Sample records for regression analysis compared

  1. From Equal to Equivalent Pay: Salary Discrimination in Academia

    ERIC Educational Resources Information Center

    Greenfield, Ester

    1977-01-01

    Examines the federal statutes barring sex discrimination in employment and argues that the work of any two professors is comparable but not equal. Suggests using regression analysis to prove salary discrimination and discusses the legal justification for adopting regression analysis and the standard of comparable pay for comparable work.…

  2. Regression Analysis: Legal Applications in Institutional Research

    ERIC Educational Resources Information Center

    Frizell, Julie A.; Shippen, Benjamin S., Jr.; Luna, Andrew L.

    2008-01-01

    This article reviews multiple regression analysis, describes how its results should be interpreted, and instructs institutional researchers on how to conduct such analyses using an example focused on faculty pay equity between men and women. The use of multiple regression analysis will be presented as a method with which to compare salaries of…

  3. Creep-Rupture Data Analysis - Engineering Application of Regression Techniques. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Rummler, D. R.

    1976-01-01

    The results are presented of investigations to apply regression techniques to the development of methodology for creep-rupture data analysis. Regression analysis techniques are applied to the explicit description of the creep behavior of materials for space shuttle thermal protection systems. A regression analysis technique is compared with five parametric methods for analyzing three simulated and twenty real data sets, and a computer program for the evaluation of creep-rupture data is presented.

  4. Multiplication factor versus regression analysis in stature estimation from hand and foot dimensions.

    PubMed

    Krishan, Kewal; Kanchan, Tanuj; Sharma, Abhilasha

    2012-05-01

    Estimation of stature is an important parameter in identification of human remains in forensic examinations. The present study is aimed to compare the reliability and accuracy of stature estimation and to demonstrate the variability in estimated stature and actual stature using multiplication factor and regression analysis methods. The study is based on a sample of 246 subjects (123 males and 123 females) from North India aged between 17 and 20 years. Four anthropometric measurements; hand length, hand breadth, foot length and foot breadth taken on the left side in each subject were included in the study. Stature was measured using standard anthropometric techniques. Multiplication factors were calculated and linear regression models were derived for estimation of stature from hand and foot dimensions. Derived multiplication factors and regression formula were applied to the hand and foot measurements in the study sample. The estimated stature from the multiplication factors and regression analysis was compared with the actual stature to find the error in estimated stature. The results indicate that the range of error in estimation of stature from regression analysis method is less than that of multiplication factor method thus, confirming that the regression analysis method is better than multiplication factor analysis in stature estimation. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  5. Use of Multiple Regression and Use-Availability Analyses in Determining Habitat Selection by Gray Squirrels (Sciurus Carolinensis)

    Treesearch

    John W. Edwards; Susan C. Loeb; David C. Guynn

    1994-01-01

    Multiple regression and use-availability analyses are two methods for examining habitat selection. Use-availability analysis is commonly used to evaluate macrohabitat selection whereas multiple regression analysis can be used to determine microhabitat selection. We compared these techniques using behavioral observations (n = 5534) and telemetry locations (n = 2089) of...

  6. Two-Year versus One-Year Head Start Program Impact: Addressing Selection Bias by Comparing Regression Modeling with Propensity Score Analysis

    ERIC Educational Resources Information Center

    Leow, Christine; Wen, Xiaoli; Korfmacher, Jon

    2015-01-01

    This article compares regression modeling and propensity score analysis as different types of statistical techniques used in addressing selection bias when estimating the impact of two-year versus one-year Head Start on children's school readiness. The analyses were based on the national Head Start secondary dataset. After controlling for…

  7. Comparison of cranial sex determination by discriminant analysis and logistic regression.

    PubMed

    Amores-Ampuero, Anabel; Alemán, Inmaculada

    2016-04-05

    Various methods have been proposed for estimating dimorphism. The objective of this study was to compare sex determination results from cranial measurements using discriminant analysis or logistic regression. The study sample comprised 130 individuals (70 males) of known sex, age, and cause of death from San José cemetery in Granada (Spain). Measurements of 19 neurocranial dimensions and 11 splanchnocranial dimensions were subjected to discriminant analysis and logistic regression, and the percentages of correct classification were compared between the sex functions obtained with each method. The discriminant capacity of the selected variables was evaluated with a cross-validation procedure. The percentage accuracy with discriminant analysis was 78.2% for the neurocranium (82.4% in females and 74.6% in males) and 73.7% for the splanchnocranium (79.6% in females and 68.8% in males). These percentages were higher with logistic regression analysis: 85.7% for the neurocranium (in both sexes) and 94.1% for the splanchnocranium (100% in females and 91.7% in males).

  8. Testing Different Model Building Procedures Using Multiple Regression.

    ERIC Educational Resources Information Center

    Thayer, Jerome D.

    The stepwise regression method of selecting predictors for computer assisted multiple regression analysis was compared with forward, backward, and best subsets regression, using 16 data sets. The results indicated the stepwise method was preferred because of its practical nature, when the models chosen by different selection methods were similar…

  9. Selecting risk factors: a comparison of discriminant analysis, logistic regression and Cox's regression model using data from the Tromsø Heart Study.

    PubMed

    Brenn, T; Arnesen, E

    1985-01-01

    For comparative evaluation, discriminant analysis, logistic regression and Cox's model were used to select risk factors for total and coronary deaths among 6595 men aged 20-49 followed for 9 years. Groups with mortality between 5 and 93 per 1000 were considered. Discriminant analysis selected variable sets only marginally different from the logistic and Cox methods which always selected the same sets. A time-saving option, offered for both the logistic and Cox selection, showed no advantage compared with discriminant analysis. Analysing more than 3800 subjects, the logistic and Cox methods consumed, respectively, 80 and 10 times more computer time than discriminant analysis. When including the same set of variables in non-stepwise analyses, all methods estimated coefficients that in most cases were almost identical. In conclusion, discriminant analysis is advocated for preliminary or stepwise analysis, otherwise Cox's method should be used.

  10. Quality of life in breast cancer patients--a quantile regression analysis.

    PubMed

    Pourhoseingholi, Mohamad Amin; Safaee, Azadeh; Moghimi-Dehkordi, Bijan; Zeighami, Bahram; Faghihzadeh, Soghrat; Tabatabaee, Hamid Reza; Pourhoseingholi, Asma

    2008-01-01

    Quality of life study has an important role in health care especially in chronic diseases, in clinical judgment and in medical resources supplying. Statistical tools like linear regression are widely used to assess the predictors of quality of life. But when the response is not normal the results are misleading. The aim of this study is to determine the predictors of quality of life in breast cancer patients, using quantile regression model and compare to linear regression. A cross-sectional study conducted on 119 breast cancer patients that admitted and treated in chemotherapy ward of Namazi hospital in Shiraz. We used QLQ-C30 questionnaire to assessment quality of life in these patients. A quantile regression was employed to assess the assocciated factors and the results were compared to linear regression. All analysis carried out using SAS. The mean score for the global health status for breast cancer patients was 64.92+/-11.42. Linear regression showed that only grade of tumor, occupational status, menopausal status, financial difficulties and dyspnea were statistically significant. In spite of linear regression, financial difficulties were not significant in quantile regression analysis and dyspnea was only significant for first quartile. Also emotion functioning and duration of disease statistically predicted the QOL score in the third quartile. The results have demonstrated that using quantile regression leads to better interpretation and richer inference about predictors of the breast cancer patient quality of life.

  11. Estimation of diffusion coefficients from voltammetric signals by support vector and gaussian process regression

    PubMed Central

    2014-01-01

    Background Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of electroanalytical experimental data to estimate diffusion coefficients. Results For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of typical voltammetric peak features decreased the performance of both regression algorithms compared to a reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for three organometallic complexes. Conclusions Estimated diffusion coefficients closely matched the values determined by the parameter fitting method, but reduced the required computational time considerably for one of the reaction mechanisms. The automated processing of voltammograms according to the regression algorithms yields better results than the conventional analysis of peak-related data. PMID:24987463

  12. Evaluation of logistic regression models and effect of covariates for case-control study in RNA-Seq analysis.

    PubMed

    Choi, Seung Hoan; Labadorf, Adam T; Myers, Richard H; Lunetta, Kathryn L; Dupuis, Josée; DeStefano, Anita L

    2017-02-06

    Next generation sequencing provides a count of RNA molecules in the form of short reads, yielding discrete, often highly non-normally distributed gene expression measurements. Although Negative Binomial (NB) regression has been generally accepted in the analysis of RNA sequencing (RNA-Seq) data, its appropriateness has not been exhaustively evaluated. We explore logistic regression as an alternative method for RNA-Seq studies designed to compare cases and controls, where disease status is modeled as a function of RNA-Seq reads using simulated and Huntington disease data. We evaluate the effect of adjusting for covariates that have an unknown relationship with gene expression. Finally, we incorporate the data adaptive method in order to compare false positive rates. When the sample size is small or the expression levels of a gene are highly dispersed, the NB regression shows inflated Type-I error rates but the Classical logistic and Bayes logistic (BL) regressions are conservative. Firth's logistic (FL) regression performs well or is slightly conservative. Large sample size and low dispersion generally make Type-I error rates of all methods close to nominal alpha levels of 0.05 and 0.01. However, Type-I error rates are controlled after applying the data adaptive method. The NB, BL, and FL regressions gain increased power with large sample size, large log2 fold-change, and low dispersion. The FL regression has comparable power to NB regression. We conclude that implementing the data adaptive method appropriately controls Type-I error rates in RNA-Seq analysis. Firth's logistic regression provides a concise statistical inference process and reduces spurious associations from inaccurately estimated dispersion parameters in the negative binomial framework.

  13. [Comparison of application of Cochran-Armitage trend test and linear regression analysis for rate trend analysis in epidemiology study].

    PubMed

    Wang, D Z; Wang, C; Shen, C F; Zhang, Y; Zhang, H; Song, G D; Xue, X D; Xu, Z L; Zhang, S; Jiang, G H

    2017-05-10

    We described the time trend of acute myocardial infarction (AMI) from 1999 to 2013 in Tianjin incidence rate with Cochran-Armitage trend (CAT) test and linear regression analysis, and the results were compared. Based on actual population, CAT test had much stronger statistical power than linear regression analysis for both overall incidence trend and age specific incidence trend (Cochran-Armitage trend P value

  14. Linear regression analysis for comparing two measurers or methods of measurement: but which regression?

    PubMed

    Ludbrook, John

    2010-07-01

    1. There are two reasons for wanting to compare measurers or methods of measurement. One is to calibrate one method or measurer against another; the other is to detect bias. Fixed bias is present when one method gives higher (or lower) values across the whole range of measurement. Proportional bias is present when one method gives values that diverge progressively from those of the other. 2. Linear regression analysis is a popular method for comparing methods of measurement, but the familiar ordinary least squares (OLS) method is rarely acceptable. The OLS method requires that the x values are fixed by the design of the study, whereas it is usual that both y and x values are free to vary and are subject to error. In this case, special regression techniques must be used. 3. Clinical chemists favour techniques such as major axis regression ('Deming's method'), the Passing-Bablok method or the bivariate least median squares method. Other disciplines, such as allometry, astronomy, biology, econometrics, fisheries research, genetics, geology, physics and sports science, have their own preferences. 4. Many Monte Carlo simulations have been performed to try to decide which technique is best, but the results are almost uninterpretable. 5. I suggest that pharmacologists and physiologists should use ordinary least products regression analysis (geometric mean regression, reduced major axis regression): it is versatile, can be used for calibration or to detect bias and can be executed by hand-held calculator or by using the loss function in popular, general-purpose, statistical software.

  15. The role of empathy and emotional intelligence in nurses' communication attitudes using regression models and fuzzy-set qualitative comparative analysis models.

    PubMed

    Giménez-Espert, María Del Carmen; Prado-Gascó, Vicente Javier

    2018-03-01

    To analyse link between empathy and emotional intelligence as a predictor of nurses' attitudes towards communication while comparing the contribution of emotional aspects and attitudinal elements on potential behaviour. Nurses' attitudes towards communication, empathy and emotional intelligence are key skills for nurses involved in patient care. There are currently no studies analysing this link, and its investigation is needed because attitudes may influence communication behaviours. Correlational study. To attain this goal, self-reported instruments (attitudes towards communication of nurses, trait emotional intelligence (Trait Emotional Meta-Mood Scale) and Jefferson Scale of Nursing Empathy (Jefferson Scale Nursing Empathy) were collected from 460 nurses between September 2015-February 2016. Two different analytical methodologies were used: traditional regression models and fuzzy-set qualitative comparative analysis models. The results of the regression model suggest that cognitive dimensions of attitude are a significant and positive predictor of the behavioural dimension. The perspective-taking dimension of empathy and the emotional-clarity dimension of emotional intelligence were significant positive predictors of the dimensions of attitudes towards communication, except for the affective dimension (for which the association was negative). The results of the fuzzy-set qualitative comparative analysis models confirm that the combination of high levels of cognitive dimension of attitudes, perspective-taking and emotional clarity explained high levels of the behavioural dimension of attitude. Empathy and emotional intelligence are predictors of nurses' attitudes towards communication, and the cognitive dimension of attitude is a good predictor of the behavioural dimension of attitudes towards communication of nurses in both regression models and fuzzy-set qualitative comparative analysis. In general, the fuzzy-set qualitative comparative analysis models appear to be better predictors than the regression models are. To evaluate current practices, establish intervention strategies and evaluate their effectiveness. The evaluation of these variables and their relationships are important in creating a satisfied and sustainable workforce and improving quality of care and patient health. © 2018 John Wiley & Sons Ltd.

  16. The Effect of Sitagliptin on the Regression of Carotid Intima-Media Thickening in Patients with Type 2 Diabetes Mellitus: A Post Hoc Analysis of the Sitagliptin Preventive Study of Intima-Media Thickness Evaluation.

    PubMed

    Mita, Tomoya; Katakami, Naoto; Shiraiwa, Toshihiko; Yoshii, Hidenori; Gosho, Masahiko; Shimomura, Iichiro; Watada, Hirotaka

    2017-01-01

    Background. The effect of dipeptidyl peptidase-4 (DPP-4) inhibitors on the regression of carotid IMT remains largely unknown. The present study aimed to clarify whether sitagliptin, DPP-4 inhibitor, could regress carotid intima-media thickness (IMT) in insulin-treated patients with type 2 diabetes mellitus (T2DM). Methods . This is an exploratory analysis of a randomized trial in which we investigated the effect of sitagliptin on the progression of carotid IMT in insulin-treated patients with T2DM. Here, we compared the efficacy of sitagliptin treatment on the number of patients who showed regression of carotid IMT of ≥0.10 mm in a post hoc analysis. Results . The percentages of the number of the patients who showed regression of mean-IMT-CCA (28.9% in the sitagliptin group versus 16.4% in the conventional group, P  = 0.022) and left max-IMT-CCA (43.0% in the sitagliptin group versus 26.2% in the conventional group, P  = 0.007), but not right max-IMT-CCA, were higher in the sitagliptin treatment group compared with those in the non-DPP-4 inhibitor treatment group. In multiple logistic regression analysis, sitagliptin treatment significantly achieved higher target attainment of mean-IMT-CCA ≥0.10 mm and right and left max-IMT-CCA ≥0.10 mm compared to conventional treatment. Conclusions . Our data suggested that DPP-4 inhibitors were associated with the regression of carotid atherosclerosis in insulin-treated T2DM patients. This study has been registered with the University Hospital Medical Information Network Clinical Trials Registry (UMIN000007396).

  17. Comparative Analysis of Enrollment and Financial Strength of Private Institutions. AIR 1989 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Glover, Robert H.; Mills, Michael R.

    A research design, decision support system, and results of a comparative analysis of enrollment and financial strength (of private institutions granting masters and doctoral degrees) are presented. Cluster analysis, discriminant analysis, multiple regression, and an interactive decision support system are used to compare the enrollment and…

  18. Prediction of unwanted pregnancies using logistic regression, probit regression and discriminant analysis

    PubMed Central

    Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon

    2015-01-01

    Background: Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. Methods: In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. Results: The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Conclusion: Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended. PMID:26793655

  19. Prediction of unwanted pregnancies using logistic regression, probit regression and discriminant analysis.

    PubMed

    Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon

    2015-01-01

    Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended.

  20. Estimation and Testing of Partial Covariances, Correlations, and Regression Weights Using Maximum Likelihood Factor Analysis.

    ERIC Educational Resources Information Center

    And Others; Werts, Charles E.

    1979-01-01

    It is shown how partial covariance, part and partial correlation, and regression weights can be estimated and tested for significance by means of a factor analytic model. Comparable partial covariance, correlations, and regression weights have identical significance tests. (Author)

  1. Comparing Methodologies for Developing an Early Warning System: Classification and Regression Tree Model versus Logistic Regression. REL 2015-077

    ERIC Educational Resources Information Center

    Koon, Sharon; Petscher, Yaacov

    2015-01-01

    The purpose of this report was to explicate the use of logistic regression and classification and regression tree (CART) analysis in the development of early warning systems. It was motivated by state education leaders' interest in maintaining high classification accuracy while simultaneously improving practitioner understanding of the rules by…

  2. A Comparison of Mean Phase Difference and Generalized Least Squares for Analyzing Single-Case Data

    ERIC Educational Resources Information Center

    Manolov, Rumen; Solanas, Antonio

    2013-01-01

    The present study focuses on single-case data analysis specifically on two procedures for quantifying differences between baseline and treatment measurements. The first technique tested is based on generalized least square regression analysis and is compared to a proposed non-regression technique, which allows obtaining similar information. The…

  3. Predicting Air Permeability of Handloom Fabrics: A Comparative Analysis of Regression and Artificial Neural Network Models

    NASA Astrophysics Data System (ADS)

    Mitra, Ashis; Majumdar, Prabal Kumar; Bannerjee, Debamalya

    2013-03-01

    This paper presents a comparative analysis of two modeling methodologies for the prediction of air permeability of plain woven handloom cotton fabrics. Four basic fabric constructional parameters namely ends per inch, picks per inch, warp count and weft count have been used as inputs for artificial neural network (ANN) and regression models. Out of the four regression models tried, interaction model showed very good prediction performance with a meager mean absolute error of 2.017 %. However, ANN models demonstrated superiority over the regression models both in terms of correlation coefficient and mean absolute error. The ANN model with 10 nodes in the single hidden layer showed very good correlation coefficient of 0.982 and 0.929 and mean absolute error of only 0.923 and 2.043 % for training and testing data respectively.

  4. [Regression on order statistics and its application in estimating nondetects for food exposure assessment].

    PubMed

    Yu, Xiaojin; Liu, Pei; Min, Jie; Chen, Qiguang

    2009-01-01

    To explore the application of regression on order statistics (ROS) in estimating nondetects for food exposure assessment. Regression on order statistics was adopted in analysis of cadmium residual data set from global food contaminant monitoring, the mean residual was estimated basing SAS programming and compared with the results from substitution methods. The results show that ROS method performs better obviously than substitution methods for being robust and convenient for posterior analysis. Regression on order statistics is worth to adopt,but more efforts should be make for details of application of this method.

  5. Incremental Net Effects in Multiple Regression

    ERIC Educational Resources Information Center

    Lipovetsky, Stan; Conklin, Michael

    2005-01-01

    A regular problem in regression analysis is estimating the comparative importance of the predictors in the model. This work considers the 'net effects', or shares of the predictors in the coefficient of the multiple determination, which is a widely used characteristic of the quality of a regression model. Estimation of the net effects can be a…

  6. Robust analysis of trends in noisy tokamak confinement data using geodesic least squares regression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdoolaege, G., E-mail: geert.verdoolaege@ugent.be; Laboratory for Plasma Physics, Royal Military Academy, B-1000 Brussels; Shabbir, A.

    Regression analysis is a very common activity in fusion science for unveiling trends and parametric dependencies, but it can be a difficult matter. We have recently developed the method of geodesic least squares (GLS) regression that is able to handle errors in all variables, is robust against data outliers and uncertainty in the regression model, and can be used with arbitrary distribution models and regression functions. We here report on first results of application of GLS to estimation of the multi-machine scaling law for the energy confinement time in tokamaks, demonstrating improved consistency of the GLS results compared to standardmore » least squares.« less

  7. Comparing Linear Discriminant Function with Logistic Regression for the Two-Group Classification Problem.

    ERIC Educational Resources Information Center

    Fan, Xitao; Wang, Lin

    The Monte Carlo study compared the performance of predictive discriminant analysis (PDA) and that of logistic regression (LR) for the two-group classification problem. Prior probabilities were used for classification, but the cost of misclassification was assumed to be equal. The study used a fully crossed three-factor experimental design (with…

  8. Assessing the Lexico-Grammatical Characteristics of a Corpus of College-Level Statistics Textbooks: Implications for Instruction and Practice

    ERIC Educational Resources Information Center

    Wagler, Amy E.; Lesser, Lawrence M.; González, Ariel I.; Leal, Luis

    2015-01-01

    A corpus of current editions of statistics textbooks was assessed to compare aspects and levels of readability for the topics of "measures of center," "line of fit," "regression analysis," and "regression inference." Analysis with lexical software of these text selections revealed that the large corpus can…

  9. Interrupted Time Series Versus Statistical Process Control in Quality Improvement Projects.

    PubMed

    Andersson Hagiwara, Magnus; Andersson Gäre, Boel; Elg, Mattias

    2016-01-01

    To measure the effect of quality improvement interventions, it is appropriate to use analysis methods that measure data over time. Examples of such methods include statistical process control analysis and interrupted time series with segmented regression analysis. This article compares the use of statistical process control analysis and interrupted time series with segmented regression analysis for evaluating the longitudinal effects of quality improvement interventions, using an example study on an evaluation of a computerized decision support system.

  10. A matching framework to improve causal inference in interrupted time-series analysis.

    PubMed

    Linden, Ariel

    2018-04-01

    Interrupted time-series analysis (ITSA) is a popular evaluation methodology in which a single treatment unit's outcome is studied over time and the intervention is expected to "interrupt" the level and/or trend of the outcome, subsequent to its introduction. When ITSA is implemented without a comparison group, the internal validity may be quite poor. Therefore, adding a comparable control group to serve as the counterfactual is always preferred. This paper introduces a novel matching framework, ITSAMATCH, to create a comparable control group by matching directly on covariates and then use these matches in the outcomes model. We evaluate the effect of California's Proposition 99 (passed in 1988) for reducing cigarette sales, by comparing California to other states not exposed to smoking reduction initiatives. We compare ITSAMATCH results to 2 commonly used matching approaches, synthetic controls (SYNTH), and regression adjustment; SYNTH reweights nontreated units to make them comparable to the treated unit, and regression adjusts covariates directly. Methods are compared by assessing covariate balance and treatment effects. Both ITSAMATCH and SYNTH achieved covariate balance and estimated similar treatment effects. The regression model found no treatment effect and produced inconsistent covariate adjustment. While the matching framework achieved results comparable to SYNTH, it has the advantage of being technically less complicated, while producing statistical estimates that are straightforward to interpret. Conversely, regression adjustment may "adjust away" a treatment effect. Given its advantages, ITSAMATCH should be considered as a primary approach for evaluating treatment effects in multiple-group time-series analysis. © 2017 John Wiley & Sons, Ltd.

  11. Clinical evaluation of a novel population-based regression analysis for detecting glaucomatous visual field progression.

    PubMed

    Kovalska, M P; Bürki, E; Schoetzau, A; Orguel, S F; Orguel, S; Grieshaber, M C

    2011-04-01

    The distinction of real progression from test variability in visual field (VF) series may be based on clinical judgment, on trend analysis based on follow-up of test parameters over time, or on identification of a significant change related to the mean of baseline exams (event analysis). The aim of this study was to compare a new population-based method (Octopus field analysis, OFA) with classic regression analyses and clinical judgment for detecting glaucomatous VF changes. 240 VF series of 240 patients with at least 9 consecutive examinations available were included into this study. They were independently classified by two experienced investigators. The results of such a classification served as a reference for comparison for the following statistical tests: (a) t-test global, (b) r-test global, (c) regression analysis of 10 VF clusters and (d) point-wise linear regression analysis. 32.5 % of the VF series were classified as progressive by the investigators. The sensitivity and specificity were 89.7 % and 92.0 % for r-test, and 73.1 % and 93.8 % for the t-test, respectively. In the point-wise linear regression analysis, the specificity was comparable (89.5 % versus 92 %), but the sensitivity was clearly lower than in the r-test (22.4 % versus 89.7 %) at a significance level of p = 0.01. A regression analysis for the 10 VF clusters showed a markedly higher sensitivity for the r-test (37.7 %) than the t-test (14.1 %) at a similar specificity (88.3 % versus 93.8 %) for a significant trend (p = 0.005). In regard to the cluster distribution, the paracentral clusters and the superior nasal hemifield progressed most frequently. The population-based regression analysis seems to be superior to the trend analysis in detecting VF progression in glaucoma, and may eliminate the drawbacks of the event analysis. Further, it may assist the clinician in the evaluation of VF series and may allow better visualization of the correlation between function and structure owing to VF clusters. © Georg Thieme Verlag KG Stuttgart · New York.

  12. A retrospective analysis to identify the factors affecting infection in patients undergoing chemotherapy.

    PubMed

    Park, Ji Hyun; Kim, Hyeon-Young; Lee, Hanna; Yun, Eun Kyoung

    2015-12-01

    This study compares the performance of the logistic regression and decision tree analysis methods for assessing the risk factors for infection in cancer patients undergoing chemotherapy. The subjects were 732 cancer patients who were receiving chemotherapy at K university hospital in Seoul, Korea. The data were collected between March 2011 and February 2013 and were processed for descriptive analysis, logistic regression and decision tree analysis using the IBM SPSS Statistics 19 and Modeler 15.1 programs. The most common risk factors for infection in cancer patients receiving chemotherapy were identified as alkylating agents, vinca alkaloid and underlying diabetes mellitus. The logistic regression explained 66.7% of the variation in the data in terms of sensitivity and 88.9% in terms of specificity. The decision tree analysis accounted for 55.0% of the variation in the data in terms of sensitivity and 89.0% in terms of specificity. As for the overall classification accuracy, the logistic regression explained 88.0% and the decision tree analysis explained 87.2%. The logistic regression analysis showed a higher degree of sensitivity and classification accuracy. Therefore, logistic regression analysis is concluded to be the more effective and useful method for establishing an infection prediction model for patients undergoing chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Template based rotation: A method for functional connectivity analysis with a priori templates☆

    PubMed Central

    Schultz, Aaron P.; Chhatwal, Jasmeer P.; Huijbers, Willem; Hedden, Trey; van Dijk, Koene R.A.; McLaren, Donald G.; Ward, Andrew M.; Wigman, Sarah; Sperling, Reisa A.

    2014-01-01

    Functional connectivity magnetic resonance imaging (fcMRI) is a powerful tool for understanding the network level organization of the brain in research settings and is increasingly being used to study large-scale neuronal network degeneration in clinical trial settings. Presently, a variety of techniques, including seed-based correlation analysis and group independent components analysis (with either dual regression or back projection) are commonly employed to compute functional connectivity metrics. In the present report, we introduce template based rotation,1 a novel analytic approach optimized for use with a priori network parcellations, which may be particularly useful in clinical trial settings. Template based rotation was designed to leverage the stable spatial patterns of intrinsic connectivity derived from out-of-sample datasets by mapping data from novel sessions onto the previously defined a priori templates. We first demonstrate the feasibility of using previously defined a priori templates in connectivity analyses, and then compare the performance of template based rotation to seed based and dual regression methods by applying these analytic approaches to an fMRI dataset of normal young and elderly subjects. We observed that template based rotation and dual regression are approximately equivalent in detecting fcMRI differences between young and old subjects, demonstrating similar effect sizes for group differences and similar reliability metrics across 12 cortical networks. Both template based rotation and dual-regression demonstrated larger effect sizes and comparable reliabilities as compared to seed based correlation analysis, though all three methods yielded similar patterns of network differences. When performing inter-network and sub-network connectivity analyses, we observed that template based rotation offered greater flexibility, larger group differences, and more stable connectivity estimates as compared to dual regression and seed based analyses. This flexibility owes to the reduced spatial and temporal orthogonality constraints of template based rotation as compared to dual regression. These results suggest that template based rotation can provide a useful alternative to existing fcMRI analytic methods, particularly in clinical trial settings where predefined outcome measures and conserved network descriptions across groups are at a premium. PMID:25150630

  14. Analyzing Multilevel Data: Comparing Findings from Hierarchical Linear Modeling and Ordinary Least Squares Regression

    ERIC Educational Resources Information Center

    Rocconi, Louis M.

    2013-01-01

    This study examined the differing conclusions one may come to depending upon the type of analysis chosen, hierarchical linear modeling or ordinary least squares (OLS) regression. To illustrate this point, this study examined the influences of seniors' self-reported critical thinking abilities three ways: (1) an OLS regression with the student…

  15. Comparative study of contrast-enhanced ultrasound qualitative and quantitative analysis for identifying benign and malignant breast tumor lumps.

    PubMed

    Liu, Jian; Gao, Yun-Hua; Li, Ding-Dong; Gao, Yan-Chun; Hou, Ling-Mi; Xie, Ting

    2014-01-01

    To compare the value of contrast-enhanced ultrasound (CEUS) qualitative and quantitative analysis in the identification of breast tumor lumps. Qualitative and quantitative indicators of CEUS for 73 cases of breast tumor lumps were retrospectively analyzed by univariate and multivariate approaches. Logistic regression was applied and ROC curves were drawn for evaluation and comparison. The CEUS qualitative indicator-generated regression equation contained three indicators, namely enhanced homogeneity, diameter line expansion and peak intensity grading, which demonstrated prediction accuracy for benign and malignant breast tumor lumps of 91.8%; the quantitative indicator-generated regression equation only contained one indicator, namely the relative peak intensity, and its prediction accuracy was 61.5%. The corresponding areas under the ROC curve for qualitative and quantitative analyses were 91.3% and 75.7%, respectively, which exhibited a statistically significant difference by the Z test (P<0.05). The ability of CEUS qualitative analysis to identify breast tumor lumps is better than with quantitative analysis.

  16. Quantile regression for the statistical analysis of immunological data with many non-detects.

    PubMed

    Eilers, Paul H C; Röder, Esther; Savelkoul, Huub F J; van Wijk, Roy Gerth

    2012-07-07

    Immunological parameters are hard to measure. A well-known problem is the occurrence of values below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like ANOVA and regression, cannot be applied. The more advanced statistical techniques currently available for the analysis of datasets with non-detects can only be used if a small percentage of the data are non-detects. Quantile regression, a generalization of percentiles to regression models, models the median or higher percentiles and tolerates very high numbers of non-detects. We present a non-technical introduction and illustrate it with an implementation to real data from a clinical trial. We show that by using quantile regression, groups can be compared and that meaningful linear trends can be computed, even if more than half of the data consists of non-detects. Quantile regression is a valuable addition to the statistical methods that can be used for the analysis of immunological datasets with non-detects.

  17. Functional capacity following univentricular repair--midterm outcome.

    PubMed

    Sen, Supratim; Bandyopadhyay, Biswajit; Eriksson, Peter; Chattopadhyay, Amitabha

    2012-01-01

    Previous studies have seldom compared functional capacity in children following Fontan procedure alongside those with Glenn operation as destination therapy. We hypothesized that Fontan circulation enables better midterm submaximal exercise capacity as compared to Glenn physiology and evaluated this using the 6-minute walk test. Fifty-seven children aged 5-18 years with Glenn (44) or Fontan (13) operations were evaluated with standard 6-minute walk protocols. Baseline SpO(2) was significantly lower in Glenn patients younger than 10 years compared to Fontan counterparts and similar in the two groups in older children. Postexercise SpO(2) fell significantly in Glenn patients compared to the Fontan group. There was no statistically significant difference in baseline, postexercise, or postrecovery heart rates (HRs), or 6-minute walk distances in the two groups. Multiple regression analysis revealed lower resting HR, higher resting SpO(2) , and younger age at latest operation to be significant determinants of longer 6-minute walk distance. Multiple regression analysis also established that younger age at operation, higher resting SpO(2) , Fontan operation, lower resting HR, and lower postexercise HR were significant determinants of higher postexercise SpO(2) . Younger age at operation and exercise, lower resting HR and postexercise HR, higher resting SpO(2) and postexercise SpO(2) , and dominant ventricular morphology being left ventricular or indeterminate/mixed had significant association with better 6-minute work on multiple regression analysis. Lower resting HR had linear association with longer 6-minute walk distances in the Glenn patients. Compared to Glenn physiology, Fontan operation did not have better submaximal exercise capacity assessed by walk distance or work on multiple regression analysis. Lower resting HR, higher resting SpO(2) , and younger age at operation were factors uniformly associated with better submaximal exercise capacity. © 2012 Wiley Periodicals, Inc.

  18. A simple linear regression method for quantitative trait loci linkage analysis with censored observations.

    PubMed

    Anderson, Carl A; McRae, Allan F; Visscher, Peter M

    2006-07-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.

  19. Regression Model Optimization for the Analysis of Experimental Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2009-01-01

    A candidate math model search algorithm was developed at Ames Research Center that determines a recommended math model for the multivariate regression analysis of experimental data. The search algorithm is applicable to classical regression analysis problems as well as wind tunnel strain gage balance calibration analysis applications. The algorithm compares the predictive capability of different regression models using the standard deviation of the PRESS residuals of the responses as a search metric. This search metric is minimized during the search. Singular value decomposition is used during the search to reject math models that lead to a singular solution of the regression analysis problem. Two threshold dependent constraints are also applied. The first constraint rejects math models with insignificant terms. The second constraint rejects math models with near-linear dependencies between terms. The math term hierarchy rule may also be applied as an optional constraint during or after the candidate math model search. The final term selection of the recommended math model depends on the regressor and response values of the data set, the user s function class combination choice, the user s constraint selections, and the result of the search metric minimization. A frequently used regression analysis example from the literature is used to illustrate the application of the search algorithm to experimental data.

  20. Applicability of Monte Carlo cross validation technique for model development and validation using generalised least squares regression

    NASA Astrophysics Data System (ADS)

    Haddad, Khaled; Rahman, Ataur; A Zaman, Mohammad; Shrestha, Surendra

    2013-03-01

    SummaryIn regional hydrologic regression analysis, model selection and validation are regarded as important steps. Here, the model selection is usually based on some measurements of goodness-of-fit between the model prediction and observed data. In Regional Flood Frequency Analysis (RFFA), leave-one-out (LOO) validation or a fixed percentage leave out validation (e.g., 10%) is commonly adopted to assess the predictive ability of regression-based prediction equations. This paper develops a Monte Carlo Cross Validation (MCCV) technique (which has widely been adopted in Chemometrics and Econometrics) in RFFA using Generalised Least Squares Regression (GLSR) and compares it with the most commonly adopted LOO validation approach. The study uses simulated and regional flood data from the state of New South Wales in Australia. It is found that when developing hydrologic regression models, application of the MCCV is likely to result in a more parsimonious model than the LOO. It has also been found that the MCCV can provide a more realistic estimate of a model's predictive ability when compared with the LOO.

  1. Evaluation of methodology for the analysis of 'time-to-event' data in pharmacogenomic genome-wide association studies.

    PubMed

    Syed, Hamzah; Jorgensen, Andrea L; Morris, Andrew P

    2016-06-01

    To evaluate the power to detect associations between SNPs and time-to-event outcomes across a range of pharmacogenomic study designs while comparing alternative regression approaches. Simulations were conducted to compare Cox proportional hazards modeling accounting for censoring and logistic regression modeling of a dichotomized outcome at the end of the study. The Cox proportional hazards model was demonstrated to be more powerful than the logistic regression analysis. The difference in power between the approaches was highly dependent on the rate of censoring. Initial evaluation of single-nucleotide polymorphism association signals using computationally efficient software with dichotomized outcomes provides an effective screening tool for some design scenarios, and thus has important implications for the development of analytical protocols in pharmacogenomic studies.

  2. On the use of regression analysis for the estimation of human biological age.

    PubMed

    Krøll, J; Saxtrup, O

    2000-01-01

    The present investigation compares three linear regression procedures for the definition of human biological age (bioage). As a model system for bioage definition is used the variations with age of blood hemoglobin (B-hemoglobin) in males in the age range 50-95 years. The bioage measures compared are: 1: P-bioage; defined from regression of chronological age on B-hemoglobin results. 2: AC-bioage; obtained by indirect regression, using in reverse the equation describing the regression of B-hemoglobin on age in a reference population. 3: BC-bioage; defined by orthogonal regression on the reference regression line of B-hemoglobin on age. It is demonstrated that the P-bioage measure gives an overestimation of the bioage in the younger and an underestimation in the older individuals. This 'regression to the mean' is avoided using the indirect regression procedures. Here the relatively low SD of the BC-bioage measure results from the inclusion of individual chronological age in the orthogonal regression procedure. Observations on male blood donors illustrates the variation of the AC- and BC-bioage measures in the individual.

  3. A primer for biomedical scientists on how to execute model II linear regression analysis.

    PubMed

    Ludbrook, John

    2012-04-01

    1. There are two very different ways of executing linear regression analysis. One is Model I, when the x-values are fixed by the experimenter. The other is Model II, in which the x-values are free to vary and are subject to error. 2. I have received numerous complaints from biomedical scientists that they have great difficulty in executing Model II linear regression analysis. This may explain the results of a Google Scholar search, which showed that the authors of articles in journals of physiology, pharmacology and biochemistry rarely use Model II regression analysis. 3. I repeat my previous arguments in favour of using least products linear regression analysis for Model II regressions. I review three methods for executing ordinary least products (OLP) and weighted least products (WLP) regression analysis: (i) scientific calculator and/or computer spreadsheet; (ii) specific purpose computer programs; and (iii) general purpose computer programs. 4. Using a scientific calculator and/or computer spreadsheet, it is easy to obtain correct values for OLP slope and intercept, but the corresponding 95% confidence intervals (CI) are inaccurate. 5. Using specific purpose computer programs, the freeware computer program smatr gives the correct OLP regression coefficients and obtains 95% CI by bootstrapping. In addition, smatr can be used to compare the slopes of OLP lines. 6. When using general purpose computer programs, I recommend the commercial programs systat and Statistica for those who regularly undertake linear regression analysis and I give step-by-step instructions in the Supplementary Information as to how to use loss functions. © 2011 The Author. Clinical and Experimental Pharmacology and Physiology. © 2011 Blackwell Publishing Asia Pty Ltd.

  4. Paired Comparison Survey Analyses Utilizing Rasch Methodology of the Relative Difficulty and Estimated Work Relative Value Units of CPT® Code 27279.

