweetened beverages and allostatic load. Poisson and logistic regression models were used to estimate the associations between these diet parameters and combined biomarkers of physiological subsystems that comprise our measure of allostatic load. All analyses were weighted and findings are representative of young adults in the US, ages 24-34 in 2008 (n = 11,562). Consumption of fast foods, sugar-sweetened, and artificially-sweetened beverages were associated with higher allostatic load at a bivariate level. Accounting for demographics and medication use, only artificially-sweetened beverages remained significantly associated with allostatic load. When all three dietary components were simultaneously included in a model, both sugar- and artificially-sweetened beverage consumption were associated with higher allostatic load. Differences in allostatic load emerge early in the life course and young adults consuming sugar- or artificially-sweetened beverages have higher allostatic load, net of demographics and medication use. Public health messages to young adults may need to include cautions about both sugar- and artificially-sweetened beverages.

  4. Reliability analysis of C-130 turboprop engine components using artificial neural network

    NASA Astrophysics Data System (ADS)

    Qattan, Nizar A.

    In this study, we predict the failure rate of Lockheed C-130 Engine Turbine. More than thirty years of local operational field data were used for failure rate prediction and validation. The Weibull regression model and the Artificial Neural Network model including (feed-forward back-propagation, radial basis neural network, and multilayer perceptron neural network model); will be utilized to perform this study. For this purpose, the thesis will be divided into five major parts. First part deals with Weibull regression model to predict the turbine general failure rate, and the rate of failures that require overhaul maintenance. The second part will cover the Artificial Neural Network (ANN) model utilizing the feed-forward back-propagation algorithm as a learning rule. The MATLAB package will be used in order to build and design a code to simulate the given data, the inputs to the neural network are the independent variables, the output is the general failure rate of the turbine, and the failures which required overhaul maintenance. In the third part we predict the general failure rate of the turbine and the failures which require overhaul maintenance, using radial basis neural network model on MATLAB tool box. In the fourth part we compare the predictions of the feed-forward back-propagation model, with that of Weibull regression model, and radial basis neural network model. The results show that the failure rate predicted by the feed-forward back-propagation artificial neural network model is closer in agreement with radial basis neural network model compared with the actual field-data, than the failure rate predicted by the Weibull model. By the end of the study, we forecast the general failure rate of the Lockheed C-130 Engine Turbine, the failures which required overhaul maintenance and six categorical failures using multilayer perceptron neural network (MLP) model on DTREG commercial software. The results also give an insight into the reliability of the engine turbine under actual operating conditions, which can be used by aircraft operators for assessing system and component failures and customizing the maintenance programs recommended by the manufacturer.

  5. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters

    PubMed Central

    2014-01-01

    This paper examined the efficiency of multivariate linear regression (MLR) and artificial neural network (ANN) models in prediction of two major water quality parameters in a wastewater treatment plant. Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) as well as indirect indicators of organic matters are representative parameters for sewer water quality. Performance of the ANN models was evaluated using coefficient of correlation (r), root mean square error (RMSE) and bias values. The computed values of BOD and COD by model, ANN method and regression analysis were in close agreement with their respective measured values. Results showed that the ANN performance model was better than the MLR model. Comparative indices of the optimized ANN with input values of temperature (T), pH, total suspended solid (TSS) and total suspended (TS) for prediction of BOD was RMSE = 25.1 mg/L, r = 0.83 and for prediction of COD was RMSE = 49.4 mg/L, r = 0.81. It was found that the ANN model could be employed successfully in estimating the BOD and COD in the inlet of wastewater biochemical treatment plants. Moreover, sensitive examination results showed that pH parameter have more effect on BOD and COD predicting to another parameters. Also, both implemented models have predicted BOD better than COD. PMID:24456676

  6. Overview of artificial neural networks.

    PubMed

    Zou, Jinming; Han, Yi; So, Sung-Sau

    2008-01-01

    The artificial neural network (ANN), or simply neural network, is a machine learning method evolved from the idea of simulating the human brain. The data explosion in modem drug discovery research requires sophisticated analysis methods to uncover the hidden causal relationships between single or multiple responses and a large set of properties. The ANN is one of many versatile tools to meet the demand in drug discovery modeling. Compared to a traditional regression approach, the ANN is capable of modeling complex nonlinear relationships. The ANN also has excellent fault tolerance and is fast and highly scalable with parallel processing. This chapter introduces the background of ANN development and outlines the basic concepts crucially important for understanding more sophisticated ANN. Several commonly used learning methods and network setups are discussed briefly at the end of the chapter.

  7. Earthquakes Magnitude Predication Using Artificial Neural Network in Northern Red Sea Area

    NASA Astrophysics Data System (ADS)

    Alarifi, A. S.; Alarifi, N. S.

    2009-12-01

    Earthquakes are natural hazards that do not happen very often, however they may cause huge losses in life and property. Early preparation for these hazards is a key factor to reduce their damage and consequence. Since early ages, people tried to predicate earthquakes using simple observations such as strange or a typical animal behavior. In this paper, we study data collected from existing earthquake catalogue to give better forecasting for future earthquakes. The 16000 events cover a time span of 1970 to 2009, the magnitude range from greater than 0 to less than 7.2 while the depth range from greater than 0 to less than 100km. We propose a new artificial intelligent predication system based on artificial neural network, which can be used to predicate the magnitude of future earthquakes in northern Red Sea area including the Sinai Peninsula, the Gulf of Aqaba, and the Gulf of Suez. We propose a feed forward new neural network model with multi-hidden layers to predicate earthquakes occurrences and magnitudes in northern Red Sea area. Although there are similar model that have been published before in different areas, to our best knowledge this is the first neural network model to predicate earthquake in northern Red Sea area. Furthermore, we present other forecasting methods such as moving average over different interval, normally distributed random predicator, and uniformly distributed random predicator. In addition, we present different statistical methods and data fitting such as linear, quadratic, and cubic regression. We present a details performance analyses of the proposed methods for different evaluation metrics. The results show that neural network model provides higher forecast accuracy than other proposed methods. The results show that neural network achieves an average absolute error of 2.6% while an average absolute error of 3.8%, 7.3% and 6.17% for moving average, linear regression and cubic regression, respectively. In this work, we show an analysis of earthquakes data in northern Red Sea area for different statistics parameters such as correlation, mean, standard deviation, and other. This analysis is to provide a deep understand of the Seismicity of the area, and existing patterns.

  8. Using Artificial Neural Networks in Educational Research: Some Comparisons with Linear Statistical Models.

    ERIC Educational Resources Information Center

    Everson, Howard T.; And Others

    This paper explores the feasibility of neural computing methods such as artificial neural networks (ANNs) and abductory induction mechanisms (AIM) for use in educational measurement. ANNs and AIMS methods are contrasted with more traditional statistical techniques, such as multiple regression and discriminant function analyses, for making…

  9. Transfer in Artificial Grammar Learning: The Role of Repetition Information

    ERIC Educational Resources Information Center

    Lotz, Anja; Kinder, Annette

    2006-01-01

    In this article, the authors report 2 experiments that investigated the sources of information used in transfer and nontransfer tasks in artificial grammar learning. Multiple regression analyses indicated that 2 types of information about repeating elements were crucial for performance in both tasks: information about the repetition of adjacent…

  10. Forecasting daily patient volumes in the emergency department.

    PubMed

    Jones, Spencer S; Thomas, Alun; Evans, R Scott; Welch, Shari J; Haug, Peter J; Snow, Gregory L

    2008-02-01

    Shifts in the supply of and demand for emergency department (ED) resources make the efficient allocation of ED resources increasingly important. Forecasting is a vital activity that guides decision-making in many areas of economic, industrial, and scientific planning, but has gained little traction in the health care industry. There are few studies that explore the use of forecasting methods to predict patient volumes in the ED. The goals of this study are to explore and evaluate the use of several statistical forecasting methods to predict daily ED patient volumes at three diverse hospital EDs and to compare the accuracy of these methods to the accuracy of a previously proposed forecasting method. Daily patient arrivals at three hospital EDs were collected for the period January 1, 2005, through March 31, 2007. The authors evaluated the use of seasonal autoregressive integrated moving average, time series regression, exponential smoothing, and artificial neural network models to forecast daily patient volumes at each facility. Forecasts were made for horizons ranging from 1 to 30 days in advance. The forecast accuracy achieved by the various forecasting methods was compared to the forecast accuracy achieved when using a benchmark forecasting method already available in the emergency medicine literature. All time series methods considered in this analysis provided improved in-sample model goodness of fit. However, post-sample analysis revealed that time series regression models that augment linear regression models by accounting for serial autocorrelation offered only small improvements in terms of post-sample forecast accuracy, relative to multiple linear regression models, while seasonal autoregressive integrated moving average, exponential smoothing, and artificial neural network forecasting models did not provide consistently accurate forecasts of daily ED volumes. This study confirms the widely held belief that daily demand for ED services is characterized by seasonal and weekly patterns. The authors compared several time series forecasting methods to a benchmark multiple linear regression model. The results suggest that the existing methodology proposed in the literature, multiple linear regression based on calendar variables, is a reasonable approach to forecasting daily patient volumes in the ED. However, the authors conclude that regression-based models that incorporate calendar variables, account for site-specific special-day effects, and allow for residual autocorrelation provide a more appropriate, informative, and consistently accurate approach to forecasting daily ED patient volumes.

  11. Logistic regression model can reduce unnecessary artificial liver support in hepatitis B virus-associated acute-on-chronic liver failure: decision curve analysis.

    PubMed

    Qin, Gang; Bian, Zhao-Lian; Shen, Yi; Zhang, Lei; Zhu, Xiao-Hong; Liu, Yan-Mei; Shao, Jian-Guo

    2016-06-04

    Several models have been proposed to predict the short-term outcome of acute-on-chronic liver failure (ACLF) after treatment. We aimed to determine whether better decisions for artificial liver support system (ALSS) treatment could be made with a model than without, through decision curve analysis (DCA). The medical profiles of a cohort of 232 patients with hepatitis B virus (HBV)-associated ACLF were retrospectively analyzed to explore the role of plasma prothrombin activity (PTA), model for end-stage liver disease (MELD) and logistic regression model (LRM) in identifying patients who could benefit from ALSS. The accuracy and reliability of PTA, MELD and LRM were evaluated with previously reported cutoffs. DCA was performed to evaluate the clinical role of these models in predicting the treatment outcome. With the cut-off value of 0.2, LRM had sensitivity of 92.6 %, specificity of 42.3 % and an area under the receiving operating characteristic curve (AUC) of 0.68, which showed superior discrimination over PTA and MELD. DCA revealed that the LRM-guided ALSS treatment was superior over other strategies including "treating all" and MELD-guided therapy, for the midrange threshold probabilities of 16 to 64 %. The use of LRM-guided ALSS treatment could increase both the accuracy and efficiency of this procedure, allowing the avoidance of unnecessary ALSS.

  12. Estimation of perceptible water vapor of atmosphere using artificial neural network, support vector machine and multiple linear regression algorithm and their comparative study

    NASA Astrophysics Data System (ADS)

    Shastri, Niket; Pathak, Kamlesh

    2018-05-01

    The water vapor content in atmosphere plays very important role in climate. In this paper the application of GPS signal in meteorology is discussed, which is useful technique that is used to estimate the perceptible water vapor of atmosphere. In this paper various algorithms like artificial neural network, support vector machine and multiple linear regression are use to predict perceptible water vapor. The comparative studies in terms of root mean square error and mean absolute errors are also carried out for all the algorithms.

  13. Height and Weight Estimation From Anthropometric Measurements Using Machine Learning Regressions

    PubMed Central

    Fernandes, Bruno J. T.; Roque, Alexandre

    2018-01-01

    Height and weight are measurements explored to tracking nutritional diseases, energy expenditure, clinical conditions, drug dosages, and infusion rates. Many patients are not ambulant or may be unable to communicate, and a sequence of these factors may not allow accurate estimation or measurements; in those cases, it can be estimated approximately by anthropometric means. Different groups have proposed different linear or non-linear equations which coefficients are obtained by using single or multiple linear regressions. In this paper, we present a complete study of the application of different learning models to estimate height and weight from anthropometric measurements: support vector regression, Gaussian process, and artificial neural networks. The predicted values are significantly more accurate than that obtained with conventional linear regressions. In all the cases, the predictions are non-sensitive to ethnicity, and to gender, if more than two anthropometric parameters are analyzed. The learning model analysis creates new opportunities for anthropometric applications in industry, textile technology, security, and health care. PMID:29651366

  14. Random forest models to predict aqueous solubility.

    PubMed

    Palmer, David S; O'Boyle, Noel M; Glen, Robert C; Mitchell, John B O

    2007-01-01

    Random Forest regression (RF), Partial-Least-Squares (PLS) regression, Support Vector Machines (SVM), and Artificial Neural Networks (ANN) were used to develop QSPR models for the prediction of aqueous solubility, based on experimental data for 988 organic molecules. The Random Forest regression model predicted aqueous solubility more accurately than those created by PLS, SVM, and ANN and offered methods for automatic descriptor selection, an assessment of descriptor importance, and an in-parallel measure of predictive ability, all of which serve to recommend its use. The prediction of log molar solubility for an external test set of 330 molecules that are solid at 25 degrees C gave an r2 = 0.89 and RMSE = 0.69 log S units. For a standard data set selected from the literature, the model performed well with respect to other documented methods. Finally, the diversity of the training and test sets are compared to the chemical space occupied by molecules in the MDL drug data report, on the basis of molecular descriptors selected by the regression analysis.

  15. Mechanisms of Developmental Regression in Autism and the Broader Phenotype: A Neural Network Modeling Approach

    ERIC Educational Resources Information Center

    Thomas, Michael S. C.; Knowland, Victoria C. P.; Karmiloff-Smith, Annette

    2011-01-01

    Loss of previously established behaviors in early childhood constitutes a markedly atypical developmental trajectory. It is found almost uniquely in autism and its cause is currently unknown (Baird et al., 2008). We present an artificial neural network model of developmental regression, exploring the hypothesis that regression is caused by…

  16. Groundwater-level prediction using multiple linear regression and artificial neural network techniques: a comparative assessment

    NASA Astrophysics Data System (ADS)

    Sahoo, Sasmita; Jha, Madan K.

    2013-12-01

    The potential of multiple linear regression (MLR) and artificial neural network (ANN) techniques in predicting transient water levels over a groundwater basin were compared. MLR and ANN modeling was carried out at 17 sites in Japan, considering all significant inputs: rainfall, ambient temperature, river stage, 11 seasonal dummy variables, and influential lags of rainfall, ambient temperature, river stage and groundwater level. Seventeen site-specific ANN models were developed, using multi-layer feed-forward neural networks trained with Levenberg-Marquardt backpropagation algorithms. The performance of the models was evaluated using statistical and graphical indicators. Comparison of the goodness-of-fit statistics of the MLR models with those of the ANN models indicated that there is better agreement between the ANN-predicted groundwater levels and the observed groundwater levels at all the sites, compared to the MLR. This finding was supported by the graphical indicators and the residual analysis. Thus, it is concluded that the ANN technique is superior to the MLR technique in predicting spatio-temporal distribution of groundwater levels in a basin. However, considering the practical advantages of the MLR technique, it is recommended as an alternative and cost-effective groundwater modeling tool.

  17. [Retrospective statistical analysis of clinical factors of recurrence in chronic subdural hematoma: correlation between univariate and multivariate analysis].

    PubMed

    Takayama, Motoharu; Terui, Keita; Oiwa, Yoshitsugu

    2012-10-01

    Chronic subdural hematoma is common in elderly individuals and surgical procedures are simple. The recurrence rate of chronic subdural hematoma, however, varies from 9.2 to 26.5% after surgery. The authors studied factors of the recurrence using univariate and multivariate analyses in patients with chronic subdural hematoma We retrospectively reviewed 239 consecutive cases of chronic subdural hematoma who received burr-hole surgery with irrigation and closed-system drainage. We analyzed the relationships between recurrence of chronic subdural hematoma and factors such as sex, age, laterality, bleeding tendency, other complicated diseases, density on CT, volume of the hematoma, residual air in the hematoma cavity, use of artificial cerebrospinal fluid. Twenty-one patients (8.8%) experienced a recurrence of chronic subdural hematoma. Multiple logistic regression found that the recurrence rate was higher in patients with a large volume of the residual air, and was lower in patients using artificial cerebrospinal fluid. No statistical differences were found in bleeding tendency. Techniques to reduce the air in the hematoma cavity are important for good outcome in surgery of chronic subdural hematoma. Also, the use of artificial cerebrospinal fluid reduces recurrence of chronic subdural hematoma. The surgical procedures can be the same for patients with bleeding tendencies.

  18. Artificial neural networks predict the incidence of portosplenomesenteric venous thrombosis in patients with acute pancreatitis.

    PubMed

    Fei, Y; Hu, J; Li, W-Q; Wang, W; Zong, G-Q

    2017-03-01

    Essentials Predicting the occurrence of portosplenomesenteric vein thrombosis (PSMVT) is difficult. We studied 72 patients with acute pancreatitis. Artificial neural networks modeling was more accurate than logistic regression in predicting PSMVT. Additional predictive factors may be incorporated into artificial neural networks. Objective To construct and validate artificial neural networks (ANNs) for predicting the occurrence of portosplenomesenteric venous thrombosis (PSMVT) and compare the predictive ability of the ANNs with that of logistic regression. Methods The ANNs and logistic regression modeling were constructed using simple clinical and laboratory data of 72 acute pancreatitis (AP) patients. The ANNs and logistic modeling were first trained on 48 randomly chosen patients and validated on the remaining 24 patients. The accuracy and the performance characteristics were compared between these two approaches by SPSS17.0 software. Results The training set and validation set did not differ on any of the 11 variables. After training, the back propagation network training error converged to 1 × 10 -20 , and it retained excellent pattern recognition ability. When the ANNs model was applied to the validation set, it revealed a sensitivity of 80%, specificity of 85.7%, a positive predictive value of 77.6% and negative predictive value of 90.7%. The accuracy was 83.3%. Differences could be found between ANNs modeling and logistic regression modeling in these parameters (10.0% [95% CI, -14.3 to 34.3%], 14.3% [95% CI, -8.6 to 37.2%], 15.7% [95% CI, -9.9 to 41.3%], 11.8% [95% CI, -8.2 to 31.8%], 22.6% [95% CI, -1.9 to 47.1%], respectively). When ANNs modeling was used to identify PSMVT, the area under receiver operating characteristic curve was 0.849 (95% CI, 0.807-0.901), which demonstrated better overall properties than logistic regression modeling (AUC = 0.716) (95% CI, 0.679-0.761). Conclusions ANNs modeling was a more accurate tool than logistic regression in predicting the occurrence of PSMVT following AP. More clinical factors or biomarkers may be incorporated into ANNs modeling to improve its predictive ability. © 2016 International Society on Thrombosis and Haemostasis.

  19. Advances in SCA and RF-DNA Fingerprinting Through Enhanced Linear Regression Attacks and Application of Random Forest Classifiers

    DTIC Science & Technology

    2014-09-18

    Converter AES Advance Encryption Standard ANN Artificial Neural Network APS Application Support AUC Area Under the Curve CPA Correlation Power Analysis ...Importance WGN White Gaussian Noise WPAN Wireless Personal Area Networks XEnv Cross-Environment XRx Cross-Receiver xxi ADVANCES IN SCA AND RF-DNA...based tool called KillerBee was released in 2009 that increases the exposure of ZigBee and other IEEE 802.15.4-based Wireless Personal Area Networks

  20. Influence of the Mechanical Properties of Third-Generation Artificial Turf Systems on Soccer Players’ Physiological and Physical Performance and Their Perceptions

    PubMed Central

    Sánchez-Sánchez, Javier; García-Unanue, Jorge; Jiménez-Reyes, Pedro; Gallardo, Ana; Burillo, Pablo; Felipe, José Luis; Gallardo, Leonor

    2014-01-01

    The aim of this research was to evaluate the influence of the mechanical properties of artificial turf systems on soccer players’ performance. A battery of perceptive physiological and physical tests were developed on four different structural systems of artificial turf (System 1: Compacted gravel sub-base without elastic layer; System 2: Compacted gravel sub-base with elastic layer; System 3: Asphalt sub-base without elastic layer; System 4: Asphalt sub-base with elastic layer). The sample was composed of 18 soccer players (22.44±1.72 years) who typically train and compete on artificial turf. The artificial turf system with less rotational traction (S3) showed higher total time in the Repeated Sprint Ability test in comparison to the systems with intermediate values (49.46±1.75 s vs 47.55±1.82 s (S1) and 47.85±1.59 s (S2); p<0.001). The performance in jumping tests (countermovement jump and squat jump) and ball kicking to goal decreased after the RSA test in all surfaces assessed (p<0.05), since the artificial turf system did not affect performance deterioration (p>0.05). The physiological load was similar in all four artificial turf systems. However, players felt more comfortable on the harder and more rigid system (S4; visual analogue scale = 70.83±14.28) than on the softer artificial turf system (S2; visual analogue scale = 54.24±19.63). The lineal regression analysis revealed a significant influence of the mechanical properties of the surface of 16.5%, 15.8% and 7.1% on the mean time of the sprint, the best sprint time and the maximum mean speed in the RSA test respectively. Results suggest a mechanical heterogeneity between the systems of artificial turf which generate differences in the physical performance and in the soccer players’ perceptions. PMID:25354188

  1. Application of principal component regression and artificial neural network in FT-NIR soluble solids content determination of intact pear fruit

    NASA Astrophysics Data System (ADS)

    Ying, Yibin; Liu, Yande; Fu, Xiaping; Lu, Huishan

    2005-11-01

    The artificial neural networks (ANNs) have been used successfully in applications such as pattern recognition, image processing, automation and control. However, majority of today's applications of ANNs is back-propagate feed-forward ANN (BP-ANN). In this paper, back-propagation artificial neural networks (BP-ANN) were applied for modeling soluble solid content (SSC) of intact pear from their Fourier transform near infrared (FT-NIR) spectra. One hundred and sixty-four pear samples were used to build the calibration models and evaluate the models predictive ability. The results are compared to the classical calibration approaches, i.e. principal component regression (PCR), partial least squares (PLS) and non-linear PLS (NPLS). The effects of the optimal methods of training parameters on the prediction model were also investigated. BP-ANN combine with principle component regression (PCR) resulted always better than the classical PCR, PLS and Weight-PLS methods, from the point of view of the predictive ability. Based on the results, it can be concluded that FT-NIR spectroscopy and BP-ANN models can be properly employed for rapid and nondestructive determination of fruit internal quality.

  2. A comparison of logistic regression analysis and an artificial neural network using the BI-RADS lexicon for ultrasonography in conjunction with introbserver variability.

    PubMed

    Kim, Sun Mi; Han, Heon; Park, Jeong Mi; Choi, Yoon Jung; Yoon, Hoi Soo; Sohn, Jung Hee; Baek, Moon Hee; Kim, Yoon Nam; Chae, Young Moon; June, Jeon Jong; Lee, Jiwon; Jeon, Yong Hwan

    2012-10-01

    To determine which Breast Imaging Reporting and Data System (BI-RADS) descriptors for ultrasound are predictors for breast cancer using logistic regression (LR) analysis in conjunction with interobserver variability between breast radiologists, and to compare the performance of artificial neural network (ANN) and LR models in differentiation of benign and malignant breast masses. Five breast radiologists retrospectively reviewed 140 breast masses and described each lesion using BI-RADS lexicon and categorized final assessments. Interobserver agreements between the observers were measured by kappa statistics. The radiologists' responses for BI-RADS were pooled. The data were divided randomly into train (n = 70) and test sets (n = 70). Using train set, optimal independent variables were determined by using LR analysis with forward stepwise selection. The LR and ANN models were constructed with the optimal independent variables and the biopsy results as dependent variable. Performances of the models and radiologists were evaluated on the test set using receiver-operating characteristic (ROC) analysis. Among BI-RADS descriptors, margin and boundary were determined as the predictors according to stepwise LR showing moderate interobserver agreement. Area under the ROC curves (AUC) for both of LR and ANN were 0.87 (95% CI, 0.77-0.94). AUCs for the five radiologists ranged 0.79-0.91. There was no significant difference in AUC values among the LR, ANN, and radiologists (p > 0.05). Margin and boundary were found as statistically significant predictors with good interobserver agreement. Use of the LR and ANN showed similar performance to that of the radiologists for differentiation of benign and malignant breast masses.

  3. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat—Turkey)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Işık

    2009-06-01

    The purpose of this study is to compare the landslide susceptibility mapping methods of frequency ratio (FR), logistic regression and artificial neural networks (ANN) applied in the Kat County (Tokat—Turkey). Digital elevation model (DEM) was first constructed using GIS software. Landslide-related factors such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index (TWI) and stream power index (SPI) were used in the landslide susceptibility analyses. Landslide susceptibility maps were produced from the frequency ratio, logistic regression and neural networks models, and they were then compared by means of their validations. The higher accuracies of the susceptibility maps for all three models were obtained from the comparison of the landslide susceptibility maps with the known landslide locations. However, respective area under curve (AUC) values of 0.826, 0.842 and 0.852 for frequency ratio, logistic regression and artificial neural networks showed that the map obtained from ANN model is more accurate than the other models, accuracies of all models can be evaluated relatively similar. The results obtained in this study also showed that the frequency ratio model can be used as a simple tool in assessment of landslide susceptibility when a sufficient number of data were obtained. Input process, calculations and output process are very simple and can be readily understood in the frequency ratio model, however logistic regression and neural networks require the conversion of data to ASCII or other formats. Moreover, it is also very hard to process the large amount of data in the statistical package.

  4. Network intrusion detection based on a general regression neural network optimized by an improved artificial immune algorithm.

    PubMed

    Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang

    2015-01-01

    To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data.

  5. Development of hybrid genetic-algorithm-based neural networks using regression trees for modeling air quality inside a public transportation bus.

    PubMed

    Kadiyala, Akhil; Kaur, Devinder; Kumar, Ashok

    2013-02-01

    The present study developed a novel approach to modeling indoor air quality (IAQ) of a public transportation bus by the development of hybrid genetic-algorithm-based neural networks (also known as evolutionary neural networks) with input variables optimized from using the regression trees, referred as the GART approach. This study validated the applicability of the GART modeling approach in solving complex nonlinear systems by accurately predicting the monitored contaminants of carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), sulfur dioxide (SO2), 0.3-0.4 microm sized particle numbers, 0.4-0.5 microm sized particle numbers, particulate matter (PM) concentrations less than 1.0 microm (PM10), and PM concentrations less than 2.5 microm (PM2.5) inside a public transportation bus operating on 20% grade biodiesel in Toledo, OH. First, the important variables affecting each monitored in-bus contaminant were determined using regression trees. Second, the analysis of variance was used as a complimentary sensitivity analysis to the regression tree results to determine a subset of statistically significant variables affecting each monitored in-bus contaminant. Finally, the identified subsets of statistically significant variables were used as inputs to develop three artificial neural network (ANN) models. The models developed were regression tree-based back-propagation network (BPN-RT), regression tree-based radial basis function network (RBFN-RT), and GART models. Performance measures were used to validate the predictive capacity of the developed IAQ models. The results from this approach were compared with the results obtained from using a theoretical approach and a generalized practicable approach to modeling IAQ that included the consideration of additional independent variables when developing the aforementioned ANN models. The hybrid GART models were able to capture majority of the variance in the monitored in-bus contaminants. The genetic-algorithm-based neural network IAQ models outperformed the traditional ANN methods of the back-propagation and the radial basis function networks. The novelty of this research is the development of a novel approach to modeling vehicular indoor air quality by integration of the advanced methods of genetic algorithms, regression trees, and the analysis of variance for the monitored in-vehicle gaseous and particulate matter contaminants, and comparing the results obtained from using the developed approach with conventional artificial intelligence techniques of back propagation networks and radial basis function networks. This study validated the newly developed approach using holdout and threefold cross-validation methods. These results are of great interest to scientists, researchers, and the public in understanding the various aspects of modeling an indoor microenvironment. This methodology can easily be extended to other fields of study also.

  6. Determining the impact of urban components on land surface temperature of Istanbul by using remote sensing indices.

    PubMed

    Bektaş Balçik, Filiz

    2014-02-01

    For the past 60 years, Istanbul has been experiencing an accelerated urban expansion. This urban expansion is leading to the replacement of natural surfaces by various artificial materials. This situation has a critical impact on the environment due to the alteration of heat energy balance. In this study, the effect upon the urban heat island (UHI) of Istanbul was analyzed using 2009 dated Landsat 5 Thematic Mapper (TM) data. An Index Based Built-up Index (IBI) was used to derive artificial surfaces in the study area. To produce the IBI index, Soil-Adjusted Vegetation Index, Normalized Difference Built-up Index, and Modified Normalized Difference Water Index were calculated. Land surface temperature (LST) distribution was derived from Landsat 5 TM images using a mono-window algorithm. In addition, 24 transects were selected, and different regression models were applied to explore the correlation between LST and IBI index. The results show that artificial surfaces have a positive exponential relationship with LST rather than a simple linear one. An ecological evaluation index of the region was calculated to explore the impact of both the vegetated land and the artificial surfaces on the UHI. Therefore, the quantitative relationship of urban components (artificial surfaces, vegetation, and water) and LST was examined using multivariate statistical analysis, and the correlation coefficient was obtained as 0.829. This suggested that the areas with a high rate of urbanization will accelerate the rise of LST and UHI in Istanbul.

  7. Docking and QSAR comparative studies of polycyclic aromatic hydrocarbons and other procarcinogen interactions with cytochromes P450 1A1 and 1B1.

    PubMed

    Gonzalez, J; Marchand-Geneste, N; Giraudel, J L; Shimada, T

    2012-01-01

    To obtain chemical clues on the process of bioactivation by cytochromes P450 1A1 and 1B1, some QSAR studies were carried out based on cellular experiments of the metabolic activation of polycyclic aromatic hydrocarbons and heterocyclic aromatic compounds by those enzymes. Firstly, the 3D structures of cytochromes 1A1 and 1B1 were built using homology modelling with a cytochrome 1A2 template. Using these structures, 32 ligands including heterocyclic aromatic compounds, polycyclic aromatic hydrocarbons and corresponding diols, were docked with LigandFit and CDOCKER algorithms. Binding mode analysis highlighted the importance of hydrophobic interactions and the hydrogen bonding network between cytochrome amino acids and docked molecules. Finally, for each enzyme, multilinear regression and artificial neural network QSAR models were developed and compared. These statistical models highlighted the importance of electronic, structural and energetic descriptors in metabolic activation process, and could be used for virtual screening of ligand databases. In the case of P450 1A1, the best model was obtained with artificial neural network analysis and gave an r (2) of 0.66 and an external prediction [Formula: see text] of 0.73. Concerning P450 1B1, artificial neural network analysis gave a much more robust model, associated with an r (2) value of 0.73 and an external prediction [Formula: see text] of 0.59.

  8. [Application of chemometrics in composition-activity relationship research of traditional Chinese medicine].

    PubMed

    Han, Sheng-Nan

    2014-07-01

    Chemometrics is a new branch of chemistry which is widely applied to various fields of analytical chemistry. Chemometrics can use theories and methods of mathematics, statistics, computer science and other related disciplines to optimize the chemical measurement process and maximize access to acquire chemical information and other information on material systems by analyzing chemical measurement data. In recent years, traditional Chinese medicine has attracted widespread attention. In the research of traditional Chinese medicine, it has been a key problem that how to interpret the relationship between various chemical components and its efficacy, which seriously restricts the modernization of Chinese medicine. As chemometrics brings the multivariate analysis methods into the chemical research, it has been applied as an effective research tool in the composition-activity relationship research of Chinese medicine. This article reviews the applications of chemometrics methods in the composition-activity relationship research in recent years. The applications of multivariate statistical analysis methods (such as regression analysis, correlation analysis, principal component analysis, etc. ) and artificial neural network (such as back propagation artificial neural network, radical basis function neural network, support vector machine, etc. ) are summarized, including the brief fundamental principles, the research contents and the advantages and disadvantages. Finally, the existing main problems and prospects of its future researches are proposed.

  9. Development of the first sphingomyelin biomimetic stationary phase for immobilized artificial membrane (IAM) chromatography.

    PubMed

    Verzele, Dieter; Lynen, Frédéric; De Vrieze, Mike; Wright, Adrian G; Hanna-Brown, Melissa; Sandra, Pat

    2012-01-28

    A prototype sphingomyelin stationary phase for Immobilized Artificial Membrane (IAM) chromatography was synthesized by an ultra-short, solid-phase inspired methodology, in which an oxidative release monitoring strategy played a vital role. Evaluated in a proof-of-concept model for blood-brain barrier passage, partial least squares regression demonstrated its potential as an in vitro prediction tool.

  10. Artificial bias typically neglected in comparisons of uncertain atmospheric data

    NASA Astrophysics Data System (ADS)

    Pitkänen, Mikko R. A.; Mikkonen, Santtu; Lehtinen, Kari E. J.; Lipponen, Antti; Arola, Antti

    2016-09-01

    Publications in atmospheric sciences typically neglect biases caused by regression dilution (bias of the ordinary least squares line fitting) and regression to the mean (RTM) in comparisons of uncertain data. We use synthetic observations mimicking real atmospheric data to demonstrate how the biases arise from random data uncertainties of measurements, model output, or satellite retrieval products. Further, we provide examples of typical methods of data comparisons that have a tendency to pronounce the biases. The results show, that data uncertainties can significantly bias data comparisons due to regression dilution and RTM, a fact that is known in statistics but disregarded in atmospheric sciences. Thus, we argue that often these biases are widely regarded as measurement or modeling errors, for instance, while they in fact are artificial. It is essential that atmospheric and geoscience communities become aware of and consider these features in research.

  11. Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data.

    PubMed

    Ching, Travers; Zhu, Xun; Garmire, Lana X

    2018-04-01

    Artificial neural networks (ANN) are computing architectures with many interconnections of simple neural-inspired computing elements, and have been applied to biomedical fields such as imaging analysis and diagnosis. We have developed a new ANN framework called Cox-nnet to predict patient prognosis from high throughput transcriptomics data. In 10 TCGA RNA-Seq data sets, Cox-nnet achieves the same or better predictive accuracy compared to other methods, including Cox-proportional hazards regression (with LASSO, ridge, and mimimax concave penalty), Random Forests Survival and CoxBoost. Cox-nnet also reveals richer biological information, at both the pathway and gene levels. The outputs from the hidden layer node provide an alternative approach for survival-sensitive dimension reduction. In summary, we have developed a new method for accurate and efficient prognosis prediction on high throughput data, with functional biological insights. The source code is freely available at https://github.com/lanagarmire/cox-nnet.

  12. Simultaneous chemometric determination of pyridoxine hydrochloride and isoniazid in tablets by multivariate regression methods.

    PubMed

    Dinç, Erdal; Ustündağ, Ozgür; Baleanu, Dumitru

    2010-08-01

    The sole use of pyridoxine hydrochloride during treatment of tuberculosis gives rise to pyridoxine deficiency. Therefore, a combination of pyridoxine hydrochloride and isoniazid is used in pharmaceutical dosage form in tuberculosis treatment to reduce this side effect. In this study, two chemometric methods, partial least squares (PLS) and principal component regression (PCR), were applied to the simultaneous determination of pyridoxine (PYR) and isoniazid (ISO) in their tablets. A concentration training set comprising binary mixtures of PYR and ISO consisting of 20 different combinations were randomly prepared in 0.1 M HCl. Both multivariate calibration models were constructed using the relationships between the concentration data set (concentration data matrix) and absorbance data matrix in the spectral region 200-330 nm. The accuracy and the precision of the proposed chemometric methods were validated by analyzing synthetic mixtures containing the investigated drugs. The recovery results obtained by applying PCR and PLS calibrations to the artificial mixtures were found between 100.0 and 100.7%. Satisfactory results obtained by applying the PLS and PCR methods to both artificial and commercial samples were obtained. The results obtained in this manuscript strongly encourage us to use them for the quality control and the routine analysis of the marketing tablets containing PYR and ISO drugs. Copyright © 2010 John Wiley & Sons, Ltd.

  13. Evaluation of force degradation characteristics of orthodontic latex elastics in vitro and in vivo.

    PubMed

    Wang, Tong; Zhou, Gang; Tan, Xianfeng; Dong, Yaojun

    2007-07-01

    To evaluate the characteristics of force degradation of latex elastics in clinical applications and in vitro studies. Samples of 3/16-inch latex elastics were investigated, and 12 students between the ages of 12 and 15 years were selected for the intermaxillary and intramaxillary tractions. The elastics in the control groups were set in artificial saliva and dry room conditions and were stretched 20 mm. The repeated-measure two-way analysis of variance and nonlinear regression analysis were used to identify statistical significance. Overall, there were statistically significant differences between the different methods and observation intervals. At 24- and 48-hour time intervals, the force decreased during in vivo testing and in artificial saliva (P < .001), whereas there were no significant differences in dry room conditions (P > .05). In intermaxillary traction the percentage of initial force remaining after 48 hours was 61%. In intramaxillary traction and in artificial saliva the percentage of initial force remaining was 71%, and in room conditions 86% of initial force remained. Force degradation of latex elastics was different according to their environmental conditions. There was significantly more force degradation in intermaxillary traction than in intramaxillary traction. The dry room condition caused the least force loss. There were some differences among groups in the different times to start wearing elastics in intermaxillary traction but no significant differences in intramaxillary traction.

  14. Modification of the USLE K factor for soil erodibility assessment on calcareous soils in Iran

    NASA Astrophysics Data System (ADS)

    Ostovari, Yaser; Ghorbani-Dashtaki, Shoja; Bahrami, Hossein-Ali; Naderi, Mehdi; Dematte, Jose Alexandre M.; Kerry, Ruth

    2016-11-01

    The measurement of soil erodibility (K) in the field is tedious, time-consuming and expensive; therefore, its prediction through pedotransfer functions (PTFs) could be far less costly and time-consuming. The aim of this study was to develop new PTFs to estimate the K factor using multiple linear regression, Mamdani fuzzy inference systems, and artificial neural networks. For this purpose, K was measured in 40 erosion plots with natural rainfall. Various soil properties including the soil particle size distribution, calcium carbonate equivalent, organic matter, permeability, and wet-aggregate stability were measured. The results showed that the mean measured K was 0.014 t h MJ- 1 mm- 1 and 2.08 times less than the estimated mean K (0.030 t h MJ- 1 mm- 1) using the USLE model. Permeability, wet-aggregate stability, very fine sand, and calcium carbonate were selected as independent variables by forward stepwise regression in order to assess the ability of multiple linear regression, Mamdani fuzzy inference systems and artificial neural networks to predict K. The calcium carbonate equivalent, which is not accounted for in the USLE model, had a significant impact on K in multiple linear regression due to its strong influence on the stability of aggregates and soil permeability. Statistical indices in validation and calibration datasets determined that the artificial neural networks method with the highest R2, lowest RMSE, and lowest ME was the best model for estimating the K factor. A strong correlation (R2 = 0.81, n = 40, p < 0.05) between the estimated K from multiple linear regression and measured K indicates that the use of calcium carbonate equivalent as a predictor variable gives a better estimation of K in areas with calcareous soils.

  15. Use of genetic programming, logistic regression, and artificial neural nets to predict readmission after coronary artery bypass surgery.

    PubMed

    Engoren, Milo; Habib, Robert H; Dooner, John J; Schwann, Thomas A

    2013-08-01

    As many as 14 % of patients undergoing coronary artery bypass surgery are readmitted within 30 days. Readmission is usually the result of morbidity and may lead to death. The purpose of this study is to develop and compare statistical and genetic programming models to predict readmission. Patients were divided into separate Construction and Validation populations. Using 88 variables, logistic regression, genetic programs, and artificial neural nets were used to develop predictive models. Models were first constructed and tested on the Construction populations, then validated on the Validation population. Areas under the receiver operator characteristic curves (AU ROC) were used to compare the models. Two hundred and two patients (7.6 %) in the 2,644 patient Construction group and 216 (8.0 %) of the 2,711 patient Validation group were re-admitted within 30 days of CABG surgery. Logistic regression predicted readmission with AU ROC = .675 ± .021 in the Construction group. Genetic programs significantly improved the accuracy, AU ROC = .767 ± .001, p < .001). Artificial neural nets were less accurate with AU ROC = 0.597 ± .001 in the Construction group. Predictive accuracy of all three techniques fell in the Validation group. However, the accuracy of genetic programming (AU ROC = .654 ± .001) was still trivially but statistically non-significantly better than that of the logistic regression (AU ROC = .644 ± .020, p = .61). Genetic programming and logistic regression provide alternative methods to predict readmission that are similarly accurate.

  16. Methodologies for the assessment of earthquake-triggered landslides hazard. A comparison of Logistic Regression and Artificial Neural Network models.

    NASA Astrophysics Data System (ADS)

    García-Rodríguez, M. J.; Malpica, J. A.; Benito, B.

    2009-04-01

    In recent years, interest in landslide hazard assessment studies has increased substantially. They are appropriate for evaluation and mitigation plan development in landslide-prone areas. There are several techniques available for landslide hazard research at a regional scale. Generally, they can be classified in two groups: qualitative and quantitative methods. Most of qualitative methods tend to be subjective, since they depend on expert opinions and represent hazard levels in descriptive terms. On the other hand, quantitative methods are objective and they are commonly used due to the correlation between the instability factors and the location of the landslides. Within this group, statistical approaches and new heuristic techniques based on artificial intelligence (artificial neural network (ANN), fuzzy logic, etc.) provide rigorous analysis to assess landslide hazard over large regions. However, they depend on qualitative and quantitative data, scale, types of movements and characteristic factors used. We analysed and compared an approach for assessing earthquake-triggered landslides hazard using logistic regression (LR) and artificial neural networks (ANN) with a back-propagation learning algorithm. One application has been developed in El Salvador, a country of Central America where the earthquake-triggered landslides are usual phenomena. In a first phase, we analysed the susceptibility and hazard associated to the seismic scenario of the 2001 January 13th earthquake. We calibrated the models using data from the landslide inventory for this scenario. These analyses require input variables representing physical parameters to contribute to the initiation of slope instability, for example, slope gradient, elevation, aspect, mean annual precipitation, lithology, land use, and terrain roughness, while the occurrence or non-occurrence of landslides is considered as dependent variable. The results of the landslide susceptibility analysis are checked using landslide location data. These results show a high concordance between the landslide inventory and the high susceptibility estimated zone with an adjustment of 95.1 % for ANN model and 89.4% for LR model. In addition, we make a comparative analysis of both techniques using the Receiver Operating Characteristic (ROC) curve, a graphical plot of the sensitivity vs. (1 - specificity) for a binary classifier system in function of its discrimination threshold, and calculating the Area Under the ROC (AUROC) value for each model. Finally, the previous models are used for the developing a new probabilistic landslide hazard map for future events. They are obtained combining the expected triggering factor (calculated earthquake ground motion) for a return period of 475 years with the susceptibility map.

  17. Use of artificial neural network for spatial rainfall analysis

    NASA Astrophysics Data System (ADS)

    Paraskevas, Tsangaratos; Dimitrios, Rozos; Andreas, Benardos

    2014-04-01

    In the present study, the precipitation data measured at 23 rain gauge stations over the Achaia County, Greece, were used to estimate the spatial distribution of the mean annual precipitation values over a specific catchment area. The objective of this work was achieved by programming an Artificial Neural Network (ANN) that uses the feed-forward back-propagation algorithm as an alternative interpolating technique. A Geographic Information System (GIS) was utilized to process the data derived by the ANN and to create a continuous surface that represented the spatial mean annual precipitation distribution. The ANN introduced an optimization procedure that was implemented during training, adjusting the hidden number of neurons and the convergence of the ANN in order to select the best network architecture. The performance of the ANN was evaluated using three standard statistical evaluation criteria applied to the study area and showed good performance. The outcomes were also compared with the results obtained from a previous study in the area of research which used a linear regression analysis for the estimation of the mean annual precipitation values giving more accurate results. The information and knowledge gained from the present study could improve the accuracy of analysis concerning hydrology and hydrogeological models, ground water studies, flood related applications and climate analysis studies.

  18. Assessing the Liquidity of Firms: Robust Neural Network Regression as an Alternative to the Current Ratio

    NASA Astrophysics Data System (ADS)

    de Andrés, Javier; Landajo, Manuel; Lorca, Pedro; Labra, Jose; Ordóñez, Patricia

    Artificial neural networks have proven to be useful tools for solving financial analysis problems such as financial distress prediction and audit risk assessment. In this paper we focus on the performance of robust (least absolute deviation-based) neural networks on measuring liquidity of firms. The problem of learning the bivariate relationship between the components (namely, current liabilities and current assets) of the so-called current ratio is analyzed, and the predictive performance of several modelling paradigms (namely, linear and log-linear regressions, classical ratios and neural networks) is compared. An empirical analysis is conducted on a representative data base from the Spanish economy. Results indicate that classical ratio models are largely inadequate as a realistic description of the studied relationship, especially when used for predictive purposes. In a number of cases, especially when the analyzed firms are microenterprises, the linear specification is improved by considering the flexible non-linear structures provided by neural networks.

  19. A canonical correlation neural network for multicollinearity and functional data.

    PubMed

    Gou, Zhenkun; Fyfe, Colin

    2004-03-01

    We review a recent neural implementation of Canonical Correlation Analysis and show, using ideas suggested by Ridge Regression, how to make the algorithm robust. The network is shown to operate on data sets which exhibit multicollinearity. We develop a second model which not only performs as well on multicollinear data but also on general data sets. This model allows us to vary a single parameter so that the network is capable of performing Partial Least Squares regression (at one extreme) to Canonical Correlation Analysis (at the other)and every intermediate operation between the two. On multicollinear data, the parameter setting is shown to be important but on more general data no particular parameter setting is required. Finally, we develop a second penalty term which acts on such data as a smoother in that the resulting weight vectors are much smoother and more interpretable than the weights without the robustification term. We illustrate our algorithms on both artificial and real data.

  20. Artificial neural networks in gynaecological diseases: current and potential future applications.

    PubMed

    Siristatidis, Charalampos S; Chrelias, Charalampos; Pouliakis, Abraham; Katsimanis, Evangelos; Kassanos, Dimitrios

    2010-10-01

    Current (and probably future) practice of medicine is mostly associated with prediction and accurate diagnosis. Especially in clinical practice, there is an increasing interest in constructing and using valid models of diagnosis and prediction. Artificial neural networks (ANNs) are mathematical systems being used as a prospective tool for reliable, flexible and quick assessment. They demonstrate high power in evaluating multifactorial data, assimilating information from multiple sources and detecting subtle and complex patterns. Their capability and difference from other statistical techniques lies in performing nonlinear statistical modelling. They represent a new alternative to logistic regression, which is the most commonly used method for developing predictive models for outcomes resulting from partitioning in medicine. In combination with the other non-algorithmic artificial intelligence techniques, they provide useful software engineering tools for the development of systems in quantitative medicine. Our paper first presents a brief introduction to ANNs, then, using what we consider the best available evidence through paradigms, we evaluate the ability of these networks to serve as first-line detection and prediction techniques in some of the most crucial fields in gynaecology. Finally, through the analysis of their current application, we explore their dynamics for future use.

  1. Prognoses of diameter and height of trees of eucalyptus using artificial intelligence.

    PubMed

    Vieira, Giovanni Correia; de Mendonça, Adriano Ribeiro; da Silva, Gilson Fernandes; Zanetti, Sidney Sára; da Silva, Mayra Marques; Dos Santos, Alexandre Rosa

    2018-04-01

    Models of individual trees are composed of sub-models that generally estimate competition, mortality, and growth in height and diameter of each tree. They are usually adopted when we want more detailed information to estimate forest multiproduct. In these models, estimates of growth in diameter at 1.30m above the ground (DBH) and total height (H) are obtained by regression analysis. Recently, artificial intelligence techniques (AIT) have been used with satisfactory performance in forest measurement. Therefore, the objective of this study was to evaluate the performance of two AIT, artificial neural networks and adaptive neuro-fuzzy inference system, to estimate the growth in DBH and H of eucalyptus trees. We used data of continuous forest inventories of eucalyptus, with annual measurements of DBH, H, and the dominant height of trees of 398 plots, plus two qualitative variables: genetic material and site index. It was observed that the two AIT showed accuracy in growth estimation of DBH and H. Therefore, the two techniques discussed can be used for the prognosis of DBH and H in even-aged eucalyptus stands. The techniques used could also be adapted to other areas and forest species. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Network Intrusion Detection Based on a General Regression Neural Network Optimized by an Improved Artificial Immune Algorithm

    PubMed Central

    Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang

    2015-01-01

    To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data. PMID:25807466

  3. Protein expression pattern of PAWP in bull spermatozoa is associated with sperm quality and fertility following artificial insemination.

    PubMed

    Kennedy, Chelsey E; Krieger, Kari Beth; Sutovsky, Miriam; Xu, Wei; Vargovič, Peter; Didion, Bradley A; Ellersieck, Mark R; Hennessy, Madison E; Verstegen, John; Oko, Richard; Sutovsky, Peter

    2014-05-01

    Post-acrosomal WW-domain binding protein (PAWP) is a signaling molecule located in the post-acrosomal sheath (PAS) of mammalian spermatozoa. We hypothesized that the proper integration of PAWP in the sperm PAS is reflective of bull-sperm quality and fertility. Cryopreserved semen samples from 298 sires of acceptable, but varied, fertility used in artificial insemination services were analyzed using immunofluorescence microscopy and flow cytometry for PAWP protein. In normal spermatozoa, PAWP fluorescence formed a regular band around the proximal PAS. Anomalies of PAWP labeling in defective spermatozoa were reflected in flow cytometry by varied intensities of PAWP-induced fluorescence. Distinct sperm phenotypes were also identified, including morphologically normal and some defective spermatozoa with moderate levels of PAWP; grossly defective spermatozoa with low/no PAWP; and defective spermatozoa with high PAWP. Analysis by ImageStream flow cytometry confirmed the prevalence of abnormal sperm phenotypes in the spermatozoa with abnormal PAWP content. Live/dead staining and video recording showed that some abnormal spermatozoa are viable and capable of progressive motility. Conventional flow-cytometric measurements of PAWP correlated significantly with semen quality and fertility parameters that reflect the sires' artificial insemination fertility, including secondary sperm morphology, conception rate, non-return rate, and residual value. A multiplex, flow-cytometric test detecting PAWP, aggresomes (ubiquitinated protein aggregates), and acrosomal integrity (peanut-agglutinin-lectin labeling) had a predictive value for conception rate, as demonstrated by step-wise regression analysis. We conclude that PAWP correlates with semen/fertility parameters used in the cattle artificial insemination industry, making PAWP a potential biomarker of bull fertility. © 2014 Wiley Periodicals, Inc.

  4. Impact of different variables on the outcome of patients with clinically confined prostate carcinoma: prediction of pathologic stage and biochemical failure using an artificial neural network.

    PubMed

    Ziada, A M; Lisle, T C; Snow, P B; Levine, R F; Miller, G; Crawford, E D

    2001-04-15

    The advent of advanced computing techniques has provided the opportunity to analyze clinical data using artificial intelligence techniques. This study was designed to determine whether a neural network could be developed using preoperative prognostic indicators to predict the pathologic stage and time of biochemical failure for patients who undergo radical prostatectomy. The preoperative information included TNM stage, prostate size, prostate specific antigen (PSA) level, biopsy results (Gleason score and percentage of positive biopsy), as well as patient age. All 309 patients underwent radical prostatectomy at the University of Colorado Health Sciences Center. The data from all patients were used to train a multilayer perceptron artificial neural network. The failure rate was defined as a rise in the PSA level > 0.2 ng/mL. The biochemical failure rate in the data base used was 14.2%. Univariate and multivariate analyses were performed to validate the results. The neural network statistics for the validation set showed a sensitivity and specificity of 79% and 81%, respectively, for the prediction of pathologic stage with an overall accuracy of 80% compared with an overall accuracy of 67% using the multivariate regression analysis. The sensitivity and specificity for the prediction of failure were 67% and 85%, respectively, demonstrating a high confidence in predicting failure. The overall accuracy rates for the artificial neural network and the multivariate analysis were similar. Neural networks can offer a convenient vehicle for clinicians to assess the preoperative risk of disease progression for patients who are about to undergo radical prostatectomy. Continued investigation of this approach with larger data sets seems warranted. Copyright 2001 American Cancer Society.

  5. Artificial Intelligence Systems as Prognostic and Predictive Tools in Ovarian Cancer.

    PubMed

    Enshaei, A; Robson, C N; Edmondson, R J

    2015-11-01

    The ability to provide accurate prognostic and predictive information to patients is becoming increasingly important as clinicians enter an era of personalized medicine. For a disease as heterogeneous as epithelial ovarian cancer, conventional algorithms become too complex for routine clinical use. This study therefore investigated the potential for an artificial intelligence model to provide this information and compared it with conventional statistical approaches. The authors created a database comprising 668 cases of epithelial ovarian cancer during a 10-year period and collected data routinely available in a clinical environment. They also collected survival data for all the patients, then constructed an artificial intelligence model capable of comparing a variety of algorithms and classifiers alongside conventional statistical approaches such as logistic regression. The model was used to predict overall survival and demonstrated that an artificial neural network (ANN) algorithm was capable of predicting survival with high accuracy (93 %) and an area under the curve (AUC) of 0.74 and that this outperformed logistic regression. The model also was used to predict the outcome of surgery and again showed that ANN could predict outcome (complete/optimal cytoreduction vs. suboptimal cytoreduction) with 77 % accuracy and an AUC of 0.73. These data are encouraging and demonstrate that artificial intelligence systems may have a role in providing prognostic and predictive data for patients. The performance of these systems likely will improve with increasing data set size, and this needs further investigation.

  6. Outdoor artificial light at night, obesity, and sleep health: Cross-sectional analysis in the KoGES study.

    PubMed

    Koo, Yong Seo; Song, Jin-Young; Joo, Eun-Yeon; Lee, Heon-Jeong; Lee, Eunil; Lee, Sang-kun; Jung, Ki-Young

    2016-01-01

    Obesity is a common disorder with many complications. Although chronodisruption plays a role in obesity, few epidemiological studies have investigated the association between artificial light at night (ALAN) and obesity. Since sleep health is related to both obesity and ALAN, we investigated the association between outdoor ALAN and obesity after adjusting for sleep health. We also investigated the association between outdoor ALAN and sleep health. This cross-sectional survey included 8526 adults, 39-70 years of age, who participated in the Korean Genome and Epidemiology Study. Outdoor ALAN data were obtained from satellite images provided by the US Defense Meteorological Satellite Program. We obtained individual data regarding outdoor ALAN; body mass index; depression; and sleep health including sleep duration, mid-sleep time, and insomnia; and other demographic data including age, sex, educational level, type of residential building, monthly household income, alcohol consumption, smoking status and consumption of caffeine or alcohol before sleep. A logistic regression model was used to investigate the association between outdoor ALAN and obesity. The prevalence of obesity differed significantly according to sex (women 47% versus men 39%, p < 0.001) and outdoor ALAN (high 55% versus low 40%, p < 0.001). Univariate logistic regression analysis revealed a significant association between high outdoor ALAN and obesity (odds ratio [OR] 1.24, 95% confidence interval [CI] 1.14-1.35, p < 0.001). Furthermore, multivariate logistic regression analyses showed that high outdoor ALAN was significantly associated with obesity after adjusting for age and sex (OR 1.25, 95% CI 1.14-1.37, p < 0.001) and even after controlling for various other confounding factors including age, sex, educational level, type of residential building, monthly household income, alcohol consumption, smoking, consumption of caffeine or alcohol before sleep, delayed sleep pattern, short sleep duration and habitual snoring (OR 1.20, 95% CI 1.06-1.36, p = 0.003). The findings of our study provide epidemiological evidence that outdoor ALAN is significantly related to obesity.

  7. The novel application of artificial neural network on bioelectrical impedance analysis to assess the body composition in elderly

    PubMed Central

    2013-01-01

    Background This study aims to improve accuracy of Bioelectrical Impedance Analysis (BIA) prediction equations for estimating fat free mass (FFM) of the elderly by using non-linear Back Propagation Artificial Neural Network (BP-ANN) model and to compare the predictive accuracy with the linear regression model by using energy dual X-ray absorptiometry (DXA) as reference method. Methods A total of 88 Taiwanese elderly adults were recruited in this study as subjects. Linear regression equations and BP-ANN prediction equation were developed using impedances and other anthropometrics for predicting the reference FFM measured by DXA (FFMDXA) in 36 male and 26 female Taiwanese elderly adults. The FFM estimated by BIA prediction equations using traditional linear regression model (FFMLR) and BP-ANN model (FFMANN) were compared to the FFMDXA. The measuring results of an additional 26 elderly adults were used to validate than accuracy of the predictive models. Results The results showed the significant predictors were impedance, gender, age, height and weight in developed FFMLR linear model (LR) for predicting FFM (coefficient of determination, r2 = 0.940; standard error of estimate (SEE) = 2.729 kg; root mean square error (RMSE) = 2.571kg, P < 0.001). The above predictors were set as the variables of the input layer by using five neurons in the BP-ANN model (r2 = 0.987 with a SD = 1.192 kg and relatively lower RMSE = 1.183 kg), which had greater (improved) accuracy for estimating FFM when compared with linear model. The results showed a better agreement existed between FFMANN and FFMDXA than that between FFMLR and FFMDXA. Conclusion When compared the performance of developed prediction equations for estimating reference FFMDXA, the linear model has lower r2 with a larger SD in predictive results than that of BP-ANN model, which indicated ANN model is more suitable for estimating FFM. PMID:23388042

  8. Comparison of classical statistical methods and artificial neural network in traffic noise prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedic, Vladimir, E-mail: vnedic@kg.ac.rs; Despotovic, Danijela, E-mail: ddespotovic@kg.ac.rs; Cvetanovic, Slobodan, E-mail: slobodan.cvetanovic@eknfak.ni.ac.rs

    2014-11-15

    Traffic is the main source of noise in urban environments and significantly affects human mental and physical health and labor productivity. Therefore it is very important to model the noise produced by various vehicles. Techniques for traffic noise prediction are mainly based on regression analysis, which generally is not good enough to describe the trends of noise. In this paper the application of artificial neural networks (ANNs) for the prediction of traffic noise is presented. As input variables of the neural network, the proposed structure of the traffic flow and the average speed of the traffic flow are chosen. Themore » output variable of the network is the equivalent noise level in the given time period L{sub eq}. Based on these parameters, the network is modeled, trained and tested through a comparative analysis of the calculated values and measured levels of traffic noise using the originally developed user friendly software package. It is shown that the artificial neural networks can be a useful tool for the prediction of noise with sufficient accuracy. In addition, the measured values were also used to calculate equivalent noise level by means of classical methods, and comparative analysis is given. The results clearly show that ANN approach is superior in traffic noise level prediction to any other statistical method. - Highlights: • We proposed an ANN model for prediction of traffic noise. • We developed originally designed user friendly software package. • The results are compared with classical statistical methods. • The results are much better predictive capabilities of ANN model.« less

  9. Wear rate optimization of Al/SiCnp/e-glass fibre hybrid metal matrix composites using Taguchi method and genetic algorithm and development of wear model using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Bongale, Arunkumar M.; Kumar, Satish; Sachit, T. S.; Jadhav, Priya

    2018-03-01

    Studies on wear properties of Aluminium based hybrid nano composite materials, processed through powder metallurgy technique, are reported in the present study. Silicon Carbide nano particles and E-glass fibre are reinforced in pure aluminium matrix to fabricate hybrid nano composite material samples. Pin-on-Disc wear testing equipment is used to evaluate dry sliding wear properties of the composite samples. The tests were conducted following the Taguchi’s Design of Experiments method. Signal-to-Noise ratio analysis and Analysis of Variance are carried out on the test data to find out the influence of test parameters on the wear rate. Scanning Electron Microscopic analysis and Energy Dispersive x-ray analysis are conducted on the worn surfaces to find out the wear mechanisms responsible for wear of the composites. Multiple linear regression analysis and Genetic Algorithm techniques are employed for optimization of wear test parameters to yield minimum wear of the composite samples. Finally, a wear model is built by the application of Artificial Neural Networks to predict the wear rate of the composite material, under different testing conditions. The predicted values of wear rate are found to be very close to the experimental values with a deviation in the range of 0.15% to 8.09%.

  10. The application and development of artificial intelligence in smart clothing

    NASA Astrophysics Data System (ADS)

    Wei, Xiong

    2018-03-01

    This paper mainly introduces the application of artificial intelligence in intelligent clothing. Starting from the development trend of artificial intelligence, analysis the prospects for development in smart clothing with artificial intelligence. Summarize the design key of artificial intelligence in smart clothing. Analysis the feasibility of artificial intelligence in smart clothing.

  11. Prediction of octanol-water partition coefficients of organic compounds by multiple linear regression, partial least squares, and artificial neural network.

    PubMed

    Golmohammadi, Hassan

    2009-11-30

    A quantitative structure-property relationship (QSPR) study was performed to develop models those relate the structure of 141 organic compounds to their octanol-water partition coefficients (log P(o/w)). A genetic algorithm was applied as a variable selection tool. Modeling of log P(o/w) of these compounds as a function of theoretically derived descriptors was established by multiple linear regression (MLR), partial least squares (PLS), and artificial neural network (ANN). The best selected descriptors that appear in the models are: atomic charge weighted partial positively charged surface area (PPSA-3), fractional atomic charge weighted partial positive surface area (FPSA-3), minimum atomic partial charge (Qmin), molecular volume (MV), total dipole moment of molecule (mu), maximum antibonding contribution of a molecule orbital in the molecule (MAC), and maximum free valency of a C atom in the molecule (MFV). The result obtained showed the ability of developed artificial neural network to prediction of partition coefficients of organic compounds. Also, the results revealed the superiority of ANN over the MLR and PLS models. Copyright 2009 Wiley Periodicals, Inc.

  12. Reconstruction of magnetic configurations in W7-X using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Böckenhoff, Daniel; Blatzheim, Marko; Hölbe, Hauke; Niemann, Holger; Pisano, Fabio; Labahn, Roger; Pedersen, Thomas Sunn; The W7-X Team

    2018-05-01

    It is demonstrated that artificial neural networks can be used to accurately and efficiently predict details of the magnetic topology at the plasma edge of the Wendelstein 7-X stellarator, based on simulated as well as measured heat load patterns onto plasma-facing components observed with infrared cameras. The connection between heat load patterns and the magnetic topology is a challenging regression problem, but one that suits artificial neural networks well. The use of a neural network makes it feasible to analyze and control the plasma exhaust in real-time, an important goal for Wendelstein 7-X, and for magnetic confinement fusion research in general.

  13. Development of a New Aprepitant Liquisolid Formulation with the Aid of Artificial Neural Networks and Genetic Programming.

    PubMed

    Barmpalexis, Panagiotis; Grypioti, Agni; Eleftheriadis, Georgios K; Fatouros, Dimitris G

    2018-02-01

    In the present study, liquisolid formulations were developed for improving dissolution profile of aprepitant (APT) in a solid dosage form. Experimental studies were complemented with artificial neural networks and genetic programming. Specifically, the type and concentration of liquid vehicle was evaluated through saturation-solubility studies, while the effect of the amount of viscosity increasing agent (HPMC), the type of wetting (Soluplus® vs. PVP) and solubilizing (Poloxamer®407 vs. Kolliphor®ELP) agents, and the ratio of solid coating (microcrystalline cellulose) to carrier (colloidal silicon dioxide) were evaluated based on in vitro drug release studies. The optimum liquisolid formulation exhibited improved dissolution characteristics compared to the marketed product Emend®. X-ray diffraction (XRD), scanning electron microscopy (SEM) and a novel method combining particle size analysis by dynamic light scattering (DLS) and HPLC, revealed that the increase in dissolution rate of APT in the optimum liquisolid formulation was due to the formation of stable APT nanocrystals. Differential scanning calorimetry (DSC) and attenuated total reflection FTIR spectroscopy (ATR-FTIR) revealed the presence of intermolecular interactions between APT and liquisolid formulation excipients. Multilinear regression analysis (MLR), artificial neural networks (ANNs), and genetic programming (GP) were used to correlate several formulation variables with dissolution profile parameters (Y 15min and Y 30min ) using a full factorial experimental design. Results showed increased correlation efficacy for ANNs and GP (RMSE of 0.151 and 0.273, respectively) compared to MLR (RMSE = 0.413).

  14. Rapid and simultaneous analysis of five alkaloids in four parts of Coptidis Rhizoma by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Jintao, Xue; Yufei, Liu; Liming, Ye; Chunyan, Li; Quanwei, Yang; Weiying, Wang; Yun, Jing; Minxiang, Zhang; Peng, Li

    2018-01-01

    Near-Infrared Spectroscopy (NIRS) was first used to develop a method for rapid and simultaneous determination of 5 active alkaloids (berberine, coptisine, palmatine, epiberberine and jatrorrhizine) in 4 parts (rhizome, fibrous root, stem and leaf) of Coptidis Rhizoma. A total of 100 samples from 4 main places of origin were collected and studied. With HPLC analysis values as calibration reference, the quantitative analysis of 5 marker components was performed by two different modeling methods, partial least-squares (PLS) regression as linear regression and artificial neural networks (ANN) as non-linear regression. The results indicated that the 2 types of models established were robust, accurate and repeatable for five active alkaloids, and the ANN models was more suitable for the determination of berberine, coptisine and palmatine while the PLS model was more suitable for the analysis of epiberberine and jatrorrhizine. The performance of the optimal models was achieved as follows: the correlation coefficient (R) for berberine, coptisine, palmatine, epiberberine and jatrorrhizine was 0.9958, 0.9956, 0.9959, 0.9963 and 0.9923, respectively; the root mean square error of validation (RMSEP) was 0.5093, 0.0578, 0.0443, 0.0563 and 0.0090, respectively. Furthermore, for the comprehensive exploitation and utilization of plant resource of Coptidis Rhizoma, the established NIR models were used to analysis the content of 5 active alkaloids in 4 parts of Coptidis Rhizoma and 4 main origin of places. This work demonstrated that NIRS may be a promising method as routine screening for off-line fast analysis or on-line quality assessment of traditional Chinese medicine (TCM).