    PubMed

    Lorio, Morgan; Martinson, Melissa; Ferrara, Lisa

    2016-01-01

    Minimally invasive sacroiliac joint arthrodesis ("MI SIJ fusion") received a Category I CPT ® code (27279) effective January 1, 2015 and was assigned a work relative value unit ("RVU") of 9.03. The International Society for the Advancement of Spine Surgery ("ISASS") conducted a study consisting of a Rasch analysis of two separate surveys of surgeons to assess the accuracy of the assigned work RVU. A survey was developed and sent to ninety-three ISASS surgeon committee members. Respondents were asked to compare CPT ® 27279 to ten other comparator CPT ® codes reflective of common spine surgeries. The survey presented each comparator CPT ® code with its code descriptor as well as the description of CPT ® 27279 and asked respondents to indicate whether CPT ® 27279 was greater, equal, or less in terms of work effort than the comparator code. A second survey was sent to 557 U.S.-based spine surgeon members of ISASS and 241 spine surgeon members of the Society for Minimally Invasive Spine Surgery ("SMISS"). The design of the second survey mirrored that of the first survey except for the use of a broader set of comparator CPT ® codes (27 vs. 10). Using the work RVUs of the comparator codes, a Rasch analysis was performed to estimate the relative difficulty of CPT ® 27279, after which the work RVU of CPT ® 27279 was estimated by regression analysis. Twenty surgeons responded to the first survey and thirty-four surgeons responded to the second survey. The results of the regression analysis of the first survey indicate a work RVU for CPT ® 27279 of 14.36 and the results of the regression analysis of the second survey indicate a work RVU for CPT ® 27279 of 14.1. The Rasch analysis indicates that the current work RVU assigned to CPT ® 27279 is undervalued at 9.03. Averaging the results of the regression analyses of the two surveys indicates a work RVU for CPT ® 27279 of 14.23.

  5. Support vector methods for survival analysis: a comparison between ranking and regression approaches.

    PubMed

    Van Belle, Vanya; Pelckmans, Kristiaan; Van Huffel, Sabine; Suykens, Johan A K

    2011-10-01

    To compare and evaluate ranking, regression and combined machine learning approaches for the analysis of survival data. The literature describes two approaches based on support vector machines to deal with censored observations. In the first approach the key idea is to rephrase the task as a ranking problem via the concordance index, a problem which can be solved efficiently in a context of structural risk minimization and convex optimization techniques. In a second approach, one uses a regression approach, dealing with censoring by means of inequality constraints. The goal of this paper is then twofold: (i) introducing a new model combining the ranking and regression strategy, which retains the link with existing survival models such as the proportional hazards model via transformation models; and (ii) comparison of the three techniques on 6 clinical and 3 high-dimensional datasets and discussing the relevance of these techniques over classical approaches fur survival data. We compare svm-based survival models based on ranking constraints, based on regression constraints and models based on both ranking and regression constraints. The performance of the models is compared by means of three different measures: (i) the concordance index, measuring the model's discriminating ability; (ii) the logrank test statistic, indicating whether patients with a prognostic index lower than the median prognostic index have a significant different survival than patients with a prognostic index higher than the median; and (iii) the hazard ratio after normalization to restrict the prognostic index between 0 and 1. Our results indicate a significantly better performance for models including regression constraints above models only based on ranking constraints. This work gives empirical evidence that svm-based models using regression constraints perform significantly better than svm-based models based on ranking constraints. Our experiments show a comparable performance for methods including only regression or both regression and ranking constraints on clinical data. On high dimensional data, the former model performs better. However, this approach does not have a theoretical link with standard statistical models for survival data. This link can be made by means of transformation models when ranking constraints are included. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Role of regression analysis and variation of rheological data in calculation of pressure drop for sludge pipelines.

    PubMed

    Farno, E; Coventry, K; Slatter, P; Eshtiaghi, N

    2018-06-15

    Sludge pumps in wastewater treatment plants are often oversized due to uncertainty in calculation of pressure drop. This issue costs millions of dollars for industry to purchase and operate the oversized pumps. Besides costs, higher electricity consumption is associated with extra CO 2 emission which creates huge environmental impacts. Calculation of pressure drop via current pipe flow theory requires model estimation of flow curve data which depends on regression analysis and also varies with natural variation of rheological data. This study investigates impact of variation of rheological data and regression analysis on variation of pressure drop calculated via current pipe flow theories. Results compare the variation of calculated pressure drop between different models and regression methods and suggest on the suitability of each method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. An Analysis of San Diego's Housing Market Using a Geographically Weighted Regression Approach

    NASA Astrophysics Data System (ADS)

    Grant, Christina P.

    San Diego County real estate transaction data was evaluated with a set of linear models calibrated by ordinary least squares and geographically weighted regression (GWR). The goal of the analysis was to determine whether the spatial effects assumed to be in the data are best studied globally with no spatial terms, globally with a fixed effects submarket variable, or locally with GWR. 18,050 single-family residential sales which closed in the six months between April 2014 and September 2014 were used in the analysis. Diagnostic statistics including AICc, R2, Global Moran's I, and visual inspection of diagnostic plots and maps indicate superior model performance by GWR as compared to both global regressions.

  8. Linear regression based on Minimum Covariance Determinant (MCD) and TELBS methods on the productivity of phytoplankton

    NASA Astrophysics Data System (ADS)

    Gusriani, N.; Firdaniza

    2018-03-01

    The existence of outliers on multiple linear regression analysis causes the Gaussian assumption to be unfulfilled. If the Least Square method is forcedly used on these data, it will produce a model that cannot represent most data. For that, we need a robust regression method against outliers. This paper will compare the Minimum Covariance Determinant (MCD) method and the TELBS method on secondary data on the productivity of phytoplankton, which contains outliers. Based on the robust determinant coefficient value, MCD method produces a better model compared to TELBS method.

  9. Logistic LASSO regression for the diagnosis of breast cancer using clinical demographic data and the BI-RADS lexicon for ultrasonography.

    PubMed

    Kim, Sun Mi; Kim, Yongdai; Jeong, Kuhwan; Jeong, Heeyeong; Kim, Jiyoung

    2018-01-01

    The aim of this study was to compare the performance of image analysis for predicting breast cancer using two distinct regression models and to evaluate the usefulness of incorporating clinical and demographic data (CDD) into the image analysis in order to improve the diagnosis of breast cancer. This study included 139 solid masses from 139 patients who underwent a ultrasonography-guided core biopsy and had available CDD between June 2009 and April 2010. Three breast radiologists retrospectively reviewed 139 breast masses and described each lesion using the Breast Imaging Reporting and Data System (BI-RADS) lexicon. We applied and compared two regression methods-stepwise logistic (SL) regression and logistic least absolute shrinkage and selection operator (LASSO) regression-in which the BI-RADS descriptors and CDD were used as covariates. We investigated the performances of these regression methods and the agreement of radiologists in terms of test misclassification error and the area under the curve (AUC) of the tests. Logistic LASSO regression was superior (P<0.05) to SL regression, regardless of whether CDD was included in the covariates, in terms of test misclassification errors (0.234 vs. 0.253, without CDD; 0.196 vs. 0.258, with CDD) and AUC (0.785 vs. 0.759, without CDD; 0.873 vs. 0.735, with CDD). However, it was inferior (P<0.05) to the agreement of three radiologists in terms of test misclassification errors (0.234 vs. 0.168, without CDD; 0.196 vs. 0.088, with CDD) and the AUC without CDD (0.785 vs. 0.844, P<0.001), but was comparable to the AUC with CDD (0.873 vs. 0.880, P=0.141). Logistic LASSO regression based on BI-RADS descriptors and CDD showed better performance than SL in predicting the presence of breast cancer. The use of CDD as a supplement to the BI-RADS descriptors significantly improved the prediction of breast cancer using logistic LASSO regression.

  10. London Measure of Unplanned Pregnancy: guidance for its use as an outcome measure

    PubMed Central

    Hall, Jennifer A; Barrett, Geraldine; Copas, Andrew; Stephenson, Judith

    2017-01-01

    Background The London Measure of Unplanned Pregnancy (LMUP) is a psychometrically validated measure of the degree of intention of a current or recent pregnancy. The LMUP is increasingly being used worldwide, and can be used to evaluate family planning or preconception care programs. However, beyond recommending the use of the full LMUP scale, there is no published guidance on how to use the LMUP as an outcome measure. Ordinal logistic regression has been recommended informally, but studies published to date have all used binary logistic regression and dichotomized the scale at different cut points. There is thus a need for evidence-based guidance to provide a standardized methodology for multivariate analysis and to enable comparison of results. This paper makes recommendations for the regression method for analysis of the LMUP as an outcome measure. Materials and methods Data collected from 4,244 pregnant women in Malawi were used to compare five regression methods: linear, logistic with two cut points, and ordinal logistic with either the full or grouped LMUP score. The recommendations were then tested on the original UK LMUP data. Results There were small but no important differences in the findings across the regression models. Logistic regression resulted in the largest loss of information, and assumptions were violated for the linear and ordinal logistic regression. Consequently, robust standard errors were used for linear regression and a partial proportional odds ordinal logistic regression model attempted. The latter could only be fitted for grouped LMUP score. Conclusion We recommend the linear regression model with robust standard errors to make full use of the LMUP score when analyzed as an outcome measure. Ordinal logistic regression could be considered, but a partial proportional odds model with grouped LMUP score may be required. Logistic regression is the least-favored option, due to the loss of information. For logistic regression, the cut point for un/planned pregnancy should be between nine and ten. These recommendations will standardize the analysis of LMUP data and enhance comparability of results across studies. PMID:28435343

  11. Prescription-drug-related risk in driving: comparing conventional and lasso shrinkage logistic regressions.

    PubMed

    Avalos, Marta; Adroher, Nuria Duran; Lagarde, Emmanuel; Thiessard, Frantz; Grandvalet, Yves; Contrand, Benjamin; Orriols, Ludivine

    2012-09-01

    Large data sets with many variables provide particular challenges when constructing analytic models. Lasso-related methods provide a useful tool, although one that remains unfamiliar to most epidemiologists. We illustrate the application of lasso methods in an analysis of the impact of prescribed drugs on the risk of a road traffic crash, using a large French nationwide database (PLoS Med 2010;7:e1000366). In the original case-control study, the authors analyzed each exposure separately. We use the lasso method, which can simultaneously perform estimation and variable selection in a single model. We compare point estimates and confidence intervals using (1) a separate logistic regression model for each drug with a Bonferroni correction and (2) lasso shrinkage logistic regression analysis. Shrinkage regression had little effect on (bias corrected) point estimates, but led to less conservative results, noticeably for drugs with moderate levels of exposure. Carbamates, carboxamide derivative and fatty acid derivative antiepileptics, drugs used in opioid dependence, and mineral supplements of potassium showed stronger associations. Lasso is a relevant method in the analysis of databases with large number of exposures and can be recommended as an alternative to conventional strategies.

  12. Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.

    PubMed

    Xie, Yanmei; Zhang, Biao

    2017-04-20

    Missing covariate data occurs often in regression analysis, which frequently arises in the health and social sciences as well as in survey sampling. We study methods for the analysis of a nonignorable covariate-missing data problem in an assumed conditional mean function when some covariates are completely observed but other covariates are missing for some subjects. We adopt the semiparametric perspective of Bartlett et al. (Improving upon the efficiency of complete case analysis when covariates are MNAR. Biostatistics 2014;15:719-30) on regression analyses with nonignorable missing covariates, in which they have introduced the use of two working models, the working probability model of missingness and the working conditional score model. In this paper, we study an empirical likelihood approach to nonignorable covariate-missing data problems with the objective of effectively utilizing the two working models in the analysis of covariate-missing data. We propose a unified approach to constructing a system of unbiased estimating equations, where there are more equations than unknown parameters of interest. One useful feature of these unbiased estimating equations is that they naturally incorporate the incomplete data into the data analysis, making it possible to seek efficient estimation of the parameter of interest even when the working regression function is not specified to be the optimal regression function. We apply the general methodology of empirical likelihood to optimally combine these unbiased estimating equations. We propose three maximum empirical likelihood estimators of the underlying regression parameters and compare their efficiencies with other existing competitors. We present a simulation study to compare the finite-sample performance of various methods with respect to bias, efficiency, and robustness to model misspecification. The proposed empirical likelihood method is also illustrated by an analysis of a data set from the US National Health and Nutrition Examination Survey (NHANES).

  13. A Method of Calculating Functional Independence Measure at Discharge from Functional Independence Measure Effectiveness Predicted by Multiple Regression Analysis Has a High Degree of Predictive Accuracy.

    PubMed

    Tokunaga, Makoto; Watanabe, Susumu; Sonoda, Shigeru

    2017-09-01

    Multiple linear regression analysis is often used to predict the outcome of stroke rehabilitation. However, the predictive accuracy may not be satisfactory. The objective of this study was to elucidate the predictive accuracy of a method of calculating motor Functional Independence Measure (mFIM) at discharge from mFIM effectiveness predicted by multiple regression analysis. The subjects were 505 patients with stroke who were hospitalized in a convalescent rehabilitation hospital. The formula "mFIM at discharge = mFIM effectiveness × (91 points - mFIM at admission) + mFIM at admission" was used. By including the predicted mFIM effectiveness obtained through multiple regression analysis in this formula, we obtained the predicted mFIM at discharge (A). We also used multiple regression analysis to directly predict mFIM at discharge (B). The correlation between the predicted and the measured values of mFIM at discharge was compared between A and B. The correlation coefficients were .916 for A and .878 for B. Calculating mFIM at discharge from mFIM effectiveness predicted by multiple regression analysis had a higher degree of predictive accuracy of mFIM at discharge than that directly predicted. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  14. Creep analysis of silicone for podiatry applications.

    PubMed

    Janeiro-Arocas, Julia; Tarrío-Saavedra, Javier; López-Beceiro, Jorge; Naya, Salvador; López-Canosa, Adrián; Heredia-García, Nicolás; Artiaga, Ramón

    2016-10-01

    This work shows an effective methodology to characterize the creep-recovery behavior of silicones before their application in podiatry. The aim is to characterize, model and compare the creep-recovery properties of different types of silicone used in podiatry orthotics. Creep-recovery phenomena of silicones used in podiatry orthotics is characterized by dynamic mechanical analysis (DMA). Silicones provided by Herbitas are compared by observing their viscoelastic properties by Functional Data Analysis (FDA) and nonlinear regression. The relationship between strain and time is modeled by fixed and mixed effects nonlinear regression to compare easily and intuitively podiatry silicones. Functional ANOVA and Kohlrausch-Willians-Watts (KWW) model with fixed and mixed effects allows us to compare different silicones observing the values of fitting parameters and their physical meaning. The differences between silicones are related to the variations of breadth of creep-recovery time distribution and instantaneous deformation-permanent strain. Nevertheless, the mean creep-relaxation time is the same for all the studied silicones. Silicones used in palliative orthoses have higher instantaneous deformation-permanent strain and narrower creep-recovery distribution. The proposed methodology based on DMA, FDA and nonlinear regression is an useful tool to characterize and choose the proper silicone for each podiatry application according to their viscoelastic properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Multiple Imputation of a Randomly Censored Covariate Improves Logistic Regression Analysis.

    PubMed

    Atem, Folefac D; Qian, Jing; Maye, Jacqueline E; Johnson, Keith A; Betensky, Rebecca A

    2016-01-01

    Randomly censored covariates arise frequently in epidemiologic studies. The most commonly used methods, including complete case and single imputation or substitution, suffer from inefficiency and bias. They make strong parametric assumptions or they consider limit of detection censoring only. We employ multiple imputation, in conjunction with semi-parametric modeling of the censored covariate, to overcome these shortcomings and to facilitate robust estimation. We develop a multiple imputation approach for randomly censored covariates within the framework of a logistic regression model. We use the non-parametric estimate of the covariate distribution or the semiparametric Cox model estimate in the presence of additional covariates in the model. We evaluate this procedure in simulations, and compare its operating characteristics to those from the complete case analysis and a survival regression approach. We apply the procedures to an Alzheimer's study of the association between amyloid positivity and maternal age of onset of dementia. Multiple imputation achieves lower standard errors and higher power than the complete case approach under heavy and moderate censoring and is comparable under light censoring. The survival regression approach achieves the highest power among all procedures, but does not produce interpretable estimates of association. Multiple imputation offers a favorable alternative to complete case analysis and ad hoc substitution methods in the presence of randomly censored covariates within the framework of logistic regression.

  16. Predictors of exercise capacity following exercise-based rehabilitation in patients with coronary heart disease and heart failure: A meta-regression analysis.

    PubMed

    Uddin, Jamal; Zwisler, Ann-Dorthe; Lewinter, Christian; Moniruzzaman, Mohammad; Lund, Ken; Tang, Lars H; Taylor, Rod S

    2016-05-01

    The aim of this study was to undertake a comprehensive assessment of the patient, intervention and trial-level factors that may predict exercise capacity following exercise-based rehabilitation in patients with coronary heart disease and heart failure. Meta-analysis and meta-regression analysis. Randomized controlled trials of exercise-based rehabilitation were identified from three published systematic reviews. Exercise capacity was pooled across trials using random effects meta-analysis, and meta-regression used to examine the association between exercise capacity and a range of patient (e.g. age), intervention (e.g. exercise frequency) and trial (e.g. risk of bias) factors. 55 trials (61 exercise-control comparisons, 7553 patients) were included. Following exercise-based rehabilitation compared to control, overall exercise capacity was on average 0.95 (95% CI: 0.76-1.41) standard deviation units higher, and in trials reporting maximum oxygen uptake (VO2max) was 3.3 ml/kg.min(-1) (95% CI: 2.6-4.0) higher. There was evidence of a high level of statistical heterogeneity across trials (I(2) statistic > 50%). In multivariable meta-regression analysis, only exercise intervention intensity was found to be significantly associated with VO2max (P = 0.04); those trials with the highest average exercise intensity had the largest mean post-rehabilitation VO2max compared to control. We found considerable heterogeneity across randomized controlled trials in the magnitude of improvement in exercise capacity following exercise-based rehabilitation compared to control among patients with coronary heart disease or heart failure. Whilst higher exercise intensities were associated with a greater level of post-rehabilitation exercise capacity, there was no strong evidence to support other intervention, patient or trial factors to be predictive. © The European Society of Cardiology 2015.

  17. A general framework for the use of logistic regression models in meta-analysis.

    PubMed

    Simmonds, Mark C; Higgins, Julian Pt

    2016-12-01

    Where individual participant data are available for every randomised trial in a meta-analysis of dichotomous event outcomes, "one-stage" random-effects logistic regression models have been proposed as a way to analyse these data. Such models can also be used even when individual participant data are not available and we have only summary contingency table data. One benefit of this one-stage regression model over conventional meta-analysis methods is that it maximises the correct binomial likelihood for the data and so does not require the common assumption that effect estimates are normally distributed. A second benefit of using this model is that it may be applied, with only minor modification, in a range of meta-analytic scenarios, including meta-regression, network meta-analyses and meta-analyses of diagnostic test accuracy. This single model can potentially replace the variety of often complex methods used in these areas. This paper considers, with a range of meta-analysis examples, how random-effects logistic regression models may be used in a number of different types of meta-analyses. This one-stage approach is compared with widely used meta-analysis methods including Bayesian network meta-analysis and the bivariate and hierarchical summary receiver operating characteristic (ROC) models for meta-analyses of diagnostic test accuracy. © The Author(s) 2014.

  18. Evaluating differential effects using regression interactions and regression mixture models

    PubMed Central

    Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung

    2015-01-01

    Research increasingly emphasizes understanding differential effects. This paper focuses on understanding regression mixture models, a relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their formulation, and their assumptions are compared using Monte Carlo simulations and real data analysis. The capabilities of regression mixture models are described and specific issues to be addressed when conducting regression mixtures are proposed. The paper aims to clarify the role that regression mixtures can take in the estimation of differential effects and increase awareness of the benefits and potential pitfalls of this approach. Regression mixture models are shown to be a potentially effective exploratory method for finding differential effects when these effects can be defined by a small number of classes of respondents who share a typical relationship between a predictor and an outcome. It is also shown that the comparison between regression mixture models and interactions becomes substantially more complex as the number of classes increases. It is argued that regression interactions are well suited for direct tests of specific hypotheses about differential effects and regression mixtures provide a useful approach for exploring effect heterogeneity given adequate samples and study design. PMID:26556903

  19. Quantile regression in the presence of monotone missingness with sensitivity analysis

    PubMed Central

    Liu, Minzhao; Daniels, Michael J.; Perri, Michael G.

    2016-01-01

    In this paper, we develop methods for longitudinal quantile regression when there is monotone missingness. In particular, we propose pattern mixture models with a constraint that provides a straightforward interpretation of the marginal quantile regression parameters. Our approach allows sensitivity analysis which is an essential component in inference for incomplete data. To facilitate computation of the likelihood, we propose a novel way to obtain analytic forms for the required integrals. We conduct simulations to examine the robustness of our approach to modeling assumptions and compare its performance to competing approaches. The model is applied to data from a recent clinical trial on weight management. PMID:26041008

  20. Predictors of course in obsessive-compulsive disorder: logistic regression versus Cox regression for recurrent events.

    PubMed

    Kempe, P T; van Oppen, P; de Haan, E; Twisk, J W R; Sluis, A; Smit, J H; van Dyck, R; van Balkom, A J L M

    2007-09-01

    Two methods for predicting remissions in obsessive-compulsive disorder (OCD) treatment are evaluated. Y-BOCS measurements of 88 patients with a primary OCD (DSM-III-R) diagnosis were performed over a 16-week treatment period, and during three follow-ups. Remission at any measurement was defined as a Y-BOCS score lower than thirteen combined with a reduction of seven points when compared with baseline. Logistic regression models were compared with a Cox regression for recurrent events model. Logistic regression yielded different models at different evaluation times. The recurrent events model remained stable when fewer measurements were used. Higher baseline levels of neuroticism and more severe OCD symptoms were associated with a lower chance of remission, early age of onset and more depressive symptoms with a higher chance. Choice of outcome time affects logistic regression prediction models. Recurrent events analysis uses all information on remissions and relapses. Short- and long-term predictors for OCD remission show overlap.

  1. Regression Analysis and Calibration Recommendations for the Characterization of Balance Temperature Effects

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Volden, T.

    2018-01-01

    Analysis and use of temperature-dependent wind tunnel strain-gage balance calibration data are discussed in the paper. First, three different methods are presented and compared that may be used to process temperature-dependent strain-gage balance data. The first method uses an extended set of independent variables in order to process the data and predict balance loads. The second method applies an extended load iteration equation during the analysis of balance calibration data. The third method uses temperature-dependent sensitivities for the data analysis. Physical interpretations of the most important temperature-dependent regression model terms are provided that relate temperature compensation imperfections and the temperature-dependent nature of the gage factor to sets of regression model terms. Finally, balance calibration recommendations are listed so that temperature-dependent calibration data can be obtained and successfully processed using the reviewed analysis methods.

  2. Addressing data privacy in matched studies via virtual pooling.

    PubMed

    Saha-Chaudhuri, P; Weinberg, C R

    2017-09-07

    Data confidentiality and shared use of research data are two desirable but sometimes conflicting goals in research with multi-center studies and distributed data. While ideal for straightforward analysis, confidentiality restrictions forbid creation of a single dataset that includes covariate information of all participants. Current approaches such as aggregate data sharing, distributed regression, meta-analysis and score-based methods can have important limitations. We propose a novel application of an existing epidemiologic tool, specimen pooling, to enable confidentiality-preserving analysis of data arising from a matched case-control, multi-center design. Instead of pooling specimens prior to assay, we apply the methodology to virtually pool (aggregate) covariates within nodes. Such virtual pooling retains most of the information used in an analysis with individual data and since individual participant data is not shared externally, within-node virtual pooling preserves data confidentiality. We show that aggregated covariate levels can be used in a conditional logistic regression model to estimate individual-level odds ratios of interest. The parameter estimates from the standard conditional logistic regression are compared to the estimates based on a conditional logistic regression model with aggregated data. The parameter estimates are shown to be similar to those without pooling and to have comparable standard errors and confidence interval coverage. Virtual data pooling can be used to maintain confidentiality of data from multi-center study and can be particularly useful in research with large-scale distributed data.

  3. Replicating Experimental Impact Estimates Using a Regression Discontinuity Approach. NCEE 2012-4025

    ERIC Educational Resources Information Center

    Gleason, Philip M.; Resch, Alexandra M.; Berk, Jillian A.

    2012-01-01

    This NCEE Technical Methods Paper compares the estimated impacts of an educational intervention using experimental and regression discontinuity (RD) study designs. The analysis used data from two large-scale randomized controlled trials--the Education Technology Evaluation and the Teach for America Study--to provide evidence on the performance of…

  4. Serum S100B Is Related to Illness Duration and Clinical Symptoms in Schizophrenia—A Meta-Regression Analysis

    PubMed Central

    Schümberg, Katharina; Polyakova, Maryna; Steiner, Johann; Schroeter, Matthias L.

    2016-01-01

    S100B has been linked to glial pathology in several psychiatric disorders. Previous studies found higher S100B serum levels in patients with schizophrenia compared to healthy controls, and a number of covariates influencing the size of this effect have been proposed in the literature. Here, we conducted a meta-analysis and meta-regression analysis on alterations of serum S100B in schizophrenia in comparison with healthy control subjects. The meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to guarantee a high quality and reproducibility. With strict inclusion criteria 19 original studies could be included in the quantitative meta-analysis, comprising a total of 766 patients and 607 healthy control subjects. The meta-analysis confirmed higher values of the glial serum marker S100B in schizophrenia if compared with control subjects. Meta-regression analyses revealed significant effects of illness duration and clinical symptomatology, in particular the total score of the Positive and Negative Syndrome Scale (PANSS), on serum S100B levels in schizophrenia. In sum, results confirm glial pathology in schizophrenia that is modulated by illness duration and related to clinical symptomatology. Further studies are needed to investigate mechanisms and mediating factors related to these findings. PMID:26941608

  5. Sperm Retrieval in Patients with Klinefelter Syndrome: A Skewed Regression Model Analysis.

    PubMed

    Chehrazi, Mohammad; Rahimiforoushani, Abbas; Sabbaghian, Marjan; Nourijelyani, Keramat; Sadighi Gilani, Mohammad Ali; Hoseini, Mostafa; Vesali, Samira; Yaseri, Mehdi; Alizadeh, Ahad; Mohammad, Kazem; Samani, Reza Omani

    2017-01-01

    The most common chromosomal abnormality due to non-obstructive azoospermia (NOA) is Klinefelter syndrome (KS) which occurs in 1-1.72 out of 500-1000 male infants. The probability of retrieving sperm as the outcome could be asymmetrically different between patients with and without KS, therefore logistic regression analysis is not a well-qualified test for this type of data. This study has been designed to evaluate skewed regression model analysis for data collected from microsurgical testicular sperm extraction (micro-TESE) among azoospermic patients with and without non-mosaic KS syndrome. This cohort study compared the micro-TESE outcome between 134 men with classic KS and 537 men with NOA and normal karyotype who were referred to Royan Institute between 2009 and 2011. In addition to our main outcome, which was sperm retrieval, we also used logistic and skewed regression analyses to compare the following demographic and hormonal factors: age, level of follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone between the two groups. A comparison of the micro-TESE between the KS and control groups showed a success rate of 28.4% (38/134) for the KS group and 22.2% (119/537) for the control group. In the KS group, a significantly difference (P<0.001) existed between testosterone levels for the successful sperm retrieval group (3.4 ± 0.48 mg/mL) compared to the unsuccessful sperm retrieval group (2.33 ± 0.23 mg/mL). The index for quasi Akaike information criterion (QAIC) had a goodness of fit of 74 for the skewed model which was lower than logistic regression (QAIC=85). According to the results, skewed regression is more efficient in estimating sperm retrieval success when the data from patients with KS are analyzed. This finding should be investigated by conducting additional studies with different data structures.

  6. Propensity score estimation: machine learning and classification methods as alternatives to logistic regression

    PubMed Central

    Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson

    2010-01-01

    Summary Objective Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this Review was to assess machine learning alternatives to logistic regression which may accomplish the same goals but with fewer assumptions or greater accuracy. Study Design and Setting We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. Results We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (CART), and meta-classifiers (in particular, boosting). Conclusion While the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and to a lesser extent decision trees (particularly CART) appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. PMID:20630332

  7. Nonparametric methods for drought severity estimation at ungauged sites

    NASA Astrophysics Data System (ADS)

    Sadri, S.; Burn, D. H.

    2012-12-01

    The objective in frequency analysis is, given extreme events such as drought severity or duration, to estimate the relationship between that event and the associated return periods at a catchment. Neural networks and other artificial intelligence approaches in function estimation and regression analysis are relatively new techniques in engineering, providing an attractive alternative to traditional statistical models. There are, however, few applications of neural networks and support vector machines in the area of severity quantile estimation for drought frequency analysis. In this paper, we compare three methods for this task: multiple linear regression, radial basis function neural networks, and least squares support vector regression (LS-SVR). The area selected for this study includes 32 catchments in the Canadian Prairies. From each catchment drought severities are extracted and fitted to a Pearson type III distribution, which act as observed values. For each method-duration pair, we use a jackknife algorithm to produce estimated values at each site. The results from these three approaches are compared and analyzed, and it is found that LS-SVR provides the best quantile estimates and extrapolating capacity.

  8. Economists Concoct New Method for Comparing Graduation Rates

    ERIC Educational Resources Information Center

    Glenn, David

    2007-01-01

    A pair of economists at the College of William and Mary have devised a new way of comparing colleges' graduation rates--a method, borrowed from business analysis, that they believe is fairer and more useful than the techniques used by "U.S. News & World Report" and the Education Trust. That general technique of regression analysis underlies the…

  9. Racial/ethnic and educational differences in the estimated odds of recent nitrite use among adult household residents in the United States: an illustration of matching and conditional logistic regression.

    PubMed

    Delva, J; Spencer, M S; Lin, J K

    2000-01-01

    This article compares estimates of the relative odds of nitrite use obtained from weighted unconditional logistic regression with estimates obtained from conditional logistic regression after post-stratification and matching of cases with controls by neighborhood of residence. We illustrate these methods by comparing the odds associated with nitrite use among adults of four racial/ethnic groups, with and without a high school education. We used aggregated data from the 1994-B through 1996 National Household Survey on Drug Abuse (NHSDA). Difference between the methods and implications for analysis and inference are discussed.

  10. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression.

    PubMed

    Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson

    2010-08-01

    Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this review was to assess machine learning alternatives to logistic regression, which may accomplish the same goals but with fewer assumptions or greater accuracy. We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (classification and regression trees [CART]), and meta-classifiers (in particular, boosting). Although the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and, to a lesser extent, decision trees (particularly CART), appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  11. a Comparison Between Two Ols-Based Approaches to Estimating Urban Multifractal Parameters

    NASA Astrophysics Data System (ADS)

    Huang, Lin-Shan; Chen, Yan-Guang

    Multifractal theory provides a new spatial analytical tool for urban studies, but many basic problems remain to be solved. Among various pending issues, the most significant one is how to obtain proper multifractal dimension spectrums. If an algorithm is improperly used, the parameter spectrums will be abnormal. This paper is devoted to investigating two ordinary least squares (OLS)-based approaches for estimating urban multifractal parameters. Using empirical study and comparative analysis, we demonstrate how to utilize the adequate linear regression to calculate multifractal parameters. The OLS regression analysis has two different approaches. One is that the intercept is fixed to zero, and the other is that the intercept is not limited. The results of comparative study show that the zero-intercept regression yields proper multifractal parameter spectrums within certain scale range of moment order, while the common regression method often leads to abnormal multifractal parameter values. A conclusion can be reached that fixing the intercept to zero is a more advisable regression method for multifractal parameters estimation, and the shapes of spectral curves and value ranges of fractal parameters can be employed to diagnose urban problems. This research is helpful for scientists to understand multifractal models and apply a more reasonable technique to multifractal parameter calculations.

  12. Graphical methods for the sensitivity analysis in discriminant analysis

    DOE PAGES

    Kim, Youngil; Anderson-Cook, Christine M.; Dae-Heung, Jang

    2015-09-30

    Similar to regression, many measures to detect influential data points in discriminant analysis have been developed. Many follow similar principles as the diagnostic measures used in linear regression in the context of discriminant analysis. Here we focus on the impact on the predicted classification posterior probability when a data point is omitted. The new method is intuitive and easily interpretative compared to existing methods. We also propose a graphical display to show the individual movement of the posterior probability of other data points when a specific data point is omitted. This enables the summaries to capture the overall pattern ofmore » the change.« less

  13. Development and evaluation of habitat models for herpetofauna and small mammals

    Treesearch

    William M. Block; Michael L. Morrison; Peter E. Scott

    1998-01-01

    We evaluated the ability of discriminant analysis (DA), logistic regression (LR), and multiple regression (MR) to describe habitat use by amphibians, reptiles, and small mammals found in California oak woodlands. We also compared models derived from pitfall and live trapping data for several species. Habitat relations modeled by DA and LR produced similar results,...

  14. Combining synthetic controls and interrupted time series analysis to improve causal inference in program evaluation.

    PubMed

    Linden, Ariel

    2018-04-01

    Interrupted time series analysis (ITSA) is an evaluation methodology in which a single treatment unit's outcome is studied over time and the intervention is expected to "interrupt" the level and/or trend of the outcome. The internal validity is strengthened considerably when the treated unit is contrasted with a comparable control group. In this paper, we introduce a robust evaluation framework that combines the synthetic controls method (SYNTH) to generate a comparable control group and ITSA regression to assess covariate balance and estimate treatment effects. We evaluate the effect of California's Proposition 99 for reducing cigarette sales, by comparing California to other states not exposed to smoking reduction initiatives. SYNTH is used to reweight nontreated units to make them comparable to the treated unit. These weights are then used in ITSA regression models to assess covariate balance and estimate treatment effects. Covariate balance was achieved for all but one covariate. While California experienced a significant decrease in the annual trend of cigarette sales after Proposition 99, there was no statistically significant treatment effect when compared to synthetic controls. The advantage of using this framework over regression alone is that it ensures that a comparable control group is generated. Additionally, it offers a common set of statistical measures familiar to investigators, the capability for assessing covariate balance, and enhancement of the evaluation with a comprehensive set of postestimation measures. Therefore, this robust framework should be considered as a primary approach for evaluating treatment effects in multiple group time series analysis. © 2018 John Wiley & Sons, Ltd.

  15. Influence diagnostics in meta-regression model.

    PubMed

    Shi, Lei; Zuo, ShanShan; Yu, Dalei; Zhou, Xiaohua

    2017-09-01

    This paper studies the influence diagnostics in meta-regression model including case deletion diagnostic and local influence analysis. We derive the subset deletion formulae for the estimation of regression coefficient and heterogeneity variance and obtain the corresponding influence measures. The DerSimonian and Laird estimation and maximum likelihood estimation methods in meta-regression are considered, respectively, to derive the results. Internal and external residual and leverage measure are defined. The local influence analysis based on case-weights perturbation scheme, responses perturbation scheme, covariate perturbation scheme, and within-variance perturbation scheme are explored. We introduce a method by simultaneous perturbing responses, covariate, and within-variance to obtain the local influence measure, which has an advantage of capable to compare the influence magnitude of influential studies from different perturbations. An example is used to illustrate the proposed methodology. Copyright © 2017 John Wiley & Sons, Ltd.

  16. A comparison of methods for the analysis of binomial clustered outcomes in behavioral research.

    PubMed

    Ferrari, Alberto; Comelli, Mario

    2016-12-01

    In behavioral research, data consisting of a per-subject proportion of "successes" and "failures" over a finite number of trials often arise. This clustered binary data are usually non-normally distributed, which can distort inference if the usual general linear model is applied and sample size is small. A number of more advanced methods is available, but they are often technically challenging and a comparative assessment of their performances in behavioral setups has not been performed. We studied the performances of some methods applicable to the analysis of proportions; namely linear regression, Poisson regression, beta-binomial regression and Generalized Linear Mixed Models (GLMMs). We report on a simulation study evaluating power and Type I error rate of these models in hypothetical scenarios met by behavioral researchers; plus, we describe results from the application of these methods on data from real experiments. Our results show that, while GLMMs are powerful instruments for the analysis of clustered binary outcomes, beta-binomial regression can outperform them in a range of scenarios. Linear regression gave results consistent with the nominal level of significance, but was overall less powerful. Poisson regression, instead, mostly led to anticonservative inference. GLMMs and beta-binomial regression are generally more powerful than linear regression; yet linear regression is robust to model misspecification in some conditions, whereas Poisson regression suffers heavily from violations of the assumptions when used to model proportion data. We conclude providing directions to behavioral scientists dealing with clustered binary data and small sample sizes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Application of third molar development and eruption models in estimating dental age in Malay sub-adults.

    PubMed

    Mohd Yusof, Mohd Yusmiaidil Putera; Cauwels, Rita; Deschepper, Ellen; Martens, Luc

    2015-08-01

    The third molar development (TMD) has been widely utilized as one of the radiographic method for dental age estimation. By using the same radiograph of the same individual, third molar eruption (TME) information can be incorporated to the TMD regression model. This study aims to evaluate the performance of dental age estimation in individual method models and the combined model (TMD and TME) based on the classic regressions of multiple linear and principal component analysis. A sample of 705 digital panoramic radiographs of Malay sub-adults aged between 14.1 and 23.8 years was collected. The techniques described by Gleiser and Hunt (modified by Kohler) and Olze were employed to stage the TMD and TME, respectively. The data was divided to develop three respective models based on the two regressions of multiple linear and principal component analysis. The trained models were then validated on the test sample and the accuracy of age prediction was compared between each model. The coefficient of determination (R²) and root mean square error (RMSE) were calculated. In both genders, adjusted R² yielded an increment in the linear regressions of combined model as compared to the individual models. The overall decrease in RMSE was detected in combined model as compared to TMD (0.03-0.06) and TME (0.2-0.8). In principal component regression, low value of adjusted R(2) and high RMSE except in male were exhibited in combined model. Dental age estimation is better predicted using combined model in multiple linear regression models. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  18. Statistical Evaluation of Time Series Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Benignus, V. A.

    1973-01-01

    The performance of a modified version of NASA's multivariate spectrum analysis program is discussed. A multiple regression model was used to make the revisions. Performance improvements were documented and compared to the standard fast Fourier transform by Monte Carlo techniques.

  19. Integrated analysis of DNA-methylation and gene expression using high-dimensional penalized regression: a cohort study on bone mineral density in postmenopausal women.

    PubMed

    Lien, Tonje G; Borgan, Ørnulf; Reppe, Sjur; Gautvik, Kaare; Glad, Ingrid Kristine

    2018-03-07

    Using high-dimensional penalized regression we studied genome-wide DNA-methylation in bone biopsies of 80 postmenopausal women in relation to their bone mineral density (BMD). The women showed BMD varying from severely osteoporotic to normal. Global gene expression data from the same individuals was available, and since DNA-methylation often affects gene expression, the overall aim of this paper was to include both of these omics data sets into an integrated analysis. The classical penalized regression uses one penalty, but we incorporated individual penalties for each of the DNA-methylation sites. These individual penalties were guided by the strength of association between DNA-methylations and gene transcript levels. DNA-methylations that were highly associated to one or more transcripts got lower penalties and were therefore favored compared to DNA-methylations showing less association to expression. Because of the complex pathways and interactions among genes, we investigated both the association between DNA-methylations and their corresponding cis gene, as well as the association between DNA-methylations and trans-located genes. Two integrating penalized methods were used: first, an adaptive group-regularized ridge regression, and secondly, variable selection was performed through a modified version of the weighted lasso. When information from gene expressions was integrated, predictive performance was considerably improved, in terms of predictive mean square error, compared to classical penalized regression without data integration. We found a 14.7% improvement in the ridge regression case and a 17% improvement for the lasso case. Our version of the weighted lasso with data integration found a list of 22 interesting methylation sites. Several corresponded to genes that are known to be important in bone formation. Using BMD as response and these 22 methylation sites as covariates, least square regression analyses resulted in R 2 =0.726, comparable to an average R 2 =0.438 for 10000 randomly selected groups of DNA-methylations with group size 22. Two recent types of penalized regression methods were adapted to integrate DNA-methylation and their association to gene expression in the analysis of bone mineral density. In both cases predictions clearly benefit from including the additional information on gene expressions.