  15. Numerically accurate computational techniques for optimal estimator analyses of multi-parameter models

    NASA Astrophysics Data System (ADS)

    Berger, Lukas; Kleinheinz, Konstantin; Attili, Antonio; Bisetti, Fabrizio; Pitsch, Heinz; Mueller, Michael E.

    2018-05-01

    Modelling unclosed terms in partial differential equations typically involves two steps: First, a set of known quantities needs to be specified as input parameters for a model, and second, a specific functional form needs to be defined to model the unclosed terms by the input parameters. Both steps involve a certain modelling error, with the former known as the irreducible error and the latter referred to as the functional error. Typically, only the total modelling error, which is the sum of functional and irreducible error, is assessed, but the concept of the optimal estimator enables the separate analysis of the total and the irreducible errors, yielding a systematic modelling error decomposition. In this work, attention is paid to the techniques themselves required for the practical computation of irreducible errors. Typically, histograms are used for optimal estimator analyses, but this technique is found to add a non-negligible spurious contribution to the irreducible error if models with multiple input parameters are assessed. Thus, the error decomposition of an optimal estimator analysis becomes inaccurate, and misleading conclusions concerning modelling errors may be drawn. In this work, numerically accurate techniques for optimal estimator analyses are identified and a suitable evaluation of irreducible errors is presented. Four different computational techniques are considered: a histogram technique, artificial neural networks, multivariate adaptive regression splines, and an additive model based on a kernel method. For multiple input parameter models, only artificial neural networks and multivariate adaptive regression splines are found to yield satisfactorily accurate results. Beyond a certain number of input parameters, the assessment of models in an optimal estimator analysis even becomes practically infeasible if histograms are used. The optimal estimator analysis in this paper is applied to modelling the filtered soot intermittency in large eddy simulations using a dataset of a direct numerical simulation of a non-premixed sooting turbulent flame.

  16. A study of the effect of selected material properties on the ablation performance of artificial graphite

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.

    1972-01-01

    Eighteen material properties were measured on 45 different, commercially available, artificial graphites. Ablation performance of these same graphites were also measured in a Mach 2 airstream at a stagnation pressure of 5.6 atm. Correlations were developed, where possible, between pairs of the material properties. Multiple regression equations were then formulated relating ablation performance to the various material properties, thus identifying those material properties having the strongest effect on ablation performance. These regression equations reveal that ablation performance in the present test environment depends primarily on maximum grain size, density, ash content, thermal conductivity, and mean pore radius. For optimization of ablation performance, grain size should be small, ash content low, density and thermal conductivity high, and mean pore radius large.

  17. Efficient least angle regression for identification of linear-in-the-parameters models

    PubMed Central

    Beach, Thomas H.; Rezgui, Yacine

    2017-01-01

    Least angle regression, as a promising model selection method, differentiates itself from conventional stepwise and stagewise methods, in that it is neither too greedy nor too slow. It is closely related to L1 norm optimization, which has the advantage of low prediction variance through sacrificing part of model bias property in order to enhance model generalization capability. In this paper, we propose an efficient least angle regression algorithm for model selection for a large class of linear-in-the-parameters models with the purpose of accelerating the model selection process. The entire algorithm works completely in a recursive manner, where the correlations between model terms and residuals, the evolving directions and other pertinent variables are derived explicitly and updated successively at every subset selection step. The model coefficients are only computed when the algorithm finishes. The direct involvement of matrix inversions is thereby relieved. A detailed computational complexity analysis indicates that the proposed algorithm possesses significant computational efficiency, compared with the original approach where the well-known efficient Cholesky decomposition is involved in solving least angle regression. Three artificial and real-world examples are employed to demonstrate the effectiveness, efficiency and numerical stability of the proposed algorithm. PMID:28293140

  18. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States

    NASA Astrophysics Data System (ADS)

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-03-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.

  19. Higher-order Multivariable Polynomial Regression to Estimate Human Affective States

    PubMed Central

    Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin

    2016-01-01

    From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254

  20. Comparison of three chemometrics methods for near-infrared spectra of glucose in the whole blood

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyan; Ding, Dong; Li, Xin; Chen, Yu; Tang, Yuguo

    2005-01-01

    Principal Component Regression (PCR), Partial Least Square (PLS) and Artificial Neural Networks (ANN) methods are used in the analysis for the near infrared (NIR) spectra of glucose in the whole blood. The calibration model is built up in the spectrum band where there are the glucose has much more spectral absorption than the water, fat, and protein with these methods and the correlation coefficients of the model are showed in this paper. Comparing these results, a suitable method to analyze the glucose NIR spectrum in the whole blood is found.

  1. Residualization is not the answer: Rethinking how to address multicollinearity.

    PubMed

    York, Richard

    2012-11-01

    Here I show that a commonly used procedure to address problems stemming from collinearity and multicollinearity among independent variables in regression analysis, "residualization", leads to biased coefficient and standard error estimates and does not address the fundamental problem of collinearity, which is a lack of information. I demonstrate this using visual representations of collinearity, hypothetical experimental designs, and analyses of both artificial and real world data. I conclude by noting the importance of examining methodological practices to ensure that their validity can be established based on rational criteria. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Detection of artificially ripened mango using spectrometric analysis

    NASA Astrophysics Data System (ADS)

    Mithun, B. S.; Mondal, Milton; Vishwakarma, Harsh; Shinde, Sujit; Kimbahune, Sanjay

    2017-05-01

    Hyperspectral sensing has been proven to be useful to determine the quality of food in general. It has also been used to distinguish naturally and artificially ripened mangoes by analyzing the spectral signature. However the focus has been on improving the accuracy of classification after performing dimensionality reduction, optimum feature selection and using suitable learning algorithm on the complete visible and NIR spectrum range data, namely 350nm to 1050nm. In this paper we focus on, (i) the use of low wavelength resolution and low cost multispectral sensor to reliably identify artificially ripened mango by selectively using the spectral information so that classification accuracy is not hampered at the cost of low resolution spectral data and (ii) use of visible spectrum i.e. 390nm to 700 nm data to accurately discriminate artificially ripened mangoes. Our results show that on a low resolution spectral data, the use of logistic regression produces an accuracy of 98.83% and outperforms other methods like classification tree, random forest significantly. And this is achieved by analyzing only 36 spectral reflectance data points instead of the complete 216 data points available in visual and NIR range. Another interesting experimental observation is that we are able to achieve more than 98% classification accuracy by selecting only 15 irradiance values in the visible spectrum. Even the number of data needs to be collected using hyper-spectral or multi-spectral sensor can be reduced by a factor of 24 for classification with high degree of confidence

  3. Modeling the Learner in Computer-Assisted Instruction

    ERIC Educational Resources Information Center

    Fletcher, J. D.

    1975-01-01

    This paper briefly reviews relevant work in four areas: 1) quantitative models of memory; 2) regression models of performance; 3) automation models of performance; and 4) artificial intelligence. (Author/HB)

  4. Modeling the compliance of polyurethane nanofiber tubes for artificial common bile duct

    NASA Astrophysics Data System (ADS)

    Moazeni, Najmeh; Vadood, Morteza; Semnani, Dariush; Hasani, Hossein

    2018-02-01

    The common bile duct is one of the body’s most sensitive organs and a polyurethane nanofiber tube can be used as a prosthetic of the common bile duct. The compliance is one of the most important properties of prosthetic which should be adequately compliant as long as possible to keep the behavioral integrity of prosthetic. In the present paper, the prosthetic compliance was measured and modeled using regression method and artificial neural network (ANN) based on the electrospinning process parameters such as polymer concentration, voltage, tip-to-collector distance and flow rate. Whereas, the ANN model contains different parameters affecting on the prediction accuracy directly, the genetic algorithm (GA) was used to optimize the ANN parameters. Finally, it was observed that the optimized ANN model by GA can predict the compliance with high accuracy (mean absolute percentage error = 8.57%). Moreover, the contribution of variables on the compliance was investigated through relative importance analysis and the optimum values of parameters for ideal compliance were determined.

  5. Developing a risk stratification tool for audit of outcome after surgery for head and neck squamous cell carcinoma.

    PubMed

    Tighe, David F; Thomas, Alan J; Sassoon, Isabel; Kinsman, Robin; McGurk, Mark

    2017-07-01

    Patients treated surgically for head and neck squamous cell carcinoma (HNSCC) represent a heterogeneous group. Adjusting for patient case mix and complexity of surgery is essential if reporting outcomes represent surgical performance and quality of care. A case note audit totaling 1075 patients receiving 1218 operations done for HNSCC in 4 cancer networks was completed. Logistic regression, decision tree analysis, an artificial neural network, and Naïve Bayes Classifier were used to adjust for patient case-mix using pertinent preoperative variables. Thirty-day complication rates varied widely (34%-51%; P < .015) between units. The predictive models allowed risk stratification. The artificial neural network demonstrated the best predictive performance (area under the curve [AUC] 0.85). Early postoperative complications are a measurable outcome that can be used to benchmark surgical performance and quality of care. Surgical outcome reporting in national clinical audits should be taking account of the patient case mix. © 2017 Wiley Periodicals, Inc.

  6. Prediction of compressibility parameters of the soils using artificial neural network.

    PubMed

    Kurnaz, T Fikret; Dagdeviren, Ugur; Yildiz, Murat; Ozkan, Ozhan

    2016-01-01

    The compression index and recompression index are one of the important compressibility parameters to determine the settlement calculation for fine-grained soil layers. These parameters can be determined by carrying out laboratory oedometer test on undisturbed samples; however, the test is quite time-consuming and expensive. Therefore, many empirical formulas based on regression analysis have been presented to estimate the compressibility parameters using soil index properties. In this paper, an artificial neural network (ANN) model is suggested for prediction of compressibility parameters from basic soil properties. For this purpose, the input parameters are selected as the natural water content, initial void ratio, liquid limit and plasticity index. In this model, two output parameters, including compression index and recompression index, are predicted in a combined network structure. As the result of the study, proposed ANN model is successful for the prediction of the compression index, however the predicted recompression index values are not satisfying compared to the compression index.

  7. Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data

    PubMed Central

    Ching, Travers; Zhu, Xun

    2018-01-01

    Artificial neural networks (ANN) are computing architectures with many interconnections of simple neural-inspired computing elements, and have been applied to biomedical fields such as imaging analysis and diagnosis. We have developed a new ANN framework called Cox-nnet to predict patient prognosis from high throughput transcriptomics data. In 10 TCGA RNA-Seq data sets, Cox-nnet achieves the same or better predictive accuracy compared to other methods, including Cox-proportional hazards regression (with LASSO, ridge, and mimimax concave penalty), Random Forests Survival and CoxBoost. Cox-nnet also reveals richer biological information, at both the pathway and gene levels. The outputs from the hidden layer node provide an alternative approach for survival-sensitive dimension reduction. In summary, we have developed a new method for accurate and efficient prognosis prediction on high throughput data, with functional biological insights. The source code is freely available at https://github.com/lanagarmire/cox-nnet. PMID:29634719

  8. Comparison of Conventional and ANN Models for River Flow Forecasting

    NASA Astrophysics Data System (ADS)

    Jain, A.; Ganti, R.

    2011-12-01

    Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. River flow is generally estimated using time series or rainfall-runoff models. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been extensively adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conventional models. In this paper, a comparative study has been carried out for river flow forecasting using the conventional and ANN models. Among the conventional models, multiple linear, and non linear regression, and time series models of auto regressive (AR) type have been developed. Feed forward neural network model structure trained using the back propagation algorithm, a gradient search method, was adopted. The daily river flow data derived from Godavari Basin @ Polavaram, Andhra Pradesh, India have been employed to develop all the models included here. Two inputs, flows at two past time steps, (Q(t-1) and Q(t-2)) were selected using partial auto correlation analysis for forecasting flow at time t, Q(t). A wide range of error statistics have been used to evaluate the performance of all the models developed in this study. It has been found that the regression and AR models performed comparably, and the ANN model performed the best amongst all the models investigated in this study. It is concluded that ANN model should be adopted in real catchments for hydrological modeling and forecasting.

  9. Esophageal stenosis associated with tumor regression in radiotherapy for esophageal cancer: frequency and prediction.

    PubMed

    Atsumi, Kazushige; Shioyama, Yoshiyuki; Arimura, Hidetaka; Terashima, Kotaro; Matsuki, Takaomi; Ohga, Saiji; Yoshitake, Tadamasa; Nonoshita, Takeshi; Tsurumaru, Daisuke; Ohnishi, Kayoko; Asai, Kaori; Matsumoto, Keiji; Nakamura, Katsumasa; Honda, Hiroshi

    2012-04-01

    To determine clinical factors for predicting the frequency and severity of esophageal stenosis associated with tumor regression in radiotherapy for esophageal cancer. The study group consisted of 109 patients with esophageal cancer of T1-4 and Stage I-III who were treated with definitive radiotherapy and achieved a complete response of their primary lesion at Kyushu University Hospital between January 1998 and December 2007. Esophageal stenosis was evaluated using esophagographic images within 3 months after completion of radiotherapy. We investigated the correlation between esophageal stenosis after radiotherapy and each of the clinical factors with regard to tumors and therapy. For validation of the correlative factors for esophageal stenosis, an artificial neural network was used to predict the esophageal stenotic ratio. Esophageal stenosis tended to be more severe and more frequent in T3-4 cases than in T1-2 cases. Esophageal stenosis in cases with full circumference involvement tended to be more severe and more frequent than that in cases without full circumference involvement. Increases in wall thickness tended to be associated with increases in esophageal stenosis severity and frequency. In the multivariate analysis, T stage, extent of involved circumference, and wall thickness of the tumor region were significantly correlated to esophageal stenosis (p = 0.031, p < 0.0001, and p = 0.0011, respectively). The esophageal stenotic ratio predicted by the artificial neural network, which learned these three factors, was significantly correlated to the actual observed stenotic ratio, with a correlation coefficient of 0.864 (p < 0.001). Our study suggested that T stage, extent of involved circumference, and esophageal wall thickness of the tumor region were useful to predict the frequency and severity of esophageal stenosis associated with tumor regression in radiotherapy for esophageal cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Transmission Risks of Schistosomiasis Japonica: Extraction from Back-propagation Artificial Neural Network and Logistic Regression Model

    PubMed Central

    Xu, Jun-Fang; Xu, Jing; Li, Shi-Zhu; Jia, Tia-Wu; Huang, Xi-Bao; Zhang, Hua-Ming; Chen, Mei; Yang, Guo-Jing; Gao, Shu-Jing; Wang, Qing-Yun; Zhou, Xiao-Nong

    2013-01-01

    Background The transmission of schistosomiasis japonica in a local setting is still poorly understood in the lake regions of the People's Republic of China (P. R. China), and its transmission patterns are closely related to human, social and economic factors. Methodology/Principal Findings We aimed to apply the integrated approach of artificial neural network (ANN) and logistic regression model in assessment of transmission risks of Schistosoma japonicum with epidemiological data collected from 2339 villagers from 1247 households in six villages of Jiangling County, P.R. China. By using the back-propagation (BP) of the ANN model, 16 factors out of 27 factors were screened, and the top five factors ranked by the absolute value of mean impact value (MIV) were mainly related to human behavior, i.e. integration of water contact history and infection history, family with past infection, history of water contact, infection history, and infection times. The top five factors screened by the logistic regression model were mainly related to the social economics, i.e. village level, economic conditions of family, age group, education level, and infection times. The risk of human infection with S. japonicum is higher in the population who are at age 15 or younger, or with lower education, or with the higher infection rate of the village, or with poor family, and in the population with more than one time to be infected. Conclusion/Significance Both BP artificial neural network and logistic regression model established in a small scale suggested that individual behavior and socioeconomic status are the most important risk factors in the transmission of schistosomiasis japonica. It was reviewed that the young population (≤15) in higher-risk areas was the main target to be intervened for the disease transmission control. PMID:23556015

  11. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state.

    PubMed

    Carbonell, F; Bellec, P; Shmuel, A

    2014-02-01

    The effect of regressing out the global average signal (GAS) in resting state fMRI data has become a concern for interpreting functional connectivity analyses. It is not clear whether the reported anti-correlations between the Default Mode and the Dorsal Attention Networks are intrinsic to the brain, or are artificially created by regressing out the GAS. Here we introduce a concept, Impact of the Global Average on Functional Connectivity (IGAFC), for quantifying the sensitivity of seed-based correlation analyses to the regression of the GAS. This voxel-wise IGAFC index is defined as the product of two correlation coefficients: the correlation between the GAS and the fMRI time course of a voxel, times the correlation between the GAS and the seed time course. This definition enables the calculation of a threshold at which the impact of regressing-out the GAS would be large enough to introduce spurious negative correlations. It also yields a post-hoc impact correction procedure via thresholding, which eliminates spurious correlations introduced by regressing out the GAS. In addition, we introduce an Artificial Negative Correlation Index (ANCI), defined as the absolute difference between the IGAFC index and the impact threshold. The ANCI allows a graded confidence scale for ranking voxels according to their likelihood of showing artificial correlations. By applying this method, we observed regions in the Default Mode and Dorsal Attention Networks that were anti-correlated. These findings confirm that the previously reported negative correlations between the Dorsal Attention and Default Mode Networks are intrinsic to the brain and not the result of statistical manipulations. Our proposed quantification of the impact that a confound may have on functional connectivity can be generalized to global effect estimators other than the GAS. It can be readily applied to other confounds, such as systemic physiological or head movement interferences, in order to quantify their impact on functional connectivity in the resting state. © 2013.

  12. Application of artificial intelligence to the management of urological cancer.

    PubMed

    Abbod, Maysam F; Catto, James W F; Linkens, Derek A; Hamdy, Freddie C

    2007-10-01

    Artificial intelligence techniques, such as artificial neural networks, Bayesian belief networks and neuro-fuzzy modeling systems, are complex mathematical models based on the human neuronal structure and thinking. Such tools are capable of generating data driven models of biological systems without making assumptions based on statistical distributions. A large amount of study has been reported of the use of artificial intelligence in urology. We reviewed the basic concepts behind artificial intelligence techniques and explored the applications of this new dynamic technology in various aspects of urological cancer management. A detailed and systematic review of the literature was performed using the MEDLINE and Inspec databases to discover reports using artificial intelligence in urological cancer. The characteristics of machine learning and their implementation were described and reports of artificial intelligence use in urological cancer were reviewed. While most researchers in this field were found to focus on artificial neural networks to improve the diagnosis, staging and prognostic prediction of urological cancers, some groups are exploring other techniques, such as expert systems and neuro-fuzzy modeling systems. Compared to traditional regression statistics artificial intelligence methods appear to be accurate and more explorative for analyzing large data cohorts. Furthermore, they allow individualized prediction of disease behavior. Each artificial intelligence method has characteristics that make it suitable for different tasks. The lack of transparency of artificial neural networks hinders global scientific community acceptance of this method but this can be overcome by neuro-fuzzy modeling systems.

  13. Comparison of various tool wear prediction methods during end milling of metal matrix composite

    NASA Astrophysics Data System (ADS)

    Wiciak, Martyna; Twardowski, Paweł; Wojciechowski, Szymon

    2018-02-01

    In this paper, the problem of tool wear prediction during milling of hard-to-cut metal matrix composite Duralcan™ was presented. The conducted research involved the measurements of acceleration of vibrations during milling with constant cutting conditions, and evaluation of the flank wear. Subsequently, the analysis of vibrations in time and frequency domain, as well as the correlation of the obtained measures with the tool wear values were conducted. The validation of tool wear diagnosis in relation to selected diagnostic measures was carried out with the use of one variable and two variables regression models, as well as with the application of artificial neural networks (ANN). The comparative analysis of the obtained results enable.

  14. Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool

    NASA Astrophysics Data System (ADS)

    Guo, Qianjian; Fan, Shuo; Xu, Rufeng; Cheng, Xiang; Zhao, Guoyong; Yang, Jianguo

    2017-05-01

    Aiming at the problem of low machining accuracy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of temperature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC-NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 μm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.

  15. Sensory evaluation and electronic tongue analysis for sweetener recognition in coke drinks

    NASA Astrophysics Data System (ADS)

    Szöllősi, Dániel; Kovács, Zoltán; Gere, Attila; Sípos, László; Kókai, Zoltán; Fekete, András

    2011-09-01

    Consumption of beverages with low energy has an increasing role. Furthermore hydrolyzed starch products such as inverted syrup show a wide application in the beverage industry. Therefore the importance of methods which can monitor the usage of natural and artificial sweeteners is increasing. The task was to describe the relevant sensory attributes and to determine the applicability of the electronic tongue to discriminate the coke drink samples with different sweeteners. Furthermore the aim was to find relationship between the taste attributes and measurement results provided by electronic tongue. An Alpha Astree Electronic Tongue and a trained sensory panel were used to evaluate the coke samples. Panelists found significant differences between the samples in 15 cases from the 18 sensory attributes defined previously by the consensus group. Coke drinks containing different kind of sweeteners can be characterized according to these sensory attributes. The samples were definitely distinguished by the electronic tongue. The main difference was found between the samples made with natural and artificial sweeteners. However electronic tongue was able to distinguish samples containing different kind of artificial and different kind of natural sweeteners, as well. Taste attributes of coke drinks determined by sensory panel were predicted by partial least squares regression method based on the results of electronic tongue with close correlation and low prediction error.

  16. Intercomparison of air quality data using principal component analysis, and forecasting of PM₁₀ and PM₂.₅ concentrations using artificial neural networks, in Thessaloniki and Helsinki.

    PubMed

    Voukantsis, Dimitris; Karatzas, Kostas; Kukkonen, Jaakko; Räsänen, Teemu; Karppinen, Ari; Kolehmainen, Mikko

    2011-03-01

    In this paper we propose a methodology consisting of specific computational intelligence methods, i.e. principal component analysis and artificial neural networks, in order to inter-compare air quality and meteorological data, and to forecast the concentration levels for environmental parameters of interest (air pollutants). We demonstrate these methods to data monitored in the urban areas of Thessaloniki and Helsinki in Greece and Finland, respectively. For this purpose, we applied the principal component analysis method in order to inter-compare the patterns of air pollution in the two selected cities. Then, we proceeded with the development of air quality forecasting models for both studied areas. On this basis, we formulated and employed a novel hybrid scheme in the selection process of input variables for the forecasting models, involving a combination of linear regression and artificial neural networks (multi-layer perceptron) models. The latter ones were used for the forecasting of the daily mean concentrations of PM₁₀ and PM₂.₅ for the next day. Results demonstrated an index of agreement between measured and modelled daily averaged PM₁₀ concentrations, between 0.80 and 0.85, while the kappa index for the forecasting of the daily averaged PM₁₀ concentrations reached 60% for both cities. Compared with previous corresponding studies, these statistical parameters indicate an improved performance of air quality parameters forecasting. It was also found that the performance of the models for the forecasting of the daily mean concentrations of PM₁₀ was not substantially different for both cities, despite the major differences of the two urban environments under consideration. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. New machine-learning algorithms for prediction of Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Mandal, Indrajit; Sairam, N.

    2014-03-01

    This article presents an enhanced prediction accuracy of diagnosis of Parkinson's disease (PD) to prevent the delay and misdiagnosis of patients using the proposed robust inference system. New machine-learning methods are proposed and performance comparisons are based on specificity, sensitivity, accuracy and other measurable parameters. The robust methods of treating Parkinson's disease (PD) includes sparse multinomial logistic regression, rotation forest ensemble with support vector machines and principal components analysis, artificial neural networks, boosting methods. A new ensemble method comprising of the Bayesian network optimised by Tabu search algorithm as classifier and Haar wavelets as projection filter is used for relevant feature selection and ranking. The highest accuracy obtained by linear logistic regression and sparse multinomial logistic regression is 100% and sensitivity, specificity of 0.983 and 0.996, respectively. All the experiments are conducted over 95% and 99% confidence levels and establish the results with corrected t-tests. This work shows a high degree of advancement in software reliability and quality of the computer-aided diagnosis system and experimentally shows best results with supportive statistical inference.

  18. Preference mapping of dulce de leche commercialized in Brazilian markets.

    PubMed

    Gaze, L V; Oliveira, B R; Ferrao, L L; Granato, D; Cavalcanti, R N; Conte Júnior, C A; Cruz, A G; Freitas, M Q

    2015-03-01

    Dulce de leche samples available in the Brazilian market were submitted to sensory profiling by quantitative descriptive analysis and acceptance test, as well sensory evaluation using the just-about-right scale and purchase intent. External preference mapping and the ideal sensory characteristics of dulce de leche were determined. The results were also evaluated by principal component analysis, hierarchical cluster analysis, partial least squares regression, artificial neural networks, and logistic regression. Overall, significant product acceptance was related to intermediate scores of the sensory attributes in the descriptive test, and this trend was observed even after consumer segmentation. The results obtained by sensometric techniques showed that optimizing an ideal dulce de leche from the sensory standpoint is a multidimensional process, with necessary adjustments on the appearance, aroma, taste, and texture attributes of the product for better consumer acceptance and purchase. The optimum dulce de leche was characterized by high scores for the attributes sweet taste, caramel taste, brightness, color, and caramel aroma in accordance with the preference mapping findings. In industrial terms, this means changing the parameters used in the thermal treatment and quantitative changes in the ingredients used in formulations. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Blood color is influenced by inflammation and independently predicts survival in hemodialysis patients: quantitative evaluation of blood color.

    PubMed

    Shibata, Masanori; Nagai, Kojiro; Doi, Toshio; Tawada, Hideo; Taniguchi, Shinkichi

    2012-11-01

    Blood color of dialysis patients can be seen routinely. Darkened blood color is often observed in critically ill patients generally because of decreased oxygen saturation, but little is known about the other factors responsible for the color intensity. In addition, quantitative blood color examination has not been performed yet. Therefore, no one has evaluated the predictive power of blood color. The aim of this study was to evaluate if blood color darkness reflects some medical problems and is associated with survival disadvantage. Study design is a prospective cohort study. One hundred sixty-seven patients were enrolled in this study. Quantification of blood color was done using a reflected light colorimeter. Demographic and clinical data were collected to find out the factors that can be related to blood color. Follow-ups were performed for 2 years to analyze the risk factors for their survival. Regression analysis showed that C-reactive protein and white blood cell count were negatively correlated with blood color. In addition, blood color was positively correlated with mean corpuscular hemoglobin concentration and serum sodium concentration as well as blood oxygen saturation. During a follow-up, 34 (20.4%) patients died. Cox regression analysis revealed that darkened blood color was an independent significant risk factor of mortality in hemodialysis patients as well as low albumin and low Kt/V. These results suggest that inflammation independently affects blood color and quantification of blood color is useful to estimate prognosis in patients undergoing hemodialysis. It is possible that early detection of blood color worsening can improve patients' survival. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  20. Revisiting tests for neglected nonlinearity using artificial neural networks.

    PubMed

    Cho, Jin Seo; Ishida, Isao; White, Halbert

    2011-05-01

    Tests for regression neglected nonlinearity based on artificial neural networks (ANNs) have so far been studied by separately analyzing the two ways in which the null of regression linearity can hold. This implies that the asymptotic behavior of general ANN-based tests for neglected nonlinearity is still an open question. Here we analyze a convenient ANN-based quasi-likelihood ratio statistic for testing neglected nonlinearity, paying careful attention to both components of the null. We derive the asymptotic null distribution under each component separately and analyze their interaction. Somewhat remarkably, it turns out that the previously known asymptotic null distribution for the type 1 case still applies, but under somewhat stronger conditions than previously recognized. We present Monte Carlo experiments corroborating our theoretical results and showing that standard methods can yield misleading inference when our new, stronger regularity conditions are violated.

  1. Angle of Arrival Detection Through Artificial Neural Network Analysis of Optical Fiber Intensity Patterns

    DTIC Science & Technology

    1990-12-01

    ARTIFICIAL NEURAL NETWORK ANALYSIS OF OPTICAL FIBER INTENSITY PATTERNS THESIS Scott Thomas Captain, USAF AFIT/GE/ENG/90D-62 DTIC...ELECTE ao • JAN08 1991 Approved for public release; distribution unlimited. AFIT/GE/ENG/90D-62 ANGLE OF ARRIVAL DETECTION THROUGH ARTIFICIAL NEURAL NETWORK ANALYSIS... ARTIFICIAL NEURAL NETWORK ANALYSIS OF OPTICAL FIBER INTENSITY PATTERNS L Introduction The optical sensors of United States Air Force reconnaissance

  2. Simulation of CO2 Solubility in Polystyrene-b-Polybutadieneb-Polystyrene (SEBS) by artificial intelligence network (ANN) method

    NASA Astrophysics Data System (ADS)

    Sharudin, R. W.; AbdulBari Ali, S.; Zulkarnain, M.; Shukri, M. A.

    2018-05-01

    This study reports on the integration of Artificial Neural Network (ANNs) with experimental data in predicting the solubility of carbon dioxide (CO2) blowing agent in SEBS by generating highest possible value for Regression coefficient (R2). Basically, foaming of thermoplastic elastomer with CO2 is highly affected by the CO2 solubility. The ability of ANN in predicting interpolated data of CO2 solubility was investigated by comparing training results via different method of network training. Regards to the final prediction result for CO2 solubility by ANN, the prediction trend (output generate) was corroborated with the experimental results. The obtained result of different method of training showed the trend of output generated by Gradient Descent with Momentum & Adaptive LR (traingdx) required longer training time and required more accurate input to produce better output with final Regression Value of 0.88. However, it goes vice versa with Levenberg-Marquardt (trainlm) technique as it produced better output in quick detention time with final Regression Value of 0.91.

  3. Comment on "Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change"

    NASA Astrophysics Data System (ADS)

    Nuccitelli, Dana; Cowtan, Kevin; Jacobs, Peter; Richardson, Mark; Way, Robert G.; Blackburn, Anne-Marie; Stolpe, Martin B.; Cook, John

    2014-04-01

    Lu (2013) (L13) argued that solar effects and anthropogenic halogenated gases can explain most of the observed warming of global mean surface air temperatures since 1850, with virtually no contribution from atmospheric carbon dioxide (CO2) concentrations. Here we show that this conclusion is based on assumptions about the saturation of the CO2-induced greenhouse effect that have been experimentally falsified. L13 also confuses equilibrium and transient response, and relies on data sources that have been superseeded due to known inaccuracies. Furthermore, the statistical approach of sequential linear regression artificially shifts variance onto the first predictor. L13's artificial choice of regression order and neglect of other relevant data is the fundamental cause of the incorrect main conclusion. Consideration of more modern data and a more parsimonious multiple regression model leads to contradiction with L13's statistical results. Finally, the correlation arguments in L13 are falsified by considering either the more appropriate metric of global heat accumulation, or data on longer timescales.

  4. Monthly monsoon rainfall forecasting using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ganti, Ravikumar

    2014-10-01

    Indian agriculture sector heavily depends on monsoon rainfall for successful harvesting. In the past, prediction of rainfall was mainly performed using regression models, which provide reasonable accuracy in the modelling and forecasting of complex physical systems. Recently, Artificial Neural Networks (ANNs) have been proposed as efficient tools for modelling and forecasting. A feed-forward multi-layer perceptron type of ANN architecture trained using the popular back-propagation algorithm was employed in this study. Other techniques investigated for modeling monthly monsoon rainfall include linear and non-linear regression models for comparison purposes. The data employed in this study include monthly rainfall and monthly average of the daily maximum temperature in the North Central region in India. Specifically, four regression models and two ANN model's were developed. The performance of various models was evaluated using a wide variety of standard statistical parameters and scatter plots. The results obtained in this study for forecasting monsoon rainfalls using ANNs have been encouraging. India's economy and agricultural activities can be effectively managed with the help of the availability of the accurate monsoon rainfall forecasts.

  5. Artificial Neural Network approach to develop unique Classification and Raga identification tools for Pattern Recognition in Carnatic Music

    NASA Astrophysics Data System (ADS)

    Srimani, P. K.; Parimala, Y. G.

    2011-12-01

    A unique approach has been developed to study patterns in ragas of Carnatic Classical music based on artificial neural networks. Ragas in Carnatic music which have found their roots in the Vedic period, have grown on a Scientific foundation over thousands of years. However owing to its vastness and complexities it has always been a challenge for scientists and musicologists to give an all encompassing perspective both qualitatively and quantitatively. Cognition, comprehension and perception of ragas in Indian classical music have always been the subject of intensive research, highly intriguing and many facets of these are hitherto not unravelled. This paper is an attempt to view the melakartha ragas with a cognitive perspective using artificial neural network based approach which has given raise to very interesting results. The 72 ragas of the melakartha system were defined through the combination of frequencies occurring in each of them. The data sets were trained using several neural networks. 100% accurate pattern recognition and classification was obtained using linear regression, TLRN, MLP and RBF networks. Performance of the different network topologies, by varying various network parameters, were compared. Linear regression was found to be the best performing network.

  6. Modeling of bromate formation by ozonation of surface waters in drinking water treatment.

    PubMed

    Legube, Bernard; Parinet, Bernard; Gelinet, Karine; Berne, Florence; Croue, Jean-Philippe

    2004-04-01

    The main objective of this paper is to try to develop statistically and chemically rational models for bromate formation by ozonation of clarified surface waters. The results presented here show that bromate formation by ozonation of natural waters in drinking water treatment is directly proportional to the "Ct" value ("Ctau" in this study). Moreover, this proportionality strongly depends on many parameters: increasing of pH, temperature and bromide level leading to an increase of bromate formation; ammonia and dissolved organic carbon concentrations causing a reverse effect. Taking into account limitation of theoretical modeling, we proposed to predict bromate formation by stochastic simulations (multi-linear regression and artificial neural networks methods) from 40 experiments (BrO(3)(-) vs. "Ctau") carried out with three sand filtered waters sampled on three different waterworks. With seven selected variables we used a simple architecture of neural networks, optimized by "neural connection" of SPSS Inc./Recognition Inc. The bromate modeling by artificial neural networks gives better result than multi-linear regression. The artificial neural networks model allowed us classifying variables by decreasing order of influence (for the studied cases in our variables scale): "Ctau", [N-NH(4)(+)], [Br(-)], pH, temperature, DOC, alkalinity.

  7. Comparisons between physics-based, engineering, and statistical learning models for outdoor sound propagation.

    PubMed

    Hart, Carl R; Reznicek, Nathan J; Wilson, D Keith; Pettit, Chris L; Nykaza, Edward T

    2016-05-01

    Many outdoor sound propagation models exist, ranging from highly complex physics-based simulations to simplified engineering calculations, and more recently, highly flexible statistical learning methods. Several engineering and statistical learning models are evaluated by using a particular physics-based model, namely, a Crank-Nicholson parabolic equation (CNPE), as a benchmark. Narrowband transmission loss values predicted with the CNPE, based upon a simulated data set of meteorological, boundary, and source conditions, act as simulated observations. In the simulated data set sound propagation conditions span from downward refracting to upward refracting, for acoustically hard and soft boundaries, and low frequencies. Engineering models used in the comparisons include the ISO 9613-2 method, Harmonoise, and Nord2000 propagation models. Statistical learning methods used in the comparisons include bagged decision tree regression, random forest regression, boosting regression, and artificial neural network models. Computed skill scores are relative to sound propagation in a homogeneous atmosphere over a rigid ground. Overall skill scores for the engineering noise models are 0.6%, -7.1%, and 83.8% for the ISO 9613-2, Harmonoise, and Nord2000 models, respectively. Overall skill scores for the statistical learning models are 99.5%, 99.5%, 99.6%, and 99.6% for bagged decision tree, random forest, boosting, and artificial neural network regression models, respectively.

  8. Artificial Neural Network Analysis System

    DTIC Science & Technology

    2001-02-27

    Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis

  9. Geometrical features assessment of liver's tumor with application of artificial neural network evolved by imperialist competitive algorithm.

    PubMed

    Keshavarz, M; Mojra, A

    2015-05-01

    Geometrical features of a cancerous tumor embedded in biological soft tissue, including tumor size and depth, are a necessity in the follow-up procedure and making suitable therapeutic decisions. In this paper, a new socio-politically motivated global search strategy which is called imperialist competitive algorithm (ICA) is implemented to train a feed forward neural network (FFNN) to estimate the tumor's geometrical characteristics (FFNNICA). First, a viscoelastic model of liver tissue is constructed by using a series of in vitro uniaxial and relaxation test data. Then, 163 samples of the tissue including a tumor with different depths and diameters are generated by making use of PYTHON programming to link the ABAQUS and MATLAB together. Next, the samples are divided into 123 samples as training dataset and 40 samples as testing dataset. Training inputs of the network are mechanical parameters extracted from palpation of the tissue through a developing noninvasive technology called artificial tactile sensing (ATS). Last, to evaluate the FFNNICA performance, outputs of the network including tumor's depth and diameter are compared with desired values for both training and testing datasets. Deviations of the outputs from desired values are calculated by a regression analysis. Statistical analysis is also performed by measuring Root Mean Square Error (RMSE) and Efficiency (E). RMSE in diameter and depth estimations are 0.50 mm and 1.49, respectively, for the testing dataset. Results affirm that the proposed optimization algorithm for training neural network can be useful to characterize soft tissue tumors accurately by employing an artificial palpation approach. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Proper muscle layer damage affects ulcer healing after gastric endoscopic submucosal dissection.

    PubMed

    Horikawa, Yohei; Mimori, Nobuya; Mizutamari, Hiroya; Kato, Yuhei; Shimazu, Kazuhiro; Sawaguchi, Masayuki; Tawaraya, Shin; Igarashi, Kimihiro; Okubo, Syunji

    2015-11-01

    Endoscopic submucosal dissection (ESD) is the established therapy for superficial gastrointestinal neoplasms. However, management of the artificial ulcers associated with ESD has become important and the relationship between ulcer healing factors and treatment is still unclear. We aimed to evaluate ESD-related artificial ulcer reduction ratio at 4 weeks to assess factors associating with ulcer healing after ESD that may lead to optimal treatment. Between January 2009 and December 2013, a total of 375 lesions fulfilled the expanded criteria for ESD. We defined ulcer reduction rate <90% as (A) poor-healing group; and rate ≥90% as (B) well-healing group. After exclusion, 328 lesions were divided into two groups and analyzed. These two groups were compared based on clinicopathological/endoscopic features, concomitant drugs, and treatment. Ulcer reduction rate was significantly correlated with factors related to the ESD procedure (i.e. procedure time, submucosal fibrosis, and injury of the proper muscle layer, in univariate analysis. Multivariate logistic regression analysis showed that submucosal fibrosis (F2) (P = 0.03; OR, 16.46; 95% CI, 1.31-206.73) and injury of the proper muscle layer (P = 0.01; OR, 4.27; 95% CI, 2.04-8.92) were statistically significant predictors of delayed healing. This single-center retrospective study indicated that ESD-induced artificial ulcer healing was affected by submucosal fibrosis and injury of the proper muscle layer, which induced damage to the muscle layer. Therefore, the preferable pharmacotherapy can be determined on completion of the ESD procedure. © 2015 The Authors Digestive Endoscopy © 2015 Japan Gastroenterological Endoscopy Society.

  11. Artificial neural network in predicting craniocervical junction injury: an alternative approach to trauma patients.

    PubMed

    Bektaş, Frat; Eken, Cenker; Soyuncu, Secgin; Kilicaslan, Isa; Cete, Yildiray

    2008-12-01

    The aim of this study is to determine the efficiency of artificial intelligence in detecting craniocervical junction injuries by using an artificial neural network (ANN) that may be applicable in future studies of different traumatic injuries. Major head trauma patients with Glasgow Coma Scale

  12. Prediction of coagulation and flocculation processes using ANN models and fuzzy regression.

    PubMed

    Zangooei, Hossein; Delnavaz, Mohammad; Asadollahfardi, Gholamreza

    2016-09-01

    Coagulation and flocculation are two main processes used to integrate colloidal particles into larger particles and are two main stages of primary water treatment. Coagulation and flocculation processes are only needed when colloidal particles are a significant part of the total suspended solid fraction. Our objective was to predict turbidity of water after the coagulation and flocculation process while other parameters such as types and concentrations of coagulants, pH, and influent turbidity of raw water were known. We used a multilayer perceptron (MLP), a radial basis function (RBF) of artificial neural networks (ANNs) and various kinds of fuzzy regression analysis to predict turbidity after the coagulation and flocculation processes. The coagulant used in the pilot plant, which was located in water treatment plant, was poly aluminum chloride. We used existing data, including the type and concentrations of coagulant, pH and influent turbidity, of the raw water because these types of data were available from the pilot plant for simulation and data was collected by the Tehran water authority. The results indicated that ANNs had more ability in simulating the coagulation and flocculation process and predicting turbidity removal with different experimental data than did the fuzzy regression analysis, and may have the ability to reduce the number of jar tests, which are time-consuming and expensive. The MLP neural network proved to be the best network compared to the RBF neural network and fuzzy regression analysis in this study. The MLP neural network can predict the effluent turbidity of the coagulation and the flocculation process with a coefficient of determination (R 2 ) of 0.96 and root mean square error of 0.0106.

  13. Spreading properties of cosmetic emollients: Use of synthetic skin surface to elucidate structural effect.

    PubMed

    Douguet, Marine; Picard, Céline; Savary, Géraldine; Merlaud, Fabien; Loubat-Bouleuc, Nathalie; Grisel, Michel

    2017-06-01

    The study focuses on the impact of structural and physicochemical properties of emollients on their spreadability. Fifty-three emollients, among which esters, silicones, vegetable and mineral oils, have been characterized. Their viscosity, surface tension, density and spreadability have been measured. Vitro-skin ® , an artificial skin substitute, was used as an artificial porous substrate to measure spreadability. Two different methods have been selected to characterize spreadability, namely contact angle and spreading value. Dynamic contact angle measurements showed that emollient spreadability is first governed by spontaneous spreading and that, in a second phase, absorption and migration into the porous substrate becomes the driver of the extension of the spreading area. Statistical analysis of physicochemical and spreading value data revealed that viscosity has a major impact on the spreading behavior of emollients whatever their chemical type. A special emphasis was placed on the ester family in which chemical diversity is very wide. The results highlighted a difference between "high viscosity esters" for which viscosity is the main factor impacting spreadability and "low viscosity esters" for which structural variations (mono/diester, saturated/unsaturated chain, linear/branched chain) have to be considered in addition to viscosity. Linear regressions were used to express spreading value as a function of viscosity for each of the four emollient families tested (esters, silicones, vegetable and mineral oils). These regressions allowed the development of reliable predictive models as a powerful tool for formulators to forecast spreadability of emollients. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Artificialized land characteristics and sediment connectivity explain muddy flood hazard in Wallonia

    NASA Astrophysics Data System (ADS)

    de Walque, Baptiste; Bielders, Charles; Degré, Aurore; Maugnard, Alexandre

    2017-04-01

    Muddy flood occurrence is an off-site erosion problem of growing interest in Europe and in particular in the loess belt and Condroz regions of Wallonia (Belgium). In order to assess the probability of occurrence of muddy floods in specific places, a muddy flood hazard prediction model has been built. It was used to test 11 different explanatory variables in simple and multiple logistic regressions approaches. A database of 442 muddy flood-affected sites and an equal number of homologous non flooded sites was used. For each site, relief, land use, sediment production and sediment connectivity of the contributing area were extracted. To assess the prediction quality of the model, we proceeded to a validation using 48 new pairs of homologous sites. Based on Akaïke Information Criterion (AIC), we determined that the best muddy flood hazard assessment model requires a total of 6 explanatory variable as inputs: the spatial aggregation of the artificialized land, the sediment connectivity, the artificialized land proximity to the outlet, the proportion of artificialized land, the mean slope and the Gravelius index of compactness of the contributive area. The artificialized land properties listed above showed to improve substantially the model quality (p-values from 10e-10 to 10e-4). All of the 3 properties showed negative correlation with the muddy flood hazard. These results highlight the importance of considering the artificialized land characteristics in the sediment transport assessment models. Indeed, artificialized land such as roads may dramatically deviate flows and influence the connectivity in the landscape. Besides the artificialized land properties, the sediment connectivity showed significant explanatory power (p-value of 10e-11). A positive correlation between the sediment connectivity and the muddy flood hazard was found, ranging from 0.3 to 0.45 depending on the sediment connectivity index. Several studies already have highlighted the importance of this parameter in the sediment transport characterization in the landscape. Using the best muddy flood probability of occurrence threshold value of 0.49, the validation of the best multiple logistic regression resulted in a prediction quality of 75.6% (original dataset) and 81.2% (secondary dataset). The developed statistical model could be used as a reliable tool to target muddy floods mitigation measures in sites resulting with the highest muddy floods hazard.

  15. Predicting the dissolution kinetics of silicate glasses using machine learning

    NASA Astrophysics Data System (ADS)

    Anoop Krishnan, N. M.; Mangalathu, Sujith; Smedskjaer, Morten M.; Tandia, Adama; Burton, Henry; Bauchy, Mathieu

    2018-05-01

    Predicting the dissolution rates of silicate glasses in aqueous conditions is a complex task as the underlying mechanism(s) remain poorly understood and the dissolution kinetics can depend on a large number of intrinsic and extrinsic factors. Here, we assess the potential of data-driven models based on machine learning to predict the dissolution rates of various aluminosilicate glasses exposed to a wide range of solution pH values, from acidic to caustic conditions. Four classes of machine learning methods are investigated, namely, linear regression, support vector machine regression, random forest, and artificial neural network. We observe that, although linear methods all fail to describe the dissolution kinetics, the artificial neural network approach offers excellent predictions, thanks to its inherent ability to handle non-linear data. Overall, we suggest that a more extensive use of machine learning approaches could significantly accelerate the design of novel glasses with tailored properties.

  16. Risk Factors for Failure of Male Slings and Artificial Urinary Sphincters: Results from a Large Middle European Cohort Study.

    PubMed

    Hüsch, Tanja; Kretschmer, Alexander; Thomsen, Frauke; Kronlachner, Dominik; Kurosch, Martin; Obaje, Alice; Anding, Ralf; Pottek, Tobias; Rose, Achim; Olianas, Roberto; Friedl, Alexander; Hübner, Wilhelm; Homberg, Roland; Pfitzenmaier, Jesco; Grein, Ulrich; Queissert, Fabian; Naumann, Carsten Maik; Schweiger, Josef; Wotzka, Carola; Nyarangi-Dix, Joanne; Hofmann, Torben; Ulm, Kurt; Bauer, Ricarda M; Haferkamp, Axel

    2017-01-01

    We analysed the impact of predefined risk factors: age, diabetes, history of pelvic irradiation, prior surgery for stress urinary incontinence (SUI), prior urethral stricture, additional procedure during SUI surgery, duration of incontinence, ASA-classification and cause for incontinence on failure and complications in male SUI surgery. We retrospectively identified 506 patients with an artificial urinary sphincter (AUS) and 513 patients with a male sling (MS) in a multicenter cohort study. Complication rates were correlated to the risk factors in univariate analysis. Subsequently, a multivariate logistic regression adjusted to the risk factors was performed. A p value <0.05 was considered statistically significant. A history of pelvic irradiation was an independent risk factor for explantation in AUS (p < 0.001) and MS (p = 0.018). Moreover, prior urethral stricture (p = 0.036) and higher ASA-classification (p = 0.039) were positively correlated with explantation in univariate analysis for AUS. Urethral erosion was correlated with prior urethral stricture (p < 0.001) and a history of pelvic irradiation (p < 0.001) in AUS. Furthermore, infection was correlated with additional procedures during SUI surgery in univariate analysis (p = 0.037) in MS. We first identified the correlation of higher ASA-classification and explantation in AUS. Nevertheless, only a few novel risk factors had a significant influence on the failure of MS or AUS. © 2016 S. Karger AG, Basel.

  17. Quantitative monitoring of sucrose, reducing sugar and total sugar dynamics for phenotyping of water-deficit stress tolerance in rice through spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Das, Bappa; Sahoo, Rabi N.; Pargal, Sourabh; Krishna, Gopal; Verma, Rakesh; Chinnusamy, Viswanathan; Sehgal, Vinay K.; Gupta, Vinod K.; Dash, Sushanta K.; Swain, Padmini

    2018-03-01

    In the present investigation, the changes in sucrose, reducing and total sugar content due to water-deficit stress in rice leaves were modeled using visible, near infrared (VNIR) and shortwave infrared (SWIR) spectroscopy. The objectives of the study were to identify the best vegetation indices and suitable multivariate technique based on precise analysis of hyperspectral data (350 to 2500 nm) and sucrose, reducing sugar and total sugar content measured at different stress levels from 16 different rice genotypes. Spectral data analysis was done to identify suitable spectral indices and models for sucrose estimation. Novel spectral indices in near infrared (NIR) range viz. ratio spectral index (RSI) and normalised difference spectral indices (NDSI) sensitive to sucrose, reducing sugar and total sugar content were identified which were subsequently calibrated and validated. The RSI and NDSI models had R2 values of 0.65, 0.71 and 0.67; RPD values of 1.68, 1.95 and 1.66 for sucrose, reducing sugar and total sugar, respectively for validation dataset. Different multivariate spectral models such as artificial neural network (ANN), multivariate adaptive regression splines (MARS), multiple linear regression (MLR), partial least square regression (PLSR), random forest regression (RFR) and support vector machine regression (SVMR) were also evaluated. The best performing multivariate models for sucrose, reducing sugars and total sugars were found to be, MARS, ANN and MARS, respectively with respect to RPD values of 2.08, 2.44, and 1.93. Results indicated that VNIR and SWIR spectroscopy combined with multivariate calibration can be used as a reliable alternative to conventional methods for measurement of sucrose, reducing sugars and total sugars of rice under water-deficit stress as this technique is fast, economic, and noninvasive.

  18. Relations between continuous real-time physical properties and discrete water-quality constituents in the Little Arkansas River, south-central Kansas, 1998-2014

    USGS Publications Warehouse

    Rasmussen, Patrick P.; Eslick, Patrick J.; Ziegler, Andrew C.

    2016-08-11

    Water from the Little Arkansas River is used as source water for artificial recharge of the Equus Beds aquifer, one of the primary water-supply sources for the city of Wichita, Kansas. The U.S. Geological Survey has operated two continuous real-time water-quality monitoring stations since 1995 on the Little Arkansas River in Kansas. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physical properties to compute concentrations of those constituents of interest. Site-specific regression models were originally published in 2000 for the near Halstead and near Sedgwick U.S. Geological Survey streamgaging stations and the site-specific regression models were then updated in 2003. This report updates those regression models using discrete and continuous data collected during May 1998 through August 2014. In addition to the constituents listed in the 2003 update, new regression models were developed for total organic carbon. The real-time computations of water-quality concentrations and loads are available at http://nrtwq.usgs.gov. The water-quality information in this report is important to the city of Wichita because water-quality information allows for real-time quantification and characterization of chemicals of concern (including chloride), in addition to nutrients, sediment, bacteria, and atrazine transported in the Little Arkansas River. The water-quality information in this report aids in the decision making for water treatment before artificial recharge.

  19. Fast shoreline erosion induced by ship wakes in a coastal lagoon: Field evidence and remote sensing analysis.

    PubMed

    Zaggia, Luca; Lorenzetti, Giuliano; Manfé, Giorgia; Scarpa, Gian Marco; Molinaroli, Emanuela; Parnell, Kevin Ellis; Rapaglia, John Paul; Gionta, Maria; Soomere, Tarmo

    2017-01-01

    An investigation based on in-situ surveys combined with remote sensing and GIS analysis revealed fast shoreline retreat on the side of a major waterway, the Malamocco Marghera Channel, in the Lagoon of Venice, Italy. Monthly and long-term regression rates caused by ship wakes in a reclaimed industrial area were considered. The short-term analysis, based on field surveys carried out between April 2014 and January 2015, revealed that the speed of shoreline regression was insignificantly dependent on the distance from the navigation channel, but was not constant through time. Periods of high water levels due to tidal forcing or storm surges, more common in the winter season, are characterized by faster regression rates. The retreat is a discontinuous process in time and space depending on the morpho-stratigraphy and the vegetation cover of the artificial deposits. A GIS analysis performed with the available imagery shows an average retreat of 3-4 m/yr in the period between 1974 and 2015. Digitization of historical maps and bathymetric surveys made in April 2015 enabled the construction of two digital terrain models for both past and present situations. The two models have been used to calculate the total volume of sediment lost during the period 1968-2015 (1.19×106 m3). The results show that in the presence of heavy ship traffic, ship-channel interactions can dominate the morphodynamics of a waterway and its margins. The analysis enables a better understanding of how shallow-water systems react to the human activities in the post-industrial period. An adequate evaluation of the temporal and spatial variation of shoreline position is also crucial for the development of future scenarios and for the sustainable management port traffic worldwide.

  20. Fast shoreline erosion induced by ship wakes in a coastal lagoon: Field evidence and remote sensing analysis

    PubMed Central

    Lorenzetti, Giuliano; Manfé, Giorgia; Scarpa, Gian Marco; Molinaroli, Emanuela; Parnell, Kevin Ellis; Rapaglia, John Paul; Gionta, Maria; Soomere, Tarmo

    2017-01-01

    An investigation based on in-situ surveys combined with remote sensing and GIS analysis revealed fast shoreline retreat on the side of a major waterway, the Malamocco Marghera Channel, in the Lagoon of Venice, Italy. Monthly and long-term regression rates caused by ship wakes in a reclaimed industrial area were considered. The short-term analysis, based on field surveys carried out between April 2014 and January 2015, revealed that the speed of shoreline regression was insignificantly dependent on the distance from the navigation channel, but was not constant through time. Periods of high water levels due to tidal forcing or storm surges, more common in the winter season, are characterized by faster regression rates. The retreat is a discontinuous process in time and space depending on the morpho-stratigraphy and the vegetation cover of the artificial deposits. A GIS analysis performed with the available imagery shows an average retreat of 3˗4 m/yr in the period between 1974 and 2015. Digitization of historical maps and bathymetric surveys made in April 2015 enabled the construction of two digital terrain models for both past and present situations. The two models have been used to calculate the total volume of sediment lost during the period 1968˗2015 (1.19×106 m3). The results show that in the presence of heavy ship traffic, ship-channel interactions can dominate the morphodynamics of a waterway and its margins. The analysis enables a better understanding of how shallow-water systems react to the human activities in the post-industrial period. An adequate evaluation of the temporal and spatial variation of shoreline position is also crucial for the development of future scenarios and for the sustainable management port traffic worldwide. PMID:29088244

  1. Near real-time analysis of extrinsic Fabry-Perot interferometric sensors under damped vibration using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Dua, Rohit; Watkins, Steve E.

    2009-03-01

    Strain analysis due to vibration can provide insight into structural health. An Extrinsic Fabry-Perot Interferometric (EFPI) sensor under vibrational strain generates a non-linear modulated output. Advanced signal processing techniques, to extract important information such as absolute strain, are required to demodulate this non-linear output. Past research has employed Artificial Neural Networks (ANN) and Fast Fourier Transforms (FFT) to demodulate the EFPI sensor for limited conditions. These demodulation systems could only handle variations in absolute value of strain and frequency of actuation during a vibration event. This project uses an ANN approach to extend the demodulation system to include the variation in the damping coefficient of the actuating vibration, in a near real-time vibration scenario. A computer simulation provides training and testing data for the theoretical output of the EFPI sensor to demonstrate the approaches. FFT needed to be performed on a window of the EFPI output data. A small window of observation is obtained, while maintaining low absolute-strain prediction errors, heuristically. Results are obtained and compared from employing different ANN architectures including multi-layered feedforward ANN trained using Backpropagation Neural Network (BPNN), and Generalized Regression Neural Networks (GRNN). A two-layered algorithm fusion system is developed and tested that yields better results.

  2. Application of artificial neural networks in hydrological modeling: A case study of runoff simulation of a Himalayan glacier basin

    NASA Technical Reports Server (NTRS)

    Buch, A. M.; Narain, A.; Pandey, P. C.

    1994-01-01

    The simulation of runoff from a Himalayan Glacier basin using an Artificial Neural Network (ANN) is presented. The performance of the ANN model is found to be superior to the Energy Balance Model and the Multiple Regression model. The RMS Error is used as the figure of merit for judging the performance of the three models, and the RMS Error for the ANN model is the latest of the three models. The ANN is faster in learning and exhibits excellent system generalization characteristics.

  3. Artificial Intelligence: An Analysis of Potential Applications to Training, Performance Measurement, and Job Performance Aiding.

    DTIC Science & Technology

    1983-09-01

    AD-Ali33 592 ARTIFICIAL INTELLIGENCE: AN ANALYSIS OF POTENTIAL 1/1 APPLICATIONS TO TRAININ..(U) DENVER RESEARCH INST CO JRICHARDSON SEP 83 AFHRL-TP...83-28 b ’ 3 - 4. TITLE (aied Suhkie) 5. TYPE OF REPORT & PERIOD COVERED ARTIFICIAL INTEL11GENCE: AN ANALYSIS OF Interim POTENTIAL APPLICATIONS TO...8217 sde if neceseamy end ides*f by black naumber) artificial intelligence military research * computer-aided diagnosis performance tests computer

  4. Relationship between artificially sweetened and sugar-sweetened cola beverage consumption during pregnancy and preterm delivery in a multi-ethnic cohort: analysis of the Born in Bradford cohort study.

    PubMed

    Petherick, E S; Goran, M I; Wright, J

    2014-03-01

    The aim of this study was to investigate the relationship between the intake of sugar-sweetened (SS) and artificially sweetened (AS) cola beverages during pregnancy and the risk of preterm delivery (PTD). At baseline (2007-2010), 8914 pregnant women were recruited to the Born in Bradford birth cohort study at 24-28 weeks of pregnancy. Women completed a questionnaire describing their health and lifestyle behaviours, including their consumption of AS and SS cola beverages reported as cups per day, which were then linked to maternity records. The relationship between SS and AS cola beverage consumption was examined using logistic regression analyses. No relationship was observed between daily AS cola beverage consumption and PTD. Women who drank four cups per day of SS cola beverages had higher odds of a PTD when compared with women who did not consume these beverages daily. We conclude that high daily consumption of SS cola beverages during pregnancy is associated with increases in the rate of PTD.

  5. Detection of Oil Chestnuts Infected by Blue Mold Using Near-Infrared Hyperspectral Imaging Combined with Artificial Neural Networks.

    PubMed

    Feng, Lei; Zhu, Susu; Lin, Fucheng; Su, Zhenzhu; Yuan, Kangpei; Zhao, Yiying; He, Yong; Zhang, Chu

    2018-06-15

    Mildew damage is a major reason for chestnut poor quality and yield loss. In this study, a near-infrared hyperspectral imaging system in the 874⁻1734 nm spectral range was applied to detect the mildew damage to chestnuts caused by blue mold. Principal component analysis (PCA) scored images were firstly employed to qualitatively and intuitively distinguish moldy chestnuts from healthy chestnuts. Spectral data were extracted from the hyperspectral images. A successive projections algorithm (SPA) was used to select 12 optimal wavelengths. Artificial neural networks, including back propagation neural network (BPNN), evolutionary neural network (ENN), extreme learning machine (ELM), general regression neural network (GRNN) and radial basis neural network (RBNN) were used to build models using the full spectra and optimal wavelengths to distinguish moldy chestnuts. BPNN and ENN models using full spectra and optimal wavelengths obtained satisfactory performances, with classification accuracies all surpassing 99%. The results indicate the potential for the rapid and non-destructive detection of moldy chestnuts by hyperspectral imaging, which would help to develop online detection system for healthy and blue mold infected chestnuts.

  6. Prediction of Soil Deformation in Tunnelling Using Artificial Neural Networks.

    PubMed

    Lai, Jinxing; Qiu, Junling; Feng, Zhihua; Chen, Jianxun; Fan, Haobo

    2016-01-01

    In the past few decades, as a new tool for analysis of the tough geotechnical problems, artificial neural networks (ANNs) have been successfully applied to address a number of engineering problems, including deformation due to tunnelling in various types of rock mass. Unlike the classical regression methods in which a certain form for the approximation function must be presumed, ANNs do not require the complex constitutive models. Additionally, it is traced that the ANN prediction system is one of the most effective ways to predict the rock mass deformation. Furthermore, it could be envisaged that ANNs would be more feasible for the dynamic prediction of displacements in tunnelling in the future, especially if ANN models are combined with other research methods. In this paper, we summarized the state-of-the-art and future research challenges of ANNs on the tunnel deformation prediction. And the application cases as well as the improvement of ANN models were also presented. The presented ANN models can serve as a benchmark for effective prediction of the tunnel deformation with characters of nonlinearity, high parallelism, fault tolerance, learning, and generalization capability.

  7. Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network.

    PubMed

    Antwi, Philip; Li, Jianzheng; Boadi, Portia Opoku; Meng, Jia; Shi, En; Deng, Kaiwen; Bondinuba, Francis Kwesi

    2017-03-01

    Three-layered feedforward backpropagation (BP) artificial neural networks (ANN) and multiple nonlinear regression (MnLR) models were developed to estimate biogas and methane yield in an upflow anaerobic sludge blanket (UASB) reactor treating potato starch processing wastewater (PSPW). Anaerobic process parameters were optimized to identify their importance on methanation. pH, total chemical oxygen demand, ammonium, alkalinity, total Kjeldahl nitrogen, total phosphorus, volatile fatty acids and hydraulic retention time selected based on principal component analysis were used as input variables, whiles biogas and methane yield were employed as target variables. Quasi-Newton method and conjugate gradient backpropagation algorithms were best among eleven training algorithms. Coefficient of determination (R 2 ) of the BP-ANN reached 98.72% and 97.93% whiles MnLR model attained 93.9% and 91.08% for biogas and methane yield, respectively. Compared with the MnLR model, BP-ANN model demonstrated significant performance, suggesting possible control of the anaerobic digestion process with the BP-ANN model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Prediction of Soil Deformation in Tunnelling Using Artificial Neural Networks

    PubMed Central

    Lai, Jinxing

    2016-01-01

    In the past few decades, as a new tool for analysis of the tough geotechnical problems, artificial neural networks (ANNs) have been successfully applied to address a number of engineering problems, including deformation due to tunnelling in various types of rock mass. Unlike the classical regression methods in which a certain form for the approximation function must be presumed, ANNs do not require the complex constitutive models. Additionally, it is traced that the ANN prediction system is one of the most effective ways to predict the rock mass deformation. Furthermore, it could be envisaged that ANNs would be more feasible for the dynamic prediction of displacements in tunnelling in the future, especially if ANN models are combined with other research methods. In this paper, we summarized the state-of-the-art and future research challenges of ANNs on the tunnel deformation prediction. And the application cases as well as the improvement of ANN models were also presented. The presented ANN models can serve as a benchmark for effective prediction of the tunnel deformation with characters of nonlinearity, high parallelism, fault tolerance, learning, and generalization capability. PMID:26819587

  9. Support vector machine regression (LS-SVM)--an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?

    PubMed

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-06-28

    A multilayer feed-forward artificial neural network (MLP-ANN) with a single, hidden layer that contains a finite number of neurons can be regarded as a universal non-linear approximator. Today, the ANN method and linear regression (MLR) model are widely used for quantum chemistry (QC) data analysis (e.g., thermochemistry) to improve their accuracy (e.g., Gaussian G2-G4, B3LYP/B3-LYP, X1, or W1 theoretical methods). In this study, an alternative approach based on support vector machines (SVMs) is used, the least squares support vector machine (LS-SVM) regression. It has been applied to ab initio (first principle) and density functional theory (DFT) quantum chemistry data. So, QC + SVM methodology is an alternative to QC + ANN one. The task of the study was to estimate the Møller-Plesset (MPn) or DFT (B3LYP, BLYP, BMK) energies calculated with large basis sets (e.g., 6-311G(3df,3pd)) using smaller ones (6-311G, 6-311G*, 6-311G**) plus molecular descriptors. A molecular set (BRM-208) containing a total of 208 organic molecules was constructed and used for the LS-SVM training, cross-validation, and testing. MP2, MP3, MP4(DQ), MP4(SDQ), and MP4/MP4(SDTQ) ab initio methods were tested. Hartree-Fock (HF/SCF) results were also reported for comparison. Furthermore, constitutional (CD: total number of atoms and mole fractions of different atoms) and quantum-chemical (QD: HOMO-LUMO gap, dipole moment, average polarizability, and quadrupole moment) molecular descriptors were used for the building of the LS-SVM calibration model. Prediction accuracies (MADs) of 1.62 ± 0.51 and 0.85 ± 0.24 kcal mol(-1) (1 kcal mol(-1) = 4.184 kJ mol(-1)) were reached for SVM-based approximations of ab initio and DFT energies, respectively. The LS-SVM model was more accurate than the MLR model. A comparison with the artificial neural network approach shows that the accuracy of the LS-SVM method is similar to the accuracy of ANN. The extrapolation and interpolation results show that LS-SVM is superior by almost an order of magnitude over the ANN method in terms of the stability, generality, and robustness of the final model. The LS-SVM model needs a much smaller numbers of samples (a much smaller sample set) to make accurate prediction results. Potential energy surface (PES) approximations for molecular dynamics (MD) studies are discussed as a promising application for the LS-SVM calibration approach. This journal is © the Owner Societies 2011

  10. Application of back propagation artificial neural network on genetic variants in adiponectin ADIPOQ, peroxisome proliferator-activated receptor-γ, and retinoid X receptor-α genes and type 2 diabetes risk in a Chinese Han population.