  20. Factor analysis and multiple regression between topography and precipitation on Jeju Island, Korea

    NASA Astrophysics Data System (ADS)

    Um, Myoung-Jin; Yun, Hyeseon; Jeong, Chang-Sam; Heo, Jun-Haeng

    2011-11-01

    SummaryIn this study, new factors that influence precipitation were extracted from geographic variables using factor analysis, which allow for an accurate estimation of orographic precipitation. Correlation analysis was also used to examine the relationship between nine topographic variables from digital elevation models (DEMs) and the precipitation in Jeju Island. In addition, a spatial analysis was performed in order to verify the validity of the regression model. From the results of the correlation analysis, it was found that all of the topographic variables had a positive correlation with the precipitation. The relations between the variables also changed in accordance with a change in the precipitation duration. However, upon examining the correlation matrix, no significant relationship between the latitude and the aspect was found. According to the factor analysis, eight topographic variables (latitude being the exception) were found to have a direct influence on the precipitation. Three factors were then extracted from the eight topographic variables. By directly comparing the multiple regression model with the factors (model 1) to the multiple regression model with the topographic variables (model 3), it was found that model 1 did not violate the limits of statistical significance and multicollinearity. As such, model 1 was considered to be appropriate for estimating the precipitation when taking into account the topography. In the study of model 1, the multiple regression model using factor analysis was found to be the best method for estimating the orographic precipitation on Jeju Island.

  1. Comparison of Regression Analysis and Transfer Function in Estimating the Parameters of Central Pulse Waves from Brachial Pulse Wave.

    PubMed

    Chai, Rui; Xu, Li-Sheng; Yao, Yang; Hao, Li-Ling; Qi, Lin

    2017-01-01

    This study analyzed ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO), and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. Invasively measured parameters were compared with parameters measured from brachial pulse waves by regression model and transfer function model. Accuracy of parameters estimated by regression and transfer function model, was compared too. Findings showed that k value, central pulse wave and brachial pulse wave parameters invasively measured, correlated positively. Regression model parameters including A_slope, DBP, SEVR, and transfer function model parameters had good consistency with parameters invasively measured. They had same effect of consistency. SBP, PP, SV, and CO could be calculated through the regression model, but their accuracies were worse than that of transfer function model.

  2. Membrane Introduction Mass Spectrometry Combined with an Orthogonal Partial-Least Squares Calibration Model for Mixture Analysis.

    PubMed

    Li, Min; Zhang, Lu; Yao, Xiaolong; Jiang, Xingyu

    2017-01-01

    The emerging membrane introduction mass spectrometry technique has been successfully used to detect benzene, toluene, ethyl benzene and xylene (BTEX), while overlapped spectra have unfortunately hindered its further application to the analysis of mixtures. Multivariate calibration, an efficient method to analyze mixtures, has been widely applied. In this paper, we compared univariate and multivariate analyses for quantification of the individual components of mixture samples. The results showed that the univariate analysis creates poor models with regression coefficients of 0.912, 0.867, 0.440 and 0.351 for BTEX, respectively. For multivariate analysis, a comparison to the partial-least squares (PLS) model shows that the orthogonal partial-least squares (OPLS) regression exhibits an optimal performance with regression coefficients of 0.995, 0.999, 0.980 and 0.976, favorable calibration parameters (RMSEC and RMSECV) and a favorable validation parameter (RMSEP). Furthermore, the OPLS exhibits a good recovery of 73.86 - 122.20% and relative standard deviation (RSD) of the repeatability of 1.14 - 4.87%. Thus, MIMS coupled with the OPLS regression provides an optimal approach for a quantitative BTEX mixture analysis in monitoring and predicting water pollution.

  3. Comparison of two occurrence risk assessment methods for collapse gully erosion ——A case study in Guangdong province

    NASA Astrophysics Data System (ADS)

    Sun, K.; Cheng, D. B.; He, J. J.; Zhao, Y. L.

    2018-02-01

    Collapse gully erosion is a specific type of soil erosion in the red soil region of southern China, and early warning and prevention of the occurrence of collapse gully erosion is very important. Based on the idea of risk assessment, this research, taking Guangdong province as an example, adopt the information acquisition analysis and the logistic regression analysis, to discuss the feasibility for collapse gully erosion risk assessment in regional scale, and compare the applicability of the different risk assessment methods. The results show that in the Guangdong province, the risk degree of collapse gully erosion occurrence is high in northeastern and western area, and relatively low in southwestern and central part. The comparing analysis of the different risk assessment methods on collapse gully also indicated that the risk distribution patterns from the different methods were basically consistent. However, the accuracy of risk map from the information acquisition analysis method was slightly better than that from the logistic regression analysis method.

  4. A note on variance estimation in random effects meta-regression.

    PubMed

    Sidik, Kurex; Jonkman, Jeffrey N

    2005-01-01

    For random effects meta-regression inference, variance estimation for the parameter estimates is discussed. Because estimated weights are used for meta-regression analysis in practice, the assumed or estimated covariance matrix used in meta-regression is not strictly correct, due to possible errors in estimating the weights. Therefore, this note investigates the use of a robust variance estimation approach for obtaining variances of the parameter estimates in random effects meta-regression inference. This method treats the assumed covariance matrix of the effect measure variables as a working covariance matrix. Using an example of meta-analysis data from clinical trials of a vaccine, the robust variance estimation approach is illustrated in comparison with two other methods of variance estimation. A simulation study is presented, comparing the three methods of variance estimation in terms of bias and coverage probability. We find that, despite the seeming suitability of the robust estimator for random effects meta-regression, the improved variance estimator of Knapp and Hartung (2003) yields the best performance among the three estimators, and thus may provide the best protection against errors in the estimated weights.

  5. Sparse partial least squares regression for simultaneous dimension reduction and variable selection

    PubMed Central

    Chun, Hyonho; Keleş, Sündüz

    2010-01-01

    Partial least squares regression has been an alternative to ordinary least squares for handling multicollinearity in several areas of scientific research since the 1960s. It has recently gained much attention in the analysis of high dimensional genomic data. We show that known asymptotic consistency of the partial least squares estimator for a univariate response does not hold with the very large p and small n paradigm. We derive a similar result for a multivariate response regression with partial least squares. We then propose a sparse partial least squares formulation which aims simultaneously to achieve good predictive performance and variable selection by producing sparse linear combinations of the original predictors. We provide an efficient implementation of sparse partial least squares regression and compare it with well-known variable selection and dimension reduction approaches via simulation experiments. We illustrate the practical utility of sparse partial least squares regression in a joint analysis of gene expression and genomewide binding data. PMID:20107611

  6. New analysis methods to push the boundaries of diagnostic techniques in the environmental sciences

    NASA Astrophysics Data System (ADS)

    Lungaroni, M.; Murari, A.; Peluso, E.; Gelfusa, M.; Malizia, A.; Vega, J.; Talebzadeh, S.; Gaudio, P.

    2016-04-01

    In the last years, new and more sophisticated measurements have been at the basis of the major progress in various disciplines related to the environment, such as remote sensing and thermonuclear fusion. To maximize the effectiveness of the measurements, new data analysis techniques are required. First data processing tasks, such as filtering and fitting, are of primary importance, since they can have a strong influence on the rest of the analysis. Even if Support Vector Regression is a method devised and refined at the end of the 90s, a systematic comparison with more traditional non parametric regression methods has never been reported. In this paper, a series of systematic tests is described, which indicates how SVR is a very competitive method of non-parametric regression that can usefully complement and often outperform more consolidated approaches. The performance of Support Vector Regression as a method of filtering is investigated first, comparing it with the most popular alternative techniques. Then Support Vector Regression is applied to the problem of non-parametric regression to analyse Lidar surveys for the environments measurement of particulate matter due to wildfires. The proposed approach has given very positive results and provides new perspectives to the interpretation of the data.

  7. Experimental variability and data pre-processing as factors affecting the discrimination power of some chemometric approaches (PCA, CA and a new algorithm based on linear regression) applied to (+/-)ESI/MS and RPLC/UV data: Application on green tea extracts.

    PubMed

    Iorgulescu, E; Voicu, V A; Sârbu, C; Tache, F; Albu, F; Medvedovici, A

    2016-08-01

    The influence of the experimental variability (instrumental repeatability, instrumental intermediate precision and sample preparation variability) and data pre-processing (normalization, peak alignment, background subtraction) on the discrimination power of multivariate data analysis methods (Principal Component Analysis -PCA- and Cluster Analysis -CA-) as well as a new algorithm based on linear regression was studied. Data used in the study were obtained through positive or negative ion monitoring electrospray mass spectrometry (+/-ESI/MS) and reversed phase liquid chromatography/UV spectrometric detection (RPLC/UV) applied to green tea extracts. Extractions in ethanol and heated water infusion were used as sample preparation procedures. The multivariate methods were directly applied to mass spectra and chromatograms, involving strictly a holistic comparison of shapes, without assignment of any structural identity to compounds. An alternative data interpretation based on linear regression analysis mutually applied to data series is also discussed. Slopes, intercepts and correlation coefficients produced by the linear regression analysis applied on pairs of very large experimental data series successfully retain information resulting from high frequency instrumental acquisition rates, obviously better defining the profiles being compared. Consequently, each type of sample or comparison between samples produces in the Cartesian space an ellipsoidal volume defined by the normal variation intervals of the slope, intercept and correlation coefficient. Distances between volumes graphically illustrates (dis)similarities between compared data. The instrumental intermediate precision had the major effect on the discrimination power of the multivariate data analysis methods. Mass spectra produced through ionization from liquid state in atmospheric pressure conditions of bulk complex mixtures resulting from extracted materials of natural origins provided an excellent data basis for multivariate analysis methods, equivalent to data resulting from chromatographic separations. The alternative evaluation of very large data series based on linear regression analysis produced information equivalent to results obtained through application of PCA an CA. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Meta-regression analysis of commensal and pathogenic Escherichia coli survival in soil and water.

    PubMed

    Franz, Eelco; Schijven, Jack; de Roda Husman, Ana Maria; Blaak, Hetty

    2014-06-17

    The extent to which pathogenic and commensal E. coli (respectively PEC and CEC) can survive, and which factors predominantly determine the rate of decline, are crucial issues from a public health point of view. The goal of this study was to provide a quantitative summary of the variability in E. coli survival in soil and water over a broad range of individual studies and to identify the most important sources of variability. To that end, a meta-regression analysis on available literature data was conducted. The considerable variation in reported decline rates indicated that the persistence of E. coli is not easily predictable. The meta-analysis demonstrated that for soil and water, the type of experiment (laboratory or field), the matrix subtype (type of water and soil), and temperature were the main factors included in the regression analysis. A higher average decline rate in soil of PEC compared with CEC was observed. The regression models explained at best 57% of the variation in decline rate in soil and 41% of the variation in decline rate in water. This indicates that additional factors, not included in the current meta-regression analysis, are of importance but rarely reported. More complete reporting of experimental conditions may allow future inference on the global effects of these variables on the decline rate of E. coli.

  9. Is adult gait less susceptible than paediatric gait to hip joint centre regression equation error?

    PubMed

    Kiernan, D; Hosking, J; O'Brien, T

    2016-03-01

    Hip joint centre (HJC) regression equation error during paediatric gait has recently been shown to have clinical significance. In relation to adult gait, it has been inferred that comparable errors with children in absolute HJC position may in fact result in less significant kinematic and kinetic error. This study investigated the clinical agreement of three commonly used regression equation sets (Bell et al., Davis et al. and Orthotrak) for adult subjects against the equations of Harrington et al. The relationship between HJC position error and subject size was also investigated for the Davis et al. set. Full 3-dimensional gait analysis was performed on 12 healthy adult subjects with data for each set compared to Harrington et al. The Gait Profile Score, Gait Variable Score and GDI-kinetic were used to assess clinical significance while differences in HJC position between the Davis and Harrington sets were compared to leg length and subject height using regression analysis. A number of statistically significant differences were present in absolute HJC position. However, all sets fell below the clinically significant thresholds (GPS <1.6°, GDI-Kinetic <3.6 points). Linear regression revealed a statistically significant relationship for both increasing leg length and increasing subject height with decreasing error in anterior/posterior and superior/inferior directions. Results confirm a negligible clinical error for adult subjects suggesting that any of the examined sets could be used interchangeably. Decreasing error with both increasing leg length and increasing subject height suggests that the Davis set should be used cautiously on smaller subjects. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Bias due to two-stage residual-outcome regression analysis in genetic association studies.

    PubMed

    Demissie, Serkalem; Cupples, L Adrienne

    2011-11-01

    Association studies of risk factors and complex diseases require careful assessment of potential confounding factors. Two-stage regression analysis, sometimes referred to as residual- or adjusted-outcome analysis, has been increasingly used in association studies of single nucleotide polymorphisms (SNPs) and quantitative traits. In this analysis, first, a residual-outcome is calculated from a regression of the outcome variable on covariates and then the relationship between the adjusted-outcome and the SNP is evaluated by a simple linear regression of the adjusted-outcome on the SNP. In this article, we examine the performance of this two-stage analysis as compared with multiple linear regression (MLR) analysis. Our findings show that when a SNP and a covariate are correlated, the two-stage approach results in biased genotypic effect and loss of power. Bias is always toward the null and increases with the squared-correlation between the SNP and the covariate (). For example, for , 0.1, and 0.5, two-stage analysis results in, respectively, 0, 10, and 50% attenuation in the SNP effect. As expected, MLR was always unbiased. Since individual SNPs often show little or no correlation with covariates, a two-stage analysis is expected to perform as well as MLR in many genetic studies; however, it produces considerably different results from MLR and may lead to incorrect conclusions when independent variables are highly correlated. While a useful alternative to MLR under , the two -stage approach has serious limitations. Its use as a simple substitute for MLR should be avoided. © 2011 Wiley Periodicals, Inc.

  11. MetaComp: comprehensive analysis software for comparative meta-omics including comparative metagenomics.

    PubMed

    Zhai, Peng; Yang, Longshu; Guo, Xiao; Wang, Zhe; Guo, Jiangtao; Wang, Xiaoqi; Zhu, Huaiqiu

    2017-10-02

    During the past decade, the development of high throughput nucleic sequencing and mass spectrometry analysis techniques have enabled the characterization of microbial communities through metagenomics, metatranscriptomics, metaproteomics and metabolomics data. To reveal the diversity of microbial communities and interactions between living conditions and microbes, it is necessary to introduce comparative analysis based upon integration of all four types of data mentioned above. Comparative meta-omics, especially comparative metageomics, has been established as a routine process to highlight the significant differences in taxon composition and functional gene abundance among microbiota samples. Meanwhile, biologists are increasingly concerning about the correlations between meta-omics features and environmental factors, which may further decipher the adaptation strategy of a microbial community. We developed a graphical comprehensive analysis software named MetaComp comprising a series of statistical analysis approaches with visualized results for metagenomics and other meta-omics data comparison. This software is capable to read files generated by a variety of upstream programs. After data loading, analyses such as multivariate statistics, hypothesis testing of two-sample, multi-sample as well as two-group sample and a novel function-regression analysis of environmental factors are offered. Here, regression analysis regards meta-omic features as independent variable and environmental factors as dependent variables. Moreover, MetaComp is capable to automatically choose an appropriate two-group sample test based upon the traits of input abundance profiles. We further evaluate the performance of its choice, and exhibit applications for metagenomics, metaproteomics and metabolomics samples. MetaComp, an integrative software capable for applying to all meta-omics data, originally distills the influence of living environment on microbial community by regression analysis. Moreover, since the automatically chosen two-group sample test is verified to be outperformed, MetaComp is friendly to users without adequate statistical training. These improvements are aiming to overcome the new challenges under big data era for all meta-omics data. MetaComp is available at: http://cqb.pku.edu.cn/ZhuLab/MetaComp/ and https://github.com/pzhaipku/MetaComp/ .

  12. In vitro chemo-sensitivity assay guided chemotherapy is associated with prolonged overall survival in cancer patients.

    PubMed

    Udelnow, Andrej; Schönfęlder, Manfred; Würl, Peter; Halloul, Zuhir; Meyer, Frank; Lippert, Hans; Mroczkowski, Paweł

    2013-06-01

    The overall survival (OS) of patients suffering From various tumour entities was correlated with the results of in vitro-chemosensitivity assay (CSA) of the in vivo applied drugs. Tumour specimen (n=611) were dissected in 514 patients and incubated for primary tumour cell culture. The histocytological regression assay was performed 5 days after adding chemotherapeutic substances to the cell cultures. n=329 patients undergoing chemotherapy were included in the in vitro/in vivo associations. OS was assessed and in vitro response groups compared using survival analysis. Furthermore Cox-regression analysis was performed on OS including CSA, age, TNM classification and treatment course. The growth rate of the primary was 73-96% depending on tumour entity. The in-vitro response rate varied with histology and drugs (e.g. 8-18% for methotrexate and 33-83% for epirubicine). OS was significantly prolonged for patients treated with in vitro effective drugs compared to empiric therapy (log-rank-test, p=0.0435). Cox-regression revealed that application of in vitro effective drugs, residual tumour and postoperative radiotherapy determined the death risk independently. When patients were treated with drugs effective in our CSA, OS was significantly prolonged compared to empiric therapy. CSA guided chemotherapy should be compared to empiric treatment by a prospective randomized trial.

  13. Premium analysis for copula model: A case study for Malaysian motor insurance claims

    NASA Astrophysics Data System (ADS)

    Resti, Yulia; Ismail, Noriszura; Jaaman, Saiful Hafizah

    2014-06-01

    This study performs premium analysis for copula models with regression marginals. For illustration purpose, the copula models are fitted to the Malaysian motor insurance claims data. In this study, we consider copula models from Archimedean and Elliptical families, and marginal distributions of Gamma and Inverse Gaussian regression models. The simulated results from independent model, which is obtained from fitting regression models separately to each claim category, and dependent model, which is obtained from fitting copula models to all claim categories, are compared. The results show that the dependent model using Frank copula is the best model since the risk premiums estimated under this model are closely approximate to the actual claims experience relative to the other copula models.

  14. The Outlier Detection for Ordinal Data Using Scalling Technique of Regression Coefficients

    NASA Astrophysics Data System (ADS)

    Adnan, Arisman; Sugiarto, Sigit

    2017-06-01

    The aims of this study is to detect the outliers by using coefficients of Ordinal Logistic Regression (OLR) for the case of k category responses where the score from 1 (the best) to 8 (the worst). We detect them by using the sum of moduli of the ordinal regression coefficients calculated by jackknife technique. This technique is improved by scalling the regression coefficients to their means. R language has been used on a set of ordinal data from reference distribution. Furthermore, we compare this approach by using studentised residual plots of jackknife technique for ANOVA (Analysis of Variance) and OLR. This study shows that the jackknifing technique along with the proper scaling may lead us to reveal outliers in ordinal regression reasonably well.

  15. An improved partial least-squares regression method for Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Momenpour Tehran Monfared, Ali; Anis, Hanan

    2017-10-01

    It is known that the performance of partial least-squares (PLS) regression analysis can be improved using the backward variable selection method (BVSPLS). In this paper, we further improve the BVSPLS based on a novel selection mechanism. The proposed method is based on sorting the weighted regression coefficients, and then the importance of each variable of the sorted list is evaluated using root mean square errors of prediction (RMSEP) criterion in each iteration step. Our Improved BVSPLS (IBVSPLS) method has been applied to leukemia and heparin data sets and led to an improvement in limit of detection of Raman biosensing ranged from 10% to 43% compared to PLS. Our IBVSPLS was also compared to the jack-knifing (simpler) and Genetic Algorithm (more complex) methods. Our method was consistently better than the jack-knifing method and showed either a similar or a better performance compared to the genetic algorithm.

  16. Neutrophil/lymphocyte ratio and platelet/lymphocyte ratio in mood disorders: A meta-analysis.

    PubMed

    Mazza, Mario Gennaro; Lucchi, Sara; Tringali, Agnese Grazia Maria; Rossetti, Aurora; Botti, Eugenia Rossana; Clerici, Massimo

    2018-06-08

    The immune and inflammatory system is involved in the etiology of mood disorders. Neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR) and monocyte/lymphocyte ratio (MLR) are inexpensive and reproducible biomarkers of inflammation. This is the first meta-analysis exploring the role of NLR and PLR in mood disorder. We identified 11 studies according to our inclusion criteria from the main Electronic Databases. Meta-analyses were carried out generating pooled standardized mean differences (SMDs) between index and healthy controls (HC). Heterogeneity was estimated. Relevant sensitivity and meta-regression analyses were conducted. Subjects with bipolar disorder (BD) had higher NLR and PLR as compared with HC (respectively SMD = 0.672; p < 0.001; I 2  = 82.4% and SMD = 0.425; p = 0.048; I 2  = 86.53%). Heterogeneity-based sensitivity analyses confirmed these findings. Subgroup analysis evidenced an influence of bipolar phase on the overall estimate whit studies including subjects in manic and any bipolar phase showing a significantly higher NLR and PLR as compared with HC whereas the effect was not significant among studies including only euthymic bipolar subjects. Meta-regression showed that age and sex influenced the relationship between BD and NLR but not the relationship between BD and PLR. Meta-analysis was not carried out for MLR because our search identified only one study when comparing BD to HC, and only one study when comparing MDD to HC. Subjects with major depressive disorder (MDD) had higher NLR as compared with HC (SMD = 0.670; p = 0.028; I 2  = 89.931%). Heterogeneity-based sensitivity analyses and meta-regression confirmed these findings. Our meta-analysis supports the hypothesis that an inflammatory activation occurs in mood disorders and NLR and PLR may be useful to detect this activation. More researches including comparison of NLR, PLR and MLR between different bipolar phases and between BD and MDD are needed. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Comparison of regression and geostatistical methods for mapping Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest.

    Treesearch

    Mercedes Berterretche; Andrew T. Hudak; Warren B. Cohen; Thomas K. Maiersperger; Stith T. Gower; Jennifer Dungan

    2005-01-01

    This study compared aspatial and spatial methods of using remote sensing and field data to predict maximum growing season leaf area index (LAI) maps in a boreal forest in Manitoba, Canada. The methods tested were orthogonal regression analysis (reduced major axis, RMA) and two geostatistical techniques: kriging with an external drift (KED) and sequential Gaussian...

  18. Local Linear Regression for Data with AR Errors.

    PubMed

    Li, Runze; Li, Yan

    2009-07-01

    In many statistical applications, data are collected over time, and they are likely correlated. In this paper, we investigate how to incorporate the correlation information into the local linear regression. Under the assumption that the error process is an auto-regressive process, a new estimation procedure is proposed for the nonparametric regression by using local linear regression method and the profile least squares techniques. We further propose the SCAD penalized profile least squares method to determine the order of auto-regressive process. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed procedure, and to compare the performance of the proposed procedures with the existing one. From our empirical studies, the newly proposed procedures can dramatically improve the accuracy of naive local linear regression with working-independent error structure. We illustrate the proposed methodology by an analysis of real data set.

  19. Comparative Efficacy of Tongxinluo Capsule and Beta-Blockers in Treating Angina Pectoris: Meta-Analysis of Randomized Controlled Trials.

    PubMed

    Jia, Yongliang; Leung, Siu-wai

    2015-11-01

    There have been no systematic reviews, let alone meta-analyses, of randomized controlled trials (RCTs) comparing tongxinluo capsule (TXL) and beta-blockers in treating angina pectoris. This study aimed to evaluate the efficacy of TXL and beta-blockers in treating angina pectoris by a meta-analysis of eligible RCTs. The RCTs comparing TXL with beta-blockers (including metoprolol) in treating angina pectoris were searched and retrieved from databases including PubMed, Chinese National Knowledge Infrastructure, and WanFang Data. Eligible RCTs were selected according to prespecified criteria. Meta-analysis was performed on the odds ratios (OR) of symptomatic and electrocardiographic (ECG) improvements after treatment. Subgroup analysis, sensitivity analysis, meta-regression, and publication biases analysis were conducted to evaluate the robustness of the results. Seventy-three RCTs published between 2000 and 2014 with 7424 participants were eligible. Overall ORs comparing TXL with beta-blockers were 3.40 (95% confidence interval [CI], 2.97-3.89; p<0.0001) for symptomatic improvement and 2.63 (95% CI, 2.29-3.02; p<0.0001) for ECG improvement. Subgroup analysis and sensitivity analysis found no statistically significant dependence of overall ORs on specific study characteristics except efficacy criteria. Meta-regression found no significant except sample sizes for data on symptomatic improvement. Publication biases were statistically significant. TXL seems to be more effective than beta-blockers in treating angina pectoris, on the basis of the eligible RCTs. Further RCTs are warranted to reduce publication bias and verify efficacy.

  20. Implementing informative priors for heterogeneity in meta-analysis using meta-regression and pseudo data.

    PubMed

    Rhodes, Kirsty M; Turner, Rebecca M; White, Ian R; Jackson, Dan; Spiegelhalter, David J; Higgins, Julian P T

    2016-12-20

    Many meta-analyses combine results from only a small number of studies, a situation in which the between-study variance is imprecisely estimated when standard methods are applied. Bayesian meta-analysis allows incorporation of external evidence on heterogeneity, providing the potential for more robust inference on the effect size of interest. We present a method for performing Bayesian meta-analysis using data augmentation, in which we represent an informative conjugate prior for between-study variance by pseudo data and use meta-regression for estimation. To assist in this, we derive predictive inverse-gamma distributions for the between-study variance expected in future meta-analyses. These may serve as priors for heterogeneity in new meta-analyses. In a simulation study, we compare approximate Bayesian methods using meta-regression and pseudo data against fully Bayesian approaches based on importance sampling techniques and Markov chain Monte Carlo (MCMC). We compare the frequentist properties of these Bayesian methods with those of the commonly used frequentist DerSimonian and Laird procedure. The method is implemented in standard statistical software and provides a less complex alternative to standard MCMC approaches. An importance sampling approach produces almost identical results to standard MCMC approaches, and results obtained through meta-regression and pseudo data are very similar. On average, data augmentation provides closer results to MCMC, if implemented using restricted maximum likelihood estimation rather than DerSimonian and Laird or maximum likelihood estimation. The methods are applied to real datasets, and an extension to network meta-analysis is described. The proposed method facilitates Bayesian meta-analysis in a way that is accessible to applied researchers. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  1. Regression analysis for LED color detection of visual-MIMO system

    NASA Astrophysics Data System (ADS)

    Banik, Partha Pratim; Saha, Rappy; Kim, Ki-Doo

    2018-04-01

    Color detection from a light emitting diode (LED) array using a smartphone camera is very difficult in a visual multiple-input multiple-output (visual-MIMO) system. In this paper, we propose a method to determine the LED color using a smartphone camera by applying regression analysis. We employ a multivariate regression model to identify the LED color. After taking a picture of an LED array, we select the LED array region, and detect the LED using an image processing algorithm. We then apply the k-means clustering algorithm to determine the number of potential colors for feature extraction of each LED. Finally, we apply the multivariate regression model to predict the color of the transmitted LEDs. In this paper, we show our results for three types of environmental light condition: room environmental light, low environmental light (560 lux), and strong environmental light (2450 lux). We compare the results of our proposed algorithm from the analysis of training and test R-Square (%) values, percentage of closeness of transmitted and predicted colors, and we also mention about the number of distorted test data points from the analysis of distortion bar graph in CIE1931 color space.

  2. Optimizing methods for linking cinematic features to fMRI data.

    PubMed

    Kauttonen, Janne; Hlushchuk, Yevhen; Tikka, Pia

    2015-04-15

    One of the challenges of naturalistic neurosciences using movie-viewing experiments is how to interpret observed brain activations in relation to the multiplicity of time-locked stimulus features. As previous studies have shown less inter-subject synchronization across viewers of random video footage than story-driven films, new methods need to be developed for analysis of less story-driven contents. To optimize the linkage between our fMRI data collected during viewing of a deliberately non-narrative silent film 'At Land' by Maya Deren (1944) and its annotated content, we combined the method of elastic-net regularization with the model-driven linear regression and the well-established data-driven independent component analysis (ICA) and inter-subject correlation (ISC) methods. In the linear regression analysis, both IC and region-of-interest (ROI) time-series were fitted with time-series of a total of 36 binary-valued and one real-valued tactile annotation of film features. The elastic-net regularization and cross-validation were applied in the ordinary least-squares linear regression in order to avoid over-fitting due to the multicollinearity of regressors, the results were compared against both the partial least-squares (PLS) regression and the un-regularized full-model regression. Non-parametric permutation testing scheme was applied to evaluate the statistical significance of regression. We found statistically significant correlation between the annotation model and 9 ICs out of 40 ICs. Regression analysis was also repeated for a large set of cubic ROIs covering the grey matter. Both IC- and ROI-based regression analyses revealed activations in parietal and occipital regions, with additional smaller clusters in the frontal lobe. Furthermore, we found elastic-net based regression more sensitive than PLS and un-regularized regression since it detected a larger number of significant ICs and ROIs. Along with the ISC ranking methods, our regression analysis proved a feasible method for ordering the ICs based on their functional relevance to the annotated cinematic features. The novelty of our method is - in comparison to the hypothesis-driven manual pre-selection and observation of some individual regressors biased by choice - in applying data-driven approach to all content features simultaneously. We found especially the combination of regularized regression and ICA useful when analyzing fMRI data obtained using non-narrative movie stimulus with a large set of complex and correlated features. Copyright © 2015. Published by Elsevier Inc.

  3. Innovation Analysis | Energy Analysis | NREL

    Science.gov Websites

    . New empirical methods for estimating technical and commercial impact (based on patent citations and Commercial Breakthroughs, NREL employed regression models and multivariate simulations to compare social in the marketplace and found that: Web presence may provide a better representation of the commercial

  4. The use of generalized estimating equations in the analysis of motor vehicle crash data.

    PubMed

    Hutchings, Caroline B; Knight, Stacey; Reading, James C

    2003-01-01

    The purpose of this study was to determine if it is necessary to use generalized estimating equations (GEEs) in the analysis of seat belt effectiveness in preventing injuries in motor vehicle crashes. The 1992 Utah crash dataset was used, excluding crash participants where seat belt use was not appropriate (n=93,633). The model used in the 1996 Report to Congress [Report to congress on benefits of safety belts and motorcycle helmets, based on data from the Crash Outcome Data Evaluation System (CODES). National Center for Statistics and Analysis, NHTSA, Washington, DC, February 1996] was analyzed for all occupants with logistic regression, one level of nesting (occupants within crashes), and two levels of nesting (occupants within vehicles within crashes) to compare the use of GEEs with logistic regression. When using one level of nesting compared to logistic regression, 13 of 16 variance estimates changed more than 10%, and eight of 16 parameter estimates changed more than 10%. In addition, three of the independent variables changed from significant to insignificant (alpha=0.05). With the use of two levels of nesting, two of 16 variance estimates and three of 16 parameter estimates changed more than 10% from the variance and parameter estimates in one level of nesting. One of the independent variables changed from insignificant to significant (alpha=0.05) in the two levels of nesting model; therefore, only two of the independent variables changed from significant to insignificant when the logistic regression model was compared to the two levels of nesting model. The odds ratio of seat belt effectiveness in preventing injuries was 12% lower when a one-level nested model was used. Based on these results, we stress the need to use a nested model and GEEs when analyzing motor vehicle crash data.

  5. Using Classification and Regression Trees (CART) and random forests to analyze attrition: Results from two simulations.

    PubMed

    Hayes, Timothy; Usami, Satoshi; Jacobucci, Ross; McArdle, John J

    2015-12-01

    In this article, we describe a recent development in the analysis of attrition: using classification and regression trees (CART) and random forest methods to generate inverse sampling weights. These flexible machine learning techniques have the potential to capture complex nonlinear, interactive selection models, yet to our knowledge, their performance in the missing data analysis context has never been evaluated. To assess the potential benefits of these methods, we compare their performance with commonly employed multiple imputation and complete case techniques in 2 simulations. These initial results suggest that weights computed from pruned CART analyses performed well in terms of both bias and efficiency when compared with other methods. We discuss the implications of these findings for applied researchers. (c) 2015 APA, all rights reserved).

  6. Using Classification and Regression Trees (CART) and Random Forests to Analyze Attrition: Results From Two Simulations

    PubMed Central

    Hayes, Timothy; Usami, Satoshi; Jacobucci, Ross; McArdle, John J.

    2016-01-01

    In this article, we describe a recent development in the analysis of attrition: using classification and regression trees (CART) and random forest methods to generate inverse sampling weights. These flexible machine learning techniques have the potential to capture complex nonlinear, interactive selection models, yet to our knowledge, their performance in the missing data analysis context has never been evaluated. To assess the potential benefits of these methods, we compare their performance with commonly employed multiple imputation and complete case techniques in 2 simulations. These initial results suggest that weights computed from pruned CART analyses performed well in terms of both bias and efficiency when compared with other methods. We discuss the implications of these findings for applied researchers. PMID:26389526

  7. Methods for estimating the magnitude and frequency of peak streamflows at ungaged sites in and near the Oklahoma Panhandle

    USGS Publications Warehouse

    Smith, S. Jerrod; Lewis, Jason M.; Graves, Grant M.

    2015-09-28

    Generalized-least-squares multiple-linear regression analysis was used to formulate regression relations between peak-streamflow frequency statistics and basin characteristics. Contributing drainage area was the only basin characteristic determined to be statistically significant for all percentage of annual exceedance probabilities and was the only basin characteristic used in regional regression equations for estimating peak-streamflow frequency statistics on unregulated streams in and near the Oklahoma Panhandle. The regression model pseudo-coefficient of determination, converted to percent, for the Oklahoma Panhandle regional regression equations ranged from about 38 to 63 percent. The standard errors of prediction and the standard model errors for the Oklahoma Panhandle regional regression equations ranged from about 84 to 148 percent and from about 76 to 138 percent, respectively. These errors were comparable to those reported for regional peak-streamflow frequency regression equations for the High Plains areas of Texas and Colorado. The root mean square errors for the Oklahoma Panhandle regional regression equations (ranging from 3,170 to 92,000 cubic feet per second) were less than the root mean square errors for the Oklahoma statewide regression equations (ranging from 18,900 to 412,000 cubic feet per second); therefore, the Oklahoma Panhandle regional regression equations produce more accurate peak-streamflow statistic estimates for the irrigated period of record in the Oklahoma Panhandle than do the Oklahoma statewide regression equations. The regression equations developed in this report are applicable to streams that are not substantially affected by regulation, impoundment, or surface-water withdrawals. These regression equations are intended for use for stream sites with contributing drainage areas less than or equal to about 2,060 square miles, the maximum value for the independent variable used in the regression analysis.

  8. Quantile regression applied to spectral distance decay

    USGS Publications Warehouse

    Rocchini, D.; Cade, B.S.

    2008-01-01

    Remotely sensed imagery has long been recognized as a powerful support for characterizing and estimating biodiversity. Spectral distance among sites has proven to be a powerful approach for detecting species composition variability. Regression analysis of species similarity versus spectral distance allows us to quantitatively estimate the amount of turnover in species composition with respect to spectral and ecological variability. In classical regression analysis, the residual sum of squares is minimized for the mean of the dependent variable distribution. However, many ecological data sets are characterized by a high number of zeroes that add noise to the regression model. Quantile regressions can be used to evaluate trend in the upper quantiles rather than a mean trend across the whole distribution of the dependent variable. In this letter, we used ordinary least squares (OLS) and quantile regressions to estimate the decay of species similarity versus spectral distance. The achieved decay rates were statistically nonzero (p < 0.01), considering both OLS and quantile regressions. Nonetheless, the OLS regression estimate of the mean decay rate was only half the decay rate indicated by the upper quantiles. Moreover, the intercept value, representing the similarity reached when the spectral distance approaches zero, was very low compared with the intercepts of the upper quantiles, which detected high species similarity when habitats are more similar. In this letter, we demonstrated the power of using quantile regressions applied to spectral distance decay to reveal species diversity patterns otherwise lost or underestimated by OLS regression. ?? 2008 IEEE.

  9. Spectral distance decay: Assessing species beta-diversity by quantile regression

    USGS Publications Warehouse

    Rocchinl, D.; Nagendra, H.; Ghate, R.; Cade, B.S.

    2009-01-01

    Remotely sensed data represents key information for characterizing and estimating biodiversity. Spectral distance among sites has proven to be a powerful approach for detecting species composition variability. Regression analysis of species similarity versus spectral distance may allow us to quantitatively estimate how beta-diversity in species changes with respect to spectral and ecological variability. In classical regression analysis, the residual sum of squares is minimized for the mean of the dependent variable distribution. However, many ecological datasets are characterized by a high number of zeroes that can add noise to the regression model. Quantile regression can be used to evaluate trend in the upper quantiles rather than a mean trend across the whole distribution of the dependent variable. In this paper, we used ordinary least square (ols) and quantile regression to estimate the decay of species similarity versus spectral distance. The achieved decay rates were statistically nonzero (p < 0.05) considering both ols and quantile regression. Nonetheless, ols regression estimate of mean decay rate was only half the decay rate indicated by the upper quantiles. Moreover, the intercept value, representing the similarity reached when spectral distance approaches zero, was very low compared with the intercepts of upper quantiles, which detected high species similarity when habitats are more similar. In this paper we demonstrated the power of using quantile regressions applied to spectral distance decay in order to reveal species diversity patterns otherwise lost or underestimated by ordinary least square regression. ?? 2009 American Society for Photogrammetry and Remote Sensing.

  10. Association between response rates and survival outcomes in patients with newly diagnosed multiple myeloma. A systematic review and meta-regression analysis.

    PubMed

    Mainou, Maria; Madenidou, Anastasia-Vasiliki; Liakos, Aris; Paschos, Paschalis; Karagiannis, Thomas; Bekiari, Eleni; Vlachaki, Efthymia; Wang, Zhen; Murad, Mohammad Hassan; Kumar, Shaji; Tsapas, Apostolos

    2017-06-01

    We performed a systematic review and meta-regression analysis of randomized control trials to investigate the association between response to initial treatment and survival outcomes in patients with newly diagnosed multiple myeloma (MM). Response outcomes included complete response (CR) and the combined outcome of CR or very good partial response (VGPR), while survival outcomes were overall survival (OS) and progression-free survival (PFS). We used random-effect meta-regression models and conducted sensitivity analyses based on definition of CR and study quality. Seventy-two trials were included in the systematic review, 63 of which contributed data in meta-regression analyses. There was no association between OS and CR in patients without autologous stem cell transplant (ASCT) (regression coefficient: .02, 95% confidence interval [CI] -0.06, 0.10), in patients undergoing ASCT (-.11, 95% CI -0.44, 0.22) and in trials comparing ASCT with non-ASCT patients (.04, 95% CI -0.29, 0.38). Similarly, OS did not correlate with the combined metric of CR or VGPR, and no association was evident between response outcomes and PFS. Sensitivity analyses yielded similar results. This meta-regression analysis suggests that there is no association between conventional response outcomes and survival in patients with newly diagnosed MM. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis.