    PubMed

    Shi, Hui; Lu, Ying; Du, Juan; Du, Wencong; Ye, Xinhua; Yu, Xiaofang; Ma, Jianhua; Cheng, Jinluo; Gao, Yanqin; Cao, Yuanyuan; Zhou, Ling; Li, Qian

    2012-03-01

    Our study was designed to explore the applied characteristics of the back propagation artificial neural network (BPANN) on studying the genetic variants in adipnectin ADIPOQ, peroxisome proliferator-activated receptor (PPAR)-γ, and retinoid X receptor-α (RXR-α) genes and type 2 diabetes mellitus (T2DM) risks in a Chinese Han population. We used BPANN as the fitting model based on data gathered from T2DM patients (n=913) and normal controls (n=1,001). The mean impact value (MIV) for each input variables were calculated, and the sequence of the factors according to their absolute MIVs was sorted. The results from BPANN were compared with multiple logistic regression analysis, and the generalized multifactor dimensionality reduction (GMDR) method was used to calculate the joint effects of ADIPOQ, PPAR-γ, and RXR-α genes. By BPANN analysis, the sequence according to the importance of the T2DM risk factors was in the order of serum adiponectin level, rs3856806, rs7649121, hypertension, rs3821799, rs17827276, rs12495941, rs4240711, age, rs16861194, waist circumference, rs2241767, rs2920502, rs1063539, alcohol drinking, smoking, hyperlipoproteinemia, gender, rs3132291, T2DM family history, rs4842194, rs822394, rs1801282, rs1045570, rs16861205, rs6537944, body mass index, rs266729, and rs1801282. However, compared with multiple logistic regression analysis, only 11 factors were statistically significant. After overweight and obesity were taken as environment adjustment factors into the analysis, model A2 B4 C5 C6 C8 (rs3856806, rs4240711, rs7649121, rs3821799, rs12495941) was the best model (coefficient of variation consistency=10/10, P=0.0107) in the GMDR method. These results suggested the interactions of ADIPOQ, PPAR-γ, and RXR-α genes might play a role in susceptibility to T2DM. BPANN could be used to analyze the risk factors of diseases and provide more complicated relationships between inputs and outputs.

  11. A review of machine learning in obesity.

    PubMed

    DeGregory, K W; Kuiper, P; DeSilvio, T; Pleuss, J D; Miller, R; Roginski, J W; Fisher, C B; Harness, D; Viswanath, S; Heymsfield, S B; Dungan, I; Thomas, D M

    2018-05-01

    Rich sources of obesity-related data arising from sensors, smartphone apps, electronic medical health records and insurance data can bring new insights for understanding, preventing and treating obesity. For such large datasets, machine learning provides sophisticated and elegant tools to describe, classify and predict obesity-related risks and outcomes. Here, we review machine learning methods that predict and/or classify such as linear and logistic regression, artificial neural networks, deep learning and decision tree analysis. We also review methods that describe and characterize data such as cluster analysis, principal component analysis, network science and topological data analysis. We introduce each method with a high-level overview followed by examples of successful applications. The algorithms were then applied to National Health and Nutrition Examination Survey to demonstrate methodology, utility and outcomes. The strengths and limitations of each method were also evaluated. This summary of machine learning algorithms provides a unique overview of the state of data analysis applied specifically to obesity. © 2018 World Obesity Federation.

  12. A Wireless Electronic Nose System Using a Fe2O3 Gas Sensing Array and Least Squares Support Vector Regression

    PubMed Central

    Song, Kai; Wang, Qi; Liu, Qi; Zhang, Hongquan; Cheng, Yingguo

    2011-01-01

    This paper describes the design and implementation of a wireless electronic nose (WEN) system which can online detect the combustible gases methane and hydrogen (CH4/H2) and estimate their concentrations, either singly or in mixtures. The system is composed of two wireless sensor nodes—a slave node and a master node. The former comprises a Fe2O3 gas sensing array for the combustible gas detection, a digital signal processor (DSP) system for real-time sampling and processing the sensor array data and a wireless transceiver unit (WTU) by which the detection results can be transmitted to the master node connected with a computer. A type of Fe2O3 gas sensor insensitive to humidity is developed for resistance to environmental influences. A threshold-based least square support vector regression (LS-SVR)estimator is implemented on a DSP for classification and concentration measurements. Experimental results confirm that LS-SVR produces higher accuracy compared with artificial neural networks (ANNs) and a faster convergence rate than the standard support vector regression (SVR). The designed WEN system effectively achieves gas mixture analysis in a real-time process. PMID:22346587

  13. A support vector regression-firefly algorithm-based model for limiting velocity prediction in sewer pipes.

    PubMed

    Ebtehaj, Isa; Bonakdari, Hossein

    2016-01-01

    Sediment transport without deposition is an essential consideration in the optimum design of sewer pipes. In this study, a novel method based on a combination of support vector regression (SVR) and the firefly algorithm (FFA) is proposed to predict the minimum velocity required to avoid sediment settling in pipe channels, which is expressed as the densimetric Froude number (Fr). The efficiency of support vector machine (SVM) models depends on the suitable selection of SVM parameters. In this particular study, FFA is used by determining these SVM parameters. The actual effective parameters on Fr calculation are generally identified by employing dimensional analysis. The different dimensionless variables along with the models are introduced. The best performance is attributed to the model that employs the sediment volumetric concentration (C(V)), ratio of relative median diameter of particles to hydraulic radius (d/R), dimensionless particle number (D(gr)) and overall sediment friction factor (λ(s)) parameters to estimate Fr. The performance of the SVR-FFA model is compared with genetic programming, artificial neural network and existing regression-based equations. The results indicate the superior performance of SVR-FFA (mean absolute percentage error = 2.123%; root mean square error =0.116) compared with other methods.

  14. Markovian prediction of future values for food grains in the economic survey

    NASA Astrophysics Data System (ADS)

    Sathish, S.; Khadar Babu, S. K.

    2017-11-01

    Now-a-days prediction and forecasting are plays a vital role in research. For prediction, regression is useful to predict the future value and current value on production process. In this paper, we assume food grain production exhibit Markov chain dependency and time homogeneity. The economic generative performance evaluation the balance time artificial fertilization different level in Estrusdetection using a daily Markov chain model. Finally, Markov process prediction gives better performance compare with Regression model.

  15. Ecdysis period and rate deviations of dengue mosquito vector, Aedes aegypti reared in different artificial water-holding containers.

    PubMed

    Almanzor, Beatriz Louise J; Ho, Howell T; Carvajal, Thaddeus M

    2016-03-01

    Artificial water-holding containers (AWHCs) have been well-documented in many Aedes aegypti studies for dengue surveillance and developmental research. Hence, we investigated the role of different AHWCs on the development and ecdysis period of Ae. aegypti dengue vector, a container breeding mosquito. Nine types of AWHCs, namely glass, polystyrene foam, rubber, steel, porcelain, plastic, aluminum, clay and concrete, were chosen for the study. All AWHCs were subjected to the developmental assay for an observation period of 10 days. Regression and hazard analyses were employed to the developmental stages and the characteristics of the AWHCs. The observations revealed that Ae. aegypti development is fastest in glass and polystyrene containers while slowest in concrete containers. Moreover, pupal ecdysis appears to be the most affected by the characteristics of the AWHCs based on regression and hazard analyses. Characteristics of the container that can regulate water temperature seem to be the driving force with regards to the slow or fast development of Ae. aegypti, more notably in pupal ecdysis. The results of the study further strengthen our understanding on the dynamics of Ae. aegypti's developmental biology to different characteristics of artificial water containers. This, in turn, would aid in devising vector control strategies against dengue especially in endemic areas.

  16. Assessment of cortical bone fracture resistance curves by fusing artificial neural networks and linear regression.

    PubMed

    Vukicevic, Arso M; Jovicic, Gordana R; Jovicic, Milos N; Milicevic, Vladimir L; Filipovic, Nenad D

    2018-02-01

    Bone injures (BI) represents one of the major health problems, together with cancer and cardiovascular diseases. Assessment of the risks associated with BI is nontrivial since fragility of human cortical bone is varying with age. Due to restrictions for performing experiments on humans, only a limited number of fracture resistance curves (R-curves) for particular ages have been reported in the literature. This study proposes a novel decision support system for the assessment of bone fracture resistance by fusing various artificial intelligence algorithms. The aim was to estimate the R-curve slope, toughness threshold and stress intensity factor using the two input parameters commonly available during a routine clinical examination: patients age and crack length. Using the data from the literature, the evolutionary assembled Artificial Neural Network was developed and used for the derivation of Linear regression (LR) models of R-curves for arbitrary age. Finally, by using the patient (age)-specific LR models and diagnosed crack size one could estimate the risk of bone fracture under given physiological conditions. Compared to the literature, we demonstrated improved performances for estimating nonlinear changes of R-curve slope (R 2 = 0.82 vs. R 2 = 0.76) and Toughness threshold with ageing (R 2 = 0.73 vs. R 2 = 0.66).

  17. Predicting The Type Of Pregnancy Using Flexible Discriminate Analysis And Artificial Neural Networks: A Comparison Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooman, A.; Mohammadzadeh, M

    Some medical and epidemiological surveys have been designed to predict a nominal response variable with several levels. With regard to the type of pregnancy there are four possible states: wanted, unwanted by wife, unwanted by husband and unwanted by couple. In this paper, we have predicted the type of pregnancy, as well as the factors influencing it using three different models and comparing them. Regarding the type of pregnancy with several levels, we developed a multinomial logistic regression, a neural network and a flexible discrimination based on the data and compared their results using tow statistical indices: Surface under curvemore » (ROC) and kappa coefficient. Based on these tow indices, flexible discrimination proved to be a better fit for prediction on data in comparison to other methods. When the relations among variables are complex, one can use flexible discrimination instead of multinomial logistic regression and neural network to predict the nominal response variables with several levels in order to gain more accurate predictions.« less

  18. How to predict the sugariness and hardness of melons: A near-infrared hyperspectral imaging method.

    PubMed

    Sun, Meijun; Zhang, Dong; Liu, Li; Wang, Zheng

    2017-03-01

    Hyperspectral imaging (HSI) in the near-infrared (NIR) region (900-1700nm) was used for non-intrusive quality measurements (of sweetness and texture) in melons. First, HSI data from melon samples were acquired to extract the spectral signatures. The corresponding sample sweetness and hardness values were recorded using traditional intrusive methods. Partial least squares regression (PLSR), principal component analysis (PCA), support vector machine (SVM), and artificial neural network (ANN) models were created to predict melon sweetness and hardness values from the hyperspectral data. Experimental results for the three types of melons show that PLSR produces the most accurate results. To reduce the high dimensionality of the hyperspectral data, the weighted regression coefficients of the resulting PLSR models were used to identify the most important wavelengths. On the basis of these wavelengths, each image pixel was used to visualize the sweetness and hardness in all the portions of each sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Artificial Reefs as Surrogate Habitats for Red Snapper in the Northwestern Gulf of Mexico: A Fishery-Independent Comparison of Artificial and Natural Habitats

    NASA Astrophysics Data System (ADS)

    Streich, M.; Wetz, J. J.; Ajemian, M. J.; Stunz, G. W.

    2016-02-01

    The goal of our study was to evaluate the relative abundance, size and age structure of Red Snapper among three different habitat types (standing oil and gas platforms, artificial reefs [rigs-to-reefs], and natural banks) in the northwestern Gulf of Mexico. From May 2013 - January 2015, we conducted 140 vertical line sets and captured 1538 Red Snapper ranging in size from 251 to 855 mm TL. Ages determined for 801 of these fish ranged from 2-30 years. No differences were detected in Red Snapper CPUE among the three habitats. However, a comparison of TL and TW distributions suggested that natural banks supported a greater proportion of larger fish than artificial reefs or standing platforms (K-S test, p<0.001). Mean TW-at-age regressions for the most common age groups (ages 3-7) suggested that Red Snapper grew faster at artificial reefs and standing platforms than natural bank habitats (ANCOVA, p<0.05). Mean age was positively correlated with capture depth (r=0.79) suggesting spatial variation in age composition. These results have important implications for artificial reef development and Red Snapper management in the GOM. Further use of standardized, fishery-independent surveys and additional biological data will help elucidate the role artificial structures play in maintaining the Red Snapper population.

  20. CREATIVE COMPUTATION.

    DTIC Science & Technology

    ARTIFICIAL INTELLIGENCE , RECURSIVE FUNCTIONS), (*RECURSIVE FUNCTIONS, ARTIFICIAL INTELLIGENCE ), (*MATHEMATICAL LOGIC, ARTIFICIAL INTELLIGENCE ), METAMATHEMATICS, AUTOMATA, NUMBER THEORY, INFORMATION THEORY, COMBINATORIAL ANALYSIS

  1. Predicting ventriculoperitoneal shunt infection in children with hydrocephalus using artificial neural network.

    PubMed

    Habibi, Zohreh; Ertiaei, Abolhasan; Nikdad, Mohammad Sadegh; Mirmohseni, Atefeh Sadat; Afarideh, Mohsen; Heidari, Vahid; Saberi, Hooshang; Rezaei, Abdolreza Sheikh; Nejat, Farideh

    2016-11-01

    The relationships between shunt infection and predictive factors have not been previously investigated using Artificial Neural Network (ANN) model. The aim of this study was to develop an ANN model to predict shunt infection in a group of children with shunted hydrocephalus. Among more than 800 ventriculoperitoneal shunt procedures which had been performed between April 2000 and April 2011, 68 patients with shunt infection and 80 controls that fulfilled a set of meticulous inclusion/exclusion criteria were consecutively enrolled. Univariate analysis was performed for a long list of risk factors, and those with p value < 0.2 were used to create ANN and logistic regression (LR) models. Five variables including birth weight, age at the first shunting, shunt revision, prematurity, and myelomeningocele were significantly associated with shunt infection via univariate analysis, and two other variables (intraventricular hemorrhage and coincided infections) had a p value of less than 0.2. Using these seven input variables, ANN and LR models predicted shunt infection with an accuracy of 83.1 % (AUC; 91.98 %, 95 % CI) and 55.7 % (AUC; 76.5, 95 % CI), respectively. The contribution of the factors in the predictive performance of ANN in descending order was history of shunt revision, low birth weight (under 2000 g), history of prematurity, the age at the first shunt procedure, history of intraventricular hemorrhage, history of myelomeningocele, and coinfection. The findings show that artificial neural networks can predict shunt infection with a high level of accuracy in children with shunted hydrocephalus. Also, the contribution of different risk factors in the prediction of shunt infection can be determined using the trained network.

  2. Alcohol consumption and its related harms in The Netherlands since 1960: relationships with planned and unplanned factors.

    PubMed

    Knibbe, Ronald A; Derickx, Mieke; Allamani, Allaman; Massini, Giulia

    2014-10-01

    to establish which unplanned (social developments) and planned (alcohol policy measures) factors are related to per capita consumption and alcohol-related harms in the Netherlands. linear regression was used to establish which of the planned and unplanned factors were most strongly connected with alcohol consumption and harms. Artificial Neural Analysis (ANN) was used to inspect the interconnections between all variables. mothers age at birth was most strongly associated with increase in consumption. The ban on selling alcoholic beverages at petrol station was associated with a decrease in consumption. The linear regression of harms did not show any relation between alcohol policy measures and harms. The ANN-analyses indicate a very high interconnectedness between all variables allowing no causal inferences. Exceptions are the relation between price of beer and wine and the consumption of these beverages and the relation between a decrease in transport mortality and the increased use of breathalyzers tests and a restriction of paracommercial selling. unplanned factors are most strongly associated with per capita consumption and harms. ANN-analysis indicates that price of alcoholic beverages, breath testing, and restriction of sales may have had some influence. The study's limitations are noted.

  3. Classification and prediction of rice wines with different marked ages by using a voltammetric electronic tongue.

    PubMed

    Wei, Zhenbo; Wang, Jun; Ye, Linshuang

    2011-08-15

    A voltammetric electronic tongue (VE-tongue) was developed to discriminate the difference between Chinese rice wines in this research. Three types of Chinese rice wine with different marked ages (1, 3, and 5 years) were classified by the VE-tongue by principal component analysis (PCA) and cluster analysis (CA). The VE-tongue consisted of six working electrodes (gold, silver, platinum, palladium, tungsten, and titanium) in a standard three-electrode configuration. The multi-frequency large amplitude pulse voltammetry (MLAPV), which consisted of four segments of 1 Hz, 10 Hz, 100 Hz, and 1000 Hz, was applied as the potential waveform. The three types of Chinese rice wine could be classified accurately by PCA and CA, and some interesting regularity is shown in the score plots with the help of PCA. Two regression models, partial least squares (PLS) and back-error propagation-artificial neural network (BP-ANN), were used for wine age prediction. The regression results showed that the marked ages of the three types of Chinese rice wine were successfully predicted using PLS and BP-ANN. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Proposed modification to avoidance test with Eisenia fetida to assess metal toxicity in agricultural soils affected by mining activities.

    PubMed

    Delgadillo, Víctor; Verdejo, José; Mondaca, Pedro; Verdugo, Gabriela; Gaete, Hernán; Hodson, Mark E; Neaman, Alexander

    2017-06-01

    Use of avoidance tests is a quick and cost-effective method of assessing contaminants in soils. One option for assessing earthworm avoidance behavior is a two-section test, which consists of earthworms being given the choice to move between a test soil and a control substrate. For ecological relevance, tested soils should be field-contaminated soils. For practical reasons, artificial soils are commonly used as the control substrate. Interpretation of the test results compromised when the test soil and the artificial substrate differ in their physico-chemical properties other than just contaminants. In this study we identified the physico-chemical properties that influence avoidance response and evaluated the usefulness of adjusting these in the control substrate in order to isolate metal-driven avoidance of field soils by earthworms. A standardized two-section avoidance test with Eisenia fetida was performed on 52 uncontaminated and contaminated (Cu >155mgkg -1 , As >19mgkg -1 ) agricultural soils from the Aconcagua River basin and the Puchuncaví Valley in Chile. Regression analysis indicated that the avoidance response was determined by soil organic matter (OM), electrical conductivity (EC) and total soil Cu. Organic matter content of the artificial substrate was altered by peat additions and EC by NaCl so that these properties matched those of the field soils. The resultant EC 80 for avoidance (indicative of soils of "limited habitat") was 433mg Cu kg -1 (339 - 528mgkg -1 95% confidence intervals). The earthworm avoidance test can be used to assess metal toxicity in field-contaminated soils by adjusting physico-chemical properties (OM and EC) of the artificial control substrate in order to mimic those of the field-collected soil. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Four Major South Korea's Rivers Using Deep Learning Models.

    PubMed

    Lee, Sangmok; Lee, Donghyun

    2018-06-24

    Harmful algal blooms are an annual phenomenon that cause environmental damage, economic losses, and disease outbreaks. A fundamental solution to this problem is still lacking, thus, the best option for counteracting the effects of algal blooms is to improve advance warnings (predictions). However, existing physical prediction models have difficulties setting a clear coefficient indicating the relationship between each factor when predicting algal blooms, and many variable data sources are required for the analysis. These limitations are accompanied by high time and economic costs. Meanwhile, artificial intelligence and deep learning methods have become increasingly common in scientific research; attempts to apply the long short-term memory (LSTM) model to environmental research problems are increasing because the LSTM model exhibits good performance for time-series data prediction. However, few studies have applied deep learning models or LSTM to algal bloom prediction, especially in South Korea, where algal blooms occur annually. Therefore, we employed the LSTM model for algal bloom prediction in four major rivers of South Korea. We conducted short-term (one week) predictions by employing regression analysis and deep learning techniques on a newly constructed water quality and quantity dataset drawn from 16 dammed pools on the rivers. Three deep learning models (multilayer perceptron, MLP; recurrent neural network, RNN; and long short-term memory, LSTM) were used to predict chlorophyll-a, a recognized proxy for algal activity. The results were compared to those from OLS (ordinary least square) regression analysis and actual data based on the root mean square error (RSME). The LSTM model showed the highest prediction rate for harmful algal blooms and all deep learning models out-performed the OLS regression analysis. Our results reveal the potential for predicting algal blooms using LSTM and deep learning.

  6. Developing a predictive tropospheric ozone model for Tabriz

    NASA Astrophysics Data System (ADS)

    Khatibi, Rahman; Naghipour, Leila; Ghorbani, Mohammad A.; Smith, Michael S.; Karimi, Vahid; Farhoudi, Reza; Delafrouz, Hadi; Arvanaghi, Hadi

    2013-04-01

    Predictive ozone models are becoming indispensable tools by providing a capability for pollution alerts to serve people who are vulnerable to the risks. We have developed a tropospheric ozone prediction capability for Tabriz, Iran, by using the following five modeling strategies: three regression-type methods: Multiple Linear Regression (MLR), Artificial Neural Networks (ANNs), and Gene Expression Programming (GEP); and two auto-regression-type models: Nonlinear Local Prediction (NLP) to implement chaos theory and Auto-Regressive Integrated Moving Average (ARIMA) models. The regression-type modeling strategies explain the data in terms of: temperature, solar radiation, dew point temperature, and wind speed, by regressing present ozone values to their past values. The ozone time series are available at various time intervals, including hourly intervals, from August 2010 to March 2011. The results for MLR, ANN and GEP models are not overly good but those produced by NLP and ARIMA are promising for the establishing a forecasting capability.

  7. The application of artificial intelligence to microarray data: identification of a novel gene signature to identify bladder cancer progression.

    PubMed

    Catto, James W F; Abbod, Maysam F; Wild, Peter J; Linkens, Derek A; Pilarsky, Christian; Rehman, Ishtiaq; Rosario, Derek J; Denzinger, Stefan; Burger, Maximilian; Stoehr, Robert; Knuechel, Ruth; Hartmann, Arndt; Hamdy, Freddie C

    2010-03-01

    New methods for identifying bladder cancer (BCa) progression are required. Gene expression microarrays can reveal insights into disease biology and identify novel biomarkers. However, these experiments produce large datasets that are difficult to interpret. To develop a novel method of microarray analysis combining two forms of artificial intelligence (AI): neurofuzzy modelling (NFM) and artificial neural networks (ANN) and validate it in a BCa cohort. We used AI and statistical analyses to identify progression-related genes in a microarray dataset (n=66 tumours, n=2800 genes). The AI-selected genes were then investigated in a second cohort (n=262 tumours) using immunohistochemistry. We compared the accuracy of AI and statistical approaches to identify tumour progression. AI identified 11 progression-associated genes (odds ratio [OR]: 0.70; 95% confidence interval [CI], 0.56-0.87; p=0.0004), and these were more discriminate than genes chosen using statistical analyses (OR: 1.24; 95% CI, 0.96-1.60; p=0.09). The expression of six AI-selected genes (LIG3, FAS, KRT18, ICAM1, DSG2, and BRCA2) was determined using commercial antibodies and successfully identified tumour progression (concordance index: 0.66; log-rank test: p=0.01). AI-selected genes were more discriminate than pathologic criteria at determining progression (Cox multivariate analysis: p=0.01). Limitations include the use of statistical correlation to identify 200 genes for AI analysis and that we did not compare regression identified genes with immunohistochemistry. AI and statistical analyses use different techniques of inference to determine gene-phenotype associations and identify distinct prognostic gene signatures that are equally valid. We have identified a prognostic gene signature whose members reflect a variety of carcinogenic pathways that could identify progression in non-muscle-invasive BCa. 2009 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  8. Artificial intelligence and expert systems in-flight software testing

    NASA Technical Reports Server (NTRS)

    Demasie, M. P.; Muratore, J. F.

    1991-01-01

    The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.

  9. A new comprehensive index for discriminating adulteration in bovine raw milk.

    PubMed

    Liu, Jing; Ren, Jing; Liu, Zhen-Min; Guo, Ben-Heng

    2015-04-01

    This paper proposes a new comprehensive index, called Q, which can effectively discriminate artificial adulterated milk from unadulterated milk. Both normal and adulterated samples of bovine raw milk were analysed by Fourier transform infrared spectroscopic instrument to measure the traditional indices of quality, including fat (FAT), protein (PRO), lactose (LAC), total solids (TS), non-fat solid (NFS), freezing point (FP) and somatic cell counts (SCC). From these traditional indices, this paper elaborates a method to build the index Q. First, correlated analysis and principle component analysis were used to select parameter pairs TS-FAT and FP-LAC as predominant variables. Second, linear-regression analysis and residual analysis are applied to determine the index Q and its discriminating ranges. The verification and two-blind trial results suggested that index Q could accurately detect milk adulteration with maltodextrin and water (as low as 1.0% of adulteration proportions), and with other nine kinds of synthetic adulterants (as low as 0.5% of adulteration proportions). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Macrocell path loss prediction using artificial intelligence techniques

    NASA Astrophysics Data System (ADS)

    Usman, Abraham U.; Okereke, Okpo U.; Omizegba, Elijah E.

    2014-04-01

    The prediction of propagation loss is a practical non-linear function approximation problem which linear regression or auto-regression models are limited in their ability to handle. However, some computational Intelligence techniques such as artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFISs) have been shown to have great ability to handle non-linear function approximation and prediction problems. In this study, the multiple layer perceptron neural network (MLP-NN), radial basis function neural network (RBF-NN) and an ANFIS network were trained using actual signal strength measurement taken at certain suburban areas of Bauchi metropolis, Nigeria. The trained networks were then used to predict propagation losses at the stated areas under differing conditions. The predictions were compared with the prediction accuracy of the popular Hata model. It was observed that ANFIS model gave a better fit in all cases having higher R2 values in each case and on average is more robust than MLP and RBF models as it generalises better to a different data.

  11. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saffer, Shelley

    2014-12-01

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  12. Semisupervised Clustering by Iterative Partition and Regression with Neuroscience Applications

    PubMed Central

    Qian, Guoqi; Wu, Yuehua; Ferrari, Davide; Qiao, Puxue; Hollande, Frédéric

    2016-01-01

    Regression clustering is a mixture of unsupervised and supervised statistical learning and data mining method which is found in a wide range of applications including artificial intelligence and neuroscience. It performs unsupervised learning when it clusters the data according to their respective unobserved regression hyperplanes. The method also performs supervised learning when it fits regression hyperplanes to the corresponding data clusters. Applying regression clustering in practice requires means of determining the underlying number of clusters in the data, finding the cluster label of each data point, and estimating the regression coefficients of the model. In this paper, we review the estimation and selection issues in regression clustering with regard to the least squares and robust statistical methods. We also provide a model selection based technique to determine the number of regression clusters underlying the data. We further develop a computing procedure for regression clustering estimation and selection. Finally, simulation studies are presented for assessing the procedure, together with analyzing a real data set on RGB cell marking in neuroscience to illustrate and interpret the method. PMID:27212939

  13. New model for prediction binary mixture of antihistamine decongestant using artificial neural networks and least squares support vector machine by spectrophotometry method

    NASA Astrophysics Data System (ADS)

    Mofavvaz, Shirin; Sohrabi, Mahmoud Reza; Nezamzadeh-Ejhieh, Alireza

    2017-07-01

    In the present study, artificial neural networks (ANNs) and least squares support vector machines (LS-SVM) as intelligent methods based on absorption spectra in the range of 230-300 nm have been used for determination of antihistamine decongestant contents. In the first step, one type of network (feed-forward back-propagation) from the artificial neural network with two different training algorithms, Levenberg-Marquardt (LM) and gradient descent with momentum and adaptive learning rate back-propagation (GDX) algorithm, were employed and their performance was evaluated. The performance of the LM algorithm was better than the GDX algorithm. In the second one, the radial basis network was utilized and results compared with the previous network. In the last one, the other intelligent method named least squares support vector machine was proposed to construct the antihistamine decongestant prediction model and the results were compared with two of the aforementioned networks. The values of the statistical parameters mean square error (MSE), Regression coefficient (R2), correlation coefficient (r) and also mean recovery (%), relative standard deviation (RSD) used for selecting the best model between these methods. Moreover, the proposed methods were compared to the high- performance liquid chromatography (HPLC) as a reference method. One way analysis of variance (ANOVA) test at the 95% confidence level applied to the comparison results of suggested and reference methods that there were no significant differences between them.

  14. Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models.

    PubMed

    Yilmaz, Banu; Aras, Egemen; Nacar, Sinan; Kankal, Murat

    2018-05-23

    The functional life of a dam is often determined by the rate of sediment delivery to its reservoir. Therefore, an accurate estimate of the sediment load in rivers with dams is essential for designing and predicting a dam's useful lifespan. The most credible method is direct measurements of sediment input, but this can be very costly and it cannot always be implemented at all gauging stations. In this study, we tested various regression models to estimate suspended sediment load (SSL) at two gauging stations on the Çoruh River in Turkey, including artificial bee colony (ABC), teaching-learning-based optimization algorithm (TLBO), and multivariate adaptive regression splines (MARS). These models were also compared with one another and with classical regression analyses (CRA). Streamflow values and previously collected data of SSL were used as model inputs with predicted SSL data as output. Two different training and testing dataset configurations were used to reinforce the model accuracy. For the MARS method, the root mean square error value was found to range between 35% and 39% for the test two gauging stations, which was lower than errors for other models. Error values were even lower (7% to 15%) using another dataset. Our results indicate that simultaneous measurements of streamflow with SSL provide the most effective parameter for obtaining accurate predictive models and that MARS is the most accurate model for predicting SSL. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. An Evaluation of Artificial Neural Network Modeling for Manpower Analysis

    DTIC Science & Technology

    1993-09-01

    NAVAL POSTGRADUATE SCHOOL Monterey, California 0- I 1 ’(ft ADV "’r-"A THESIS AN EVALUATION OF ARTIFICIAL NEURAL NETWORK MODELING FOR MANPOWER...AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED September, 1993 4. TITLE AND SUBTITLE An Evaluation Of Artificial Neural Network 5...unlimited. An Evaluation of Artificial Neural Network Modeling for Manpower Analysis by Brian J. Byrne Captain, United States Marine Corps B.S

  16. Economic indicators selection for crime rates forecasting using cooperative feature selection

    NASA Astrophysics Data System (ADS)

    Alwee, Razana; Shamsuddin, Siti Mariyam Hj; Salleh Sallehuddin, Roselina

    2013-04-01

    Features selection in multivariate forecasting model is very important to ensure that the model is accurate. The purpose of this study is to apply the Cooperative Feature Selection method for features selection. The features are economic indicators that will be used in crime rate forecasting model. The Cooperative Feature Selection combines grey relational analysis and artificial neural network to establish a cooperative model that can rank and select the significant economic indicators. Grey relational analysis is used to select the best data series to represent each economic indicator and is also used to rank the economic indicators according to its importance to the crime rate. After that, the artificial neural network is used to select the significant economic indicators for forecasting the crime rates. In this study, we used economic indicators of unemployment rate, consumer price index, gross domestic product and consumer sentiment index, as well as data rates of property crime and violent crime for the United States. Levenberg-Marquardt neural network is used in this study. From our experiments, we found that consumer price index is an important economic indicator that has a significant influence on the violent crime rate. While for property crime rate, the gross domestic product, unemployment rate and consumer price index are the influential economic indicators. The Cooperative Feature Selection is also found to produce smaller errors as compared to Multiple Linear Regression in forecasting property and violent crime rates.

  17. Improved RMR Rock Mass Classification Using Artificial Intelligence Algorithms

    NASA Astrophysics Data System (ADS)

    Gholami, Raoof; Rasouli, Vamegh; Alimoradi, Andisheh

    2013-09-01

    Rock mass classification systems such as rock mass rating (RMR) are very reliable means to provide information about the quality of rocks surrounding a structure as well as to propose suitable support systems for unstable regions. Many correlations have been proposed to relate measured quantities such as wave velocity to rock mass classification systems to limit the associated time and cost of conducting the sampling and mechanical tests conventionally used to calculate RMR values. However, these empirical correlations have been found to be unreliable, as they usually overestimate or underestimate the RMR value. The aim of this paper is to compare the results of RMR classification obtained from the use of empirical correlations versus machine-learning methodologies based on artificial intelligence algorithms. The proposed methods were verified based on two case studies located in northern Iran. Relevance vector regression (RVR) and support vector regression (SVR), as two robust machine-learning methodologies, were used to predict the RMR for tunnel host rocks. RMR values already obtained by sampling and site investigation at one tunnel were taken into account as the output of the artificial networks during training and testing phases. The results reveal that use of empirical correlations overestimates the predicted RMR values. RVR and SVR, however, showed more reliable results, and are therefore suggested for use in RMR classification for design purposes of rock structures.

  18. Quantitative structure-retention relationship studies with immobilized artificial membrane chromatography II: partial least squares regression.

    PubMed

    Li, Jie; Sun, Jin; He, Zhonggui

    2007-01-26

    We aimed to establish quantitative structure-retention relationship (QSRR) with immobilized artificial membrane (IAM) chromatography using easily understood and obtained physicochemical molecular descriptors and to elucidate which descriptors are critical to affect the interaction process between solutes and immobilized phospholipid membranes. The retention indices (logk(IAM)) of 55 structurally diverse drugs were determined on an immobilized artificial membrane column (IAM.PC.DD2) directly or obtained by extrapolation method for highly hydrophobic compounds. Ten simple physicochemical property descriptors (clogP, rings, rotatory bond, hydro-bond counting, etc.) of these drugs were collected and used to establish QSRR and predict the retention data by partial least squares regression (PLSR). Five descriptors, clogP, rotatory bond (RotB), rings, molecular weight (MW) and total surface area (TSA), were reserved by using the Variable Importance for Projection (VIP) values as criterion to build the final PLSR model. An external test set was employed to verify the QSRR based on the training set with the five variables, and QSRR by PLSR exhibited a satisfying predictive ability with R(p)=0.902 and RMSE(p)=0.400. Comparison of coefficients of centered and scaled variables by PLSR demonstrated that, for the descriptors studied, clogP and TSA have the most significant positive effect but the rotatable bond has significant negative effect on drug IAM chromatographic retention.

  19. Arguing Artificially: A Rhetorical Analysis of the Debates That Have Shaped Cognitive Science.

    ERIC Educational Resources Information Center

    Gibson, Keith

    2003-01-01

    Attempts a rhetorical analysis of the history of artificial intelligence research. Responds to scholarly needs in three areas: the rhetorical nature of science, the social construction of science knowledge, and the rhetorical strategies used in artificial intelligence (AI). Suggests that this work can help rhetoricians more accurately describe the…

  20. Prediction of monthly rainfall in Victoria, Australia: Clusterwise linear regression approach

    NASA Astrophysics Data System (ADS)

    Bagirov, Adil M.; Mahmood, Arshad; Barton, Andrew

    2017-05-01

    This paper develops the Clusterwise Linear Regression (CLR) technique for prediction of monthly rainfall. The CLR is a combination of clustering and regression techniques. It is formulated as an optimization problem and an incremental algorithm is designed to solve it. The algorithm is applied to predict monthly rainfall in Victoria, Australia using rainfall data with five input meteorological variables over the period of 1889-2014 from eight geographically diverse weather stations. The prediction performance of the CLR method is evaluated by comparing observed and predicted rainfall values using four measures of forecast accuracy. The proposed method is also compared with the CLR using the maximum likelihood framework by the expectation-maximization algorithm, multiple linear regression, artificial neural networks and the support vector machines for regression models using computational results. The results demonstrate that the proposed algorithm outperforms other methods in most locations.

  1. Comparative study on the fauna composition of intertidal invertebrates between natural and artificial substrata in the northeastern coast of Jeju Island

    NASA Astrophysics Data System (ADS)

    Cha, Jae-Hoon; Kim, Kwang-Bae; Song, Ji-Na; Kim, In-Soo; Seo, Jeong-Bin; Kwoun, Chul-Hwi

    2013-12-01

    This study was carried out to learn about differences in the sessile macrobenthic fauna communities between the artificial and natural habitats. There were some differences in terms of species composition and dominant species and community structure between two habitat types. The dominant species include Pollicipes mitella and Granuilittorina exigua in natural rocky intertidal zones; Monodonta labio confusa, Ligia exotica, Tetraclita japonica in the artificial rocky intertidal zones. Among all the species, L. exotica and T. japonica occurred only in the artificial rocky intertidal zone. The results of cluster analysis and nMDS analysis showed a distinct difference in community structure between artificial and natural rocky intertidal zones. The fauna in the natural rocky intertidal zones were similar to each other and the fauna in the artificial rocky intertidal zones were divided depending on the slope of the substratum. In the case of a sloping tetrapod, M. labio confusa and P. mitella were dominant, but at the vertical artificial seawall, Cellana nigrolineata, L. exotica T. japonica were dominant. The analysis of the species presented in natural and artificial rocky intertidal areas showed the exclusive presence of 10 species on natural rocks and 12 species on artificial rocks. The species in the natural rocky intertidal area included mobile gastropods and cnidarians (i.e. rock anemones), and the species in the artificial rocky intertidal area mostly included non-mobile attached animals. The artificial novel structure seems to contribute to increasing the heterogeneity of habitats for marine invertebrate species and an increase the species diversity in rocky coastal areas.

  2. Modeling the BOD of Danube River in Serbia using spatial, temporal, and input variables optimized artificial neural network models.

    PubMed

    Šiljić Tomić, Aleksandra N; Antanasijević, Davor Z; Ristić, Mirjana Đ; Perić-Grujić, Aleksandra A; Pocajt, Viktor V

    2016-05-01

    This paper describes the application of artificial neural network models for the prediction of biological oxygen demand (BOD) levels in the Danube River. Eighteen regularly monitored water quality parameters at 17 stations on the river stretch passing through Serbia were used as input variables. The optimization of the model was performed in three consecutive steps: firstly, the spatial influence of a monitoring station was examined; secondly, the monitoring period necessary to reach satisfactory performance was determined; and lastly, correlation analysis was applied to evaluate the relationship among water quality parameters. Root-mean-square error (RMSE) was used to evaluate model performance in the first two steps, whereas in the last step, multiple statistical indicators of performance were utilized. As a result, two optimized models were developed, a general regression neural network model (labeled GRNN-1) that covers the monitoring stations from the Danube inflow to the city of Novi Sad and a GRNN model (labeled GRNN-2) that covers the stations from the city of Novi Sad to the border with Romania. Both models demonstrated good agreement between the predicted and actually observed BOD values.

  3. [Educational practices in accordance with the "Ten steps to successful breastfeeding" in a Human Milk Bank].

    PubMed

    Silva, Cristianny Miranda E; Pellegrinelli, Ana Luiza Rodrigues; Pereira, Simone Cardoso Lisboa; Passos, Ieda Ribeiro; Santos, Luana Caroline Dos

    2017-05-01

    This article sought to evaluate educational practices in line with the "Ten Steps to Successful Breastfeeding" in a Human Milk Bank. It involved a retrospective study using sociodemographic data about the pregnancy and the baby, obtained from a nursing mothers care protocol (2009-2012). These data were associated to steps related to educational practices from the "Ten Steps." Descriptive analysis, chi-square test and Poisson regression were performed. 12,283 mothers, with a median of 29 (12-54) years old, were evaluated. The guidelines about breastfeeding received during prenatal care (step 3) prevailed among mothers aged 30-39 years and the skin to skin contact (step 4) prevailed among oriented mothers. Breastfeeding training (step 5) predominated among those who breastfed exclusively. Higher prevalence of exclusive breastfeeding (step 6), breastfeeding on demand (step 8) and use of artificial nipples (step 9) were noted among infants whose mothers were oriented. These findings indicate the important role of health professionals on mother/child training about breastfeeding, on encouragement of the skin/skin contact, exclusive breastfeeding and breastfeeding on demand. The guidelines indicated the need to improve in order to reduce the use of artificial nipples and enhance exclusive breastfeeding.

  4. QSAR analysis for nano-sized layered manganese-calcium oxide in water oxidation: An application of chemometric methods in artificial photosynthesis.

    PubMed

    Shahbazy, Mohammad; Kompany-Zareh, Mohsen; Najafpour, Mohammad Mahdi

    2015-11-01

    Water oxidation is among the most important reactions in artificial photosynthesis, and nano-sized layered manganese-calcium oxides are efficient catalysts toward this reaction. Herein, a quantitative structure-activity relationship (QSAR) model was constructed to predict the catalytic activities of twenty manganese-calcium oxides toward water oxidation using multiple linear regression (MLR) and genetic algorithm (GA) for multivariate calibration and feature selection, respectively. Although there are eight controlled parameters during synthesizing of the desired catalysts including ripening time, temperature, manganese content, calcium content, potassium content, the ratio of calcium:manganese, the average manganese oxidation state and the surface of catalyst, by using GA only three of them (potassium content, the ratio of calcium:manganese and the average manganese oxidation state) were selected as the most effective parameters on catalytic activities of these compounds. The model's accuracy criteria such as R(2)test and Q(2)test in order to predict catalytic rate for external test set experiments; were equal to 0.941 and 0.906, respectively. Therefore, model reveals acceptable capability to anticipate the catalytic activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Determination of butter adulteration with margarine using Raman spectroscopy.

    PubMed

    Uysal, Reyhan Selin; Boyaci, Ismail Hakki; Genis, Hüseyin Efe; Tamer, Ugur

    2013-12-15

    In this study, adulteration of butter with margarine was analysed using Raman spectroscopy combined with chemometric methods (principal component analysis (PCA), principal component regression (PCR), partial least squares (PLS)) and artificial neural networks (ANNs). Different butter and margarine samples were mixed at various concentrations ranging from 0% to 100% w/w. PCA analysis was applied for the classification of butters, margarines and mixtures. PCR, PLS and ANN were used for the detection of adulteration ratios of butter. Models were created using a calibration data set and developed models were evaluated using a validation data set. The coefficient of determination (R(2)) values between actual and predicted values obtained for PCR, PLS and ANN for the validation data set were 0.968, 0.987 and 0.978, respectively. In conclusion, a combination of Raman spectroscopy with chemometrics and ANN methods can be applied for testing butter adulteration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Correlation Equations for Condensing Heat Exchangers Based on an Algorithmic Performance-Data Classification

    NASA Astrophysics Data System (ADS)

    Pacheco-Vega, Arturo

    2016-09-01

    In this work a new set of correlation equations is developed and introduced to accurately describe the thermal performance of compact heat exchangers with possible condensation. The feasible operating conditions for the thermal system correspond to dry- surface, dropwise condensation, and film condensation. Using a prescribed form for each condition, a global regression analysis for the best-fit correlation to experimental data is carried out with a simulated annealing optimization technique. The experimental data were taken from the literature and algorithmically classified into three groups -related to the possible operating conditions- with a previously-introduced Gaussian-mixture-based methodology. Prior to their use in the analysis, the correct data classification was assessed and confirmed via artificial neural networks. Predictions from the correlations obtained for the different conditions are within the uncertainty of the experiments and substantially more accurate than those commonly used.

  7. Planning and Scheduling of Software Manufacturing Projects

    DTIC Science & Technology

    1991-03-01

    based on the previous results in social analysis of computing, operations research in manufacturing, artificial intelligence in manufacturing...planning and scheduling, and the traditional approaches to planning in artificial intelligence, and extends the techniques that have been developed by them...social analysis of computing, operations research in manufacturing, artificial intelligence in manufacturing planning and scheduling, and the

  8. Artificial Intelligence Procedures for Tree Taper Estimation within a Complex Vegetation Mosaic in Brazil

    PubMed Central

    Nunes, Matheus Henrique

    2016-01-01

    Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects. PMID:27187074

  9. Multicollinearity may lead to artificial interaction: an example from a cross sectional study of biomarkers.

    PubMed

    Sithisarankul, P; Weaver, V M; Diener-West, M; Strickland, P T

    1997-06-01

    Collinearity is the situation which arises in multiple regression when some or all of the explanatory variables are so highly correlated with one another that it becomes very difficult, if not impossible, to disentangle their influences and obtain a reasonably precise estimate of their effects. Suppressor variable is one of the extreme situations of collinearity that one variable can substantially increase the multiple correlation when combined with a variable that is only modestly correlated with the response variable. In this study, we describe the process by which we disentangled and discovered multicollinearity and its consequences, namely artificial interaction, using the data from cross-sectional quantification of several biomarkers. We showed how the collinearity between one biomarker (blood lead level) and another (urinary trans, trans-muconic acid) and their interaction (blood lead level* urinary trans, trans-muconic acid) can lead to the observed artificial interaction on the third biomarker (urinary 5-aminolevulinic acid).

  10. Artificial Intelligence Procedures for Tree Taper Estimation within a Complex Vegetation Mosaic in Brazil.

    PubMed

    Nunes, Matheus Henrique; Görgens, Eric Bastos

    2016-01-01

    Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects.

  11. Melamine detection by mid- and near-infrared (MIR/NIR) spectroscopy: a quick and sensitive method for dairy products analysis including liquid milk, infant formula, and milk powder.

    PubMed

    Balabin, Roman M; Smirnov, Sergey V

    2011-07-15

    Melamine (2,4,6-triamino-1,3,5-triazine) is a nitrogen-rich chemical implicated in the pet and human food recalls and in the global food safety scares involving milk products. Due to the serious health concerns associated with melamine consumption and the extensive scope of affected products, rapid and sensitive methods to detect melamine's presence are essential. We propose the use of spectroscopy data-produced by near-infrared (near-IR/NIR) and mid-infrared (mid-IR/MIR) spectroscopies, in particular-for melamine detection in complex dairy matrixes. None of the up-to-date reported IR-based methods for melamine detection has unambiguously shown its wide applicability to different dairy products as well as limit of detection (LOD) below 1 ppm on independent sample set. It was found that infrared spectroscopy is an effective tool to detect melamine in dairy products, such as infant formula, milk powder, or liquid milk. ALOD below 1 ppm (0.76±0.11 ppm) can be reached if a correct spectrum preprocessing (pretreatment) technique and a correct multivariate (MDA) algorithm-partial least squares regression (PLS), polynomial PLS (Poly-PLS), artificial neural network (ANN), support vector regression (SVR), or least squares support vector machine (LS-SVM)-are used for spectrum analysis. The relationship between MIR/NIR spectrum of milk products and melamine content is nonlinear. Thus, nonlinear regression methods are needed to correctly predict the triazine-derivative content of milk products. It can be concluded that mid- and near-infrared spectroscopy can be regarded as a quick, sensitive, robust, and low-cost method for liquid milk, infant formula, and milk powder analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Contribution of artificial intelligence to the knowledge of prognostic factors in laryngeal carcinoma.

    PubMed

    Zapater, E; Moreno, S; Fortea, M A; Campos, A; Armengot, M; Basterra, J

    2000-11-01

    Many studies have investigated prognostic factors in laryngeal carcinoma, with sometimes conflicting results. Apart from the importance of environmental factors, the different statistical methods employed may have influenced such discrepancies. A program based on artificial intelligence techniques is designed to determine the prognostic factors in a series of 122 laryngeal carcinomas. The results obtained are compared with those derived from two classical statistical methods (Cox regression and mortality tables). Tumor location was found to be the most important prognostic factor by all methods. The proposed intelligent system is found to be a sound method capable of detecting exceptional cases.

  13. Prediction of cadmium enrichment in reclaimed coastal soils by classification and regression tree

    NASA Astrophysics Data System (ADS)

    Ru, Feng; Yin, Aijing; Jin, Jiaxin; Zhang, Xiuying; Yang, Xiaohui; Zhang, Ming; Gao, Chao

    2016-08-01

    Reclamation of coastal land is one of the most common ways to obtain land resources in China. However, it has long been acknowledged that the artificial interference with coastal land has disadvantageous effects, such as heavy metal contamination. This study aimed to develop a prediction model for cadmium enrichment levels and assess the importance of affecting factors in typical reclaimed land in Eastern China (DFCL: Dafeng Coastal Land). Two hundred and twenty seven surficial soil/sediment samples were collected and analyzed to identify the enrichment levels of cadmium and the possible affecting factors in soils and sediments. The classification and regression tree (CART) model was applied in this study to predict cadmium enrichment levels. The prediction results showed that cadmium enrichment levels assessed by the CART model had an accuracy of 78.0%. The CART model could extract more information on factors affecting the environmental behavior of cadmium than correlation analysis. The integration of correlation analysis and the CART model showed that fertilizer application and organic carbon accumulation were the most important factors affecting soil/sediment cadmium enrichment levels, followed by particle size effects (Al2O3, TFe2O3 and SiO2), contents of Cl and S, surrounding construction areas and reclamation history.

  14. High Incidence of Breast Cancer in Light-Polluted Areas with Spatial Effects in Korea.

    PubMed

    Kim, Yun Jeong; Park, Man Sik; Lee, Eunil; Choi, Jae Wook

    2016-01-01

    We have reported a high prevalence of breast cancer in light-polluted areas in Korea. However, it is necessary to analyze the spatial effects of light polluted areas on breast cancer because light pollution levels are correlated with region proximity to central urbanized areas in studied cities. In this study, we applied a spatial regression method (an intrinsic conditional autoregressive [iCAR] model) to analyze the relationship between the incidence of breast cancer and artificial light at night (ALAN) levels in 25 regions including central city, urbanized, and rural areas. By Poisson regression analysis, there was a significant correlation between ALAN, alcohol consumption rates, and the incidence of breast cancer. We also found significant spatial effects between ALAN and the incidence of breast cancer, with an increase in the deviance information criterion (DIC) from 374.3 to 348.6 and an increase in R2 from 0.574 to 0.667. Therefore, spatial analysis (an iCAR model) is more appropriate for assessing ALAN effects on breast cancer. To our knowledge, this study is the first to show spatial effects of light pollution on breast cancer, despite the limitations of an ecological study. We suggest that a decrease in ALAN could reduce breast cancer more than expected because of spatial effects.

  15. Enhancing Safety of Artificially Ventilated Patients Using Ambient Process Analysis.

    PubMed

    Lins, Christian; Gerka, Alexander; Lüpkes, Christian; Röhrig, Rainer; Hein, Andreas

    2018-01-01

    In this paper, we present an approach for enhancing the safety of artificially ventilated patients using ambient process analysis. We propose to use an analysis system consisting of low-cost ambient sensors such as power sensor, RGB-D sensor, passage detector, and matrix infrared temperature sensor to reduce risks for artificially ventilated patients in both home and clinical environments. We describe the system concept and our implementation and show how the system can contribute to patient safety.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atsumi, Kazushige; Shioyama, Yoshiyuki, E-mail: shioyama@radiol.med.kyushu-u.ac.jp; Arimura, Hidetaka

    Purpose: To determine clinical factors for predicting the frequency and severity of esophageal stenosis associated with tumor regression in radiotherapy for esophageal cancer. Methods and Materials: The study group consisted of 109 patients with esophageal cancer of T1-4 and Stage I-III who were treated with definitive radiotherapy and achieved a complete response of their primary lesion at Kyushu University Hospital between January 1998 and December 2007. Esophageal stenosis was evaluated using esophagographic images within 3 months after completion of radiotherapy. We investigated the correlation between esophageal stenosis after radiotherapy and each of the clinical factors with regard to tumors andmore » therapy. For validation of the correlative factors for esophageal stenosis, an artificial neural network was used to predict the esophageal stenotic ratio. Results: Esophageal stenosis tended to be more severe and more frequent in T3-4 cases than in T1-2 cases. Esophageal stenosis in cases with full circumference involvement tended to be more severe and more frequent than that in cases without full circumference involvement. Increases in wall thickness tended to be associated with increases in esophageal stenosis severity and frequency. In the multivariate analysis, T stage, extent of involved circumference, and wall thickness of the tumor region were significantly correlated to esophageal stenosis (p = 0.031, p < 0.0001, and p = 0.0011, respectively). The esophageal stenotic ratio predicted by the artificial neural network, which learned these three factors, was significantly correlated to the actual observed stenotic ratio, with a correlation coefficient of 0.864 (p < 0.001). Conclusion: Our study suggested that T stage, extent of involved circumference, and esophageal wall thickness of the tumor region were useful to predict the frequency and severity of esophageal stenosis associated with tumor regression in radiotherapy for esophageal cancer.« less

  17. Development and Testing of Building Energy Model Using Non-Linear Auto Regression Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Arida, Maya Ahmad

    In 1972 sustainable development concept existed and during The years it became one of the most important solution to save natural resources and energy, but now with rising energy costs and increasing awareness of the effect of global warming, the development of building energy saving methods and models become apparently more necessary for sustainable future. According to U.S. Energy Information Administration EIA (EIA), today buildings in the U.S. consume 72 percent of electricity produced, and use 55 percent of U.S. natural gas. Buildings account for about 40 percent of the energy consumed in the United States, more than industry and transportation. Of this energy, heating and cooling systems use about 55 percent. If energy-use trends continue, buildings will become the largest consumer of global energy by 2025. This thesis proposes procedures and analysis techniques for building energy system and optimization methods using time series auto regression artificial neural networks. The model predicts whole building energy consumptions as a function of four input variables, dry bulb and wet bulb outdoor air temperatures, hour of day and type of day. The proposed model and the optimization process are tested using data collected from an existing building located in Greensboro, NC. The testing results show that the model can capture very well the system performance, and The optimization method was also developed to automate the process of finding the best model structure that can produce the best accurate prediction against the actual data. The results show that the developed model can provide results sufficiently accurate for its use in various energy efficiency and saving estimation applications.

  18. Artificial intelligence and regression analysis for Cd(II) ion biosorption from aqueous solution by Gossypium barbadense waste.

    PubMed

    Fawzy, Manal; Nasr, Mahmoud; Nagy, Heba; Helmi, Shacker

    2018-02-01

    In this study, batch biosorption experiments were conducted to determine the removal efficiency of Cd(II) ion from aqueous solutions by Gossypium barbadense waste. The biosorbent was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) connected with energy dispersive X-ray (EDX). The sorption mechanism was described by complexation/chelation of Cd 2+ with the functional groups of O-H, C=O, -COO-, and C-O, as well as, cation-exchange with Mg 2+ and K + . At initial Cd(II) ion concentration (C o ), 50 mg/L, the adsorption equilibrium of 89.2% was achieved after 15 min under the optimum experimental factors of pH 6.0, biosorbent dosage 10 g/L, and particle diameter 0.125-0.25 mm. Both Langmuir and Freundlich models fitted well to the sorption data, suggesting the co-existence of monolayer coverage along with heterogenous surface biosorption. Artificial neural network (ANN) with a structure of 5-10-1 was performed to predict the Cd(II) ion removal efficiency. The ANN model provided high fit (R 2 0.923) to the experimental data and indicated that C o was the most influential input. A pure-quadratic model was developed to determine the effects of experimental factors on Cd(II) ion removal efficiency, which indicated the limiting nature of pH and biosorbent dosage on Cd(II) adsorption. Based on the regression model (R 2 0.873), the optimum experimental factors were pH 7.61, biosorbent dosage 24.74 g/L, particle size 0.125-0.25 mm, and adsorption time 109.77 min, achieving Cd 2+ removal of almost 100% at C o 50 mg/L.

  19. A neutron spectrum unfolding code based on generalized regression artificial neural networks.

    PubMed

    Del Rosario Martinez-Blanco, Ma; Ornelas-Vargas, Gerardo; Castañeda-Miranda, Celina Lizeth; Solís-Sánchez, Luis Octavio; Castañeda-Miranada, Rodrigo; Vega-Carrillo, Héctor René; Celaya-Padilla, Jose M; Garza-Veloz, Idalia; Martínez-Fierro, Margarita; Ortiz-Rodríguez, José Manuel

    2016-11-01

    The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. Novel methods based on Artificial Neural Networks have been widely investigated. In prior works, back propagation neural networks (BPNN) have been used to solve the neutron spectrometry problem, however, some drawbacks still exist using this kind of neural nets, i.e. the optimum selection of the network topology and the long training time. Compared to BPNN, it's usually much faster to train a generalized regression neural network (GRNN). That's mainly because spread constant is the only parameter used in GRNN. Another feature is that the network will converge to a global minimum, provided that the optimal values of spread has been determined and that the dataset adequately represents the problem space. In addition, GRNN are often more accurate than BPNN in the prediction. These characteristics make GRNNs to be of great interest in the neutron spectrometry domain. This work presents a computational tool based on GRNN capable to solve the neutron spectrometry problem. This computational code, automates the pre-processing, training and testing stages using a k-fold cross validation of 3 folds, the statistical analysis and the post-processing of the information, using 7 Bonner spheres rate counts as only entrance data. The code was designed for a Bonner Spheres System based on a 6 LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Method selection and adaptation for distributed monitoring of infectious diseases for syndromic surveillance.

    PubMed

    Xing, Jian; Burkom, Howard; Tokars, Jerome

    2011-12-01

    Automated surveillance systems require statistical methods to recognize increases in visit counts that might indicate an outbreak. In prior work we presented methods to enhance the sensitivity of C2, a commonly used time series method. In this study, we compared the enhanced C2 method with five regression models. We used emergency department chief complaint data from US CDC BioSense surveillance system, aggregated by city (total of 206 hospitals, 16 cities) during 5/2008-4/2009. Data for six syndromes (asthma, gastrointestinal, nausea and vomiting, rash, respiratory, and influenza-like illness) was used and was stratified by mean count (1-19, 20-49, ≥50 per day) into 14 syndrome-count categories. We compared the sensitivity for detecting single-day artificially-added increases in syndrome counts. Four modifications of the C2 time series method, and five regression models (two linear and three Poisson), were tested. A constant alert rate of 1% was used for all methods. Among the regression models tested, we found that a Poisson model controlling for the logarithm of total visits (i.e., visits both meeting and not meeting a syndrome definition), day of week, and 14-day time period was best. Among 14 syndrome-count categories, time series and regression methods produced approximately the same sensitivity (<5% difference) in 6; in six categories, the regression method had higher sensitivity (range 6-14% improvement), and in two categories the time series method had higher sensitivity. When automated data are aggregated to the city level, a Poisson regression model that controls for total visits produces the best overall sensitivity for detecting artificially added visit counts. This improvement was achieved without increasing the alert rate, which was held constant at 1% for all methods. These findings will improve our ability to detect outbreaks in automated surveillance system data. Published by Elsevier Inc.

  1. Analysis and Implementation of Robust Grasping Behaviors

    DTIC Science & Technology

    1990-05-01

    34 Technical Report 992, MIT Artificial Intelligence Laboratory, Cambridge, MA, May, 1987. 2. Brooks, R. A. "Achieving Artifci &l Intelligence Through...DTIu FILE COPY Technical Report 1237 ’Analysis and Implementation of NRobust Grasping Behaviors Camille Z. Chammas MIT Artificial Intelligence ...describes research conducted at the Artificial Intelligence Laboratory at the Massachusetts Institute of Technology. Support for the laboratory’s

  2. ENGINEERING ECONOMIC ANALYSIS OF A PROGRAM FOR ARTIFICIAL GROUNDWATER RECHARGE.

    USGS Publications Warehouse

    Reichard, Eric G.; Bredehoeft, John D.

    1984-01-01

    This study describes and demonstrates two alternate methods for evaluating the relative costs and benefits of artificial groundwater recharge using percolation ponds. The first analysis considers the benefits to be the reduction of pumping lifts and land subsidence; the second considers benefits as the alternative costs of a comparable surface delivery system. Example computations are carried out for an existing artificial recharge program in Santa Clara Valley in California. A computer groundwater model is used to estimate both the average long term and the drought period effects of artificial recharge in the study area. Results indicate that the costs of artificial recharge are considerably smaller than the alternative costs of an equivalent surface system. Refs.

  3. Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping.

    PubMed

    Shafizadeh-Moghadam, Hossein; Valavi, Roozbeh; Shahabi, Himan; Chapi, Kamran; Shirzadi, Ataollah

    2018-07-01

    In this research, eight individual machine learning and statistical models are implemented and compared, and based on their results, seven ensemble models for flood susceptibility assessment are introduced. The individual models included artificial neural networks, classification and regression trees, flexible discriminant analysis, generalized linear model, generalized additive model, boosted regression trees, multivariate adaptive regression splines, and maximum entropy, and the ensemble models were Ensemble Model committee averaging (EMca), Ensemble Model confidence interval Inferior (EMciInf), Ensemble Model confidence interval Superior (EMciSup), Ensemble Model to estimate the coefficient of variation (EMcv), Ensemble Model to estimate the mean (EMmean), Ensemble Model to estimate the median (EMmedian), and Ensemble Model based on weighted mean (EMwmean). The data set covered 201 flood events in the Haraz watershed (Mazandaran province in Iran) and 10,000 randomly selected non-occurrence points. Among the individual models, the Area Under the Receiver Operating Characteristic (AUROC), which showed the highest value, belonged to boosted regression trees (0.975) and the lowest value was recorded for generalized linear model (0.642). On the other hand, the proposed EMmedian resulted in the highest accuracy (0.976) among all models. In spite of the outstanding performance of some models, nevertheless, variability among the prediction of individual models was considerable. Therefore, to reduce uncertainty, creating more generalizable, more stable, and less sensitive models, ensemble forecasting approaches and in particular the EMmedian is recommended for flood susceptibility assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Assessment of earthquake-triggered landslide susceptibility in El Salvador based on an Artificial Neural Network model

    NASA Astrophysics Data System (ADS)

    García-Rodríguez, M. J.; Malpica, J. A.

    2010-06-01

    This paper presents an approach for assessing earthquake-triggered landslide susceptibility using artificial neural networks (ANNs). The computational method used for the training process is a back-propagation learning algorithm. It is applied to El Salvador, one of the most seismically active regions in Central America, where the last severe destructive earthquakes occurred on 13 January 2001 (Mw 7.7) and 13 February 2001 (Mw 6.6). The first one triggered more than 600 landslides (including the most tragic, Las Colinas landslide) and killed at least 844 people. The ANN is designed and programmed to develop landslide susceptibility analysis techniques at a regional scale. This approach uses an inventory of landslides and different parameters of slope instability: slope gradient, elevation, aspect, mean annual precipitation, lithology, land use, and terrain roughness. The information obtained from ANN is then used by a Geographic Information System (GIS) to map the landslide susceptibility. In a previous work, a Logistic Regression (LR) was analysed with the same parameters considered in the ANN as independent variables and the occurrence or non-occurrence of landslides as dependent variables. As a result, the logistic approach determined the importance of terrain roughness and soil type as key factors within the model. The results of the landslide susceptibility analysis with ANN are checked using landslide location data. These results show a high concordance between the landslide inventory and the high susceptibility estimated zone. Finally, a comparative analysis of the ANN and LR models are made. The advantages and disadvantages of both approaches are discussed using Receiver Operating Characteristic (ROC) curves.

  5. The Correlation between Insertion Depth of Prodisc-C Artificial Disc and Postoperative Kyphotic Deformity: Clinical Importance of Insertion Depth of Artificial Disc.

    PubMed

    Lee, Do-Youl; Kim, Se-Hoon; Suh, Jung-Keun; Cho, Tai-Hyoung; Chung, Yong-Gu

    2012-09-01

    This study was designed to investigate the correlation between insertion depth of artificial disc and postoperative kyphotic deformity after Prodisc-C total disc replacement surgery, and the range of artificial disc insertion depth which is effective in preventing postoperative whole cervical or segmental kyphotic deformity. A retrospective radiological analysis was performed in 50 patients who had undergone single level total disc replacement surgery. Records were reviewed to obtain demographic data. Preoperative and postoperative radiographs were assessed to determine C2-7 Cobb's angle and segmental angle and to investigate postoperative kyphotic deformity. A formula was introduced to calculate insertion depth of Prodisc-C artificial disc. Statistical analysis was performed to search the correlation between insertion depth of Prodisc-C artificial disc and postoperative kyphotic deformity, and to estimate insertion depth of Prodisc-C artificial disc to prevent postoperative kyphotic deformity. In this study no significant statistical correlation was observed between insertion depth of Prodisc-C artificial disc and postoperative kyphotic deformity regarding C2-7 Cobb's angle. Statistical correlation between insertion depth of Prodisc-C artificial disc and postoperative kyphotic deformity was observed regarding segmental angle (p<0.05). It failed to estimate proper insertion depth of Prodisc-C artificial disc effective in preventing postoperative kyphotic deformity. Postoperative segmental kyphotic deformity is associated with insertion depth of Prodisc-C artificial disc. Anterior located artificial disc leads to lordotic segmental angle and posterior located artificial disc leads to kyphotic segmental angle postoperatively. But C2-7 Cobb's angle is not affected by artificial disc location after the surgery.

  6. Phylogeny and active ingredients of artificial Ophiocordyceps lanpingensis ascomata

    NASA Astrophysics Data System (ADS)

    Chen, Zihong; Xu, Ling; Yu, Hong; Zeng, Wenbo; Dai, Yongdong; Wang, Yuanbing

    2018-04-01

    To evaluate the morphological character, phylogenesis and functional components of artificial Ophiocordyceps lanpingensis, a related species of O. sinensis. The ascomata of O. lanpingensis was induced with its asexual strain, HLANY0707 and its microscopic feature was described. Phylogenesis was analyzed with ITS-5.8S sequences of HLANY0707, its cultured stroma, and 39 relative sequences of Hirsutella and Ophiocordyceps based on the maximum likelihood tree. Six nucleosides of artificial O. lanpingensis, natural O. lanpingensis and natural O. sinensis were compared with HPLC analysis. Artificial ascomata of O. lanpingensis could be massively produced with HLANY0707 and had similar microscopic features as the nature specimens. Phylogenetic analysis showed that both the artificial and natural O. lanpingensis had closer relationship with O. sinensis, O. xuefengensis, H. uncinata and O. robertsii, the species whose massively cultured ascomata being not reported. Nucleosides of artificial O. lanpingensis were very similar to natural O. sinensis, implying a promising application prospect of artificial O. lanpingensis as an alternative to O. sinensis. It showed a promising way to develop artificial O. lanpingensis and conserve the rare and endangered species, O. sinensis.

  7. Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: A case study of Fars province, Iran.

    PubMed

    Azadi, Sama; Karimi-Jashni, Ayoub

    2016-02-01

    Predicting the mass of solid waste generation plays an important role in integrated solid waste management plans. In this study, the performance of two predictive models, Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) was verified to predict mean Seasonal Municipal Solid Waste Generation (SMSWG) rate. The accuracy of the proposed models is illustrated through a case study of 20 cities located in Fars Province, Iran. Four performance measures, MAE, MAPE, RMSE and R were used to evaluate the performance of these models. The MLR, as a conventional model, showed poor prediction performance. On the other hand, the results indicated that the ANN model, as a non-linear model, has a higher predictive accuracy when it comes to prediction of the mean SMSWG rate. As a result, in order to develop a more cost-effective strategy for waste management in the future, the ANN model could be used to predict the mean SMSWG rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Quantitative methods for compensation of matrix effects and self-absorption in Laser Induced Breakdown Spectroscopy signals of solids

    NASA Astrophysics Data System (ADS)

    Takahashi, Tomoko; Thornton, Blair

    2017-12-01

    This paper reviews methods to compensate for matrix effects and self-absorption during quantitative analysis of compositions of solids measured using Laser Induced Breakdown Spectroscopy (LIBS) and their applications to in-situ analysis. Methods to reduce matrix and self-absorption effects on calibration curves are first introduced. The conditions where calibration curves are applicable to quantification of compositions of solid samples and their limitations are discussed. While calibration-free LIBS (CF-LIBS), which corrects matrix effects theoretically based on the Boltzmann distribution law and Saha equation, has been applied in a number of studies, requirements need to be satisfied for the calculation of chemical compositions to be valid. Also, peaks of all elements contained in the target need to be detected, which is a bottleneck for in-situ analysis of unknown materials. Multivariate analysis techniques are gaining momentum in LIBS analysis. Among the available techniques, principal component regression (PCR) analysis and partial least squares (PLS) regression analysis, which can extract related information to compositions from all spectral data, are widely established methods and have been applied to various fields including in-situ applications in air and for planetary explorations. Artificial neural networks (ANNs), where non-linear effects can be modelled, have also been investigated as a quantitative method and their applications are introduced. The ability to make quantitative estimates based on LIBS signals is seen as a key element for the technique to gain wider acceptance as an analytical method, especially in in-situ applications. In order to accelerate this process, it is recommended that the accuracy should be described using common figures of merit which express the overall normalised accuracy, such as the normalised root mean square errors (NRMSEs), when comparing the accuracy obtained from different setups and analytical methods.

  9. Generalized regression neural network (GRNN)-based approach for colored dissolved organic matter (CDOM) retrieval: case study of Connecticut River at Middle Haddam Station, USA.

    PubMed

    Heddam, Salim

    2014-11-01

    The prediction of colored dissolved organic matter (CDOM) using artificial neural network approaches has received little attention in the past few decades. In this study, colored dissolved organic matter (CDOM) was modeled using generalized regression neural network (GRNN) and multiple linear regression (MLR) models as a function of Water temperature (TE), pH, specific conductance (SC), and turbidity (TU). Evaluation of the prediction accuracy of the models is based on the root mean square error (RMSE), mean absolute error (MAE), coefficient of correlation (CC), and Willmott's index of agreement (d). The results indicated that GRNN can be applied successfully for prediction of colored dissolved organic matter (CDOM).

  10. HOS network-based classification of power quality events via regression algorithms

    NASA Astrophysics Data System (ADS)

    Palomares Salas, José Carlos; González de la Rosa, Juan José; Sierra Fernández, José María; Pérez, Agustín Agüera

    2015-12-01

    This work compares seven regression algorithms implemented in artificial neural networks (ANNs) supported by 14 power-quality features, which are based in higher-order statistics. Combining time and frequency domain estimators to deal with non-stationary measurement sequences, the final goal of the system is the implementation in the future smart grid to guarantee compatibility between all equipment connected. The principal results are based in spectral kurtosis measurements, which easily adapt to the impulsive nature of the power quality events. These results verify that the proposed technique is capable of offering interesting results for power quality (PQ) disturbance classification. The best results are obtained using radial basis networks, generalized regression, and multilayer perceptron, mainly due to the non-linear nature of data.

  11. Construction cost estimation of spherical storage tanks: artificial neural networks and hybrid regression—GA algorithms

    NASA Astrophysics Data System (ADS)

    Arabzadeh, Vida; Niaki, S. T. A.; Arabzadeh, Vahid

    2017-10-01

    One of the most important processes in the early stages of construction projects is to estimate the cost involved. This process involves a wide range of uncertainties, which make it a challenging task. Because of unknown issues, using the experience of the experts or looking for similar cases are the conventional methods to deal with cost estimation. The current study presents data-driven methods for cost estimation based on the application of artificial neural network (ANN) and regression models. The learning algorithms of the ANN are the Levenberg-Marquardt and the Bayesian regulated. Moreover, regression models are hybridized with a genetic algorithm to obtain better estimates of the coefficients. The methods are applied in a real case, where the input parameters of the models are assigned based on the key issues involved in a spherical tank construction. The results reveal that while a high correlation between the estimated cost and the real cost exists; both ANNs could perform better than the hybridized regression models. In addition, the ANN with the Levenberg-Marquardt learning algorithm (LMNN) obtains a better estimation than the ANN with the Bayesian-regulated learning algorithm (BRNN). The correlation between real data and estimated values is over 90%, while the mean square error is achieved around 0.4. The proposed LMNN model can be effective to reduce uncertainty and complexity in the early stages of the construction project.

  12. Development of a partial least squares-artificial neural network (PLS-ANN) hybrid model for the prediction of consumer liking scores of ready-to-drink green tea beverages.

    PubMed

    Yu, Peigen; Low, Mei Yin; Zhou, Weibiao

    2018-01-01

    In order to develop products that would be preferred by consumers, the effects of the chemical compositions of ready-to-drink green tea beverages on consumer liking were studied through regression analyses. Green tea model systems were prepared by dosing solutions of 0.1% green tea extract with differing concentrations of eight flavour keys deemed to be important for green tea aroma and taste, based on a D-optimal experimental design, before undergoing commercial sterilisation. Sensory evaluation of the green tea model system was carried out using an untrained consumer panel to obtain hedonic liking scores of the samples. Regression models were subsequently trained to objectively predict the consumer liking scores of the green tea model systems. A linear partial least squares (PLS) regression model was developed to describe the effects of the eight flavour keys on consumer liking, with a coefficient of determination (R 2 ) of 0.733, and a root-mean-square error (RMSE) of 3.53%. The PLS model was further augmented with an artificial neural network (ANN) to establish a PLS-ANN hybrid model. The established hybrid model was found to give a better prediction of consumer liking scores, based on its R 2 (0.875) and RMSE (2.41%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Survival curves of Listeria monocytogenes in chorizos modeled with artificial neural networks.

    PubMed

    Hajmeer, M; Basheer, I; Cliver, D O

    2006-09-01

    Using artificial neural networks (ANNs), a highly accurate model was developed to simulate survival curves of Listeria monocytogenes in chorizos as affected by the initial water activity (a(w0)) of the sausage formulation, temperature (T), and air inflow velocity (F) where the sausages are stored. The ANN-based survival model (R(2)=0.970) outperformed the regression-based cubic model (R(2)=0.851), and as such was used to derive other models (using regression) that allow prediction of the times needed to drop count by 1, 2, 3, and 4 logs (i.e., nD-values, n=1, 2, 3, 4). The nD-value regression models almost perfectly predicted the various times derived from a number of simulated survival curves exhibiting a wide variety of the operating conditions (R(2)=0.990-0.995). The nD-values were found to decrease with decreasing a(w0), and increasing T and F. The influence of a(w0) on nD-values seems to become more significant at some critical value of a(w0), below which the variation is negligible (0.93 for 1D-value, 0.90 for 2D-value, and <0.85 for 3D- and 4D-values). There is greater influence of storage T and F on 3D- and 4D-values than on 1D- and 2D-values.

  14. Evaluation of coffee roasting degree by using electronic nose and artificial neural network for off-line quality control.

    PubMed

    Romani, Santina; Cevoli, Chiara; Fabbri, Angelo; Alessandrini, Laura; Dalla Rosa, Marco

    2012-09-01

    An electronic nose (EN) based on an array of 10 metal oxide semiconductor sensors was used, jointly with an artificial neural network (ANN), to predict coffee roasting degree. The flavor release evolution and the main physicochemical modifications (weight loss, density, moisture content, and surface color: L*, a*), during the roasting process of coffee, were monitored at different cooking times (0, 6, 8, 10, 14, 19 min). Principal component analysis (PCA) was used to reduce the dimensionality of sensors data set (600 values per sensor). The selected PCs were used as ANN input variables. Two types of ANN methods (multilayer perceptron [MLP] and general regression neural network [GRNN]) were used in order to estimate the EN signals. For both neural networks the input values were represented by scores of sensors data set PCs, while the output values were the quality parameter at different roasting times. Both the ANNs were able to well predict coffee roasting degree, giving good prediction results for both roasting time and coffee quality parameters. In particular, GRNN showed the highest prediction reliability. Actually the evaluation of coffee roasting degree is mainly a manned operation, substantially based on the empirical final color observation. For this reason it requires well-trained operators with a long professional skill. The coupling of e-nose and artificial neural networks (ANNs) may represent an effective possibility to roasting process automation and to set up a more reproducible procedure for final coffee bean quality characterization. © 2012 Institute of Food Technologists®

  15. Artificial intelligence based approach to forecast PM2.5 during haze episodes: A case study of Delhi, India

    NASA Astrophysics Data System (ADS)

    Mishra, Dhirendra; Goyal, P.; Upadhyay, Abhishek

    2015-02-01

    Delhi has been listed as the worst performer across the world with respect to the presence of alarmingly high level of haze episodes, exposing the residents here to a host of diseases including respiratory disease, chronic obstructive pulmonary disorder and lung cancer. This study aimed to analyze the haze episodes in a year and to develop the forecasting methodologies for it. The air pollutants, e.g., CO, O3, NO2, SO2, PM2.5 as well as meteorological parameters (pressure, temperature, wind speed, wind direction index, relative humidity, visibility, dew point temperature, etc.) have been used in the present study to analyze the haze episodes in Delhi urban area. The nature of these episodes, their possible causes, and their major features are discussed in terms of fine particulate matter (PM2.5) and relative humidity. The correlation matrix shows that temperature, pressure, wind speed, O3, and dew point temperature are the dominating variables for PM2.5 concentrations in Delhi. The hour-by-hour analysis of past data pattern at different monitoring stations suggest that the haze hours were occurred approximately 48% of the total observed hours in the year, 2012 over Delhi urban area. The haze hour forecasting models in terms of PM2.5 concentrations (more than 50 μg/m3) and relative humidity (less than 90%) have been developed through artificial intelligence based Neuro-Fuzzy (NF) techniques and compared with the other modeling techniques e.g., multiple linear regression (MLR), and artificial neural network (ANN). The haze hour's data for nine months, i.e. from January to September have been chosen for training and remaining three months, i.e., October to December in the year 2012 are chosen for validation of the developed models. The forecasted results are compared with the observed values with different statistical measures, e.g., correlation coefficients (R), normalized mean square error (NMSE), fractional bias (FB) and index of agreement (IOA). The performed analysis has indicated that R has values 0.25 for MLR, 0.53 for ANN, and NF: 0.72, between the observed and predicted PM2.5 concentrations during haze hours invalidation period. The results show that the artificial intelligence implementations have a more reasonable agreement with the observed values. Finally, it can be concluded that the most convincing advantage of artificial intelligence based NF model is capable for better forecasting of haze episodes in Delhi urban area than ANN and MLR models.

  16. Easy and low-cost identification of metabolic syndrome in patients treated with second-generation antipsychotics: artificial neural network and logistic regression models.

    PubMed

    Lin, Chao-Cheng; Bai, Ya-Mei; Chen, Jen-Yeu; Hwang, Tzung-Jeng; Chen, Tzu-Ting; Chiu, Hung-Wen; Li, Yu-Chuan

    2010-03-01

    Metabolic syndrome (MetS) is an important side effect of second-generation antipsychotics (SGAs). However, many SGA-treated patients with MetS remain undetected. In this study, we trained and validated artificial neural network (ANN) and multiple logistic regression models without biochemical parameters to rapidly identify MetS in patients with SGA treatment. A total of 383 patients with a diagnosis of schizophrenia or schizoaffective disorder (DSM-IV criteria) with SGA treatment for more than 6 months were investigated to determine whether they met the MetS criteria according to the International Diabetes Federation. The data for these patients were collected between March 2005 and September 2005. The input variables of ANN and logistic regression were limited to demographic and anthropometric data only. All models were trained by randomly selecting two-thirds of the patient data and were internally validated with the remaining one-third of the data. The models were then externally validated with data from 69 patients from another hospital, collected between March 2008 and June 2008. The area under the receiver operating characteristic curve (AUC) was used to measure the performance of all models. Both the final ANN and logistic regression models had high accuracy (88.3% vs 83.6%), sensitivity (93.1% vs 86.2%), and specificity (86.9% vs 83.8%) to identify MetS in the internal validation set. The mean +/- SD AUC was high for both the ANN and logistic regression models (0.934 +/- 0.033 vs 0.922 +/- 0.035, P = .63). During external validation, high AUC was still obtained for both models. Waist circumference and diastolic blood pressure were the common variables that were left in the final ANN and logistic regression models. Our study developed accurate ANN and logistic regression models to detect MetS in patients with SGA treatment. The models are likely to provide a noninvasive tool for large-scale screening of MetS in this group of patients. (c) 2010 Physicians Postgraduate Press, Inc.

  17. Preparation of Artificial Skin that Mimics Human Skin Surface and Mechanical Properties.

    PubMed

    Shimizu, Rana; Nonomura, Yoshimune

    2018-01-01

    We have developed an artificial skin that mimics the morphological and mechanical properties of human skin. The artificial skin comprises a polyurethane block possessing a microscopically rough surface. We evaluated the tactile sensations when skin-care cream was applied to the artificial skin. Many subjects perceived smooth, moist, and soft feels during the application process. Cluster analysis showed that these characteristic tactile feels are similar to those when skin-care cream is applied to real human skin. Contact angle analysis showed that an oil droplet spread smoothly on the artificial skin surface, which occurred because there were many grooves several hundred micrometers in width on the skin surface. In addition, when the skin-care cream was applied, the change in frictional force during the dynamic friction process increased. These wetting and frictional properties are important factors controlling the similarity of artificial skin to real human skin.

  18. Application of Machine-Learning Models to Predict Tacrolimus Stable Dose in Renal Transplant Recipients

    NASA Astrophysics Data System (ADS)

    Tang, Jie; Liu, Rong; Zhang, Yue-Li; Liu, Mou-Ze; Hu, Yong-Fang; Shao, Ming-Jie; Zhu, Li-Jun; Xin, Hua-Wen; Feng, Gui-Wen; Shang, Wen-Jun; Meng, Xiang-Guang; Zhang, Li-Rong; Ming, Ying-Zi; Zhang, Wei

    2017-02-01

    Tacrolimus has a narrow therapeutic window and considerable variability in clinical use. Our goal was to compare the performance of multiple linear regression (MLR) and eight machine learning techniques in pharmacogenetic algorithm-based prediction of tacrolimus stable dose (TSD) in a large Chinese cohort. A total of 1,045 renal transplant patients were recruited, 80% of which were randomly selected as the “derivation cohort” to develop dose-prediction algorithm, while the remaining 20% constituted the “validation cohort” to test the final selected algorithm. MLR, artificial neural network (ANN), regression tree (RT), multivariate adaptive regression splines (MARS), boosted regression tree (BRT), support vector regression (SVR), random forest regression (RFR), lasso regression (LAR) and Bayesian additive regression trees (BART) were applied and their performances were compared in this work. Among all the machine learning models, RT performed best in both derivation [0.71 (0.67-0.76)] and validation cohorts [0.73 (0.63-0.82)]. In addition, the ideal rate of RT was 4% higher than that of MLR. To our knowledge, this is the first study to use machine learning models to predict TSD, which will further facilitate personalized medicine in tacrolimus administration in the future.

  19. Convective heat transfer and pressure drop of aqua based TiO2 nanofluids at different diameters of nanoparticles: Data analysis and modeling with artificial neural network

    NASA Astrophysics Data System (ADS)

    Hemmat Esfe, Mohammad; Nadooshan, Afshin Ahmadi; Arshi, Ali; Alirezaie, Ali

    2018-03-01

    In this study, experimental data related to the Nusselt number and pressure drop of aqueous nanofluids of Titania is modeled and estimated by using ANN with 2 hidden layers and 8 neurons in each layer. Also in this study the effect of various effective variables in the Nusselt number and pressure drop is surveyed. This study indicated that the neural network modeling has been able to model experimental data with great accuracy. The modeling regression coefficient for the data of Nusselt number and relative pressure drop is 99.94% and 99.97% respectively. Besides, it represented that the increment of the Reynolds number and concentration made the increment of Nusselt number and pressure drop of aqueous nanofluid.

  20. Artificial reefs and marine protected areas: a study in willingness to pay to access Folkestone Marine Reserve, Barbados, West Indies

    PubMed Central

    Wheeler, Philip M.; Johnson, Magnus L.

    2016-01-01

    Artificial reefs in marine protected areas provide additional habitat for biodiversity viewing, and therefore may offer an innovative management solution for managing for coral reef recovery and resilience. Marine park user fees can generate revenue to help manage and maintain natural and artificial reefs. Using a stated preference survey, this study investigates the present consumer surplus associated with visitor use of a marine protected area in Barbados. Two hypothetical markets were presented to differentiate between respondents use values of either: (a) natural reefs within the marine reserve or (b) artificial reef habitat for recreational enhancement. Information was also collected on visitors’ perceptions of artificial reefs, reef material preferences and reef conservation awareness. From a sample of 250 visitors on snorkel trips, we estimate a mean willingness to pay of US$18.33 (median—US$15) for natural reef use and a mean value of US$17.58 (median—US$12.50) for artificial reef use. The number of marine species viewed, age of respondent, familiarity with the Folkestone Marine Reserve and level of environmental concern were statistically significant in influencing willingness to pay. Regression analyses indicate visitors are willing to pay a significant amount to view marine life, especially turtles. Our results suggest that user fees could provide a considerable source of income to aid reef conservation in Barbados. In addition, the substantial use value reported for artificial reefs indicates a reef substitution policy may be supported by visitors to the Folkestone Marine Reserve. We discuss our findings and highlight directions for future research that include the need to collect data to establish visitors’ non-use values to fund reef management. PMID:27547521

  1. Support vector machine regression (SVR/LS-SVM)--an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data.

    PubMed

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-04-21

    In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects.

  2. Advanced Online Survival Analysis Tool for Predictive Modelling in Clinical Data Science.

    PubMed

    Montes-Torres, Julio; Subirats, José Luis; Ribelles, Nuria; Urda, Daniel; Franco, Leonardo; Alba, Emilio; Jerez, José Manuel

    2016-01-01

    One of the prevailing applications of machine learning is the use of predictive modelling in clinical survival analysis. In this work, we present our view of the current situation of computer tools for survival analysis, stressing the need of transferring the latest results in the field of machine learning to biomedical researchers. We propose a web based software for survival analysis called OSA (Online Survival Analysis), which has been developed as an open access and user friendly option to obtain discrete time, predictive survival models at individual level using machine learning techniques, and to perform standard survival analysis. OSA employs an Artificial Neural Network (ANN) based method to produce the predictive survival models. Additionally, the software can easily generate survival and hazard curves with multiple options to personalise the plots, obtain contingency tables from the uploaded data to perform different tests, and fit a Cox regression model from a number of predictor variables. In the Materials and Methods section, we depict the general architecture of the application and introduce the mathematical background of each of the implemented methods. The study concludes with examples of use showing the results obtained with public datasets.

  3. Advanced Online Survival Analysis Tool for Predictive Modelling in Clinical Data Science

    PubMed Central

    Montes-Torres, Julio; Subirats, José Luis; Ribelles, Nuria; Urda, Daniel; Franco, Leonardo; Alba, Emilio; Jerez, José Manuel

    2016-01-01

    One of the prevailing applications of machine learning is the use of predictive modelling in clinical survival analysis. In this work, we present our view of the current situation of computer tools for survival analysis, stressing the need of transferring the latest results in the field of machine learning to biomedical researchers. We propose a web based software for survival analysis called OSA (Online Survival Analysis), which has been developed as an open access and user friendly option to obtain discrete time, predictive survival models at individual level using machine learning techniques, and to perform standard survival analysis. OSA employs an Artificial Neural Network (ANN) based method to produce the predictive survival models. Additionally, the software can easily generate survival and hazard curves with multiple options to personalise the plots, obtain contingency tables from the uploaded data to perform different tests, and fit a Cox regression model from a number of predictor variables. In the Materials and Methods section, we depict the general architecture of the application and introduce the mathematical background of each of the implemented methods. The study concludes with examples of use showing the results obtained with public datasets. PMID:27532883

  4. Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis.

    PubMed

    Cheng, Yezeng; Larin, Kirill V

    2006-12-20

    Fingerprint recognition is one of the most widely used methods of biometrics. This method relies on the surface topography of a finger and, thus, is potentially vulnerable for spoofing by artificial dummies with embedded fingerprints. In this study, we applied the optical coherence tomography (OCT) technique to distinguish artificial materials commonly used for spoofing fingerprint scanning systems from the real skin. Several artificial fingerprint dummies made from household cement and liquid silicone rubber were prepared and tested using a commercial fingerprint reader and an OCT system. While the artificial fingerprints easily spoofed the commercial fingerprint reader, OCT images revealed the presence of them at all times. We also demonstrated that an autocorrelation analysis of the OCT images could be potentially used in automatic recognition systems.

  5. Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Yezeng; Larin, Kirill V.

    2006-12-01

    Fingerprint recognition is one of the most widely used methods of biometrics. This method relies on the surface topography of a finger and, thus, is potentially vulnerable for spoofing by artificial dummies with embedded fingerprints. In this study, we applied the optical coherence tomography (OCT) technique to distinguish artificial materials commonly used for spoofing fingerprint scanning systems from the real skin. Several artificial fingerprint dummies made from household cement and liquid silicone rubber were prepared and tested using a commercial fingerprint reader and an OCT system. While the artificial fingerprints easily spoofed the commercial fingerprint reader, OCT images revealed the presence of them at all times. We also demonstrated that an autocorrelation analysis of the OCT images could be potentially used in automatic recognition systems.

  6. Statistical Software and Artificial Intelligence: A Watershed in Applications Programming.

    ERIC Educational Resources Information Center

    Pickett, John C.

    1984-01-01

    AUTOBJ and AUTOBOX are revolutionary software programs which contain the first application of artificial intelligence to statistical procedures used in analysis of time series data. The artificial intelligence included in the programs and program features are discussed. (JN)

  7. Forecasting the prognosis of choroidal melanoma with an artificial neural network.

    PubMed

    Kaiserman, Igor; Rosner, Mordechai; Pe'er, Jacob

    2005-09-01

    To develop an artificial neural network (ANN) that will forecast the 5-year mortality from choroidal melanoma. Retrospective, comparative, observational cohort study. One hundred fifty-three eyes of 153 consecutive patients with choroidal melanoma (age, 58.4+/-14.6 years) who were treated with ruthenium 106 brachytherapy between 1988 and 1998 at the Department of Ophthalmology, Hadassah University Hospital, Jerusalem, Israel. Patients were observed clinically and ultrasonographically (A- and B-mode standardized ultrasonography). Metastatic screening included liver function tests and liver imaging. Backpropagation ANNs composed of 3 or 4 layers of neurons with various types of transfer functions and training protocols were assessed for their ability to predict the 5-year mortality. The ANNs were trained on 77 randomly selected patients and tested on a different set of 76 patients. Artificial neural networks were compared based on their sensitivity, specificity, forecasting accuracy, area under the receiver operating curves, and likelihood ratios (LRs). The best ANN was compared with the results of logistic regression and the performance of an ocular oncologist. The ability of the ANNs to forecast the 5-year mortality from choroidal melanoma. Thirty-one patients died during the follow-up period of metastatic choroidal melanoma. The best ANN (one hidden layer of 16 neurons) had 84% forecasting accuracy and an LR of 31.5. The number of hidden neurons significantly influenced the ANNs' performance (P<0.001). The performance of the ANNs was not significantly influenced by the training protocol, the number of hidden layers, or the type of transfer function. In comparison, logistic regression reached 86% forecasting accuracy, with a very low LR (0.8), whereas the human expert forecasting ability was <70% (LR, 1.85). Artificial neural networks can be used for forecasting the prognosis of choroidal melanoma and may support decision-making in treating this malignancy.

  8. Aroma compounds and characteristics of noble-rot wines of Chardonnay grapes artificially botrytized in the vineyard.

    PubMed

    Wang, Xing-Jie; Tao, Yong-Sheng; Wu, Yun; An, Rong-Yan; Yue, Zhuo-Ya

    2017-07-01

    Aroma characteristics and their impact volatile components of noble-rot wines elaborated from artificial botrytized Chardonnay grapes, obtained by spraying Botrytis cinerea suspension in Yuquan vineyard, Ningxia, China, were explored in this work. Dry white wine made from normal-harvested grapes and sweet wine produced from delay-harvested grapes were compared. Wine aromas were analysed by trained sensory panelists, and aroma compounds were determined by SPME-GC-MS. Results indicated that esters, fatty acids, thiols, lactones, volatile phenols and 2-nonanone increased markedly in noble-rot wines. In addition to typical aromas of noble-rot wines, artificial noble-rot wines were found to contain significant cream and dry apricot attributes. Partial Least-Squares Regression models of aroma characteristics against aroma components revealed that non-fermentative odorants were the primary contributor to dry apricot attribute, especially, thiols, C13-norisoprenoids, lactones, terpenols and phenolic acid derivatives, while cream attribute was dependent on both fermentative and non-fermentative volatile components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Modeling rainfall-runoff process using soft computing techniques

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Shiri, Jalal; Tombul, Mustafa

    2013-02-01

    Rainfall-runoff process was modeled for a small catchment in Turkey, using 4 years (1987-1991) of measurements of independent variables of rainfall and runoff values. The models used in the study were Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Gene Expression Programming (GEP) which are Artificial Intelligence (AI) approaches. The applied models were trained and tested using various combinations of the independent variables. The goodness of fit for the model was evaluated in terms of the coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), coefficient of efficiency (CE) and scatter index (SI). A comparison was also made between these models and traditional Multi Linear Regression (MLR) model. The study provides evidence that GEP (with RMSE=17.82 l/s, MAE=6.61 l/s, CE=0.72 and R2=0.978) is capable of modeling rainfall-runoff process and is a viable alternative to other applied artificial intelligence and MLR time-series methods.

  10. A comparison of the performances of an artificial neural network and a regression model for GFR estimation.

    PubMed

    Liu, Xun; Li, Ning-shan; Lv, Lin-sheng; Huang, Jian-hua; Tang, Hua; Chen, Jin-xia; Ma, Hui-juan; Wu, Xiao-ming; Lou, Tan-qi

    2013-12-01

    Accurate estimation of glomerular filtration rate (GFR) is important in clinical practice. Current models derived from regression are limited by the imprecision of GFR estimates. We hypothesized that an artificial neural network (ANN) might improve the precision of GFR estimates. A study of diagnostic test accuracy. 1,230 patients with chronic kidney disease were enrolled, including the development cohort (n=581), internal validation cohort (n=278), and external validation cohort (n=371). Estimated GFR (eGFR) using a new ANN model and a new regression model using age, sex, and standardized serum creatinine level derived in the development and internal validation cohort, and the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) 2009 creatinine equation. Measured GFR (mGFR). GFR was measured using a diethylenetriaminepentaacetic acid renal dynamic imaging method. Serum creatinine was measured with an enzymatic method traceable to isotope-dilution mass spectrometry. In the external validation cohort, mean mGFR was 49±27 (SD) mL/min/1.73 m2 and biases (median difference between mGFR and eGFR) for the CKD-EPI, new regression, and new ANN models were 0.4, 1.5, and -0.5 mL/min/1.73 m2, respectively (P<0.001 and P=0.02 compared to CKD-EPI and P<0.001 comparing the new regression and ANN models). Precisions (IQRs for the difference) were 22.6, 14.9, and 15.6 mL/min/1.73 m2, respectively (P<0.001 for both compared to CKD-EPI and P<0.001 comparing the new ANN and new regression models). Accuracies (proportions of eGFRs not deviating >30% from mGFR) were 50.9%, 77.4%, and 78.7%, respectively (P<0.001 for both compared to CKD-EPI and P=0.5 comparing the new ANN and new regression models). Different methods for measuring GFR were a source of systematic bias in comparisons of new models to CKD-EPI, and both the derivation and validation cohorts consisted of a group of patients who were referred to the same institution. An ANN model using 3 variables did not perform better than a new regression model. Whether ANN can improve GFR estimation using more variables requires further investigation. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  11. A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process.

    PubMed

    Choi, D J; Park, H

    2001-11-01

    For control and automation of biological treatment processes, lack of reliable on-line sensors to measure water quality parameters is one of the most important problems to overcome. Many parameters cannot be measured directly with on-line sensors. The accuracy of existing hardware sensors is also not sufficient and maintenance problems such as electrode fouling often cause trouble. This paper deals with the development of software sensor techniques that estimate the target water quality parameter from other parameters using the correlation between water quality parameters. We focus our attention on the preprocessing of noisy data and the selection of the best model feasible to the situation. Problems of existing approaches are also discussed. We propose a hybrid neural network as a software sensor inferring wastewater quality parameter. Multivariate regression, artificial neural networks (ANN), and a hybrid technique that combines principal component analysis as a preprocessing stage are applied to data from industrial wastewater processes. The hybrid ANN technique shows an enhancement of prediction capability and reduces the overfitting problem of neural networks. The result shows that the hybrid ANN technique can be used to extract information from noisy data and to describe the nonlinearity of complex wastewater treatment processes.

  12. Artificial Neural Network for Probabilistic Feature Recognition in Liquid Chromatography Coupled to High-Resolution Mass Spectrometry.

    PubMed

    Woldegebriel, Michael; Derks, Eduard

    2017-01-17

    In this work, a novel probabilistic untargeted feature detection algorithm for liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) using artificial neural network (ANN) is presented. The feature detection process is approached as a pattern recognition problem, and thus, ANN was utilized as an efficient feature recognition tool. Unlike most existing feature detection algorithms, with this approach, any suspected chromatographic profile (i.e., shape of a peak) can easily be incorporated by training the network, avoiding the need to perform computationally expensive regression methods with specific mathematical models. In addition, with this method, we have shown that the high-resolution raw data can be fully utilized without applying any arbitrary thresholds or data reduction, therefore improving the sensitivity of the method for compound identification purposes. Furthermore, opposed to existing deterministic (binary) approaches, this method rather estimates the probability of a feature being present/absent at a given point of interest, thus giving chance for all data points to be propagated down the data analysis pipeline, weighed with their probability. The algorithm was tested with data sets generated from spiked samples in forensic and food safety context and has shown promising results by detecting features for all compounds in a computationally reasonable time.

  13. Constructing general partial differential equations using polynomial and neural networks.

    PubMed

    Zjavka, Ladislav; Pedrycz, Witold

    2016-01-01

    Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Predicting adsorptive removal of chlorophenol from aqueous solution using artificial intelligence based modeling approaches.

    PubMed

    Singh, Kunwar P; Gupta, Shikha; Ojha, Priyanka; Rai, Premanjali

    2013-04-01

    The research aims to develop artificial intelligence (AI)-based model to predict the adsorptive removal of 2-chlorophenol (CP) in aqueous solution by coconut shell carbon (CSC) using four operational variables (pH of solution, adsorbate concentration, temperature, and contact time), and to investigate their effects on the adsorption process. Accordingly, based on a factorial design, 640 batch experiments were conducted. Nonlinearities in experimental data were checked using Brock-Dechert-Scheimkman (BDS) statistics. Five nonlinear models were constructed to predict the adsorptive removal of CP in aqueous solution by CSC using four variables as input. Performances of the constructed models were evaluated and compared using statistical criteria. BDS statistics revealed strong nonlinearity in experimental data. Performance of all the models constructed here was satisfactory. Radial basis function network (RBFN) and multilayer perceptron network (MLPN) models performed better than generalized regression neural network, support vector machines, and gene expression programming models. Sensitivity analysis revealed that the contact time had highest effect on adsorption followed by the solution pH, temperature, and CP concentration. The study concluded that all the models constructed here were capable of capturing the nonlinearity in data. A better generalization and predictive performance of RBFN and MLPN models suggested that these can be used to predict the adsorption of CP in aqueous solution using CSC.

  15. Optoelectronic instrumentation enhancement using data mining feedback for a 3D measurement system

    NASA Astrophysics Data System (ADS)

    Flores-Fuentes, Wendy; Sergiyenko, Oleg; Gonzalez-Navarro, Félix F.; Rivas-López, Moisés; Hernandez-Balbuena, Daniel; Rodríguez-Quiñonez, Julio C.; Tyrsa, Vera; Lindner, Lars

    2016-12-01

    3D measurement by a cyber-physical system based on optoelectronic scanning instrumentation has been enhanced by outliers and regression data mining feedback. The prototype has applications in (1) industrial manufacturing systems that include: robotic machinery, embedded vision, and motion control, (2) health care systems for measurement scanning, and (3) infrastructure by providing structural health monitoring. This paper presents new research performed in data processing of a 3D measurement vision sensing database. Outliers from multivariate data have been detected and removal to improve artificial intelligence regression algorithm results. Physical measurement error regression data has been used for 3D measurements error correction. Concluding, that the joint of physical phenomena, measurement and computation is an effectiveness action for feedback loops in the control of industrial, medical and civil tasks.

  16. The Naïve Overfitting Index Selection (NOIS): A new method to optimize model complexity for hyperspectral data

    NASA Astrophysics Data System (ADS)

    Rocha, Alby D.; Groen, Thomas A.; Skidmore, Andrew K.; Darvishzadeh, Roshanak; Willemen, Louise

    2017-11-01

    The growing number of narrow spectral bands in hyperspectral remote sensing improves the capacity to describe and predict biological processes in ecosystems. But it also poses a challenge to fit empirical models based on such high dimensional data, which often contain correlated and noisy predictors. As sample sizes, to train and validate empirical models, seem not to be increasing at the same rate, overfitting has become a serious concern. Overly complex models lead to overfitting by capturing more than the underlying relationship, and also through fitting random noise in the data. Many regression techniques claim to overcome these problems by using different strategies to constrain complexity, such as limiting the number of terms in the model, by creating latent variables or by shrinking parameter coefficients. This paper is proposing a new method, named Naïve Overfitting Index Selection (NOIS), which makes use of artificially generated spectra, to quantify the relative model overfitting and to select an optimal model complexity supported by the data. The robustness of this new method is assessed by comparing it to a traditional model selection based on cross-validation. The optimal model complexity is determined for seven different regression techniques, such as partial least squares regression, support vector machine, artificial neural network and tree-based regressions using five hyperspectral datasets. The NOIS method selects less complex models, which present accuracies similar to the cross-validation method. The NOIS method reduces the chance of overfitting, thereby avoiding models that present accurate predictions that are only valid for the data used, and too complex to make inferences about the underlying process.

  17. Non-Intrusive Gaze Tracking Using Artificial Neural Networks

    DTIC Science & Technology

    1994-01-05

    We have developed an artificial neural network based gaze tracking, system which can be customized to individual users. A three layer feed forward...empirical analysis of the performance of a large number of artificial neural network architectures for this task. Suggestions for further explorations...for neurally based gaze trackers are presented, and are related to other similar artificial neural network applications such as autonomous road following.

  18. Artificial Intelligence Study (AIS).

    DTIC Science & Technology

    1987-02-01

    ARTIFICIAL INTELLIGNECE HARDWARE ....... 2-50 AI Architecture ................................... 2-49 AI Hardware ....................................... 2...ftf1 829 ARTIFICIAL INTELLIGENCE STUDY (RIS)(U) MAY CONCEPTS 1/3 A~NLYSIS AGENCY BETHESA RD R B NOJESKI FED 6? CM-RP-97-1 NCASIFIED /01/6 M |K 1.0...p/ - - ., e -- CAA- RP- 87-1 SAOFŔ)11 I ARTIFICIAL INTELLIGENCE STUDY (AIS) tNo DTICFEBRUARY 1987 LECT 00 I PREPARED BY RESEARCH AND ANALYSIS

  19. A Computer-Aided Instruction Program for Teaching the TOPS20-MM Facility on the DDN (Defense Data Network)

    DTIC Science & Technology

    1988-06-01

    Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Computer Assisted Instruction; Artificial Intelligence 194...while he/she tries to perform given tasks. Means-ends analysis, a classic technique for solving search problems in Artificial Intelligence, has been...he/she tries to perform given tasks. Means-ends analysis, a classic technique for solving search problems in Artificial Intelligence, has been used

  20. Demographic, socioeconomic and nutritional determinants of daily versus non-daily sugar-sweetened and artificially sweetened beverage consumption.

    PubMed

    Mullie, P; Aerenhouts, D; Clarys, P

    2012-02-01

    The aim of this study was to determine the impact of demographic, socioeconomic and nutritional determinants on daily versus non-daily sugar-sweetened and artificially sweetened beverage consumption. Cross-sectional design in 1852 military men. Using mailed questionnaires, sugar-sweetened and artificially sweetened beverage consumption was recorded. Principal component analysis was used for dietary pattern analysis. Sugar-sweetened and artificially sweetened beverages were consumed daily by 36.3% and 33.2% of the participants, respectively. Age, body mass index (BMI), non-smoking and income were negatively related to sugar-sweetened beverage consumption. High BMI and trying to lose weight were related to artificially sweetened beverages consumption. Three major patterns were obtained from principal component analysis: first, the 'meat pattern', was loaded for red meats and processed meats; second, the 'healthy pattern', was loaded for tomatoes, fruit, whole grain, vegetables, fruit, fish, tea and nuts; finally, the 'sweet pattern' was loaded for sweets, desserts, snacks, high-energy drinks, high-fat dairy products and refined grains. The sugar-sweetened beverage consumption was strongly related with both the meat and sweet dietary patterns and inversely related to the healthy dietary pattern. The artificially sweetened beverage consumption was strongly related with the sweet and healthy dietary pattern. Daily consumption of sugar-sweetened beverages was inversely associated with a healthy dietary pattern. Daily consumption of artificially sweetened beverages was clearly associated with weight-loss intention.

  1. Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology.

    PubMed

    Saijo, Hideto; Igawa, Kazuyo; Kanno, Yuki; Mori, Yoshiyuki; Kondo, Kayoko; Shimizu, Koutaro; Suzuki, Shigeki; Chikazu, Daichi; Iino, Mitsuki; Anzai, Masahiro; Sasaki, Nobuo; Chung, Ung-il; Takato, Tsuyoshi

    2009-01-01

    Ideally, artificial bones should be dimensionally compatible with deformities, and be biodegradable and osteoconductive; however, there are no artificial bones developed to date that satisfy these requirements. We fabricated novel custom-made artificial bones from alpha-tricalcium phosphate powder using an inkjet printer and implanted them in ten patients with maxillofacial deformities. The artificial bones had dimensional compatibility in all the patients. The operation time was reduced due to minimal need for size adjustment and fixing manipulation. The postsurgical computed tomography analysis detected partial union between the artificial bones and host bone tissues. There were no serious adverse reactions. These findings provide support for further clinical studies of the inkjet-printed custom-made artificial bones.

  2. Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection

    NASA Astrophysics Data System (ADS)

    Schlechtingen, Meik; Ferreira Santos, Ilmar

    2011-07-01

    This paper presents the research results of a comparison of three different model based approaches for wind turbine fault detection in online SCADA data, by applying developed models to five real measured faults and anomalies. The regression based model as the simplest approach to build a normal behavior model is compared to two artificial neural network based approaches, which are a full signal reconstruction and an autoregressive normal behavior model. Based on a real time series containing two generator bearing damages the capabilities of identifying the incipient fault prior to the actual failure are investigated. The period after the first bearing damage is used to develop the three normal behavior models. The developed or trained models are used to investigate how the second damage manifests in the prediction error. Furthermore the full signal reconstruction and the autoregressive approach are applied to further real time series containing gearbox bearing damages and stator temperature anomalies. The comparison revealed all three models being capable of detecting incipient faults. However, they differ in the effort required for model development and the remaining operational time after first indication of damage. The general nonlinear neural network approaches outperform the regression model. The remaining seasonality in the regression model prediction error makes it difficult to detect abnormality and leads to increased alarm levels and thus a shorter remaining operational period. For the bearing damages and the stator anomalies under investigation the full signal reconstruction neural network gave the best fault visibility and thus led to the highest confidence level.

  3. Intelligence: Real or artificial?

    PubMed Central

    Schlinger, Henry D.

    1992-01-01

    Throughout the history of the artificial intelligence movement, researchers have strived to create computers that could simulate general human intelligence. This paper argues that workers in artificial intelligence have failed to achieve this goal because they adopted the wrong model of human behavior and intelligence, namely a cognitive essentialist model with origins in the traditional philosophies of natural intelligence. An analysis of the word “intelligence” suggests that it originally referred to behavior-environment relations and not to inferred internal structures and processes. It is concluded that if workers in artificial intelligence are to succeed in their general goal, then they must design machines that are adaptive, that is, that can learn. Thus, artificial intelligence researchers must discard their essentialist model of natural intelligence and adopt a selectionist model instead. Such a strategic change should lead them to the science of behavior analysis. PMID:22477051

  4. SU-E-J-256: Predicting Metastasis-Free Survival of Rectal Cancer Patients Treated with Neoadjuvant Chemo-Radiotherapy by Data-Mining of CT Texture Features of Primary Lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, H; Wang, J; Shen, L

    Purpose: The purpose of this study is to investigate the relationship between computed tomographic (CT) texture features of primary lesions and metastasis-free survival for rectal cancer patients; and to develop a datamining prediction model using texture features. Methods: A total of 220 rectal cancer patients treated with neoadjuvant chemo-radiotherapy (CRT) were enrolled in this study. All patients underwent CT scans before CRT. The primary lesions on the CT images were delineated by two experienced oncologists. The CT images were filtered by Laplacian of Gaussian (LoG) filters with different filter values (1.0–2.5: from fine to coarse). Both filtered and unfiltered imagesmore » were analyzed using Gray-level Co-occurrence Matrix (GLCM) texture analysis with different directions (transversal, sagittal, and coronal). Totally, 270 texture features with different species, directions and filter values were extracted. Texture features were examined with Student’s t-test for selecting predictive features. Principal Component Analysis (PCA) was performed upon the selected features to reduce the feature collinearity. Artificial neural network (ANN) and logistic regression were applied to establish metastasis prediction models. Results: Forty-six of 220 patients developed metastasis with a follow-up time of more than 2 years. Sixtyseven texture features were significantly different in t-test (p<0.05) between patients with and without metastasis, and 12 of them were extremely significant (p<0.001). The Area-under-the-curve (AUC) of ANN was 0.72, and the concordance index (CI) of logistic regression was 0.71. The predictability of ANN was slightly better than logistic regression. Conclusion: CT texture features of primary lesions are related to metastasisfree survival of rectal cancer patients. Both ANN and logistic regression based models can be developed for prediction.« less

  5. The Effect of Satellite Observing System Changes on MERRA Water and Energy Fluxes

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Bosilovich, M. G.; Chen, J.; Miller, T. L.

    2011-01-01

    Because reanalysis data sets offer state variables and fluxes at regular space / time intervals, atmospheric reanalyses have become a mainstay of the climate community for diagnostic purposes and for driving offline ocean and land models. Although one weakness of these data sets is the susceptibility of the flux products to uncertainties because of shortcomings in parameterized model physics, another issue, perhaps less appreciated, is the fact that continual but discreet changes in the evolving observational system, particularly from satellite sensors, may also introduce artifacts in the time series of quantities. In this paper we examine the ability of the NASA MERRA (Modern Era Retrospective Analysis for Research and Applications) and other recent reanalyses to determine variability in the climate system over the satellite record (approx. the last 30 years). In particular we highlight the effect on the reanalysis of discontinuities at the junctures of the onset of passive microwave imaging (Special Sensor Microwave Imager) in late 1987 and, more prominently, with improved sounding and imaging with the Advanced Microwave Sounding Unit, AMSU-A, in 1998. We first examine MERRA fluxes from the perspective of how physical modes of variability (e.g. ENSO events, Pacific Decadal Variability) are contained by artificial step-like trends induced by the onset of new moisture data these two satellite observing systems. Secondly, we show how Redundancy Analysis, a statistical regression methodology, is effective in relating these artifact signals in the moisture and temperature analysis increments to their presence in the physical flux terms (e.g. precipitation, radiation). This procedure is shown to be effective greatly reducing the artificial trends in the flux quantities.

  6. The Effect of Satellite Observing System Changes on MERRA Water and Energy Fluxes

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Bosilovich, M. G.; Chen, J.; Miller, t. L.

    2010-01-01

    Because reanalysis data sets offer state variables and fluxes at regular space / time intervals, atmospheric reanalyses have become a mainstay of the climate community for diagnostic purposes and for driving offline ocean and land models. Although one weakness of these data sets is the susceptibility of the flux products to uncertainties because of shortcomings in parameterized model physics, another issue, perhaps less appreciated, is the fact that continual but discreet changes in the evolving observational system, particularly from satellite sensors, may also introduce artifacts in the time series of quantities. In this paper we examine the ability of the NASA MERRA (Modern Era Retrospective Analysis for Research and Applications) and other recent reanalyses to determine variability in the climate system over the satellite record (approximately the last 30 years). In particular we highlight the effect on the reanalysis of discontinuities at the junctures of the onset of passive microwave imaging (Special Sensor Microwave Imager) in late 1987 as well as improved sounding and imaging with the Advanced Microwave Sounding Unit, AMSU-A, in 1998. We first examine MERRA fluxes from the perspective of how physical modes of variability (e.g. ENSO events, Pacific Decadal Variability) are contaminated by artificial step-like trends induced by the onset of new moisture data these two satellite observing systems. Secondly, we show how Redundancy Analysis, a statistical regression methodology, is effective in relating these artifact signals in the moisture and temperature analysis increments to their presence in the physical flux terms (e.g. precipitation, radiation). This procedure is shown to be effective greatly reducing the artificial trends in the flux quantities.

  7. Detection of inter-turn short-circuit at start-up of induction machine based on torque analysis

    NASA Astrophysics Data System (ADS)

    Pietrowski, Wojciech; Górny, Konrad

    2017-12-01

    Recently, interest in new diagnostics methods in a field of induction machines was observed. Research presented in the paper shows the diagnostics of induction machine based on torque pulsation, under inter-turn short-circuit, during start-up of a machine. In the paper three numerical techniques were used: finite element analysis, signal analysis and artificial neural networks (ANN). The elaborated numerical model of faulty machine consists of field, circuit and motion equations. Voltage excited supply allowed to determine the torque waveform during start-up. The inter-turn short-circuit was treated as a galvanic connection between two points of the stator winding. The waveforms were calculated for different amounts of shorted-turns from 0 to 55. Due to the non-stationary waveforms a wavelet packet decomposition was used to perform an analysis of the torque. The obtained results of analysis were used as input vector for ANN. The response of the neural network was the number of shorted-turns in the stator winding. Special attention was paid to compare response of general regression neural network (GRNN) and multi-layer perceptron neural network (MLP). Based on the results of the research, the efficiency of the developed algorithm can be inferred.

  8. Non-metallic coating thickness prediction using artificial neural network and support vector machine with time resolved thermography

    NASA Astrophysics Data System (ADS)

    Wang, Hongjin; Hsieh, Sheng-Jen; Peng, Bo; Zhou, Xunfei

    2016-07-01

    A method without requirements on knowledge about thermal properties of coatings or those of substrates will be interested in the industrial application. Supervised machine learning regressions may provide possible solution to the problem. This paper compares the performances of two regression models (artificial neural networks (ANN) and support vector machines for regression (SVM)) with respect to coating thickness estimations made based on surface temperature increments collected via time resolved thermography. We describe SVM roles in coating thickness prediction. Non-dimensional analyses are conducted to illustrate the effects of coating thicknesses and various factors on surface temperature increments. It's theoretically possible to correlate coating thickness with surface increment. Based on the analyses, the laser power is selected in such a way: during the heating, the temperature increment is high enough to determine the coating thickness variance but low enough to avoid surface melting. Sixty-one pain-coated samples with coating thicknesses varying from 63.5 μm to 571 μm are used to train models. Hyper-parameters of the models are optimized by 10-folder cross validation. Another 28 sets of data are then collected to test the performance of the three methods. The study shows that SVM can provide reliable predictions of unknown data, due to its deterministic characteristics, and it works well when used for a small input data group. The SVM model generates more accurate coating thickness estimates than the ANN model.

  9. HOMPRA Europe - A gridded precipitation data set from European homogenized time series

    NASA Astrophysics Data System (ADS)

    Rustemeier, Elke; Kapala, Alice; Meyer-Christoffer, Anja; Finger, Peter; Schneider, Udo; Venema, Victor; Ziese, Markus; Simmer, Clemens; Becker, Andreas

    2017-04-01

    Reliable monitoring data are essential for robust analyses of climate variability and, in particular, long-term trends. In this regard, a gridded, homogenized data set of monthly precipitation totals - HOMPRA Europe (HOMogenized PRecipitation Analysis of European in-situ data)- is presented. The data base consists of 5373 homogenized monthly time series, a carefully selected subset held by the Global Precipitation Climatology Centre (GPCC). The chosen series cover the period 1951-2005 and contain less than 10% missing values. Due to the large number of data, an automatic algorithm had to be developed for the homogenization of these precipitation series. In principal, the algorithm is based on three steps: * Selection of overlapping station networks in the same precipitation regime, based on rank correlation and Ward's method of minimal variance. Since the underlying time series should be as homogeneous as possible, the station selection is carried out by deterministic first derivation in order to reduce artificial influences. * The natural variability and trends were temporally removed by means of highly correlated neighboring time series to detect artificial break-points in the annual totals. This ensures that only artificial changes can be detected. The method is based on the algorithm of Caussinus and Mestre (2004). * In the last step, the detected breaks are corrected monthly by means of a multiple linear regression (Mestre, 2003). Due to the automation of the homogenization, the validation of the algorithm is essential. Therefore, the method was tested on artificial data sets. Additionally the sensitivity of the method was tested by varying the neighborhood series. If available in digitized form, the station history was also used to search for systematic errors in the jump detection. Finally, the actual HOMPRA Europe product is produced by interpolation of the homogenized series onto a 1° grid using one of the interpolation schems operationally at GPCC (Becker et al., 2013 and Schamm et al., 2014). Caussinus, H., und O. Mestre, 2004: Detection and correction of artificial shifts in climate series, Journal of the Royal, Statistical Society. Series C (Applied Statistics), 53(3), 405-425. Mestre, O., 2003: Correcting climate series using ANOVA technique, Proceedings of the fourth seminar Willmott, C.; Rowe, C. & Philpot, W., 1985: Small-scale climate maps: A sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring The American Carthographer, 12, 5-16 Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Schamm, K.; Schneider, U. & Ziese, M., 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901-present Earth System Science Data, 5, 71-99 Schamm, K.; Ziese, M.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Schneider, U.; Schröder, M. & Stender, P., 2014: Global gridded precipitation over land: a description of the new GPCC First Guess Daily product, Earth System Science Data, 6, 49-60

  10. Modeling Training Site Vegetation Coverage Probability with a Random Optimizing Procedure: An Artificial Neural Network Approach.

    DTIC Science & Technology

    1998-05-01

    Coverage Probability with a Random Optimization Procedure: An Artificial Neural Network Approach by Biing T. Guan, George Z. Gertner, and Alan B...Modeling Training Site Vegetation Coverage Probability with a Random Optimizing Procedure: An Artificial Neural Network Approach 6. AUTHOR(S) Biing...coverage based on past coverage. Approach A literature survey was conducted to identify artificial neural network analysis techniques applicable for

  11. An analysis of the application of AI to the development of intelligent aids for flight crew tasks

    NASA Technical Reports Server (NTRS)

    Baron, S.; Feehrer, C.

    1985-01-01

    This report presents the results of a study aimed at developing a basis for applying artificial intelligence to the flight deck environment of commercial transport aircraft. In particular, the study was comprised of four tasks: (1) analysis of flight crew tasks, (2) survey of the state-of-the-art of relevant artificial intelligence areas, (3) identification of human factors issues relevant to intelligent cockpit aids, and (4) identification of artificial intelligence areas requiring further research.

  12. On Improved Least Squares Regression and Artificial Neural Network Meta-Models for Simulation via Control Variates

    DTIC Science & Technology

    2016-09-15

    18] under the context of robust parameter design for simulation. Bellucci’s technique is used in this research, primarily because the interior -point...Fundamentals of Radial Basis Neural Network (RBNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.2.2.2 Design of Experiments...with Neural Nets . . . . . . . . . . . . . 31 1.2.2.3 Factorial Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.2.2.4

  13. Estimation of water quality by UV/Vis spectrometry in the framework of treated wastewater reuse.

    PubMed

    Carré, Erwan; Pérot, Jean; Jauzein, Vincent; Lin, Liming; Lopez-Ferber, Miguel

    2017-07-01

    The aim of this study is to investigate the potential of ultraviolet/visible (UV/Vis) spectrometry as a complementary method for routine monitoring of reclaimed water production. Robustness of the models and compliance of their sensitivity with current quality limits are investigated. The following indicators are studied: total suspended solids (TSS), turbidity, chemical oxygen demand (COD) and nitrate. Partial least squares regression (PLSR) is used to find linear correlations between absorbances and indicators of interest. Artificial samples are made by simulating a sludge leak on the wastewater treatment plant and added to the original dataset, then divided into calibration and prediction datasets. The models are built on the calibration set, and then tested on the prediction set. The best models are developed with: PLSR for COD (R pred 2 = 0.80), TSS (R pred 2 = 0.86) and turbidity (R pred 2 = 0.96), and with a simple linear regression from absorbance at 208 nm (R pred 2 = 0.95) for nitrate concentration. The input of artificial data significantly enhances the robustness of the models. The sensitivity of the UV/Vis spectrometry monitoring system developed is compatible with quality requirements of reclaimed water production processes.

  14. Mortality Predicted Accuracy for Hepatocellular Carcinoma Patients with Hepatic Resection Using Artificial Neural Network

    PubMed Central

    Chiu, Herng-Chia; Ho, Te-Wei; Lee, King-Teh; Chen, Hong-Yaw; Ho, Wen-Hsien

    2013-01-01

    The aim of this present study is firstly to compare significant predictors of mortality for hepatocellular carcinoma (HCC) patients undergoing resection between artificial neural network (ANN) and logistic regression (LR) models and secondly to evaluate the predictive accuracy of ANN and LR in different survival year estimation models. We constructed a prognostic model for 434 patients with 21 potential input variables by Cox regression model. Model performance was measured by numbers of significant predictors and predictive accuracy. The results indicated that ANN had double to triple numbers of significant predictors at 1-, 3-, and 5-year survival models as compared with LR models. Scores of accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) of 1-, 3-, and 5-year survival estimation models using ANN were superior to those of LR in all the training sets and most of the validation sets. The study demonstrated that ANN not only had a great number of predictors of mortality variables but also provided accurate prediction, as compared with conventional methods. It is suggested that physicians consider using data mining methods as supplemental tools for clinical decision-making and prognostic evaluation. PMID:23737707

  15. An automated microplate-based method for monitoring DNA strand breaks in plasmids and bacterial artificial chromosomes

    PubMed Central

    Rock, Cassandra; Shamlou, Parviz Ayazi; Levy, M. Susana

    2003-01-01

    A method is described for high-throughput monitoring of DNA backbone integrity in plasmids and artificial chromosomes in solution. The method is based on the denaturation properties of double-stranded DNA in alkaline conditions and uses PicoGreen fluorochrome to monitor denaturation. In the present method, fluorescence enhancement of PicoGreen at pH 12.4 is normalised by its value at pH 8 to give a ratio that is proportional to the average backbone integrity of the DNA molecules in the sample. A good regression fit (r2 > 0.98) was obtained when results derived from the present method and those derived from agarose gel electrophoresis were compared. Spiking experiments indicated that the method is sensitive enough to detect a proportion of 6% (v/v) molecules with an average of less than two breaks per molecule. Under manual operation, validation parameters such as inter-assay and intra-assay variation gave values of <5% coefficient of variation. Automation of the method showed equivalence to the manual procedure with high reproducibility and low variability within wells. The method described requires as little as 0.5 ng of DNA per well and a 96-well microplate can be analysed in 12 min providing an attractive option for analysis of high molecular weight vectors. A preparation of a 116 kb bacterial artificial chromosome was subjected to chemical and shear degradation and DNA integrity was tested using the method. Good correlation was obtained between time of chemical degradation and shear rate with fluorescence response. Results obtained from pulsed- field electrophoresis of sheared samples were in agreement with those obtained using the microplate-based method. PMID:12771229

  16. Determinants of using pacifier and bottle feeding

    PubMed Central

    Buccini, Gabriela dos Santos; Benício, Maria Helena D’Aquino; Venancio, Sonia Isoyama

    2014-01-01

    OBJECTIVE To analyze the factors associated with the use of pacifiers and/or bottle feeding in infants aged under one year. METHODS This is a cross-sectional study with 34,366 children and using data from the database of the 2nd Nationwide Survey of Breastfeeding Prevalence performed in the Brazilian capitals and Federal District in 2008. Cluster sampling was used. The questionnaire included questions about the use of artificial nipples in the last 24 hours. The analysis considered three outcomes: exclusive use of pacifier, exclusive use of bottle feeding, and use of artificial nipples (pacifier and bottle feeding). Prevalence ratios were obtained using Poisson regression with robust variance following a hierarchical model. RESULTS The following factors were associated with exclusive use of the pacifier: mother working outside the home, primiparity, child was not breastfed within the first hour, and child had consumed tea on the first day at home. The following factors were associated with exclusive use of bottle feeding: mother working outside the home, primiparity, low birth weight, child not breastfed within the first hour, and child had consumed milk formula and tea on the first day at home. The following factors were associated with use of artificial nipples (pacifier and bottle feeding): mother working outside the home, primiparity, cesarean delivery, the male gender, low birth weight, born in a hospital not accredited as “baby friendly”, required health baby monitoring in the Primary Health Care Unit (PR = 0.91), and child had consumed milk formula, water, or tea on the first day at home. CONCLUSIONS This study identified profiles of exclusive users of pacifiers, bottle feeding, and both. The provided information can guide preventive practices for child health. PMID:25210816

  17. Artificial neural networks can be effectively used to model changes of intracranial pressure (ICP) during spinal surgery using different non invasive ICP surrogate estimators.

    PubMed

    Watad, Abdulla; Bragazzi, Nicola L; Bacigaluppi, Susanna; Amital, Howard; Watad, Samaa; Sharif, Kassem; Bisharat, Bishara; Siri, Anna; Mahamid, Ala; Abu Ras, Hakim; Nasr, Ahmed; Bilotta, Federico; Robba, Chiara; Adawi, Mohammad

    2018-02-23

    Artificial Intelligence (AI) techniques play a major role in anesthesiology, even though their importance is often overlooked. In the extant literature, AI approaches, such as Artificial Neural Networks (ANNs), have been underutilized, mainly being used to model patient's consciousness state, to predict the precise amount of anesthetic gases, the level of analgesia, or the need of anesthesiological blocks, among others. In the field of neurosurgery, ANNs have been effectively applied to the diagnosis and prognosis of cerebral tumors, seizures, low back pain, and also to the monitoring of intracranial pressure (ICP). A MultiLayer Perceptron (MLP), which is a feedforward ANN, with hyperbolic tangent as activation function in the input/hidden layers, softmax as activation function in the output layer, and cross-entropy as error function, was used to model the impact of prone versus supine position and the use of positive end expiratory pressure (PEEP) on ICP in a sample of 30 patients undergoing spinal surgery. Different non invasive surrogate estimations of ICP have been used and compared: namely, mean optic nerve sheath diameter (ONSD), non invasive estimated cerebral perfusion pressure (NCPP), pulsatility index (PI), ICP derived from PI (ICP-PI), and flow velocity diastolic formula (FVDICP). ONSD proved to be a more robust surrogate estimation of ICP, with a predictive power of 75%, whilst the power of NCPP, ICP-PI, PI, and FVDICP were 60.5%, 54.8%, 53.1%, and 47.7%, respectively. Our MLP analysis confirmed our findings previously obtained with regression, correlation, multivariate Receiving Operator Curve (multi-ROC) analyses. ANNs can be successfully used to predict the effects of prone versus supine position and PEEP on ICP in patients undergoing spinal surgery using different non invasive surrogate estimators of ICP.

  18. On the of neural modeling of some dynamic parameters of earthquakes and fire safety in high-rise construction

    NASA Astrophysics Data System (ADS)

    Haritonova, Larisa

    2018-03-01

    The recent change in the correlation of the number of man-made and natural catastrophes is presented in the paper. Some recommendations are proposed to increase the firefighting efficiency in the high-rise buildings. The article analyzes the methodology of modeling seismic effects. The prospectivity of applying the neural modeling and artificial neural networks to analyze a such dynamic parameters of the earthquake foci as the value of dislocation (or the average rupture slip) is shown. The following two input signals were used: the power class and the number of earthquakes. The regression analysis has been carried out for the predicted results and the target outputs. The equations of the regression for the outputs and target are presented in the work as well as the correlation coefficients in training, validation, testing, and the total (All) for the network structure 2-5-5-1for the average rupture slip. The application of the results obtained in the article for the seismic design for the newly constructed buildings and structures and the given recommendations will provide the additional protection from fire and earthquake risks, reduction of their negative economic and environmental consequences.

  19. Eddy current technique for predicting burst pressure

    DOEpatents

    Petri, Mark C.; Kupperman, David S.; Morman, James A.; Reifman, Jaques; Wei, Thomas Y. C.

    2003-01-01

    A signal processing technique which correlates eddy current inspection data from a tube having a critical tubing defect with a range of predicted burst pressures for the tube is provided. The method can directly correlate the raw eddy current inspection data representing the critical tubing defect with the range of burst pressures using a regression technique, preferably an artificial neural network. Alternatively, the technique deconvolves the raw eddy current inspection data into a set of undistorted signals, each of which represents a separate defect of the tube. The undistorted defect signal which represents the critical tubing defect is related to a range of burst pressures utilizing a regression technique.

  20. Applications of Support Vector Machines In Chemo And Bioinformatics

    NASA Astrophysics Data System (ADS)

    Jayaraman, V. K.; Sundararajan, V.

    2010-10-01

    Conventional linear & nonlinear tools for classification, regression & data driven modeling are being replaced on a rapid scale by newer techniques & tools based on artificial intelligence and machine learning. While the linear techniques are not applicable for inherently nonlinear problems, newer methods serve as attractive alternatives for solving real life problems. Support Vector Machine (SVM) classifiers are a set of universal feed-forward network based classification algorithms that have been formulated from statistical learning theory and structural risk minimization principle. SVM regression closely follows the classification methodology. In this work recent applications of SVM in Chemo & Bioinformatics will be described with suitable illustrative examples.

  1. Evolvable mathematical models: A new artificial Intelligence paradigm

    NASA Astrophysics Data System (ADS)

    Grouchy, Paul

    We develop a novel Artificial Intelligence paradigm to generate autonomously artificial agents as mathematical models of behaviour. Agent/environment inputs are mapped to agent outputs via equation trees which are evolved in a manner similar to Symbolic Regression in Genetic Programming. Equations are comprised of only the four basic mathematical operators, addition, subtraction, multiplication and division, as well as input and output variables and constants. From these operations, equations can be constructed that approximate any analytic function. These Evolvable Mathematical Models (EMMs) are tested and compared to their Artificial Neural Network (ANN) counterparts on two benchmarking tasks: the double-pole balancing without velocity information benchmark and the challenging discrete Double-T Maze experiments with homing. The results from these experiments show that EMMs are capable of solving tasks typically solved by ANNs, and that they have the ability to produce agents that demonstrate learning behaviours. To further explore the capabilities of EMMs, as well as to investigate the evolutionary origins of communication, we develop NoiseWorld, an Artificial Life simulation in which interagent communication emerges and evolves from initially noncommunicating EMM-based agents. Agents develop the capability to transmit their x and y position information over a one-dimensional channel via a complex, dialogue-based communication scheme. These evolved communication schemes are analyzed and their evolutionary trajectories examined, yielding significant insight into the emergence and subsequent evolution of cooperative communication. Evolved agents from NoiseWorld are successfully transferred onto physical robots, demonstrating the transferability of EMM-based AIs from simulation into physical reality.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Dirk C.; Deceglie, Michael G.; Kurtz, Sarah R.

    What is the best method to determine long-term PV system performance and degradation rates? Ideally, one universally applicable methodology would be desirable so that a single number could be derived. However, data sets vary in their attributes and evidence is presented that defining two methodologies may be preferable. Monte Carlo simulations of artificial performance data allowed investigation of different methodologies and their respective confidence intervals. Tradeoffs between different approaches were delineated, elucidating as to why two separate approaches may need to be included in a standard. Regression approaches tend to be preferable when data sets are less contaminated by seasonality,more » noise and occurrence of outliers although robust regression can significantly improve the accuracy when outliers are present. In the presence of outliers, marked seasonality, or strong soiling events, year-on-year approaches tend to outperform regression approaches.« less

  3. Artificial intelligence within the chemical laboratory.

    PubMed

    Winkel, P

    1994-01-01

    Various techniques within the area of artificial intelligence such as expert systems and neural networks may play a role during the problem-solving processes within the clinical biochemical laboratory. Neural network analysis provides a non-algorithmic approach to information processing, which results in the ability of the computer to form associations and to recognize patterns or classes among data. It belongs to the machine learning techniques which also include probabilistic techniques such as discriminant function analysis and logistic regression and information theoretical techniques. These techniques may be used to extract knowledge from example patients to optimize decision limits and identify clinically important laboratory quantities. An expert system may be defined as a computer program that can give advice in a well-defined area of expertise and is able to explain its reasoning. Declarative knowledge consists of statements about logical or empirical relationships between things. Expert systems typically separate declarative knowledge residing in a knowledge base from the inference engine: an algorithm that dynamically directs and controls the system when it searches its knowledge base. A tool is an expert system without a knowledge base. The developer of an expert system uses a tool by entering knowledge into the system. Many, if not the majority of problems encountered at the laboratory level are procedural. A problem is procedural if it is possible to write up a step-by-step description of the expert's work or if it can be represented by a decision tree. To solve problems of this type only small expert system tools and/or conventional programming are required.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Artificial pancreas (AP) clinical trial participants' acceptance of future AP technology.