    PubMed

    van Smeden, Maarten; de Groot, Joris A H; Moons, Karel G M; Collins, Gary S; Altman, Douglas G; Eijkemans, Marinus J C; Reitsma, Johannes B

    2016-11-24

    Ten events per variable (EPV) is a widely advocated minimal criterion for sample size considerations in logistic regression analysis. Of three previous simulation studies that examined this minimal EPV criterion only one supports the use of a minimum of 10 EPV. In this paper, we examine the reasons for substantial differences between these extensive simulation studies. The current study uses Monte Carlo simulations to evaluate small sample bias, coverage of confidence intervals and mean square error of logit coefficients. Logistic regression models fitted by maximum likelihood and a modified estimation procedure, known as Firth's correction, are compared. The results show that besides EPV, the problems associated with low EPV depend on other factors such as the total sample size. It is also demonstrated that simulation results can be dominated by even a few simulated data sets for which the prediction of the outcome by the covariates is perfect ('separation'). We reveal that different approaches for identifying and handling separation leads to substantially different simulation results. We further show that Firth's correction can be used to improve the accuracy of regression coefficients and alleviate the problems associated with separation. The current evidence supporting EPV rules for binary logistic regression is weak. Given our findings, there is an urgent need for new research to provide guidance for supporting sample size considerations for binary logistic regression analysis.

  12. Interactions between cadmium and decabrominated diphenyl ether on blood cells count in rats-Multiple factorial regression analysis.

    PubMed

    Curcic, Marijana; Buha, Aleksandra; Stankovic, Sanja; Milovanovic, Vesna; Bulat, Zorica; Đukić-Ćosić, Danijela; Antonijević, Evica; Vučinić, Slavica; Matović, Vesna; Antonijevic, Biljana

    2017-02-01

    The objective of this study was to assess toxicity of Cd and BDE-209 mixture on haematological parameters in subacutely exposed rats and to determine the presence and type of interactions between these two chemicals using multiple factorial regression analysis. Furthermore, for the assessment of interaction type, an isobologram based methodology was applied and compared with multiple factorial regression analysis. Chemicals were given by oral gavage to the male Wistar rats weighing 200-240g for 28days. Animals were divided in 16 groups (8/group): control vehiculum group, three groups of rats were treated with 2.5, 7.5 or 15mg Cd/kg/day. These doses were chosen on the bases of literature data and reflect relatively high Cd environmental exposure, three groups of rats were treated with 1000, 2000 or 4000mg BDE-209/kg/bw/day, doses proved to induce toxic effects in rats. Furthermore, nine groups of animals were treated with different mixtures of Cd and BDE-209 containing doses of Cd and BDE-209 stated above. Blood samples were taken at the end of experiment and red blood cells, white blood cells and platelets counts were determined. For interaction assessment multiple factorial regression analysis and fitted isobologram approach were used. In this study, we focused on multiple factorial regression analysis as a method for interaction assessment. We also investigated the interactions between Cd and BDE-209 by the derived model for the description of the obtained fitted isobologram curves. Current study indicated that co-exposure to Cd and BDE-209 can result in significant decrease in RBC count, increase in WBC count and decrease in PLT count, when compared with controls. Multiple factorial regression analysis used for the assessment of interactions type between Cd and BDE-209 indicated synergism for the effect on RBC count and no interactions i.e. additivity for the effects on WBC and PLT counts. On the other hand, isobologram based approach showed slight antagonism for the effects on RBC and WBC while no interactions were proved for the joint effect on PLT count. These results confirm that the assessment of interactions between chemicals in the mixture greatly depends on the concept or method used for this evaluation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Application of principal component regression and partial least squares regression in ultraviolet spectrum water quality detection

    NASA Astrophysics Data System (ADS)

    Li, Jiangtong; Luo, Yongdao; Dai, Honglin

    2018-01-01

    Water is the source of life and the essential foundation of all life. With the development of industrialization, the phenomenon of water pollution is becoming more and more frequent, which directly affects the survival and development of human. Water quality detection is one of the necessary measures to protect water resources. Ultraviolet (UV) spectral analysis is an important research method in the field of water quality detection, which partial least squares regression (PLSR) analysis method is becoming predominant technology, however, in some special cases, PLSR's analysis produce considerable errors. In order to solve this problem, the traditional principal component regression (PCR) analysis method was improved by using the principle of PLSR in this paper. The experimental results show that for some special experimental data set, improved PCR analysis method performance is better than PLSR. The PCR and PLSR is the focus of this paper. Firstly, the principal component analysis (PCA) is performed by MATLAB to reduce the dimensionality of the spectral data; on the basis of a large number of experiments, the optimized principal component is extracted by using the principle of PLSR, which carries most of the original data information. Secondly, the linear regression analysis of the principal component is carried out with statistic package for social science (SPSS), which the coefficients and relations of principal components can be obtained. Finally, calculating a same water spectral data set by PLSR and improved PCR, analyzing and comparing two results, improved PCR and PLSR is similar for most data, but improved PCR is better than PLSR for data near the detection limit. Both PLSR and improved PCR can be used in Ultraviolet spectral analysis of water, but for data near the detection limit, improved PCR's result better than PLSR.

  14. Analysis of regression methods for solar activity forecasting

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A.; Vaughan, W. W.

    1979-01-01

    The paper deals with the potential use of the most recent solar data to project trends in the next few years. Assuming that a mode of solar influence on weather can be identified, advantageous use of that knowledge presumably depends on estimating future solar activity. A frequently used technique for solar cycle predictions is a linear regression procedure along the lines formulated by McNish and Lincoln (1949). The paper presents a sensitivity analysis of the behavior of such regression methods relative to the following aspects: cycle minimum, time into cycle, composition of historical data base, and unnormalized vs. normalized solar cycle data. Comparative solar cycle forecasts for several past cycles are presented as to these aspects of the input data. Implications for the current cycle, No. 21, are also given.

  15. Correlates of Successful Aging: Are They Universal?

    ERIC Educational Resources Information Center

    Litwin, Howard

    2005-01-01

    The analysis compared differing correlates of life satisfaction among three diverse population groups in Israel, examining background and health status variables, social environment factors, and activity indicators. Multiple regression analysis revealed that veteran Jewish-Israelis (n = 2,043) had the largest set of predictors, the strongest of…

  16. OPLS statistical model versus linear regression to assess sonographic predictors of stroke prognosis.

    PubMed

    Vajargah, Kianoush Fathi; Sadeghi-Bazargani, Homayoun; Mehdizadeh-Esfanjani, Robab; Savadi-Oskouei, Daryoush; Farhoudi, Mehdi

    2012-01-01

    The objective of the present study was to assess the comparable applicability of orthogonal projections to latent structures (OPLS) statistical model vs traditional linear regression in order to investigate the role of trans cranial doppler (TCD) sonography in predicting ischemic stroke prognosis. The study was conducted on 116 ischemic stroke patients admitted to a specialty neurology ward. The Unified Neurological Stroke Scale was used once for clinical evaluation on the first week of admission and again six months later. All data was primarily analyzed using simple linear regression and later considered for multivariate analysis using PLS/OPLS models through the SIMCA P+12 statistical software package. The linear regression analysis results used for the identification of TCD predictors of stroke prognosis were confirmed through the OPLS modeling technique. Moreover, in comparison to linear regression, the OPLS model appeared to have higher sensitivity in detecting the predictors of ischemic stroke prognosis and detected several more predictors. Applying the OPLS model made it possible to use both single TCD measures/indicators and arbitrarily dichotomized measures of TCD single vessel involvement as well as the overall TCD result. In conclusion, the authors recommend PLS/OPLS methods as complementary rather than alternative to the available classical regression models such as linear regression.

  17. Using mixed treatment comparisons and meta-regression to perform indirect comparisons to estimate the efficacy of biologic treatments in rheumatoid arthritis.

    PubMed

    Nixon, R M; Bansback, N; Brennan, A

    2007-03-15

    Mixed treatment comparison (MTC) is a generalization of meta-analysis. Instead of the same treatment for a disease being tested in a number of studies, a number of different interventions are considered. Meta-regression is also a generalization of meta-analysis where an attempt is made to explain the heterogeneity between the treatment effects in the studies by regressing on study-level covariables. Our focus is where there are several different treatments considered in a number of randomized controlled trials in a specific disease, the same treatment can be applied in several arms within a study, and where differences in efficacy can be explained by differences in the study settings. We develop methods for simultaneously comparing several treatments and adjusting for study-level covariables by combining ideas from MTC and meta-regression. We use a case study from rheumatoid arthritis. We identified relevant trials of biologic verses standard therapy or placebo and extracted the doses, comparators and patient baseline characteristics. Efficacy is measured using the log odds ratio of achieving six-month ACR50 responder status. A random-effects meta-regression model is fitted which adjusts the log odds ratio for study-level prognostic factors. A different random-effect distribution on the log odds ratios is allowed for each different treatment. The odds ratio is found as a function of the prognostic factors for each treatment. The apparent differences in the randomized trials between tumour necrosis factor alpha (TNF- alpha) antagonists are explained by differences in prognostic factors and the analysis suggests that these drugs as a class are not different from each other. Copyright (c) 2006 John Wiley & Sons, Ltd.

  18. Adherence to preferable behavior for lipid control by high-risk dyslipidemic Japanese patients under pravastatin treatment: the APPROACH-J study.

    PubMed

    Kitagawa, Yasuhisa; Teramoto, Tamio; Daida, Hiroyuki

    2012-01-01

    We evaluated the impact of adherence to preferable behavior on serum lipid control assessed by a self-reported questionnaire in high-risk patients taking pravastatin for primary prevention of coronary artery disease. High-risk patients taking pravastatin were followed for 2 years. Questionnaire surveys comprising 21 questions, including 18 questions concerning awareness of health, and current status of diet, exercise, and drug therapy, were conducted at baseline and after 1 year. Potential domains were established by factor analysis from the results of questionnaires, and adherence scores were calculated in each domain. The relationship between adherence scores and lipid values during the 1-year treatment period was analyzed by each domain using multiple regression analysis. A total of 5,792 patients taking pravastatin were included in the analysis. Multiple regression analysis showed a significant correlation in terms of "Intake of high fat/cholesterol/sugar foods" (regression coefficient -0.58, p=0.0105) and "Adherence to instructions for drug therapy" (regression coefficient -6.61, p<0.0001). Low-density lipoprotein cholesterol (LDL-C) values were significantly lower in patients who had an increase in the adherence score in the "Awareness of health" domain compared with those with a decreased score. There was a significant correlation between high-density lipoprotein (HDL-C) values and "Awareness of health" (regression coefficient 0.26; p= 0.0037), "Preferable dietary behaviors" (regression coefficient 0.75; p<0.0001), and "Exercise" (regression coefficient 0.73; p= 0.0002). Similar relations were seen with triglycerides. In patients who have a high awareness of their health, a positive attitude toward lipid-lowering treatment including diet, exercise, and high adherence to drug therapy, is related with favorable overall lipid control even in patients under treatment with pravastatin.

  19. Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data.

    PubMed

    Ying, Gui-Shuang; Maguire, Maureen G; Glynn, Robert; Rosner, Bernard

    2017-04-01

    To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data. We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field in the elderly. When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI -0.03 to 0.32D, p = 0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, p = 0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller p-values, while analysis of the worse eye provided larger p-values than mixed effects models and marginal models. In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision.

  20. Comparison of escitalopram versus citalopram for the treatment of major depressive disorder in a geriatric population.

    PubMed

    Wu, Eric; Greenberg, Paul E; Yang, Elaine; Yu, Andrew; Erder, M Haim

    2008-09-01

    To compare escitalopram versus citalopram for the treatment of major depressive disorder (MDD) in geriatric patients. Administrative claims data (2003-2005) were analyzed for patients aged > or =65 years with at least one inpatient claim or two independent medical claims associated with MDD diagnosis. Patients were continuously enrolled for at least 12 months, filled at least one prescription for citalopram or escitalopram and had no second generation antidepressant use during the 6-month pre-index date. Contingency table analysis and survival analysis were used to compare outcomes between the two treatment groups. Treatment persistence, hospitalization utilization, and prescription drug, medical, and total healthcare costs were analyzed. Outcomes were compared between patients initiated on escitalopram and those initiated on citalopram both descriptively and using multivariate analysis adjusting for baseline characteristics. Among 691 geriatric patients, escitalopram-treated patients (n=459) were less likely to discontinue treatment (hazard ratio [HR]=0.83, p=0.049) or switch to another second generation antidepressant (HR=0.62, p=0.001) compared to patients treated with citalopram (n=232). Patients treated with escitalopram had a significantly lower hospitalization rate (31.2% vs. 38.8%, p=0.045) and 66% fewer hospitalization days based on negative binomial regression (p<0.001). While escitalopram patients had comparable prescription drug costs, they had lower total medical service costs (regression: $9748 vs. $19,208, p<0.001) and lower total healthcare costs (regression: $11,434 vs. $20,601, p<0.001). This study's limitations include its small sample size, short observational periods and exclusivity of indirect costs. Geriatric patients treated with escitalopram had better treatment persistence, fewer hospitalizations, and lower medical and total healthcare costs than patients treated with citalopram. Most of the cost reduction was attributable to significantly lower hospitalizations and total medical costs.

  1. PubMed Central

    Derouin, F.; Garin, Y. J.; Buffard, C.; Berthelot, F.; Petithory, J. C.

    1994-01-01

    A collaborative study conducted by the French National Agency for Quality Control in Parasitology (CNQP) and various manufacturers of ELISA kits, represented by the Association of Laboratory Reagent Manufacturers (SFRL) compared the toxoplasmosis IgG antibody titres obtained with different ELISA-IgG kits and determined the relationships between the titres obtained by these techniques and the titre defined in international units (IU). Fifty-one serum samples with toxoplasmosis antibody titres ranging from 0 to 900 IU were tested in two successive studies with 16 ELISA-IgG kits. For the negative sera, false-positive reactions were observed with one kit. For the positive sera, the titres observed in ELISA were generally higher than those expressed in IU. Above 250 IU, the very wide variability of the titres found with the different ELISA kits renders any comparative analysis impossible. For titres below 250 IU, the results are sufficiently homogeneous to permit the use of regression analysis to study how the results for each ELISA kit compare with the mean results for the other kits. The slope of the line of regression shows a tendency to over-titration or under-titration compared with the results of the other manufacturers; the ordinate at the origin reflects the positivity threshold of the reaction and can be used to assess the risk of a lack of sensitivity (high threshold) or of specificity (threshold too low). On the whole, the trends revealed for a given manufacturer are constant from one study to the other. Within this range of titres, regression analysis also reveals the general tendency of ELISA kits to overestimate the titres by comparison with immunofluorescence.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8205645

  2. Factor Retention in Exploratory Factor Analysis: A Comparison of Alternative Methods.

    ERIC Educational Resources Information Center

    Mumford, Karen R.; Ferron, John M.; Hines, Constance V.; Hogarty, Kristine Y.; Kromrey, Jeffery D.

    This study compared the effectiveness of 10 methods of determining the number of factors to retain in exploratory common factor analysis. The 10 methods included the Kaiser rule and a modified Kaiser criterion, 3 variations of parallel analysis, 4 regression-based variations of the scree procedure, and the minimum average partial procedure. The…

  3. Biomass relations for components of five Minnesota shrubs.

    Treesearch

    Richard R. Buech; David J. Rugg

    1995-01-01

    Presents equations for estimating biomass of six components on five species of shrubs common to northeastern Minnesota. Regression analysis is used to compare the performance of three estimators of biomass.

  4. Classification and regression tree analysis of acute-on-chronic hepatitis B liver failure: Seeing the forest for the trees.

    PubMed

    Shi, K-Q; Zhou, Y-Y; Yan, H-D; Li, H; Wu, F-L; Xie, Y-Y; Braddock, M; Lin, X-Y; Zheng, M-H

    2017-02-01

    At present, there is no ideal model for predicting the short-term outcome of patients with acute-on-chronic hepatitis B liver failure (ACHBLF). This study aimed to establish and validate a prognostic model by using the classification and regression tree (CART) analysis. A total of 1047 patients from two separate medical centres with suspected ACHBLF were screened in the study, which were recognized as derivation cohort and validation cohort, respectively. CART analysis was applied to predict the 3-month mortality of patients with ACHBLF. The accuracy of the CART model was tested using the area under the receiver operating characteristic curve, which was compared with the model for end-stage liver disease (MELD) score and a new logistic regression model. CART analysis identified four variables as prognostic factors of ACHBLF: total bilirubin, age, serum sodium and INR, and three distinct risk groups: low risk (4.2%), intermediate risk (30.2%-53.2%) and high risk (81.4%-96.9%). The new logistic regression model was constructed with four independent factors, including age, total bilirubin, serum sodium and prothrombin activity by multivariate logistic regression analysis. The performances of the CART model (0.896), similar to the logistic regression model (0.914, P=.382), exceeded that of MELD score (0.667, P<.001). The results were confirmed in the validation cohort. We have developed and validated a novel CART model superior to MELD for predicting three-month mortality of patients with ACHBLF. Thus, the CART model could facilitate medical decision-making and provide clinicians with a validated practical bedside tool for ACHBLF risk stratification. © 2016 John Wiley & Sons Ltd.

  5. Replica analysis of overfitting in regression models for time-to-event data

    NASA Astrophysics Data System (ADS)

    Coolen, A. C. C.; Barrett, J. E.; Paga, P.; Perez-Vicente, C. J.

    2017-09-01

    Overfitting, which happens when the number of parameters in a model is too large compared to the number of data points available for determining these parameters, is a serious and growing problem in survival analysis. While modern medicine presents us with data of unprecedented dimensionality, these data cannot yet be used effectively for clinical outcome prediction. Standard error measures in maximum likelihood regression, such as p-values and z-scores, are blind to overfitting, and even for Cox’s proportional hazards model (the main tool of medical statisticians), one finds in literature only rules of thumb on the number of samples required to avoid overfitting. In this paper we present a mathematical theory of overfitting in regression models for time-to-event data, which aims to increase our quantitative understanding of the problem and provide practical tools with which to correct regression outcomes for the impact of overfitting. It is based on the replica method, a statistical mechanical technique for the analysis of heterogeneous many-variable systems that has been used successfully for several decades in physics, biology, and computer science, but not yet in medical statistics. We develop the theory initially for arbitrary regression models for time-to-event data, and verify its predictions in detail for the popular Cox model.

  6. Microhabitat analysis using radiotelemetry locations and polytomous logistic regression

    Treesearch

    Malcolm P. North; Joel H. Reynolds

    1996-01-01

    Microhabitat analyses often use discriminant function analysis (DFA) to compare vegetation structures or environmental conditions between sites classified by a study animal's presence or absence. These presence/absence studies make questionable assumptions about the habitat value of the comparison sites and the microhabitat data often violate the DFA's...

  7. USE OF WEIBULL FUNCTION FOR NON-LINEAR ANALYSIS OF EFFECTS OF LOW LEVELS OF SIMULATED HERBICIDE DRIFT ON PLANTS

    EPA Science Inventory

    We compared two regression models, which are based on the Weibull and probit functions, for the analysis of pesticide toxicity data from laboratory studies on Illinois crop and native plant species. Both mathematical models are continuous, differentiable, strictly positive, and...

  8. Correlation and simple linear regression.

    PubMed

    Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G

    2003-06-01

    In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.

  9. A Review of the Study Designs and Statistical Methods Used in the Determination of Predictors of All-Cause Mortality in HIV-Infected Cohorts: 2002–2011

    PubMed Central

    Otwombe, Kennedy N.; Petzold, Max; Martinson, Neil; Chirwa, Tobias

    2014-01-01

    Background Research in the predictors of all-cause mortality in HIV-infected people has widely been reported in literature. Making an informed decision requires understanding the methods used. Objectives We present a review on study designs, statistical methods and their appropriateness in original articles reporting on predictors of all-cause mortality in HIV-infected people between January 2002 and December 2011. Statistical methods were compared between 2002–2006 and 2007–2011. Time-to-event analysis techniques were considered appropriate. Data Sources Pubmed/Medline. Study Eligibility Criteria Original English-language articles were abstracted. Letters to the editor, editorials, reviews, systematic reviews, meta-analysis, case reports and any other ineligible articles were excluded. Results A total of 189 studies were identified (n = 91 in 2002–2006 and n = 98 in 2007–2011) out of which 130 (69%) were prospective and 56 (30%) were retrospective. One hundred and eighty-two (96%) studies described their sample using descriptive statistics while 32 (17%) made comparisons using t-tests. Kaplan-Meier methods for time-to-event analysis were commonly used in the earlier period (n = 69, 76% vs. n = 53, 54%, p = 0.002). Predictors of mortality in the two periods were commonly determined using Cox regression analysis (n = 67, 75% vs. n = 63, 64%, p = 0.12). Only 7 (4%) used advanced survival analysis methods of Cox regression analysis with frailty in which 6 (3%) were used in the later period. Thirty-two (17%) used logistic regression while 8 (4%) used other methods. There were significantly more articles from the first period using appropriate methods compared to the second (n = 80, 88% vs. n = 69, 70%, p-value = 0.003). Conclusion Descriptive statistics and survival analysis techniques remain the most common methods of analysis in publications on predictors of all-cause mortality in HIV-infected cohorts while prospective research designs are favoured. Sophisticated techniques of time-dependent Cox regression and Cox regression with frailty are scarce. This motivates for more training in the use of advanced time-to-event methods. PMID:24498313

  10. Multivariate analysis of cytokine profiles in pregnancy complications.

    PubMed

    Azizieh, Fawaz; Dingle, Kamaludin; Raghupathy, Raj; Johnson, Kjell; VanderPlas, Jacob; Ansari, Ali

    2018-03-01

    The immunoregulation to tolerate the semiallogeneic fetus during pregnancy includes a harmonious dynamic balance between anti- and pro-inflammatory cytokines. Several earlier studies reported significantly different levels and/or ratios of several cytokines in complicated pregnancy as compared to normal pregnancy. However, as cytokines operate in networks with potentially complex interactions, it is also interesting to compare groups with multi-cytokine data sets, with multivariate analysis. Such analysis will further examine how great the differences are, and which cytokines are more different than others. Various multivariate statistical tools, such as Cramer test, classification and regression trees, partial least squares regression figures, 2-dimensional Kolmogorov-Smirmov test, principal component analysis and gap statistic, were used to compare cytokine data of normal vs anomalous groups of different pregnancy complications. Multivariate analysis assisted in examining if the groups were different, how strongly they differed, in what ways they differed and further reported evidence for subgroups in 1 group (pregnancy-induced hypertension), possibly indicating multiple causes for the complication. This work contributes to a better understanding of cytokines interaction and may have important implications on targeting cytokine balance modulation or design of future medications or interventions that best direct management or prevention from an immunological approach. © 2018 The Authors. American Journal of Reproductive Immunology Published by John Wiley & Sons Ltd.

  11. Wastewater-Based Epidemiology of Stimulant Drugs: Functional Data Analysis Compared to Traditional Statistical Methods.

    PubMed

    Salvatore, Stefania; Bramness, Jørgen Gustav; Reid, Malcolm J; Thomas, Kevin Victor; Harman, Christopher; Røislien, Jo

    2015-01-01

    Wastewater-based epidemiology (WBE) is a new methodology for estimating the drug load in a population. Simple summary statistics and specification tests have typically been used to analyze WBE data, comparing differences between weekday and weekend loads. Such standard statistical methods may, however, overlook important nuanced information in the data. In this study, we apply functional data analysis (FDA) to WBE data and compare the results to those obtained from more traditional summary measures. We analysed temporal WBE data from 42 European cities, using sewage samples collected daily for one week in March 2013. For each city, the main temporal features of two selected drugs were extracted using functional principal component (FPC) analysis, along with simpler measures such as the area under the curve (AUC). The individual cities' scores on each of the temporal FPCs were then used as outcome variables in multiple linear regression analysis with various city and country characteristics as predictors. The results were compared to those of functional analysis of variance (FANOVA). The three first FPCs explained more than 99% of the temporal variation. The first component (FPC1) represented the level of the drug load, while the second and third temporal components represented the level and the timing of a weekend peak. AUC was highly correlated with FPC1, but other temporal characteristic were not captured by the simple summary measures. FANOVA was less flexible than the FPCA-based regression, and even showed concordance results. Geographical location was the main predictor for the general level of the drug load. FDA of WBE data extracts more detailed information about drug load patterns during the week which are not identified by more traditional statistical methods. Results also suggest that regression based on FPC results is a valuable addition to FANOVA for estimating associations between temporal patterns and covariate information.

  12. Plant leaf chlorophyll content retrieval based on a field imaging spectroscopy system.

    PubMed

    Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin

    2014-10-23

    A field imaging spectrometer system (FISS; 380-870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%-35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector.

  13. Plant Leaf Chlorophyll Content Retrieval Based on a Field Imaging Spectroscopy System

    PubMed Central

    Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin

    2014-01-01

    A field imaging spectrometer system (FISS; 380–870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%–35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector. PMID:25341439

  14. Freedom Solo Versus Trifecta Bioprotheses: Clinical and Hemodynamic Evaluation after Propensity Score Matching.

    PubMed

    J Cerqueira, Rui; Melo, Renata; Moreira, Soraia; A Saraiva, Francisca; Andrade, Marta; Salgueiro, Elson; Almeida, Jorge; J Amorim, Mário; Pinho, Paulo; Lourenço, André; F Leite-Moreira, Adelino

    2017-01-01

    To compare stentless Freedom Solo and stented Trifecta aortic bioprostheses regarding hemodynamic profile, left ventricular mass regression, early and late postoperative outcomes and survival. Longitudinal cohort study of consecutive patients undergoing aortic valve replacement (from 2009 to 2016) with either Freedom Solo or Trifecta at one centre. Local databases and national records were queried. Postoperative echocardiography (3-6 months) was obtained for hemodynamic profile (mean transprosthetic gradient and effective orifice area) and left ventricle mass determination. After propensity score matching (21 covariates), Kaplan-Meier analysis and cumulative incidence analysis were performed for survival and combined outcome of structural valve deterioration and endocarditis, respectively. Hemodynamics and left ventricle mass regression were assessed by a mixed- -effects model including propensity score as a covariate. From a total sample of 397 Freedom Solo and 525 Trifecta patients with a median follow-up time of 4.0 (2.2- 6.0) and 2.4 (1.4-3.7) years, respectively, a matched sample of 329 pairs was obtained. Well-balanced matched groups showed no difference in survival (hazard ratio=1.04, 95% confidence interval=0.69-1.56) or cumulative hazards of combined outcome (subhazard ratio=0.54, 95% confidence interval=0.21-1.39). Although Trifecta showed improved hemodynamic profile compared to Freedom Solo, no differences were found in left ventricle mass regression. Trifecta has a slightly improved hemodynamic profile compared to Freedom Solo but this does not translate into differences in the extent of mass regression, postoperative outcomes or survival, which were good and comparable for both bioprostheses. Long-term follow-up is needed for comparisons with older models of bioprostheses.

  15. Comparing nouns and verbs in a lexical task.

    PubMed

    Cordier, Françoise; Croizet, Jean-Claude; Rigalleau, François

    2013-02-01

    We analyzed the differential processing of nouns and verbs in a lexical decision task. Moderate and high-frequency nouns and verbs were compared. The characteristics of our material were specified at the formal level (number of letters and syllables, number of homographs, orthographic neighbors, frequency and age of acquisition), and at the semantic level (imagery, number and strength of associations, number of meanings, context dependency). A regression analysis indicated a classical frequency effect and a word-type effect, with latencies for verbs being slower than for nouns. The regression analysis did not permit the conclusion that semantic effects were involved (particularly imageability). Nevertheless, the semantic opposition between nouns as prototypical representations of objects, and verbs as prototypical representation of actions was not tested in this experiment and remains a good candidate explanation of the response time discrepancies between verbs and nouns.

  16. Application of Regression-Discontinuity Analysis in Pharmaceutical Health Services Research

    PubMed Central

    Zuckerman, Ilene H; Lee, Euni; Wutoh, Anthony K; Xue, Zhenyi; Stuart, Bruce

    2006-01-01

    Objective To demonstrate how a relatively underused design, regression-discontinuity (RD), can provide robust estimates of intervention effects when stronger designs are impossible to implement. Data Sources/Study Setting Administrative claims from a Mid-Atlantic state Medicaid program were used to evaluate the effectiveness of an educational drug utilization review intervention. Study Design Quasi-experimental design. Data Collection/Extraction Methods A drug utilization review study was conducted to evaluate a letter intervention to physicians treating Medicaid children with potentially excessive use of short-acting β2-agonist inhalers (SAB). The outcome measure is change in seasonally-adjusted SAB use 5 months pre- and postintervention. To determine if the intervention reduced monthly SAB utilization, results from an RD analysis are compared to findings from a pretest–posttest design using repeated-measure ANOVA. Principal Findings Both analyses indicated that the intervention significantly reduced SAB use among the high users. Average monthly SAB use declined by 0.9 canisters per month (p<.001) according to the repeated-measure ANOVA and by 0.2 canisters per month (p<.001) from RD analysis. Conclusions Regression-discontinuity design is a useful quasi-experimental methodology that has significant advantages in internal validity compared to other pre–post designs when assessing interventions in which subjects' assignment is based on cutoff scores for a critical variable. PMID:16584464

  17. Relationship between serum bilirubin concentrations and diabetic nephropathy in Shanghai Han's patients with type 1 diabetes mellitus.

    PubMed

    Li, Xu; Zhang, Lei; Chen, Haibing; Guo, Kaifeng; Yu, Haoyong; Zhou, Jian; Li, Ming; Li, Qing; Li, Lianxi; Yin, Jun; Liu, Fang; Bao, Yuqian; Han, Junfeng; Jia, Weiping

    2017-03-31

    Recent studies highlight a negative association between total bilirubin concentrations and albuminuria in patients with type 2 diabetes mellitus. Our study evaluated the relationship between bilirubin concentrations and the prevalence of diabetic nephropathy (DN) in Chinese patients with type 1 diabetes mellitus (T1DM). A total of 258 patients with T1DM were recruited and bilirubin concentrations were compared between patients with or without diabetic nephropathy. Multiple stepwise regression analysis was used to examine the relationship between bilirubin concentrations and 24 h urinary microalbumin. Binary logistic regression analysis was performed to assess independent risk factors for diabetic nephropathy. Participants were divided into four groups according to the quartile of total bilirubin concentrations (Q1, 0.20-0.60; Q2, 0.60-0.80; Q3, 0.80-1.00; Q4, 1.00-1.90 mg/dL) and the chi-square test was used to compare the prevalence of DN in patients with T1DM. The median bilirubin level was 0.56 (interquartile: 0.43-0.68 mg/dL) in the DN group, significantly lower than in the non-DN group (0.70 [interquartile: 0.58-0.89 mg/dL], P < 0.001). Spearman's correlational analysis showed bilirubin concentrations were inversely correlated with 24 h urinary microalbumin (r = -0.13, P < 0.05) and multiple stepwise regression analysis showed bilirubin concentrations were independently associated with 24 h urinary microalbumin. In logistic regression analysis, bilirubin concentrations were significantly inversely associated with nephropathy. In addition, in stratified analysis, from the first to the fourth quartile group, increased bilirubin concentrations were associated with decreased prevalence of DN from 21.90% to 2.00%. High bilirubin concentrations are independently and negatively associated with albuminuria and the prevalence of DN in patients with T1DM.

  18. The isoform A of reticulon-4 (Nogo-A) in cerebrospinal fluid of primary brain tumor patients: influencing factors.

    PubMed

    Koper, Olga Martyna; Kamińska, Joanna; Milewska, Anna; Sawicki, Karol; Mariak, Zenon; Kemona, Halina; Matowicka-Karna, Joanna

    2018-05-18

    The influence of isoform A of reticulon-4 (Nogo-A), also known as neurite outgrowth inhibitor, on primary brain tumor development was reported. Therefore the aim was the evaluation of Nogo-A concentrations in cerebrospinal fluid (CSF) and serum of brain tumor patients compared with non-tumoral individuals. All serum results, except for two cases, obtained both in brain tumors and non-tumoral individuals, were below the lower limit of ELISA detection. Cerebrospinal fluid Nogo-A concentrations were significantly lower in primary brain tumor patients compared to non-tumoral individuals. The univariate linear regression analysis found that if white blood cell count increases by 1 × 10 3 /μL, the mean cerebrospinal fluid Nogo-A concentration value decreases 1.12 times. In the model of multiple linear regression analysis predictor variables influencing cerebrospinal fluid Nogo-A concentrations included: diagnosis, sex, and sodium level. The mean cerebrospinal fluid Nogo-A concentration value was 1.9 times higher for women in comparison to men. In the astrocytic brain tumor group higher sodium level occurs with lower cerebrospinal fluid Nogo-A concentrations. We found the opposite situation in non-tumoral individuals. Univariate linear regression analysis revealed, that cerebrospinal fluid Nogo-A concentrations change in relation to white blood cell count. In the created model of multiple linear regression analysis we found, that within predictor variables influencing CSF Nogo-A concentrations were diagnosis, sex, and sodium level. Results may be relevant to the search for cerebrospinal fluid biomarkers and potential therapeutic targets in primary brain tumor patients. Nogo-A concentrations were tested by means of enzyme-linked immunosorbent assay (ELISA).

  19. Identifying Autocorrelation Generated by Various Error Processes in Interrupted Time-Series Regression Designs: A Comparison of AR1 and Portmanteau Tests

    ERIC Educational Resources Information Center

    Huitema, Bradley E.; McKean, Joseph W.

    2007-01-01

    Regression models used in the analysis of interrupted time-series designs assume statistically independent errors. Four methods of evaluating this assumption are the Durbin-Watson (D-W), Huitema-McKean (H-M), Box-Pierce (B-P), and Ljung-Box (L-B) tests. These tests were compared with respect to Type I error and power under a wide variety of error…

  20. A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.

    PubMed

    Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S

    2017-06-01

    The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were observed for the SOBP scenario, both non-linear LET spectrum- and linear LET d based models should be further evaluated in clinically realistic scenarios. © 2017 American Association of Physicists in Medicine.

  1. A Comparison of Rule-based Analysis with Regression Methods in Understanding the Risk Factors for Study Withdrawal in a Pediatric Study.

    PubMed

    Haghighi, Mona; Johnson, Suzanne Bennett; Qian, Xiaoning; Lynch, Kristian F; Vehik, Kendra; Huang, Shuai

    2016-08-26

    Regression models are extensively used in many epidemiological studies to understand the linkage between specific outcomes of interest and their risk factors. However, regression models in general examine the average effects of the risk factors and ignore subgroups with different risk profiles. As a result, interventions are often geared towards the average member of the population, without consideration of the special health needs of different subgroups within the population. This paper demonstrates the value of using rule-based analysis methods that can identify subgroups with heterogeneous risk profiles in a population without imposing assumptions on the subgroups or method. The rules define the risk pattern of subsets of individuals by not only considering the interactions between the risk factors but also their ranges. We compared the rule-based analysis results with the results from a logistic regression model in The Environmental Determinants of Diabetes in the Young (TEDDY) study. Both methods detected a similar suite of risk factors, but the rule-based analysis was superior at detecting multiple interactions between the risk factors that characterize the subgroups. A further investigation of the particular characteristics of each subgroup may detect the special health needs of the subgroup and lead to tailored interventions.

  2. The Prediction Properties of Inverse and Reverse Regression for the Simple Linear Calibration Problem

    NASA Technical Reports Server (NTRS)

    Parker, Peter A.; Geoffrey, Vining G.; Wilson, Sara R.; Szarka, John L., III; Johnson, Nels G.

    2010-01-01

    The calibration of measurement systems is a fundamental but under-studied problem within industrial statistics. The origins of this problem go back to basic chemical analysis based on NIST standards. In today's world these issues extend to mechanical, electrical, and materials engineering. Often, these new scenarios do not provide "gold standards" such as the standard weights provided by NIST. This paper considers the classic "forward regression followed by inverse regression" approach. In this approach the initial experiment treats the "standards" as the regressor and the observed values as the response to calibrate the instrument. The analyst then must invert the resulting regression model in order to use the instrument to make actual measurements in practice. This paper compares this classical approach to "reverse regression," which treats the standards as the response and the observed measurements as the regressor in the calibration experiment. Such an approach is intuitively appealing because it avoids the need for the inverse regression. However, it also violates some of the basic regression assumptions.

  3. Statistical approaches to account for missing values in accelerometer data: Applications to modeling physical activity.

    PubMed

    Yue Xu, Selene; Nelson, Sandahl; Kerr, Jacqueline; Godbole, Suneeta; Patterson, Ruth; Merchant, Gina; Abramson, Ian; Staudenmayer, John; Natarajan, Loki

    2018-04-01

    Physical inactivity is a recognized risk factor for many chronic diseases. Accelerometers are increasingly used as an objective means to measure daily physical activity. One challenge in using these devices is missing data due to device nonwear. We used a well-characterized cohort of 333 overweight postmenopausal breast cancer survivors to examine missing data patterns of accelerometer outputs over the day. Based on these observed missingness patterns, we created psuedo-simulated datasets with realistic missing data patterns. We developed statistical methods to design imputation and variance weighting algorithms to account for missing data effects when fitting regression models. Bias and precision of each method were evaluated and compared. Our results indicated that not accounting for missing data in the analysis yielded unstable estimates in the regression analysis. Incorporating variance weights and/or subject-level imputation improved precision by >50%, compared to ignoring missing data. We recommend that these simple easy-to-implement statistical tools be used to improve analysis of accelerometer data.

  4. Computer-Assisted, Programmed Text, and Lecture Modes of Instruction in Three Medical Training Courses: Comparative Evaluation. Final Report.

    ERIC Educational Resources Information Center

    Deignan, Gerard M.; And Others

    This report contains a comparative analysis of the differential effectiveness of computer-assisted instruction (CAI), programmed instructional text (PIT), and lecture methods of instruction in three medical courses--Medical Laboratory, Radiology, and Dental. The summative evaluation includes (1) multiple regression analyses conducted to predict…

  5. Regression analysis and transfer function in estimating the parameters of central pulse waves from brachial pulse wave.

    PubMed

    Chai Rui; Li Si-Man; Xu Li-Sheng; Yao Yang; Hao Li-Ling

    2017-07-01

    This study mainly analyzed the parameters such as ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO) and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. These parameters extracted from the central pulse wave invasively measured were compared with the parameters measured from the brachial pulse waves by a regression model and a transfer function model. The accuracy of the parameters which were estimated by the regression model and the transfer function model was compared too. Our findings showed that in addition to the k value, the above parameters of the central pulse wave and the brachial pulse wave invasively measured had positive correlation. Both the regression model parameters including A_slope, DBP, SEVR and the transfer function model parameters had good consistency with the parameters invasively measured, and they had the same effect of consistency. The regression equations of the three parameters were expressed by Y'=a+bx. The SBP, PP, SV, CO of central pulse wave could be calculated through the regression model, but their accuracies were worse than that of transfer function model.