    PubMed

    Bevier, Wendy C; Fuller, Serena M; Fuller, Ryan P; Rubin, Richard R; Dassau, Eyal; Doyle, Francis J; Jovanovič, Lois; Zisser, Howard C

    2014-09-01

    Artificial pancreas (AP) systems are currently an active field of diabetes research. This pilot study examined the attitudes of AP clinical trial participants toward future acceptance of the technology, having gained firsthand experience. After possible influencers of AP technology adoption were considered, a 34-question questionnaire was developed. The survey assessed current treatment satisfaction, dimensions of clinical trial participant motivation, and variables of the technology acceptance model (TAM). Forty-seven subjects were contacted to complete the survey. The reliability of the survey scales was tested using Cronbach's α. The relationship of the factors to the likelihood of AP technology adoption was explored using regression analysis. Thirty-six subjects (76.6%) completed the survey. Of the respondents, 86.1% were either highly likely or likely to adopt the technology once available. Reliability analysis of the survey dimensions revealed good internal consistency, with scores of >0.7 for current treatment satisfaction, convenience (motivation), personal health benefit (motivation), perceived ease of use (TAM), and perceived usefulness (TAM). Linear modeling showed that future acceptance of the AP was significantly associated with TAM and the motivation variables of convenience plus the individual item benefit to others (R(2)=0.26, P=0.05). When insulin pump and continuous glucose monitor use were added, the model significance improved (R(2)=0.37, P=0.02). This pilot study demonstrated that individuals with direct AP technology experience expressed high likelihood of future acceptance. Results support the factors of personal benefit, convenience, perceived usefulness, and perceived ease of use as reliable scales that suggest system adoption in this highly motivated patient population.

  5. Multicomponent kinetic spectrophotometric determination of pefloxacin and norfloxacin in pharmaceutical preparations and human plasma samples with the aid of chemometrics

    NASA Astrophysics Data System (ADS)

    Ni, Yongnian; Wang, Yong; Kokot, Serge

    2008-10-01

    A spectrophotometric method for the simultaneous determination of the important pharmaceuticals, pefloxacin and its structurally similar metabolite, norfloxacin, is described for the first time. The analysis is based on the monitoring of a kinetic spectrophotometric reaction of the two analytes with potassium permanganate as the oxidant. The measurement of the reaction process followed the absorbance decrease of potassium permanganate at 526 nm, and the accompanying increase of the product, potassium manganate, at 608 nm. It was essential to use multivariate calibrations to overcome severe spectral overlaps and similarities in reaction kinetics. Calibration curves for the individual analytes showed linear relationships over the concentration ranges of 1.0-11.5 mg L -1 at 526 and 608 nm for pefloxacin, and 0.15-1.8 mg L -1 at 526 and 608 nm for norfloxacin. Various multivariate calibration models were applied, at the two analytical wavelengths, for the simultaneous prediction of the two analytes including classical least squares (CLS), principal component regression (PCR), partial least squares (PLS), radial basis function-artificial neural network (RBF-ANN) and principal component-radial basis function-artificial neural network (PC-RBF-ANN). PLS and PC-RBF-ANN calibrations with the data collected at 526 nm, were the preferred methods—%RPE T ˜ 5, and LODs for pefloxacin and norfloxacin of 0.36 and 0.06 mg L -1, respectively. Then, the proposed method was applied successfully for the simultaneous determination of pefloxacin and norfloxacin present in pharmaceutical and human plasma samples. The results compared well with those from the alternative analysis by HPLC.

  6. [Development and succession of artificial biological soil crusts and water holding characteristics of topsoil].

    PubMed

    Wu, Li; Chen, Xiao-Guo; Zhang, Gao-Ke; Lan, Shu-Bin; Zhang, De-Lu; Hu, Chun-Xiang

    2014-03-01

    In order to understand the improving effects of cyanobacterial inoculation on water retention of topsoil in desert regions, this work focused on the development and succession of biological soil crusts and water holding characteristics of topsoil after cyanobacterial inoculation in Qubqi Desert. The results showed that after the artificial inoculation of desert cyanobacteria, algal crusts were quickly formed, and in some microenvironments direct succession of the algal crusts to moss crusts occurred after 2-3 years. With the development and succession of biological soil crusts, the topsoil biomass, polysaccharides content, crust thickness and porosity increased, while the soil bulk density decreased. At the same time, with crust development and succession, the topsoil texture became finer and the percents of fine soil particles including silt and clay contents increased, while the percents of coarse soil particles (sand content) decreased proportionately. In addition, it was found that with crust development and succession, the water holding capacity and water content of topsoil showed an increasing trend, namely: moss crust > algal crusts > shifting sand. The water content (or water holding capacity) in algal and moss crusts were 1.1-1.3 and 1.8-2.2 times of those in shifting sand, respectively. Correlation analysis showed that the water holding capacity and water content of topsoil were positively correlated with the crust biomass, polysaccharides content, thickness, bulk density, silt and clay content; while negatively correlated with the porosity and sand content. Furthermore, stepwise regression analysis showed that the main factor affecting water content was the clay content, while that affecting water holding capacity was the porosity.

  7. Complications and Short-Term Explantation Rate Following Artificial Urinary Sphincter Implantation: Results from a Large Middle European Multi-Institutional Case Series.

    PubMed

    Kretschmer, Alexander; Hüsch, Tanja; Thomsen, Frauke; Kronlachner, Dominik; Obaje, Alice; Anding, Ralf; Pottek, Tobias; Rose, Achim; Olianas, Roberto; Friedl, Alexander; Hübner, Wilhelm; Homberg, Roland; Pfitzenmaier, Jesco; Grein, Ulrich; Queissert, Fabian; Naumann, Carsten Maik; Schweiger, Josef; Wotzka, Carola; Nyarangi-Dix, Joanne N; Hofmann, Torben; Seiler, Roland; Haferkamp, Axel; Bauer, Ricarda M

    2016-01-01

    Background/Aims/Objectives: To analyze perioperative complication and short-term explantation rates after perineal or penoscrotal single-cuff and double-cuff artificial urinary sphincter (AUS) implantation in a large middle European multi-institutional patient cohort. 467 male patients with stress urinary incontinence underwent implantation of a perineal single-cuff (n = 152), penoscrotal single-cuff (n = 99), or perineal double-cuff (n = 216) AUS between 2010 and 2012. Postoperative complications and 6-month explantation rates were assessed. For statistical analysis, Fisher's exact test and Kruskal-Wallis rank sum test, and a multiple logistic regression model were used (p < 0.05). Compared to perineal single-cuff AUS, penoscrotal single-cuff implantation led to significantly increased short-term explantation rates (8.6% (perineal) vs. 19.2% (penoscrotal), p = 0.019). The postoperative infection rate was significantly higher after double-cuff compared to single-cuff implantation (6.0% (single-cuff) vs. 13.9% (double-cuff), p = 0.019). The short-term explantation rate after primary double-cuff placement was 6.5% (p = 0.543 vs. perineal single-cuff). In multivariate analysis, the penoscrotal approach (p = 0.004), intraoperative complications (p = 0.005), postoperative bleeding (p = 0.011), and perioperative infection (p < 0.001) were independent risk factors for short-term explantation. Providing data from a large contemporary multi-institutional patient cohort from high-volume and low-volume institutions, our results reflect the current standard of care in middle Europe. We indicate that the penoscrotal approach is an independent risk factor for increased short-term explantation rates. © 2016 S. Karger AG, Basel.

  8. Influence of leucite content on slow crack growth of dental porcelains.

    PubMed

    Cesar, Paulo F; Soki, Fabiana N; Yoshimura, Humberto N; Gonzaga, Carla C; Styopkin, Victor

    2008-08-01

    To determine the stress corrosion susceptibility coefficient, n, of seven dental porcelains (A: Ceramco I; B: Ceramco-II; C: Ceramco-III; D: d.Sign; E: Cerabien; F: Vitadur-Alpha; and G: Ultropaline) after aging in air or artificial saliva, and correlate results with leucite content (LC). Bars were fired according to manufacturers' instructions and polished before induction of cracks by a Vickers indenter (19.6N, 20s). Four specimens were stored in air/room temperature, and three in saliva/37 degrees C. Five indentations were made per specimen and crack lengths measured at the following times: approximately 0; 1; 3; 10; 30; 100; 300; 1000 and 3000 h. The stress corrosion coefficient n was calculated by linear regression analysis after plotting crack length as a function of time, considering that the slope of the curve was [2/(3n+2)]. Microstructural analysis was performed to determine LC. LC of the porcelains were 22% (A and B); 6% (C); 15% (D); 0% (E and F); and 13% (G). Except for porcelains A and D, all materials showed a decrease in their n values when stored in artificial saliva. However, the decrease was more pronounced for porcelains B, F, and G. Ranking of materials varied according to storage media (in air, porcelain G showed higher n compared to A, while in saliva both showed similar coefficients). No correlation was found between n values and LC in air or saliva. Storage media influenced the n value obtained for most of the materials. LC did not affect resistance to slow crack growth regardless of the test environment.

  9. An Artificial Neural Network for Movement Pattern Analysis to Estimate Blood Alcohol Content Level.

    PubMed

    Gharani, Pedram; Suffoletto, Brian; Chung, Tammy; Karimi, Hassan A

    2017-12-13

    Impairments in gait occur after alcohol consumption, and, if detected in real-time, could guide the delivery of "just-in-time" injury prevention interventions. We aimed to identify the salient features of gait that could be used for estimating blood alcohol content (BAC) level in a typical drinking environment. We recruited 10 young adults with a history of heavy drinking to test our research app. During four consecutive Fridays and Saturdays, every hour from 8 p.m. to 12 a.m., they were prompted to use the app to report alcohol consumption and complete a 5-step straight-line walking task, during which 3-axis acceleration and angular velocity data was sampled at a frequency of 100 Hz. BAC for each subject was calculated. From sensor signals, 24 features were calculated using a sliding window technique, including energy, mean, and standard deviation. Using an artificial neural network (ANN), we performed regression analysis to define a model determining association between gait features and BACs. Part (70%) of the data was then used as a training dataset, and the results tested and validated using the rest of the samples. We evaluated different training algorithms for the neural network and the result showed that a Bayesian regularization neural network (BRNN) was the most efficient and accurate. Analyses support the use of the tandem gait task paired with our approach to reliably estimate BAC based on gait features. Results from this work could be useful in designing effective prevention interventions to reduce risky behaviors during periods of alcohol consumption.

  10. Experimental analysis of the characteristics of artificial vocal folds.

    PubMed

    Misun, Vojtech; Svancara, Pavel; Vasek, Martin

    2011-05-01

    Specialized literature presents a number of models describing the function of the vocal folds. In most of those models, an emphasis is placed on the air flowing through the glottis and, further, on the effect of the parameters of the air alone (its mass, speed, and so forth). The article focuses on the constructional definition of artificial vocal folds and their experimental analysis. The analysis is conducted for voiced source voice phonation and for the changing mean value of the subglottal pressure. The article further deals with the analysis of the pressure of the airflow through the vocal folds, which is cut (separated) into individual pulses by the vibrating vocal folds. The analysis results show that air pulse characteristics are relevant to voice generation, as they are produced by the flowing air and vibrating vocal folds. A number of artificial vocal folds have been constructed to date, and the aforementioned view of their phonation is confirmed by their analysis. The experiments have confirmed that man is able to consciously affect only two parameters of the source voice, that is, its fundamental frequency and voice intensity. The main forces acting on the vocal folds during phonation are as follows: subglottal air pressure and elastic and inertia forces of the vocal folds' structure. The correctness of the function of the artificial vocal folds is documented by the experimental verification of the spectra of several types of artificial vocal folds. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  11. Testing of Safety-Critical Software Embedded in an Artificial Heart

    NASA Astrophysics Data System (ADS)

    Cha, Sungdeok; Jeong, Sehun; Yoo, Junbeom; Kim, Young-Gab

    Software is being used more frequently to control medical devices such as artificial heart or robotic surgery system. While much of software safety issues in such systems are similar to other safety-critical systems (e.g., nuclear power plants), domain-specific properties may warrant development of customized techniques to demonstrate fitness of the system on patients. In this paper, we report results of a preliminary analysis done on software controlling a Hybrid Ventricular Assist Device (H-VAD) developed by Korea Artificial Organ Centre (KAOC). It is a state-of-the-art artificial heart which completed animal testing phase. We performed software testing in in-vitro experiments and animal experiments. An abnormal behaviour, never detected during extensive in-vitro analysis and animal testing, was found.

  12. Quantitative Analysis of Ca, Mg, and K in the Roots of Angelica pubescens f. biserrata by Laser-Induced Breakdown Spectroscopy Combined with Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Wang, J.; Shi, M.; Zheng, P.; Xue, Sh.; Peng, R.

    2018-03-01

    Laser-induced breakdown spectroscopy has been applied for the quantitative analysis of Ca, Mg, and K in the roots of Angelica pubescens Maxim. f. biserrata Shan et Yuan used in traditional Chinese medicine. Ca II 317.993 nm, Mg I 517.268 nm, and K I 769.896 nm spectral lines have been chosen to set up calibration models for the analysis using the external standard and artificial neural network methods. The linear correlation coefficients of the predicted concentrations versus the standard concentrations of six samples determined by the artificial neural network method are 0.9896, 0.9945, and 0.9911 for Ca, Mg, and K, respectively, which are better than for the external standard method. The artificial neural network method also gives better performance comparing with the external standard method for the average and maximum relative errors, average relative standard deviations, and most maximum relative standard deviations of the predicted concentrations of Ca, Mg, and K in the six samples. Finally, it is proved that the artificial neural network method gives better performance compared to the external standard method for the quantitative analysis of Ca, Mg, and K in the roots of Angelica pubescens.

  13. Analysis of electrical penetration graph data: what to do with artificially terminated events?

    USDA-ARS?s Scientific Manuscript database

    Observing the durations of hemipteran feeding behaviors via Electrical Penetration Graph (EPG) results in situations where the duration of the last behavior is not ended by the insect under observation, but by the experimenter. These are artificially terminated events. In data analysis, one must ch...

  14. A novel multi-target regression framework for time-series prediction of drug efficacy.

    PubMed

    Li, Haiqing; Zhang, Wei; Chen, Ying; Guo, Yumeng; Li, Guo-Zheng; Zhu, Xiaoxin

    2017-01-18

    Excavating from small samples is a challenging pharmacokinetic problem, where statistical methods can be applied. Pharmacokinetic data is special due to the small samples of high dimensionality, which makes it difficult to adopt conventional methods to predict the efficacy of traditional Chinese medicine (TCM) prescription. The main purpose of our study is to obtain some knowledge of the correlation in TCM prescription. Here, a novel method named Multi-target Regression Framework to deal with the problem of efficacy prediction is proposed. We employ the correlation between the values of different time sequences and add predictive targets of previous time as features to predict the value of current time. Several experiments are conducted to test the validity of our method and the results of leave-one-out cross-validation clearly manifest the competitiveness of our framework. Compared with linear regression, artificial neural networks, and partial least squares, support vector regression combined with our framework demonstrates the best performance, and appears to be more suitable for this task.

  15. A novel multi-target regression framework for time-series prediction of drug efficacy

    PubMed Central

    Li, Haiqing; Zhang, Wei; Chen, Ying; Guo, Yumeng; Li, Guo-Zheng; Zhu, Xiaoxin

    2017-01-01

    Excavating from small samples is a challenging pharmacokinetic problem, where statistical methods can be applied. Pharmacokinetic data is special due to the small samples of high dimensionality, which makes it difficult to adopt conventional methods to predict the efficacy of traditional Chinese medicine (TCM) prescription. The main purpose of our study is to obtain some knowledge of the correlation in TCM prescription. Here, a novel method named Multi-target Regression Framework to deal with the problem of efficacy prediction is proposed. We employ the correlation between the values of different time sequences and add predictive targets of previous time as features to predict the value of current time. Several experiments are conducted to test the validity of our method and the results of leave-one-out cross-validation clearly manifest the competitiveness of our framework. Compared with linear regression, artificial neural networks, and partial least squares, support vector regression combined with our framework demonstrates the best performance, and appears to be more suitable for this task. PMID:28098186

  16. OPC modeling by genetic algorithm

    NASA Astrophysics Data System (ADS)

    Huang, W. C.; Lai, C. M.; Luo, B.; Tsai, C. K.; Tsay, C. S.; Lai, C. W.; Kuo, C. C.; Liu, R. G.; Lin, H. T.; Lin, B. J.

    2005-05-01

    Optical proximity correction (OPC) is usually used to pre-distort mask layouts to make the printed patterns as close to the desired shapes as possible. For model-based OPC, a lithographic model to predict critical dimensions after lithographic processing is needed. The model is usually obtained via a regression of parameters based on experimental data containing optical proximity effects. When the parameters involve a mix of the continuous (optical and resist models) and the discrete (kernel numbers) sets, the traditional numerical optimization method may have difficulty handling model fitting. In this study, an artificial-intelligent optimization method was used to regress the parameters of the lithographic models for OPC. The implemented phenomenological models were constant-threshold models that combine diffused aerial image models with loading effects. Optical kernels decomposed from Hopkin"s equation were used to calculate aerial images on the wafer. Similarly, the numbers of optical kernels were treated as regression parameters. This way, good regression results were obtained with different sets of optical proximity effect data.

  17. The effect of casein phosphopeptide-amorphous calcium phosphate and a cola soft drink on in vitro enamel hardness.

    PubMed

    Panich, Muratha; Poolthong, Suchit

    2009-04-01

    The authors conducted an in vitro study to compare the hardness of normal enamel with enamel eroded by a cola soft drink and enamel remineralized by casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) or artificial saliva. The authors immersed 40 extracted sound central and lateral incisors alternately in a cola soft drink or artificial saliva for 10 cycles of five seconds each. They repeated this procedure two times at six-hour intervals. They divided the samples randomly into four groups and applied CPP-ACP to the samples, immersed them in artificial saliva, deionized water or both. They measured the hardness on the labial surface at baseline, after erosion and after remineralization and analyzed the data with one-way repeated-measures analysis of variance and two-way analysis of variance. The cola soft drink significantly decreased enamel hardness. CPP-ACP and CPP-ACP and artificial saliva significantly increased the hardness of eroded enamel. CPP-ACP and CPP-ACP and artificial saliva increased the hardness of eroded enamel significantly more than artificial saliva did. CPP-ACP increased the hardness of eroded enamel. CPP-ACP had a greater effect on enamel hardness than did artificial saliva. Consumption of a cola soft drink can cause tooth erosion. CPP-ACP may significantly remineralize eroded enamel compared with artificial saliva.

  18. Preliminary results on predation of gypsy moth pupae during a period of latency in Slovakia

    Treesearch

    Marek Turcani; Andrew M. Liebhold; Michael McManus; J& #250; lius Novotn& #253

    2003-01-01

    Predation of gypsy moth pupae was studied from 2000 -2003 in Slovakia. Predation on artificially reared pupae was recorded and linear regression was used to test the hypothesis that predation follows a type II vs. type III functional response. The role of pupal predation in gypsy moth population dynamics was also investigated. The relative importance of predation of...

  19. Modeling Small Unmanned Aerial System Mishaps Using Logistic Regression and Artificial Neural Networks

    DTIC Science & Technology

    2012-03-22

    Faculty Department of Operational Sciences Graduate School of Engineering and Management Air Force Institute of Technology Air University...Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Operations...this project was well defined. I would also like to thank my reader, Dr. Joseph Pignatiello, for his technical insights and helpful comments. Thanks

  20. Active Learning with Statistical Models.

    DTIC Science & Technology

    1995-01-01

    Active Learning with Statistical Models ASC-9217041, NSF CDA-9309300 6. AUTHOR(S) David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan 7. PERFORMING...TERMS 15. NUMBER OF PAGES Al, MIT, Artificial Intelligence, active learning , queries, locally weighted 6 regression, LOESS, mixtures of gaussians...COMPUTATIONAL LEARNING DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES A.I. Memo No. 1522 January 9. 1995 C.B.C.L. Paper No. 110 Active Learning with

  1. A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS

    NASA Astrophysics Data System (ADS)

    Naghibi, Seyed Amir; Pourghasemi, Hamid Reza; Abbaspour, Karim

    2018-02-01

    Considering the unstable condition of water resources in Iran and many other countries in arid and semi-arid regions, groundwater studies are very important. Therefore, the aim of this study is to model groundwater potential by qanat locations as indicators and ten advanced and soft computing models applied to the Beheshtabad Watershed, Iran. Qanat is a man-made underground construction which gathers groundwater from higher altitudes and transmits it to low land areas where it can be used for different purposes. For this purpose, at first, the location of the qanats was detected using extensive field surveys. These qanats were classified into two datasets including training (70%) and validation (30%). Then, 14 influence factors depicting the region's physical, morphological, lithological, and hydrological features were identified to model groundwater potential. Linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), flexible discriminant analysis (FDA), penalized discriminant analysis (PDA), boosted regression tree (BRT), random forest (RF), artificial neural network (ANN), K-nearest neighbor (KNN), multivariate adaptive regression splines (MARS), and support vector machine (SVM) models were applied in R scripts to produce groundwater potential maps. For evaluation of the performance accuracies of the developed models, ROC curve and kappa index were implemented. According to the results, RF had the best performance, followed by SVM and BRT models. Our results showed that qanat locations could be used as a good indicator for groundwater potential. Furthermore, altitude, slope, plan curvature, and profile curvature were found to be the most important influence factors. On the other hand, lithology, land use, and slope aspect were the least significant factors. The methodology in the current study could be used by land use and terrestrial planners and water resource managers to reduce the costs of groundwater resource discovery.

  2. Implementation of the ANNs ensembles in macro-BIM cost estimates of buildings' floor structural frames

    NASA Astrophysics Data System (ADS)

    Juszczyk, Michał

    2018-04-01

    This paper reports some results of the studies on the use of artificial intelligence tools for the purposes of cost estimation based on building information models. A problem of the cost estimates based on the building information models on a macro level supported by the ensembles of artificial neural networks is concisely discussed. In the course of the research a regression model has been built for the purposes of cost estimation of buildings' floor structural frames, as higher level elements. Building information models are supposed to serve as a repository of data used for the purposes of cost estimation. The core of the model is the ensemble of neural networks. The developed model allows the prediction of cost estimates with satisfactory accuracy.

  3. In vitro aging behavior of dental composites considering the influence of filler content, storage media and incubation time

    PubMed Central

    Maletz, Reinhard; Ottl, Peter; Warkentin, Mareike

    2018-01-01

    Objective Over time dental composites age due to mechanical impacts such as chewing and chemical impacts such as saliva enzymes and food ingredients. For this research, the focus was placed on chemical degradation. The objective of this study was to simulate hydrolysis by using different food simulating liquids and to assess their impact on the mechanical parameter Vickers microhardness (MHV) and the physicochemical parameter contact angle (CA). Methods Specimen of three composites (d = 6 mm, h = 2 mm; n = 435) classified with respect to their filler content (wt%), namely low-filled, medium-filled and highly-filled, were stored for 0, 14, 30, 90 and 180 days in artificial saliva (pH 7), citric acid (pH 3; pH 5), lactic acid (pH 3; pH 5) and ethanol (40%vol; 60%vol) and assessed regarding to MHV and CA. Statistics: Kruskal-Wallis test, stepwise linear regression, bivariate Spearman Rank Correlation (p < 0.05). Results While stored in artificial saliva, acid and ethanol the CA decreased especially for the low- and medium-filled composites. It was shown that rising the filler content caused less surface changes in the CA. Storage in ethanol led to a significant decrease of MHV of all composites. Regression analysis showed that the effect of in vitro aging on MHV was mainly influenced by the composite material and therefore by filler content (R2 = 0.67; p < 0.05). In contrast, the CA is more influenced by incubation time and filler content (R2 = 0.2; p < 0.05) leading to a higher risk of plaque accumulation over time. Significance: In vitro aging showed significant changes on the mechanical and physicochemical properties of dental composites which may shorten their long-term functionality. In conclusion, it can be stated, that the type of composite material, especially rising filler content seems to improve the materials’ resistance against the processes of chemical degradation. PMID:29630621

  4. Feeling the ovaries prior to insemination. Clinical implications for improving the fertility of the dairy cow.

    PubMed

    López-Gatius, F

    2011-07-01

    During the periovulatory period in dairy cattle, the largest ovarian follicle can be felt by palpation per rectum as a firm/soft follicle (young preovulatory follicle), a very soft follicle separating it from the remainder of the ovary (mature preovulatory follicle), or an evacuated follicle (follicle associated with ovulation). Because any one of these three follicle types may be present at the time of artificial insemination, the objective of this study was to identify possible differences between the effects of a firm/soft, very soft, or evacuated ovarian follicle on fertility. Out of a study sample of 2365 inseminations, very soft, firm/soft, and evacuated follicles were recorded in 1689 (71%), 593 (25%), and 83 (3.5%) inseminations, respectively. Logistic regression analysis indicated no significant effects of largest follicle type, vaginal discharge, season, days in milk, parity, synchronized or natural estrus, and semen-providing bull on the pregnancy rate. The only variable included in the final logistic regression model was the interaction season-follicle type. This interaction determined that the likelihood of pregnancy decreased significantly by factors of 0.86 or 0.82 in cows with a firm/soft follicle inseminated during the cool or warm period, respectively, and by a factor of 0.09 in cows with evacuated follicles inseminated during the warm period, using as reference cows with a very soft follicle inseminated during the cool period (yielding the highest pregnancy rate). As an overall conclusion, the state of the periovulatory follicle at insemination was clearly related to fertility and masked the effects of factors commonly affecting fertility such as parity, days in milk at AI and inseminating bull. More importantly they suggest that by including ovarian follicle checks in artificial insemination routines, the success of this procedure could be improved. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Optimality in Microwave-Assisted Drying of Aloe Vera ( Aloe barbadensis Miller) Gel using Response Surface Methodology and Artificial Neural Network Modeling

    NASA Astrophysics Data System (ADS)

    Das, Chandan; Das, Arijit; Kumar Golder, Animes

    2016-10-01

    The present work illustrates the Microwave-Assisted Drying (MWAD) characteristic of aloe vera gel combined with process optimization and artificial neural network modeling. The influence of microwave power (160-480 W), gel quantity (4-8 g) and drying time (1-9 min) on the moisture ratio was investigated. The drying of aloe gel exhibited typical diffusion-controlled characteristics with a predominant interaction between input power and drying time. Falling rate period was observed for the entire MWAD of aloe gel. Face-centered Central Composite Design (FCCD) developed a regression model to evaluate their effects on moisture ratio. The optimal MWAD conditions were established as microwave power of 227.9 W, sample amount of 4.47 g and 5.78 min drying time corresponding to the moisture ratio of 0.15. A computer-stimulated Artificial Neural Network (ANN) model was generated for mapping between process variables and the desired response. `Levenberg-Marquardt Back Propagation' algorithm with 3-5-1 architect gave the best prediction, and it showed a clear superiority over FCCD.

  6. [Artificial intelligence to assist clinical diagnosis in medicine].

    PubMed

    Lugo-Reyes, Saúl Oswaldo; Maldonado-Colín, Guadalupe; Murata, Chiharu

    2014-01-01

    Medicine is one of the fields of knowledge that would most benefit from a closer interaction with Computer studies and Mathematics by optimizing complex, imperfect processes such as differential diagnosis; this is the domain of Machine Learning, a branch of Artificial Intelligence that builds and studies systems capable of learning from a set of training data, in order to optimize classification and prediction processes. In Mexico during the last few years, progress has been made on the implementation of electronic clinical records, so that the National Institutes of Health already have accumulated a wealth of stored data. For those data to become knowledge, they need to be processed and analyzed through complex statistical methods, as it is already being done in other countries, employing: case-based reasoning, artificial neural networks, Bayesian classifiers, multivariate logistic regression, or support vector machines, among other methodologies; to assist the clinical diagnosis of acute appendicitis, breast cancer and chronic liver disease, among a wide array of maladies. In this review we shift through concepts, antecedents, current examples and methodologies of machine learning-assisted clinical diagnosis.

  7. Fluoroscopic tumor tracking for image-guided lung cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Lin, Tong; Cerviño, Laura I.; Tang, Xiaoli; Vasconcelos, Nuno; Jiang, Steve B.

    2009-02-01

    Accurate lung tumor tracking in real time is a keystone to image-guided radiotherapy of lung cancers. Existing lung tumor tracking approaches can be roughly grouped into three categories: (1) deriving tumor position from external surrogates; (2) tracking implanted fiducial markers fluoroscopically or electromagnetically; (3) fluoroscopically tracking lung tumor without implanted fiducial markers. The first approach suffers from insufficient accuracy, while the second may not be widely accepted due to the risk of pneumothorax. Previous studies in fluoroscopic markerless tracking are mainly based on template matching methods, which may fail when the tumor boundary is unclear in fluoroscopic images. In this paper we propose a novel markerless tumor tracking algorithm, which employs the correlation between the tumor position and surrogate anatomic features in the image. The positions of the surrogate features are not directly tracked; instead, we use principal component analysis of regions of interest containing them to obtain parametric representations of their motion patterns. Then, the tumor position can be predicted from the parametric representations of surrogates through regression. Four regression methods were tested in this study: linear and two-degree polynomial regression, artificial neural network (ANN) and support vector machine (SVM). The experimental results based on fluoroscopic sequences of ten lung cancer patients demonstrate a mean tracking error of 2.1 pixels and a maximum error at a 95% confidence level of 4.6 pixels (pixel size is about 0.5 mm) for the proposed tracking algorithm.

  8. Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Hadi; Rajaee, Taher

    2017-01-01

    Simulation of groundwater level (GWL) fluctuations is an important task in management of groundwater resources. In this study, the effect of wavelet analysis on the training of the artificial neural network (ANN), multi linear regression (MLR) and support vector regression (SVR) approaches was investigated, and the ANN, MLR and SVR along with the wavelet-ANN (WNN), wavelet-MLR (WLR) and wavelet-SVR (WSVR) models were compared in simulating one-month-ahead of GWL. The only variable used to develop the models was the monthly GWL data recorded over a period of 11 years from two wells in the Qom plain, Iran. The results showed that decomposing GWL time series into several sub-time series, extremely improved the training of the models. For both wells 1 and 2, the Meyer and Db5 wavelets produced better results compared to the other wavelets; which indicated wavelet types had similar behavior in similar case studies. The optimal number of delays was 6 months, which seems to be due to natural phenomena. The best WNN model, using Meyer mother wavelet with two decomposition levels, simulated one-month-ahead with RMSE values being equal to 0.069 m and 0.154 m for wells 1 and 2, respectively. The RMSE values for the WLR model were 0.058 m and 0.111 m, and for WSVR model were 0.136 m and 0.060 m for wells 1 and 2, respectively.

  9. Risk assessment and driving factors for artificial topography on element heterogeneity: Case study at Jiangsu, China.

    PubMed

    Hong, Hualong; Dai, Minyue; Lu, Haoliang; Liu, Jingchun; Zhang, Jie; Yan, Chongling

    2018-02-01

    The rapid expansion of construction related to coastal development evokes great concern about environmental risks. Recent attention has been focused mainly on factors related to the effects of waterlogging, but there is urgent need to address the potential hazard caused by artificial topography: derived changes in the elemental composition of the sediments. To reveal possible mechanisms and to assess the environmental risks of artificial topography on transition of elemental composition in the sediment at adjoining zones, a nest-random effects-combined investigation was carried out around a semi-open seawall. The results implied great changes induced by artificial topography. Not only did artificial topography alter the sediment elemental composition at sites under the effect of artificial topography, but also caused a coupling pattern transition of elements S and Cd. The biogeochemical processes associated with S were also important, as suggested by cluster analysis. The geo-accumulation index shows that artificial topography triggered the accumulation of C, N, S, Cu, Fe, Mn, Zn, Ni, Cr, Pb, As and Cd, and increased the pollution risk of C, N, S, Cu, As and Cd. Enrichment factors reveal that artificial topography is a new type of human-activity-derived Cu contamination. The heavy metal Cu was notably promoted on both the geo-accumulation index and the enrichment factor under the influence of artificial topography. Further analysis showed that the Cu content in the sediment could be fitted using equations for Al and organic carbon, which represented clay mineral sedimentation and organic matter accumulation, respectively. Copper could be a reliable indicator of environmental degradation caused by artificial topography. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Northeast Artificial Intelligence Consortium Annual Report 1987. Volume 2, Part B. Discussing, Using, and Recognizing Plans

    DTIC Science & Technology

    1989-03-01

    1978. Williams. B.C. Qualitative Analysis of MOS Circuits. Artificial Inteligence . 1984. 24.. Wilson. K. From Association to Structure. Amsterdam:North...D-A208 378 RADC-TR-88-324, Vol II (of nine), Part B Interim Report March 1969 4. NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL REPORT 1987...II (of nine), Part B 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Northeast Artificial (ff ’aolicbl

  11. Estimation of soil cation exchange capacity using Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS)

    NASA Astrophysics Data System (ADS)

    Emamgolizadeh, S.; Bateni, S. M.; Shahsavani, D.; Ashrafi, T.; Ghorbani, H.

    2015-10-01

    The soil cation exchange capacity (CEC) is one of the main soil chemical properties, which is required in various fields such as environmental and agricultural engineering as well as soil science. In situ measurement of CEC is time consuming and costly. Hence, numerous studies have used traditional regression-based techniques to estimate CEC from more easily measurable soil parameters (e.g., soil texture, organic matter (OM), and pH). However, these models may not be able to adequately capture the complex and highly nonlinear relationship between CEC and its influential soil variables. In this study, Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS) were employed to estimate CEC from more readily measurable soil physical and chemical variables (e.g., OM, clay, and pH) by developing functional relations. The GEP- and MARS-based functional relations were tested at two field sites in Iran. Results showed that GEP and MARS can provide reliable estimates of CEC. Also, it was found that the MARS model (with root-mean-square-error (RMSE) of 0.318 Cmol+ kg-1 and correlation coefficient (R2) of 0.864) generated slightly better results than the GEP model (with RMSE of 0.270 Cmol+ kg-1 and R2 of 0.807). The performance of GEP and MARS models was compared with two existing approaches, namely artificial neural network (ANN) and multiple linear regression (MLR). The comparison indicated that MARS and GEP outperformed the MLP model, but they did not perform as good as ANN. Finally, a sensitivity analysis was conducted to determine the most and the least influential variables affecting CEC. It was found that OM and pH have the most and least significant effect on CEC, respectively.

  12. Predicting heavy metal concentrations in soils and plants using field spectrophotometry

    NASA Astrophysics Data System (ADS)

    Muradyan, V.; Tepanosyan, G.; Asmaryan, Sh.; Sahakyan, L.; Saghatelyan, A.; Warner, T. A.

    2017-09-01

    Aim of this study is to predict heavy metal (HM) concentrations in soils and plants using field remote sensing methods. The studied sites were an industrial town of Kajaran and city of Yerevan. The research also included sampling of soils and leaves of two tree species exposed to different pollution levels and determination of contents of HM in lab conditions. The obtained spectral values were then collated with contents of HM in Kajaran soils and the tree leaves sampled in Yerevan, and statistical analysis was done. Consequently, Zn and Pb have a negative correlation coefficient (p <0.01) in a 2498 nm spectral range for soils. Pb has a significantly higher correlation at red edge for plants. A regression models and artificial neural network (ANN) for HM prediction were developed. Good results were obtained for the best stress sensitive spectral band ANN (R2 0.9, RPD 2.0), Simple Linear Regression (SLR) and Partial Least Squares Regression (PLSR) (R2 0.7, RPD 1.4) models. Multiple Linear Regression (MLR) model was not applicable to predict Pb and Zn concentrations in soils in this research. Almost all full spectrum PLS models provide good calibration and validation results (RPD>1.4). Full spectrum ANN models are characterized by excellent calibration R2, rRMSE and RPD (0.9; 0.1 and >2.5 respectively). For prediction of Pb and Ni contents in plants SLR and PLS models were used. The latter provide almost the same results. Our findings indicate that it is possible to make coarse direct estimation of HM content in soils and plants using rapid and economic reflectance spectroscopy.

  13. Exposure to fluoridated water and attention deficit hyperactivity disorder prevalence among children and adolescents in the United States: an ecological association.

    PubMed

    Malin, Ashley J; Till, Christine

    2015-02-27

    Epidemiological and animal-based studies have suggested that prenatal and postnatal fluoride exposure has adverse effects on neurodevelopment. The aim of this study was to examine the relationship between exposure to fluoridated water and Attention-Deficit Hyperactivity Disorder (ADHD) prevalence among children and adolescents in the United States. Data on ADHD prevalence among 4-17 year olds collected in 2003, 2007 and 2011 as part of the National Survey of Children's Health, and state water fluoridation prevalence from the Centers for Disease Control and Prevention (CDC) collected between 1992 and 2008 were utilized. State prevalence of artificial water fluoridation in 1992 significantly positively predicted state prevalence of ADHD in 2003, 2007 and 2011, even after controlling for socioeconomic status. A multivariate regression analysis showed that after socioeconomic status was controlled each 1% increase in artificial fluoridation prevalence in 1992 was associated with approximately 67,000 to 131,000 additional ADHD diagnoses from 2003 to 2011. Overall state water fluoridation prevalence (not distinguishing between fluoridation types) was also significantly positively correlated with state prevalence of ADHD for all but one year examined. Parents reported higher rates of medically-diagnosed ADHD in their children in states in which a greater proportion of people receive fluoridated water from public water supplies. The relationship between fluoride exposure and ADHD warrants future study.

  14. Combination of uniform design with artificial neural network coupling genetic algorithm: an effective way to obtain high yield of biomass and algicidal compound of a novel HABs control actinomycete

    PubMed Central

    2014-01-01

    Controlling harmful algae blooms (HABs) using microbial algicides is cheap, efficient and environmental-friendly. However, obtaining high yield of algicidal microbes to meet the need of field test is still a big challenge since qualitative and quantitative analysis of algicidal compounds is difficult. In this study, we developed a protocol to increase the yield of both biomass and algicidal compound present in a novel algicidal actinomycete Streptomyces alboflavus RPS, which kills Phaeocystis globosa. To overcome the problem in algicidal compound quantification, we chose algicidal ratio as the index and used artificial neural network to fit the data, which was appropriate for this nonlinear situation. In this protocol, we firstly determined five main influencing factors through single factor experiments and generated the multifactorial experimental groups with a U15(155) uniform-design-table. Then, we used the traditional quadratic polynomial stepwise regression model and an accurate, fully optimized BP-neural network to simulate the fermentation. Optimized with genetic algorithm and verified using experiments, we successfully increased the algicidal ratio of the fermentation broth by 16.90% and the dry mycelial weight by 69.27%. These results suggested that this newly developed approach is a viable and easy way to optimize the fermentation conditions for algicidal microorganisms. PMID:24886410

  15. Combination of uniform design with artificial neural network coupling genetic algorithm: an effective way to obtain high yield of biomass and algicidal compound of a novel HABs control actinomycete.

    PubMed

    Cai, Guanjing; Zheng, Wei; Yang, Xujun; Zhang, Bangzhou; Zheng, Tianling

    2014-05-24

    Controlling harmful algae blooms (HABs) using microbial algicides is cheap, efficient and environmental-friendly. However, obtaining high yield of algicidal microbes to meet the need of field test is still a big challenge since qualitative and quantitative analysis of algicidal compounds is difficult. In this study, we developed a protocol to increase the yield of both biomass and algicidal compound present in a novel algicidal actinomycete Streptomyces alboflavus RPS, which kills Phaeocystis globosa. To overcome the problem in algicidal compound quantification, we chose algicidal ratio as the index and used artificial neural network to fit the data, which was appropriate for this nonlinear situation. In this protocol, we firstly determined five main influencing factors through single factor experiments and generated the multifactorial experimental groups with a U15(155) uniform-design-table. Then, we used the traditional quadratic polynomial stepwise regression model and an accurate, fully optimized BP-neural network to simulate the fermentation. Optimized with genetic algorithm and verified using experiments, we successfully increased the algicidal ratio of the fermentation broth by 16.90% and the dry mycelial weight by 69.27%. These results suggested that this newly developed approach is a viable and easy way to optimize the fermentation conditions for algicidal microorganisms.

  16. Application of an artificial neural network model for diagnosing type 2 diabetes mellitus and determining the relative importance of risk factors.

    PubMed

    Borzouei, Shiva; Soltanian, Ali Reza

    2018-01-01

    To identify the most important demographic risk factors for a diagnosis of type 2 diabetes mellitus (T2DM) using a neural network model. This study was conducted on a sample of 234 individuals, in whom T2DM was diagnosed using hemoglobin A1c levels. A multilayer perceptron artificial neural network was used to identify demographic risk factors for T2DM and their importance. The DeLong method was used to compare the models by fitting in sequential steps. Variables found to be significant at a level of p<0.2 in a univariate logistic regression analysis (age, hypertension, waist circumference, body mass index [BMI], sedentary lifestyle, smoking, vegetable consumption, family history of T2DM, stress, walking, fruit consumption, and sex) were entered into the model. After 7 stages of neural network modeling, only waist circumference (100.0%), age (78.5%), BMI (78.2%), hypertension (69.4%), stress (54.2%), smoking (49.3%), and a family history of T2DM (37.2%) were identified as predictors of the diagnosis of T2DM. In this study, waist circumference and age were the most important predictors of T2DM. Due to the sensitivity, specificity, and accuracy of the final model, it is suggested that these variables should be used for T2DM risk assessment in screening tests.

  17. Maternal Dietary Patterns during Pregnancy in Relation to Offspring Forearm Fractures: Prospective Study from the Danish National Birth Cohort

    PubMed Central

    Petersen, Sesilje B.; Rasmussen, Morten A.; Olsen, Sjurdur F.; Vestergaard, Peter; Mølgaard, Christian; Halldorsson, Thorhallur I.; Strøm, Marin

    2015-01-01

    Limited evidence exists for an association between maternal diet during pregnancy and offspring bone health. In a prospective study, we examined the association between dietary patterns in mid-pregnancy and offspring forearm fractures. In total, 101,042 pregnancies were recruited to the Danish National Birth Cohort (DNBC) during 1996–2002. Maternal diet was collected by a food frequency questionnaire. Associations were analyzed between seven dietary patterns extracted by principal component analysis and offspring first occurrence of any forearm fracture diagnosis, extracted from the Danish National Patient Register, between time of birth and end of follow-up (<16 year) (n = 53,922). In multivariable Cox regression models, offspring of mothers in the fourth vs. first quintile of the Western pattern had a significant increased risk (Hazard ratio, 95% confidence interval: 1.11, 1.01–1.23) of fractures, and there was a borderline significant positive trend (p = 0.06). The other dietary patterns showed no associations and neither did supplementary analyses of macro- and micronutrients or single food groups, except for the intake of artificially sweetened soft drinks, which was positively associated with offspring forearm fractures (p = 0.02). In the large prospective DNBC high mid-pregnancy consumption of Western diet and artificially sweetened soft drinks, respectively, indicated positive associations with offspring forearm fractures, which provides interesting hypotheses for future research. PMID:25849947

  18. Artificial neural networks as alternative tool for minimizing error predictions in manufacturing ultradeformable nanoliposome formulations.

    PubMed

    León Blanco, José M; González-R, Pedro L; Arroyo García, Carmen Martina; Cózar-Bernal, María José; Calle Suárez, Marcos; Canca Ortiz, David; Rabasco Álvarez, Antonio María; González Rodríguez, María Luisa

    2018-01-01

    This work was aimed at determining the feasibility of artificial neural networks (ANN) by implementing backpropagation algorithms with default settings to generate better predictive models than multiple linear regression (MLR) analysis. The study was hypothesized on timolol-loaded liposomes. As tutorial data for ANN, causal factors were used, which were fed into the computer program. The number of training cycles has been identified in order to optimize the performance of the ANN. The optimization was performed by minimizing the error between the predicted and real response values in the training step. The results showed that training was stopped at 10 000 training cycles with 80% of the pattern values, because at this point the ANN generalizes better. Minimum validation error was achieved at 12 hidden neurons in a single layer. MLR has great prediction ability, with errors between predicted and real values lower than 1% in some of the parameters evaluated. Thus, the performance of this model was compared to that of the MLR using a factorial design. Optimal formulations were identified by minimizing the distance among measured and theoretical parameters, by estimating the prediction errors. Results indicate that the ANN shows much better predictive ability than the MLR model. These findings demonstrate the increased efficiency of the combination of ANN and design of experiments, compared to the conventional MLR modeling techniques.

  19. Comprehensive comparison of gap filling techniques for eddy covariance net carbon fluxes

    NASA Astrophysics Data System (ADS)

    Moffat, A. M.; Papale, D.; Reichstein, M.; Hollinger, D. Y.; Richardson, A. D.; Barr, A. G.; Beckstein, C.; Braswell, B. H.; Churkina, G.; Desai, A. R.; Falge, E.; Gove, J. H.; Heimann, M.; Hui, D.; Jarvis, A. J.; Kattge, J.; Noormets, A.; Stauch, V. J.

    2007-12-01

    Review of fifteen techniques for estimating missing values of net ecosystem CO2 exchange (NEE) in eddy covariance time series and evaluation of their performance for different artificial gap scenarios based on a set of ten benchmark datasets from six forested sites in Europe. The goal of gap filling is the reproduction of the NEE time series and hence this present work focuses on estimating missing NEE values, not on editing or the removal of suspect values in these time series due to systematic errors in the measurements (e.g. nighttime flux, advection). The gap filling was examined by generating fifty secondary datasets with artificial gaps (ranging in length from single half-hours to twelve consecutive days) for each benchmark dataset and evaluating the performance with a variety of statistical metrics. The performance of the gap filling varied among sites and depended on the level of aggregation (native half- hourly time step versus daily), long gaps were more difficult to fill than short gaps, and differences among the techniques were more pronounced during the day than at night. The non-linear regression techniques (NLRs), the look-up table (LUT), marginal distribution sampling (MDS), and the semi-parametric model (SPM) generally showed good overall performance. The artificial neural network based techniques (ANNs) were generally, if only slightly, superior to the other techniques. The simple interpolation technique of mean diurnal variation (MDV) showed a moderate but consistent performance. Several sophisticated techniques, the dual unscented Kalman filter (UKF), the multiple imputation method (MIM), the terrestrial biosphere model (BETHY), but also one of the ANNs and one of the NLRs showed high biases which resulted in a low reliability of the annual sums, indicating that additional development might be needed. An uncertainty analysis comparing the estimated random error in the ten benchmark datasets with the artificial gap residuals suggested that the techniques are already at or very close to the noise limit of the measurements. Based on the techniques and site data examined here, the effect of gap filling on the annual sums of NEE is modest, with most techniques falling within a range of ±25 g C m-2 y-1.

  20. Derivation of an artificial gene to improve classification accuracy upon gene selection.

    PubMed

    Seo, Minseok; Oh, Sejong

    2012-02-01

    Classification analysis has been developed continuously since 1936. This research field has advanced as a result of development of classifiers such as KNN, ANN, and SVM, as well as through data preprocessing areas. Feature (gene) selection is required for very high dimensional data such as microarray before classification work. The goal of feature selection is to choose a subset of informative features that reduces processing time and provides higher classification accuracy. In this study, we devised a method of artificial gene making (AGM) for microarray data to improve classification accuracy. Our artificial gene was derived from a whole microarray dataset, and combined with a result of gene selection for classification analysis. We experimentally confirmed a clear improvement of classification accuracy after inserting artificial gene. Our artificial gene worked well for popular feature (gene) selection algorithms and classifiers. The proposed approach can be applied to any type of high dimensional dataset. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Functional Recovery and Life Satisfaction in the First Year After Severe Traumatic Brain Injury: A Prospective Multicenter Study of a Norwegian National Cohort.

    PubMed

    Anke, Audny; Andelic, Nada; Skandsen, Toril; Knoph, Rein; Ader, Tiina; Manskow, Unn; Sigurdardottir, Solrun; Røe, Cecilie

    2015-01-01

    (1) To examine the impact of demographic and acute injury-related variables on functional recovery and life satisfaction after severe traumatic brain injury (sTBI) and (2) to test whether postinjury functioning, postconcussive symptoms, emotional state, and functional improvement are related to life satisfaction. Prospective national multicenter study. Level 1 trauma centers in Norway. 163 adults with sTBI. Functional recovery between 3 and 12 months postinjury measured with Glasgow Outcome Scale Extended, Rivermead Postconcussion Symptoms Questionnaire, Hospital Anxiety and Depression Scale, and satisfaction with life situation. 60% of cases experienced functional improvement from 3 to 12 months postinjury. Multivariate logistic regression analysis revealed that discharge to a rehabilitation department from acute care (odds ratio [OR] = 2.14; P < .05) and fewer days with artificial ventilation (OR = 1.04; P < .05) were significantly related to improvement. At 12 months postinjury, 85% were independent in daily activities. Most participants (63%) were satisfied with their life situation. Regression analysis revealed that older age (>65 years), low education, better functional outcome, and the absence of depressive and postconcussion symptoms were significant (P < .05) predictors of life satisfaction. Functional improvement was significantly associated with emotional state but not to life satisfaction. Following sTBI, approximately two-thirds of survivors improve between 3 and 12 months postinjury and are satisfied with their life. Direct discharge from acute care to specialized rehabilitation appears to increase functional recovery.

  2. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics

    NASA Astrophysics Data System (ADS)

    Wösten, J. H. M.; Pachepsky, Ya. A.; Rawls, W. J.

    2001-10-01

    Water retention and hydraulic conductivity are crucial input parameters in any modelling study on water flow and solute transport in soils. Due to inherent temporal and spatial variability in these hydraulic characteristics, large numbers of samples are required to properly characterise areas of land. Hydraulic characteristics can be obtained from direct laboratory and field measurements. However, these measurements are time consuming which makes it costly to characterise an area of land. As an alternative, analysis of existing databases of measured soil hydraulic data may result in pedotransfer functions. In practise, these functions often prove to be good predictors for missing soil hydraulic characteristics. Examples are presented of different equations describing hydraulic characteristics and of pedotransfer functions used to predict parameters in these equations. Grouping of data prior to pedotransfer function development is discussed as well as the use of different soil properties as predictors. In addition to regression analysis, new techniques such as artificial neural networks, group methods of data handling, and classification and regression trees are increasingly being used for pedotransfer function development. Actual development of pedotransfer functions is demonstrated by describing a practical case study. Examples are presented of pedotransfer function for predicting other than hydraulic characteristics. Accuracy and reliability of pedotransfer functions are demonstrated and discussed. In this respect, functional evaluation of pedotransfer functions proves to be a good tool to assess the desired accuracy of a pedotransfer function for a specific application.

  3. Influence of artificial accelerated aging on dimensional stability of acrylic resins submitted to different storage protocols.

    PubMed

    Garcia, Lucas da Fonseca Roberti; Roselino, Lourenço de Moraes Rego; Mundim, Fabrício Mariano; Pires-de-Souza, Fernanda de Carvalho Panzeri; Consani, Simonides

    2010-08-01

    The aim of this study was to evaluate the influence of artificial accelerated aging on dimensional stability of two types of acrylic resins (thermally and chemically activated) submitted to different protocols of storage. One hundred specimens were made using a Teflon matrix (1.5 cm x 0.5 mm) with four imprint marks, following the lost-wax casting method. The specimens were divided into ten groups, according to the type of acrylic resin, aging procedure, and storage protocol (30 days). GI: acrylic resins thermally activated, aging, storage in artificial saliva for 16 hours, distilled water for 8 hours; GII: thermal, aging, artificial saliva for 16 hours, dry for 8 hours; GIII: thermal, no aging, artificial saliva for 16 hours, distilled water for 8 hours, GIV: thermal, no aging, artificial saliva for 16 hours, dry for 8 hours; GV: acrylic resins chemically activated, aging, artificial saliva for 16 hours, distilled water for 8 hours; GVI: chemical, aging, artificial saliva for 16 hours, dry for 8 hours; GVII: chemical, no aging, artificial saliva for 16 hours, distilled water for 8 hours; GVIII: chemical, no aging, artificial saliva for 16 hours, dry for 8 hours GIX: thermal, dry for 24 hours; and GX: chemical, dry for 24 hours. All specimens were photographed before and after treatment, and the images were evaluated by software (UTHSCSA - Image Tool) that made distance measurements between the marks in the specimens (mm), calculating the dimensional stability. Data were submitted to statistical analysis (two-way ANOVA, Tukey test, p= 0.05). Statistical analysis showed that the specimens submitted to storage in water presented the largest distance between both axes (major and minor), statistically different (p < 0.05) from control groups. All acrylic resins presented dimensional changes, and the artificial accelerated aging and storage period influenced these alterations.

  4. A study of fuzzy logic ensemble system performance on face recognition problem

    NASA Astrophysics Data System (ADS)

    Polyakova, A.; Lipinskiy, L.

    2017-02-01

    Some problems are difficult to solve by using a single intelligent information technology (IIT). The ensemble of the various data mining (DM) techniques is a set of models which are able to solve the problem by itself, but the combination of which allows increasing the efficiency of the system as a whole. Using the IIT ensembles can improve the reliability and efficiency of the final decision, since it emphasizes on the diversity of its components. The new method of the intellectual informational technology ensemble design is considered in this paper. It is based on the fuzzy logic and is designed to solve the classification and regression problems. The ensemble consists of several data mining algorithms: artificial neural network, support vector machine and decision trees. These algorithms and their ensemble have been tested by solving the face recognition problems. Principal components analysis (PCA) is used for feature selection.

  5. Exploring QSARs of the interaction of flavonoids with GABA (A) receptor using MLR, ANN and SVM techniques.

    PubMed

    Deeb, Omar; Shaik, Basheerulla; Agrawal, Vijay K

    2014-10-01

    Quantitative Structure-Activity Relationship (QSAR) models for binding affinity constants (log Ki) of 78 flavonoid ligands towards the benzodiazepine site of GABA (A) receptor complex were calculated using the machine learning methods: artificial neural network (ANN) and support vector machine (SVM) techniques. The models obtained were compared with those obtained using multiple linear regression (MLR) analysis. The descriptor selection and model building were performed with 10-fold cross-validation using the training data set. The SVM and MLR coefficient of determination values are 0.944 and 0.879, respectively, for the training set and are higher than those of ANN models. Though the SVM model shows improvement of training set fitting, the ANN model was superior to SVM and MLR in predicting the test set. Randomization test is employed to check the suitability of the models.

  6. A Bayesian Measurment Error Model for Misaligned Radiographic Data

    DOE PAGES

    Lennox, Kristin P.; Glascoe, Lee G.

    2013-09-06

    An understanding of the inherent variability in micro-computed tomography (micro-CT) data is essential to tasks such as statistical process control and the validation of radiographic simulation tools. The data present unique challenges to variability analysis due to the relatively low resolution of radiographs, and also due to minor variations from run to run which can result in misalignment or magnification changes between repeated measurements of a sample. Positioning changes artificially inflate the variability of the data in ways that mask true physical phenomena. We present a novel Bayesian nonparametric regression model that incorporates both additive and multiplicative measurement error inmore » addition to heteroscedasticity to address this problem. We also use this model to assess the effects of sample thickness and sample position on measurement variability for an aluminum specimen. Supplementary materials for this article are available online.« less

  7. Assessment of Risk Factors of Intrauterine Adhesions in Patients With Induced Abortion and the Curative Effect of Hysteroscopic Surgery.

    PubMed

    Mo, Xiaoliang; Qin, Guirong; Zhou, Zhoulin; Jiang, Xiaoli

    2017-10-03

    To explore the risk factors for intrauterine adhesions in patients with artificial abortion and clinical efficacy of hysteroscopic dissection. 1500 patients undergoing artificial abortion between January 2014 and June 2015 were enrolled into this study. The patients were divided into two groups with or without intrauterine adhesions. Univariate and Multiple logistic regression were conducted to assess the effects of multiple factors on the development of intrauterine adhesions following induced abortion. The incidence rate for intrauterine adhesions following induced abortion is 17.0%. Univariate showed that preoperative inflammation, multiple pregnancies and suction evacuation time are the influence risk factors of intrauterine adhesions. Multiple logistic regression demonstrates that multiple pregnancies, high intrauterine negative pressure, and long suction evacuation time are independent risk factors for the development of intrauterine adhesions following induced abortion. Additionally, intrauterine adhesions were observed in 105 mild, 80 moderate, and 70 severe cases. The cure rates for these three categories of intrauterine adhesions by hysteroscopic surgery were 100.0%, 93.8%, and 85.7%, respectively. Multiple pregnancies, high negative pressure suction evacuation and long suction evacuation time are independent risk factors for the development of intrauterine adhesions following induced abortions. Hysteroscopic surgery substantially improves the clinical outcomes of intrauterine adhesions.

  8. Fouling resistance prediction using artificial neural network nonlinear auto-regressive with exogenous input model based on operating conditions and fluid properties correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biyanto, Totok R.

    Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO{sub 2} emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model aremore » flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.« less

  9. A graphical method to evaluate spectral preprocessing in multivariate regression calibrations: example with Savitzky-Golay filters and partial least squares regression.

    PubMed

    Delwiche, Stephen R; Reeves, James B

    2010-01-01

    In multivariate regression analysis of spectroscopy data, spectral preprocessing is often performed to reduce unwanted background information (offsets, sloped baselines) or accentuate absorption features in intrinsically overlapping bands. These procedures, also known as pretreatments, are commonly smoothing operations or derivatives. While such operations are often useful in reducing the number of latent variables of the actual decomposition and lowering residual error, they also run the risk of misleading the practitioner into accepting calibration equations that are poorly adapted to samples outside of the calibration. The current study developed a graphical method to examine this effect on partial least squares (PLS) regression calibrations of near-infrared (NIR) reflection spectra of ground wheat meal with two analytes, protein content and sodium dodecyl sulfate sedimentation (SDS) volume (an indicator of the quantity of the gluten proteins that contribute to strong doughs). These two properties were chosen because of their differing abilities to be modeled by NIR spectroscopy: excellent for protein content, fair for SDS sedimentation volume. To further demonstrate the potential pitfalls of preprocessing, an artificial component, a randomly generated value, was included in PLS regression trials. Savitzky-Golay (digital filter) smoothing, first-derivative, and second-derivative preprocess functions (5 to 25 centrally symmetric convolution points, derived from quadratic polynomials) were applied to PLS calibrations of 1 to 15 factors. The results demonstrated the danger of an over reliance on preprocessing when (1) the number of samples used in a multivariate calibration is low (<50), (2) the spectral response of the analyte is weak, and (3) the goodness of the calibration is based on the coefficient of determination (R(2)) rather than a term based on residual error. The graphical method has application to the evaluation of other preprocess functions and various types of spectroscopy data.

  10. Neural Networks for Rapid Design and Analysis

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Maghami, Peiman G.

    1998-01-01

    Artificial neural networks have been employed for rapid and efficient dynamics and control analysis of flexible systems. Specifically, feedforward neural networks are designed to approximate nonlinear dynamic components over prescribed input ranges, and are used in simulations as a means to speed up the overall time response analysis process. To capture the recursive nature of dynamic components with artificial neural networks, recurrent networks, which use state feedback with the appropriate number of time delays, as inputs to the networks, are employed. Once properly trained, neural networks can give very good approximations to nonlinear dynamic components, and by their judicious use in simulations, allow the analyst the potential to speed up the analysis process considerably. To illustrate this potential speed up, an existing simulation model of a spacecraft reaction wheel system is executed, first conventionally, and then with an artificial neural network in place.

  11. A Review of Intelligent Driving Style Analysis Systems and Related Artificial Intelligence Algorithms

    PubMed Central

    Meiring, Gys Albertus Marthinus; Myburgh, Hermanus Carel

    2015-01-01

    In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced. PMID:26690164

  12. A Review of Intelligent Driving Style Analysis Systems and Related Artificial Intelligence Algorithms.

    PubMed

    Meiring, Gys Albertus Marthinus; Myburgh, Hermanus Carel

    2015-12-04

    In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced.

  13. Benchmark analysis of native and artificial NAD+-dependent enzymes generated by a sequence based design method with or without phylogenetic data.

    PubMed

    Nakano, Shogo; Motoyama, Tomoharu; Miyashita, Yurina; Ishizuka, Yuki; Matsuo, Naoya; Tokiwa, Hiroaki; Shinoda, Suguru; Asano, Yasuhisa; Ito, Sohei

    2018-05-22

    The expansion of protein sequence databases has enabled us to design artificial proteins by sequence-based design methods, such as full consensus design (FCD) and ancestral sequence reconstruction (ASR). Artificial proteins with enhanced activity levels compared with native ones can potentially be generated by such methods, but successful design is rare because preparing a sequence library by curating the database and selecting a method is difficult. Utilizing a curated library prepared by reducing conservation energies, we successfully designed two artificial L-threonine 3-dehydrogenase (SDR-TDH) with higher activity levels than native SDR-TDH, FcTDH-N1 and AncTDH, using FCD and ASR, respectively. The artificial SDR-TDHs had excellent thermal stability and NAD+ recognition compared to native SDR-TDH from Cupriavidus necator (CnTDH): the melting temperatures of FcTDH-N1 and AncTDH were about 10 and 5°C higher than CnTDH, respectively, and the dissociation constants toward NAD+ of FcTDH-N1 and AncTDH were two- and seven-fold lower than that of CnTDH, respectively. Enzymatic efficiency of the artificial SDR-TDHs were comparable to that of CnTDH. Crystal structures of FcTDH-N1 and AncTDH were determined at 2.8 and 2.1 Å resolution, respectively. Structural and MD simulation analysis of the SDR-TDHs indicated that only the flexibility at specific regions was changed, suggesting that multiple mutations introduced in the artificial SDR-TDHs altered their flexibility and thereby affected their enzymatic properties. Benchmark analysis of the SDR-TDHs indicated that both FCD and ASR can generate highly functional proteins if a curated library is prepared appropriately.

  14. Internet advertising of artificial tanning in Australia.

    PubMed

    Team, Victoria; Markovic, Milica

    2006-08-01

    Artificial tanning, defined as deliberate exposure to ultraviolet rays produced by artificial tanning devices, is a new and emerging public health issue in Australia and globally. Epidemiological research suggests that artificial tanning may contribute to the incidence of melanoma, nonmelanoma skin cancer as well as other health problems. Given that Australia has a high incidence of skin cancer, we have undertaken a study to explore how artificial tanning has been promoted to its users. The aim was to analyze the completeness and accuracy of information about artificial tanning. A content analysis of web sites of tanning salons and distributors of tanning equipment in Australia was conducted. A total of 22 web sites were analyzed. None of the solarium operators or distributors of equipment provided full information about the risks of artificial tanning. Fifty-nine percent of web advertisements had no information and 41% provided only partial information regarding the risks of artificial tanning. Pictures with the image of bronze-tanned bodies, predominantly women, were used by all web advertisers. In light of the success of sun-safety campaigns in Australia, the findings of future epidemiological research on the prevalence of artificial tanning and sociological and anthropological research on why people utilize artificial tanning should be a basis for developing effective targeted health promotion on the elimination of artificial tanning in the country.

  15. Retrieving Tract Variables From Acoustics: A Comparison of Different Machine Learning Strategies.

    PubMed

    Mitra, Vikramjit; Nam, Hosung; Espy-Wilson, Carol Y; Saltzman, Elliot; Goldstein, Louis

    2010-09-13

    Many different studies have claimed that articulatory information can be used to improve the performance of automatic speech recognition systems. Unfortunately, such articulatory information is not readily available in typical speaker-listener situations. Consequently, such information has to be estimated from the acoustic signal in a process which is usually termed "speech-inversion." This study aims to propose and compare various machine learning strategies for speech inversion: Trajectory mixture density networks (TMDNs), feedforward artificial neural networks (FF-ANN), support vector regression (SVR), autoregressive artificial neural network (AR-ANN), and distal supervised learning (DSL). Further, using a database generated by the Haskins Laboratories speech production model, we test the claim that information regarding constrictions produced by the distinct organs of the vocal tract (vocal tract variables) is superior to flesh-point information (articulatory pellet trajectories) for the inversion process.

  16. Prediction on carbon dioxide emissions based on fuzzy rules

    NASA Astrophysics Data System (ADS)

    Pauzi, Herrini; Abdullah, Lazim

    2014-06-01

    There are several ways to predict air quality, varying from simple regression to models based on artificial intelligence. Most of the conventional methods are not sufficiently able to provide good forecasting performances due to the problems with non-linearity uncertainty and complexity of the data. Artificial intelligence techniques are successfully used in modeling air quality in order to cope with the problems. This paper describes fuzzy inference system (FIS) to predict CO2 emissions in Malaysia. Furthermore, adaptive neuro-fuzzy inference system (ANFIS) is used to compare the prediction performance. Data of five variables: energy use, gross domestic product per capita, population density, combustible renewable and waste and CO2 intensity are employed in this comparative study. The results from the two model proposed are compared and it is clearly shown that the ANFIS outperforms FIS in CO2 prediction.

  17. Application of back-propagation artificial neural network (ANN) to predict crystallite size and band gap energy of ZnO quantum dots

    NASA Astrophysics Data System (ADS)

    Pelicano, Christian Mark; Rapadas, Nick; Cagatan, Gerard; Magdaluyo, Eduardo

    2017-12-01

    Herein, the crystallite size and band gap energy of zinc oxide (ZnO) quantum dots were predicted using artificial neural network (ANN). Three input factors including reagent ratio, growth time, and growth temperature were examined with respect to crystallite size and band gap energy as response factors. The generated results from neural network model were then compared with the experimental results. Experimental crystallite size and band gap energy of ZnO quantum dots were measured from TEM images and absorbance spectra, respectively. The Levenberg-Marquardt (LM) algorithm was used as the learning algorithm for the ANN model. The performance of the ANN model was then assessed through mean square error (MSE) and regression values. Based on the results, the ANN modelling results are in good agreement with the experimental data.

  18. Estimation of mechanical properties of nanomaterials using artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, V.; Garg, A.; Wong, C. H.; Tai, K.

    2014-09-01

    Computational modeling tools such as molecular dynamics (MD), ab initio, finite element modeling or continuum mechanics models have been extensively applied to study the properties of carbon nanotubes (CNTs) based on given input variables such as temperature, geometry and defects. Artificial intelligence techniques can be used to further complement the application of numerical methods in characterizing the properties of CNTs. In this paper, we have introduced the application of multi-gene genetic programming (MGGP) and support vector regression to formulate the mathematical relationship between the compressive strength of CNTs and input variables such as temperature and diameter. The predictions of compressive strength of CNTs made by these models are compared to those generated using MD simulations. The results indicate that MGGP method can be deployed as a powerful method for predicting the compressive strength of the carbon nanotubes.