  6. Meta-Analysis of the Reasoned Action Approach (RAA) to Understanding Health Behaviors.

    PubMed

    McEachan, Rosemary; Taylor, Natalie; Harrison, Reema; Lawton, Rebecca; Gardner, Peter; Conner, Mark

    2016-08-01

    Reasoned action approach (RAA) includes subcomponents of attitude (experiential/instrumental), perceived norm (injunctive/descriptive), and perceived behavioral control (capacity/autonomy) to predict intention and behavior. To provide a meta-analysis of the RAA for health behaviors focusing on comparing the pairs of RAA subcomponents and differences between health protection and health-risk behaviors. The present research reports a meta-analysis of correlational tests of RAA subcomponents, examination of moderators, and combined effects of subcomponents on intention and behavior. Regressions were used to predict intention and behavior based on data from studies measuring all variables. Capacity and experiential attitude had large, and other constructs had small-medium-sized correlations with intention; all constructs except autonomy were significant independent predictors of intention in regressions. Intention, capacity, and experiential attitude had medium-large, and other constructs had small-medium-sized correlations with behavior; intention, capacity, experiential attitude, and descriptive norm were significant independent predictors of behavior in regressions. The RAA subcomponents have utility in predicting and understanding health behaviors.

  7. Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Monteiro, Sildomar Takahashi; Minekawa, Yohei; Kosugi, Yukio; Akazawa, Tsuneya; Oda, Kunio

    Hyperspectral image data provides a powerful tool for non-destructive crop analysis. This paper investigates a hyperspectral image data-processing method to predict the sweetness and amino acid content of soybean crops. Regression models based on artificial neural networks were developed in order to calculate the level of sucrose, glucose, fructose, and nitrogen concentrations, which can be related to the sweetness and amino acid content of vegetables. A performance analysis was conducted comparing regression models obtained using different preprocessing methods, namely, raw reflectance, second derivative, and principal components analysis. This method is demonstrated using high-resolution hyperspectral data of wavelengths ranging from the visible to the near infrared acquired from an experimental field of green vegetable soybeans. The best predictions were achieved using a nonlinear regression model of the second derivative transformed dataset. Glucose could be predicted with greater accuracy, followed by sucrose, fructose and nitrogen. The proposed method provides the possibility to provide relatively accurate maps predicting the chemical content of soybean crop fields.

  8. Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data

    PubMed Central

    Ying, Gui-shuang; Maguire, Maureen G; Glynn, Robert; Rosner, Bernard

    2017-01-01

    Purpose To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data. Methods We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field data in the elderly. Results When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI −0.03 to 0.32D, P=0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, P=0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller P-values, while analysis of the worse eye provided larger P-values than mixed effects models and marginal models. Conclusion In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision. PMID:28102741

  9. The Use of Linear Programming for Prediction.

    ERIC Educational Resources Information Center

    Schnittjer, Carl J.

    The purpose of the study was to develop a linear programming model to be used for prediction, test the accuracy of the predictions, and compare the accuracy with that produced by curvilinear multiple regression analysis. (Author)

  10. Linear regression analysis and its application to multivariate chromatographic calibration for the quantitative analysis of two-component mixtures.

    PubMed

    Dinç, Erdal; Ozdemir, Abdil

    2005-01-01

    Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.

  11. An Enzymatic Clinical Chemistry Laboratory Experiment Incorporating an Introduction to Mathematical Method Comparison Techniques

    ERIC Educational Resources Information Center

    Duxbury, Mark

    2004-01-01

    An enzymatic laboratory experiment based on the analysis of serum is described that is suitable for students of clinical chemistry. The experiment incorporates an introduction to mathematical method-comparison techniques in which three different clinical glucose analysis methods are compared using linear regression and Bland-Altman difference…

  12. Evaluation of in-line Raman data for end-point determination of a coating process: Comparison of Science-Based Calibration, PLS-regression and univariate data analysis.

    PubMed

    Barimani, Shirin; Kleinebudde, Peter

    2017-10-01

    A multivariate analysis method, Science-Based Calibration (SBC), was used for the first time for endpoint determination of a tablet coating process using Raman data. Two types of tablet cores, placebo and caffeine cores, received a coating suspension comprising a polyvinyl alcohol-polyethylene glycol graft-copolymer and titanium dioxide to a maximum coating thickness of 80µm. Raman spectroscopy was used as in-line PAT tool. The spectra were acquired every minute and correlated to the amount of applied aqueous coating suspension. SBC was compared to another well-known multivariate analysis method, Partial Least Squares-regression (PLS) and a simpler approach, Univariate Data Analysis (UVDA). All developed calibration models had coefficient of determination values (R 2 ) higher than 0.99. The coating endpoints could be predicted with root mean square errors (RMSEP) less than 3.1% of the applied coating suspensions. Compared to PLS and UVDA, SBC proved to be an alternative multivariate calibration method with high predictive power. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The regression discontinuity design showed to be a valid alternative to a randomized controlled trial for estimating treatment effects.

    PubMed

    Maas, Iris L; Nolte, Sandra; Walter, Otto B; Berger, Thomas; Hautzinger, Martin; Hohagen, Fritz; Lutz, Wolfgang; Meyer, Björn; Schröder, Johanna; Späth, Christina; Klein, Jan Philipp; Moritz, Steffen; Rose, Matthias

    2017-02-01

    To compare treatment effect estimates obtained from a regression discontinuity (RD) design with results from an actual randomized controlled trial (RCT). Data from an RCT (EVIDENT), which studied the effect of an Internet intervention on depressive symptoms measured with the Patient Health Questionnaire (PHQ-9), were used to perform an RD analysis, in which treatment allocation was determined by a cutoff value at baseline (PHQ-9 = 10). A linear regression model was fitted to the data, selecting participants above the cutoff who had received the intervention (n = 317) and control participants below the cutoff (n = 187). Outcome was PHQ-9 sum score 12 weeks after baseline. Robustness of the effect estimate was studied; the estimate was compared with the RCT treatment effect. The final regression model showed a regression coefficient of -2.29 [95% confidence interval (CI): -3.72 to -.85] compared with a treatment effect found in the RCT of -1.57 (95% CI: -2.07 to -1.07). Although the estimates obtained from two designs are not equal, their confidence intervals overlap, suggesting that an RD design can be a valid alternative for RCTs. This finding is particularly important for situations where an RCT may not be feasible or ethical as is often the case in clinical research settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Parametric Methods for Dynamic 11C-Phenytoin PET Studies.

    PubMed

    Mansor, Syahir; Yaqub, Maqsood; Boellaard, Ronald; Froklage, Femke E; de Vries, Anke; Bakker, Esther D M; Voskuyl, Rob A; Eriksson, Jonas; Schwarte, Lothar A; Verbeek, Joost; Windhorst, Albert D; Lammertsma, Adriaan A

    2017-03-01

    In this study, the performance of various methods for generating quantitative parametric images of dynamic 11 C-phenytoin PET studies was evaluated. Methods: Double-baseline 60-min dynamic 11 C-phenytoin PET studies, including online arterial sampling, were acquired for 6 healthy subjects. Parametric images were generated using Logan plot analysis, a basis function method, and spectral analysis. Parametric distribution volume (V T ) and influx rate ( K 1 ) were compared with those obtained from nonlinear regression analysis of time-activity curves. In addition, global and regional test-retest (TRT) variability was determined for parametric K 1 and V T values. Results: Biases in V T observed with all parametric methods were less than 5%. For K 1 , spectral analysis showed a negative bias of 16%. The mean TRT variabilities of V T and K 1 were less than 10% for all methods. Shortening the scan duration to 45 min provided similar V T and K 1 with comparable TRT performance compared with 60-min data. Conclusion: Among the various parametric methods tested, the basis function method provided parametric V T and K 1 values with the least bias compared with nonlinear regression data and showed TRT variabilities lower than 5%, also for smaller volume-of-interest sizes (i.e., higher noise levels) and shorter scan duration. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  15. Cluster Analysis of Campylobacter jejuni Genotypes Isolated from Small and Medium-Sized Mammalian Wildlife and Bovine Livestock from Ontario Farms.

    PubMed

    Viswanathan, M; Pearl, D L; Taboada, E N; Parmley, E J; Mutschall, S K; Jardine, C M

    2017-05-01

    Using data collected from a cross-sectional study of 25 farms (eight beef, eight swine and nine dairy) in 2010, we assessed clustering of molecular subtypes of C. jejuni based on a Campylobacter-specific 40 gene comparative genomic fingerprinting assay (CGF40) subtypes, using unweighted pair-group method with arithmetic mean (UPGMA) analysis, and multiple correspondence analysis. Exact logistic regression was used to determine which genes differentiate wildlife and livestock subtypes in our study population. A total of 33 bovine livestock (17 beef and 16 dairy), 26 wildlife (20 raccoon (Procyon lotor), five skunk (Mephitis mephitis) and one mouse (Peromyscus spp.) C. jejuni isolates were subtyped using CGF40. Dendrogram analysis, based on UPGMA, showed distinct branches separating bovine livestock and mammalian wildlife isolates. Furthermore, two-dimensional multiple correspondence analysis was highly concordant with dendrogram analysis showing clear differentiation between livestock and wildlife CGF40 subtypes. Based on multilevel logistic regression models with a random intercept for farm of origin, we found that isolates in general, and raccoons more specifically, were significantly more likely to be part of the wildlife branch. Exact logistic regression conducted gene by gene revealed 15 genes that were predictive of whether an isolate was of wildlife or bovine livestock isolate origin. Both multiple correspondence analysis and exact logistic regression revealed that in most cases, the presence of a particular gene (13 of 15) was associated with an isolate being of livestock rather than wildlife origin. In conclusion, the evidence gained from dendrogram analysis, multiple correspondence analysis and exact logistic regression indicates that mammalian wildlife carry CGF40 subtypes of C. jejuni distinct from those carried by bovine livestock. Future studies focused on source attribution of C. jejuni in human infections will help determine whether wildlife transmit Campylobacter jejuni directly to humans. © 2016 Blackwell Verlag GmbH.

  16. Modeling time-to-event (survival) data using classification tree analysis.

    PubMed

    Linden, Ariel; Yarnold, Paul R

    2017-12-01

    Time to the occurrence of an event is often studied in health research. Survival analysis differs from other designs in that follow-up times for individuals who do not experience the event by the end of the study (called censored) are accounted for in the analysis. Cox regression is the standard method for analysing censored data, but the assumptions required of these models are easily violated. In this paper, we introduce classification tree analysis (CTA) as a flexible alternative for modelling censored data. Classification tree analysis is a "decision-tree"-like classification model that provides parsimonious, transparent (ie, easy to visually display and interpret) decision rules that maximize predictive accuracy, derives exact P values via permutation tests, and evaluates model cross-generalizability. Using empirical data, we identify all statistically valid, reproducible, longitudinally consistent, and cross-generalizable CTA survival models and then compare their predictive accuracy to estimates derived via Cox regression and an unadjusted naïve model. Model performance is assessed using integrated Brier scores and a comparison between estimated survival curves. The Cox regression model best predicts average incidence of the outcome over time, whereas CTA survival models best predict either relatively high, or low, incidence of the outcome over time. Classification tree analysis survival models offer many advantages over Cox regression, such as explicit maximization of predictive accuracy, parsimony, statistical robustness, and transparency. Therefore, researchers interested in accurate prognoses and clear decision rules should consider developing models using the CTA-survival framework. © 2017 John Wiley & Sons, Ltd.

  17. Continuous infusion of low-dose unfractionated heparin after aneurysmal subarachnoid hemorrhage: a preliminary study of cognitive outcomes.

    PubMed

    James, Robert F; Khattar, Nicolas K; Aljuboori, Zaid S; Page, Paul S; Shao, Elaine Y; Carter, Lacey M; Meyer, Kimberly S; Daniels, Michael W; Craycroft, John; Gaughen, John R; Chaudry, M Imran; Rai, Shesh N; Everhart, D Erik; Simard, J Marc

    2018-05-11

    OBJECTIVE Cognitive dysfunction occurs in up to 70% of aneurysmal subarachnoid hemorrhage (aSAH) survivors. Low-dose intravenous heparin (LDIVH) infusion using the Maryland protocol was recently shown to reduce clinical vasospasm and vasospasm-related infarction. In this study, the Montreal Cognitive Assessment (MoCA) was used to evaluate cognitive changes in aSAH patients treated with the Maryland LDIVH protocol compared with controls. METHODS A retrospective analysis of all patients treated for aSAH between July 2009 and April 2014 was conducted. Beginning in 2012, aSAH patients were treated with LDIVH in the postprocedural period. The MoCA was administered to all aSAH survivors prospectively during routine follow-up visits, at least 3 months after aSAH, by trained staff blinded to treatment status. Mean MoCA scores were compared between groups, and regression analyses were performed for relevant factors. RESULTS No significant differences in baseline characteristics were observed between groups. The mean MoCA score for the LDIVH group (n = 25) was 26.4 compared with 22.7 in controls (n = 22) (p = 0.013). Serious cognitive impairment (MoCA ≤ 20) was observed in 32% of controls compared with 0% in the LDIVH group (p = 0.008). Linear regression analysis demonstrated that only LDIVH was associated with a positive influence on MoCA scores (β = 3.68, p =0.019), whereas anterior communicating artery aneurysms and fevers were negatively associated with MoCA scores. Multivariable linear regression analysis resulted in all 3 factors maintaining significance. There were no treatment complications. CONCLUSIONS This preliminary study suggests that the Maryland LDIVH protocol may improve cognitive outcomes in aSAH patients. A randomized controlled trial is needed to determine the safety and potential benefit of unfractionated heparin in aSAH patients.

  18. Error minimization algorithm for comparative quantitative PCR analysis: Q-Anal.

    PubMed

    OConnor, William; Runquist, Elizabeth A

    2008-07-01

    Current methods for comparative quantitative polymerase chain reaction (qPCR) analysis, the threshold and extrapolation methods, either make assumptions about PCR efficiency that require an arbitrary threshold selection process or extrapolate to estimate relative levels of messenger RNA (mRNA) transcripts. Here we describe an algorithm, Q-Anal, that blends elements from current methods to by-pass assumptions regarding PCR efficiency and improve the threshold selection process to minimize error in comparative qPCR analysis. This algorithm uses iterative linear regression to identify the exponential phase for both target and reference amplicons and then selects, by minimizing linear regression error, a fluorescence threshold where efficiencies for both amplicons have been defined. From this defined fluorescence threshold, cycle time (Ct) and the error for both amplicons are calculated and used to determine the expression ratio. Ratios in complementary DNA (cDNA) dilution assays from qPCR data were analyzed by the Q-Anal method and compared with the threshold method and an extrapolation method. Dilution ratios determined by the Q-Anal and threshold methods were 86 to 118% of the expected cDNA ratios, but relative errors for the Q-Anal method were 4 to 10% in comparison with 4 to 34% for the threshold method. In contrast, ratios determined by an extrapolation method were 32 to 242% of the expected cDNA ratios, with relative errors of 67 to 193%. Q-Anal will be a valuable and quick method for minimizing error in comparative qPCR analysis.

  19. Meta-analysis of haplotype-association studies: comparison of methods and empirical evaluation of the literature

    PubMed Central

    2011-01-01

    Background Meta-analysis is a popular methodology in several fields of medical research, including genetic association studies. However, the methods used for meta-analysis of association studies that report haplotypes have not been studied in detail. In this work, methods for performing meta-analysis of haplotype association studies are summarized, compared and presented in a unified framework along with an empirical evaluation of the literature. Results We present multivariate methods that use summary-based data as well as methods that use binary and count data in a generalized linear mixed model framework (logistic regression, multinomial regression and Poisson regression). The methods presented here avoid the inflation of the type I error rate that could be the result of the traditional approach of comparing a haplotype against the remaining ones, whereas, they can be fitted using standard software. Moreover, formal global tests are presented for assessing the statistical significance of the overall association. Although the methods presented here assume that the haplotypes are directly observed, they can be easily extended to allow for such an uncertainty by weighting the haplotypes by their probability. Conclusions An empirical evaluation of the published literature and a comparison against the meta-analyses that use single nucleotide polymorphisms, suggests that the studies reporting meta-analysis of haplotypes contain approximately half of the included studies and produce significant results twice more often. We show that this excess of statistically significant results, stems from the sub-optimal method of analysis used and, in approximately half of the cases, the statistical significance is refuted if the data are properly re-analyzed. Illustrative examples of code are given in Stata and it is anticipated that the methods developed in this work will be widely applied in the meta-analysis of haplotype association studies. PMID:21247440

  20. Comparison of Cox's Regression Model and Parametric Models in Evaluating the Prognostic Factors for Survival after Liver Transplantation in Shiraz during 2000-2012.

    PubMed

    Adelian, R; Jamali, J; Zare, N; Ayatollahi, S M T; Pooladfar, G R; Roustaei, N

    2015-01-01

    Identification of the prognostic factors for survival in patients with liver transplantation is challengeable. Various methods of survival analysis have provided different, sometimes contradictory, results from the same data. To compare Cox's regression model with parametric models for determining the independent factors for predicting adults' and pediatrics' survival after liver transplantation. This study was conducted on 183 pediatric patients and 346 adults underwent liver transplantation in Namazi Hospital, Shiraz, southern Iran. The study population included all patients undergoing liver transplantation from 2000 to 2012. The prognostic factors sex, age, Child class, initial diagnosis of the liver disease, PELD/MELD score, and pre-operative laboratory markers were selected for survival analysis. Among 529 patients, 346 (64.5%) were adult and 183 (34.6%) were pediatric cases. Overall, the lognormal distribution was the best-fitting model for adult and pediatric patients. Age in adults (HR=1.16, p<0.05) and weight (HR=2.68, p<0.01) and Child class B (HR=2.12, p<0.05) in pediatric patients were the most important factors for prediction of survival after liver transplantation. Adult patients younger than the mean age and pediatric patients weighing above the mean and Child class A (compared to those with classes B or C) had better survival. Parametric regression model is a good alternative for the Cox's regression model.

  1. Comparing machine learning and logistic regression methods for predicting hypertension using a combination of gene expression and next-generation sequencing data.

    PubMed

    Held, Elizabeth; Cape, Joshua; Tintle, Nathan

    2016-01-01

    Machine learning methods continue to show promise in the analysis of data from genetic association studies because of the high number of variables relative to the number of observations. However, few best practices exist for the application of these methods. We extend a recently proposed supervised machine learning approach for predicting disease risk by genotypes to be able to incorporate gene expression data and rare variants. We then apply 2 different versions of the approach (radial and linear support vector machines) to simulated data from Genetic Analysis Workshop 19 and compare performance to logistic regression. Method performance was not radically different across the 3 methods, although the linear support vector machine tended to show small gains in predictive ability relative to a radial support vector machine and logistic regression. Importantly, as the number of genes in the models was increased, even when those genes contained causal rare variants, model predictive ability showed a statistically significant decrease in performance for both the radial support vector machine and logistic regression. The linear support vector machine showed more robust performance to the inclusion of additional genes. Further work is needed to evaluate machine learning approaches on larger samples and to evaluate the relative improvement in model prediction from the incorporation of gene expression data.

  2. Empirical and targeted therapy of candidemia with fluconazole versus echinocandins: a propensity score-derived analysis of a population-based, multicentre prospective cohort.

    PubMed

    López-Cortés, L E; Almirante, B; Cuenca-Estrella, M; Garnacho-Montero, J; Padilla, B; Puig-Asensio, M; Ruiz-Camps, I; Rodríguez-Baño, J

    2016-08-01

    We compared the clinical efficacy of fluconazole and echinocandins in the treatment of candidemia in real practice. The CANDIPOP study is a prospective, population-based cohort study on candidemia carried out between May 2010 and April 2011 in 29 Spanish hospitals. Using strict inclusion criteria, we separately compared the impact of empirical and targeted therapy with fluconazole or echinocandins on 30-day mortality. Cox regression, including a propensity score (PS) for receiving echinocandins, stratified analysis on the PS quartiles and PS-based matched analyses, were performed. The empirical and targeted therapy cohorts comprised 316 and 421 cases, respectively; 30-day mortality was 18.7% with fluconazole and 33.9% with echinocandins (p 0.02) in the empirical therapy group and 19.8% with fluconazole and 27.7% with echinocandins (p 0.06) in the targeted therapy group. Multivariate Cox regression analysis including PS showed that empirical therapy with fluconazole was associated with better prognosis (adjusted hazard ratio 0.38; 95% confidence interval 0.17-0.81; p 0.01); no differences were found within each PS quartile or in cases matched according to PS. Targeted therapy with fluconazole did not show a significant association with mortality in the Cox regression analysis (adjusted hazard ratio 0.77; 95% confidence interval 0.41-1.46; p 0.63), in the PS quartiles or in PS-matched cases. The results were similar among patients with severe sepsis and septic shock. Empirical or targeted treatment with fluconazole was not associated with increased 30-day mortality compared to echinocandins among adults with candidemia. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  3. Estimation of Covariance Matrix on Bi-Response Longitudinal Data Analysis with Penalized Spline Regression

    NASA Astrophysics Data System (ADS)

    Islamiyati, A.; Fatmawati; Chamidah, N.

    2018-03-01

    The correlation assumption of the longitudinal data with bi-response occurs on the measurement between the subjects of observation and the response. It causes the auto-correlation of error, and this can be overcome by using a covariance matrix. In this article, we estimate the covariance matrix based on the penalized spline regression model. Penalized spline involves knot points and smoothing parameters simultaneously in controlling the smoothness of the curve. Based on our simulation study, the estimated regression model of the weighted penalized spline with covariance matrix gives a smaller error value compared to the error of the model without covariance matrix.

  4. Least-Squares Regression and Spectral Residual Augmented Classical Least-Squares Chemometric Models for Stability-Indicating Analysis of Agomelatine and Its Degradation Products: A Comparative Study.

    PubMed

    Naguib, Ibrahim A; Abdelrahman, Maha M; El Ghobashy, Mohamed R; Ali, Nesma A

    2016-01-01

    Two accurate, sensitive, and selective stability-indicating methods are developed and validated for simultaneous quantitative determination of agomelatine (AGM) and its forced degradation products (Deg I and Deg II), whether in pure forms or in pharmaceutical formulations. Partial least-squares regression (PLSR) and spectral residual augmented classical least-squares (SRACLS) are two chemometric models that are being subjected to a comparative study through handling UV spectral data in range (215-350 nm). For proper analysis, a three-factor, four-level experimental design was established, resulting in a training set consisting of 16 mixtures containing different ratios of interfering species. An independent test set consisting of eight mixtures was used to validate the prediction ability of the suggested models. The results presented indicate the ability of mentioned multivariate calibration models to analyze AGM, Deg I, and Deg II with high selectivity and accuracy. The analysis results of the pharmaceutical formulations were statistically compared to the reference HPLC method, with no significant differences observed regarding accuracy and precision. The SRACLS model gives comparable results to the PLSR model; however, it keeps the qualitative spectral information of the classical least-squares algorithm for analyzed components.

  5. Healthcare Expenditures Associated with Depression Among Individuals with Osteoarthritis: Post-Regression Linear Decomposition Approach.

    PubMed

    Agarwal, Parul; Sambamoorthi, Usha

    2015-12-01

    Depression is common among individuals with osteoarthritis and leads to increased healthcare burden. The objective of this study was to examine excess total healthcare expenditures associated with depression among individuals with osteoarthritis in the US. Adults with self-reported osteoarthritis (n = 1881) were identified using data from the 2010 Medical Expenditure Panel Survey (MEPS). Among those with osteoarthritis, chi-square tests and ordinary least square regressions (OLS) were used to examine differences in healthcare expenditures between those with and without depression. Post-regression linear decomposition technique was used to estimate the relative contribution of different constructs of the Anderson's behavioral model, i.e., predisposing, enabling, need, personal healthcare practices, and external environment factors, to the excess expenditures associated with depression among individuals with osteoarthritis. All analysis accounted for the complex survey design of MEPS. Depression coexisted among 20.6 % of adults with osteoarthritis. The average total healthcare expenditures were $13,684 among adults with depression compared to $9284 among those without depression. Multivariable OLS regression revealed that adults with depression had 38.8 % higher healthcare expenditures (p < 0.001) compared to those without depression. Post-regression linear decomposition analysis indicated that 50 % of differences in expenditures among adults with and without depression can be explained by differences in need factors. Among individuals with coexisting osteoarthritis and depression, excess healthcare expenditures associated with depression were mainly due to comorbid anxiety, chronic conditions and poor health status. These expenditures may potentially be reduced by providing timely intervention for need factors or by providing care under a collaborative care model.

  6. The association between short interpregnancy interval and preterm birth in Louisiana: a comparison of methods.

    PubMed

    Howard, Elizabeth J; Harville, Emily; Kissinger, Patricia; Xiong, Xu

    2013-07-01

    There is growing interest in the application of propensity scores (PS) in epidemiologic studies, especially within the field of reproductive epidemiology. This retrospective cohort study assesses the impact of a short interpregnancy interval (IPI) on preterm birth and compares the results of the conventional logistic regression analysis with analyses utilizing a PS. The study included 96,378 singleton infants from Louisiana birth certificate data (1995-2007). Five regression models designed for methods comparison are presented. Ten percent (10.17 %) of all births were preterm; 26.83 % of births were from a short IPI. The PS-adjusted model produced a more conservative estimate of the exposure variable compared to the conventional logistic regression method (β-coefficient: 0.21 vs. 0.43), as well as a smaller standard error (0.024 vs. 0.028), odds ratio and 95 % confidence intervals [1.15 (1.09, 1.20) vs. 1.23 (1.17, 1.30)]. The inclusion of more covariate and interaction terms in the PS did not change the estimates of the exposure variable. This analysis indicates that PS-adjusted regression may be appropriate for validation of conventional methods in a large dataset with a fairly common outcome. PS's may be beneficial in producing more precise estimates, especially for models with many confounders and effect modifiers and where conventional adjustment with logistic regression is unsatisfactory. Short intervals between pregnancies are associated with preterm birth in this population, according to either technique. Birth spacing is an issue that women have some control over. Educational interventions, including birth control, should be applied during prenatal visits and following delivery.

  7. Estimating current and future streamflow characteristics at ungaged sites, central and eastern Montana, with application to evaluating effects of climate change on fish populations

    USGS Publications Warehouse

    Sando, Roy; Chase, Katherine J.

    2017-03-23

    A common statistical procedure for estimating streamflow statistics at ungaged locations is to develop a relational model between streamflow and drainage basin characteristics at gaged locations using least squares regression analysis; however, least squares regression methods are parametric and make constraining assumptions about the data distribution. The random forest regression method provides an alternative nonparametric method for estimating streamflow characteristics at ungaged sites and requires that the data meet fewer statistical conditions than least squares regression methods.Random forest regression analysis was used to develop predictive models for 89 streamflow characteristics using Precipitation-Runoff Modeling System simulated streamflow data and drainage basin characteristics at 179 sites in central and eastern Montana. The predictive models were developed from streamflow data simulated for current (baseline, water years 1982–99) conditions and three future periods (water years 2021–38, 2046–63, and 2071–88) under three different climate-change scenarios. These predictive models were then used to predict streamflow characteristics for baseline conditions and three future periods at 1,707 fish sampling sites in central and eastern Montana. The average root mean square error for all predictive models was about 50 percent. When streamflow predictions at 23 fish sampling sites were compared to nearby locations with simulated data, the mean relative percent difference was about 43 percent. When predictions were compared to streamflow data recorded at 21 U.S. Geological Survey streamflow-gaging stations outside of the calibration basins, the average mean absolute percent error was about 73 percent.

  8. School Progress Among Children of Same-Sex Couples.

    PubMed

    Watkins, Caleb S

    2018-06-01

    This study uses logit regressions on a pooled sample of children from the 2012, 2013, and 2014 American Community Survey to perform a nationally representative analysis of school progress for a large sample of 4,430 children who reside with same-sex couples. Odds ratios from regressions that compare children between different-sex married couples and same-sex couples fail to show significant differences in normal school progress between households across a variety of sample compositions. Likewise, marginal effects from regressions that compare children with similar family dynamics between different-sex married couples and same-sex couples fail to predict significantly higher probabilities of grade retention for children of same-sex couples. Significantly lower grade retention rates are sometimes predicted for children of same-sex couples than for different-sex married couples, but these differences are sensitive to sample exclusions and do not indicate causal benefits to same-sex parenting.

  9. How is the weather? Forecasting inpatient glycemic control

    PubMed Central

    Saulnier, George E; Castro, Janna C; Cook, Curtiss B; Thompson, Bithika M

    2017-01-01

    Aim: Apply methods of damped trend analysis to forecast inpatient glycemic control. Method: Observed and calculated point-of-care blood glucose data trends were determined over 62 weeks. Mean absolute percent error was used to calculate differences between observed and forecasted values. Comparisons were drawn between model results and linear regression forecasting. Results: The forecasted mean glucose trends observed during the first 24 and 48 weeks of projections compared favorably to the results provided by linear regression forecasting. However, in some scenarios, the damped trend method changed inferences compared with linear regression. In all scenarios, mean absolute percent error values remained below the 10% accepted by demand industries. Conclusion: Results indicate that forecasting methods historically applied within demand industries can project future inpatient glycemic control. Additional study is needed to determine if forecasting is useful in the analyses of other glucometric parameters and, if so, how to apply the techniques to quality improvement. PMID:29134125

  10. Harmony search optimization in dimensional accuracy of die sinking EDM process using SS316L stainless steel

    NASA Astrophysics Data System (ADS)

    Deris, A. M.; Zain, A. M.; Sallehuddin, R.; Sharif, S.

    2017-09-01

    Electric discharge machine (EDM) is one of the widely used nonconventional machining processes for hard and difficult to machine materials. Due to the large number of machining parameters in EDM and its complicated structural, the selection of the optimal solution of machining parameters for obtaining minimum machining performance is remain as a challenging task to the researchers. This paper proposed experimental investigation and optimization of machining parameters for EDM process on stainless steel 316L work piece using Harmony Search (HS) algorithm. The mathematical model was developed based on regression approach with four input parameters which are pulse on time, peak current, servo voltage and servo speed to the output response which is dimensional accuracy (DA). The optimal result of HS approach was compared with regression analysis and it was found HS gave better result y giving the most minimum DA value compared with regression approach.

  11. Direct evidence on the immune-mediated spontaneous regression of human cancer: an incentive for pharmaceutical companies to develop a novel anti-cancer vaccine.

    PubMed

    Saleh, F; Renno, W; Klepacek, I; Ibrahim, G; Dashti, H; Asfar, S; Behbehani, A; Al-Sayer, H; Dashti, A; Kerry, Crotty

    2005-01-01

    To develop an effective pharmaceutical treatment for a disease, we need to fully understand the biological behavior of that disease, especially when dealing with cancer. The current available treatment for cancer may help in lessening the burden of the disease or, on certain occasions, in increasing the survival of the patient. However, a total eradication of cancer remains the researchers' hope. Some of the discoveries in the field of medicine relied on observations of natural events. Among these events is the spontaneous regression of cancer. It has been argued that such regression could be immunologically-mediated, but no direct evidence has been shown to support such an argument. We, hereby, provide compelling evidence that spontaneous cancer regression in humans is immunologically-mediated, hoping that the results from this study would stimulate the pharmaceutical industry to focus more on cancer vaccine immunotherapy. Our results showed that patients with >3 primary melanomas (very rare group among cancer patients) develop significant histopathological spontaneous regression of further melanomas that they could acquire during their life (P=0.0080) as compared to patients with single primary melanoma where the phenomenon of spontaneous regression is absent or minimal. It seems that such regression resulted from the repeated exposure to the tumor which mimics a self-immunization process. Analysis of the regressing tumors revealed heavy infiltration by T lymphocytes as compared to non-regressing tumors (P<0.0001), the predominant of which were T cytotoxic rather than T helper. Mature dendritic cells were also found in significant number (P<0.0001) in the regressing tumors as compared to the non regressing ones, which demonstrate an active involvement of the different arms of the immune system in the multiple primary melanoma patients in the process of tumor regression. Also, MHC expression was significantly higher in the regressing versus the non-regressing tumors (P <0.0001), which reflects a proper tumor antigen expression. Associated with tumor regression was also loss of the melanoma common tumor antigen Melan A/ MART-1 in the multiple primary melanoma patients as compared to the single primary ones (P=0.0041). Furthermore, loss of Melan A/ MART-1 in the regressing tumors significantly correlated with the presence of Melan A/ MART-1-specific CTLs in the peripheral blood of these patients (P=0.03), which adds to the evidence that the phenomenon of regression seen in these patients was immunologically-mediated and tumor-specific. Such correlation was also seen in another rare group of melanoma patients, namely those with occult primary melanoma. The lesson that we could learn from nature in this study is that inducing cancer regression using the different arms of the immune system is possible. Also, developing a novel cancer vaccine is not out of reach.

  12. Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression

    NASA Astrophysics Data System (ADS)

    Chu, Hone-Jay; Kong, Shish-Jeng; Chang, Chih-Hua

    2018-03-01

    The turbidity (TB) of a water body varies with time and space. Water quality is traditionally estimated via linear regression based on satellite images. However, estimating and mapping water quality require a spatio-temporal nonstationary model, while TB mapping necessitates the use of geographically and temporally weighted regression (GTWR) and geographically weighted regression (GWR) models, both of which are more precise than linear regression. Given the temporal nonstationary models for mapping water quality, GTWR offers the best option for estimating regional water quality. Compared with GWR, GTWR provides highly reliable information for water quality mapping, boasts a relatively high goodness of fit, improves the explanation of variance from 44% to 87%, and shows a sufficient space-time explanatory power. The seasonal patterns of TB and the main spatial patterns of TB variability can be identified using the estimated TB maps from GTWR and by conducting an empirical orthogonal function (EOF) analysis.

  13. Support vector regression and artificial neural network models for stability indicating analysis of mebeverine hydrochloride and sulpiride mixtures in pharmaceutical preparation: A comparative study

    NASA Astrophysics Data System (ADS)

    Naguib, Ibrahim A.; Darwish, Hany W.

    2012-02-01

    A comparison between support vector regression (SVR) and Artificial Neural Networks (ANNs) multivariate regression methods is established showing the underlying algorithm for each and making a comparison between them to indicate the inherent advantages and limitations. In this paper we compare SVR to ANN with and without variable selection procedure (genetic algorithm (GA)). To project the comparison in a sensible way, the methods are used for the stability indicating quantitative analysis of mixtures of mebeverine hydrochloride and sulpiride in binary mixtures as a case study in presence of their reported impurities and degradation products (summing up to 6 components) in raw materials and pharmaceutical dosage form via handling the UV spectral data. For proper analysis, a 6 factor 5 level experimental design was established resulting in a training set of 25 mixtures containing different ratios of the interfering species. An independent test set consisting of 5 mixtures was used to validate the prediction ability of the suggested models. The proposed methods (linear SVR (without GA) and linear GA-ANN) were successfully applied to the analysis of pharmaceutical tablets containing mebeverine hydrochloride and sulpiride mixtures. The results manifest the problem of nonlinearity and how models like the SVR and ANN can handle it. The methods indicate the ability of the mentioned multivariate calibration models to deconvolute the highly overlapped UV spectra of the 6 components' mixtures, yet using cheap and easy to handle instruments like the UV spectrophotometer.

  14. A subagging regression method for estimating the qualitative and quantitative state of groundwater

    NASA Astrophysics Data System (ADS)

    Jeong, J.; Park, E.; Choi, J.; Han, W. S.; Yun, S. T.

    2016-12-01

    A subagging regression (SBR) method for the analysis of groundwater data pertaining to the estimation of trend and the associated uncertainty is proposed. The SBR method is validated against synthetic data competitively with other conventional robust and non-robust methods. From the results, it is verified that the estimation accuracies of the SBR method are consistent and superior to those of the other methods and the uncertainties are reasonably estimated where the others have no uncertainty analysis option. To validate further, real quantitative and qualitative data are employed and analyzed comparatively with Gaussian process regression (GPR). For all cases, the trend and the associated uncertainties are reasonably estimated by SBR, whereas the GPR has limitations in representing the variability of non-Gaussian skewed data. From the implementations, it is determined that the SBR method has potential to be further developed as an effective tool of anomaly detection or outlier identification in groundwater state data.

  15. Comparative study of Poincaré plot analysis using short electroencephalogram signals during anaesthesia with spectral edge frequency 95 and bispectral index.

    PubMed

    Hayashi, K; Yamada, T; Sawa, T

    2015-03-01

    The return or Poincaré plot is a non-linear analytical approach in a two-dimensional plane, where a timed signal is plotted against itself after a time delay. Its scatter pattern reflects the randomness and variability in the signals. Quantification of a Poincaré plot of the electroencephalogram has potential to determine anaesthesia depth. We quantified the degree of dispersion (i.e. standard deviation, SD) along the diagonal line of the electroencephalogram-Poincaré plot (named as SD1/SD2), and compared SD1/SD2 values with spectral edge frequency 95 (SEF95) and bispectral index values. The regression analysis showed a tight linear regression equation with a coefficient of determination (R(2) ) value of 0.904 (p < 0.0001) between the Poincaré index (SD1/SD2) and SEF95, and a moderate linear regression equation between SD1/SD2 and bispectral index (R(2)  = 0.346, p < 0.0001). Quantification of the Poincaré plot tightly correlates with SEF95, reflecting anaesthesia-dependent changes in electroencephalogram oscillation. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  16. Identification of extremely premature infants at high risk of rehospitalization.

    PubMed

    Ambalavanan, Namasivayam; Carlo, Waldemar A; McDonald, Scott A; Yao, Qing; Das, Abhik; Higgins, Rosemary D

    2011-11-01

    Extremely low birth weight infants often require rehospitalization during infancy. Our objective was to identify at the time of discharge which extremely low birth weight infants are at higher risk for rehospitalization. Data from extremely low birth weight infants in Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network centers from 2002-2005 were analyzed. The primary outcome was rehospitalization by the 18- to 22-month follow-up, and secondary outcome was rehospitalization for respiratory causes in the first year. Using variables and odds ratios identified by stepwise logistic regression, scoring systems were developed with scores proportional to odds ratios. Classification and regression-tree analysis was performed by recursive partitioning and automatic selection of optimal cutoff points of variables. A total of 3787 infants were evaluated (mean ± SD birth weight: 787 ± 136 g; gestational age: 26 ± 2 weeks; 48% male, 42% black). Forty-five percent of the infants were rehospitalized by 18 to 22 months; 14.7% were rehospitalized for respiratory causes in the first year. Both regression models (area under the curve: 0.63) and classification and regression-tree models (mean misclassification rate: 40%-42%) were moderately accurate. Predictors for the primary outcome by regression were shunt surgery for hydrocephalus, hospital stay of >120 days for pulmonary reasons, necrotizing enterocolitis stage II or higher or spontaneous gastrointestinal perforation, higher fraction of inspired oxygen at 36 weeks, and male gender. By classification and regression-tree analysis, infants with hospital stays of >120 days for pulmonary reasons had a 66% rehospitalization rate compared with 42% without such a stay. The scoring systems and classification and regression-tree analysis models identified infants at higher risk of rehospitalization and might assist planning for care after discharge.

  17. Identification of Extremely Premature Infants at High Risk of Rehospitalization

    PubMed Central

    Carlo, Waldemar A.; McDonald, Scott A.; Yao, Qing; Das, Abhik; Higgins, Rosemary D.

    2011-01-01

    OBJECTIVE: Extremely low birth weight infants often require rehospitalization during infancy. Our objective was to identify at the time of discharge which extremely low birth weight infants are at higher risk for rehospitalization. METHODS: Data from extremely low birth weight infants in Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network centers from 2002–2005 were analyzed. The primary outcome was rehospitalization by the 18- to 22-month follow-up, and secondary outcome was rehospitalization for respiratory causes in the first year. Using variables and odds ratios identified by stepwise logistic regression, scoring systems were developed with scores proportional to odds ratios. Classification and regression-tree analysis was performed by recursive partitioning and automatic selection of optimal cutoff points of variables. RESULTS: A total of 3787 infants were evaluated (mean ± SD birth weight: 787 ± 136 g; gestational age: 26 ± 2 weeks; 48% male, 42% black). Forty-five percent of the infants were rehospitalized by 18 to 22 months; 14.7% were rehospitalized for respiratory causes in the first year. Both regression models (area under the curve: 0.63) and classification and regression-tree models (mean misclassification rate: 40%–42%) were moderately accurate. Predictors for the primary outcome by regression were shunt surgery for hydrocephalus, hospital stay of >120 days for pulmonary reasons, necrotizing enterocolitis stage II or higher or spontaneous gastrointestinal perforation, higher fraction of inspired oxygen at 36 weeks, and male gender. By classification and regression-tree analysis, infants with hospital stays of >120 days for pulmonary reasons had a 66% rehospitalization rate compared with 42% without such a stay. CONCLUSIONS: The scoring systems and classification and regression-tree analysis models identified infants at higher risk of rehospitalization and might assist planning for care after discharge. PMID:22007016

  18. Prediction of Welded Joint Strength in Plasma Arc Welding: A Comparative Study Using Back-Propagation and Radial Basis Neural Networks

    NASA Astrophysics Data System (ADS)

    Srinivas, Kadivendi; Vundavilli, Pandu R.; Manzoor Hussain, M.; Saiteja, M.

    2016-09-01

    Welding input parameters such as current, gas flow rate and torch angle play a significant role in determination of qualitative mechanical properties of weld joint. Traditionally, it is necessary to determine the weld input parameters for every new welded product to obtain a quality weld joint which is time consuming. In the present work, the effect of plasma arc welding parameters on mild steel was studied using a neural network approach. To obtain a response equation that governs the input-output relationships, conventional regression analysis was also performed. The experimental data was constructed based on Taguchi design and the training data required for neural networks were randomly generated, by varying the input variables within their respective ranges. The responses were calculated for each combination of input variables by using the response equations obtained through the conventional regression analysis. The performances in Levenberg-Marquardt back propagation neural network and radial basis neural network (RBNN) were compared on various randomly generated test cases, which are different from the training cases. From the results, it is interesting to note that for the above said test cases RBNN analysis gave improved training results compared to that of feed forward back propagation neural network analysis. Also, RBNN analysis proved a pattern of increasing performance as the data points moved away from the initial input values.

  19. Nursing home quality: a comparative analysis using CMS Nursing Home Compare data to examine differences between rural and nonrural facilities.

    PubMed

    Lutfiyya, May Nawal; Gessert, Charles E; Lipsky, Martin S

    2013-08-01

    Advances in medicine and an aging US population suggest that there will be an increasing demand for nursing home services. Although nursing homes are highly regulated and scrutinized, their quality remains a concern and may be a greater issue to those living in rural communities. Despite this, few studies have investigated differences in the quality of nursing home care across the rural-urban continuum. The purpose of this study was to compare the quality of rural and nonrural nursing homes by using aggregated rankings on multiple quality measures calculated by the Centers for Medicare and Medicaid Services and reported on their Nursing Home Compare Web site. Independent-sample t tests were performed to compare the mean ratings on the reported quality measures of rural and nonrural nursing homes. A linear mixed binary logistic regression model controlling for state was performed to determine if the covariates of ownership, number of beds, and geographic locale were associated with a higher overall quality rating. Of the 15,177 nursing homes included in the study sample, 69.2% were located in nonrural areas and 30.8% in rural areas. The t test analysis comparing the overall, health inspection, staffing, and quality measure ratings of rural and nonrural nursing homes yielded statistically significant results for 3 measures, 2 of which (overall ratings and health inspections) favored rural nursing homes. Although a higher percentage of nursing homes (44.8%-42.2%) received a 4-star or higher rating, regression analysis using an overall rating of 4 stars or higher as the dependent variable revealed that when controlling for state and adjusting for size and ownership, rural nursing homes were less likely to have a 4-star or higher rating when compared with nonrural nursing homes (OR = .901, 95% CI 0.824-0.986). Mixed model logistic regression analysis suggested that rural nursing home quality was not comparable to that of nonrural nursing homes. When controlling for state and adjusting for nursing home size and ownership, rural nursing homes were not as likely to earn a 4-or higher star quality rating as nonrural nursing homes. Copyright © 2013 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.

  20. Bayesian correction for covariate measurement error: A frequentist evaluation and comparison with regression calibration.

    PubMed

    Bartlett, Jonathan W; Keogh, Ruth H

    2018-06-01

    Bayesian approaches for handling covariate measurement error are well established and yet arguably are still relatively little used by researchers. For some this is likely due to unfamiliarity or disagreement with the Bayesian inferential paradigm. For others a contributory factor is the inability of standard statistical packages to perform such Bayesian analyses. In this paper, we first give an overview of the Bayesian approach to handling covariate measurement error, and contrast it with regression calibration, arguably the most commonly adopted approach. We then argue why the Bayesian approach has a number of statistical advantages compared to regression calibration and demonstrate that implementing the Bayesian approach is usually quite feasible for the analyst. Next, we describe the closely related maximum likelihood and multiple imputation approaches and explain why we believe the Bayesian approach to generally be preferable. We then empirically compare the frequentist properties of regression calibration and the Bayesian approach through simulation studies. The flexibility of the Bayesian approach to handle both measurement error and missing data is then illustrated through an analysis of data from the Third National Health and Nutrition Examination Survey.

  1. Effect Size Measure and Analysis of Single Subject Designs

    ERIC Educational Resources Information Center

    Society for Research on Educational Effectiveness, 2013

    2013-01-01

    One of the vexing problems in the analysis of SSD is in the assessment of the effect of intervention. Serial dependence notwithstanding, the linear model approach that has been advanced involves, in general, the fitting of regression lines (or curves) to the set of observations within each phase of the design and comparing the parameters of these…

  2. A Comparison of Alternative Approaches to the Analysis of Interrupted Time-Series.

    ERIC Educational Resources Information Center

    Harrop, John W.; Velicer, Wayne F.

    1985-01-01

    Computer generated data representative of 16 Auto Regressive Integrated Moving Averages (ARIMA) models were used to compare the results of interrupted time-series analysis using: (1) the known model identification, (2) an assumed (l,0,0) model, and (3) an assumed (3,0,0) model as an approximation to the General Transformation approach. (Author/BW)

  3. An EM-based semi-parametric mixture model approach to the regression analysis of competing-risks data.

    PubMed

    Ng, S K; McLachlan, G J

    2003-04-15

    We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright 2003 John Wiley & Sons, Ltd.

  4. Principal component regression analysis with SPSS.

    PubMed

    Liu, R X; Kuang, J; Gong, Q; Hou, X L

    2003-06-01

    The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.

  5. Classifying machinery condition using oil samples and binary logistic regression

    NASA Astrophysics Data System (ADS)

    Phillips, J.; Cripps, E.; Lau, John W.; Hodkiewicz, M. R.

    2015-08-01

    The era of big data has resulted in an explosion of condition monitoring information. The result is an increasing motivation to automate the costly and time consuming human elements involved in the classification of machine health. When working with industry it is important to build an understanding and hence some trust in the classification scheme for those who use the analysis to initiate maintenance tasks. Typically "black box" approaches such as artificial neural networks (ANN) and support vector machines (SVM) can be difficult to provide ease of interpretability. In contrast, this paper argues that logistic regression offers easy interpretability to industry experts, providing insight to the drivers of the human classification process and to the ramifications of potential misclassification. Of course, accuracy is of foremost importance in any automated classification scheme, so we also provide a comparative study based on predictive performance of logistic regression, ANN and SVM. A real world oil analysis data set from engines on mining trucks is presented and using cross-validation we demonstrate that logistic regression out-performs the ANN and SVM approaches in terms of prediction for healthy/not healthy engines.

  6. Estimation of lung tumor position from multiple anatomical features on 4D-CT using multiple regression analysis.

    PubMed

    Ono, Tomohiro; Nakamura, Mitsuhiro; Hirose, Yoshinori; Kitsuda, Kenji; Ono, Yuka; Ishigaki, Takashi; Hiraoka, Masahiro

    2017-09-01

    To estimate the lung tumor position from multiple anatomical features on four-dimensional computed tomography (4D-CT) data sets using single regression analysis (SRA) and multiple regression analysis (MRA) approach and evaluate an impact of the approach on internal target volume (ITV) for stereotactic body radiotherapy (SBRT) of the lung. Eleven consecutive lung cancer patients (12 cases) underwent 4D-CT scanning. The three-dimensional (3D) lung tumor motion exceeded 5 mm. The 3D tumor position and anatomical features, including lung volume, diaphragm, abdominal wall, and chest wall positions, were measured on 4D-CT images. The tumor position was estimated by SRA using each anatomical feature and MRA using all anatomical features. The difference between the actual and estimated tumor positions was defined as the root-mean-square error (RMSE). A standard partial regression coefficient for the MRA was evaluated. The 3D lung tumor position showed a high correlation with the lung volume (R = 0.92 ± 0.10). Additionally, ITVs derived from SRA and MRA approaches were compared with ITV derived from contouring gross tumor volumes on all 10 phases of the 4D-CT (conventional ITV). The RMSE of the SRA was within 3.7 mm in all directions. Also, the RMSE of the MRA was within 1.6 mm in all directions. The standard partial regression coefficient for the lung volume was the largest and had the most influence on the estimated tumor position. Compared with conventional ITV, average percentage decrease of ITV were 31.9% and 38.3% using SRA and MRA approaches, respectively. The estimation accuracy of lung tumor position was improved by the MRA approach, which provided smaller ITV than conventional ITV. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  7. Comparison and validation of statistical methods for predicting power outage durations in the event of hurricanes.

    PubMed

    Nateghi, Roshanak; Guikema, Seth D; Quiring, Steven M

    2011-12-01

    This article compares statistical methods for modeling power outage durations during hurricanes and examines the predictive accuracy of these methods. Being able to make accurate predictions of power outage durations is valuable because the information can be used by utility companies to plan their restoration efforts more efficiently. This information can also help inform customers and public agencies of the expected outage times, enabling better collective response planning, and coordination of restoration efforts for other critical infrastructures that depend on electricity. In the long run, outage duration estimates for future storm scenarios may help utilities and public agencies better allocate risk management resources to balance the disruption from hurricanes with the cost of hardening power systems. We compare the out-of-sample predictive accuracy of five distinct statistical models for estimating power outage duration times caused by Hurricane Ivan in 2004. The methods compared include both regression models (accelerated failure time (AFT) and Cox proportional hazard models (Cox PH)) and data mining techniques (regression trees, Bayesian additive regression trees (BART), and multivariate additive regression splines). We then validate our models against two other hurricanes. Our results indicate that BART yields the best prediction accuracy and that it is possible to predict outage durations with reasonable accuracy. © 2011 Society for Risk Analysis.

  8. Functional Data Analysis Applied to Modeling of Severe Acute Mucositis and Dysphagia Resulting From Head and Neck Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, Jamie A., E-mail: jamie.dean@icr.ac.uk; Wong, Kee H.; Gay, Hiram

    Purpose: Current normal tissue complication probability modeling using logistic regression suffers from bias and high uncertainty in the presence of highly correlated radiation therapy (RT) dose data. This hinders robust estimates of dose-response associations and, hence, optimal normal tissue–sparing strategies from being elucidated. Using functional data analysis (FDA) to reduce the dimensionality of the dose data could overcome this limitation. Methods and Materials: FDA was applied to modeling of severe acute mucositis and dysphagia resulting from head and neck RT. Functional partial least squares regression (FPLS) and functional principal component analysis were used for dimensionality reduction of the dose-volume histogrammore » data. The reduced dose data were input into functional logistic regression models (functional partial least squares–logistic regression [FPLS-LR] and functional principal component–logistic regression [FPC-LR]) along with clinical data. This approach was compared with penalized logistic regression (PLR) in terms of predictive performance and the significance of treatment covariate–response associations, assessed using bootstrapping. Results: The area under the receiver operating characteristic curve for the PLR, FPC-LR, and FPLS-LR models was 0.65, 0.69, and 0.67, respectively, for mucositis (internal validation) and 0.81, 0.83, and 0.83, respectively, for dysphagia (external validation). The calibration slopes/intercepts for the PLR, FPC-LR, and FPLS-LR models were 1.6/−0.67, 0.45/0.47, and 0.40/0.49, respectively, for mucositis (internal validation) and 2.5/−0.96, 0.79/−0.04, and 0.79/0.00, respectively, for dysphagia (external validation). The bootstrapped odds ratios indicated significant associations between RT dose and severe toxicity in the mucositis and dysphagia FDA models. Cisplatin was significantly associated with severe dysphagia in the FDA models. None of the covariates was significantly associated with severe toxicity in the PLR models. Dose levels greater than approximately 1.0 Gy/fraction were most strongly associated with severe acute mucositis and dysphagia in the FDA models. Conclusions: FPLS and functional principal component analysis marginally improved predictive performance compared with PLR and provided robust dose-response associations. FDA is recommended for use in normal tissue complication probability modeling.« less

  9. Functional Data Analysis Applied to Modeling of Severe Acute Mucositis and Dysphagia Resulting From Head and Neck Radiation Therapy.

    PubMed

    Dean, Jamie A; Wong, Kee H; Gay, Hiram; Welsh, Liam C; Jones, Ann-Britt; Schick, Ulrike; Oh, Jung Hun; Apte, Aditya; Newbold, Kate L; Bhide, Shreerang A; Harrington, Kevin J; Deasy, Joseph O; Nutting, Christopher M; Gulliford, Sarah L

    2016-11-15

    Current normal tissue complication probability modeling using logistic regression suffers from bias and high uncertainty in the presence of highly correlated radiation therapy (RT) dose data. This hinders robust estimates of dose-response associations and, hence, optimal normal tissue-sparing strategies from being elucidated. Using functional data analysis (FDA) to reduce the dimensionality of the dose data could overcome this limitation. FDA was applied to modeling of severe acute mucositis and dysphagia resulting from head and neck RT. Functional partial least squares regression (FPLS) and functional principal component analysis were used for dimensionality reduction of the dose-volume histogram data. The reduced dose data were input into functional logistic regression models (functional partial least squares-logistic regression [FPLS-LR] and functional principal component-logistic regression [FPC-LR]) along with clinical data. This approach was compared with penalized logistic regression (PLR) in terms of predictive performance and the significance of treatment covariate-response associations, assessed using bootstrapping. The area under the receiver operating characteristic curve for the PLR, FPC-LR, and FPLS-LR models was 0.65, 0.69, and 0.67, respectively, for mucositis (internal validation) and 0.81, 0.83, and 0.83, respectively, for dysphagia (external validation). The calibration slopes/intercepts for the PLR, FPC-LR, and FPLS-LR models were 1.6/-0.67, 0.45/0.47, and 0.40/0.49, respectively, for mucositis (internal validation) and 2.5/-0.96, 0.79/-0.04, and 0.79/0.00, respectively, for dysphagia (external validation). The bootstrapped odds ratios indicated significant associations between RT dose and severe toxicity in the mucositis and dysphagia FDA models. Cisplatin was significantly associated with severe dysphagia in the FDA models. None of the covariates was significantly associated with severe toxicity in the PLR models. Dose levels greater than approximately 1.0 Gy/fraction were most strongly associated with severe acute mucositis and dysphagia in the FDA models. FPLS and functional principal component analysis marginally improved predictive performance compared with PLR and provided robust dose-response associations. FDA is recommended for use in normal tissue complication probability modeling. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Multivariable confounding adjustment in distributed data networks without sharing of patient-level data.

    PubMed

    Toh, Sengwee; Reichman, Marsha E; Houstoun, Monika; Ding, Xiao; Fireman, Bruce H; Gravel, Eric; Levenson, Mark; Li, Lingling; Moyneur, Erick; Shoaibi, Azadeh; Zornberg, Gwen; Hennessy, Sean

    2013-11-01

    It is increasingly necessary to analyze data from multiple sources when conducting public health safety surveillance or comparative effectiveness research. However, security, privacy, proprietary, and legal concerns often reduce data holders' willingness to share highly granular information. We describe and compare two approaches that do not require sharing of patient-level information to adjust for confounding in multi-site studies. We estimated the risks of angioedema associated with angiotensin-converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), and aliskiren in comparison with beta-blockers within Mini-Sentinel, which has created a distributed data system of 18 health plans. To obtain the adjusted hazard ratios (HRs) and 95% confidence intervals (CIs), we performed (i) a propensity score-stratified case-centered logistic regression analysis, a method identical to a stratified Cox regression analysis but needing only aggregated risk set data, and (ii) an inverse variance-weighted meta-analysis, which requires only the site-specific HR and variance. We also performed simulations to further compare the two methods. Compared with beta-blockers, the adjusted HR was 3.04 (95% CI: 2.81, 3.27) for ACEIs, 1.16 (1.00, 1.34) for ARBs, and 2.85 (1.34, 6.04) for aliskiren in the case-centered analysis. The corresponding HRs were 2.98 (2.76, 3.21), 1.15 (1.00, 1.33), and 2.86 (1.35, 6.04) in the meta-analysis. Simulations suggested that the two methods may produce different results under certain analytic scenarios. The case-centered analysis and the meta-analysis produced similar results without the need to share patient-level data across sites in our empirical study, but may provide different results in other study settings. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Evaluation of Regression Models of Balance Calibration Data Using an Empirical Criterion

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert; Volden, Thomas R.

    2012-01-01

    An empirical criterion for assessing the significance of individual terms of regression models of wind tunnel strain gage balance outputs is evaluated. The criterion is based on the percent contribution of a regression model term. It considers a term to be significant if its percent contribution exceeds the empirical threshold of 0.05%. The criterion has the advantage that it can easily be computed using the regression coefficients of the gage outputs and the load capacities of the balance. First, a definition of the empirical criterion is provided. Then, it is compared with an alternate statistical criterion that is widely used in regression analysis. Finally, calibration data sets from a variety of balances are used to illustrate the connection between the empirical and the statistical criterion. A review of these results indicated that the empirical criterion seems to be suitable for a crude assessment of the significance of a regression model term as the boundary between a significant and an insignificant term cannot be defined very well. Therefore, regression model term reduction should only be performed by using the more universally applicable statistical criterion.

  12. PREDICTION OF MALIGNANT BREAST LESIONS FROM MRI FEATURES: A COMPARISON OF ARTIFICIAL NEURAL NETWORK AND LOGISTIC REGRESSION TECHNIQUES

    PubMed Central

    McLaren, Christine E.; Chen, Wen-Pin; Nie, Ke; Su, Min-Ying

    2009-01-01

    Rationale and Objectives Dynamic contrast enhanced MRI (DCE-MRI) is a clinical imaging modality for detection and diagnosis of breast lesions. Analytical methods were compared for diagnostic feature selection and performance of lesion classification to differentiate between malignant and benign lesions in patients. Materials and Methods The study included 43 malignant and 28 benign histologically-proven lesions. Eight morphological parameters, ten gray level co-occurrence matrices (GLCM) texture features, and fourteen Laws’ texture features were obtained using automated lesion segmentation and quantitative feature extraction. Artificial neural network (ANN) and logistic regression analysis were compared for selection of the best predictors of malignant lesions among the normalized features. Results Using ANN, the final four selected features were compactness, energy, homogeneity, and Law_LS, with area under the receiver operating characteristic curve (AUC) = 0.82, and accuracy = 0.76. The diagnostic performance of these 4-features computed on the basis of logistic regression yielded AUC = 0.80 (95% CI, 0.688 to 0.905), similar to that of ANN. The analysis also shows that the odds of a malignant lesion decreased by 48% (95% CI, 25% to 92%) for every increase of 1 SD in the Law_LS feature, adjusted for differences in compactness, energy, and homogeneity. Using logistic regression with z-score transformation, a model comprised of compactness, NRL entropy, and gray level sum average was selected, and it had the highest overall accuracy of 0.75 among all models, with AUC = 0.77 (95% CI, 0.660 to 0.880). When logistic modeling of transformations using the Box-Cox method was performed, the most parsimonious model with predictors, compactness and Law_LS, had an AUC of 0.79 (95% CI, 0.672 to 0.898). Conclusion The diagnostic performance of models selected by ANN and logistic regression was similar. The analytic methods were found to be roughly equivalent in terms of predictive ability when a small number of variables were chosen. The robust ANN methodology utilizes a sophisticated non-linear model, while logistic regression analysis provides insightful information to enhance interpretation of the model features. PMID:19409817

  13. Comparison of Logistic Regression and Artificial Neural Network in Low Back Pain Prediction: Second National Health Survey

    PubMed Central

    Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H

    2012-01-01

    Background: The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Methods: Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. Results: The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Conclusions: Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant. PMID:23113198

  14. Comparison of logistic regression and artificial neural network in low back pain prediction: second national health survey.

    PubMed

    Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H

    2012-01-01

    The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant.

  15. Comparative Effectiveness of Emergency Resuscitative Thoracotomy versus Closed Chest Compressions among Patients with Critical Blunt Trauma: A Nationwide Cohort Study in Japan.

    PubMed

    Suzuki, Kodai; Inoue, Shigeaki; Morita, Seiji; Watanabe, Nobuo; Shintani, Ayumi; Inokuchi, Sadaki; Ogura, Shinji

    2016-01-01

    Although emergency resuscitative thoracotomy is performed as a salvage maneuver for critical blunt trauma patients, evidence supporting superior effectiveness of emergency resuscitative thoracotomy compared to conventional closed-chest compressions remains insufficient. The objective of this study was to investigate whether emergency resuscitative thoracotomy at the emergency department or in the operating room was associated with favourable outcomes after blunt trauma and to compare its effectiveness with that of closed-chest compressions. This was a retrospective nationwide cohort study. Data were obtained from the Japan Trauma Data Bank for the period between 2004 and 2012. The primary and secondary outcomes were patient survival rates 24 h and 28 d after emergency department arrival. Statistical analyses were performed using multivariable generalized mixed-effects regression analysis. We adjusted for the effects of different hospitals by introducing random intercepts in regression analysis to account for the differential quality of emergency resuscitative thoracotomy at hospitals where patients in cardiac arrest were treated. Sensitivity analyses were performed using propensity score matching. In total, 1,377 consecutive, critical blunt trauma patients who received cardiopulmonary resuscitation in the emergency department or operating room were included in the study. Of these patients, 484 (35.1%) underwent emergency resuscitative thoracotomy and 893 (64.9%) received closed-chest compressions. Compared to closed-chest compressions, emergency resuscitative thoracotomy was associated with lower survival rate 24 h after emergency department arrival (4.5% vs. 17.5%, respectively, P < 0.001) and 28 d after arrival (1.2% vs. 6.0%, respectively, P < 0.001). Multivariable generalized mixed-effects regression analysis with and without a propensity score-matched dataset revealed that the odds ratio for an unfavorable survival rate after 24 h was lower for emergency resuscitative thoracotomy than for closed-chest compressions (P < 0.001). Emergency resuscitative thoracotomy was independently associated with decreased odds of a favorable survival rate compared to closed-chest compressions.

  16. Matched cohort comparison of endovascular abdominal aortic aneurysm repair with and without EndoAnchors.

    PubMed

    Muhs, Bart E; Jordan, William; Ouriel, Kenneth; Rajaee, Sareh; de Vries, Jean-Paul

    2018-06-01

    The objective of this study was to examine whether prophylactic use of EndoAnchors (Medtronic, Santa Rosa, Calif) contributes to improved outcomes after endovascular aneurysm repair (EVAR) of abdominal aortic aneurysms through 2 years. The Aneurysm Treatment Using the Heli-FX Aortic Securement System Global Registry (ANCHOR) subjects who received prophylactic EndoAnchors during EVAR were considered for this analysis. Imaging data of retrospective subjects who underwent EVAR at ANCHOR enrolling institutions were obtained to create a control sample. Nineteen baseline anatomic measurements were used to perform propensity score matching, yielding 99 matched pairs. Follow-up imaging of the ANCHOR and control cohorts was then compared to examine outcomes through 2 years, using Kaplan-Meier survival analysis. Freedom from type Ia endoleak was 97.0% ± 2.1% in the ANCHOR cohort and 94.1% ± 2.5% in the control cohort through 2 years (P = .34). The 2-year freedom from neck dilation in the ANCHOR and control cohorts was 90.4% ± 5.6% and 87.3% ± 4.3%, respectively (P = .46); 2-year freedom from sac enlargement was 97.0% ± 2.1% and 94.0% ± 3.0%, respectively (P = .67). No device migration was observed. Aneurysm sac regression was observed in 81.1% ± 9.5% of ANCHOR subjects through 2 years compared with 48.7% ± 5.9% of control subjects (P = .01). Cox regression analysis found an inverse correlation between number of hostile neck criteria met and later sac regression (P = .05). Preoperative neck thrombus circumference and infrarenal diameter were also variables associated with later sac regression, although not to a significant degree (P = .10 and P = .06, respectively). Control subjects with thrombus were significantly less likely to experience later sac regression than those without thrombus (6% and 43%, respectively; P = .001). In ANCHOR subjects, rate of regression was not significantly different in subjects with or without thrombus (33% and 36%, respectively; P = .82). Control subjects with wide aortic necks (>28 mm) were observed to experience sac regression at a lower rate than subjects with smaller diameter necks (10% and 44%, respectively; P = .004). Wide neck and normal neck subjects implanted with EndoAnchors experienced later sac regression at roughly equivalent rates (44% and 33%, respectively; P = .50). In propensity-matched cohorts of subjects undergoing EVAR, the rate of sac regression in subjects treated with EndoAnchors was significantly higher. EndoAnchors may mitigate the adverse effect of wide infrarenal necks and neck thrombus on sac regression, although further studies are needed to evaluate the long-term effect of EndoAnchors. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  17. Is math anxiety in the secondary classroom limiting physics mastery? A study of math anxiety and physics performance

    NASA Astrophysics Data System (ADS)

    Mercer, Gary J.

    This quantitative study examined the relationship between secondary students with math anxiety and physics performance in an inquiry-based constructivist classroom. The Revised Math Anxiety Rating Scale was used to evaluate math anxiety levels. The results were then compared to the performance on a physics standardized final examination. A simple correlation was performed, followed by a multivariate regression analysis to examine effects based on gender and prior math background. The correlation showed statistical significance between math anxiety and physics performance. The regression analysis showed statistical significance for math anxiety, physics performance, and prior math background, but did not show statistical significance for math anxiety, physics performance, and gender.

  18. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults

    PubMed Central

    Fuster-Parra, Pilar; Bennasar-Veny, Miquel; Tauler, Pedro; Yañez, Aina; López-González, Angel A.; Aguiló, Antoni

    2015-01-01

    Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (ρ = 0:87 vs. ρ = 0:86 for the whole sample and ρ = 0:88 vs. ρ = 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF. PMID:25821960

  19. A comparison between multiple regression models and CUN-BAE equation to predict body fat in adults.

    PubMed

    Fuster-Parra, Pilar; Bennasar-Veny, Miquel; Tauler, Pedro; Yañez, Aina; López-González, Angel A; Aguiló, Antoni

    2015-01-01

    Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (ρ = 0:87 vs. ρ = 0:86 for the whole sample and ρ = 0:88 vs. ρ = 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.

  20. On the use and misuse of scalar scores of confounders in design and analysis of observational studies.

    PubMed

    Pfeiffer, R M; Riedl, R

    2015-08-15

    We assess the asymptotic bias of estimates of exposure effects conditional on covariates when summary scores of confounders, instead of the confounders themselves, are used to analyze observational data. First, we study regression models for cohort data that are adjusted for summary scores. Second, we derive the asymptotic bias for case-control studies when cases and controls are matched on a summary score, and then analyzed either using conditional logistic regression or by unconditional logistic regression adjusted for the summary score. Two scores, the propensity score (PS) and the disease risk score (DRS) are studied in detail. For cohort analysis, when regression models are adjusted for the PS, the estimated conditional treatment effect is unbiased only for linear models, or at the null for non-linear models. Adjustment of cohort data for DRS yields unbiased estimates only for linear regression; all other estimates of exposure effects are biased. Matching cases and controls on DRS and analyzing them using conditional logistic regression yields unbiased estimates of exposure effect, whereas adjusting for the DRS in unconditional logistic regression yields biased estimates, even under the null hypothesis of no association. Matching cases and controls on the PS yield unbiased estimates only under the null for both conditional and unconditional logistic regression, adjusted for the PS. We study the bias for various confounding scenarios and compare our asymptotic results with those from simulations with limited sample sizes. To create realistic correlations among multiple confounders, we also based simulations on a real dataset. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Least median of squares and iteratively re-weighted least squares as robust linear regression methods for fluorimetric determination of α-lipoic acid in capsules in ideal and non-ideal cases of linearity.

    PubMed

    Korany, Mohamed A; Gazy, Azza A; Khamis, Essam F; Ragab, Marwa A A; Kamal, Miranda F

    2018-06-01

    This study outlines two robust regression approaches, namely least median of squares (LMS) and iteratively re-weighted least squares (IRLS) to investigate their application in instrument analysis of nutraceuticals (that is, fluorescence quenching of merbromin reagent upon lipoic acid addition). These robust regression methods were used to calculate calibration data from the fluorescence quenching reaction (∆F and F-ratio) under ideal or non-ideal linearity conditions. For each condition, data were treated using three regression fittings: Ordinary Least Squares (OLS), LMS and IRLS. Assessment of linearity, limits of detection (LOD) and quantitation (LOQ), accuracy and precision were carefully studied for each condition. LMS and IRLS regression line fittings showed significant improvement in correlation coefficients and all regression parameters for both methods and both conditions. In the ideal linearity condition, the intercept and slope changed insignificantly, but a dramatic change was observed for the non-ideal condition and linearity intercept. Under both linearity conditions, LOD and LOQ values after the robust regression line fitting of data were lower than those obtained before data treatment. The results obtained after statistical treatment indicated that the linearity ranges for drug determination could be expanded to lower limits of quantitation by enhancing the regression equation parameters after data treatment. Analysis results for lipoic acid in capsules, using both fluorimetric methods, treated by parametric OLS and after treatment by robust LMS and IRLS were compared for both linearity conditions. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Forecasting daily patient volumes in the emergency department.

    PubMed

    Jones, Spencer S; Thomas, Alun; Evans, R Scott; Welch, Shari J; Haug, Peter J; Snow, Gregory L

    2008-02-01

    Shifts in the supply of and demand for emergency department (ED) resources make the efficient allocation of ED resources increasingly important. Forecasting is a vital activity that guides decision-making in many areas of economic, industrial, and scientific planning, but has gained little traction in the health care industry. There are few studies that explore the use of forecasting methods to predict patient volumes in the ED. The goals of this study are to explore and evaluate the use of several statistical forecasting methods to predict daily ED patient volumes at three diverse hospital EDs and to compare the accuracy of these methods to the accuracy of a previously proposed forecasting method. Daily patient arrivals at three hospital EDs were collected for the period January 1, 2005, through March 31, 2007. The authors evaluated the use of seasonal autoregressive integrated moving average, time series regression, exponential smoothing, and artificial neural network models to forecast daily patient volumes at each facility. Forecasts were made for horizons ranging from 1 to 30 days in advance. The forecast accuracy achieved by the various forecasting methods was compared to the forecast accuracy achieved when using a benchmark forecasting method already available in the emergency medicine literature. All time series methods considered in this analysis provided improved in-sample model goodness of fit. However, post-sample analysis revealed that time series regression models that augment linear regression models by accounting for serial autocorrelation offered only small improvements in terms of post-sample forecast accuracy, relative to multiple linear regression models, while seasonal autoregressive integrated moving average, exponential smoothing, and artificial neural network forecasting models did not provide consistently accurate forecasts of daily ED volumes. This study confirms the widely held belief that daily demand for ED services is characterized by seasonal and weekly patterns. The authors compared several time series forecasting methods to a benchmark multiple linear regression model. The results suggest that the existing methodology proposed in the literature, multiple linear regression based on calendar variables, is a reasonable approach to forecasting daily patient volumes in the ED. However, the authors conclude that regression-based models that incorporate calendar variables, account for site-specific special-day effects, and allow for residual autocorrelation provide a more appropriate, informative, and consistently accurate approach to forecasting daily ED patient volumes.

  3. Skeletal height estimation from regression analysis of sternal lengths in a Northwest Indian population of Chandigarh region: a postmortem study.

    PubMed

    Singh, Jagmahender; Pathak, R K; Chavali, Krishnadutt H

    2011-03-20

    Skeletal height estimation from regression analysis of eight sternal lengths in the subjects of Chandigarh zone of Northwest India is the topic of discussion in this study. Analysis of eight sternal lengths (length of manubrium, length of mesosternum, combined length of manubrium and mesosternum, total sternal length and first four intercostals lengths of mesosternum) measured from 252 male and 91 female sternums obtained at postmortems revealed that mean cadaver stature and sternal lengths were more in North Indians and males than the South Indians and females. Except intercostal lengths, all the sternal lengths were positively correlated with stature of the deceased in both sexes (P < 0.001). The multiple regression analysis of sternal lengths was found more useful than the linear regression for stature estimation. Using multivariate regression analysis, the combined length of manubrium and mesosternum in both sexes and the length of manubrium along with 2nd and 3rd intercostal lengths of mesosternum in males were selected as best estimators of stature. Nonetheless, the stature of males can be predicted with SEE of 6.66 (R(2) = 0.16, r = 0.318) from combination of MBL+BL_3+LM+BL_2, and in females from MBL only, it can be estimated with SEE of 6.65 (R(2) = 0.10, r = 0.318), whereas from the multiple regression analysis of pooled data, stature can be known with SEE of 6.97 (R(2) = 0.387, r = 575) from the combination of MBL+LM+BL_2+TSL+BL_3. The R(2) and F-ratio were found to be statistically significant for almost all the variables in both the sexes, except 4th intercostal length in males and 2nd to 4th intercostal lengths in females. The 'major' sternal lengths were more useful than the 'minor' ones for stature estimation The universal regression analysis used by Kanchan et al. [39] when applied to sternal lengths, gave satisfactory estimates of stature for males only but female stature was comparatively better estimated from simple linear regressions. But they are not proposed for the subjects of known sex, as they underestimate the male and overestimate female stature. However, intercostal lengths were found to be the poor estimators of stature (P < 0.05). And also sternal lengths exhibit weaker correlation coefficients and higher standard errors of estimate. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Something old, something new, something borrowed, something blue: a framework for the marriage of health econometrics and cost-effectiveness analysis.

    PubMed

    Hoch, Jeffrey S; Briggs, Andrew H; Willan, Andrew R

    2002-07-01

    Economic evaluation is often seen as a branch of health economics divorced from mainstream econometric techniques. Instead, it is perceived as relying on statistical methods for clinical trials. Furthermore, the statistic of interest in cost-effectiveness analysis, the incremental cost-effectiveness ratio is not amenable to regression-based methods, hence the traditional reliance on comparing aggregate measures across the arms of a clinical trial. In this paper, we explore the potential for health economists undertaking cost-effectiveness analysis to exploit the plethora of established econometric techniques through the use of the net-benefit framework - a recently suggested reformulation of the cost-effectiveness problem that avoids the reliance on cost-effectiveness ratios and their associated statistical problems. This allows the formulation of the cost-effectiveness problem within a standard regression type framework. We provide an example with empirical data to illustrate how a regression type framework can enhance the net-benefit method. We go on to suggest that practical advantages of the net-benefit regression approach include being able to use established econometric techniques, adjust for imperfect randomisation, and identify important subgroups in order to estimate the marginal cost-effectiveness of an intervention. Copyright 2002 John Wiley & Sons, Ltd.

  5. Regression with Small Data Sets: A Case Study using Code Surrogates in Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamath, C.; Fan, Y. J.

    There has been an increasing interest in recent years in the mining of massive data sets whose sizes are measured in terabytes. While it is easy to collect such large data sets in some application domains, there are others where collecting even a single data point can be very expensive, so the resulting data sets have only tens or hundreds of samples. For example, when complex computer simulations are used to understand a scientific phenomenon, we want to run the simulation for many different values of the input parameters and analyze the resulting output. The data set relating the simulationmore » inputs and outputs is typically quite small, especially when each run of the simulation is expensive. However, regression techniques can still be used on such data sets to build an inexpensive \\surrogate" that could provide an approximate output for a given set of inputs. A good surrogate can be very useful in sensitivity analysis, uncertainty analysis, and in designing experiments. In this paper, we compare different regression techniques to determine how well they predict melt-pool characteristics in the problem domain of additive manufacturing. Our analysis indicates that some of the commonly used regression methods do perform quite well even on small data sets.« less

  6. Regression Analysis by Example. 5th Edition

    ERIC Educational Resources Information Center

    Chatterjee, Samprit; Hadi, Ali S.

    2012-01-01

    Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. "Regression Analysis by Example, Fifth Edition" has been expanded and thoroughly…

  7. Statistical tools for transgene copy number estimation based on real-time PCR.

    PubMed

    Yuan, Joshua S; Burris, Jason; Stewart, Nathan R; Mentewab, Ayalew; Stewart, C Neal

    2007-11-01

    As compared with traditional transgene copy number detection technologies such as Southern blot analysis, real-time PCR provides a fast, inexpensive and high-throughput alternative. However, the real-time PCR based transgene copy number estimation tends to be ambiguous and subjective stemming from the lack of proper statistical analysis and data quality control to render a reliable estimation of copy number with a prediction value. Despite the recent progresses in statistical analysis of real-time PCR, few publications have integrated these advancements in real-time PCR based transgene copy number determination. Three experimental designs and four data quality control integrated statistical models are presented. For the first method, external calibration curves are established for the transgene based on serially-diluted templates. The Ct number from a control transgenic event and putative transgenic event are compared to derive the transgene copy number or zygosity estimation. Simple linear regression and two group T-test procedures were combined to model the data from this design. For the second experimental design, standard curves were generated for both an internal reference gene and the transgene, and the copy number of transgene was compared with that of internal reference gene. Multiple regression models and ANOVA models can be employed to analyze the data and perform quality control for this approach. In the third experimental design, transgene copy number is compared with reference gene without a standard curve, but rather, is based directly on fluorescence data. Two different multiple regression models were proposed to analyze the data based on two different approaches of amplification efficiency integration. Our results highlight the importance of proper statistical treatment and quality control integration in real-time PCR-based transgene copy number determination. These statistical methods allow the real-time PCR-based transgene copy number estimation to be more reliable and precise with a proper statistical estimation. Proper confidence intervals are necessary for unambiguous prediction of trangene copy number. The four different statistical methods are compared for their advantages and disadvantages. Moreover, the statistical methods can also be applied for other real-time PCR-based quantification assays including transfection efficiency analysis and pathogen quantification.