  19. Mortality risk prediction in burn injury: Comparison of logistic regression with machine learning approaches.

    PubMed

    Stylianou, Neophytos; Akbarov, Artur; Kontopantelis, Evangelos; Buchan, Iain; Dunn, Ken W

    2015-08-01

    Predicting mortality from burn injury has traditionally employed logistic regression models. Alternative machine learning methods have been introduced in some areas of clinical prediction as the necessary software and computational facilities have become accessible. Here we compare logistic regression and machine learning predictions of mortality from burn. An established logistic mortality model was compared to machine learning methods (artificial neural network, support vector machine, random forests and naïve Bayes) using a population-based (England & Wales) case-cohort registry. Predictive evaluation used: area under the receiver operating characteristic curve; sensitivity; specificity; positive predictive value and Youden's index. All methods had comparable discriminatory abilities, similar sensitivities, specificities and positive predictive values. Although some machine learning methods performed marginally better than logistic regression the differences were seldom statistically significant and clinically insubstantial. Random forests were marginally better for high positive predictive value and reasonable sensitivity. Neural networks yielded slightly better prediction overall. Logistic regression gives an optimal mix of performance and interpretability. The established logistic regression model of burn mortality performs well against more complex alternatives. Clinical prediction with a small set of strong, stable, independent predictors is unlikely to gain much from machine learning outside specialist research contexts. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  20. Prediction of Human Intestinal Absorption of Compounds Using Artificial Intelligence Techniques.

    PubMed

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2017-01-01

    Information about Pharmacokinetics of compounds is an essential component of drug design and development. Modeling the pharmacokinetic properties require identification of the factors effecting absorption, distribution, metabolism and excretion of compounds. There have been continuous attempts in the prediction of intestinal absorption of compounds using various Artificial intelligence methods in the effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are large numbers of individual predictive models available for absorption using machine learning approaches. Six Artificial intelligence methods namely, Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis were used for prediction of absorption of compounds. Prediction accuracy of Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis for prediction of intestinal absorption of compounds was found to be 91.54%, 88.33%, 84.30%, 86.51%, 79.07% and 80.08% respectively. Comparative analysis of all the six prediction models suggested that Support vector machine with Radial basis function based kernel is comparatively better for binary classification of compounds using human intestinal absorption and may be useful at preliminary stages of drug design and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Analytical learning and term-rewriting systems

    NASA Technical Reports Server (NTRS)

    Laird, Philip; Gamble, Evan

    1990-01-01

    Analytical learning is a set of machine learning techniques for revising the representation of a theory based on a small set of examples of that theory. When the representation of the theory is correct and complete but perhaps inefficient, an important objective of such analysis is to improve the computational efficiency of the representation. Several algorithms with this purpose have been suggested, most of which are closely tied to a first order logical language and are variants of goal regression, such as the familiar explanation based generalization (EBG) procedure. But because predicate calculus is a poor representation for some domains, these learning algorithms are extended to apply to other computational models. It is shown that the goal regression technique applies to a large family of programming languages, all based on a kind of term rewriting system. Included in this family are three language families of importance to artificial intelligence: logic programming, such as Prolog; lambda calculus, such as LISP; and combinatorial based languages, such as FP. A new analytical learning algorithm, AL-2, is exhibited that learns from success but is otherwise quite different from EBG. These results suggest that term rewriting systems are a good framework for analytical learning research in general, and that further research should be directed toward developing new techniques.

  2. Development of an automated energy audit protocol for office buildings

    NASA Astrophysics Data System (ADS)

    Deb, Chirag

    This study aims to enhance the building energy audit process, and bring about reduction in time and cost requirements in the conduction of a full physical audit. For this, a total of 5 Energy Service Companies in Singapore have collaborated and provided energy audit reports for 62 office buildings. Several statistical techniques are adopted to analyse these reports. These techniques comprise cluster analysis and development of prediction models to predict energy savings for buildings. The cluster analysis shows that there are 3 clusters of buildings experiencing different levels of energy savings. To understand the effect of building variables on the change in EUI, a robust iterative process for selecting the appropriate variables is developed. The results show that the 4 variables of GFA, non-air-conditioning energy consumption, average chiller plant efficiency and installed capacity of chillers should be taken for clustering. This analysis is extended to the development of prediction models using linear regression and artificial neural networks (ANN). An exhaustive variable selection algorithm is developed to select the input variables for the two energy saving prediction models. The results show that the ANN prediction model can predict the energy saving potential of a given building with an accuracy of +/-14.8%.

  3. Partial Least Squares and Neural Networks for Quantitative Calibration of Laser-induced Breakdown Spectroscopy (LIBs) of Geologic Samples

    NASA Technical Reports Server (NTRS)

    Anderson, R. B.; Morris, Richard V.; Clegg, S. M.; Humphries, S. D.; Wiens, R. C.; Bell, J. F., III; Mertzman, S. A.

    2010-01-01

    The ChemCam instrument [1] on the Mars Science Laboratory (MSL) rover will be used to obtain the chemical composition of surface targets within 7 m of the rover using Laser Induced Breakdown Spectroscopy (LIBS). ChemCam analyzes atomic emission spectra (240-800 nm) from a plasma created by a pulsed Nd:KGW 1067 nm laser. The LIBS spectra can be used in a semiquantitative way to rapidly classify targets (e.g., basalt, andesite, carbonate, sulfate, etc.) and in a quantitative way to estimate their major and minor element chemical compositions. Quantitative chemical analysis from LIBS spectra is complicated by a number of factors, including chemical matrix effects [2]. Recent work has shown promising results using multivariate techniques such as partial least squares (PLS) regression and artificial neural networks (ANN) to predict elemental abundances in samples [e.g. 2-6]. To develop, refine, and evaluate analysis schemes for LIBS spectra of geologic materials, we collected spectra of a diverse set of well-characterized natural geologic samples and are comparing the predictive abilities of PLS, cascade correlation ANN (CC-ANN) and multilayer perceptron ANN (MLP-ANN) analysis procedures.

  4. Classification and Sequential Pattern Analysis for Improving Managerial Efficiency and Providing Better Medical Service in Public Healthcare Centers

    PubMed Central

    Chung, Sukhoon; Rhee, Hyunsill; Suh, Yongmoo

    2010-01-01

    Objectives This study sought to find answers to the following questions: 1) Can we predict whether a patient will revisit a healthcare center? 2) Can we anticipate diseases of patients who revisit the center? Methods For the first question, we applied 5 classification algorithms (decision tree, artificial neural network, logistic regression, Bayesian networks, and Naïve Bayes) and the stacking-bagging method for building classification models. To solve the second question, we performed sequential pattern analysis. Results We determined: 1) In general, the most influential variables which impact whether a patient of a public healthcare center will revisit it or not are personal burden, insurance bill, period of prescription, age, systolic pressure, name of disease, and postal code. 2) The best plain classification model is dependent on the dataset. 3) Based on average of classification accuracy, the proposed stacking-bagging method outperformed all traditional classification models and our sequential pattern analysis revealed 16 sequential patterns. Conclusions Classification models and sequential patterns can help public healthcare centers plan and implement healthcare service programs and businesses that are more appropriate to local residents, encouraging them to revisit public health centers. PMID:21818426

  5. Artificial Intelligence Assists Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  6. Identifing Atmospheric Pollutant Sources Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Paes, F. F.; Campos, H. F.; Luz, E. P.; Carvalho, A. R.

    2008-05-01

    The estimation of the area source pollutant strength is a relevant issue for atmospheric environment. This characterizes an inverse problem in the atmospheric pollution dispersion. In the inverse analysis, an area source domain is considered, where the strength of such area source term is assumed unknown. The inverse problem is solved by using a supervised artificial neural network: multi-layer perceptron. The conection weights of the neural network are computed from delta rule - learning process. The neural network inversion is compared with results from standard inverse analysis (regularized inverse solution). In the regularization method, the inverse problem is formulated as a non-linear optimization approach, whose the objective function is given by the square difference between the measured pollutant concentration and the mathematical models, associated with a regularization operator. In our numerical experiments, the forward problem is addressed by a source-receptor scheme, where a regressive Lagrangian model is applied to compute the transition matrix. The second order maximum entropy regularization is used, and the regularization parameter is calculated by the L-curve technique. The objective function is minimized employing a deterministic scheme (a quasi-Newton algorithm) [1] and a stochastic technique (PSO: particle swarm optimization) [2]. The inverse problem methodology is tested with synthetic observational data, from six measurement points in the physical domain. The best inverse solutions were obtained with neural networks. References: [1] D. R. Roberti, D. Anfossi, H. F. Campos Velho, G. A. Degrazia (2005): Estimating Emission Rate and Pollutant Source Location, Ciencia e Natura, p. 131-134. [2] E.F.P. da Luz, H.F. de Campos Velho, J.C. Becceneri, D.R. Roberti (2007): Estimating Atmospheric Area Source Strength Through Particle Swarm Optimization. Inverse Problems, Desing and Optimization Symposium IPDO-2007, April 16-18, Miami (FL), USA, vol 1, p. 354-359.

  7. Determination of the optimal training principle and input variables in artificial neural network model for the biweekly chlorophyll-a prediction: a case study of the Yuqiao Reservoir, China.

    PubMed

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang

    2015-01-01

    Predicting the levels of chlorophyll-a (Chl-a) is a vital component of water quality management, which ensures that urban drinking water is safe from harmful algal blooms. This study developed a model to predict Chl-a levels in the Yuqiao Reservoir (Tianjin, China) biweekly using water quality and meteorological data from 1999-2012. First, six artificial neural networks (ANNs) and two non-ANN methods (principal component analysis and the support vector regression model) were compared to determine the appropriate training principle. Subsequently, three predictors with different input variables were developed to examine the feasibility of incorporating meteorological factors into Chl-a prediction, which usually only uses water quality data. Finally, a sensitivity analysis was performed to examine how the Chl-a predictor reacts to changes in input variables. The results were as follows: first, ANN is a powerful predictive alternative to the traditional modeling techniques used for Chl-a prediction. The back program (BP) model yields slightly better results than all other ANNs, with the normalized mean square error (NMSE), the correlation coefficient (Corr), and the Nash-Sutcliffe coefficient of efficiency (NSE) at 0.003 mg/l, 0.880 and 0.754, respectively, in the testing period. Second, the incorporation of meteorological data greatly improved Chl-a prediction compared to models solely using water quality factors or meteorological data; the correlation coefficient increased from 0.574-0.686 to 0.880 when meteorological data were included. Finally, the Chl-a predictor is more sensitive to air pressure and pH compared to other water quality and meteorological variables.

  8. Analysis of the Degree of Artificialization of the Cities of Itapema and Balneário Camboriú - Santa Catarina ( Brazil )

    NASA Astrophysics Data System (ADS)

    Piatto, L.; Polette, M.

    2010-12-01

    Artificialization is a dynamic process of change of the natural landscape in a given amount of time. Is the natural landscape change for the artificial one. This process always takes place when humans alter a space in accordance with their needs and resources availability. The fast population growth of coastal areas is speeding the artificialization process of coastal zones, turning these ecosystems into the most urbanized ones in the world. Although the coastline is a just a small portion of the coastal zone, it is the link between the terrestrial and sea lives. This feature is not only attractive to the rich biodiversity which it is formed by, but also to humans. Therefore, coastlines must primarily be ordered and regulated in order to ensure sustainable development, avoiding the exhaustion of its capacity. Thus, this work studies two relevant areas of the mid-north coast of the State of Santa Catarina , in South Brazil , where it is possible to find a deep artificialization process: Itapema and Balneario Camboriu. The objective of this project is to make a quantitative analysis of the degree of artificialization of both these cities as well as analyzing land use by vectorization using satellite images, which allows for greater detail and definition of the different levels of artificialization. For this purpose, the cities were divided into landscape units and subdivided into zones, and, then, classified into four levels of artificialization: Natural, Semi-natural, Semi-artificial, and Artificial. Then, a databank of each city was created, quantifying the distinct categories of occupation and distribution of the different degrees of artificialization in each area. One artificial and two semi-natural units were found in Balneario Camboriu. The artificial area is at its occupation limit, compromising the future of the semi-natural areas, which may become targets of the real estate and civil construction industries. More critical values were found in Itapema, with two units classified as artificial. This result reflects the intense densification of the coastline, where occupation conflicts with the capacity of supporting its already-over-exploited resources. After this quantitative classification, we compared the method used in this work and that used by Project "Orla" (a public policy program held by the Federal Government and supervised by the State and Municipal Coastal Management Programs), which qualitatively classified the same areas by means of visual identification of the units. The comparison showed that the quantitative system of classification of the coastline was more efficient and can complement the analyses of Project "Orla", validating its qualitative classification with concrete percentages of occupation. The method of visual analysis of high-definition images proved to be a good tool for land use classification. Thus, it is interesting to note that the present method is relatively cheap, which can be used both in coastline projects, such as Project "Orla", as well as in urban planning projects by any city government.

  9. An empirical analysis of thermal protective performance of fabrics used in protective clothing.

    PubMed

    Mandal, Sumit; Song, Guowen

    2014-10-01

    Fabric-based protective clothing is widely used for occupational safety of firefighters/industrial workers. The aim of this paper is to study thermal protective performance provided by fabric systems and to propose an effective model for predicting the thermal protective performance under various thermal exposures. Different fabric systems that are commonly used to manufacture thermal protective clothing were selected. Laboratory simulations of the various thermal exposures were created to evaluate the protective performance of the selected fabric systems in terms of time required to generate second-degree burns. Through the characterization of selected fabric systems in a particular thermal exposure, various factors affecting the performances were statistically analyzed. The key factors for a particular thermal exposure were recognized based on the t-test analysis. Using these key factors, the performance predictive multiple linear regression and artificial neural network (ANN) models were developed and compared. The identified best-fit ANN models provide a basic tool to study thermal protective performance of a fabric. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  10. Instrumental measurement of beer taste attributes using an electronic tongue.

    PubMed

    Rudnitskaya, Alisa; Polshin, Evgeny; Kirsanov, Dmitry; Lammertyn, Jeroen; Nicolai, Bart; Saison, Daan; Delvaux, Freddy R; Delvaux, Filip; Legin, Andrey

    2009-07-30

    The present study deals with the evaluation of the electronic tongue multisensor system as an analytical tool for the rapid assessment of taste and flavour of beer. Fifty samples of Belgian and Dutch beers of different types (lager beers, ales, wheat beers, etc.), which were characterized with respect to the sensory properties, were measured using the electronic tongue (ET) based on potentiometric chemical sensors developed in Laboratory of Chemical Sensors of St. Petersburg University. The analysis of the sensory data and the calculation of the compromise average scores was made using STATIS. The beer samples were discriminated using both sensory panel and ET data based on PCA, and both data sets were compared using Canonical Correlation Analysis. The ET data were related to the sensory beer attributes using Partial Least Square regression for each attribute separately. Validation was done based on a test set comprising one-third of all samples. The ET was capable of predicting with good precision 20 sensory attributes of beer including such as bitter, sweet, sour, fruity, caramel, artificial, burnt, intensity and body.

  11. Study of the tactile perception of bathroom tissues: Comparison between the sensory evaluation by a handfeel panel and a tribo-acoustic artificial finger.

    PubMed

    Thieulin, C; Pailler-Mattei, C; Vargiolu, R; Lancelot, S; Zahouani, H

    2017-02-01

    Tactile perception is one of the sensorial modes most stimulated by our daily environment. In particular, perceived softness is an important parameter for judging the sensory quality of surfaces and fabrics. Unfortunately, its assessment greatly depends on the tactile sense of each person, which in turn depends on many factors. Currently, the predominant method for evaluating the tactile perception of fabrics is the human handfeel panel. This qualitative approach does not permit the quantitative measure of touch feel perception. In this study, we present a new artificial finger device to investigate the tactile sensing of ten bathroom tissues. It enables simultaneously measuring the friction and vibrations caused when sliding an artificial finger on the surface of the tissue. The comparison between the results obtained with the artificial finger and the tactile perception evaluated using a handfeel panel showed that the artificial finger is able to separate the two parts of the tactile perception of bathroom tissues: softness and surface texture (velvetiness). The statistical analysis suggests that there is a good correlation between the vibrations measured with the artificial finger and the softness evaluated by the panel. It then shows that the friction measured by the artificial finger is related to the surface texture of a bathroom tissue. The ability of the artificial finger to mimic human touch is demonstrated. Finally, a Principal Component Analysis orders the signatures of the tactile perception of the bathroom tissues in four different groups. Copyright © 2016. Published by Elsevier B.V.

  12. Artificial intelligence in diagnosis of obstructive lung disease: current status and future potential.

    PubMed

    Das, Nilakash; Topalovic, Marko; Janssens, Wim

    2018-03-01

    The application of artificial intelligence in the diagnosis of obstructive lung diseases is an exciting phenomenon. Artificial intelligence algorithms work by finding patterns in data obtained from diagnostic tests, which can be used to predict clinical outcomes or to detect obstructive phenotypes. The purpose of this review is to describe the latest trends and to discuss the future potential of artificial intelligence in the diagnosis of obstructive lung diseases. Machine learning has been successfully used in automated interpretation of pulmonary function tests for differential diagnosis of obstructive lung diseases. Deep learning models such as convolutional neural network are state-of-the art for obstructive pattern recognition in computed tomography. Machine learning has also been applied in other diagnostic approaches such as forced oscillation test, breath analysis, lung sound analysis and telemedicine with promising results in small-scale studies. Overall, the application of artificial intelligence has produced encouraging results in the diagnosis of obstructive lung diseases. However, large-scale studies are still required to validate current findings and to boost its adoption by the medical community.

  13. Artificial neural network prediction of aircraft aeroelastic behavior

    NASA Astrophysics Data System (ADS)

    Pesonen, Urpo Juhani

    An Artificial Neural Network that predicts aeroelastic behavior of aircraft is presented. The neural net was designed to predict the shape of a flexible wing in static flight conditions using results from a structural analysis and an aerodynamic analysis performed with traditional computational tools. To generate reliable training and testing data for the network, an aeroelastic analysis code using these tools as components was designed and validated. To demonstrate the advantages and reliability of Artificial Neural Networks, a network was also designed and trained to predict airfoil maximum lift at low Reynolds numbers where wind tunnel data was used for the training. Finally, a neural net was designed and trained to predict the static aeroelastic behavior of a wing without the need to iterate between the structural and aerodynamic solvers.

  14. Carbon Nanotube Growth Rate Regression using Support Vector Machines and Artificial Neural Networks

    DTIC Science & Technology

    2014-03-27

    intensity D peak. Reprinted with permission from [38]. The SVM classifier is trained using custom written Java code leveraging the Sequential Minimal...Society Encog is a machine learning framework for Java , C++ and .Net applications that supports Bayesian Networks, Hidden Markov Models, SVMs and ANNs [13...SVM classifiers are trained using Weka libraries and leveraging custom written Java code. The data set is created as an Attribute Relationship File

  15. Near work, education, family history, and myopia in Greek conscripts.

    PubMed

    Konstantopoulos, A; Yadegarfar, G; Elgohary, M

    2008-04-01

    To investigate potential factors associated with the presence of myopia in a cohort of young adult men carrying out their military service in Greece. A nested case-control study of 200 conscripts (99 myopes and 101 non-myopes). The cohort consisted of approximately 1000 conscripts in compulsory national service. All cohort members had been screened for refractive errors by Snellen visual acuity measurement at presentation to military service; individuals not achieving visual activity 6/6 underwent noncycloplaegic refraction. The study sample consisted of the first 99 myopic and 101 nonmyopic conscripts who attended the study. In-person interviews of these 200 conscripts were conducted to obtain information on family history, occupation, level of education, near-work activities, and sleeping behaviour. chi(2) and Mann-Whitney tests were used as univariate analysis methods to identify the potential factors associated with the presence of myopia. Multiple logistic regression was used to estimate the adjusted relative risk of myopia. Univariate analysis showed that parental family history (P<0.001), older age (P<0.001), tertiary education (P<0.001), hours of reading per day (P<0.001), hours of computer use per day (P<0.001), and higher social classes (P<0.001) were associated with myopia. Sleeping in artificial or ambient light was not associated with myopia (P=0.75). Multiple logistic regression analysis showed that older age (OR=1.25, 95% CI 1.05-1.49), tertiary education (OR=12.67, 95% CI 3.57-44.88) and parental family history (OR=3.39, 95% CI 1.56-7.36) were independently associated with myopia. In young Greek conscripts, parental family history, older age, and education level are independently associated with myopia.

  16. Feature selection using probabilistic prediction of support vector regression.

    PubMed

    Yang, Jian-Bo; Ong, Chong-Jin

    2011-06-01

    This paper presents a new wrapper-based feature selection method for support vector regression (SVR) using its probabilistic predictions. The method computes the importance of a feature by aggregating the difference, over the feature space, of the conditional density functions of the SVR prediction with and without the feature. As the exact computation of this importance measure is expensive, two approximations are proposed. The effectiveness of the measure using these approximations, in comparison to several other existing feature selection methods for SVR, is evaluated on both artificial and real-world problems. The result of the experiments show that the proposed method generally performs better than, or at least as well as, the existing methods, with notable advantage when the dataset is sparse.

  17. Comparison of Adaline and Multiple Linear Regression Methods for Rainfall Forecasting

    NASA Astrophysics Data System (ADS)

    Sutawinaya, IP; Astawa, INGA; Hariyanti, NKD

    2018-01-01

    Heavy rainfall can cause disaster, therefore need a forecast to predict rainfall intensity. Main factor that cause flooding is there is a high rainfall intensity and it makes the river become overcapacity. This will cause flooding around the area. Rainfall factor is a dynamic factor, so rainfall is very interesting to be studied. In order to support the rainfall forecasting, there are methods that can be used from Artificial Intelligence (AI) to statistic. In this research, we used Adaline for AI method and Regression for statistic method. The more accurate forecast result shows the method that used is good for forecasting the rainfall. Through those methods, we expected which is the best method for rainfall forecasting here.

  18. Nondestructive pavement evaluation using ILLI-PAVE based artificial neural network models.

    DOT National Transportation Integrated Search

    2008-09-01

    The overall objective in this research project is to develop advanced pavement structural analysis models for more accurate solutions with fast computation schemes. Soft computing and modeling approaches, specifically the Artificial Neural Network (A...

  19. Silicosis in Workers Exposed to Artificial Quartz Conglomerates: Does It Differ From Chronic Simple Silicosis?

    PubMed

    Paolucci, Valentina; Romeo, Riccardo; Sisinni, Antonietta Gerardina; Bartoli, Dusca; Mazzei, Maria Antonietta; Sartorelli, Pietro

    2015-12-01

    Recently, a number of reports have been published on silicosis in workers exposed to artificial quartz conglomerates containing high levels of crystalline silica particles (70-90%) used in the construction of kitchen and bathroom surfaces. Three cases of silicosis in workers exposed to artificial quartz conglomerates are reported. The diagnosis was derived from both the International Labour Office and the International Classification of HRCT for Occupational and Environmental Respiratory Diseases (ICOERD) classifications and cytological analysis of bronchoalveolar lavage fluid. In 2 cases, levels of respirable silica greatly in excess of recommended standards were measured in the workplace, and cytological analysis of bronchoalveolar lavage fluid highlighted a prevalence of lymphocytes, meeting criteria for the diagnosis of accelerated silicosis. The prevention of pneumoconiosis caused by the use of innovative materials, such as artificial conglomerates with high crystalline silica content must be addressed. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  20. Development of haptic based piezoresistive artificial fingertip: Toward efficient tactile sensing systems for humanoids.

    PubMed

    TermehYousefi, Amin; Azhari, Saman; Khajeh, Amin; Hamidon, Mohd Nizar; Tanaka, Hirofumi

    2017-08-01

    Haptic sensors are essential devices that facilitate human-like sensing systems such as implantable medical devices and humanoid robots. The availability of conducting thin films with haptic properties could lead to the development of tactile sensing systems that stretch reversibly, sense pressure (not just touch), and integrate with collapsible. In this study, a nanocomposite based hemispherical artificial fingertip fabricated to enhance the tactile sensing systems of humanoid robots. To validate the hypothesis, proposed method was used in the robot-like finger system to classify the ripe and unripe tomato by recording the metabolic growth of the tomato as a function of resistivity change during a controlled indention force. Prior to fabrication, a finite element modeling (FEM) was investigated for tomato to obtain the stress distribution and failure point of tomato by applying different external loads. Then, the extracted computational analysis information was utilized to design and fabricate nanocomposite based artificial fingertip to examine the maturity analysis of tomato. The obtained results demonstrate that the fabricated conformable and scalable artificial fingertip shows different electrical property for ripe and unripe tomato. The artificial fingertip is compatible with the development of brain-like systems for artificial skin by obtaining periodic response during an applied load. Copyright © 2017. Published by Elsevier B.V.

  1. Optical scatterometry of quarter-micron patterns using neural regression

    NASA Astrophysics Data System (ADS)

    Bischoff, Joerg; Bauer, Joachim J.; Haak, Ulrich; Hutschenreuther, Lutz; Truckenbrodt, Horst

    1998-06-01

    With shrinking dimensions and increasing chip areas, a rapid and non-destructive full wafer characterization after every patterning cycle is an inevitable necessity. In former publications it was shown that Optical Scatterometry (OS) has the potential to push the attainable feature limits of optical techniques from 0.8 . . . 0.5 microns for imaging methods down to 0.1 micron and below. Thus the demands of future metrology can be met. Basically being a nonimaging method, OS combines light scatter (or diffraction) measurements with modern data analysis schemes to solve the inverse scatter issue. For very fine patterns with lambda-to-pitch ratios grater than one, the specular reflected light versus the incidence angle is recorded. Usually, the data analysis comprises two steps -- a training cycle connected the a rigorous forward modeling and the prediction itself. Until now, two data analysis schemes are usually applied -- the multivariate regression based Partial Least Squares method (PLS) and a look-up-table technique which is also referred to as Minimum Mean Square Error approach (MMSE). Both methods are afflicted with serious drawbacks. On the one hand, the prediction accuracy of multivariate regression schemes degrades with larger parameter ranges due to the linearization properties of the method. On the other hand, look-up-table methods are rather time consuming during prediction thus prolonging the processing time and reducing the throughput. An alternate method is an Artificial Neural Network (ANN) based regression which combines the advantages of multivariate regression and MMSE. Due to the versatility of a neural network, not only can its structure be adapted more properly to the scatter problem, but also the nonlinearity of the neuronal transfer functions mimic the nonlinear behavior of optical diffraction processes more adequately. In spite of these pleasant properties, the prediction speed of ANN regression is comparable with that of the PLS-method. In this paper, the viability and performance of ANN-regression will be demonstrated with the example of sub-quarter-micron resist metrology. To this end, 0.25 micrometer line/space patterns have been printed in positive photoresist by means of DUV projection lithography. In order to evaluate the total metrology chain from light scatter measurement through data analysis, a thorough modeling has been performed. Assuming a trapezoidal shape of the developed resist profile, a training data set was generated by means of the Rigorous Coupled Wave Approach (RCWA). After training the model, a second data set was computed and deteriorated by Gaussian noise to imitate real measuring conditions. Then, these data have been fed into the models established before resulting in a Standard Error of Prediction (SEP) which corresponds to the measuring accuracy. Even with putting only little effort in the design of a back-propagation network, the ANN is clearly superior to the PLS-method. Depending on whether a network with one or two hidden layers was used, accuracy gains between 2 and 5 can be achieved compared with PLS regression. Furthermore, the ANN is less noise sensitive, for there is only a doubling of the SEP at 5% noise for ANN whereas for PLS the accuracy degrades rapidly with increasing noise. The accuracy gain also depends on the light polarization and on the measured parameters. Finally, these results have been proven experimentally, where the OS-results are in good accordance with the profiles obtained from cross- sectioning micrographs.

  2. Artificial Neural Networks: an overview and their use in the analysis of the AMPHORA-3 dataset.

    PubMed

    Buscema, Paolo Massimo; Massini, Giulia; Maurelli, Guido

    2014-10-01

    The Artificial Adaptive Systems (AAS) are theories with which generative algebras are able to create artificial models simulating natural phenomenon. Artificial Neural Networks (ANNs) are the more diffused and best-known learning system models in the AAS. This article describes an overview of ANNs, noting its advantages and limitations for analyzing dynamic, complex, non-linear, multidimensional processes. An example of a specific ANN application to alcohol consumption in Spain, as part of the EU AMPHORA-3 project, during 1961-2006 is presented. Study's limitations are noted and future needed research using ANN methodologies are suggested.

  3. Artificial pancreas treatment for outpatients with type 1 diabetes: systematic review and meta-analysis.

    PubMed

    Bekiari, Eleni; Kitsios, Konstantinos; Thabit, Hood; Tauschmann, Martin; Athanasiadou, Eleni; Karagiannis, Thomas; Haidich, Anna-Bettina; Hovorka, Roman; Tsapas, Apostolos

    2018-04-18

    To evaluate the efficacy and safety of artificial pancreas treatment in non-pregnant outpatients with type 1 diabetes. Systematic review and meta-analysis of randomised controlled trials. Medline, Embase, Cochrane Library, and grey literature up to 2 February 2018. Randomised controlled trials in non-pregnant outpatients with type 1 diabetes that compared the use of any artificial pancreas system with any type of insulin based treatment. Primary outcome was proportion (%) of time that sensor glucose level was within the near normoglycaemic range (3.9-10 mmol/L). Secondary outcomes included proportion (%) of time that sensor glucose level was above 10 mmol/L or below 3.9 mmol/L, low blood glucose index overnight, mean sensor glucose level, total daily insulin needs, and glycated haemoglobin. The Cochrane Collaboration risk of bias tool was used to assess study quality. 40 studies (1027 participants with data for 44 comparisons) were included in the meta-analysis. 35 comparisons assessed a single hormone artificial pancreas system, whereas nine comparisons assessed a dual hormone system. Only nine studies were at low risk of bias. Proportion of time in the near normoglycaemic range (3.9-10.0 mmol/L) was significantly higher with artificial pancreas use, both overnight (weighted mean difference 15.15%, 95% confidence interval 12.21% to 18.09%) and over a 24 hour period (9.62%, 7.54% to 11.7%). Artificial pancreas systems had a favourable effect on the proportion of time with sensor glucose level above 10 mmol/L (-8.52%, -11.14% to -5.9%) or below 3.9 mmol/L (-1.49%, -1.86% to -1.11%) over 24 hours, compared with control treatment. Robustness of findings for the primary outcome was verified in sensitivity analyses, by including only trials at low risk of bias (11.64%, 9.1% to 14.18%) or trials under unsupervised, normal living conditions (10.42%, 8.63% to 12.2%). Results were consistent in a subgroup analysis both for single hormone and dual hormone artificial pancreas systems. Artificial pancreas systems are an efficacious and safe approach for treating outpatients with type 1 diabetes. The main limitations of current research evidence on artificial pancreas systems are related to inconsistency in outcome reporting, small sample size, and short follow-up duration of individual trials. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. A hybrid PCA-CART-MARS-based prognostic approach of the remaining useful life for aircraft engines.

    PubMed

    Sánchez Lasheras, Fernando; García Nieto, Paulino José; de Cos Juez, Francisco Javier; Mayo Bayón, Ricardo; González Suárez, Victor Manuel

    2015-03-23

    Prognostics is an engineering discipline that predicts the future health of a system. In this research work, a data-driven approach for prognostics is proposed. Indeed, the present paper describes a data-driven hybrid model for the successful prediction of the remaining useful life of aircraft engines. The approach combines the multivariate adaptive regression splines (MARS) technique with the principal component analysis (PCA), dendrograms and classification and regression trees (CARTs). Elements extracted from sensor signals are used to train this hybrid model, representing different levels of health for aircraft engines. In this way, this hybrid algorithm is used to predict the trends of these elements. Based on this fitting, one can determine the future health state of a system and estimate its remaining useful life (RUL) with accuracy. To evaluate the proposed approach, a test was carried out using aircraft engine signals collected from physical sensors (temperature, pressure, speed, fuel flow, etc.). Simulation results show that the PCA-CART-MARS-based approach can forecast faults long before they occur and can predict the RUL. The proposed hybrid model presents as its main advantage the fact that it does not require information about the previous operation states of the input variables of the engine. The performance of this model was compared with those obtained by other benchmark models (multivariate linear regression and artificial neural networks) also applied in recent years for the modeling of remaining useful life. Therefore, the PCA-CART-MARS-based approach is very promising in the field of prognostics of the RUL for aircraft engines.

  5. A Hybrid PCA-CART-MARS-Based Prognostic Approach of the Remaining Useful Life for Aircraft Engines

    PubMed Central

    Lasheras, Fernando Sánchez; Nieto, Paulino José García; de Cos Juez, Francisco Javier; Bayón, Ricardo Mayo; Suárez, Victor Manuel González

    2015-01-01

    Prognostics is an engineering discipline that predicts the future health of a system. In this research work, a data-driven approach for prognostics is proposed. Indeed, the present paper describes a data-driven hybrid model for the successful prediction of the remaining useful life of aircraft engines. The approach combines the multivariate adaptive regression splines (MARS) technique with the principal component analysis (PCA), dendrograms and classification and regression trees (CARTs). Elements extracted from sensor signals are used to train this hybrid model, representing different levels of health for aircraft engines. In this way, this hybrid algorithm is used to predict the trends of these elements. Based on this fitting, one can determine the future health state of a system and estimate its remaining useful life (RUL) with accuracy. To evaluate the proposed approach, a test was carried out using aircraft engine signals collected from physical sensors (temperature, pressure, speed, fuel flow, etc.). Simulation results show that the PCA-CART-MARS-based approach can forecast faults long before they occur and can predict the RUL. The proposed hybrid model presents as its main advantage the fact that it does not require information about the previous operation states of the input variables of the engine. The performance of this model was compared with those obtained by other benchmark models (multivariate linear regression and artificial neural networks) also applied in recent years for the modeling of remaining useful life. Therefore, the PCA-CART-MARS-based approach is very promising in the field of prognostics of the RUL for aircraft engines. PMID:25806876

  6. Ship traffic and shoreline erosion in the Lagoon of Venice

    NASA Astrophysics Data System (ADS)

    Scarpa, Gian Marco; Zaggia, Luca; Lorenzetti, Giuliano; Manfè, Giorgia; Parnell, Kevin; Molinaroli, Emanuela; Rapaglia, John; Gionta, Sofia

    2016-04-01

    A study based on the analysis of a historical sequence of aerial photographs and satellite images combined with in situ measurements revealed an unprecedented shoreline regression on the side of a major waterway in the Venice Lagoon, Italy. The study considered long and short-term recession rates caused by ship-induced depression wakes in an area which was reclaimed at the end of the '60 for the expansion of the nearby Porto Marghera Industrial Zone and never used since then. The GIS analysis performed with the available imagery shows an average retreat of about 4 m yr-1 in the period between 1965 and 2015. Field measurements carried out between April 2014 and January 2015 also revealed that the shoreline's regression still proceed with a speed comparable to the long-term average regardless of the distance from the navigation channel and is not constant through time. Periods of high water levels determined by astronomical tide or storm surges, more common in the winter season, are characterized by faster regression rates. The retreat proceeds by collapse of slabs of the reclaimed muddy soil after erosion and removal of the underlying original salt marsh sediments and is a discontinuous process in time and space depending on morphology, intrinsic propertiesand vegetation cover of the artificial deposits. Digitalization of historical maps and new bathymetric surveys made in April 2015 allowed for the reconstruction of two digital terrain models for both past and present situations. The two models have been used to calculate the total volume of sediment lost during the period between 1970 and 2015. The results of this study shows as ship-channel interactions can dominate the morphodynamics of a waterway and its margins and permitted to better understand how this part of the Venice Lagoon reacted to the pressure of human activities in the post-industrial period. Evaluation of the temporal and spatial variation of shoreline position is also crucial to predict future scenarios and manage the lagoon and its ecosystem services in the future.

  7. The Role of Artificial Intelligence in Diagnostic Radiology: A Survey at a Single Radiology Residency Training Program.

    PubMed

    Collado-Mesa, Fernando; Alvarez, Edilberto; Arheart, Kris

    2018-02-21

    Advances in artificial intelligence applied to diagnostic radiology are predicted to have a major impact on this medical specialty. With the goal of establishing a baseline upon which to build educational activities on this topic, a survey was conducted among trainees and attending radiologists at a single residency program. An anonymous questionnaire was distributed. Comparisons of categorical data between groups (trainees and attending radiologists) were made using Pearson χ 2 analysis or an exact analysis when required. Comparisons were made using the Wilcoxon rank sum test when the data were not normally distributed. An α level of 0.05 was used. The overall response rate was 66% (69 of 104). Thirty-six percent of participants (n = 25) reported not having read a scientific medical article on the topic of artificial intelligence during the past 12 months. Twenty-nine percent of respondents (n = 12) reported using artificial intelligence tools during their daily work. Trainees were more likely to express doubts on whether they would have pursued diagnostic radiology as a career had they known of the potential impact artificial intelligence is predicted to have on the specialty (P = .0254) and were also more likely to plan to learn about the topic (P = .0401). Radiologists lack exposure to current scientific medical articles on artificial intelligence. Trainees are concerned by the implications artificial intelligence may have on their jobs and desire to learn about the topic. There is a need to develop educational resources to help radiologists assume an active role in guiding and facilitating the development and implementation of artificial intelligence tools in diagnostic radiology. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  8. The predisposing factors for the heterotopic ossification after cervical artificial disc replacement.

    PubMed

    Yi, Seong; Shin, Dong Ah; Kim, Keung Nyun; Choi, Gwihyun; Shin, Hyun Chul; Kim, Keun Su; Yoon, Do Heum

    2013-09-01

    Heterotopic ossification (HO) is defined as a formation of bone outside the skeletal system. The reported HO occurrence rate in cervical artificial disc replacement (ADR) is unexpectedly high and is known to vary. However, the predisposing factors for HO in cervical ADR have not yet been elucidated. Investigation of the predisposing factors of HO in cervical arthroplasty and the relationship between degeneration of the cervical spine and HO occurrence. Retrospective study to discover predisposing factors of HO in cervical arthroplasty. A total of 170 patients who underwent cervical ADR were enrolled including full follow-up clinical and radiologic data. Radiologic outcomes were assessed by identification of HOs according to McAfee's classifications. This study enrolled a total of 170 patients who underwent cervical ADR. Pre-existing degenerative change included anterior or posterior osteophytes, ossification of the anterior longitudinal ligament, posterior longitudinal ligament, or ligamentum nuchae. The relationships between basic patient data, pre-existing degenerative change, and HO were investigated using linear logistic regression analysis. Among all 170 patients, HO was found in 69 patients (40.6%). Among the postulated predisposing factors, only male gender and artificial disc device type were shown to be statistically significant. Unexpectedly, preoperative degenerative changes in the cervical spine exerted no significant influence on the occurrence of HOs. The odds ratio of male gender compared with female gender was 2.117. With regard to device type, the odds ratios of Mobi-C (LDR medical, Troyes, France) and ProDisc-C (Synthes, Inc., West Chester, PA, USA) were 5.262 and 7.449, respectively, compared with the Bryan disc. Definite differences in occurrence rate according to the gender of patients and the prosthesis type were identified in this study. Moreover, factors indefinably expected to influence HO in the past were not shown to be risk factors thereof, the results of which may be meaningful to future studies. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Mitochondrial damage and cytoskeleton reorganization in human dermal fibroblasts exposed to artificial visible light similar to screen-emitted light.

    PubMed

    Rascalou, Adeline; Lamartine, Jérôme; Poydenot, Pauline; Demarne, Frédéric; Bechetoille, Nicolas

    2018-05-05

    Artificial visible light is everywhere in modern life. Social communication confronts us with screens of all kinds, and their use is on the rise. We are therefore increasingly exposed to artificial visible light, the effects of which on skin are poorly known. The purpose of this study was to model the artificial visible light emitted by electronic devices and assess its effect on normal human fibroblasts. The spectral irradiance emitted by electronic devices was optically measured and equipment was developed to accurately reproduce such artificial visible light. Effects on normal human fibroblasts were analyzed on human genome microarray-based gene expression analysis. At cellular level, visualization and image analysis were performed on the mitochondrial network and F-actin cytoskeleton. Cell proliferation, ATP release and type I procollagen secretion were also measured. We developed a device consisting of 36 LEDs simultaneously emitting blue, green and red light at distinct wavelengths (450 nm, 525 nm and 625 nm) with narrow spectra and equivalent radiant power for the three colors. A dose of 99 J/cm 2 artificial visible light was selected so as not to induce cell mortality following exposure. Microarray analysis revealed 2984 light-modulated transcripts. Functional annotation of light-responsive genes revealed several enriched functions including, amongst others, the "mitochondria" and "integrin signaling" categories. Selected results were confirmed by real-time quantitative PCR, analyzing 24 genes representing these two categories. Analysis of micro-patterned culture plates showed marked fragmentation of the mitochondrial network and disorganization of the F-actin cytoskeleton following exposure. Functionally, there was considerable impairment of cell growth and spread, ATP release and type I procollagen secretion in exposed fibroblasts. Artificial visible light induces drastic molecular and cellular changes in normal human fibroblasts. This may impede normal cellular functions and contribute to premature skin aging. The present results extend our knowledge of the effects of the low-energy wavelengths that are increasingly used to treat skin disorders. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  10. Time series data analysis using DFA

    NASA Astrophysics Data System (ADS)

    Okumoto, A.; Akiyama, T.; Sekino, H.; Sumi, T.

    2014-02-01

    Detrended fluctuation analysis (DFA) was originally developed for the evaluation of DNA sequence and interval for heart rate variability (HRV), but it is now used to obtain various biological information. In this study we perform DFA on artificially generated data where we already know the relationship between signal and the physical event causing the signal. We generate artificial data using molecular dynamics. The Brownian motion of a polymer under an external force is investigated. In order to generate artificial fluctuation in the physical properties, we introduce obstacle pillars fixed to nanostructures. Using different conditions such as presence or absence of obstacles, external field, and the polymer length, we perform DFA on energies and positions of the polymer.

  11. Tehran Air Pollutants Prediction Based on Random Forest Feature Selection Method

    NASA Astrophysics Data System (ADS)

    Shamsoddini, A.; Aboodi, M. R.; Karami, J.

    2017-09-01

    Air pollution as one of the most serious forms of environmental pollutions poses huge threat to human life. Air pollution leads to environmental instability, and has harmful and undesirable effects on the environment. Modern prediction methods of the pollutant concentration are able to improve decision making and provide appropriate solutions. This study examines the performance of the Random Forest feature selection in combination with multiple-linear regression and Multilayer Perceptron Artificial Neural Networks methods, in order to achieve an efficient model to estimate carbon monoxide and nitrogen dioxide, sulfur dioxide and PM2.5 contents in the air. The results indicated that Artificial Neural Networks fed by the attributes selected by Random Forest feature selection method performed more accurate than other models for the modeling of all pollutants. The estimation accuracy of sulfur dioxide emissions was lower than the other air contaminants whereas the nitrogen dioxide was predicted more accurate than the other pollutants.

  12. Stability and mobility of Cu-vacancy clusters in Fe-Cu alloys: A computational study based on the use of artificial neural networks for energy barrier calculations

    NASA Astrophysics Data System (ADS)

    Pascuet, M. I.; Castin, N.; Becquart, C. S.; Malerba, L.

    2011-05-01

    An atomistic kinetic Monte Carlo (AKMC) method has been applied to study the stability and mobility of copper-vacancy clusters in Fe. This information, which cannot be obtained directly from experimental measurements, is needed to parameterise models describing the nanostructure evolution under irradiation of Fe alloys (e.g. model alloys for reactor pressure vessel steels). The physical reliability of the AKMC method has been improved by employing artificial intelligence techniques for the regression of the activation energies required by the model as input. These energies are calculated allowing for the effects of local chemistry and relaxation, using an interatomic potential fitted to reproduce them as accurately as possible and the nudged-elastic-band method. The model validation was based on comparison with available ab initio calculations for verification of the used cohesive model, as well as with other models and theories.

  13. Prediction of air pollutant concentration based on sparse response back-propagation training feedforward neural networks.

    PubMed

    Ding, Weifu; Zhang, Jiangshe; Leung, Yee

    2016-10-01

    In this paper, we predict air pollutant concentration using a feedforward artificial neural network inspired by the mechanism of the human brain as a useful alternative to traditional statistical modeling techniques. The neural network is trained based on sparse response back-propagation in which only a small number of neurons respond to the specified stimulus simultaneously and provide a high convergence rate for the trained network, in addition to low energy consumption and greater generalization. Our method is evaluated on Hong Kong air monitoring station data and corresponding meteorological variables for which five air quality parameters were gathered at four monitoring stations in Hong Kong over 4 years (2012-2015). Our results show that our training method has more advantages in terms of the precision of the prediction, effectiveness, and generalization of traditional linear regression algorithms when compared with a feedforward artificial neural network trained using traditional back-propagation.

  14. The Use of Artificial Neural Network for Prediction of Dissolution Kinetics

    PubMed Central

    Elçiçek, H.; Akdoğan, E.; Karagöz, S.

    2014-01-01

    Colemanite is a preferred boron mineral in industry, such as boric acid production, fabrication of heat resistant glass, and cleaning agents. Dissolution of the mineral is one of the most important processes for these industries. In this study, dissolution of colemanite was examined in water saturated with carbon dioxide solutions. Also, prediction of dissolution rate was determined using artificial neural networks (ANNs) which are based on the multilayered perceptron. Reaction temperature, total pressure, stirring speed, solid/liquid ratio, particle size, and reaction time were selected as input parameters to predict the dissolution rate. Experimental dataset was used to train multilayer perceptron (MLP) networks to allow for prediction of dissolution kinetics. Developing ANNs has provided highly accurate predictions in comparison with an obtained mathematical model used through regression method. We conclude that ANNs may be a preferred alternative approach instead of conventional statistical methods for prediction of boron minerals. PMID:25028674

  15. Artificial Intelligence Techniques: Applications for Courseware Development.

    ERIC Educational Resources Information Center

    Dear, Brian L.

    1986-01-01

    Introduces some general concepts and techniques of artificial intelligence (natural language interfaces, expert systems, knowledge bases and knowledge representation, heuristics, user-interface metaphors, and object-based environments) and investigates ways these techniques might be applied to analysis, design, development, implementation, and…

  16. A Modular Artificial Intelligence Inference Engine System (MAIS) for support of on orbit experiments

    NASA Technical Reports Server (NTRS)

    Hancock, Thomas M., III

    1994-01-01

    This paper describes a Modular Artificial Intelligence Inference Engine System (MAIS) support tool that would provide health and status monitoring, cognitive replanning, analysis and support of on-orbit Space Station, Spacelab experiments and systems.

  17. Perception of Sexual Orientation from Facial Structure: A Study with Artificial Face Models.

    PubMed

    González-Álvarez, Julio

    2017-07-01

    Research has shown that lay people can perceive sexual orientation better than chance from face stimuli. However, the relation between facial structure and sexual orientation has been scarcely examined. Recently, an extensive morphometric study on a large sample of Canadian people (Skorska, Geniole, Vrysen, McCormick, & Bogaert, 2015) identified three (in men) and four (in women) facial features as unique multivariate predictors of sexual orientation in each sex group. The present study tested the perceptual validity of these facial traits with two experiments based on realistic artificial 3D face models created by manipulating the key parameters and presented to Spanish participants. Experiment 1 included 200 White and Black face models of both sexes. The results showed an overall accuracy (0.74) clearly above chance in a binary hetero/homosexual judgment task and significant differences depending on the race and sex of the face models. Experiment 2 produced five versions of 24 artificial faces of both sexes varying the key parameters in equal steps, and participants had to rate on a 1-7 scale how likely they thought that the depicted person had a homosexual sexual orientation. Rating scores displayed an almost perfect linear regression as a function of the parameter steps. In summary, both experiments demonstrated the perceptual validity of the seven multivariate predictors identified by Skorska et al. and open up new avenues for further research on this issue with artificial face models.

  18. Artificial neural network (ANN)-based prediction of depth filter loading capacity for filter sizing.

    PubMed

    Agarwal, Harshit; Rathore, Anurag S; Hadpe, Sandeep Ramesh; Alva, Solomon J

    2016-11-01

    This article presents an application of artificial neural network (ANN) modelling towards prediction of depth filter loading capacity for clarification of a monoclonal antibody (mAb) product during commercial manufacturing. The effect of operating parameters on filter loading capacity was evaluated based on the analysis of change in the differential pressure (DP) as a function of time. The proposed ANN model uses inlet stream properties (feed turbidity, feed cell count, feed cell viability), flux, and time to predict the corresponding DP. The ANN contained a single output layer with ten neurons in hidden layer and employed a sigmoidal activation function. This network was trained with 174 training points, 37 validation points, and 37 test points. Further, a pressure cut-off of 1.1 bar was used for sizing the filter area required under each operating condition. The modelling results showed that there was excellent agreement between the predicted and experimental data with a regression coefficient (R 2 ) of 0.98. The developed ANN model was used for performing variable depth filter sizing for different clarification lots. Monte-Carlo simulation was performed to estimate the cost savings by using different filter areas for different clarification lots rather than using the same filter area. A 10% saving in cost of goods was obtained for this operation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1436-1443, 2016. © 2016 American Institute of Chemical Engineers.

  19. Regression model, artificial neural network, and cost estimation for biosorption of Ni(II)-ions from aqueous solutions by Potamogeton pectinatus.

    PubMed

    Fawzy, Manal; Nasr, Mahmoud; Adel, Samar; Helmi, Shacker

    2018-03-21

    This study investigated the application of Potamogeton pectinatus for Ni(II)-ions biosorption from aqueous solutions. FTIR spectra showed that the functional groups of -OH, C-H, -C = O, and -COO- could form an organometallic complex with Ni(II)-ions on the biomaterial surface. SEM/EDX analysis indicated that the voids on the biosorbent surface were blocked due to Ni(II)-ions uptake via an ion exchange mechanism. For Ni(II)-ions of 50 mg/L, the adsorption efficiency recorded 63.4% at pH: 5, biosorbent dosage: 10 g/L, and particle-diameter: 0.125-0.25 mm within 180 minutes. A quadratic model depicted that the plot of removal efficiency against pH or contact time caused quadratic-linear concave up curves, whereas the curve of initial Ni(II)-ions was quadratic-linear convex down. Artificial neural network with a structure of 5 - 6 - 1 was able to predict the adsorption efficiency (R 2 : 0.967). The relative importance of inputs was: initial Ni(II)-ions > pH > contact time > biosorbent dosage > particle-size. Freundlich isotherm described well the adsorption mechanism (R 2 : 0.974), which indicated a multilayer adsorption onto energetically heterogeneous surfaces. The net cost of using P. pectinatus for the removal of Ni(II)-ions (4.25 ± 1.26 mg/L) from real industrial effluents within 30 minutes was 3.4 $USD/m 3 .

  20. A retrospective analysis of ovarian stimulation with letrozole in women undergoing artificial insemination by donor.

    PubMed

    Sun, X J; Jiang, L; Ji, L C; Nie, R; Chen, H; Jin, L; Zhu, G J; Qian, K

    2017-04-01

    The aim of this retrospective study was to determine the clinical pregnancy rate in women undergoing letrozole ovarian stimulation and artificial insemination by donor (AID). Between 2012 and 2015, 130 natural cycles, 939 letrozole cycles and 130 letrozole plus gonadotrophin cycles were conducted. Letrozole cycles were divided into three groups according to LH concentration on the day of HCG administration (LH <10 mIU/ml and follicle size ≥18 cm; LH ≤10 to <20 mIU/ml; and LH ≥20 mIU/ml). Pregnancy rates were 17.3%, 22.4% and 26.8%, respectively (P = 0.012). In women given 10 mIU/ml LH or more, logistic regression identified oestradiol (OR 1.002, 95% CI, 1.000 to 1.004, P = 0.029) and leading follicle size (OR 0.861, 95% CI, 0.772 to 0.960, P = 0.007) as significant predictive factors of pregnancy rate; the higher the oestradiol and the smaller the follicles, the better the pregnancy rate. The pregnancy rate was significantly higher in the letrozole plus gonadotrophin group than the letrozole group (P = 0.04). Better pregnancy rates can be achieved if LH surge occurs before HCG administration, especially with higher oestradiol and lower follicle size; treatment with letrozole plus gonadotrophin was significantly more effective than letrozole alone in AID. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  1. Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells.

    PubMed

    Yetilmezsoy, Kaan; Demirel, Sevgi

    2008-05-30

    A three-layer artificial neural network (ANN) model was developed to predict the efficiency of Pb(II) ions removal from aqueous solution by Antep pistachio (Pistacia Vera L.) shells based on 66 experimental sets obtained in a laboratory batch study. The effect of operational parameters such as adsorbent dosage, initial concentration of Pb(II) ions, initial pH, operating temperature, and contact time were studied to optimise the conditions for maximum removal of Pb(II) ions. On the basis of batch test results, optimal operating conditions were determined to be an initial pH of 5.5, an adsorbent dosage of 1.0 g, an initial Pb(II) concentration of 30 ppm, and a temperature of 30 degrees C. Experimental results showed that a contact time of 45 min was generally sufficient to achieve equilibrium. After backpropagation (BP) training combined with principal component analysis (PCA), the ANN model was able to predict adsorption efficiency with a tangent sigmoid transfer function (tansig) at hidden layer with 11 neurons and a linear transfer function (purelin) at output layer. The Levenberg-Marquardt algorithm (LMA) was found as the best of 11 BP algorithms with a minimum mean squared error (MSE) of 0.000227875. The linear regression between the network outputs and the corresponding targets were proven to be satisfactory with a correlation coefficient of about 0.936 for five model variables used in this study.

  2. The association between artificial light at night and prostate cancer in Gwangju City and South Jeolla Province of South Korea.

    PubMed

    Kim, Ka Young; Lee, Eunil; Kim, Yun Jeong; Kim, Jinsun

    2017-01-01

    ABSRACT Exposure to artificial light at night (ALAN) has been reported to be associated with various pathological changes including sleep deprivation, circadian rhythm disruption, and melatonin suppression with increase in various cancers such as breast or prostate cancers. In this study, we sought to elucidate the association between ALAN and prostate cancer in 27 districts within Gwangju City and urban and rural areas from South Jeolla Province in South Korea. We analyzed the correlation between ALAN and the incidence of a range of cancers by Poisson regression analysis, after adjustment for confounding risk factors, such as smoking, drinking, obesity, stress, air pollution (particulate matter <10 μm in diameter), urbanization (proportion of urbanized area), and the cancer screening rate. Interestingly, the incidence of prostate cancer was significantly associated with ALAN (risk ratio = 1.02, p = 0.0369) and urbanization (risk ratio = 1.06, p = 0.0055). In particular, comparing the prostate cancer incidence at 25% and 75% level of ALAN, the risk ratio was 1.726 (12.6 over 7.3, respectively). No significant association was observed between ALAN and other cancers, including stomach, esophageal, liver, pancreatic, laryngeal, lung and tracheal, bladder, and brain and central nervous system cancers, as well as lymphoma and multiple myeloma. In conclusion, this study shows that a high incidence of prostate cancer may be independently associated with light pollution and urbanization, which represent significant factors in the rapid process of industrialization of South Korea.

  3. Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study.

    PubMed

    Antanasijević, Davor; Pocajt, Viktor; Povrenović, Dragan; Perić-Grujić, Aleksandra; Ristić, Mirjana

    2013-12-01

    The aims of this study are to create an artificial neural network (ANN) model using non-specific water quality parameters and to examine the accuracy of three different ANN architectures: General Regression Neural Network (GRNN), Backpropagation Neural Network (BPNN) and Recurrent Neural Network (RNN), for prediction of dissolved oxygen (DO) concentration in the Danube River. The neural network model has been developed using measured data collected from the Bezdan monitoring station on the Danube River. The input variables used for the ANN model are water flow, temperature, pH and electrical conductivity. The model was trained and validated using available data from 2004 to 2008 and tested using the data from 2009. The order of performance for the created architectures based on their comparison with the test data is RNN > GRNN > BPNN. The ANN results are compared with multiple linear regression (MLR) model using multiple statistical indicators. The comparison of the RNN model with the MLR model indicates that the RNN model performs much better, since all predictions of the RNN model for the test data were within the error of less than ± 10 %. In case of the MLR, only 55 % of predictions were within the error of less than ± 10 %. The developed RNN model can be used as a tool for the prediction of DO in river waters.

  4. Artificial Neural Networks: A Novel Approach to Analysing the Nutritional Ecology of a Blowfly Species, Chrysomya megacephala

    PubMed Central

    Bianconi, André; Zuben, Cláudio J. Von; Serapião, Adriane B. de S.; Govone, José S.

    2010-01-01

    Bionomic features of blowflies may be clarified and detailed by the deployment of appropriate modelling techniques such as artificial neural networks, which are mathematical tools widely applied to the resolution of complex biological problems. The principal aim of this work was to use three well-known neural networks, namely Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), and Adaptive Neural Network-Based Fuzzy Inference System (ANFIS), to ascertain whether these tools would be able to outperform a classical statistical method (multiple linear regression) in the prediction of the number of resultant adults (survivors) of experimental populations of Chrysomya megacephala (F.) (Diptera: Calliphoridae), based on initial larval density (number of larvae), amount of available food, and duration of immature stages. The coefficient of determination (R2) derived from the RBF was the lowest in the testing subset in relation to the other neural networks, even though its R2 in the training subset exhibited virtually a maximum value. The ANFIS model permitted the achievement of the best testing performance. Hence this model was deemed to be more effective in relation to MLP and RBF for predicting the number of survivors. All three networks outperformed the multiple linear regression, indicating that neural models could be taken as feasible techniques for predicting bionomic variables concerning the nutritional dynamics of blowflies. PMID:20569135

  5. A new look at patient satisfaction: learning from self-organizing maps.

    PubMed

    Voutilainen, Ari; Kvist, Tarja; Sherwood, Paula R; Vehviläinen-Julkunen, Katri

    2014-01-01

    To some extent, results always depend on the methods used, and the complete picture of the phenomenon of interest can be drawn only by combining results of different data processing techniques. This emphasizes the use of a wide arsenal of methods for processing and analyzing patient satisfaction surveys. The purpose of this study was to introduce the self-organizing map (SOM) to nursing science and to illustrate the use of the SOM with patient satisfaction data. The SOM is a widely used artificial neural network suitable for clustering and exploring all kind of data sets. The study was partly a secondary analysis of data collected for the Attractive and Safe Hospital Study from four Finnish hospitals in 2008 and 2010 using the Revised Humane Caring Scale. The sample consisted of 5,283 adult patients. The SOM was used to cluster the data set according to (a) respondents and (b) questionnaire items. The SOM was also used as a preprocessor for multinomial logistic regression. An analysis of missing data was carried out to improve the data interpretation. Combining results of the two SOMs and the logistic regression revealed associations between the level of satisfaction, different components of satisfaction, and item nonresponse. The common conception that the relationship between patient satisfaction and age is positive may partly be due to positive association between the tendency of item nonresponse and age. The SOM proved to be a useful method for clustering a questionnaire data set even when the data set was low dimensional per se. Inclusion of empty responses in analyses may help to detect possible misleading noncausative relationships.

  6. Comparative data mining analysis for information retrieval of MODIS images: monitoring lake turbidity changes at Lake Okeechobee, Florida

    NASA Astrophysics Data System (ADS)

    Chang, Ni-Bin; Daranpob, Ammarin; Yang, Y. Jeffrey; Jin, Kang-Ren

    2009-09-01

    In the remote sensing field, a frequently recurring question is: Which computational intelligence or data mining algorithms are most suitable for the retrieval of essential information given that most natural systems exhibit very high non-linearity. Among potential candidates might be empirical regression, neural network model, support vector machine, genetic algorithm/genetic programming, analytical equation, etc. This paper compares three types of data mining techniques, including multiple non-linear regression, artificial neural networks, and genetic programming, for estimating multi-temporal turbidity changes following hurricane events at Lake Okeechobee, Florida. This retrospective analysis aims to identify how the major hurricanes impacted the water quality management in 2003-2004. The Moderate Resolution Imaging Spectroradiometer (MODIS) Terra 8-day composite imageries were used to retrieve the spatial patterns of turbidity distributions for comparison against the visual patterns discernible in the in-situ observations. By evaluating four statistical parameters, the genetic programming model was finally selected as the most suitable data mining tool for classification in which the MODIS band 1 image and wind speed were recognized as the major determinants by the model. The multi-temporal turbidity maps generated before and after the major hurricane events in 2003-2004 showed that turbidity levels were substantially higher after hurricane episodes. The spatial patterns of turbidity confirm that sediment-laden water travels to the shore where it reduces the intensity of the light necessary to submerged plants for photosynthesis. This reduction results in substantial loss of biomass during the post-hurricane period.

  7. Artificial Intelligence for the Artificial Kidney: Pointers to the Future of a Personalized Hemodialysis Therapy.

    PubMed

    Hueso, Miguel; Vellido, Alfredo; Montero, Nuria; Barbieri, Carlo; Ramos, Rosa; Angoso, Manuel; Cruzado, Josep Maria; Jonsson, Anders

    2018-02-01

    Current dialysis devices are not able to react when unexpected changes occur during dialysis treatment or to learn about experience for therapy personalization. Furthermore, great efforts are dedicated to develop miniaturized artificial kidneys to achieve a continuous and personalized dialysis therapy, in order to improve the patient's quality of life. These innovative dialysis devices will require a real-time monitoring of equipment alarms, dialysis parameters, and patient-related data to ensure patient safety and to allow instantaneous changes of the dialysis prescription for the assessment of their adequacy. The analysis and evaluation of the resulting large-scale data sets enters the realm of "big data" and will require real-time predictive models. These may come from the fields of machine learning and computational intelligence, both included in artificial intelligence, a branch of engineering involved with the creation of devices that simulate intelligent behavior. The incorporation of artificial intelligence should provide a fully new approach to data analysis, enabling future advances in personalized dialysis therapies. With the purpose to learn about the present and potential future impact on medicine from experts in artificial intelligence and machine learning, a scientific meeting was organized in the Hospital Universitari Bellvitge (L'Hospitalet, Barcelona). As an outcome of that meeting, the aim of this review is to investigate artificial intel ligence experiences on dialysis, with a focus on potential barriers, challenges, and prospects for future applications of these technologies. Artificial intelligence research on dialysis is still in an early stage, and the main challenge relies on interpretability and/or comprehensibility of data models when applied to decision making. Artificial neural networks and medical decision support systems have been used to make predictions about anemia, total body water, or intradialysis hypotension and are promising approaches for the prescription and monitoring of hemodialysis therapy. Current dialysis machines are continuously improving due to innovative technological developments, but patient safety is still a key challenge. Real-time monitoring systems, coupled with automatic instantaneous biofeedback, will allow changing dialysis prescriptions continuously. The integration of vital sign monitoring with dialysis parameters will produce large data sets that will require the use of data analysis techniques, possibly from the area of machine learning, in order to make better decisions and increase the safety of patients.

  8. Estimation of continuous multi-DOF finger joint kinematics from surface EMG using a multi-output Gaussian Process.

    PubMed

    Ngeo, Jimson; Tamei, Tomoya; Shibata, Tomohiro

    2014-01-01

    Surface electromyographic (EMG) signals have often been used in estimating upper and lower limb dynamics and kinematics for the purpose of controlling robotic devices such as robot prosthesis and finger exoskeletons. However, in estimating multiple and a high number of degrees-of-freedom (DOF) kinematics from EMG, output DOFs are usually estimated independently. In this study, we estimate finger joint kinematics from EMG signals using a multi-output convolved Gaussian Process (Multi-output Full GP) that considers dependencies between outputs. We show that estimation of finger joints from muscle activation inputs can be improved by using a regression model that considers inherent coupling or correlation within the hand and finger joints. We also provide a comparison of estimation performance between different regression methods, such as Artificial Neural Networks (ANN) which is used by many of the related studies. We show that using a multi-output GP gives improved estimation compared to multi-output ANN and even dedicated or independent regression models.

  9. Conceptual Memory: A Theory and Computer Program for Processing the Meaning Content of Natural Language Utterances

    DTIC Science & Technology

    1974-07-01

    iiWU -immmemmmmm This document was generated by the Stanford Artificial Intelligence Laboratory’s document compiler, "PUB" and reproducec’ on a...for more sophisticated artificial (programming) languages. The new issues became those of how to represent a grammar as precise syntactic structures...challenge lies in discovering - either by synthesis of an artificial system, or by analysis of a natural one - the underlying logical (a. opposed to

  10. Effects of artificial tracheal fixation on tracheal epithelial regeneration and prevention of tracheal stenosis.

    PubMed

    Nakaegawa, Yuta; Nakamura, Ryosuke; Tada, Yasuhiro; Suzuki, Ryo; Takezawa, Toshiaki; Nakamura, Tatsuo; Omori, Koichi

    2017-06-01

    Tight fixation of the artificial trachea is important for epithelialization and tracheal stenosis. The authors have developed an artificial trachea and have used it for tracheal reconstruction. Although various studies on tracheal reconstruction have been conducted, no studies have examined the effect of artificial tracheal fixation on tracheal stenosis and regeneration. Therefore, the purpose of the present study was to evaluate the effect of artificial tracheal fixation. Preliminary animal experiment. Artificial tracheae were implanted into rabbits with partial tracheal defects. Tracheal stenosis and regeneration of the tracheal epithelium on the artificial tracheae were evaluated by endoscopic examination, scanning electron microscopic analysis, and histological examination. The artificial tracheae fixed to the tracheal defects were classified into three groups (0-point, 4-point, and 8-point) by the number of fixation points. At 14 and 28 days post-implantation, the luminal surface of the implantation area was mostly covered with epithelium in all fixation groups. However, a small amount of granulation tissue was observed in the 0-point fixation group at 14 days post-implantation. Moreover, tracheal stenosis did not occur in the 8-point fixation group, but stenosis was detected in the other groups.