  8. Partial Least Squares Regression Can Aid in Detecting Differential Abundance of Multiple Features in Sets of Metagenomic Samples

    PubMed Central

    Libiger, Ondrej; Schork, Nicholas J.

    2015-01-01

    It is now feasible to examine the composition and diversity of microbial communities (i.e., “microbiomes”) that populate different human organs and orifices using DNA sequencing and related technologies. To explore the potential links between changes in microbial communities and various diseases in the human body, it is essential to test associations involving different species within and across microbiomes, environmental settings and disease states. Although a number of statistical techniques exist for carrying out relevant analyses, it is unclear which of these techniques exhibit the greatest statistical power to detect associations given the complexity of most microbiome datasets. We compared the statistical power of principal component regression, partial least squares regression, regularized regression, distance-based regression, Hill's diversity measures, and a modified test implemented in the popular and widely used microbiome analysis methodology “Metastats” across a wide range of simulated scenarios involving changes in feature abundance between two sets of metagenomic samples. For this purpose, simulation studies were used to change the abundance of microbial species in a real dataset from a published study examining human hands. Each technique was applied to the same data, and its ability to detect the simulated change in abundance was assessed. We hypothesized that a small subset of methods would outperform the rest in terms of the statistical power. Indeed, we found that the Metastats technique modified to accommodate multivariate analysis and partial least squares regression yielded high power under the models and data sets we studied. The statistical power of diversity measure-based tests, distance-based regression and regularized regression was significantly lower. Our results provide insight into powerful analysis strategies that utilize information on species counts from large microbiome data sets exhibiting skewed frequency distributions obtained on a small to moderate number of samples. PMID:26734061

  9. Induction of osteoporosis with its influence on osteoporotic determinants and their interrelationships in rats by DEXA.

    PubMed

    Heiss, Christian; Govindarajan, Parameswari; Schlewitz, Gudrun; Hemdan, Nasr Y A; Schliefke, Nathalie; Alt, Volker; Thormann, Ulrich; Lips, Katrin Susanne; Wenisch, Sabine; Langheinrich, Alexander C; Zahner, Daniel; Schnettler, Reinhard

    2012-06-01

    As women are the population most affected by multifactorial osteoporosis, research is focused on unraveling the underlying mechanism of osteoporosis induction in rats by combining ovariectomy (OVX) either with calcium, phosphorus, vitamin C and vitamin D2/D3 deficiency, or by administration of glucocorticoid (dexamethasone). Different skeletal sites of sham, OVX-Diet and OVX-Steroid rats were analyzed by Dual Energy X-ray Absorptiometry (DEXA) at varied time points of 0, 4 and 12 weeks to determine and compare the osteoporotic factors such as bone mineral density (BMD), bone mineral content (BMC), area, body weight and percent fat among different groups and time points. Comparative analysis and interrelationships among osteoporotic determinants by regression analysis were also determined. T scores were below-2.5 in OVX-Diet rats at 4 and 12 weeks post-OVX. OVX-diet rats revealed pronounced osteoporotic status with reduced BMD and BMC than the steroid counterparts, with the spine and pelvis as the most affected skeletal sites. Increase in percent fat was observed irrespective of the osteoporosis inducers applied. Comparative analysis and interrelationships between osteoporotic determinants that are rarely studied in animals indicate the necessity to analyze BMC and area along with BMD in obtaining meaningful information leading to proper prediction of probability of osteoporotic fractures. Enhanced osteoporotic effect observed in OVX-Diet rats indicates that estrogen dysregulation combined with diet treatment induces and enhances osteoporosis with time when compared to the steroid group. Comparative and regression analysis indicates the need to determine BMC along with BMD and area in osteoporotic determination.

  10. Comparison of methods for the analysis of relatively simple mediation models.

    PubMed

    Rijnhart, Judith J M; Twisk, Jos W R; Chinapaw, Mai J M; de Boer, Michiel R; Heymans, Martijn W

    2017-09-01

    Statistical mediation analysis is an often used method in trials, to unravel the pathways underlying the effect of an intervention on a particular outcome variable. Throughout the years, several methods have been proposed, such as ordinary least square (OLS) regression, structural equation modeling (SEM), and the potential outcomes framework. Most applied researchers do not know that these methods are mathematically equivalent when applied to mediation models with a continuous mediator and outcome variable. Therefore, the aim of this paper was to demonstrate the similarities between OLS regression, SEM, and the potential outcomes framework in three mediation models: 1) a crude model, 2) a confounder-adjusted model, and 3) a model with an interaction term for exposure-mediator interaction. Secondary data analysis of a randomized controlled trial that included 546 schoolchildren. In our data example, the mediator and outcome variable were both continuous. We compared the estimates of the total, direct and indirect effects, proportion mediated, and 95% confidence intervals (CIs) for the indirect effect across OLS regression, SEM, and the potential outcomes framework. OLS regression, SEM, and the potential outcomes framework yielded the same effect estimates in the crude mediation model, the confounder-adjusted mediation model, and the mediation model with an interaction term for exposure-mediator interaction. Since OLS regression, SEM, and the potential outcomes framework yield the same results in three mediation models with a continuous mediator and outcome variable, researchers can continue using the method that is most convenient to them.

  11. Quantitative analysis of aircraft multispectral-scanner data and mapping of water-quality parameters in the James River in Virginia

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Bahn, G. S.

    1977-01-01

    Statistical analysis techniques were applied to develop quantitative relationships between in situ river measurements and the remotely sensed data that were obtained over the James River in Virginia on 28 May 1974. The remotely sensed data were collected with a multispectral scanner and with photographs taken from an aircraft platform. Concentration differences among water quality parameters such as suspended sediment, chlorophyll a, and nutrients indicated significant spectral variations. Calibrated equations from the multiple regression analysis were used to develop maps that indicated the quantitative distributions of water quality parameters and the dispersion characteristics of a pollutant plume entering the turbid river system. Results from further analyses that use only three preselected multispectral scanner bands of data indicated that regression coefficients and standard errors of estimate were not appreciably degraded compared with results from the 10-band analysis.

  12. Comparison of Cox’s Regression Model and Parametric Models in Evaluating the Prognostic Factors for Survival after Liver Transplantation in Shiraz during 2000–2012

    PubMed Central

    Adelian, R.; Jamali, J.; Zare, N.; Ayatollahi, S. M. T.; Pooladfar, G. R.; Roustaei, N.

    2015-01-01

    Background: Identification of the prognostic factors for survival in patients with liver transplantation is challengeable. Various methods of survival analysis have provided different, sometimes contradictory, results from the same data. Objective: To compare Cox’s regression model with parametric models for determining the independent factors for predicting adults’ and pediatrics’ survival after liver transplantation. Method: This study was conducted on 183 pediatric patients and 346 adults underwent liver transplantation in Namazi Hospital, Shiraz, southern Iran. The study population included all patients undergoing liver transplantation from 2000 to 2012. The prognostic factors sex, age, Child class, initial diagnosis of the liver disease, PELD/MELD score, and pre-operative laboratory markers were selected for survival analysis. Result: Among 529 patients, 346 (64.5%) were adult and 183 (34.6%) were pediatric cases. Overall, the lognormal distribution was the best-fitting model for adult and pediatric patients. Age in adults (HR=1.16, p<0.05) and weight (HR=2.68, p<0.01) and Child class B (HR=2.12, p<0.05) in pediatric patients were the most important factors for prediction of survival after liver transplantation. Adult patients younger than the mean age and pediatric patients weighing above the mean and Child class A (compared to those with classes B or C) had better survival. Conclusion: Parametric regression model is a good alternative for the Cox’s regression model. PMID:26306158

  13. Analyzing Whitebark Pine Distribution in the Northern Rocky Mountains in Support of Grizzly Bear Recovery

    NASA Astrophysics Data System (ADS)

    Lawrence, R.; Landenburger, L.; Jewett, J.

    2007-12-01

    Whitebark pine seeds have long been identified as the most significant vegetative food source for grizzly bears in the Greater Yellowstone Ecosystem (GYE) and, hence, a crucial element of suitable grizzly bear habitat. The overall health and status of whitebark pine in the GYE is currently threatened by mountain pine beetle infestations and the spread of whitepine blister rust. Whitebark pine distribution (presence/absence) was mapped for the GYE using Landsat 7 Enhanced Thematic Mapper (ETM+) imagery and topographic data as part of a long-term inter-agency monitoring program. Logistic regression was compared with classification tree analysis (CTA) with and without boosting. Overall comparative classification accuracies for the central portion of the GYE covering three ETM+ images along a single path ranged from 91.6% using logistic regression to 95.8% with See5's CTA algorithm with the maximum 99 boosts. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales.

  14. Regression Rates Following the Treatment of Aggressive Posterior Retinopathy of Prematurity with Bevacizumab Versus Laser: 8-Year Retrospective Analysis

    PubMed Central

    Nicoară, Simona D.; Ştefănuţ, Anne C.; Nascutzy, Constanta; Zaharie, Gabriela C.; Toader, Laura E.; Drugan, Tudor C.

    2016-01-01

    Background Retinopathy is a serious complication related to prematurity and a leading cause of childhood blindness. The aggressive posterior form of retinopathy of prematurity (APROP) has a worse anatomical and functional outcome following laser therapy, as compared with the classic form of the disease. The main outcome measures are the APROP regression rate, structural outcomes, and complications associated with intravitreal bevacizumab (IVB) versus laser photocoagulation in APROP. Material/Methods This is a retrospective case series that includes infants with APROP who received either IVB or laser photocoagulation and had a follow-up of at least 60 weeks (for the laser photocoagulation group) and 80 weeks (for the IVB group). In the first group, laser photocoagulation of the retina was carried out and in the second group, 1 bevacizumab injection was administered intravitreally. The following parameters were analyzed in each group: sex, gestational age, birth weight, postnatal age and postmenstrual age at treatment, APROP regression, sequelae, and complications. Statistical analysis was performed using Microsoft Excel and IBM SPSS (version 23.0). Results The laser photocoagulation group consisted of 6 premature infants (12 eyes) and the IVB group consisted of 17 premature infants (34 eyes). Within the laser photocoagulation group, the evolution was favorable in 9 eyes (75%) and unfavorable in 3 eyes (25%). Within the IVB group, APROP regressed in 29 eyes (85.29%) and failed to regress in 5 eyes (14.71%). These differences are statistically significant, as proved by the McNemar test (P<0.001). Conclusions The IVB group had a statistically significant better outcome compared with the laser photocoagulation group, in APROP in our series. PMID:27062023

  15. Optimizing Prophylactic CPAP in Patients Without Obstructive Sleep Apnoea for High-Risk Abdominal Surgeries: A Meta-regression Analysis.

    PubMed

    Singh, Preet Mohinder; Borle, Anuradha; Shah, Dipal; Sinha, Ashish; Makkar, Jeetinder Kaur; Trikha, Anjan; Goudra, Basavana Gouda

    2016-04-01

    Prophylactic continuous positive airway pressure (CPAP) can prevent pulmonary adverse events following upper abdominal surgeries. The present meta-regression evaluates and quantifies the effect of degree/duration of (CPAP) on the incidence of postoperative pulmonary events. Medical databases were searched for randomized controlled trials involving adult patients, comparing the outcome in those receiving prophylactic postoperative CPAP versus no CPAP, undergoing high-risk abdominal surgeries. Our meta-analysis evaluated the relationship between the postoperative pulmonary complications and the use of CPAP. Furthermore, meta-regression was used to quantify the effect of cumulative duration and degree of CPAP on the measured outcomes. Seventy-three potentially relevant studies were identified, of which 11 had appropriate data, allowing us to compare a total of 362 and 363 patients in CPAP and control groups, respectively. Qualitatively, Odds ratio for CPAP showed protective effect for pneumonia [0.39 (0.19-0.78)], atelectasis [0.51 (0.32-0.80)] and pulmonary complications [0.37 (0.24-0.56)] with zero heterogeneity. For prevention of pulmonary complications, odds ratio was better for continuous than intermittent CPAP. Meta-regression demonstrated a positive correlation between the degree of CPAP and the incidence of pneumonia with a regression coefficient of +0.61 (95 % CI 0.02-1.21, P = 0.048, τ (2) = 0.078, r (2) = 7.87 %). Overall, adverse effects were similar with or without the use of CPAP. Prophylactic postoperative use of continuous CPAP significantly reduces the incidence of postoperative pneumonia, atelectasis and pulmonary complications in patients undergoing high-risk abdominal surgeries. Quantitatively, increasing the CPAP levels does not necessarily enhance the protective effect against pneumonia. Instead, protective effect diminishes with increasing degree of CPAP.

  16. Combining fibre optic Raman spectroscopy and tactile resonance measurement for tissue characterization

    NASA Astrophysics Data System (ADS)

    Candefjord, Stefan; Nyberg, Morgan; Jalkanen, Ville; Ramser, Kerstin; Lindahl, Olof A.

    2010-12-01

    Tissue characterization is fundamental for identification of pathological conditions. Raman spectroscopy (RS) and tactile resonance measurement (TRM) are two promising techniques that measure biochemical content and stiffness, respectively. They have potential to complement the golden standard--histological analysis. By combining RS and TRM, complementary information about tissue content can be obtained and specific drawbacks can be avoided. The aim of this study was to develop a multivariate approach to compare RS and TRM information. The approach was evaluated on measurements at the same points on porcine abdominal tissue. The measurement points were divided into five groups by multivariate analysis of the RS data. A regression analysis was performed and receiver operating characteristic (ROC) curves were used to compare the RS and TRM data. TRM identified one group efficiently (area under ROC curve 0.99). The RS data showed that the proportion of saturated fat was high in this group. The regression analysis showed that stiffness was mainly determined by the amount of fat and its composition. We concluded that RS provided additional, important information for tissue identification that was not provided by TRM alone. The results are promising for development of a method combining RS and TRM for intraoperative tissue characterization.

  17. Orthodontic bracket bonding without previous adhesive priming: A meta-regression analysis.

    PubMed

    Altmann, Aline Segatto Pires; Degrazia, Felipe Weidenbach; Celeste, Roger Keller; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo

    2016-05-01

    To determine the consensus among studies that adhesive resin application improves the bond strength of orthodontic brackets and the association of methodological variables on the influence of bond strength outcome. In vitro studies were selected to answer whether adhesive resin application increases the immediate shear bond strength of metal orthodontic brackets bonded with a photo-cured orthodontic adhesive. Studies included were those comparing a group having adhesive resin to a group without adhesive resin with the primary outcome measurement shear bond strength in MPa. A systematic electronic search was performed in PubMed and Scopus databases. Nine studies were included in the analysis. Based on the pooled data and due to a high heterogeneity among studies (I(2)  =  93.3), a meta-regression analysis was conducted. The analysis demonstrated that five experimental conditions explained 86.1% of heterogeneity and four of them had significantly affected in vitro shear bond testing. The shear bond strength of metal brackets was not significantly affected when bonded with adhesive resin, when compared to those without adhesive resin. The adhesive resin application can be set aside during metal bracket bonding to enamel regardless of the type of orthodontic adhesive used.

  18. Changes of visual-field global indices after cataract surgery in primary open-angle glaucoma patients.

    PubMed

    Seol, Bo Ram; Jeoung, Jin Wook; Park, Ki Ho

    2016-11-01

    To determine changes of visual-field (VF) global indices after cataract surgery and the factors associated with the effect of cataracts on those indices in primary open-angle glaucoma (POAG) patients. A retrospective chart review of 60 POAG patients who had undergone phacoemulsification and intraocular lens insertion was conducted. All of the patients were evaluated with standard automated perimetry (SAP; 30-2 Swedish interactive threshold algorithm; Carl Zeiss Meditec Inc.) before and after surgery. VF global indices before surgery were compared with those after surgery. The best-corrected visual acuity, intraocular pressure (IOP), number of glaucoma medications before surgery, mean total deviation (TD) values, mean pattern deviation (PD) value, and mean TD-PD value were also compared with the corresponding postoperative values. Additionally, postoperative peak IOP and mean IOP were evaluated. Univariate and multivariate logistic regression analyses were performed to identify the factors associated with the effect of cataract on global indices. Mean deviation (MD) after cataract surgery was significantly improved compared with the preoperative MD. Pattern standard deviation (PSD) and visual-field index (VFI) after surgery were similar to those before surgery. Also, mean TD and mean TD-PD were significantly improved after surgery. The posterior subcapsular cataract (PSC) type showed greater MD changes than did the non-PSC type in both the univariate and multivariate logistic regression analyses. In the univariate logistic regression analysis, the preoperative TD-PD value and type of cataract were associated with MD change. However, in the multivariate logistic regression analysis, type of cataract was the only associated factor. None of the other factors was associated with MD change. MD was significantly affected by cataracts, whereas PSD and VFI were not. Most notably, the PSC type showed better MD improvement compared with the non-PSC type after cataract surgery. Clinicians therefore should carefully analyze VF examination results for POAG patients with the PSC type.

  19. Three-way analysis of the UPLC-PDA dataset for the multicomponent quantitation of hydrochlorothiazide and olmesartan medoxomil in tablets by parallel factor analysis and three-way partial least squares.

    PubMed

    Dinç, Erdal; Ertekin, Zehra Ceren

    2016-01-01

    An application of parallel factor analysis (PARAFAC) and three-way partial least squares (3W-PLS1) regression models to ultra-performance liquid chromatography-photodiode array detection (UPLC-PDA) data with co-eluted peaks in the same wavelength and time regions was described for the multicomponent quantitation of hydrochlorothiazide (HCT) and olmesartan medoxomil (OLM) in tablets. Three-way dataset of HCT and OLM in their binary mixtures containing telmisartan (IS) as an internal standard was recorded with a UPLC-PDA instrument. Firstly, the PARAFAC algorithm was applied for the decomposition of three-way UPLC-PDA data into the chromatographic, spectral and concentration profiles to quantify the concerned compounds. Secondly, 3W-PLS1 approach was subjected to the decomposition of a tensor consisting of three-way UPLC-PDA data into a set of triads to build 3W-PLS1 regression for the analysis of the same compounds in samples. For the proposed three-way analysis methods in the regression and prediction steps, the applicability and validity of PARAFAC and 3W-PLS1 models were checked by analyzing the synthetic mixture samples, inter-day and intra-day samples, and standard addition samples containing HCT and OLM. Two different three-way analysis methods, PARAFAC and 3W-PLS1, were successfully applied to the quantitative estimation of the solid dosage form containing HCT and OLM. Regression and prediction results provided from three-way analysis were compared with those obtained by traditional UPLC method. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Blood Glucose Reduction by Diabetic Drugs with Minimal Hypoglycemia Risk for Cardiovascular Outcomes: Evidence from Meta-regression Analysis of Randomized Controlled Trials.

    PubMed

    Huang, Chi-Jung; Wang, Wei-Ting; Sung, Shih-Hsien; Chen, Chen-Huan; Lip, Gregory Yh; Cheng, Hao-Min; Chiang, Chern-En

    2018-05-02

    To investigate the effects of blood glucose control with antihyperglycemic agents with minimal hypoglycemia risk on cardiovascular outcomes in patients with type 2 diabetes (T2D). Randomized controlled trials (RCTs) comparing the relative efficacy and safety of antidiabetic drugs with less hypoglycemia risk were comprehensively searched in MEDLINE, Embase, and the Cochrane Library up to January 27, 2018. Mixed-effects meta-regression analysis was conducted to explore the relationship between haemoglobin A1c (HbA1c) reduction and the risk of major adverse cardiovascular events (MACE), myocardial infarction, stroke, cardiovascular death, all-cause death, and hospitalization for heart failure. Ten RCTs comprising 92400 participants with T2D were included and provided information on 9773 MACE during a median follow-up of 2.6 years. The mean HbA1c concentration was 0.42% lower (median, 0.27-0.86%) for participants given antihyperglycemic agents than those given placebo. The meta-regression analysis demonstrated that HbA1c reduction was significantly associated with a decreased risk of MACE (β value, -0.39 to -0.55; P<0.02) even after adjusting for each of the following possible confounding factors including age, sex, baseline HbA1c, duration of follow-up, difference in achieved systolic blood pressure, difference in achieved body weight, or risk difference in hypoglycemia. Lowering HbA1c by 1% conferred a significant risk reduction of 30% (95% CI, 17-40%) for MACE. By contrast, the meta-regression analysis for trials using conventional agents failed to demonstrate a significant relationship between achieved HbA1c difference and MACE risk (P>0.74). Compared with placebo, newer T2D agents with less hypoglycemic hazard significantly reduced the risk of MACE. The MACE reduction seems to be associated with HbA1c reduction in a linear relationship. This article is protected by copyright. All rights reserved.

  1. Neuropsychometric tests in cross sectional and longitudinal studies - a regression analysis of ADAS - cog, SKT and MMSE.

    PubMed

    Ihl, R; Grass-Kapanke, B; Jänner, M; Weyer, G

    1999-11-01

    In clinical and drug studies, different neuropsychometric tests are used. So far, no empirical data have been published to compare studies using different tests. The purpose of this study was to calculate a regression formula allowing a comparison of cross-sectional and longitudinal data from three neuropsychometric tests that are frequently used in drug studies (Alzheimer's Disease Assessment Scale, ADAS-cog; Syndrom Kurz Test, SKT; Mini Mental State Examination, MMSE). 177 patients with dementia according to ICD10 criteria were studied for the cross sectional and 61 for the longitudinal analysis. Correlations and linear regressions were calculated between tests. Significance was proven with ANOVA and t-tests using the SPSS statistical package. Significant Spearman correlations and slopes in the regression occurred in the cross sectional analysis (ADAS-cog-SKT r(s) = 0.77, slope = 0.45, SKT-ADAS-cog slope = 1.3, r2 = 0.59; ADAS-cog-MMSE r2 = 0.76, slope = -0.42, MMSE-ADAS-cog slope = -1.5, r2 = 0.64; MMSE-SKT r(s) = -0.79, slope = -0.87, SKT-MMSE slope = -0.71, r2 = 0.62; p<0.001 after Bonferroni correction; N = 177) and in the longitudinal analysis (SKT-ADAS-cog, r(s) = 0.48, slope = 0.69, ADAS-cog-SKT slope = 0.69, p<0.001, r2 = 0.32, MMSE-SKT, r(s) = 0.44, slope = -0.41, SKT-MMSE, slope = -0.55, p<0.001, r2 = 0.21). The results allow calculation of ADAS-scores when SKT scores are given, and vice versa. In longitudinal studies or in the course of the disease, scores assessed with the ADAS-cog and the SKT may now be statistically compared. In all comparisons, bottom and ceiling effects of the tests have to be taken into account.

  2. Immortal time bias in observational studies of time-to-event outcomes.

    PubMed

    Jones, Mark; Fowler, Robert

    2016-12-01

    The purpose of the study is to show, through simulation and example, the magnitude and direction of immortal time bias when an inappropriate analysis is used. We compare 4 methods of analysis for observational studies of time-to-event outcomes: logistic regression, standard Cox model, landmark analysis, and time-dependent Cox model using an example data set of patients critically ill with influenza and a simulation study. For the example data set, logistic regression, standard Cox model, and landmark analysis all showed some evidence that treatment with oseltamivir provides protection from mortality in patients critically ill with influenza. However, when the time-dependent nature of treatment exposure is taken account of using a time-dependent Cox model, there is no longer evidence of a protective effect of treatment. The simulation study showed that, under various scenarios, the time-dependent Cox model consistently provides unbiased treatment effect estimates, whereas standard Cox model leads to bias in favor of treatment. Logistic regression and landmark analysis may also lead to bias. To minimize the risk of immortal time bias in observational studies of survival outcomes, we strongly suggest time-dependent exposures be included as time-dependent variables in hazard-based analyses. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Categorical data processing for real estate objects valuation using statistical analysis

    NASA Astrophysics Data System (ADS)

    Parygin, D. S.; Malikov, V. P.; Golubev, A. V.; Sadovnikova, N. P.; Petrova, T. M.; Finogeev, A. G.

    2018-05-01

    Theoretical and practical approaches to the use of statistical methods for studying various properties of infrastructure objects are analyzed in the paper. Methods of forecasting the value of objects are considered. A method for coding categorical variables describing properties of real estate objects is proposed. The analysis of the results of modeling the price of real estate objects using regression analysis and an algorithm based on a comparative approach is carried out.

  4. Platelet-rich plasma versus autologous blood versus steroid injection in lateral epicondylitis: systematic review and network meta-analysis.

    PubMed

    Arirachakaran, Alisara; Sukthuayat, Amnat; Sisayanarane, Thaworn; Laoratanavoraphong, Sorawut; Kanchanatawan, Wichan; Kongtharvonskul, Jatupon

    2016-06-01

    Clinical outcomes between the use of platelet-rich plasma (PRP), autologous blood (AB) and corticosteroid (CS) injection in lateral epicondylitis are still controversial. A systematic review and network meta-analysis of randomized controlled trials was conducted with the aim of comparing relevant clinical outcomes between the use of PRP, AB and CS injection. Medline and Scopus databases were searched from inception to January 2015. A network meta-analysis was performed by applying weight regression for continuous outcomes and a mixed-effect Poisson regression for dichotomous outcomes. Ten of 374 identified studies were eligible. When compared to CS, AB injection showed significantly improved effects with unstandardized mean differences (UMD) in pain visual analog scale (VAS), Disabilities of Arm Shoulder and Hand (DASH), Patient-Related Tennis Elbow Evaluation (PRTEE) score and pressure pain threshold (PPT) of -2.5 (95 % confidence interval, -3.5, -1.5), -25.5 (-33.8, -17.2), -5.3 (-9.1, -1.6) and 9.9 (5.6, 14.2), respectively. PRP injections also showed significantly improved VAS and DASH scores when compared with CS. PRP showed significantly better VAS with UMD when compared to AB injection. AB injection has a higher risk of adverse effects, with a relative risk of 1.78 (1.00, 3.17), when compared to CS. The network meta-analysis suggested no statistically significant difference in multiple active treatment comparisons of VAS, DASH and PRTEE when comparing PRP and AB injections. However, AB injection had improved DASH score and PPT when compared with PRP injection. In terms of adverse effects, AB injection had a higher risk than PRP injection. This network meta-analysis provided additional information that PRP injection can improve pain and lower the risk of complications, whereas AB injection can improve pain, disabilities scores and pressure pain threshold but has a higher risk of complications. Level I evidence.

  5. Socioeconomic disparities in the utilization of mechanical thrombectomy for acute ischemic stroke in US hospitals.

    PubMed

    Brinjikji, W; Rabinstein, A A; McDonald, J S; Cloft, H J

    2014-03-01

    Previous studies have demonstrated that socioeconomic disparities in the treatment of cerebrovascular diseases exist. We studied a large administrative data base to study disparities in the utilization of mechanical thrombectomy for acute ischemic stroke. With the utilization of the Perspective data base, we studied disparities in mechanical thrombectomy utilization between patient race and insurance status in 1) all patients presenting with acute ischemic stroke and 2) patients presenting with acute ischemic stroke at centers that performed mechanical thrombectomy. We examined utilization rates of mechanical thrombectomy by race/ethnicity (white, black, and Hispanic) and insurance status (Medicare, Medicaid, self-pay, and private). Multivariate logistic regression analysis adjusting for potential confounding variables was performed to study the association between race/insurance status and mechanical thrombectomy utilization. The overall mechanical thrombectomy utilization rate was 0.15% (371/249,336); utilization rate at centers that performed mechanical thrombectomy was 1.0% (371/35,376). In the sample of all patients with acute ischemic stroke, multivariate logistic regression analysis demonstrated that uninsured patients had significantly lower odds of mechanical thrombectomy utilization compared with privately insured patients (OR = 0.52, 95% CI = 0.25-0.95, P = .03), as did Medicare patients (OR = 0.53, 95% CI = 0.41-0.70, P < .0001). Blacks had significantly lower odds of mechanical thrombectomy utilization compared with whites (OR = 0.35, 95% CI = 0.23-0.51, P < .0001). When considering only patients treated at centers performing mechanical thrombectomy, multivariate logistic regression analysis demonstrated that insurance was not associated with significant disparities in mechanical thrombectomy utilization; however, black patients had significantly lower odds of mechanical thrombectomy utilization compared with whites (OR = 0.41, 95% CI = 0.27-0.60, P < .0001). Significant socioeconomic disparities exist in the utilization of mechanical thrombectomy in the United States.

  6. Integrative eQTL analysis of tumor and host omics data in individuals with bladder cancer.

    PubMed

    Pineda, Silvia; Van Steen, Kristel; Malats, Núria

    2017-09-01

    Integrative analyses of several omics data are emerging. The data are usually generated from the same source material (i.e., tumor sample) representing one level of regulation. However, integrating different regulatory levels (i.e., blood) with those from tumor may also reveal important knowledge about the human genetic architecture. To model this multilevel structure, an integrative-expression quantitative trait loci (eQTL) analysis applying two-stage regression (2SR) was proposed. This approach first regressed tumor gene expression levels with tumor markers and the adjusted residuals from the previous model were then regressed with the germline genotypes measured in blood. Previously, we demonstrated that penalized regression methods in combination with a permutation-based MaxT method (Global-LASSO) is a promising tool to fix some of the challenges that high-throughput omics data analysis imposes. Here, we assessed whether Global-LASSO can also be applied when tumor and blood omics data are integrated. We further compared our strategy with two 2SR-approaches, one using multiple linear regression (2SR-MLR) and other using LASSO (2SR-LASSO). We applied the three models to integrate genomic, epigenomic, and transcriptomic data from tumor tissue with blood germline genotypes from 181 individuals with bladder cancer included in the TCGA Consortium. Global-LASSO provided a larger list of eQTLs than the 2SR methods, identified a previously reported eQTLs in prostate stem cell antigen (PSCA), and provided further clues on the complexity of APBEC3B loci, with a minimal false-positive rate not achieved by 2SR-MLR. It also represents an important contribution for omics integrative analysis because it is easy to apply and adaptable to any type of data. © 2017 WILEY PERIODICALS, INC.

  7. Utility-Based Instruments for People with Dementia: A Systematic Review and Meta-Regression Analysis.

    PubMed

    Li, Li; Nguyen, Kim-Huong; Comans, Tracy; Scuffham, Paul

    2018-04-01

    Several utility-based instruments have been applied in cost-utility analysis to assess health state values for people with dementia. Nevertheless, concerns and uncertainty regarding their performance for people with dementia have been raised. To assess the performance of available utility-based instruments for people with dementia by comparing their psychometric properties and to explore factors that cause variations in the reported health state values generated from those instruments by conducting meta-regression analyses. A literature search was conducted and psychometric properties were synthesized to demonstrate the overall performance of each instrument. When available, health state values and variables such as the type of instrument and cognitive impairment levels were extracted from each article. A meta-regression analysis was undertaken and available covariates were included in the models. A total of 64 studies providing preference-based values were identified and included. The EuroQol five-dimension questionnaire demonstrated the best combination of feasibility, reliability, and validity. Meta-regression analyses suggested that significant differences exist between instruments, type of respondents, and mode of administration and the variations in estimated utility values had influences on incremental quality-adjusted life-year calculation. This review finds that the EuroQol five-dimension questionnaire is the most valid utility-based instrument for people with dementia, but should be replaced by others under certain circumstances. Although no utility estimates were reported in the article, the meta-regression analyses that examined variations in utility estimates produced by different instruments impact on cost-utility analysis, potentially altering the decision-making process in some circumstances. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  8. Analysis of Binary Adherence Data in the Setting of Polypharmacy: A Comparison of Different Approaches

    PubMed Central

    Esserman, Denise A.; Moore, Charity G.; Roth, Mary T.

    2009-01-01

    Older community dwelling adults often take multiple medications for numerous chronic diseases. Non-adherence to these medications can have a large public health impact. Therefore, the measurement and modeling of medication adherence in the setting of polypharmacy is an important area of research. We apply a variety of different modeling techniques (standard linear regression; weighted linear regression; adjusted linear regression; naïve logistic regression; beta-binomial (BB) regression; generalized estimating equations (GEE)) to binary medication adherence data from a study in a North Carolina based population of older adults, where each medication an individual was taking was classified as adherent or non-adherent. In addition, through simulation we compare these different methods based on Type I error rates, bias, power, empirical 95% coverage, and goodness of fit. We find that estimation and inference using GEE is robust to a wide variety of scenarios and we recommend using this in the setting of polypharmacy when adherence is dichotomously measured for multiple medications per person. PMID:20414358

  9. Pseudo-second order models for the adsorption of safranin onto activated carbon: comparison of linear and non-linear regression methods.

    PubMed

    Kumar, K Vasanth

    2007-04-02

    Kinetic experiments were carried out for the sorption of safranin onto activated carbon particles. The kinetic data were fitted to pseudo-second order model of Ho, Sobkowsk and Czerwinski, Blanchard et al. and Ritchie by linear and non-linear regression methods. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo-second order models were the same. Non-linear regression analysis showed that both Blanchard et al. and Ho have similar ideas on the pseudo-second order model but with different assumptions. The best fit of experimental data in Ho's pseudo-second order expression by linear and non-linear regression method showed that Ho pseudo-second order model was a better kinetic expression when compared to other pseudo-second order kinetic expressions.

  10. Comparing lagged linear correlation, lagged regression, Granger causality, and vector autoregression for uncovering associations in EHR data.

    PubMed

    Levine, Matthew E; Albers, David J; Hripcsak, George

    2016-01-01

    Time series analysis methods have been shown to reveal clinical and biological associations in data collected in the electronic health record. We wish to develop reliable high-throughput methods for identifying adverse drug effects that are easy to implement and produce readily interpretable results. To move toward this goal, we used univariate and multivariate lagged regression models to investigate associations between twenty pairs of drug orders and laboratory measurements. Multivariate lagged regression models exhibited higher sensitivity and specificity than univariate lagged regression in the 20 examples, and incorporating autoregressive terms for labs and drugs produced more robust signals in cases of known associations among the 20 example pairings. Moreover, including inpatient admission terms in the model attenuated the signals for some cases of unlikely associations, demonstrating how multivariate lagged regression models' explicit handling of context-based variables can provide a simple way to probe for health-care processes that confound analyses of EHR data.

  11. Prevalence of treponema species detected in endodontic infections: systematic review and meta-regression analysis.

    PubMed

    Leite, Fábio R M; Nascimento, Gustavo G; Demarco, Flávio F; Gomes, Brenda P F A; Pucci, Cesar R; Martinho, Frederico C

    2015-05-01

    This systematic review and meta-regression analysis aimed to calculate a combined prevalence estimate and evaluate the prevalence of different Treponema species in primary and secondary endodontic infections, including symptomatic and asymptomatic cases. The MEDLINE/PubMed, Embase, Scielo, Web of Knowledge, and Scopus databases were searched without starting date restriction up to and including March 2014. Only reports in English were included. The selected literature was reviewed by 2 authors and classified as suitable or not to be included in this review. Lists were compared, and, in case of disagreements, decisions were made after a discussion based on inclusion and exclusion criteria. A pooled prevalence of Treponema species in endodontic infections was estimated. Additionally, a meta-regression analysis was performed. Among the 265 articles identified in the initial search, only 51 were included in the final analysis. The studies were classified into 2 different groups according to the type of endodontic infection and whether it was an exclusively primary/secondary study (n = 36) or a primary/secondary comparison (n = 15). The pooled prevalence of Treponema species was 41.5% (95% confidence interval, 35.9-47.0). In the multivariate model of meta-regression analysis, primary endodontic infections (P < .001), acute apical abscess, symptomatic apical periodontitis (P < .001), and concomitant presence of 2 or more species (P = .028) explained the heterogeneity regarding the prevalence rates of Treponema species. Our findings suggest that Treponema species are important pathogens involved in endodontic infections, particularly in cases of primary and acute infections. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Hypothesis testing in functional linear regression models with Neyman's truncation and wavelet thresholding for longitudinal data.

    PubMed

    Yang, Xiaowei; Nie, Kun

    2008-03-15

    Longitudinal data sets in biomedical research often consist of large numbers of repeated measures. In many cases, the trajectories do not look globally linear or polynomial, making it difficult to summarize the data or test hypotheses using standard longitudinal data analysis based on various linear models. An alternative approach is to apply the approaches of functional data analysis, which directly target the continuous nonlinear curves underlying discretely sampled repeated measures. For the purposes of data exploration, many functional data analysis strategies have been developed based on various schemes of smoothing, but fewer options are available for making causal inferences regarding predictor-outcome relationships, a common task seen in hypothesis-driven medical studies. To compare groups of curves, two testing strategies with good power have been proposed for high-dimensional analysis of variance: the Fourier-based adaptive Neyman test and the wavelet-based thresholding test. Using a smoking cessation clinical trial data set, this paper demonstrates how to extend the strategies for hypothesis testing into the framework of functional linear regression models (FLRMs) with continuous functional responses and categorical or continuous scalar predictors. The analysis procedure consists of three steps: first, apply the Fourier or wavelet transform to the original repeated measures; then fit a multivariate linear model in the transformed domain; and finally, test the regression coefficients using either adaptive Neyman or thresholding statistics. Since a FLRM can be viewed as a natural extension of the traditional multiple linear regression model, the development of this model and computational tools should enhance the capacity of medical statistics for longitudinal data.

  13. Temperature dependence of nucleation rate in a binary solid solution

    NASA Astrophysics Data System (ADS)

    Wang, H. Y.; Philippe, T.; Duguay, S.; Blavette, D.

    2012-12-01

    The influence of regression (partial dissolution) effects on the temperature dependence of nucleation rate in a binary solid solution has been studied theoretically. The results of the analysis are compared with the predictions of the simplest Volmer-Weber theory. Regression effects are shown to have a strong influence on the shape of the curve of nucleation rate versus temperature. The temperature TM at which the maximum rate of nucleation occurs is found to be lowered, particularly for low interfacial energy (coherent precipitation) and high-mobility species (e.g. interstitial atoms).

  14. Advantages of geographically weighted regression for modeling benthic substrate in two Greater Yellowstone Ecosystem streams

    USGS Publications Warehouse

    Sheehan, Kenneth R.; Strager, Michael P.; Welsh, Stuart A.

    2013-01-01

    Stream habitat assessments are commonplace in fish management, and often involve nonspatial analysis methods for quantifying or predicting habitat, such as ordinary least squares regression (OLS). Spatial relationships, however, often exist among stream habitat variables. For example, water depth, water velocity, and benthic substrate sizes within streams are often spatially correlated and may exhibit spatial nonstationarity or inconsistency in geographic space. Thus, analysis methods should address spatial relationships within habitat datasets. In this study, OLS and a recently developed method, geographically weighted regression (GWR), were used to model benthic substrate from water depth and water velocity data at two stream sites within the Greater Yellowstone Ecosystem. For data collection, each site was represented by a grid of 0.1 m2 cells, where actual values of water depth, water velocity, and benthic substrate class were measured for each cell. Accuracies of regressed substrate class data by OLS and GWR methods were calculated by comparing maps, parameter estimates, and determination coefficient r 2. For analysis of data from both sites, Akaike’s Information Criterion corrected for sample size indicated the best approximating model for the data resulted from GWR and not from OLS. Adjusted r 2 values also supported GWR as a better approach than OLS for prediction of substrate. This study supports GWR (a spatial analysis approach) over nonspatial OLS methods for prediction of habitat for stream habitat assessments.