  11. Egg production forecasting: Determining efficient modeling approaches.

    PubMed

    Ahmad, H A

    2011-12-01

    Several mathematical or statistical and artificial intelligence models were developed to compare egg production forecasts in commercial layers. Initial data for these models were collected from a comparative layer trial on commercial strains conducted at the Poultry Research Farms, Auburn University. Simulated data were produced to represent new scenarios by using means and SD of egg production of the 22 commercial strains. From the simulated data, random examples were generated for neural network training and testing for the weekly egg production prediction from wk 22 to 36. Three neural network architectures-back-propagation-3, Ward-5, and the general regression neural network-were compared for their efficiency to forecast egg production, along with other traditional models. The general regression neural network gave the best-fitting line, which almost overlapped with the commercial egg production data, with an R(2) of 0.71. The general regression neural network-predicted curve was compared with original egg production data, the average curves of white-shelled and brown-shelled strains, linear regression predictions, and the Gompertz nonlinear model. The general regression neural network was superior in all these comparisons and may be the model of choice if the initial overprediction is managed efficiently. In general, neural network models are efficient, are easy to use, require fewer data, and are practical under farm management conditions to forecast egg production.

  12. [Approach to the Development of Mind and Persona].

    PubMed

    Sawaguchi, Toshiko

    2018-01-01

    To access medical specialists by health specialists working in the regional health field, the possibility of utilizing the voice approach for dissociative identity disorder (DID) patients as a health assessment for medical access (HAMA) was investigated. The first step is to investigate whether the plural personae in a single DID patient can be discriminated by voice analysis. Voices of DID patients including these with different personae were extracted from YouTube and were analysed using the software PRAAT with basic frequency, oral factors, chin factors and tongue factors. In addition, RAKUGO story teller voices made artificially and dramatically were analysed in the same manner. Quantitive and qualitative analysis method were carried out and nested logistic regression and a nested generalized linear model was developed. The voice from different personae in one DID patient could be visually and easily distinquished using basic frequency curve, cluster analysis and factor analysis. In the canonical analysis, only Roy's maximum root was <0.01. In the nested generalized linear model, the model using a standard deviation (SD) indicator fit best and some other possibilities are shown here. In DID patients, the short transition time among plural personae could guide to the risky situation such as suicide. So if the voice approach can show the time threshold of changes between the different personae, it would be useful as an Access Assessment in the form of a simple HAMA.

  13. Authentication of forensic DNA samples.

    PubMed

    Frumkin, Dan; Wasserstrom, Adam; Davidson, Ariane; Grafit, Arnon

    2010-02-01

    Over the past twenty years, DNA analysis has revolutionized forensic science, and has become a dominant tool in law enforcement. Today, DNA evidence is key to the conviction or exoneration of suspects of various types of crime, from theft to rape and murder. However, the disturbing possibility that DNA evidence can be faked has been overlooked. It turns out that standard molecular biology techniques such as PCR, molecular cloning, and recently developed whole genome amplification (WGA), enable anyone with basic equipment and know-how to produce practically unlimited amounts of in vitro synthesized (artificial) DNA with any desired genetic profile. This artificial DNA can then be applied to surfaces of objects or incorporated into genuine human tissues and planted in crime scenes. Here we show that the current forensic procedure fails to distinguish between such samples of blood, saliva, and touched surfaces with artificial DNA, and corresponding samples with in vivo generated (natural) DNA. Furthermore, genotyping of both artificial and natural samples with Profiler Plus((R)) yielded full profiles with no anomalies. In order to effectively deal with this problem, we developed an authentication assay, which distinguishes between natural and artificial DNA based on methylation analysis of a set of genomic loci: in natural DNA, some loci are methylated and others are unmethylated, while in artificial DNA all loci are unmethylated. The assay was tested on natural and artificial samples of blood, saliva, and touched surfaces, with complete success. Adopting an authentication assay for casework samples as part of the forensic procedure is necessary for maintaining the high credibility of DNA evidence in the judiciary system.

  14. A Clinical Decision Support System for Breast Cancer Patients

    NASA Astrophysics Data System (ADS)

    Fernandes, Ana S.; Alves, Pedro; Jarman, Ian H.; Etchells, Terence A.; Fonseca, José M.; Lisboa, Paulo J. G.

    This paper proposes a Web clinical decision support system for clinical oncologists and for breast cancer patients making prognostic assessments, using the particular characteristics of the individual patient. This system comprises three different prognostic modelling methodologies: the clinically widely used Nottingham prognostic index (NPI); the Cox regression modelling and a partial logistic artificial neural network with automatic relevance determination (PLANN-ARD). All three models yield a different prognostic index that can be analysed together in order to obtain a more accurate prognostic assessment of the patient. Missing data is incorporated in the mentioned models, a common issue in medical data that was overcome using multiple imputation techniques. Risk group assignments are also provided through a methodology based on regression trees, where Boolean rules can be obtained expressed with patient characteristics.

  15. Estimation of longitudinal stability and control derivatives for an icing research aircraft from flight data

    NASA Technical Reports Server (NTRS)

    Batterson, James G.; Omara, Thomas M.

    1989-01-01

    The results of applying a modified stepwise regression algorithm and a maximum likelihood algorithm to flight data from a twin-engine commuter-class icing research aircraft are presented. The results are in the form of body-axis stability and control derivatives related to the short-period, longitudinal motion of the aircraft. Data were analyzed for the baseline (uniced) and for the airplane with an artificial glaze ice shape attached to the leading edge of the horizontal tail. The results are discussed as to the accuracy of the derivative estimates and the difference between the derivative values found for the baseline and the iced airplane. Additional comparisons were made between the maximum likelihood results and the modified stepwise regression results with causes for any discrepancies postulated.

  16. Reverse engineering model structures for soil and ecosystem respiration: the potential of gene expression programming

    NASA Astrophysics Data System (ADS)

    Ilie, Iulia; Dittrich, Peter; Carvalhais, Nuno; Jung, Martin; Heinemeyer, Andreas; Migliavacca, Mirco; Morison, James I. L.; Sippel, Sebastian; Subke, Jens-Arne; Wilkinson, Matthew; Mahecha, Miguel D.

    2017-09-01

    Accurate model representation of land-atmosphere carbon fluxes is essential for climate projections. However, the exact responses of carbon cycle processes to climatic drivers often remain uncertain. Presently, knowledge derived from experiments, complemented by a steadily evolving body of mechanistic theory, provides the main basis for developing such models. The strongly increasing availability of measurements may facilitate new ways of identifying suitable model structures using machine learning. Here, we explore the potential of gene expression programming (GEP) to derive relevant model formulations based solely on the signals present in data by automatically applying various mathematical transformations to potential predictors and repeatedly evolving the resulting model structures. In contrast to most other machine learning regression techniques, the GEP approach generates readable models that allow for prediction and possibly for interpretation. Our study is based on two cases: artificially generated data and real observations. Simulations based on artificial data show that GEP is successful in identifying prescribed functions, with the prediction capacity of the models comparable to four state-of-the-art machine learning methods (random forests, support vector machines, artificial neural networks, and kernel ridge regressions). Based on real observations we explore the responses of the different components of terrestrial respiration at an oak forest in south-eastern England. We find that the GEP-retrieved models are often better in prediction than some established respiration models. Based on their structures, we find previously unconsidered exponential dependencies of respiration on seasonal ecosystem carbon assimilation and water dynamics. We noticed that the GEP models are only partly portable across respiration components, the identification of a general terrestrial respiration model possibly prevented by equifinality issues. Overall, GEP is a promising tool for uncovering new model structures for terrestrial ecology in the data-rich era, complementing more traditional modelling approaches.

  17. Comparative Performance Evaluation of Rainfall-runoff Models, Six of Black-box Type and One of Conceptual Type, From The Galway Flow Forecasting System (gffs) Package, Applied On Two Irish Catchments

    NASA Astrophysics Data System (ADS)

    Goswami, M.; O'Connor, K. M.; Shamseldin, A. Y.

    The "Galway Real-Time River Flow Forecasting System" (GFFS) is a software pack- age developed at the Department of Engineering Hydrology, of the National University of Ireland, Galway, Ireland. It is based on a selection of lumped black-box and con- ceptual rainfall-runoff models, all developed in Galway, consisting primarily of both the non-parametric (NP) and parametric (P) forms of two black-box-type rainfall- runoff models, namely, the Simple Linear Model (SLM-NP and SLM-P) and the seasonally-based Linear Perturbation Model (LPM-NP and LPM-P), together with the non-parametric wetness-index-based Linearly Varying Gain Factor Model (LVGFM), the black-box Artificial Neural Network (ANN) Model, and the conceptual Soil Mois- ture Accounting and Routing (SMAR) Model. Comprised of the above suite of mod- els, the system enables the user to calibrate each model individually, initially without updating, and it is capable also of producing combined (i.e. consensus) forecasts us- ing the Simple Average Method (SAM), the Weighted Average Method (WAM), or the Artificial Neural Network Method (NNM). The updating of each model output is achieved using one of four different techniques, namely, simple Auto-Regressive (AR) updating, Linear Transfer Function (LTF) updating, Artificial Neural Network updating (NNU), and updating by the Non-linear Auto-Regressive Exogenous-input method (NARXM). The models exhibit a considerable range of variation in degree of complexity of structure, with corresponding degrees of complication in objective func- tion evaluation. Operating in continuous river-flow simulation and updating modes, these models and techniques have been applied to two Irish catchments, namely, the Fergus and the Brosna. A number of performance evaluation criteria have been used to comparatively assess the model discharge forecast efficiency.

  18. PIXE Analysis of Artificial Turf

    NASA Astrophysics Data System (ADS)

    Conlan, Skye; Chalise, Sajju; Porat, Zachary; Labrake, Scott; Vineyard, Michael

    2017-09-01

    In recent years, there has been debate regarding the use of the crumb rubber infill in artificial turf on high school and college campuses due to the potential presence of heavy metals and carcinogenic chemicals. We performed Proton-Induced X-Ray Emission (PIXE) analysis of artificial turf infill and blade samples collected from high school and college campuses around the Capital District of NYS to search for potentially toxic substances. Crumb rubber pellets were made by mixing 1g of rubber infill and 1g of epoxy. The pellets and the turf blades were bombarded with 2.2 MeV proton beams from a 1.1-MV tandem Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory and x-ray energy spectra were collected with an Amptek silicon drift detector. We analyzed the spectra using GUPIX software to determine the elemental concentrations of the samples. The turf infill showed significant levels of Ti, Fe, Co, Ni, Cu, Zn, Br, and Pb. The highest concentration of Br in the crumb rubber was 1500 +/-100 ppm while the highest detectable amount of Pb concentration was 110 +/-20 ppm. The artificial turf blades showed significant levels of Ti, Fe, and Zn with only the yellow blade showing concentrations of V and Bi.

  19. Artificial intelligence applications in the intensive care unit.

    PubMed

    Hanson, C W; Marshall, B E

    2001-02-01

    To review the history and current applications of artificial intelligence in the intensive care unit. The MEDLINE database, bibliographies of selected articles, and current texts on the subject. The studies that were selected for review used artificial intelligence tools for a variety of intensive care applications, including direct patient care and retrospective database analysis. All literature relevant to the topic was reviewed. Although some of the earliest artificial intelligence (AI) applications were medically oriented, AI has not been widely accepted in medicine. Despite this, patient demographic, clinical, and billing data are increasingly available in an electronic format and therefore susceptible to analysis by intelligent software. Individual AI tools are specifically suited to different tasks, such as waveform analysis or device control. The intensive care environment is particularly suited to the implementation of AI tools because of the wealth of available data and the inherent opportunities for increased efficiency in inpatient care. A variety of new AI tools have become available in recent years that can function as intelligent assistants to clinicians, constantly monitoring electronic data streams for important trends, or adjusting the settings of bedside devices. The integration of these tools into the intensive care unit can be expected to reduce costs and improve patient outcomes.

  20. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System

    PubMed Central

    Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan

    2009-01-01

    This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms. PMID:22408487

  1. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System.

    PubMed

    Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan

    2009-01-01

    This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.

  2. Effect of serum paraoxonase-1 (PON1) activity on follicular development and pregnancy rate in cattle.

    PubMed

    Castro, Natália A; Pfeifer, Luiz F M; Andrade, Jéssica S; Rincón, Joao A A; Pegoraro, Ligia M Cantarelli; Schneider, Augusto

    2018-01-01

    Paraoxonase-1 (PON1) activity has been associated with improvement in ovarian function in early postpartum dairy cows and improved in vitro embryo development. The aim of the current study was to evaluate the potential association among PON1 activity and follicular growth, diameter of the preovulatory follicle and pregnancy per artificial insemination (AI) service in cattle. In Experiment 1, cows (n=33) were subjected to an estradiol-progesterone based protocol to control time of ovulation. Starting on Day 8 of the protocol, follicular growth and serum PON1 activity were monitored. Cows were separated according to the occurrence of ovulation into two groups: Ovulatory (Ov; n=22) and Anovulatory (Anov; n=11). The serum activity of PON1 was not different between Ov and Anov cows (P=0.94). In addition, using a regression model there was no effect of serum PON1 activity on the diameter of dominant follicle (r 2 =0.00; P=0.99). In Experiment 2, cows (n=193) were submitted to the same hormonal protocol as in Experiment 1. On the day of the timed artificial insemination (TAI), the diameter of dominant follicle was evaluated and blood samples were collected for analysis of PON1 activity. According to the serum PON1 activity, cows were divided into three groups: Low (<70U/mL), Medium (70-90U/mL) or High (>90U/mL) PON1 activity. The overall pregnancy rate was 62.7% (121/193), with no difference among PON1 activity groups. Additionally, using a regression model there was no effect of serum PON1 activity on the diameter of the preovulatory follicle (r 2 =0.03; P=0.65) and pregnancy rate (r 2 =0.005; P=0.94). The results of this study indicate that there is no effect of serum PON1 activity on the diameter of preovulatory follicle or establishment of pregnancy in cows submitted to time of ovulation synchronization protocols. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Seasonal forecasting of hydrological drought in the Limpopo Basin: a comparison of statistical methods

    NASA Astrophysics Data System (ADS)

    Seibert, Mathias; Merz, Bruno; Apel, Heiko

    2017-03-01

    The Limpopo Basin in southern Africa is prone to droughts which affect the livelihood of millions of people in South Africa, Botswana, Zimbabwe and Mozambique. Seasonal drought early warning is thus vital for the whole region. In this study, the predictability of hydrological droughts during the main runoff period from December to May is assessed using statistical approaches. Three methods (multiple linear models, artificial neural networks, random forest regression trees) are compared in terms of their ability to forecast streamflow with up to 12 months of lead time. The following four main findings result from the study. 1. There are stations in the basin at which standardised streamflow is predictable with lead times up to 12 months. The results show high inter-station differences of forecast skill but reach a coefficient of determination as high as 0.73 (cross validated). 2. A large range of potential predictors is considered in this study, comprising well-established climate indices, customised teleconnection indices derived from sea surface temperatures and antecedent streamflow as a proxy of catchment conditions. El Niño and customised indices, representing sea surface temperature in the Atlantic and Indian oceans, prove to be important teleconnection predictors for the region. Antecedent streamflow is a strong predictor in small catchments (with median 42 % explained variance), whereas teleconnections exert a stronger influence in large catchments. 3. Multiple linear models show the best forecast skill in this study and the greatest robustness compared to artificial neural networks and random forest regression trees, despite their capabilities to represent nonlinear relationships. 4. Employed in early warning, the models can be used to forecast a specific drought level. Even if the coefficient of determination is low, the forecast models have a skill better than a climatological forecast, which is shown by analysis of receiver operating characteristics (ROCs). Seasonal statistical forecasts in the Limpopo show promising results, and thus it is recommended to employ them as complementary to existing forecasts in order to strengthen preparedness for droughts.

  4. [Prediction of postoperative nausea and vomiting using an artificial neural network].

    PubMed

    Traeger, M; Eberhart, A; Geldner, G; Morin, A M; Putzke, C; Wulf, H; Eberhart, L H J

    2003-12-01

    Postoperative nausea and vomiting (PONV) are still frequent side-effects after general anaesthesia. These unpleasant symptoms for the patients can be sufficiently reduced using a multimodal antiemetic approach. However, these efforts should be restricted to risk patients for PONV. Thus, predictive models are required to identify these patients before surgery. So far all risk scores to predict PONV are based on results of logistic regression analysis. Artificial neural networks (ANN) can also be used for prediction since they can take into account complex and non-linear relationships between predictive variables and the dependent item. This study presents the development of an ANN to predict PONV and compares its performance with two established simplified risk scores (Apfel's and Koivuranta's scores). The development of the ANN was based on data from 1,764 patients undergoing elective surgical procedures under balanced anaesthesia. The ANN was trained with 1,364 datasets and a further 400 were used for supervising the learning process. One of the 49 ANNs showing the best predictive performance was compared with the established risk scores with respect to practicability, discrimination (by means of the area under a receiver operating characteristics curve) and calibration properties (by means of a weighted linear regression between the predicted and the actual incidences of PONV). The ANN tested showed a statistically significant ( p<0.0001) and clinically relevant higher discriminating power (0.74; 95% confidence interval: 0.70-0.78) than the Apfel score (0.66; 95% CI: 0.61-0.71) or Koivuranta's score (0.69; 95% CI: 0.65-0.74). Furthermore, the agreement between the actual incidences of PONV and those predicted by the ANN was also better and near to an ideal fit, represented by the equation y=1.0x+0. The equations for the calibration curves were: KNN y=1.11x+0, Apfel y=0.71x+1, Koivuranta 0.86x-5. The improved predictive accuracy achieved by the ANN is clinically relevant. However, the disadvantages of this system prevail because a computer is required for risk calculation. Thus, we still recommend the use of one of the simplified risk scores for clinical practice.

  5. Accurate Diabetes Risk Stratification Using Machine Learning: Role of Missing Value and Outliers.

    PubMed

    Maniruzzaman, Md; Rahman, Md Jahanur; Al-MehediHasan, Md; Suri, Harman S; Abedin, Md Menhazul; El-Baz, Ayman; Suri, Jasjit S

    2018-04-10

    Diabetes mellitus is a group of metabolic diseases in which blood sugar levels are too high. About 8.8% of the world was diabetic in 2017. It is projected that this will reach nearly 10% by 2045. The major challenge is that when machine learning-based classifiers are applied to such data sets for risk stratification, leads to lower performance. Thus, our objective is to develop an optimized and robust machine learning (ML) system under the assumption that missing values or outliers if replaced by a median configuration will yield higher risk stratification accuracy. This ML-based risk stratification is designed, optimized and evaluated, where: (i) the features are extracted and optimized from the six feature selection techniques (random forest, logistic regression, mutual information, principal component analysis, analysis of variance, and Fisher discriminant ratio) and combined with ten different types of classifiers (linear discriminant analysis, quadratic discriminant analysis, naïve Bayes, Gaussian process classification, support vector machine, artificial neural network, Adaboost, logistic regression, decision tree, and random forest) under the hypothesis that both missing values and outliers when replaced by computed medians will improve the risk stratification accuracy. Pima Indian diabetic dataset (768 patients: 268 diabetic and 500 controls) was used. Our results demonstrate that on replacing the missing values and outliers by group median and median values, respectively and further using the combination of random forest feature selection and random forest classification technique yields an accuracy, sensitivity, specificity, positive predictive value, negative predictive value and area under the curve as: 92.26%, 95.96%, 79.72%, 91.14%, 91.20%, and 0.93, respectively. This is an improvement of 10% over previously developed techniques published in literature. The system was validated for its stability and reliability. RF-based model showed the best performance when outliers are replaced by median values.

  6. Applications of artificial intelligence V; Proceedings of the Meeting, Orlando, FL, May 18-20, 1987

    NASA Technical Reports Server (NTRS)

    Gilmore, John F. (Editor)

    1987-01-01

    The papers contained in this volume focus on current trends in applications of artificial intelligence. Topics discussed include expert systems, image understanding, artificial intelligence tools, knowledge-based systems, heuristic systems, manufacturing applications, and image analysis. Papers are presented on expert system issues in automated, autonomous space vehicle rendezvous; traditional versus rule-based programming techniques; applications to the control of optional flight information; methodology for evaluating knowledge-based systems; and real-time advisory system for airborne early warning.

  7. Edge Detection,

    DTIC Science & Technology

    1985-09-01

    PROJECT. T ASK0 Artificial Inteligence Laboratory AREA It WORK UNIT NUMBERS V 545 Technology Square ( Cambridge, HA 02139 I I* CONTOOL1LIN@4OFFICE NAME...ARD-A1t62 62 EDGE DETECTION(U) NASSACNUSETTS INST OF TECH CAMBRIDGE 1/1 ARTIFICIAL INTELLIGENCE LAB E C HILDRETH SEP 85 AI-M-8 N99SI4-8S-C-6595...used to carry out this analysis. cce~iO a N) ’.~" D LI’BL. P p ------------ Sj. t i MASSACHUSETTS INSTITUTE OF TECHNOLOGY i ARTIFICIAL INTELLIGENCE

  8. Functional approximation using artificial neural networks in structural mechanics

    NASA Technical Reports Server (NTRS)

    Alam, Javed; Berke, Laszlo

    1993-01-01

    The artificial neural networks (ANN) methodology is an outgrowth of research in artificial intelligence. In this study, the feed-forward network model that was proposed by Rumelhart, Hinton, and Williams was applied to the mapping of functions that are encountered in structural mechanics problems. Several different network configurations were chosen to train the available data for problems in materials characterization and structural analysis of plates and shells. By using the recall process, the accuracy of these trained networks was assessed.

  9. Conversion of the CALAP (Computer Aided Landform Analysis Program) Program from FORTRAN to DUCK.

    DTIC Science & Technology

    1986-09-01

    J’ DUCK artificial intelligence logic programming 20 AVrACT (Cthm m reerse stabN ameeaaW idelfr by block mbae) An expert advisor program named CALAP...original program was developed in FORTRAN on an HP- 1000, a mirticomputer. CALAP was reprogrammed in an Artificial Intelligence (AI) language called DUCK...the Artificial Intelligence Center, U.S. Army Engineer Topographic Laboratory, Fort Belvoir. Z" I. S. n- Page 1 I. Introduction An expert advisor

  10. Artificial chordae for degenerative mitral valve disease: critical analysis of current techniques

    PubMed Central

    Ibrahim, Michael; Rao, Christopher; Athanasiou, Thanos

    2012-01-01

    The surgical repair of degenerative mitral valve disease involves a number of technical points of importance. The use of artificial chordae for the repair of degenerative disease has increased as a part of the move from mitral valve replacement to repair of the mitral valve. The use of artificial chordae provides an alternative to the techniques pioneered by Carpentier (including the quadrangular resection, transfer of native chordae and papillary muscle shortening/plasty), which can be more technically difficult. Despite a growth in their uptake and the indications for their use, a number of challenges remain for the use of artificial chordae in mitral valve repair, particularly in the determination of the correct length to ensure optimal leaflet coaptation. Here, we analyse over 40 techniques described for artificial chordae mitral valve repair in the setting of degenerative disease. PMID:22962321

  11. Braided artificial muscles: modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Dragan, Liliana; Cioban, Horia

    2009-01-01

    The paper presents a few graphical modalities for constructing the double helical braid, which is the basis for the braided artificial pneumatic muscles, by using specialized software applications. This represents the first stage in achieving the method of finite element analysis of this type of linear pneumatic actuator.

  12. Gas demand forecasting by a new artificial intelligent algorithm

    NASA Astrophysics Data System (ADS)

    Khatibi. B, Vahid; Khatibi, Elham

    2012-01-01

    Energy demand forecasting is a key issue for consumers and generators in all energy markets in the world. This paper presents a new forecasting algorithm for daily gas demand prediction. This algorithm combines a wavelet transform and forecasting models such as multi-layer perceptron (MLP), linear regression or GARCH. The proposed method is applied to real data from the UK gas markets to evaluate their performance. The results show that the forecasting accuracy is improved significantly by using the proposed method.

  13. Statistical downscaling of precipitation using long short-term memory recurrent neural networks

    NASA Astrophysics Data System (ADS)

    Misra, Saptarshi; Sarkar, Sudeshna; Mitra, Pabitra

    2017-11-01

    Hydrological impacts of global climate change on regional scale are generally assessed by downscaling large-scale climatic variables, simulated by General Circulation Models (GCMs), to regional, small-scale hydrometeorological variables like precipitation, temperature, etc. In this study, we propose a new statistical downscaling model based on Recurrent Neural Network with Long Short-Term Memory which captures the spatio-temporal dependencies in local rainfall. The previous studies have used several other methods such as linear regression, quantile regression, kernel regression, beta regression, and artificial neural networks. Deep neural networks and recurrent neural networks have been shown to be highly promising in modeling complex and highly non-linear relationships between input and output variables in different domains and hence we investigated their performance in the task of statistical downscaling. We have tested this model on two datasets—one on precipitation in Mahanadi basin in India and the second on precipitation in Campbell River basin in Canada. Our autoencoder coupled long short-term memory recurrent neural network model performs the best compared to other existing methods on both the datasets with respect to temporal cross-correlation, mean squared error, and capturing the extremes.

  14. Handling limited datasets with neural networks in medical applications: A small-data approach.

    PubMed

    Shaikhina, Torgyn; Khovanova, Natalia A

    2017-01-01

    Single-centre studies in medical domain are often characterised by limited samples due to the complexity and high costs of patient data collection. Machine learning methods for regression modelling of small datasets (less than 10 observations per predictor variable) remain scarce. Our work bridges this gap by developing a novel framework for application of artificial neural networks (NNs) for regression tasks involving small medical datasets. In order to address the sporadic fluctuations and validation issues that appear in regression NNs trained on small datasets, the method of multiple runs and surrogate data analysis were proposed in this work. The approach was compared to the state-of-the-art ensemble NNs; the effect of dataset size on NN performance was also investigated. The proposed framework was applied for the prediction of compressive strength (CS) of femoral trabecular bone in patients suffering from severe osteoarthritis. The NN model was able to estimate the CS of osteoarthritic trabecular bone from its structural and biological properties with a standard error of 0.85MPa. When evaluated on independent test samples, the NN achieved accuracy of 98.3%, outperforming an ensemble NN model by 11%. We reproduce this result on CS data of another porous solid (concrete) and demonstrate that the proposed framework allows for an NN modelled with as few as 56 samples to generalise on 300 independent test samples with 86.5% accuracy, which is comparable to the performance of an NN developed with 18 times larger dataset (1030 samples). The significance of this work is two-fold: the practical application allows for non-destructive prediction of bone fracture risk, while the novel methodology extends beyond the task considered in this study and provides a general framework for application of regression NNs to medical problems characterised by limited dataset sizes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Prevalence and Extrinsic Risk Factors for Dental Erosion in Adolescents.

    PubMed

    Mafla, Ana C; Cerón-Bastidas, Ximena A; Munoz-Ceballos, Maria E; Vallejo-Bravo, Diana C; Fajardo-Santacruz, Maria C

    This manuscript examined the prevalence and extrinsic risk factors for dental erosion (DE) in early and middle adolescents in Pasto, Colombia. Dental erosion was evaluated in a random sample of 384 individuals aged 10-15 years attending three primary and high schools in this cross-sectional study. Clinical dental assessment for DE was done using O'Sullivan index. Data on general sociodemographic variables and extrinsic risks factors were obtained. Descriptive and univariate binary logistic regression analyses were performed. Dental erosion was observed in 57.3% of individuals. The univariate binary logistic regression analysis showed that frequency of drinking natural fruit juices (OR 2.670, 95% CI 1.346 - 5.295, P=0.004) and their pH (OR 2.303, 95% CI 1.292 - 4.107, P=0.004) were more associated with the odd of DE in early adolescence. However, a high SES (OR 10.360, 95% CI 3.700 - 29.010, P<0.001) and frequency of snacks with artificial lemon taste (OR 3.659, 95% CI 1.506 - 8.891, P=0.003) were highly associated with the risk of DE in middle adolescence. The results suggest that DE is a prevalent condition in adolescents living in a city in southern Colombia. The transition from early to middle adolescence implies new bio-psychosocial changes, which increase the risk for DE.

  16. Optical system for tablet variety discrimination using visible/near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Shao, Yongni; He, Yong; Hu, Xingyue

    2007-12-01

    An optical system based on visible/near-infrared spectroscopy (Vis/NIRS) for variety discrimination of ginkgo (Ginkgo biloba L.) tablets was developed. This system consisted of a light source, beam splitter system, sample chamber, optical detector (diffuse reflection detector), and data collection. The tablet varieties used in the research include Da na kang, Xin bang, Tian bao ning, Yi kang, Hua na xing, Dou le, Lv yuan, Hai wang, and Ji yao. All samples (n=270) were scanned in the Vis/NIR region between 325 and 1075 nm using a spectrograph. The chemometrics method of principal component artificial neural network (PC-ANN) was used to establish discrimination models of them. In PC-ANN models, the scores of the principal components were chosen as the input nodes for the input layer of ANN, and the best discrimination rate of 91.1% was reached. Principal component analysis was also executed to select several optimal wavelengths based on loading values. Wavelengths at 481, 458, 466, 570, 1000, 662, and 400 nm were then used as the input data of stepwise multiple linear regression, the regression equation of ginkgo tablets was obtained, and the discrimination rate was researched 84.4%. The results indicated that this optical system could be applied to discriminating ginkgo (Ginkgo biloba L.) tablets, and it supplied a new method for fast ginkgo tablet variety discrimination.

  17. A gap-filling model for eddy covariance latent heat flux: Estimating evapotranspiration of a subtropical seasonal evergreen broad-leaved forest as an example

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ying; Chu, Chia-Ren; Li, Ming-Hsu

    2012-10-01

    SummaryIn this paper we present a semi-parametric multivariate gap-filling model for tower-based measurement of latent heat flux (LE). Two statistical techniques, the principal component analysis (PCA) and a nonlinear interpolation approach were integrated into this LE gap-filling model. The PCA was first used to resolve the multicollinearity relationships among various environmental variables, including radiation, soil moisture deficit, leaf area index, wind speed, etc. Two nonlinear interpolation methods, multiple regressions (MRS) and the K-nearest neighbors (KNNs) were examined with random selected flux gaps for both clear sky and nighttime/cloudy data to incorporate into this LE gap-filling model. Experimental results indicated that the KNN interpolation approach is able to provide consistent LE estimations while MRS presents over estimations during nighttime/cloudy. Rather than using empirical regression parameters, the KNN approach resolves the nonlinear relationship between the gap-filled LE flux and principal components with adaptive K values under different atmospheric states. The developed LE gap-filling model (PCA with KNN) works with a RMSE of 2.4 W m-2 (˜0.09 mm day-1) at a weekly time scale by adding 40% artificial flux gaps into original dataset. Annual evapotranspiration at this study site were estimated at 736 mm (1803 MJ) and 728 mm (1785 MJ) for year 2008 and 2009, respectively.

  18. Analysis of methods to estimate spring flows in a karst aquifer

    USGS Publications Warehouse

    Sepulveda, N.

    2009-01-01

    Hydraulically and statistically based methods were analyzed to identify the most reliable method to predict spring flows in a karst aquifer. Measured water levels at nearby observation wells, measured spring pool altitudes, and the distance between observation wells and the spring pool were the parameters used to match measured spring flows. Measured spring flows at six Upper Floridan aquifer springs in central Florida were used to assess the reliability of these methods to predict spring flows. Hydraulically based methods involved the application of the Theis, Hantush-Jacob, and Darcy-Weisbach equations, whereas the statistically based methods were the multiple linear regressions and the technology of artificial neural networks (ANNs). Root mean square errors between measured and predicted spring flows using the Darcy-Weisbach method ranged between 5% and 15% of the measured flows, lower than the 7% to 27% range for the Theis or Hantush-Jacob methods. Flows at all springs were estimated to be turbulent based on the Reynolds number derived from the Darcy-Weisbach equation for conduit flow. The multiple linear regression and the Darcy-Weisbach methods had similar spring flow prediction capabilities. The ANNs provided the lowest residuals between measured and predicted spring flows, ranging from 1.6% to 5.3% of the measured flows. The model prediction efficiency criteria also indicated that the ANNs were the most accurate method predicting spring flows in a karst aquifer. ?? 2008 National Ground Water Association.

  19. Analysis of methods to estimate spring flows in a karst aquifer.

    PubMed

    Sepúlveda, Nicasio

    2009-01-01

    Hydraulically and statistically based methods were analyzed to identify the most reliable method to predict spring flows in a karst aquifer. Measured water levels at nearby observation wells, measured spring pool altitudes, and the distance between observation wells and the spring pool were the parameters used to match measured spring flows. Measured spring flows at six Upper Floridan aquifer springs in central Florida were used to assess the reliability of these methods to predict spring flows. Hydraulically based methods involved the application of the Theis, Hantush-Jacob, and Darcy-Weisbach equations, whereas the statistically based methods were the multiple linear regressions and the technology of artificial neural networks (ANNs). Root mean square errors between measured and predicted spring flows using the Darcy-Weisbach method ranged between 5% and 15% of the measured flows, lower than the 7% to 27% range for the Theis or Hantush-Jacob methods. Flows at all springs were estimated to be turbulent based on the Reynolds number derived from the Darcy-Weisbach equation for conduit flow. The multiple linear regression and the Darcy-Weisbach methods had similar spring flow prediction capabilities. The ANNs provided the lowest residuals between measured and predicted spring flows, ranging from 1.6% to 5.3% of the measured flows. The model prediction efficiency criteria also indicated that the ANNs were the most accurate method predicting spring flows in a karst aquifer.

  20. Comparison between Two Linear Supervised Learning Machines' Methods with Principle Component Based Methods for the Spectrofluorimetric Determination of Agomelatine and Its Degradants.

    PubMed

    Elkhoudary, Mahmoud M; Naguib, Ibrahim A; Abdel Salam, Randa A; Hadad, Ghada M

    2017-05-01

    Four accurate, sensitive and reliable stability indicating chemometric methods were developed for the quantitative determination of Agomelatine (AGM) whether in pure form or in pharmaceutical formulations. Two supervised learning machines' methods; linear artificial neural networks (PC-linANN) preceded by principle component analysis and linear support vector regression (linSVR), were compared with two principle component based methods; principle component regression (PCR) as well as partial least squares (PLS) for the spectrofluorimetric determination of AGM and its degradants. The results showed the benefits behind using linear learning machines' methods and the inherent merits of their algorithms in handling overlapped noisy spectral data especially during the challenging determination of AGM alkaline and acidic degradants (DG1 and DG2). Relative mean squared error of prediction (RMSEP) for the proposed models in the determination of AGM were 1.68, 1.72, 0.68 and 0.22 for PCR, PLS, SVR and PC-linANN; respectively. The results showed the superiority of supervised learning machines' methods over principle component based methods. Besides, the results suggested that linANN is the method of choice for determination of components in low amounts with similar overlapped spectra and narrow linearity range. Comparison between the proposed chemometric models and a reported HPLC method revealed the comparable performance and quantification power of the proposed models.

  1. Surgical Treatment for Discogenic Low-Back Pain: Lumbar Arthroplasty Results in Superior Pain Reduction and Disability Level Improvement Compared With Lumbar Fusion

    PubMed Central

    2007-01-01

    Background The US Food and Drug Administration approved the Charité artificial disc on October 26, 2004. This approval was based on an extensive analysis and review process; 20 years of disc usage worldwide; and the results of a prospective, randomized, controlled clinical trial that compared lumbar artificial disc replacement to fusion. The results of the investigational device exemption (IDE) study led to a conclusion that clinical outcomes following lumbar arthroplasty were at least as good as outcomes from fusion. Methods The author performed a new analysis of the Visual Analog Scale pain scores and the Oswestry Disability Index scores from the Charité artificial disc IDE study and used a nonparametric statistical test, because observed data distributions were not normal. The analysis included all of the enrolled subjects in both the nonrandomized and randomized phases of the study. Results Subjects from both the treatment and control groups improved from the baseline situation (P < .001) at all follow-up times (6 weeks to 24 months). Additionally, these pain and disability levels with artificial disc replacement were superior (P < .05) to the fusion treatment at all follow-up times including 2 years. Conclusions The a priori statistical plan for an IDE study may not adequately address the final distribution of the data. Therefore, statistical analyses more appropriate to the distribution may be necessary to develop meaningful statistical conclusions from the study. A nonparametric statistical analysis of the Charité artificial disc IDE outcomes scores demonstrates superiority for lumbar arthroplasty versus fusion at all follow-up time points to 24 months. PMID:25802574

  2. Percutaneous radiofrequency ablation of hepatic tumours: factors affecting technical failure of artificial ascites formation using an angiosheath.

    PubMed

    Kang, T W; Lee, M W; Hye, M J; Song, K D; Lim, S; Rhim, H; Lim, H K; Cha, D I

    2014-12-01

    To evaluate the technical feasibility of artificial ascites formation using an angiosheath before percutaneous radiofrequency ablation (RFA) for hepatic tumours and to determine predictive factors affecting the technical failure of artificial ascites formation. This retrospective study was approved by the institutional review board. One hundred and thirteen patients underwent percutaneous RFA of hepatic tumours after trying to make artificial ascites using an angiosheath to avoid collateral thermal damage. The technical success rate of making artificial ascites using an angiosheath and conversion rate to other techniques after initial failure of making artificial ascites were evaluated. The technical success rate for RFA was assessed. In addition, potential factors associated with technical failure including previous history of transcatheter arterial chemoembolization (TACE) or RFA, type of abdominal surgery, and adjacent perihepatic structures were reviewed. Predictive factors for the technical failure of artificial ascites formation were analysed using multivariate analysis. The technical success rates of artificial ascites formation by angiosheath and that of RFA were 84.1% (95/113) and 97.3% (110/113), respectively. The conversion rate to other techniques after the failure of artificial ascites formation using an angiosheath was 15.9% (18/113). Previous hepatic resection was the sole independent predictive factor affecting the technical failure of artificial ascites formation (p<0.001, odds ratio = 29.03, 95% confidence interval: 4.56-184.69). Making artificial ascites for RFA of hepatic tumours using an angiosheath was technically feasible in most cases. However, history of hepatic resection was a significant predictive factor affecting the technical failure of artificial ascites formation. Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  3. The use of artificial neural networks in experimental data acquisition and aerodynamic design

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J., Jr.

    1991-01-01

    It is proposed that an artificial neural network be used to construct an intelligent data acquisition system. The artificial neural networks (ANN) model has a potential for replacing traditional procedures as well as for use in computational fluid dynamics validation. Potential advantages of the ANN model are listed. As a proof of concept, the author modeled a NACA 0012 airfoil at specific conditions, using the neural network simulator NETS, developed by James Baffes of the NASA Johnson Space Center. The neural network predictions were compared to the actual data. It is concluded that artificial neural networks can provide an elegant and valuable class of mathematical tools for data analysis.

  4. A cross-sectional evaluation of meditation experience on electroencephalography data by artificial neural network and support vector machine classifiers

    PubMed Central

    Lee, Yu-Hao; Hsieh, Ya-Ju; Shiah, Yung-Jong; Lin, Yu-Huei; Chen, Chiao-Yun; Tyan, Yu-Chang; GengQiu, JiaCheng; Hsu, Chung-Yao; Chen, Sharon Chia-Ju

    2017-01-01

    Abstract To quantitate the meditation experience is a subjective and complex issue because it is confounded by many factors such as emotional state, method of meditation, and personal physical condition. In this study, we propose a strategy with a cross-sectional analysis to evaluate the meditation experience with 2 artificial intelligence techniques: artificial neural network and support vector machine. Within this analysis system, 3 features of the electroencephalography alpha spectrum and variant normalizing scaling are manipulated as the evaluating variables for the detection of accuracy. Thereafter, by modulating the sliding window (the period of the analyzed data) and shifting interval of the window (the time interval to shift the analyzed data), the effect of immediate analysis for the 2 methods is compared. This analysis system is performed on 3 meditation groups, categorizing their meditation experiences in 10-year intervals from novice to junior and to senior. After an exhausted calculation and cross-validation across all variables, the high accuracy rate >98% is achievable under the criterion of 0.5-minute sliding window and 2 seconds shifting interval for both methods. In a word, the minimum analyzable data length is 0.5 minute and the minimum recognizable temporal resolution is 2 seconds in the decision of meditative classification. Our proposed classifier of the meditation experience promotes a rapid evaluation system to distinguish meditation experience and a beneficial utilization of artificial techniques for the big-data analysis. PMID:28422856

  5. A cross-sectional evaluation of meditation experience on electroencephalography data by artificial neural network and support vector machine classifiers.

    PubMed

    Lee, Yu-Hao; Hsieh, Ya-Ju; Shiah, Yung-Jong; Lin, Yu-Huei; Chen, Chiao-Yun; Tyan, Yu-Chang; GengQiu, JiaCheng; Hsu, Chung-Yao; Chen, Sharon Chia-Ju

    2017-04-01

    To quantitate the meditation experience is a subjective and complex issue because it is confounded by many factors such as emotional state, method of meditation, and personal physical condition. In this study, we propose a strategy with a cross-sectional analysis to evaluate the meditation experience with 2 artificial intelligence techniques: artificial neural network and support vector machine. Within this analysis system, 3 features of the electroencephalography alpha spectrum and variant normalizing scaling are manipulated as the evaluating variables for the detection of accuracy. Thereafter, by modulating the sliding window (the period of the analyzed data) and shifting interval of the window (the time interval to shift the analyzed data), the effect of immediate analysis for the 2 methods is compared. This analysis system is performed on 3 meditation groups, categorizing their meditation experiences in 10-year intervals from novice to junior and to senior. After an exhausted calculation and cross-validation across all variables, the high accuracy rate >98% is achievable under the criterion of 0.5-minute sliding window and 2 seconds shifting interval for both methods. In a word, the minimum analyzable data length is 0.5 minute and the minimum recognizable temporal resolution is 2 seconds in the decision of meditative classification. Our proposed classifier of the meditation experience promotes a rapid evaluation system to distinguish meditation experience and a beneficial utilization of artificial techniques for the big-data analysis.

  6. Hybrid Wavelet De-noising and Rank-Set Pair Analysis approach for forecasting hydro-meteorological time series

    NASA Astrophysics Data System (ADS)

    WANG, D.; Wang, Y.; Zeng, X.

    2017-12-01

    Accurate, fast forecasting of hydro-meteorological time series is presently a major challenge in drought and flood mitigation. This paper proposes a hybrid approach, Wavelet De-noising (WD) and Rank-Set Pair Analysis (RSPA), that takes full advantage of a combination of the two approaches to improve forecasts of hydro-meteorological time series. WD allows decomposition and reconstruction of a time series by the wavelet transform, and hence separation of the noise from the original series. RSPA, a more reliable and efficient version of Set Pair Analysis, is integrated with WD to form the hybrid WD-RSPA approach. Two types of hydro-meteorological data sets with different characteristics and different levels of human influences at some representative stations are used to illustrate the WD-RSPA approach. The approach is also compared to three other generic methods: the conventional Auto Regressive Integrated Moving Average (ARIMA) method, Artificial Neural Networks (ANNs) (BP-error Back Propagation, MLP-Multilayer Perceptron and RBF-Radial Basis Function), and RSPA alone. Nine error metrics are used to evaluate the model performance. The results show that WD-RSPA is accurate, feasible, and effective. In particular, WD-RSPA is found to be the best among the various generic methods compared in this paper, even when the extreme events are included within a time series.

  7. The complicated substrates enhance the microbial diversity and zinc leaching efficiency in sphalerite bioleaching system.

    PubMed

    Xiao, Yunhua; Xu, YongDong; Dong, Weiling; Liang, Yili; Fan, Fenliang; Zhang, Xiaoxia; Zhang, Xian; Niu, Jiaojiao; Ma, Liyuan; She, Siyuan; He, Zhili; Liu, Xueduan; Yin, Huaqun

    2015-12-01

    This study used an artificial enrichment microbial consortium to examine the effects of different substrate conditions on microbial diversity, composition, and function (e.g., zinc leaching efficiency) through adding pyrite (SP group), chalcopyrite (SC group), or both (SPC group) in sphalerite bioleaching systems. 16S rRNA gene sequencing analysis showed that microbial community structures and compositions dramatically changed with additions of pyrite or chalcopyrite during the sphalerite bioleaching process. Shannon diversity index showed a significantly increase in the SP (1.460), SC (1.476), and SPC (1.341) groups compared with control (sphalerite group, 0.624) on day 30, meanwhile, zinc leaching efficiencies were enhanced by about 13.4, 2.9, and 13.2%, respectively. Also, additions of pyrite or chalcopyrite could increase electric potential (ORP) and the concentrations of Fe3+ and H+, which were the main factors shaping microbial community structures by Mantel test analysis. Linear regression analysis showed that ORP, Fe3+ concentration, and pH were significantly correlated to zinc leaching efficiency and microbial diversity. In addition, we found that leaching efficiency showed a positive and significant relationship with microbial diversity. In conclusion, our results showed that the complicated substrates could significantly enhance microbial diversity and activity of function.

  8. Artificial astrocytes improve neural network performance.

    PubMed

    Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-04-19

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  9. Artificial Astrocytes Improve Neural Network Performance

    PubMed Central

    Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-01-01

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157

  10. Comparative Analysis of River Flow Modelling by Using Supervised Learning Technique

    NASA Astrophysics Data System (ADS)

    Ismail, Shuhaida; Mohamad Pandiahi, Siraj; Shabri, Ani; Mustapha, Aida

    2018-04-01

    The goal of this research is to investigate the efficiency of three supervised learning algorithms for forecasting monthly river flow of the Indus River in Pakistan, spread over 550 square miles or 1800 square kilometres. The algorithms include the Least Square Support Vector Machine (LSSVM), Artificial Neural Network (ANN) and Wavelet Regression (WR). The forecasting models predict the monthly river flow obtained from the three models individually for river flow data and the accuracy of the all models were then compared against each other. The monthly river flow of the said river has been forecasted using these three models. The obtained results were compared and statistically analysed. Then, the results of this analytical comparison showed that LSSVM model is more precise in the monthly river flow forecasting. It was found that LSSVM has he higher r with the value of 0.934 compared to other models. This indicate that LSSVM is more accurate and efficient as compared to the ANN and WR model.

  11. Prediction of Backbreak in Open-Pit Blasting Operations Using the Machine Learning Method

    NASA Astrophysics Data System (ADS)

    Khandelwal, Manoj; Monjezi, M.

    2013-03-01

    Backbreak is an undesirable phenomenon in blasting operations. It can cause instability of mine walls, falling down of machinery, improper fragmentation, reduced efficiency of drilling, etc. The existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, the application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict backbreak in blasting operations of Soungun iron mine, Iran, incorporating rock properties and blast design parameters using the support vector machine (SVM) method. To investigate the suitability of this approach, the predictions by SVM have been compared with multivariate regression analysis (MVRA). The coefficient of determination (CoD) and the mean absolute error (MAE) were taken as performance measures. It was found that the CoD between measured and predicted backbreak was 0.987 and 0.89 by SVM and MVRA, respectively, whereas the MAE was 0.29 and 1.07 by SVM and MVRA, respectively.

  12. The QSAR study of flavonoid-metal complexes scavenging rad OH free radical

    NASA Astrophysics Data System (ADS)

    Wang, Bo-chu; Qian, Jun-zhen; Fan, Ying; Tan, Jun

    2014-10-01

    Flavonoid-metal complexes have antioxidant activities. However, quantitative structure-activity relationships (QSAR) of flavonoid-metal complexes and their antioxidant activities has still not been tackled. On the basis of 21 structures of flavonoid-metal complexes and their antioxidant activities for scavenging rad OH free radical, we optimised their structures using Gaussian 03 software package and we subsequently calculated and chose 18 quantum chemistry descriptors such as dipole, charge and energy. Then we chose several quantum chemistry descriptors that are very important to the IC50 of flavonoid-metal complexes for scavenging rad OH free radical through method of stepwise linear regression, Meanwhile we obtained 4 new variables through the principal component analysis. Finally, we built the QSAR models based on those important quantum chemistry descriptors and the 4 new variables as the independent variables and the IC50 as the dependent variable using an Artificial Neural Network (ANN), and we validated the two models using experimental data. These results show that the two models in this paper are reliable and predictable.

  13. Development of a beverage benchtop prototype based on sweet potato peels: optimization of antioxidant activity by a mixture design.

    PubMed

    Anastácio, Ana; Carvalho, Isabel Saraiva de

    2015-08-01

    A beverage benchtop prototype related to oxidative stress protection was developed based on sweet potato peels phenolics. Formula components were sweet potato peel (Ipomoeas batatas L.) aqueous extract (SPPE), sweet potato leaves water extract (SPLE) and honey solution (HonS). According to linear squares regression (LSR) models, SPLE presented higher additive effect on total phenolic content (TPC), FRAP and DPPH than the other components. All antagonist interactions were not significant. The optimum formula obtained by artificial neural networks (ANN) analysis was 50.0% of SPPE, 21.5% of SPLE and 28.5% of HonS. Predicted responses of TPC, FRAP, DPPH and soluble solids were 309 mg GAE/L, 476 mg TE/L, 1098 mg TE/L and 12.3 °Brix, respectively. Optimization with LSR models was similar to ANN. Beverage prototype results positioned next to commercial vegetable and fruit beverages, thus it has an interesting potential to the market of health and wellness.

  14. The Use of Infrared Thermography for Porosity Assessment of Intact Rock

    NASA Astrophysics Data System (ADS)

    Mineo, S.; Pappalardo, G.

    2016-08-01

    Preliminary results on a new test for the indirect assessment of porosity through infrared thermography are presented. The study of the cooling behavior of rock samples in laboratory, through the analysis of thermograms, proved an innovative tool for the estimation of such an important property, which is one of the main features affecting the mechanical behavior of rocks. A detailed experimentation was performed on artificially heated volcanic rock samples characterized by different porosity values. The cooling trend was described both graphically and numerically, with the help of cooling curves and Cooling Rate Index. The latter, which proved strictly linked to porosity, was employed to find reliable equations for its indirect estimation. Simple and multiple regression analyses returned satisfactory outcomes, highlighting the great match between predicted and measured porosity values, thus confirming the goodness of the proposed model. This study brings a novelty in rock mechanics, laying the foundation for future researches aimed at refining achieved results for the validation of the model in a larger scale.

  15. Prediction of troponin-T degradation using color image texture features in 10d aged beef longissimus steaks.

    PubMed

    Sun, X; Chen, K J; Berg, E P; Newman, D J; Schwartz, C A; Keller, W L; Maddock Carlin, K R

    2014-02-01

    The objective was to use digital color image texture features to predict troponin-T degradation in beef. Image texture features, including 88 gray level co-occurrence texture features, 81 two-dimension fast Fourier transformation texture features, and 48 Gabor wavelet filter texture features, were extracted from color images of beef strip steaks (longissimus dorsi, n = 102) aged for 10d obtained using a digital camera and additional lighting. Steaks were designated degraded or not-degraded based on troponin-T degradation determined on d 3 and d 10 postmortem by immunoblotting. Statistical analysis (STEPWISE regression model) and artificial neural network (support vector machine model, SVM) methods were designed to classify protein degradation. The d 3 and d 10 STEPWISE models were 94% and 86% accurate, respectively, while the d 3 and d 10 SVM models were 63% and 71%, respectively, in predicting protein degradation in aged meat. STEPWISE and SVM models based on image texture features show potential to predict troponin-T degradation in meat. © 2013.

  16. ANNz2: Photometric Redshift and Probability Distribution Function Estimation using Machine Learning

    NASA Astrophysics Data System (ADS)

    Sadeh, I.; Abdalla, F. B.; Lahav, O.

    2016-10-01

    We present ANNz2, a new implementation of the public software for photometric redshift (photo-z) estimation of Collister & Lahav, which now includes generation of full probability distribution functions (PDFs). ANNz2 utilizes multiple machine learning methods, such as artificial neural networks and boosted decision/regression trees. The objective of the algorithm is to optimize the performance of the photo-z estimation, to properly derive the associated uncertainties, and to produce both single-value solutions and PDFs. In addition, estimators are made available, which mitigate possible problems of non-representative or incomplete spectroscopic training samples. ANNz2 has already been used as part of the first weak lensing analysis of the Dark Energy Survey, and is included in the experiment's first public data release. Here we illustrate the functionality of the code using data from the tenth data release of the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. The code is available for download at http://github.com/IftachSadeh/ANNZ.

  17. [Encouragement and protection of breast-feeding: conoscitive study].

    PubMed

    Di Labio, Luisa; Pane, Concettina; Cicolini, Giancarlo

    2011-01-01

    The factors associated with exclusive breast-feeding in a Naples health district were studied in October 2008 in the period between the first and second vaccinations (neonates aged between 60 and 120 days) . Questions regarded both the mother and the child and the answers were collected in a database and compared with other methods of nutrition or mixed methods. Statistical analysis was performed using multivariate logistic regression. Results showed that only 38.5% of the mothers interviewed practiced breast-feeding alone while 20% did mixed feeding and 41.5% preferred artificial feeding. The variables negatively related to breast-feeding were: breast problems, older-aged mothers, Cesarean section, first experience of breast-feeding, lack of rooming-in and/or prenatal preparative courses. Positively associated variables were: higher level of education of the mother, higher level of information regarding the advantages of breast-feeding. The conclusions of this study confirm those of previous studies regarding the relationship between exclusive breast-feeding and biological and social factors.

  18. A novel tactile-guided detection and three-dimensional localization of clinically significant breast masses.

    PubMed

    Mojra, A; Najarian, S; Kashani, S M Towliat; Panahi, F

    2012-01-01

    This paper presents a novel robotic sensory system 'Robo-Tac-BMI', which manipulates an indentation probe for the detection and three-dimensional localization of an abnormal mass embedded in the breast tissue. The Robo-Tac-BMI is designed based on artificial tactile sensing technology which is a new non-invasive method for mimicking the surgeon's palpation quantitatively. The intelligent processor of the device provides an overall stiffness map of the scanned areas. The extracted stiffness parameters provide a decisive factor for certifying the mass existence. Results are validated by 'gold standard' tests. Following the mass detection, its 3D localization is of essential importance in the treatment procedures. The planar 2D coordinate is readily available for all points on the tissue surface. Mass depth estimation is achieved by a comprehensive model utilizing the logistic regression algorithm and a Receiver Operating Characteristic (ROC) Curve for the highest accuracy. Statistical analysis is performed over 27 cases with 346 scanned areas. Copyright © 2012 Informa UK, Ltd.

  19. Analysis of Facial Expression by Taste Stimulation

    NASA Astrophysics Data System (ADS)

    Tobitani, Kensuke; Kato, Kunihito; Yamamoto, Kazuhiko

    In this study, we focused on the basic taste stimulation for the analysis of real facial expressions. We considered that the expressions caused by taste stimulation were unaffected by individuality or emotion, that is, such expressions were involuntary. We analyzed the movement of facial muscles by taste stimulation and compared real expressions with artificial expressions. From the result, we identified an obvious difference between real and artificial expressions. Thus, our method would be a new approach for facial expression recognition.

  20. The use of artificial intelligence techniques to improve the multiple payload integration process

    NASA Technical Reports Server (NTRS)

    Cutts, Dannie E.; Widgren, Brian K.

    1992-01-01

    A maximum return of science and products with a minimum expenditure of time and resources is a major goal of mission payload integration. A critical component then, in successful mission payload integration is the acquisition and analysis of experiment requirements from the principal investigator and payload element developer teams. One effort to use artificial intelligence techniques to improve the acquisition and analysis of experiment requirements within the payload integration process is described.

  1. Analysis of micro-failure behaviors in artificial muscles based on fishing line and sewing thread

    NASA Astrophysics Data System (ADS)

    Xu, J. B.; Cheng, K. F.; Tu, S. L.; He, X. M.; Ma, C.; Jin, Y. Z.; Kang, X. N.; Sun, T.; Zhang, Y.

    2017-06-01

    The aim of the present study was to discuss a new and effective method for testing artificial muscles based on micro-failure behaviors analysis. Thermo-mechanical actuators based on fishing line and sewing thread, also, the capability of responding to ambient temperature variations producing a large amount of shrinkage ratio of a resulting variation in longitudinal length. The minimum micro-failure value is 0.02μm and the maximum value is 1.72μm with nylon twist pattern. The discovery of an innovative effective testing of artificial muscles based on polymeric fibers specimens on micro-failure, rupture, slippage, etc. This research finds out a micro-failure behavior analysis of thermo-mechanical actuators based on fishing line and sewing thread. The specimens show large deformations when heated together with warping performance in terms of shrinkage of energy and densities. With the purpose of providing useful analysis data for the further technology applications, we attempt micrometre-sized artificial muscles which were also tested was readily accessible and also can be applied to other polymeric fibers. Effective use of this technique achievement relies on rotate speed, temperature and tensile direction. The results of the tensile testing experiments were outstanding with respect to some important issues related to the response of micro-structure, twisted polymeric fibers and shrinkage ratio.

  2. Leaching variations of heavy metals in chelator-assisted phytoextraction by Zea mays L. exposed to acid rainfall.

    PubMed

    Lu, Yayin; Luo, Dinggui; Liu, Lirong; Tan, Zicong; Lai, An; Liu, Guowei; Li, Junhui; Long, Jianyou; Huang, Xuexia; Chen, Yongheng

    2017-11-01

    Chelant-enhanced phytoextraction method has been put forward as an effective soil remediation method, whereas the heavy metal leaching could not be ignored. In this study, a cropping-leaching experiment, using soil columns, was applied to study the metal leaching variations during assisted phytoextraction of Cd- and Pb-polluted soils, using seedlings of Zea mays, applying three different chelators (EDTA, EDDS, and rhamnolipid), and artificial rainfall (acid rainfall or normal rainfall). It showed that artificial rainfall, especially artificial acid rain, after chelator application led to the increase of heavy metals in the leaching solution. EDTA increased both Cd and Pb concentrations in the leaching solution, obviously, whereas EDDS and rhamnolipid increased Cd concentration but not Pb. The amount of Cd and Pb decreased as the leaching solution increased, the patterns as well matched LRMs (linear regression models), with R-square (R 2 ) higher than 90 and 82% for Cd and Pb, respectively. The maximum cumulative Cd and Pb in the leaching solutions were 18.44 and 16.68%, respectively, which was amended by EDTA and acid rainwater (pH 4.5), and followed by EDDS (pH 4.5), EDDS (pH 6.5), rhamnolipid (0.5 g kg -1 soil, pH 4.5), and rhamnolipid (pH 6.5).

  3. Prediction of shear wave velocity using empirical correlations and artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Maleki, Shahoo; Moradzadeh, Ali; Riabi, Reza Ghavami; Gholami, Raoof; Sadeghzadeh, Farhad

    2014-06-01

    Good understanding of mechanical properties of rock formations is essential during the development and production phases of a hydrocarbon reservoir. Conventionally, these properties are estimated from the petrophysical logs with compression and shear sonic data being the main input to the correlations. This is while in many cases the shear sonic data are not acquired during well logging, which may be for cost saving purposes. In this case, shear wave velocity is estimated using available empirical correlations or artificial intelligent methods proposed during the last few decades. In this paper, petrophysical logs corresponding to a well drilled in southern part of Iran were used to estimate the shear wave velocity using empirical correlations as well as two robust artificial intelligence methods knows as Support Vector Regression (SVR) and Back-Propagation Neural Network (BPNN). Although the results obtained by SVR seem to be reliable, the estimated values are not very precise and considering the importance of shear sonic data as the input into different models, this study suggests acquiring shear sonic data during well logging. It is important to note that the benefits of having reliable shear sonic data for estimation of rock formation mechanical properties will compensate the possible additional costs for acquiring a shear log.

  4. Seasonal influence of environmental variables and artificial aeration on Escherichia coli in small urban lakes.

    PubMed

    Durham, Bart W; Porter, Lucy; Webb, Allie; Thomas, Joshua

    2016-12-01

    This study investigated patterns of Escherichia coli in urban lakes in Lubbock, Texas. Specific objectives were to (1) document seasonal patterns in abundance of E. coli over a 3-year period, (2) identify environmental factors, including effects of migratory geese and artificial aeration devices that may influence E. coli abundance, and (3) determine if E. coli abundance over time was similar for individual lakes. Water samples were collected monthly for 36 months from six lakes, three of which contained artificial aeration devices (fountains). Regression models were constructed to determine which environmental variables most influence E. coli abundance in summer and winter seasons. Escherichia coli is present in the lakes of Lubbock, Texas year-round and typically exceeds established bacterial thresholds for recreational waters. Models most frequently contained pH and dissolved oxygen as predictor variables and explained from 17.4% to 92.4% of total variation in E. coli. Lakes with fountains had a higher oxygen concentration during summer and contained consistently less E. coli. We conclude that solar irradiation in synergy with pH and dissolved oxygen is the primary control mechanism for E. coli in study lakes, and that fountains help control abundance of fecal bacteria within these systems.

  5. Estimation of Filling and Afterload Conditions by Pump Intrinsic Parameters in a Pulsatile Total Artificial Heart.

    PubMed

    Cuenca-Navalon, Elena; Laumen, Marco; Finocchiaro, Thomas; Steinseifer, Ulrich

    2016-07-01

    A physiological control algorithm is being developed to ensure an optimal physiological interaction between the ReinHeart total artificial heart (TAH) and the circulatory system. A key factor for that is the long-term, accurate determination of the hemodynamic state of the cardiovascular system. This study presents a method to determine estimation models for predicting hemodynamic parameters (pump chamber filling and afterload) from both left and right cardiovascular circulations. The estimation models are based on linear regression models that correlate filling and afterload values with pump intrinsic parameters derived from measured values of motor current and piston position. Predictions for filling lie in average within 5% from actual values, predictions for systemic afterload (AoPmean , AoPsys ) and mean pulmonary afterload (PAPmean ) lie in average within 9% from actual values. Predictions for systolic pulmonary afterload (PAPsys ) present an average deviation of 14%. The estimation models show satisfactory prediction and confidence intervals and are thus suitable to estimate hemodynamic parameters. This method and derived estimation models are a valuable alternative to implanted sensors and are an essential step for the development of a physiological control algorithm for a fully implantable TAH. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. Command History for 1990

    DTIC Science & Technology

    1991-05-01

    Marine Corps Tiaining Systems (CBESS) memorization training Inteligence Center, Dam Neck Threat memorization training Commander Tactical Wings, Atlantic...News Shipbuilding Technical training AEGIS Training Center, Dare Artificial Intelligence (Al) Tools Computerized firm-end analysis tools NETSCPAC...Technology Department and provides computational and electronic mail support for research in areas of artificial intelligence, computer-assisted instruction

  7. Psychometric Measurement Models and Artificial Neural Networks

    ERIC Educational Resources Information Center

    Sese, Albert; Palmer, Alfonso L.; Montano, Juan J.

    2004-01-01

    The study of measurement models in psychometrics by means of dimensionality reduction techniques such as Principal Components Analysis (PCA) is a very common practice. In recent times, an upsurge of interest in the study of artificial neural networks apt to computing a principal component extraction has been observed. Despite this interest, the…

  8. Performance of Arma chinensis reared on an artificial diet formulated using transcriptomic methods

    USDA-ARS?s Scientific Manuscript database

    An artificial diet formulated for continuous rearing of the predator Arma chinensis was inferior to natural prey when evaluated using life history parameters. A transcriptome analysis identified differentially expressed genes in diet-fed and prey-fed A. chinensis that were suggestive of molecular me...

  9. Applications of Artificial Intelligence in Education--A Personal View.

    ERIC Educational Resources Information Center

    Richer, Mark H.

    1985-01-01

    Discusses: how artificial intelligence (AI) can advance education; if the future of software lies in AI; the roots of intelligent computer-assisted instruction; protocol analysis; reactive environments; LOGO programming language; student modeling and coaching; and knowledge-based instructional programs. Numerous examples of AI programs are cited.…

  10. Research and applications: Artificial intelligence

    NASA Technical Reports Server (NTRS)

    Chaitin, L. J.; Duda, R. O.; Johanson, P. A.; Raphael, B.; Rosen, C. A.; Yates, R. A.

    1970-01-01

    The program is reported for developing techniques in artificial intelligence and their application to the control of mobile automatons for carrying out tasks autonomously. Visual scene analysis, short-term problem solving, and long-term problem solving are discussed along with the PDP-15 simulator, LISP-FORTRAN-MACRO interface, resolution strategies, and cost effectiveness.

  11. Identification and interpretation of patterns in rocket engine data: Artificial intelligence and neural network approaches

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Whitehead, Bruce; Gupta, Uday K.; Ferber, Harry

    1995-01-01

    This paper describes an expert system which is designed to perform automatic data analysis, identify anomalous events and determine the characteristic features of these events. We have employed both artificial intelligence and neural net approaches in the design of this expert system.

  12. Effects of captivity and artificial breeding on microbiota in feces of the red-crowned crane (Grus japonensis)

    PubMed Central

    Xie, Yuwei; Xia, Pu; Wang, Hui; Yu, Hongxia; Giesy, John P.; Zhang, Yimin; Mora, Miguel A.; Zhang, Xiaowei

    2016-01-01

    Reintroduction of the threatened red-crowned crane has been unsuccessful. Although gut microbiota correlates with host health, there is little information on gut microbiota of cranes under different conservation strategies. The study examined effects of captivity, artificial breeding and life stage on gut microbiota of red-crown cranes. The gut microbiotas of wild, captive adolescent, captive adult, artificially bred adolescent and artificially bred adult cranes were characterized by next-generation sequencing of 16S rRNA gene amplicons. The gut microbiotas were dominated by three phyla: Firmicutes (62.9%), Proteobacteria (29.9%) and Fusobacteria (9.6%). Bacilli dominated the ‘core’ community consisting of 198 operational taxonomic units (OTUs). Both captivity and artificial breeding influenced the structures and diversities microbiota of the gut. Especially, wild cranes had distinct compositions of gut microbiota from captive and artificially bred cranes. The greatest alpha diversity was found in captive cranes, while wild cranes had the least. According to the results of ordination analysis, influences of captivity and artificial breeding were greater than that of life stage. Overall, captivity and artificial breeding influenced the gut microbiota, potentially due to changes in diet, vaccination, antibiotics and living conditions. Metagenomics can serve as a supplementary non-invasive screening tool for disease control. PMID:27628212

  13. Effects of captivity and artificial breeding on microbiota in feces of the red-crowned crane (Grus japonensis).

    PubMed

    Xie, Yuwei; Xia, Pu; Wang, Hui; Yu, Hongxia; Giesy, John P; Zhang, Yimin; Mora, Miguel A; Zhang, Xiaowei

    2016-09-15

    Reintroduction of the threatened red-crowned crane has been unsuccessful. Although gut microbiota correlates with host health, there is little information on gut microbiota of cranes under different conservation strategies. The study examined effects of captivity, artificial breeding and life stage on gut microbiota of red-crown cranes. The gut microbiotas of wild, captive adolescent, captive adult, artificially bred adolescent and artificially bred adult cranes were characterized by next-generation sequencing of 16S rRNA gene amplicons. The gut microbiotas were dominated by three phyla: Firmicutes (62.9%), Proteobacteria (29.9%) and Fusobacteria (9.6%). Bacilli dominated the 'core' community consisting of 198 operational taxonomic units (OTUs). Both captivity and artificial breeding influenced the structures and diversities microbiota of the gut. Especially, wild cranes had distinct compositions of gut microbiota from captive and artificially bred cranes. The greatest alpha diversity was found in captive cranes, while wild cranes had the least. According to the results of ordination analysis, influences of captivity and artificial breeding were greater than that of life stage. Overall, captivity and artificial breeding influenced the gut microbiota, potentially due to changes in diet, vaccination, antibiotics and living conditions. Metagenomics can serve as a supplementary non-invasive screening tool for disease control.

  14. Identifying artificial selection signals in the chicken genome.

    PubMed

    Ma, Yunlong; Gu, Lantao; Yang, Liubin; Sun, Chenghao; Xie, Shengsong; Fang, Chengchi; Gong, Yangzhang; Li, Shijun

    2018-01-01

    Identifying the signals of artificial selection can contribute to further shaping economically important traits. Here, a chicken 600k SNP-array was employed to detect the signals of artificial selection using 331 individuals from 9 breeds, including Jingfen (JF), Jinghong (JH), Araucanas (AR), White Leghorn (WL), Pekin-Bantam (PB), Shamo (SH), Gallus-Gallus-Spadiceus (GA), Rheinlander (RH) and Vorwerkhuhn (VO). Per the population genetic structure, 9 breeds were combined into 5 breed-pools, and a 'two-step' strategy was used to reveal the signals of artificial selection. GA, which has little artificial selection, was defined as the reference population, and a total of 204, 155, 305 and 323 potential artificial selection signals were identified in AR_VO, PB, RH_WL and JH_JF, respectively. We also found signals derived from standing and de-novo genetic variations have contributed to adaptive evolution during artificial selection. Further enrichment analysis suggests that the genomic regions of artificial selection signals harbour genes, including THSR, PTHLH and PMCH, responsible for economic traits, such as fertility, growth and immunization. Overall, this study found a series of genes that contribute to the improvement of chicken breeds and revealed the genetic mechanisms of adaptive evolution, which can be used as fundamental information in future chicken functional genomics study.

  15. Three-dimensional imaging of artificial fingerprint by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Cheng, Yezeng

    2008-03-01

    Fingerprint recognition is one of the popular used methods of biometrics. However, due to the surface topography limitation, fingerprint recognition scanners are easily been spoofed, e.g. using artificial fingerprint dummies. Thus, biometric fingerprint identification devices need to be more accurate and secure to deal with different fraudulent methods including dummy fingerprints. Previously, we demonstrated that Optical Coherence Tomography (OCT) images revealed the presence of the artificial fingerprints (made from different household materials, such as cement and liquid silicone rubber) at all times, while the artificial fingerprints easily spoofed the commercial fingerprint reader. Also we demonstrated that an analysis of the autocorrelation of the OCT images could be used in automatic recognition systems. Here, we exploited the three-dimensional (3D) imaging of the artificial fingerprint by OCT to generate vivid 3D image for both the artificial fingerprint layer and the real fingerprint layer beneath. With the reconstructed 3D image, it could not only point out whether there exists an artificial material, which is intended to spoof the scanner, above the real finger, but also could provide the hacker's fingerprint. The results of these studies suggested that Optical Coherence Tomography could be a powerful real-time noninvasive method for accurate identification of artificial fingerprints real fingerprints as well.

  16. Improving the Spatial Prediction of Soil Organic Carbon Stocks in a Complex Tropical Mountain Landscape by Methodological Specifications in Machine Learning Approaches

    PubMed Central

    Schmidt, Johannes; Glaser, Bruno

    2016-01-01

    Tropical forests are significant carbon sinks and their soils’ carbon storage potential is immense. However, little is known about the soil organic carbon (SOC) stocks of tropical mountain areas whose complex soil-landscape and difficult accessibility pose a challenge to spatial analysis. The choice of methodology for spatial prediction is of high importance to improve the expected poor model results in case of low predictor-response correlations. Four aspects were considered to improve model performance in predicting SOC stocks of the organic layer of a tropical mountain forest landscape: Different spatial predictor settings, predictor selection strategies, various machine learning algorithms and model tuning. Five machine learning algorithms: random forests, artificial neural networks, multivariate adaptive regression splines, boosted regression trees and support vector machines were trained and tuned to predict SOC stocks from predictors derived from a digital elevation model and satellite image. Topographical predictors were calculated with a GIS search radius of 45 to 615 m. Finally, three predictor selection strategies were applied to the total set of 236 predictors. All machine learning algorithms—including the model tuning and predictor selection—were compared via five repetitions of a tenfold cross-validation. The boosted regression tree algorithm resulted in the overall best model. SOC stocks ranged between 0.2 to 17.7 kg m-2, displaying a huge variability with diffuse insolation and curvatures of different scale guiding the spatial pattern. Predictor selection and model tuning improved the models’ predictive performance in all five machine learning algorithms. The rather low number of selected predictors favours forward compared to backward selection procedures. Choosing predictors due to their indiviual performance was vanquished by the two procedures which accounted for predictor interaction. PMID:27128736

  17. Improving the Spatial Prediction of Soil Organic Carbon Stocks in a Complex Tropical Mountain Landscape by Methodological Specifications in Machine Learning Approaches.

    PubMed

    Ließ, Mareike; Schmidt, Johannes; Glaser, Bruno

    2016-01-01

    Tropical forests are significant carbon sinks and their soils' carbon storage potential is immense. However, little is known about the soil organic carbon (SOC) stocks of tropical mountain areas whose complex soil-landscape and difficult accessibility pose a challenge to spatial analysis. The choice of methodology for spatial prediction is of high importance to improve the expected poor model results in case of low predictor-response correlations. Four aspects were considered to improve model performance in predicting SOC stocks of the organic layer of a tropical mountain forest landscape: Different spatial predictor settings, predictor selection strategies, various machine learning algorithms and model tuning. Five machine learning algorithms: random forests, artificial neural networks, multivariate adaptive regression splines, boosted regression trees and support vector machines were trained and tuned to predict SOC stocks from predictors derived from a digital elevation model and satellite image. Topographical predictors were calculated with a GIS search radius of 45 to 615 m. Finally, three predictor selection strategies were applied to the total set of 236 predictors. All machine learning algorithms-including the model tuning and predictor selection-were compared via five repetitions of a tenfold cross-validation. The boosted regression tree algorithm resulted in the overall best model. SOC stocks ranged between 0.2 to 17.7 kg m-2, displaying a huge variability with diffuse insolation and curvatures of different scale guiding the spatial pattern. Predictor selection and model tuning improved the models' predictive performance in all five machine learning algorithms. The rather low number of selected predictors favours forward compared to backward selection procedures. Choosing predictors due to their indiviual performance was vanquished by the two procedures which accounted for predictor interaction.

  18. Potential Applicability of Persuasive Communication to Light-Glow Reduction Efforts: A Case Study of Marine Turtle Conservation

    NASA Astrophysics Data System (ADS)

    Kamrowski, Ruth L.; Sutton, Stephen G.; Tobin, Renae C.; Hamann, Mark

    2014-09-01

    Artificial lighting along coastlines poses a significant threat to marine turtles due to the importance of light for their natural orientation at the nesting beach. Effective lighting management requires widespread support and participation, yet engaging the public with light reduction initiatives is difficult because benefits associated with artificial lighting are deeply entrenched within modern society. We present a case study from Queensland, Australia, where an active light-glow reduction campaign has been in place since 2008 to protect nesting turtles. Semi-structured questionnaires explored community beliefs about reducing light and evaluated the potential for using persuasive communication techniques based on the theory of planned behavior (TPB) to increase engagement with light reduction. Respondents ( n = 352) had moderate to strong intentions to reduce light. TPB variables explained a significant proportion of variance in intention (multiple regression: R 2 = 0.54-0.69, P < 0.001), but adding a personal norm variable improved the model ( R 2 = 0.73-0.79, P < 0.001). Significant differences in belief strength between campaign compliers and non-compliers suggest that targeting the beliefs reducing light leads to "increased protection of local turtles" ( P < 0.01) and/or "benefits to the local economy" ( P < 0.05), in combination with an appeal to personal norms, would produce the strongest persuasion potential for future communications. Selective legislation and commitment strategies may be further useful strategies to increase community light reduction. As artificial light continues to gain attention as a pollutant, our methods and findings will be of interest to anyone needing to manage public artificial lighting.

  19. Potential applicability of persuasive communication to light-glow reduction efforts: a case study of marine turtle conservation.

    PubMed

    Kamrowski, Ruth L; Sutton, Stephen G; Tobin, Renae C; Hamann, Mark

    2014-09-01

    Artificial lighting along coastlines poses a significant threat to marine turtles due to the importance of light for their natural orientation at the nesting beach. Effective lighting management requires widespread support and participation, yet engaging the public with light reduction initiatives is difficult because benefits associated with artificial lighting are deeply entrenched within modern society. We present a case study from Queensland, Australia, where an active light-glow reduction campaign has been in place since 2008 to protect nesting turtles. Semi-structured questionnaires explored community beliefs about reducing light and evaluated the potential for using persuasive communication techniques based on the theory of planned behavior (TPB) to increase engagement with light reduction. Respondents (n = 352) had moderate to strong intentions to reduce light. TPB variables explained a significant proportion of variance in intention (multiple regression: R (2) = 0.54-0.69, P < 0.001), but adding a personal norm variable improved the model (R (2) = 0.73-0.79, P < 0.001). Significant differences in belief strength between campaign compliers and non-compliers suggest that targeting the beliefs reducing light leads to "increased protection of local turtles" (P < 0.01) and/or "benefits to the local economy" (P < 0.05), in combination with an appeal to personal norms, would produce the strongest persuasion potential for future communications. Selective legislation and commitment strategies may be further useful strategies to increase community light reduction. As artificial light continues to gain attention as a pollutant, our methods and findings will be of interest to anyone needing to manage public artificial lighting.

  20. Occupational Exposure to Ultraviolet Radiation and Risk of Non-Melanoma Skin Cancer in a Multinational European Study

    PubMed Central

    Surdu, Simona; Fitzgerald, Edward F.; Bloom, Michael S.; Boscoe, Francis P.; Carpenter, David O.; Haase, Richard F.; Gurzau, Eugen; Rudnai, Peter; Koppova, Kvetoslava; Févotte, Joëlle; Leonardi, Giovanni; Vahter, Marie; Goessler, Walter; Kumar, Rajiv; Fletcher, Tony

    2013-01-01

    Background Studies suggest that ambient sunlight plays an important role in the pathogenesis of non-melanoma skin cancers (NMSC). However, there is ongoing controversy regarding the relevance of occupational exposure to natural and artificial ultraviolet radiation (UV) radiation. Objectives We investigated potential associations between natural and artificial UV radiation exposure at work with NMSC in a case-control study conducted in Hungary, Romania, and Slovakia. Methods Occupational exposures were classified by expert assessment for 527 controls and 618 NMSC cases (515 basal cell carcinoma, BCC). Covariate information was collected via interview and multiple logistic regression models were used to assess associations between UV exposure and NMSC. Results Lifetime prevalence of occupational exposure in the participants was 13% for natural UV radiation and 7% for artificial UV radiation. Significant negative associations between occupational exposure to natural UV radiation and NMSC were detected for all who had ever been exposed (odds ratio (OR) 0.47, 95% confidence interval (CI) 0.27–0.80); similar results were detected using a semi-quantitative metric of cumulative exposure. The effects were modified by skin complexion, with significantly decreased risks of BCC among participants with light skin complexion. No associations were observed in relation to occupational artificial UV radiation exposure. Conclusions The protective effect of occupational exposure to natural UV radiation was unexpected, but limited to light-skinned people, suggesting adequate sun-protection behaviors. Further investigations focusing on variations in the individual genetic susceptibility and potential interactions with environmental and other relevant factors are planned. PMID:23638051

  1. Ensemble of ground subsidence hazard maps using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Park, Inhye; Lee, Jiyeong; Saro, Lee

    2014-06-01

    Hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok, Korea, were constructed using fuzzy ensemble techniques and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, groundwater, and ground subsidence maps. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 70/30 for training and validation of the models. The relationships between the detected ground-subsidence area and the factors were identified and quantified by frequency ratio (FR), logistic regression (LR) and artificial neural network (ANN) models. The relationships were used as factor ratings in the overlay analysis to create ground-subsidence hazard indexes and maps. The three GSH maps were then used as new input factors and integrated using fuzzy-ensemble methods to make better hazard maps. All of the hazard maps were validated by comparison with known subsidence areas that were not used directly in the analysis. As the result, the ensemble model was found to be more effective in terms of prediction accuracy than the individual model.

  2. Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation

    PubMed Central

    2018-01-01

    Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site. PMID:29370230

  3. Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation.

    PubMed

    Illias, Hazlee Azil; Zhao Liang, Wee

    2018-01-01

    Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site.

  4. Development of an Analysis and Design Optimization Framework for Marine Propellers

    NASA Astrophysics Data System (ADS)

    Tamhane, Ashish C.

    In this thesis, a framework for the analysis and design optimization of ship propellers is developed. This framework can be utilized as an efficient synthesis tool in order to determine the main geometric characteristics of the propeller but also to provide the designer with the capability to optimize the shape of the blade sections based on their specific criteria. A hybrid lifting-line method with lifting-surface corrections to account for the three-dimensional flow effects has been developed. The prediction of the correction factors is achieved using Artificial Neural Networks and Support Vector Regression. This approach results in increased approximation accuracy compared to existing methods and allows for extrapolation of the correction factor values. The effect of viscosity is implemented in the framework via the coupling of the lifting line method with the open-source RANSE solver OpenFOAM for the calculation of lift, drag and pressure distribution on the blade sections using a transition kappa-o SST turbulence model. Case studies of benchmark high-speed propulsors are utilized in order to validate the proposed framework for propeller operation in open-water conditions but also in a ship's wake.

  5. Performance and safety of an integrated bihormonal artificial pancreas for fully automated glucose control at home.

    PubMed

    Blauw, H; van Bon, A C; Koops, R; DeVries, J H

    2016-07-01

    To assess the performance and safety of an integrated bihormonal artificial pancreas system consisting of one wearable device and two wireless glucose sensor transmitters during short-term daily use at home. Adult patients with type 1 diabetes using an insulin pump were invited to enrol in this randomized crossover study. Treatment with the artificial pancreas started with a day and night in the clinical research centre, followed by 3 days at home. The control period consisted of 4 days of insulin pump therapy at home with blinded continuous glucose monitoring for data collection. Days 2-4 were predefined as the analysis period, with median glucose as the primary outcome. A total of 10 patients completed the study. The median [interquartile range (IQR)] glucose level was similar for the two treatments [7.3 (7.0-7.6) mmol/l for the artificial pancreas vs. 7.7 (7.0-9.0) mmol/l for the control; p = 0.123]. The median (IQR) percentage of time spent in euglycaemia (3.9-10 mmol/l) was longer during use of the artificial pancreas [84.7 (82.2-87.8)% for the artificial pancreas vs. 68.5 (57.9-83.6)% for the control; p = 0.007]. Time in hypoglycaemia was 1.3 (0.2-3.2)% for the artificial pancreas and 2.4 (0.4-10.3)% for the control treatment (p = 0.139). Separate analysis of daytime and night-time showed that the improvements were mainly achieved during the night. The results of this pilot study suggest that our integrated artificial pancreas provides better glucose control than insulin pump therapy in patients with type 1 diabetes at home and that the treatment is safe. © 2016 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

  6. A new method for identification of natural, artificial and in vitro cultured Calculus bovis using high-performance liquid chromatography-mass spectrometry

    PubMed Central

    Liu, Yonggang; Tan, Peng; Liu, Shanshan; Shi, Hang; Feng, Xin; Ma, Qun

    2015-01-01

    Objective: Calculus bovis have been widely used in Chinese herbology for the treatment of hyperpyrexia, convulsions, and epilepsy. Nowadays, due to the limited source and high market price, the substitutes, artificial and in vitro cultured Calculus bovis, are getting more and more commonly used. The adulteration phenomenon is serious. Therefore, it is crucial to establish a fast and simple method in discriminating the natural, artificial and in vitro cultured Calculus bovis. Bile acids, one of the main active constituents, are taken as an important indicator for evaluating the quality of Calculus bovis and the substitutes. Several techniques have been built to analyze bile acids in Calculus bovis. Whereas, as bile acids are with poor ultraviolet absorbance and high structural similarity, effective technology for identification and quality control is still lacking. Methods: In this study, high-performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (LC/MS/MS) was applied in the analysis of bile acids, which effectively identified natural, artificial and in vitro cultured Calculus bovis and provide a new method for their quality control. Results: Natural, artificial and in vitro cultured Calculus bovis were differentiated by bile acids analysis. A new compound with protonated molecule at m/z 405 was found, which we called 3α, 12α-dihydroxy-7-oxo-5α-cholanic acid. This compound was discovered in in vitro cultured Calculus bovis, but almost not detected in natural and artificial Calculus bovis. A total of 13 constituents was identified. Among them, three bio-markers, including glycocholic acid, glycodeoxycholic acid and taurocholic acid (TCA) were detected in both natural and artificial Calculus bovis, but the density of TCA was different in two kinds of Calculus bovis. In addition, the characteristics of bile acids were illustrated. Conclusions: The HPLC coupled with tandem MS (LC/MS/MS) method was feasible, easy, rapid and accurate in identifying natural, artificial and in vitro cultured Calculus bovis. PMID:25829769

  7. Histopathology Image Analysis in Two Long-Term Animal Experiments with Helical Flow Total Artificial Heart.

    PubMed

    Wotke, Jiri; Homolka, Pavel; Vasku, Jaromír; Dobsak, Petr; Palanova, Petra; Mrkvicova, Veronika; Konecny, Petr; Soska, Vladimir; Pohanka, Michal; Novakova, Marie; Yurimoto, Terumi; Saito, Itsuro; Inoue, Yusuke; Isoyama, Takashi; Abe, Yusuke

    2016-12-01

    Histopathological analysis can provide important information in long-term experiments with total artificial heart (TAH). Recently, a new type of blood pump, the helical flow total artificial heart (HF-TAH) was developed. This study aimed to investigate the changes in selected vital organs in animal experiments with implanted HF-TAH. Samples from lung, liver, and kidneys from two female goats (No. 1301 and No. 1304) with implanted HF-TAH were analyzed. Tissue samples were fixed in 10% formaldehyde and 4 µm thick transverse sections were stained with hematoxylin-eosin (HE). Additional staining was done for detection of connective tissue (Masson-Goldner stain) and for detection of iron (hemosiderin) deposits (Perls stain). Sections were scanned at 100× and 500× magnification with a light microscope. Experiment no. 1301 survived 100 days (cause of termination was heavy damage of the right pump); experimental goat no.1304 survived 68 days and was sacrificed due to severe right hydrodynamic bearing malfunction. Histopathological analysis of liver samples proved signs of chronic venostasis with limited focal necrotic zones. Dilated tubules, proteinaceous material in tubular lumen, and hemosiderin deposits were detected in kidney samples. Contamination of the organs by embolized micro-particles was suspected at the autopsy after discovery of visible damage (scratches) of the pump impeller surface (made from titanium alloy) in both experiments. Sporadic deposits of foreign micro-particles (presumably titanium) were observed in most of the analyzed parenchymal organs. However, the described deposits were not in direct connection with inflammatory reactions in the analyzed tissues. Histopathological analysis showed the presence of minimal contamination of the lung, kidney, and liver tissue samples by foreign material (titanium very likely). The analysis showed only limited pathological changes, especially in liver and kidneys, which might be attributed to the influence of artificial perfusion often observed in chronic TAH experiments. © 2016 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  8. Unsupervised spatiotemporal analysis of fMRI data using graph-based visualizations of self-organizing maps.

    PubMed

    Katwal, Santosh B; Gore, John C; Marois, Rene; Rogers, Baxter P

    2013-09-01

    We present novel graph-based visualizations of self-organizing maps for unsupervised functional magnetic resonance imaging (fMRI) analysis. A self-organizing map is an artificial neural network model that transforms high-dimensional data into a low-dimensional (often a 2-D) map using unsupervised learning. However, a postprocessing scheme is necessary to correctly interpret similarity between neighboring node prototypes (feature vectors) on the output map and delineate clusters and features of interest in the data. In this paper, we used graph-based visualizations to capture fMRI data features based upon 1) the distribution of data across the receptive fields of the prototypes (density-based connectivity); and 2) temporal similarities (correlations) between the prototypes (correlation-based connectivity). We applied this approach to identify task-related brain areas in an fMRI reaction time experiment involving a visuo-manual response task, and we correlated the time-to-peak of the fMRI responses in these areas with reaction time. Visualization of self-organizing maps outperformed independent component analysis and voxelwise univariate linear regression analysis in identifying and classifying relevant brain regions. We conclude that the graph-based visualizations of self-organizing maps help in advanced visualization of cluster boundaries in fMRI data enabling the separation of regions with small differences in the timings of their brain responses.

  9. Influence of preparation depths on the fracture load of customized zirconia abutments with titanium insert.

    PubMed

    Joo, Han-Sung; Yang, Hong-So; Park, Sang-Won; Kim, Hyun-Seung; Yun, Kwi-Dug; Ji, Min-Kyung; Lim, Hyun-Pil

    2015-06-01

    This study evaluated the fracture load of customized zirconia abutments with titanium insert according to preparation depths, with or without 5-year artificial aging. Thirty-six identical lithium disilicate crowns (IPS e.max press) were fabricated to replace a maxillary right central incisor and cemented to the customized zirconia abutment with titanium insert on a 4.5×10 mm titanium fixture. Abutments were fabricated with 3 preparation depths (0.5 mm, 0.7 mm, and 0.9 mm). Half of the samples were then processed using thermocycling (temperature: 5-55℃, dwelling time: 120s) and chewing simulation (1,200,000 cycles, 49 N load). All specimens were classified into 6 groups depending on the preparation depth and artificial aging (non-artificial aging groups: N5, N7, N9; artificial aging groups: A5, A7, A9). Static load was applied at 135 degrees to the implant axis in a universal testing machine. Statistical analyses of the results were performed using 1-way ANOVA, 2-way ANOVA, independent t-test and multiple linear regression. The fracture loads were 539.28 ± 63.11 N (N5), 406.56 ± 28.94 N (N7), 366.66 ± 30.19 N (N9), 392.61 ± 50.57 N (A5), 317.94 ± 30.05 N (A7), and 292.74 ± 37.15 N (A9). The fracture load of group N5 was significantly higher than those of group N7 and N9 (P<.017). Consequently, the fracture load of group A5 was also significantly higher than those of group A7 and A9 (P<.05). After artificial aging, the fracture load was significantly decreased in all groups with various preparation depths (P<.05). The fracture load of a single anterior implant restored with lithium disilicate crown on zirconia abutment with titanium insert differed depending on the preparation depths. After 5-year artificial aging, the fracture loads of all preparation groups decreased significantly.

  10. Influence of preparation depths on the fracture load of customized zirconia abutments with titanium insert

    PubMed Central

    Joo, Han-Sung; Yang, Hong-So; Park, Sang-Won; Kim, Hyun-Seung; Yun, Kwi-Dug; Ji, Min-Kyung

    2015-01-01

    PURPOSE This study evaluated the fracture load of customized zirconia abutments with titanium insert according to preparation depths, with or without 5-year artificial aging. MATERIALS AND METHODS Thirty-six identical lithium disilicate crowns (IPS e.max press) were fabricated to replace a maxillary right central incisor and cemented to the customized zirconia abutment with titanium insert on a 4.5×10 mm titanium fixture. Abutments were fabricated with 3 preparation depths (0.5 mm, 0.7 mm, and 0.9 mm). Half of the samples were then processed using thermocycling (temperature: 5-55℃, dwelling time: 120s) and chewing simulation (1,200,000 cycles, 49 N load). All specimens were classified into 6 groups depending on the preparation depth and artificial aging (non-artificial aging groups: N5, N7, N9; artificial aging groups: A5, A7, A9). Static load was applied at 135 degrees to the implant axis in a universal testing machine. Statistical analyses of the results were performed using 1-way ANOVA, 2-way ANOVA, independent t-test and multiple linear regression. RESULTS The fracture loads were 539.28 ± 63.11 N (N5), 406.56 ± 28.94 N (N7), 366.66 ± 30.19 N (N9), 392.61 ± 50.57 N (A5), 317.94 ± 30.05 N (A7), and 292.74 ± 37.15 N (A9). The fracture load of group N5 was significantly higher than those of group N7 and N9 (P<.017). Consequently, the fracture load of group A5 was also significantly higher than those of group A7 and A9 (P<.05). After artificial aging, the fracture load was significantly decreased in all groups with various preparation depths (P<.05). CONCLUSION The fracture load of a single anterior implant restored with lithium disilicate crown on zirconia abutment with titanium insert differed depending on the preparation depths. After 5-year artificial aging, the fracture loads of all preparation groups decreased significantly. PMID:26140169

  11. Effect of radiation on age at menopause among atomic bomb survivors.

    PubMed

    Sakata, Ritsu; Shimizu, Yukiko; Soda, Midori; Yamada, Michiko; Hsu, Wan-Ling; Hayashi, Mikiko; Ozasa, Kotaro

    2011-12-01

    Exposure to ionizing radiation has been thought to induce ovarian failure and premature menopause. Proximally exposed female atomic bomb survivors were reported to experience menopause immediately after the exposure more often than those who were distally exposed. However, it remains unclear whether such effects were caused by physical injury and psychological trauma or by direct effects of radiation on the ovaries. The objective of this study was to see if there are any late health effects associated with the exposure to atomic bomb radiation in terms of age at menopause in a cohort of 21,259 Life Span Study female A-bomb survivors. Excess absolute rates (EAR) of natural and artificial menopause were estimated using Poisson regression. A linear threshold model with a knot at 0.40 Gy [95% confidence interval (CI): 0.13, 0.62] was the best fit for a dose response of natural menopause (EAR at 1 Gy at age of 50 years = 19.4/1,000 person-years, 95% CI: 10.4, 30.8) and a linear threshold model with a knot at 0.22 Gy (95% CI: 0.14, 0.34) was the best fit for artificial menopause (EAR at 1 Gy at age of 50 years for females who were exposed at age of 20 years = 14.5/1,000 person-years, 95% CI: 10.2, 20.1). Effect modification by attained age indicated that EARs peaked around 50 years of age for both natural and artificial menopause. Although effect modification by age at exposure was not significant for natural menopause, the EAR for artificial menopause tended to be larger in females exposed at young ages. On the cumulative incidence curve of natural menopause, the median age at menopause was 0.3 years younger in females exposed to radiation of 1 Gy compared with unexposed females. The median age was 1 year younger for combined natural and artificial menopause in the same comparison. In conclusion, age at menopause was thought to decrease with increasing radiation dose for both natural and artificial menopause occurring at least 5 years after the exposure.

  12. Retention modelling of polychlorinated biphenyls in comprehensive two-dimensional gas chromatography.

    PubMed

    D'Archivio, Angelo Antonio; Incani, Angela; Ruggieri, Fabrizio

    2011-01-01

    In this paper, we use a quantitative structure-retention relationship (QSRR) method to predict the retention times of polychlorinated biphenyls (PCBs) in comprehensive two-dimensional gas chromatography (GC×GC). We analyse the GC×GC retention data taken from the literature by comparing predictive capability of different regression methods. The various models are generated using 70 out of 209 PCB congeners in the calibration stage, while their predictive performance is evaluated on the remaining 139 compounds. The two-dimensional chromatogram is initially estimated by separately modelling retention times of PCBs in the first and in the second column ((1) t (R) and (2) t (R), respectively). In particular, multilinear regression (MLR) combined with genetic algorithm (GA) variable selection is performed to extract two small subsets of predictors for (1) t (R) and (2) t (R) from a large set of theoretical molecular descriptors provided by the popular software Dragon, which after removal of highly correlated or almost constant variables consists of 237 structure-related quantities. Based on GA-MLR analysis, a four-dimensional and a five-dimensional relationship modelling (1) t (R) and (2) t (R), respectively, are identified. Single-response partial least square (PLS-1) regression is alternatively applied to independently model (1) t (R) and (2) t (R) without the need for preliminary GA variable selection. Further, we explore the possibility of predicting the two-dimensional chromatogram of PCBs in a single calibration procedure by using a two-response PLS (PLS-2) model or a feed-forward artificial neural network (ANN) with two output neurons. In the first case, regression is carried out on the full set of 237 descriptors, while the variables previously selected by GA-MLR are initially considered as ANN inputs and subjected to a sensitivity analysis to remove the redundant ones. Results show PLS-1 regression exhibits a noticeably better descriptive and predictive performance than the other investigated approaches. The observed values of determination coefficients for (1) t (R) and (2) t (R) in calibration (0.9999 and 0.9993, respectively) and prediction (0.9987 and 0.9793, respectively) provided by PLS-1 demonstrate that GC×GC behaviour of PCBs is properly modelled. In particular, the predicted two-dimensional GC×GC chromatogram of 139 PCBs not involved in the calibration stage closely resembles the experimental one. Based on the above lines of evidence, the proposed approach ensures accurate simulation of the whole GC×GC chromatogram of PCBs using experimental determination of only 1/3 retention data of representative congeners.

  13. Comparative analyses of genetic/epigenetic diversities and structures in a wild barley species (Hordeum brevisubulatum) using MSAP, SSAP and AFLP.

    PubMed

    Shan, X H; Li, Y D; Liu, X M; Wu, Y; Zhang, M Z; Guo, W L; Liu, B; Yuan, Y P

    2012-08-17

    We analyzed genetic diversity and population genetic structure of four artificial populations of wild barley (Hordeum brevisubulatum); 96 plants collected from the Songnen Prairie in northeastern China were analyzed using amplified fragment length polymorphism (AFLP), specific-sequence amplified polymorphism (SSAP) and methylation-sensitive amplified polymorphism (MSAP) markers. Indices of (epi-)genetic diversity, (epi-)genetic distance, gene flow, genotype frequency, cluster analysis, PCA analysis and AMOVA analysis generated from MSAP, AFLP and SSAP markers had the same trend. We found a high level of correlation in the artificial populations between MSAP, SSAP and AFLP markers by the Mantel test (r > 0.8). This is incongruent with previous findings showing that there is virtually no correlation between DNA methylation polymorphism and classical genetic variation; the high level of genetic polymorphism could be a result of epigenetic regulation. We compared our results with data from natural populations. The population diversity of the artificial populations was lower. However, different from what was found using AFLP and SSAP, based on MSAP results the methylation polymorphism of the artificial populations was not significantly reduced. This leads us to suggest that the DNA methylation pattern change in H. brevisubulatum populations is not only related to DNA sequence variation, but is also regulated by other controlling systems.

  14. The role of artificial intelligence and expert systems in increasing STS operations productivity

    NASA Technical Reports Server (NTRS)

    Culbert, C.

    1985-01-01

    Artificial Intelligence (AI) is discussed. A number of the computer technologies pioneered in the AI world can make significant contributions to increasing STS operations productivity. Application of expert systems, natural language, speech recognition, and other key technologies can reduce manpower while raising productivity. Many aspects of STS support lend themselves to this type of automation. The artificial intelligence section of the mission planning and analysis division has developed a number of functioning prototype systems which demonstrate the potential gains of applying AI technology.

  15. The use of artificial neural networks and multiple linear regression to predict rate of medical waste generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahandideh, Sepideh; Jahandideh, Samad; Asadabadi, Ebrahim Barzegari

    2009-11-15

    Prediction of the amount of hospital waste production will be helpful in the storage, transportation and disposal of hospital waste management. Based on this fact, two predictor models including artificial neural networks (ANNs) and multiple linear regression (MLR) were applied to predict the rate of medical waste generation totally and in different types of sharp, infectious and general. In this study, a 5-fold cross-validation procedure on a database containing total of 50 hospitals of Fars province (Iran) were used to verify the performance of the models. Three performance measures including MAR, RMSE and R{sup 2} were used to evaluate performancemore » of models. The MLR as a conventional model obtained poor prediction performance measure values. However, MLR distinguished hospital capacity and bed occupancy as more significant parameters. On the other hand, ANNs as a more powerful model, which has not been introduced in predicting rate of medical waste generation, showed high performance measure values, especially 0.99 value of R{sup 2} confirming the good fit of the data. Such satisfactory results could be attributed to the non-linear nature of ANNs in problem solving which provides the opportunity for relating independent variables to dependent ones non-linearly. In conclusion, the obtained results showed that our ANN-based model approach is very promising and may play a useful role in developing a better cost-effective strategy for waste management in future.« less

  16. An Experimental Investigation into the Optimal Processing Conditions for the CO2 Laser Cladding of 20 MnCr5 Steel Using Taguchi Method and ANN

    NASA Astrophysics Data System (ADS)

    Mondal, Subrata; Bandyopadhyay, Asish.; Pal, Pradip Kumar

    2010-10-01

    This paper presents the prediction and evaluation of laser clad profile formed by means of CO2 laser applying Taguchi method and the artificial neural network (ANN). Laser cladding is one of the surface modifying technologies in which the desired surface characteristics of any component can be achieved such as good corrosion resistance, wear resistance and hardness etc. Laser is used as a heat source to melt the anti-corrosive powder of Inconel-625 (Super Alloy) to give a coating on 20 MnCr5 substrate. The parametric study of this technique is also attempted here. The data obtained from experiments have been used to develop the linear regression equation and then to develop the neural network model. Moreover, the data obtained from regression equations have also been used as supporting data to train the neural network. The artificial neural network (ANN) is used to establish the relationship between the input/output parameters of the process. The established ANN model is then indirectly integrated with the optimization technique. It has been seen that the developed neural network model shows a good degree of approximation with experimental data. In order to obtain the combination of process parameters such as laser power, scan speed and powder feed rate for which the output parameters become optimum, the experimental data have been used to develop the response surfaces.

  17. Machine learning to predict the occurrence of bisphosphonate-related osteonecrosis of the jaw associated with dental extraction: A preliminary report.

    PubMed

    Kim, Dong Wook; Kim, Hwiyoung; Nam, Woong; Kim, Hyung Jun; Cha, In-Ho

    2018-04-23

    The aim of this study was to build and validate five types of machine learning models that can predict the occurrence of BRONJ associated with dental extraction in patients taking bisphosphonates for the management of osteoporosis. A retrospective review of the medical records was conducted to obtain cases and controls for the study. Total 125 patients consisting of 41 cases and 84 controls were selected for the study. Five machine learning prediction algorithms including multivariable logistic regression model, decision tree, support vector machine, artificial neural network, and random forest were implemented. The outputs of these models were compared with each other and also with conventional methods, such as serum CTX level. Area under the receiver operating characteristic (ROC) curve (AUC) was used to compare the results. The performance of machine learning models was significantly superior to conventional statistical methods and single predictors. The random forest model yielded the best performance (AUC = 0.973), followed by artificial neural network (AUC = 0.915), support vector machine (AUC = 0.882), logistic regression (AUC = 0.844), decision tree (AUC = 0.821), drug holiday alone (AUC = 0.810), and CTX level alone (AUC = 0.630). Machine learning methods showed superior performance in predicting BRONJ associated with dental extraction compared to conventional statistical methods using drug holiday and serum CTX level. Machine learning can thus be applied in a wide range of clinical studies. Copyright © 2017. Published by Elsevier Inc.

  18. A critical review and analysis of ethical issues associated with the artificial pancreas.

    PubMed

    Quintal, A; Messier, V; Rabasa-Lhoret, R; Racine, E

    2018-04-25

    The artificial pancreas combines a hormone infusion pump with a continuous glucose monitoring device, supported by a dosing algorithm currently installed on the pump. It allows for dynamic infusions of insulin (and possibly other hormones such as glucagon) tailored to patient needs. For patients with type 1 diabetes the artificial pancreas has been shown to prevent more effectively hypoglycaemic events and hyperglycaemia than insulin pump therapy and has the potential to simplify care. However, the potential ethical issues associated with the upcoming integration of the artificial pancreas into clinical practice have not yet been discussed. Our objective was to identify and articulate ethical issues associated with artificial pancreas use for patients, healthcare professionals, industry and policymakers. We performed a literature review to identify clinical, psychosocial and technical issues raised by the artificial pancreas and subsequently analysed them through a common bioethics framework. We identified five sensitive domains of ethical issues. Patient confidentiality and safety can be jeopardized by the artificial pancreas' vulnerability to security breaches or unauthorized data sharing. Public and private coverage of the artificial pancreas could be cost-effective and warranted. Patient selection criteria need to ensure equitable access and sensitivity to patient-reported outcomes. Patient coaching and support by healthcare professionals or industry representatives could help foster realistic expectations in patients. Finally, the artificial pancreas increases the visibility of diabetes and could generate issues related to personal identity and patient agency. The timely consideration of these issues will optimize the technological development and clinical uptake of the artificial pancreas. Copyright © 2018. Published by Elsevier Masson SAS.

  19. The Fundamental Structure and the Reproduction of Spiral Wave in a Two-Dimensional Excitable Lattice.

    PubMed

    Qian, Yu; Zhang, Zhaoyang

    2016-01-01

    In this paper we have systematically investigated the fundamental structure and the reproduction of spiral wave in a two-dimensional excitable lattice. A periodically rotating spiral wave is introduced as the model to reproduce spiral wave artificially. Interestingly, by using the dominant phase-advanced driving analysis method, the fundamental structure containing the loop structure and the wave propagation paths has been revealed, which can expose the periodically rotating orbit of spiral tip and the charity of spiral wave clearly. Furthermore, the fundamental structure is utilized as the core for artificial spiral wave. Additionally, the appropriate parameter region, in which the artificial spiral wave can be reproduced, is studied. Finally, we discuss the robustness of artificial spiral wave to defects.

  20. Iterative approach of dual regression with a sparse prior enhances the performance of independent component analysis for group functional magnetic resonance imaging (fMRI) data.

    PubMed

    Kim, Yong-Hwan; Kim, Junghoe; Lee, Jong-Hwan

    2012-12-01

    This study proposes an iterative dual-regression (DR) approach with sparse prior regularization to better estimate an individual's neuronal activation using the results of an independent component analysis (ICA) method applied to a temporally concatenated group of functional magnetic resonance imaging (fMRI) data (i.e., Tc-GICA method). An ordinary DR approach estimates the spatial patterns (SPs) of neuronal activation and corresponding time courses (TCs) specific to each individual's fMRI data with two steps involving least-squares (LS) solutions. Our proposed approach employs iterative LS solutions to refine both the individual SPs and TCs with an additional a priori assumption of sparseness in the SPs (i.e., minimally overlapping SPs) based on L(1)-norm minimization. To quantitatively evaluate the performance of this approach, semi-artificial fMRI data were created from resting-state fMRI data with the following considerations: (1) an artificially designed spatial layout of neuronal activation patterns with varying overlap sizes across subjects and (2) a BOLD time series (TS) with variable parameters such as onset time, duration, and maximum BOLD levels. To systematically control the spatial layout variability of neuronal activation patterns across the "subjects" (n=12), the degree of spatial overlap across all subjects was varied from a minimum of 1 voxel (i.e., 0.5-voxel cubic radius) to a maximum of 81 voxels (i.e., 2.5-voxel radius) across the task-related SPs with a size of 100 voxels for both the block-based and event-related task paradigms. In addition, several levels of maximum percentage BOLD intensity (i.e., 0.5, 1.0, 2.0, and 3.0%) were used for each degree of spatial overlap size. From the results, the estimated individual SPs of neuronal activation obtained from the proposed iterative DR approach with a sparse prior showed an enhanced true positive rate and reduced false positive rate compared to the ordinary DR approach. The estimated TCs of the task-related SPs from our proposed approach showed greater temporal correlation coefficients with a reference hemodynamic response function than those of the ordinary DR approach. Moreover, the efficacy of the proposed DR approach was also successfully demonstrated by the results of real fMRI data acquired from left-/right-hand clenching tasks in both block-based and event-related task paradigms. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Prediction of Excess Weight Loss after Laparoscopic Roux-en-Y Gastric Bypass: Data from an Artificial Neural Network

    PubMed Central

    Wise, Eric S.; Hocking, Kyle M.; Kavic, Stephen M.

    2015-01-01

    Introduction Laparoscopic Roux-en-Y Gastric Bypass (LRYGB) has become the gold standard for surgical weight loss. The success of LRYGB may be measured by excess body-mass index loss (%EBMIL) over 25 kg/m2, which is partially determined by multiple patient factors. In this study, artificial neural network (ANN) modeling was used to derive a reasonable estimate of expected postoperative weight loss using only known preoperative patient variables. Additionally, ANN modeling allowed for the discriminant prediction of achievement of benchmark 50% EBMIL at one year postoperatively. Methods Six-hundred and forty-seven LRYGB included patients were retrospectively reviewed for preoperative factors independently associated with EBMIL at 180 and 365 days postoperatively (EBMIL180 and EBMIL365, respectively). Previously validated factors were selectively analyzed, including age; race; gender; preoperative BMI (BMI0); hemoglobin; and diagnoses of hypertension (HTN), diabetes mellitus (DM), and depression or anxiety disorder. Variables significant upon multivariate analysis (P<.05) were modeled by “traditional” multiple linear regression and an ANN, to predict %EBMIL180 and %EBMIL365. Results The mean EBMIL180 and EBMIL365 were 56.4%±16.5% and 73.5%±21.5%, corresponding to total body weight losses of 25.7%±5.9% and 33.6%±8.0%, respectively. Upon multivariate analysis, independent factors associated with EBMIL180 included black race (B=−6.3%, P<.001), BMI0 (B=−1.1%/unit BMI, P<.001) and DM (B=−3.2%, P<.004). For EBMIL365, independently associated factors were female gender (B=6.4%, P<.001), black race (B=−6.7%, P<.001), BMI0 (B=−1.2%/unit BMI, P<.001), HTN (B=−3.7%, P=.03) and DM (B=−6.0%, P<.001). Pearson r2 values for the multiple linear regression and ANN models were .38 (EBMIL180) and .35 (EBMIL365), and .42 (EBMIL180) and .38 (EBMIL365), respectively. ANN-prediction of benchmark 50% EBMIL at 365 days generated an area under the curve of 0.78±0.03 in the training set (n=518), and 0.83±0.04 (n=129) in the validation set. Conclusions Available at https://redcap.vanderbilt.edu/surveys/?s=3HCR43AKXR, this, or other ANN models may be used to provide an optimized estimate of postoperative EBMIL following LRYGB. PMID:26017908

  2. An analysis of specific lower extremity injury rates on grass and FieldTurf playing surfaces in National Football League Games: 2000-2009 seasons.

    PubMed

    Hershman, Elliott B; Anderson, Robert; Bergfeld, John A; Bradley, James P; Coughlin, Michael J; Johnson, Robert J; Spindler, Kurt P; Wojtys, Edward; Powell, John W

    2012-10-01

    Players in the National Football League (NFL) sustain injuries every season as the result of their participation. One factor associated with the rate of injury is the type of playing surface on which the players participate. There is no difference in the rate of knee sprains and ankle sprains during NFL games when comparing rates of those injuries during games played on natural grass surfaces with rates of those injuries during games played on the artificial surface FieldTurf. Descriptive epidemiology study. The NFL records injury and exposure (ie, game) data as part of its injury surveillance system. During the 2000-2009 NFL seasons, there were 2680 games (5360 team games) played on grass or artificial surfaces. Specifically, 1356 team games were played on FieldTurf and 4004 team games were played on grass. We examined the 2000-2009 game-related injury data from those games as recorded by the injury surveillance system. The data included the injury diagnosis, the date of injury, and the surface at the time of injury. The injury data showed that 1528 knee sprains and 1503 ankle sprains occurred during those games. We calculated injury rates for knee sprains and ankle sprains-specifically, medial collateral ligament (MCL) sprains, anterior cruciate ligament (ACL) sprains, eversion ankle sprains, and inversion ankle sprains-using incidence density ratios (IDRs). We used a Poisson model and logistic regression odds ratios to validate the IDR analysis. A multivariate logistic regression model was used to adjust the odds ratio for weather conditions. The observed injury rate of knee sprains on FieldTurf was 22% (IDR = 1.22, 95% confidence interval [CI], 1.09-1.36) higher than on grass, and the injury rate of ankle sprains on FieldTurf was 22% (IDR = 1.22, 95% CI, 1.09-1.36) higher than on grass. These differences are statistically significant. Specifically, the observed injury rates of ACL sprains and eversion ankle sprains on FieldTurf surfaces were 67% (P < .001) and 31% (P < .001) higher than on grass surfaces and were statistically significant. The observed injury rates of MCL sprains and inversion ankle sprains were also not significantly higher on FieldTurf surfaces (P = .689 and .390, respectively). Injury rates for ACL sprains and eversion ankle sprains for NFL games played on FieldTurf were higher than rates for those injuries in games played on grass, and the differences were statistically significant.

  3. Towards Computational Fronesis: Verifying Contextual Appropriateness of Emotions

    ERIC Educational Resources Information Center

    Ptaszynski, Michal; Dybala, Pawel; Mazur, Michal; Rzepka, Rafal; Araki, Kenji; Momouchi, Yoshio

    2013-01-01

    This paper presents research in Contextual Affect Analysis (CAA) for the need of future application in intelligent agents, such as conversational agents or artificial tutors. The authors propose a new term, Computational Fronesis (CF), to embrace the tasks included in CAA applied to development of conversational agents such as artificial tutors.…

  4. [Artificial neural networks for decision making in urologic oncology].

    PubMed

    Remzi, M; Djavan, B

    2007-06-01

    This chapter presents a detailed introduction regarding Artificial Neural Networks (ANNs) and their contribution to modern Urologic Oncology. It includes a description of ANNs methodology and points out the differences between Artifical Intelligence and traditional statistic models in terms of usefulness for patients and clinicians, and its advantages over current statistical analysis.

  5. Application of artificial intelligence to risk analysis for forested ecosystems

    Treesearch

    Daniel L. Schmoldt

    2001-01-01

    Forest ecosystems are subject to a variety of natural and anthropogenic disturbances that extract a penalty from human population values. Such value losses (undesirable effects) combined with their likelihoods of occurrence constitute risk. Assessment or prediction of risk for various events is an important aid to forest management. Artificial intelligence (AI)...

  6. A Study for the Feature Selection to Identify GIEMSA-Stained Human Chromosomes Based on Artificial Neural Network

    DTIC Science & Technology

    2001-10-25

    neural network (ANN) has been adopted for the human chromosome classification. It is important to select optimum features for training neural network...Many studies for computer-based chromosome analysis have shown that it is possible to classify chromosomes into 24 subgroups. In addition, artificial

  7. Predicting Item Difficulty in a Reading Comprehension Test with an Artificial Neural Network.

    ERIC Educational Resources Information Center

    Perkins, Kyle; And Others

    1995-01-01

    This article reports the results of using a three-layer back propagation artificial neural network to predict item difficulty in a reading comprehension test. Three classes of variables were examined: text structure, propositional analysis, and cognitive demand. Results demonstrate that the networks can consistently predict item difficulty. (JL)

  8. Modeling Career Counselor Decisions with Artificial Neural Networks: Predictions of Fit across a Comprehensive Occupational Map.

    ERIC Educational Resources Information Center

    Carson, Andrew D.; Bizot, Elizabeth B.; Hendershot, Peggy E.; Barton, Margaret G.; Garvin, Mary K.; Kraemer, Barbara

    1999-01-01

    Career recommendations were made based on aptitude scores of 335 high school freshmen. Artificial neural networks were used to map recommendations to 12 occupational clusters. Overall accuracy of neural networks (.80) approached that of discriminant function analysis (.84). The two methods had different strengths and weaknesses. (SK)

  9. Learning to Manipulate and Categorize in Human and Artificial Agents

    ERIC Educational Resources Information Center

    Morlino, Giuseppe; Gianelli, Claudia; Borghi, Anna M.; Nolfi, Stefano

    2015-01-01

    This study investigates the acquisition of integrated object manipulation and categorization abilities through a series of experiments in which human adults and artificial agents were asked to learn to manipulate two-dimensional objects that varied in shape, color, weight, and color intensity. The analysis of the obtained results and the…

  10. Characterization of monofloral honeys with multivariate analysis of their chemical profile and antioxidant activity.

    PubMed

    Sant'Ana, Luiza D'O; Sousa, Juliana P L M; Salgueiro, Fernanda B; Lorenzon, Maria Cristina Affonso; Castro, Rosane N

    2012-01-01

    Various bioactive chemical constituents were quantified for 21 honey samples obtained at Rio de Janeiro and Minas Gerais, Brazil. To evaluate their antioxidant activity, 3 different methods were used: the ferric reducing antioxidant power, the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity, and the 2,2'-azinobis (3-ethylbenzothiazolin)-6-sulfonate (ABTS) assays. Correlations between the parameters were statistically significant (-0.6684 ≤ r ≤-0.8410, P < 0.05). Principal component analysis showed that honey samples from the same floral origins had more similar profiles, which made it possible to group the eucalyptus, morrão de candeia, and cambara honey samples in 3 distinct areas, while cluster analysis could separate the artificial honey from the floral honeys. This research might aid in the discrimination of honey floral origin, by using simple analytical methods in association with multivariate analysis, which could also show a great difference among floral honeys and artificial honey, indicating a possible way to help with the identification of artificial honeys. © 2011 Institute of Food Technologists®

  11. Dew point temperature affects ascospore release of allergenic genus Leptosphaeria

    NASA Astrophysics Data System (ADS)

    Sadyś, Magdalena; Kaczmarek, Joanna; Grinn-Gofron, Agnieszka; Rodinkova, Victoria; Prikhodko, Alex; Bilous, Elena; Strzelczak, Agnieszka; Herbert, Robert J.; Jedryczka, Malgorzata

    2018-06-01

    The genus Leptosphaeria contains numerous fungi that cause the symptoms of asthma and also parasitize wild and crop plants. In search of a robust and universal forecast model, the ascospore concentration in air was measured and weather data recorded from 1 March to 31 October between 2006 and 2012. The experiment was conducted in three European countries of the temperate climate, i.e., Ukraine, Poland, and the UK. Out of over 150 forecast models produced using artificial neural networks (ANNs) and multivariate regression trees (MRTs), we selected the best model for each site, as well as for joint two-site combinations. The performance of all computed models was tested against records from 1 year which had not been used for model construction. The statistical analysis of the fungal spore data was supported by a comprehensive study of both climate and land cover within a 30-km radius from the air sampler location. High-performance forecasting models were obtained for individual sites, showing that the local micro-climate plays a decisive role in biology of the fungi. Based on the previous epidemiological studies, we hypothesized that dew point temperature (DPT) would be a critical factor in the models. The impact of DPT was confirmed only by one of the final best neural models, but the MRT analyses, similarly to the Spearman's rank test, indicated the importance of DPT in all but one of the studied cases and in half of them ranked it as a fundamental factor. This work applies artificial neural modeling to predict the Leptosphaeria airborne spore concentration in urban areas for the first time.

  12. Dew point temperature affects ascospore release of allergenic genus Leptosphaeria

    NASA Astrophysics Data System (ADS)

    Sadyś, Magdalena; Kaczmarek, Joanna; Grinn-Gofron, Agnieszka; Rodinkova, Victoria; Prikhodko, Alex; Bilous, Elena; Strzelczak, Agnieszka; Herbert, Robert J.; Jedryczka, Malgorzata

    2018-01-01

    The genus Leptosphaeria contains numerous fungi that cause the symptoms of asthma and also parasitize wild and crop plants. In search of a robust and universal forecast model, the ascospore concentration in air was measured and weather data recorded from 1 March to 31 October between 2006 and 2012. The experiment was conducted in three European countries of the temperate climate, i.e., Ukraine, Poland, and the UK. Out of over 150 forecast models produced using artificial neural networks (ANNs) and multivariate regression trees (MRTs), we selected the best model for each site, as well as for joint two-site combinations. The performance of all computed models was tested against records from 1 year which had not been used for model construction. The statistical analysis of the fungal spore data was supported by a comprehensive study of both climate and land cover within a 30-km radius from the air sampler location. High-performance forecasting models were obtained for individual sites, showing that the local micro-climate plays a decisive role in biology of the fungi. Based on the previous epidemiological studies, we hypothesized that dew point temperature (DPT) would be a critical factor in the models. The impact of DPT was confirmed only by one of the final best neural models, but the MRT analyses, similarly to the Spearman's rank test, indicated the importance of DPT in all but one of the studied cases and in half of them ranked it as a fundamental factor. This work applies artificial neural modeling to predict the Leptosphaeria airborne spore concentration in urban areas for the first time.

  13. Is fluoride a risk factor for bone cancer? Small area analysis of osteosarcoma and Ewing sarcoma diagnosed among 0-49-year-olds in Great Britain, 1980-2005.

    PubMed

    Blakey, Karen; Feltbower, Richard G; Parslow, Roger C; James, Peter W; Gómez Pozo, Basilio; Stiller, Charles; Vincent, Tim J; Norman, Paul; McKinney, Patricia A; Murphy, Michael F; Craft, Alan W; McNally, Richard J Q

    2014-02-01

    Artificial fluoridation of drinking water to improve dental health has long been a topic of controversy. Opponents of this public health measure have cited the possibility of bone cancer induction. The study objective was to examine whether increased risk of primary bone cancer was associated with living in areas with higher concentrations of fluoride in drinking water. Case data on osteosarcoma and Ewing sarcoma, diagnosed at ages 0-49 years in Great Britain (GB) (defined here as England, Scotland and Wales) during the period 1980-2005, were obtained from population-based cancer registries. Data on fluoride levels in drinking water in England and Wales were accessed through regional water companies and the Drinking Water Inspectorate. Scottish Water provided data for Scotland. Negative binomial regression was used to examine the relationship between incidence rates and level of fluoride in drinking water at small area level. The study analysed 2566 osteosarcoma and 1650 Ewing sarcoma cases. There was no evidence of an association between osteosarcoma risk and fluoride in drinking water [relative risk (RR) per one part per million increase in the level of fluoride = 1·001; 90% confidence interval (CI) 0·871, 1·151] and similarly there was no association for Ewing sarcoma (RR = 0·929; 90% CI 0·773, 1·115). The findings from this study provide no evidence that higher levels of fluoride (whether natural or artificial) in drinking water in GB lead to greater risk of either osteosarcoma or Ewing sarcoma.

  14. Artificial neural network modeling using clinical and knowledge independent variables predicts salt intake reduction behavior

    PubMed Central

    Isma’eel, Hussain A.; Sakr, George E.; Almedawar, Mohamad M.; Fathallah, Jihan; Garabedian, Torkom; Eddine, Savo Bou Zein

    2015-01-01

    Background High dietary salt intake is directly linked to hypertension and cardiovascular diseases (CVDs). Predicting behaviors regarding salt intake habits is vital to guide interventions and increase their effectiveness. We aim to compare the accuracy of an artificial neural network (ANN) based tool that predicts behavior from key knowledge questions along with clinical data in a high cardiovascular risk cohort relative to the least square models (LSM) method. Methods We collected knowledge, attitude and behavior data on 115 patients. A behavior score was calculated to classify patients’ behavior towards reducing salt intake. Accuracy comparison between ANN and regression analysis was calculated using the bootstrap technique with 200 iterations. Results Starting from a 69-item questionnaire, a reduced model was developed and included eight knowledge items found to result in the highest accuracy of 62% CI (58-67%). The best prediction accuracy in the full and reduced models was attained by ANN at 66% and 62%, respectively, compared to full and reduced LSM at 40% and 34%, respectively. The average relative increase in accuracy over all in the full and reduced models is 82% and 102%, respectively. Conclusions Using ANN modeling, we can predict salt reduction behaviors with 66% accuracy. The statistical model has been implemented in an online calculator and can be used in clinics to estimate the patient’s behavior. This will help implementation in future research to further prove clinical utility of this tool to guide therapeutic salt reduction interventions in high cardiovascular risk individuals. PMID:26090333

  15. Quantitative structure-retention relationships of flavonoids unraveled by immobilized artificial membrane chromatography.

    PubMed

    Santoro, Adriana Leandra; Carrilho, Emanuel; Lanças, Fernando Mauro; Montanari, Carlos Alberto

    2016-06-10

    The pharmacokinetic properties of flavonoids with differing degrees of lipophilicity were investigated using immobilized artificial membranes (IAMs) as the stationary phase in high performance liquid chromatography (HPLC). For each flavonoid compound, we investigated whether the type of column used affected the correlation between the retention factors and the calculated octanol/water partition (log Poct). Three-dimensional (3D) molecular descriptors were calculated from the molecular structure of each compound using i) VolSurf software, ii) the GRID method (computational procedure for determining energetically favorable binding sites in molecules of known structure using a probe for calculating the 3D molecular interaction fields, between the probe and the molecule), and iii) the relationship between partition and molecular structure, analyzed in terms of physicochemical descriptors. The VolSurf built-in Caco-2 model was used to estimate compound permeability. The extent to which the datasets obtained from different columns differ both from each other and from both the calculated log Poct and the predicted permeability in Caco-2 cells was examined by principal component analysis (PCA). The immobilized membrane partition coefficients (kIAM) were analyzed using molecular descriptors in partial least square regression (PLS) and a quantitative structure-retention relationship was generated for the chromatographic retention in the cholesterol column. The cholesterol column provided the best correlation with the permeability predicted by the Caco-2 cell model and a good fit model with great prediction power was obtained for its retention data (R(2)=0.96 and Q(2)=0.85 with four latent variables). Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Artificial neural network model for predicting the bioavailability of tacrolimus in patients with renal transplantation

    PubMed Central

    Thishya, Kalluri; Vattam, Kiran Kumar; Naushad, Shaik Mohammad; Raju, Shree Bhushan

    2018-01-01

    The objective of the current study was to explore the role of ABCB1 and CYP3A5 genetic polymorphisms in predicting the bioavailability of tacrolimus and the risk for post-transplant diabetes. Artificial neural network (ANN) and logistic regression (LR) models were used to predict the bioavailability of tacrolimus and risk for post-transplant diabetes, respectively. The five-fold cross-validation of ANN model showed good correlation with the experimental data of bioavailability (r2 = 0.93–0.96). Younger age, male gender, optimal body mass index were shown to exhibit lower bioavailability of tacrolimus. ABCB1 1236 C>T and 2677G>T/A showed inverse association while CYP3A5*3 showed a positive association with the bioavailability of tacrolimus. Gender bias was observed in the association with ABCB1 3435 C>T polymorphism. CYP3A5*3 was shown to interact synergistically in increasing the bioavailability in combination with ABCB1 1236 TT or 2677GG genotypes. LR model showed an independent association of ABCB1 2677 G>T/A with post transplant diabetes (OR: 4.83, 95% CI: 1.22–19.03). Multifactor dimensionality reduction analysis (MDR) revealed that synergistic interactions between CYP3A5*3 and ABCB1 2677 G>T/A as the determinants of risk for post-transplant diabetes. To conclude, the ANN and MDR models explore both individual and synergistic effects of variables in modulating the bioavailability of tacrolimus and risk for post-transplant diabetes. PMID:29621269

  17. Artificial neural network approach to predict surgical site infection after free-flap reconstruction in patients receiving surgery for head and neck cancer.

    PubMed

    Kuo, Pao-Jen; Wu, Shao-Chun; Chien, Peng-Chen; Chang, Shu-Shya; Rau, Cheng-Shyuan; Tai, Hsueh-Ling; Peng, Shu-Hui; Lin, Yi-Chun; Chen, Yi-Chun; Hsieh, Hsiao-Yun; Hsieh, Ching-Hua

    2018-03-02

    The aim of this study was to develop an effective surgical site infection (SSI) prediction model in patients receiving free-flap reconstruction after surgery for head and neck cancer using artificial neural network (ANN), and to compare its predictive power with that of conventional logistic regression (LR). There were 1,836 patients with 1,854 free-flap reconstructions and 438 postoperative SSIs in the dataset for analysis. They were randomly assigned tin ratio of 7:3 into a training set and a test set. Based on comprehensive characteristics of patients and diseases in the absence or presence of operative data, prediction of SSI was performed at two time points (pre-operatively and post-operatively) with a feed-forward ANN and the LR models. In addition to the calculated accuracy, sensitivity, and specificity, the predictive performance of ANN and LR were assessed based on area under the curve (AUC) measures of receiver operator characteristic curves and Brier score. ANN had a significantly higher AUC (0.892) of post-operative prediction and AUC (0.808) of pre-operative prediction than LR (both P <0.0001). In addition, there was significant higher AUC of post-operative prediction than pre-operative prediction by ANN (p<0.0001). With the highest AUC and the lowest Brier score (0.090), the post-operative prediction by ANN had the highest overall predictive performance. The post-operative prediction by ANN had the highest overall performance in predicting SSI after free-flap reconstruction in patients receiving surgery for head and neck cancer.

  18. Dew point temperature affects ascospore release of allergenic genus Leptosphaeria.

    PubMed

    Sadyś, Magdalena; Kaczmarek, Joanna; Grinn-Gofron, Agnieszka; Rodinkova, Victoria; Prikhodko, Alex; Bilous, Elena; Strzelczak, Agnieszka; Herbert, Robert J; Jedryczka, Malgorzata

    2018-06-01

    The genus Leptosphaeria contains numerous fungi that cause the symptoms of asthma and also parasitize wild and crop plants. In search of a robust and universal forecast model, the ascospore concentration in air was measured and weather data recorded from 1 March to 31 October between 2006 and 2012. The experiment was conducted in three European countries of the temperate climate, i.e., Ukraine, Poland, and the UK. Out of over 150 forecast models produced using artificial neural networks (ANNs) and multivariate regression trees (MRTs), we selected the best model for each site, as well as for joint two-site combinations. The performance of all computed models was tested against records from 1 year which had not been used for model construction. The statistical analysis of the fungal spore data was supported by a comprehensive study of both climate and land cover within a 30-km radius from the air sampler location. High-performance forecasting models were obtained for individual sites, showing that the local micro-climate plays a decisive role in biology of the fungi. Based on the previous epidemiological studies, we hypothesized that dew point temperature (DPT) would be a critical factor in the models. The impact of DPT was confirmed only by one of the final best neural models, but the MRT analyses, similarly to the Spearman's rank test, indicated the importance of DPT in all but one of the studied cases and in half of them ranked it as a fundamental factor. This work applies artificial neural modeling to predict the Leptosphaeria airborne spore concentration in urban areas for the first time.

  19. Decomposition of Phragmites australis rhizomes in artificial land-water transitional zones (ALWTZs) and management implications

    NASA Astrophysics Data System (ADS)

    Han, Zhen; Cui, Baoshan; Zhang, Yongtao

    2015-09-01

    Rhizomes are essential organs for growth and expansion of Phragmites australis. They function as an important source of organic matter and as a nutrient source, especially in the artificial land-water transitional zones (ALWTZs) of shallow lakes. In this study, decomposition experiments on 1- to 6-year-old P. australis rhizomes were conducted in the ALWTZ of Lake Baiyangdian to evaluate the contribution of the rhizomes to organic matter accumulation and nutrient release. Mass loss and changes in nutrient content were measured after 3, 7, 15, 30, 60, 90, 120, and 180 days. The decomposition process was modeled with a composite exponential model. The Pearson correlation analysis was used to analyze the relationships between mass loss and litter quality factors. A multiple stepwise regression model was utilized to determine the dominant factors that affect mass loss. Results showed that the decomposition rates in water were significantly higher than those in soil for 1- to 6-year-old rhizomes. However, the sequence of decomposition rates was identical in both water and soil. Significant relationships between mass loss and litter quality factors were observed at a later stage, and P-related factors proved to have a more significant impact than N-related factors on mass loss. According to multiple stepwise models, the C/P ratio was found to be the dominant factor affecting the mass loss in water, and the C/N and C/P ratios were the main factors affecting the mass loss in soil. The combined effects of harvesting, ditch broadening, and control of water depth should be considered for lake administrators.

  20. Estimation of suspended sediment concentration from turbidity measurements using artificial neural networks.

    PubMed

    Bayram, Adem; Kankal, Murat; Onsoy, Hizir

    2012-07-01

    Suspended sediment concentration (SSC) is generally determined from the direct measurement of sediment concentration of river or from sediment transport equations. Direct measurement is very costly and cannot be conducted for all river gauge stations. Therefore, correct estimation of suspended sediment amount carried by a river is very important in terms of water pollution, channel navigability, reservoir filling, fish habitat, river aesthetics and scientific interests. This study investigates the feasibility of using turbidity as a surrogate for SSC as in situ turbidity meters are being increasingly used to generate continuous records of SSC in rivers. For this reason, regression analysis (RA) and artificial neural networks (ANNs) were employed to estimate SSC based on in situ turbidity measurements. The SSC was firstly experimentally determined for the surface water samples collected from the six monitoring stations along the main branch of the stream Harsit, Eastern Black Sea Basin, Turkey. There were 144 data for each variable obtained on a fortnightly basis during March 2009 and February 2010. In the ANN method, the used data for training, testing and validation sets are 108, 24 and 12 of total 144 data, respectively. As the results of analyses, the smallest mean absolute error (MAE) and root mean square error (RMSE) values for validation set were obtained from the ANN method with 11.40 and 17.87, respectively. However these were 19.12 and 25.09 for RA. It was concluded that turbidity could be a surrogate for SSC in the streams, and the ANNs method used for the estimation of SSC provided acceptable results.

Top