  15. A Modified Double Multiple Nonlinear Regression Constitutive Equation for Modeling and Prediction of High Temperature Flow Behavior of BFe10-1-2 Alloy

    NASA Astrophysics Data System (ADS)

    Cai, Jun; Wang, Kuaishe; Shi, Jiamin; Wang, Wen; Liu, Yingying

    2018-01-01

    Constitutive analysis for hot working of BFe10-1-2 alloy was carried out by using experimental stress-strain data from isothermal hot compression tests, in a wide range of temperature of 1,023 1,273 K, and strain rate range of 0.001 10 s-1. A constitutive equation based on modified double multiple nonlinear regression was proposed considering the independent effects of strain, strain rate, temperature and their interrelation. The predicted flow stress data calculated from the developed equation was compared with the experimental data. Correlation coefficient (R), average absolute relative error (AARE) and relative errors were introduced to verify the validity of the developed constitutive equation. Subsequently, a comparative study was made on the capability of strain-compensated Arrhenius-type constitutive model. The results showed that the developed constitutive equation based on modified double multiple nonlinear regression could predict flow stress of BFe10-1-2 alloy with good correlation and generalization.

  16. Using Dual Regression to Investigate Network Shape and Amplitude in Functional Connectivity Analyses

    PubMed Central

    Nickerson, Lisa D.; Smith, Stephen M.; Öngür, Döst; Beckmann, Christian F.

    2017-01-01

    Independent Component Analysis (ICA) is one of the most popular techniques for the analysis of resting state FMRI data because it has several advantageous properties when compared with other techniques. Most notably, in contrast to a conventional seed-based correlation analysis, it is model-free and multivariate, thus switching the focus from evaluating the functional connectivity of single brain regions identified a priori to evaluating brain connectivity in terms of all brain resting state networks (RSNs) that simultaneously engage in oscillatory activity. Furthermore, typical seed-based analysis characterizes RSNs in terms of spatially distributed patterns of correlation (typically by means of simple Pearson's coefficients) and thereby confounds together amplitude information of oscillatory activity and noise. ICA and other regression techniques, on the other hand, retain magnitude information and therefore can be sensitive to both changes in the spatially distributed nature of correlations (differences in the spatial pattern or “shape”) as well as the amplitude of the network activity. Furthermore, motion can mimic amplitude effects so it is crucial to use a technique that retains such information to ensure that connectivity differences are accurately localized. In this work, we investigate the dual regression approach that is frequently applied with group ICA to assess group differences in resting state functional connectivity of brain networks. We show how ignoring amplitude effects and how excessive motion corrupts connectivity maps and results in spurious connectivity differences. We also show how to implement the dual regression to retain amplitude information and how to use dual regression outputs to identify potential motion effects. Two key findings are that using a technique that retains magnitude information, e.g., dual regression, and using strict motion criteria are crucial for controlling both network amplitude and motion-related amplitude effects, respectively, in resting state connectivity analyses. We illustrate these concepts using realistic simulated resting state FMRI data and in vivo data acquired in healthy subjects and patients with bipolar disorder and schizophrenia. PMID:28348512

  17. Bias in logistic regression due to imperfect diagnostic test results and practical correction approaches.

    PubMed

    Valle, Denis; Lima, Joanna M Tucker; Millar, Justin; Amratia, Punam; Haque, Ubydul

    2015-11-04

    Logistic regression is a statistical model widely used in cross-sectional and cohort studies to identify and quantify the effects of potential disease risk factors. However, the impact of imperfect tests on adjusted odds ratios (and thus on the identification of risk factors) is under-appreciated. The purpose of this article is to draw attention to the problem associated with modelling imperfect diagnostic tests, and propose simple Bayesian models to adequately address this issue. A systematic literature review was conducted to determine the proportion of malaria studies that appropriately accounted for false-negatives/false-positives in a logistic regression setting. Inference from the standard logistic regression was also compared with that from three proposed Bayesian models using simulations and malaria data from the western Brazilian Amazon. A systematic literature review suggests that malaria epidemiologists are largely unaware of the problem of using logistic regression to model imperfect diagnostic test results. Simulation results reveal that statistical inference can be substantially improved when using the proposed Bayesian models versus the standard logistic regression. Finally, analysis of original malaria data with one of the proposed Bayesian models reveals that microscopy sensitivity is strongly influenced by how long people have lived in the study region, and an important risk factor (i.e., participation in forest extractivism) is identified that would have been missed by standard logistic regression. Given the numerous diagnostic methods employed by malaria researchers and the ubiquitous use of logistic regression to model the results of these diagnostic tests, this paper provides critical guidelines to improve data analysis practice in the presence of misclassification error. Easy-to-use code that can be readily adapted to WinBUGS is provided, enabling straightforward implementation of the proposed Bayesian models.

  18. A Simulation-Based Comparison of Several Stochastic Linear Regression Methods in the Presence of Outliers.

    ERIC Educational Resources Information Center

    Rule, David L.

    Several regression methods were examined within the framework of weighted structural regression (WSR), comparing their regression weight stability and score estimation accuracy in the presence of outlier contamination. The methods compared are: (1) ordinary least squares; (2) WSR ridge regression; (3) minimum risk regression; (4) minimum risk 2;…

  19. Determination of suitable drying curve model for bread moisture loss during baking

    NASA Astrophysics Data System (ADS)

    Soleimani Pour-Damanab, A. R.; Jafary, A.; Rafiee, S.

    2013-03-01

    This study presents mathematical modelling of bread moisture loss or drying during baking in a conventional bread baking process. In order to estimate and select the appropriate moisture loss curve equation, 11 different models, semi-theoretical and empirical, were applied to the experimental data and compared according to their correlation coefficients, chi-squared test and root mean square error which were predicted by nonlinear regression analysis. Consequently, of all the drying models, a Page model was selected as the best one, according to the correlation coefficients, chi-squared test, and root mean square error values and its simplicity. Mean absolute estimation error of the proposed model by linear regression analysis for natural and forced convection modes was 2.43, 4.74%, respectively.

  20. Application of near-infrared spectroscopy in the detection of fat-soluble vitamins in premix feed

    NASA Astrophysics Data System (ADS)

    Jia, Lian Ping; Tian, Shu Li; Zheng, Xue Cong; Jiao, Peng; Jiang, Xun Peng

    2018-02-01

    Vitamin is the organic compound and necessary for animal physiological maintenance. The rapid determination of the content of different vitamins in premix feed can help to achieve accurate diets and efficient feeding. Compared with high-performance liquid chromatography and other wet chemical methods, near-infrared spectroscopy is a fast, non-destructive, non-polluting method. 168 samples of premix feed were collected and the contents of vitamin A, vitamin E and vitamin D3 were detected by the standard method. The near-infrared spectra of samples ranging from 10 000 to 4 000 cm-1 were obtained. Partial least squares regression (PLSR) and support vector machine regression (SVMR) were used to construct the quantitative model. The results showed that the RMSEP of PLSR model of vitamin A, vitamin E and vitamin D3 were 0.43×107 IU/kg, 0.09×105 IU/kg and 0.17×107 IU/kg, respectively. The RMSEP of SVMR model was 0.45×107 IU/kg, 0.11×105 IU/kg and 0.18×107 IU/kg. Compared with nonlinear regression method (SVMR), linear regression method (PLSR) is more suitable for the quantitative analysis of vitamins in premix feed.

  1. High depressive symptomatology among older community-dwelling Mexican Americans: the impact of immigration.

    PubMed

    Gerst, Kerstin; Al-Ghatrif, Majd; Beard, Holly A; Samper-Ternent, Rafael; Markides, Kyriakos S

    2010-04-01

    This analysis explores nativity differences in depressive symptoms among very old (75+) community-dwelling Mexican Americans. Cross-sectional analysis using the fifth wave (2004-2005) of the Hispanic Established Population for the Epidemiological Study of the Elderly (Hispanic EPESE). The sample consisted of 1699 non-institutionalized Mexican American men and women aged 75 years and above. Depressive symptoms were measured by the Center for Epidemiological Studies Depression Scale (CES-D). Logistic regression was used to predict high depressive symptoms (CES-D score 16 or higher) and multinomial logistic regression was used to predict sub-threshold, moderate, and high depressive symptoms. Results showed that elders born in Mexico had higher odds of more depressive symptoms compared to otherwise similar Mexican Americans born in the US. Age of arrival, gender, and other covariates did not modify that risk. The findings suggest that older Mexican American immigrants are at higher risk of depressive symptomatology compared to persons born in the US, which has significant implications for research, policy, and clinical practice.

  2. Comparative analysis of used car price evaluation models

    NASA Astrophysics Data System (ADS)

    Chen, Chuancan; Hao, Lulu; Xu, Cong

    2017-05-01

    An accurate used car price evaluation is a catalyst for the healthy development of used car market. Data mining has been applied to predict used car price in several articles. However, little is studied on the comparison of using different algorithms in used car price estimation. This paper collects more than 100,000 used car dealing records throughout China to do empirical analysis on a thorough comparison of two algorithms: linear regression and random forest. These two algorithms are used to predict used car price in three different models: model for a certain car make, model for a certain car series and universal model. Results show that random forest has a stable but not ideal effect in price evaluation model for a certain car make, but it shows great advantage in the universal model compared with linear regression. This indicates that random forest is an optimal algorithm when handling complex models with a large number of variables and samples, yet it shows no obvious advantage when coping with simple models with less variables.

  3. Robust Methods for Moderation Analysis with a Two-Level Regression Model.

    PubMed

    Yang, Miao; Yuan, Ke-Hai

    2016-01-01

    Moderation analysis has many applications in social sciences. Most widely used estimation methods for moderation analysis assume that errors are normally distributed and homoscedastic. When these assumptions are not met, the results from a classical moderation analysis can be misleading. For more reliable moderation analysis, this article proposes two robust methods with a two-level regression model when the predictors do not contain measurement error. One method is based on maximum likelihood with Student's t distribution and the other is based on M-estimators with Huber-type weights. An algorithm for obtaining the robust estimators is developed. Consistent estimates of standard errors of the robust estimators are provided. The robust approaches are compared against normal-distribution-based maximum likelihood (NML) with respect to power and accuracy of parameter estimates through a simulation study. Results show that the robust approaches outperform NML under various distributional conditions. Application of the robust methods is illustrated through a real data example. An R program is developed and documented to facilitate the application of the robust methods.

  4. The use of segmented regression in analysing interrupted time series studies: an example in pre-hospital ambulance care.

    PubMed

    Taljaard, Monica; McKenzie, Joanne E; Ramsay, Craig R; Grimshaw, Jeremy M

    2014-06-19

    An interrupted time series design is a powerful quasi-experimental approach for evaluating effects of interventions introduced at a specific point in time. To utilize the strength of this design, a modification to standard regression analysis, such as segmented regression, is required. In segmented regression analysis, the change in intercept and/or slope from pre- to post-intervention is estimated and used to test causal hypotheses about the intervention. We illustrate segmented regression using data from a previously published study that evaluated the effectiveness of a collaborative intervention to improve quality in pre-hospital ambulance care for acute myocardial infarction (AMI) and stroke. In the original analysis, a standard regression model was used with time as a continuous variable. We contrast the results from this standard regression analysis with those from segmented regression analysis. We discuss the limitations of the former and advantages of the latter, as well as the challenges of using segmented regression in analysing complex quality improvement interventions. Based on the estimated change in intercept and slope from pre- to post-intervention using segmented regression, we found insufficient evidence of a statistically significant effect on quality of care for stroke, although potential clinically important effects for AMI cannot be ruled out. Segmented regression analysis is the recommended approach for analysing data from an interrupted time series study. Several modifications to the basic segmented regression analysis approach are available to deal with challenges arising in the evaluation of complex quality improvement interventions.

  5. Simulation of parametric model towards the fixed covariate of right censored lung cancer data

    NASA Astrophysics Data System (ADS)

    Afiqah Muhamad Jamil, Siti; Asrul Affendi Abdullah, M.; Kek, Sie Long; Ridwan Olaniran, Oyebayo; Enera Amran, Syahila

    2017-09-01

    In this study, simulation procedure was applied to measure the fixed covariate of right censored data by using parametric survival model. The scale and shape parameter were modified to differentiate the analysis of parametric regression survival model. Statistically, the biases, mean biases and the coverage probability were used in this analysis. Consequently, different sample sizes were employed to distinguish the impact of parametric regression model towards right censored data with 50, 100, 150 and 200 number of sample. R-statistical software was utilised to develop the coding simulation with right censored data. Besides, the final model of right censored simulation was compared with the right censored lung cancer data in Malaysia. It was found that different values of shape and scale parameter with different sample size, help to improve the simulation strategy for right censored data and Weibull regression survival model is suitable fit towards the simulation of survival of lung cancer patients data in Malaysia.

  6. Clinical importance of detecting exaggerated blood pressure response to exercise on antihypertensive therapy.

    PubMed

    Mizuno, Reiko; Fujimoto, Shinichi; Saito, Yoshihiko; Yamazaki, Masaharu

    2016-06-01

    In patients with hypertension, regression of left ventricular hypertrophy (LVH) is associated with improved prognosis. Impact of exaggerated blood pressure response to exercise (Ex-BP) seen in patients with hypertension undergoing antihypertensive therapy on the regression of LVH has not been evaluated. This prospective study investigated the relationship between Ex-BP on antihypertensive therapy and the regression of LVH. We prospectively studied 124 never-treated patients with hypertension with LVH. After a pretreatment evaluation, antihypertensive treatment was started and exercise test was performed in all patients. Patients with Ex-BP were divided into the Ex-BP (+) group and those without were divided into the Ex-BP (-) group. Regression of LVH over the follow-up period was compared between the groups. The follow-up duration was approximately 12 months in both the groups. Mean values of blood pressure at rest during the follow-up period were similar between the groups. Reduction of LVH was seen in both the groups. The magnitude of reduction of LVH was significantly smaller in the Ex-BP (+) group compared with the Ex-BP (-) group. Regression of LVH was much frequently seen in the Ex-BP (+) group compared with the Ex-BP (-) group. Multiple regression analysis determined that on-treatment Ex-BP was an independent negative determinant of antihypertensive treatment-induced reduction of LVH. This study suggests that on-treatment Ex-BP is associated with depressed regression of LVH in patients with hypertension with antihypertensive treatment. If Ex-BP is detected despite receiving antihypertensive agents, improvement of Ex-BP may be necessary to achieve an effective reduction of LVH. Active search of Ex-BP is recommended in patients with hypertension with antihypertensive treatment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. Standardized Regression Coefficients as Indices of Effect Sizes in Meta-Analysis

    ERIC Educational Resources Information Center

    Kim, Rae Seon

    2011-01-01

    When conducting a meta-analysis, it is common to find many collected studies that report regression analyses, because multiple regression analysis is widely used in many fields. Meta-analysis uses effect sizes drawn from individual studies as a means of synthesizing a collection of results. However, indices of effect size from regression analyses…

  8. Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.

    PubMed

    Zhang, Futao; Xie, Dan; Liang, Meimei; Xiong, Momiao

    2016-04-01

    To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes.

  9. Methods for estimating peak-flow frequencies at ungaged sites in Montana based on data through water year 2011: Chapter F in Montana StreamStats

    USGS Publications Warehouse

    Sando, Roy; Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.

    2016-04-05

    The U.S. Geological Survey (USGS), in cooperation with the Montana Department of Natural Resources and Conservation, completed a study to update methods for estimating peak-flow frequencies at ungaged sites in Montana based on peak-flow data at streamflow-gaging stations through water year 2011. The methods allow estimation of peak-flow frequencies (that is, peak-flow magnitudes, in cubic feet per second, associated with annual exceedance probabilities of 66.7, 50, 42.9, 20, 10, 4, 2, 1, 0.5, and 0.2 percent) at ungaged sites. The annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.Regional regression analysis is a primary focus of Chapter F of this Scientific Investigations Report, and regression equations for estimating peak-flow frequencies at ungaged sites in eight hydrologic regions in Montana are presented. The regression equations are based on analysis of peak-flow frequencies and basin characteristics at 537 streamflow-gaging stations in or near Montana and were developed using generalized least squares regression or weighted least squares regression.All of the data used in calculating basin characteristics that were included as explanatory variables in the regression equations were developed for and are available through the USGS StreamStats application (http://water.usgs.gov/osw/streamstats/) for Montana. StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. The primary purpose of the Montana StreamStats application is to provide estimates of basin characteristics and streamflow characteristics for user-selected ungaged sites on Montana streams. The regional regression equations presented in this report chapter can be conveniently solved using the Montana StreamStats application.Selected results from this study were compared with results of previous studies. For most hydrologic regions, the regression equations reported for this study had lower mean standard errors of prediction (in percent) than the previously reported regression equations for Montana. The equations presented for this study are considered to be an improvement on the previously reported equations primarily because this study (1) included 13 more years of peak-flow data; (2) included 35 more streamflow-gaging stations than previous studies; (3) used a detailed geographic information system (GIS)-based definition of the regulation status of streamflow-gaging stations, which allowed better determination of the unregulated peak-flow records that are appropriate for use in the regional regression analysis; (4) included advancements in GIS and remote-sensing technologies, which allowed more convenient calculation of basin characteristics and investigation of many more candidate basin characteristics; and (5) included advancements in computational and analytical methods, which allowed more thorough and consistent data analysis.This report chapter also presents other methods for estimating peak-flow frequencies at ungaged sites. Two methods for estimating peak-flow frequencies at ungaged sites located on the same streams as streamflow-gaging stations are described. Additionally, envelope curves relating maximum recorded annual peak flows to contributing drainage area for each of the eight hydrologic regions in Montana are presented and compared to a national envelope curve. In addition to providing general information on characteristics of large peak flows, the regional envelope curves can be used to assess the reasonableness of peak-flow frequency estimates determined using the regression equations.

  10. An empirical study of statistical properties of variance partition coefficients for multi-level logistic regression models

    USGS Publications Warehouse

    Li, Ji; Gray, B.R.; Bates, D.M.

    2008-01-01

    Partitioning the variance of a response by design levels is challenging for binomial and other discrete outcomes. Goldstein (2003) proposed four definitions for variance partitioning coefficients (VPC) under a two-level logistic regression model. In this study, we explicitly derived formulae for multi-level logistic regression model and subsequently studied the distributional properties of the calculated VPCs. Using simulations and a vegetation dataset, we demonstrated associations between different VPC definitions, the importance of methods for estimating VPCs (by comparing VPC obtained using Laplace and penalized quasilikehood methods), and bivariate dependence between VPCs calculated at different levels. Such an empirical study lends an immediate support to wider applications of VPC in scientific data analysis.

  11. Improved Correction of Atmospheric Pressure Data Obtained by Smartphones through Machine Learning

    PubMed Central

    Kim, Yong-Hyuk; Ha, Ji-Hun; Kim, Na-Young; Im, Hyo-Hyuc; Sim, Sangjin; Choi, Reno K. Y.

    2016-01-01

    A correction method using machine learning aims to improve the conventional linear regression (LR) based method for correction of atmospheric pressure data obtained by smartphones. The method proposed in this study conducts clustering and regression analysis with time domain classification. Data obtained in Gyeonggi-do, one of the most populous provinces in South Korea surrounding Seoul with the size of 10,000 km2, from July 2014 through December 2014, using smartphones were classified with respect to time of day (daytime or nighttime) as well as day of the week (weekday or weekend) and the user's mobility, prior to the expectation-maximization (EM) clustering. Subsequently, the results were analyzed for comparison by applying machine learning methods such as multilayer perceptron (MLP) and support vector regression (SVR). The results showed a mean absolute error (MAE) 26% lower on average when regression analysis was performed through EM clustering compared to that obtained without EM clustering. For machine learning methods, the MAE for SVR was around 31% lower for LR and about 19% lower for MLP. It is concluded that pressure data from smartphones are as good as the ones from national automatic weather station (AWS) network. PMID:27524999

  12. A classical regression framework for mediation analysis: fitting one model to estimate mediation effects.

    PubMed

    Saunders, Christina T; Blume, Jeffrey D

    2017-10-26

    Mediation analysis explores the degree to which an exposure's effect on an outcome is diverted through a mediating variable. We describe a classical regression framework for conducting mediation analyses in which estimates of causal mediation effects and their variance are obtained from the fit of a single regression model. The vector of changes in exposure pathway coefficients, which we named the essential mediation components (EMCs), is used to estimate standard causal mediation effects. Because these effects are often simple functions of the EMCs, an analytical expression for their model-based variance follows directly. Given this formula, it is instructive to revisit the performance of routinely used variance approximations (e.g., delta method and resampling methods). Requiring the fit of only one model reduces the computation time required for complex mediation analyses and permits the use of a rich suite of regression tools that are not easily implemented on a system of three equations, as would be required in the Baron-Kenny framework. Using data from the BRAIN-ICU study, we provide examples to illustrate the advantages of this framework and compare it with the existing approaches. © The Author 2017. Published by Oxford University Press.

  13. Wavelet regression model in forecasting crude oil price

    NASA Astrophysics Data System (ADS)

    Hamid, Mohd Helmie; Shabri, Ani

    2017-05-01

    This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.

  14. Concordance of macular pigment measurements obtained using customized heterochromatic flicker photometry, dual-wavelength autofluorescence, and single-wavelength reflectance.

    PubMed

    Dennison, Jessica L; Stack, Jim; Beatty, Stephen; Nolan, John M

    2013-11-01

    This study compares in vivo measurements of macular pigment (MP) obtained using customized heterochromatic flicker photometry (cHFP; Macular Metrics Densitometer(™)), dual-wavelength fundus autofluorescence (Heidelberg Spectralis(®) HRA + OCT MultiColor) and single-wavelength fundus reflectance (Zeiss Visucam(®) 200). MP was measured in one eye of 62 subjects on each device. Data from 49 subjects (79%) was suitable for analysis. Agreement between the Densitometer and Spectralis was investigated at various eccentricities using a variety of quantitative and graphical methods, including: Pearson correlation coefficient to measure degree of scatter (precision), accuracy coefficient, concordance correlation coefficient (ccc), paired t-test, scatter and Bland-Altman plots. The relationship between max MP from the Visucam and central MP from the Spectralis and Densitometer was investigated using regression methods. Agreement was strong between the Densitometer and Spectralis at all central eccentricities (e.g. at 0.25° eccentricity: accuracy = 0.97, precision = 0.90, ccc = 0.87). Regression analysis showed a very weak relationship between the Visucam and Densitometer (e.g. Visucam max on Densitometer central MP: R(2) = 0.008, p = 0.843). Regression analysis also demonstrated a weak relationship between MP measured by the Spectralis and Visucam (e.g. Visucam max on Spectralis central MP: R(2) = 0.047, p = 0.348). MP values obtained using the Heidelberg Spectralis are comparable to MP values obtained using the Densitometer. In contrast, MP values obtained using the Zeiss Visucam are not comparable with either the Densitometer or the Spectralis MP measuring devices. Taking cHFP as the current standard to which other MP measuring devices should be compared, the Spectralis is suitable for use in a clinical and research setting, whereas the Visucam is not. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Stepwise Distributed Open Innovation Contests for Software Development: Acceleration of Genome-Wide Association Analysis

    PubMed Central

    Hill, Andrew; Loh, Po-Ru; Bharadwaj, Ragu B.; Pons, Pascal; Shang, Jingbo; Guinan, Eva; Lakhani, Karim; Kilty, Iain

    2017-01-01

    Abstract Background: The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets. Results: Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in <6 months by providing rapid access to highly skilled programmers with specialized, difficult-to-find skill sets. Through a crowd-based contest a combination of computational, numeric, and algorithmic approaches was identified that accelerated the logistic regression in PLINK 1.07 by 18- to 45-fold. Combining contest-derived logistic regression code with coarse-grained parallelization, multithreading, and associated changes to data initialization code further developed through distributed innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project. Conclusions: Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics. PMID:28327993

  16. Stepwise Distributed Open Innovation Contests for Software Development: Acceleration of Genome-Wide Association Analysis.

    PubMed

    Hill, Andrew; Loh, Po-Ru; Bharadwaj, Ragu B; Pons, Pascal; Shang, Jingbo; Guinan, Eva; Lakhani, Karim; Kilty, Iain; Jelinsky, Scott A

    2017-05-01

    The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets. Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in <6 months by providing rapid access to highly skilled programmers with specialized, difficult-to-find skill sets. Through a crowd-based contest a combination of computational, numeric, and algorithmic approaches was identified that accelerated the logistic regression in PLINK 1.07 by 18- to 45-fold. Combining contest-derived logistic regression code with coarse-grained parallelization, multithreading, and associated changes to data initialization code further developed through distributed innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project. Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics. © The Author 2017. Published by Oxford University Press.

  17. Prediction models for clustered data: comparison of a random intercept and standard regression model

    PubMed Central

    2013-01-01

    Background When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Methods Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. Results The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. Conclusion The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters. PMID:23414436

  18. Prediction models for clustered data: comparison of a random intercept and standard regression model.

    PubMed

    Bouwmeester, Walter; Twisk, Jos W R; Kappen, Teus H; van Klei, Wilton A; Moons, Karel G M; Vergouwe, Yvonne

    2013-02-15

    When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters.

  19. Growth and inactivation of Salmonella at low refrigerated storage temperatures and thermal inactivation on raw chicken meat and laboratory media: mixed effect meta-analysis.

    PubMed

    Smadi, Hanan; Sargeant, Jan M; Shannon, Harry S; Raina, Parminder

    2012-12-01

    Growth and inactivation regression equations were developed to describe the effects of temperature on Salmonella concentration on chicken meat for refrigerated temperatures (⩽10°C) and for thermal treatment temperatures (55-70°C). The main objectives were: (i) to compare Salmonella growth/inactivation in chicken meat versus laboratory media; (ii) to create regression equations to estimate Salmonella growth in chicken meat that can be used in quantitative risk assessment (QRA) modeling; and (iii) to create regression equations to estimate D-values needed to inactivate Salmonella in chicken meat. A systematic approach was used to identify the articles, critically appraise them, and pool outcomes across studies. Growth represented in density (Log10CFU/g) and D-values (min) as a function of temperature were modeled using hierarchical mixed effects regression models. The current meta-analysis analysis found a significant difference (P⩽0.05) between the two matrices - chicken meat and laboratory media - for both growth at refrigerated temperatures and inactivation by thermal treatment. Growth and inactivation were significantly influenced by temperature after controlling for other variables; however, no consistent pattern in growth was found. Validation of growth and inactivation equations against data not used in their development is needed. Copyright © 2012 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  20. Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship.

    PubMed

    Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A

    2014-08-01

    Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A comparative study on generating simulated Landsat NDVI images using data fusion and regression method-the case of the Korean Peninsula.

    PubMed

    Lee, Mi Hee; Lee, Soo Bong; Eo, Yang Dam; Kim, Sun Woong; Woo, Jung-Hun; Han, Soo Hee

    2017-07-01

    Landsat optical images have enough spatial and spectral resolution to analyze vegetation growth characteristics. But, the clouds and water vapor degrade the image quality quite often, which limits the availability of usable images for the time series vegetation vitality measurement. To overcome this shortcoming, simulated images are used as an alternative. In this study, weighted average method, spatial and temporal adaptive reflectance fusion model (STARFM) method, and multilinear regression analysis method have been tested to produce simulated Landsat normalized difference vegetation index (NDVI) images of the Korean Peninsula. The test results showed that the weighted average method produced the images most similar to the actual images, provided that the images were available within 1 month before and after the target date. The STARFM method gives good results when the input image date is close to the target date. Careful regional and seasonal consideration is required in selecting input images. During summer season, due to clouds, it is very difficult to get the images close enough to the target date. Multilinear regression analysis gives meaningful results even when the input image date is not so close to the target date. Average R 2 values for weighted average method, STARFM, and multilinear regression analysis were 0.741, 0.70, and 0.61, respectively.

  2. Induction of osteoporosis with its influence on osteoporotic determinants and their interrelationships in rats by DEXA

    PubMed Central

    Heiss, Christian; Govindarajan, Parameswari; Schlewitz, Gudrun; Hemdan, Nasr Y.A.; Schliefke, Nathalie; Alt, Volker; Thormann, Ulrich; Lips, Katrin Susanne; Wenisch, Sabine; Langheinrich, Alexander C.; Zahner, Daniel; Schnettler, Reinhard

    2012-01-01

    Summary Background As women are the population most affected by multifactorial osteoporosis, research is focused on unraveling the underlying mechanism of osteoporosis induction in rats by combining ovariectomy (OVX) either with calcium, phosphorus, vitamin C and vitamin D2/D3 deficiency, or by administration of glucocorticoid (dexamethasone). Material/Methods Different skeletal sites of sham, OVX-Diet and OVX-Steroid rats were analyzed by Dual Energy X-ray Absorptiometry (DEXA) at varied time points of 0, 4 and 12 weeks to determine and compare the osteoporotic factors such as bone mineral density (BMD), bone mineral content (BMC), area, body weight and percent fat among different groups and time points. Comparative analysis and interrelationships among osteoporotic determinants by regression analysis were also determined. Results T scores were below-2.5 in OVX-Diet rats at 4 and 12 weeks post-OVX. OVX-diet rats revealed pronounced osteoporotic status with reduced BMD and BMC than the steroid counterparts, with the spine and pelvis as the most affected skeletal sites. Increase in percent fat was observed irrespective of the osteoporosis inducers applied. Comparative analysis and interrelationships between osteoporotic determinants that are rarely studied in animals indicate the necessity to analyze BMC and area along with BMD in obtaining meaningful information leading to proper prediction of probability of osteoporotic fractures. Conclusions Enhanced osteoporotic effect observed in OVX-Diet rats indicates that estrogen dysregulation combined with diet treatment induces and enhances osteoporosis with time when compared to the steroid group. Comparative and regression analysis indicates the need to determine BMC along with BMD and area in osteoporotic determination. PMID:22648240

  3. Interpretation of ambiguities by schoolchildren with low birth weight from Embu das Artes, São Paulo state, Brazil.

    PubMed

    Pessoa, Rebeca Rodrigues; Araújo, Sarah Cueva Cândido Soares de; Isotani, Selma Mie; Puccini, Rosana Fiorini; Perissinoto, Jacy

    To assess the development of language regarding the ability to recognize and interpret lexical ambiguity in low-birth-weight schoolchildren enrolled at the school system in the municipality of Embu das Artes, Sao Paulo state, compared with that of schoolchildren with normal birth weight. A case-control, retrospective, cross-sectional study conducted with 378 schoolchildren, both genders, aged 5 to 9.9 years, from the municipal schools of Embu das Artes. Study Group (SG) comprising 210 schoolchildren with birth weight < 2500 g. Control Group (CG) composed of 168 school children with birth weight ≥ 2500 g. Participants of both groups were compared with respect to the skills of recognition and verbal interpretation of sentences containing lexical ambiguity using the Test of Language Competence. Variables of interest: Age and gender of children; age and schooling of mothers. Statistical analysis: Descriptive analysis to characterize the sample and score per group; Student's t test for comparison between the total scores of each skill/subtest; Chi-square test to compare items within each subtest; multiple regression analysis for the intervening variables. Participants of the SG presented lower scores for ambiguous sentences compared with those of participants of the CG. Multiple regression analysis showed that child's current age was a predictor for all metalinguistic skills regarding interpretation of ambiguities in both groups. Participants of the SG presented lower specific and total scores than those of participants of the CG for ambiguity skills. The child's current age factor positively influenced the ambiguity skills in both groups.

  4. Quantitative characterization of the regressive ecological succession by fractal analysis of plant spatial patterns

    USGS Publications Warehouse

    Alados, C.L.; Pueyo, Y.; Giner, M.L.; Navarro, T.; Escos, J.; Barroso, F.; Cabezudo, B.; Emlen, J.M.

    2003-01-01

    We studied the effect of grazing on the degree of regression of successional vegetation dynamic in a semi-arid Mediterranean matorral. We quantified the spatial distribution patterns of the vegetation by fractal analyses, using the fractal information dimension and spatial autocorrelation measured by detrended fluctuation analyses (DFA). It is the first time that fractal analysis of plant spatial patterns has been used to characterize the regressive ecological succession. Plant spatial patterns were compared over a long-term grazing gradient (low, medium and heavy grazing pressure) and on ungrazed sites for two different plant communities: A middle dense matorral of Chamaerops and Periploca at Sabinar-Romeral and a middle dense matorral of Chamaerops, Rhamnus and Ulex at Requena-Montano. The two communities differed also in the microclimatic characteristics (sea oriented at the Sabinar-Romeral site and inland oriented at the Requena-Montano site). The information fractal dimension increased as we moved from a middle dense matorral to discontinuous and scattered matorral and, finally to the late regressive succession, at Stipa steppe stage. At this stage a drastic change in the fractal dimension revealed a change in the vegetation structure, accurately indicating end successional vegetation stages. Long-term correlation analysis (DFA) revealed that an increase in grazing pressure leads to unpredictability (randomness) in species distributions, a reduction in diversity, and an increase in cover of the regressive successional species, e.g. Stipa tenacissima L. These comparisons provide a quantitative characterization of the successional dynamic of plant spatial patterns in response to grazing perturbation gradient. ?? 2002 Elsevier Science B.V. All rights reserved.

  5. Independent contrasts and PGLS regression estimators are equivalent.

    PubMed

    Blomberg, Simon P; Lefevre, James G; Wells, Jessie A; Waterhouse, Mary

    2012-05-01

    We prove that the slope parameter of the ordinary least squares regression of phylogenetically independent contrasts (PICs) conducted through the origin is identical to the slope parameter of the method of generalized least squares (GLSs) regression under a Brownian motion model of evolution. This equivalence has several implications: 1. Understanding the structure of the linear model for GLS regression provides insight into when and why phylogeny is important in comparative studies. 2. The limitations of the PIC regression analysis are the same as the limitations of the GLS model. In particular, phylogenetic covariance applies only to the response variable in the regression and the explanatory variable should be regarded as fixed. Calculation of PICs for explanatory variables should be treated as a mathematical idiosyncrasy of the PIC regression algorithm. 3. Since the GLS estimator is the best linear unbiased estimator (BLUE), the slope parameter estimated using PICs is also BLUE. 4. If the slope is estimated using different branch lengths for the explanatory and response variables in the PIC algorithm, the estimator is no longer the BLUE, so this is not recommended. Finally, we discuss whether or not and how to accommodate phylogenetic covariance in regression analyses, particularly in relation to the problem of phylogenetic uncertainty. This discussion is from both frequentist and Bayesian perspectives.

  6. Using Dominance Analysis to Determine Predictor Importance in Logistic Regression

    ERIC Educational Resources Information Center

    Azen, Razia; Traxel, Nicole

    2009-01-01

    This article proposes an extension of dominance analysis that allows researchers to determine the relative importance of predictors in logistic regression models. Criteria for choosing logistic regression R[superscript 2] analogues were determined and measures were selected that can be used to perform dominance analysis in logistic regression. A…

  7. Faculty Research Productivity in Hong Kong across Academic Discipline

    ERIC Educational Resources Information Center

    Jung, Jisun

    2012-01-01

    This study examines the research productivity of Hong Kong academics. Specifically, it explores the individual and institutional factors that contribute to their productivity while also comparing determinants across academic disciplines. We have conducted OLS regression analysis using the international survey data from "The Changing Academics…

  8. Do Business Communication Courses Improve Student Performance in Introductory Marketing?

    ERIC Educational Resources Information Center

    Marcal, Leah E.; Hennessey, Judith E.; Curren, Mary T.; Roberts, William W.

    2005-01-01

    In this study, the authors investigated whether completion of a business communications course improved student performance in an introductory marketing management course. Regression analysis indicated that students who completed the communications course received higher grades than the otherwise comparable students. In addition, marketing majors…

  9. High and low frequency unfolded partial least squares regression based on empirical mode decomposition for quantitative analysis of fuel oil samples.

    PubMed

    Bian, Xihui; Li, Shujuan; Lin, Ligang; Tan, Xiaoyao; Fan, Qingjie; Li, Ming

    2016-06-21

    Accurate prediction of the model is fundamental to the successful analysis of complex samples. To utilize abundant information embedded over frequency and time domains, a novel regression model is presented for quantitative analysis of hydrocarbon contents in the fuel oil samples. The proposed method named as high and low frequency unfolded PLSR (HLUPLSR), which integrates empirical mode decomposition (EMD) and unfolded strategy with partial least squares regression (PLSR). In the proposed method, the original signals are firstly decomposed into a finite number of intrinsic mode functions (IMFs) and a residue by EMD. Secondly, the former high frequency IMFs are summed as a high frequency matrix and the latter IMFs and residue are summed as a low frequency matrix. Finally, the two matrices are unfolded to an extended matrix in variable dimension, and then the PLSR model is built between the extended matrix and the target values. Coupled with Ultraviolet (UV) spectroscopy, HLUPLSR has been applied to determine hydrocarbon contents of light gas oil and diesel fuels samples. Comparing with single PLSR and other signal processing techniques, the proposed method shows superiority in prediction ability and better model interpretation. Therefore, HLUPLSR method provides a promising tool for quantitative analysis of complex samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Depression, anxiety and general psychopathology in breast cancer patients: a cross-sectional control study.

    PubMed

    Fafouti, M; Paparrigopoulos, T; Zervas, Y; Rabavilas, A; Malamos, N; Liappas, I; Tzavara, C

    2010-01-01

    A significant proportion of breast cancer patients experience psychiatric morbidity. The present study compared the psychopathological profile (depression, anxiety and general psychopathology) of Greek women with breast cancer with a group of healthy controls. Patients (n=109) were recruited from a specialized oncology breast cancer department and healthy controls (n=71) from a breast outpatient clinic. General psychopathology was assessed by the SCL-90-R. The Montgomery-Asberg Depression Rating Scale (MADRS) and the Spielberger State-Trait Anxiety Inventory (STAI) were used for assessing depression and anxiety. Demographics and clinical characteristics were also recorded. Data were modeled using multiple regression analysis. The mean age was 54.7±18.1 years for the control group and 51.2±9.5 years for the patient group (p=0.288). Mean scores on SCL-90-R, MADRS and STAI were significantly higher in the cancer group compared to controls (p<0.05). Multiple regression analysis revealed that breast cancer was independently and positively associated with all psychological measures (p<0.05). Regression coefficients ranged from 0.19 (SCL-90-R, psychotism) to 0.33 (MADRS). Lower anger/aggressiveness and anxiety were found in highly educated women; divorced/widowed women scored higher on obsessionality and MADRS compared to married women. Psychiatric treatment was associated with higher scores on somatization, depression, phobic anxiety and general psychopathology. Anxiety, depression, and overall psychopathology are more frequent in breast cancer patients compared to controls. Disease makes a larger independent contribution to all psychopathological measures than any other investigated variable. Therefore, breast cancer patients should be closely followed up in order to identify and timely treat any mental health problems that may arise.

  11. Spatiotemporal Bayesian analysis of Lyme disease in New York state, 1990-2000.

    PubMed

    Chen, Haiyan; Stratton, Howard H; Caraco, Thomas B; White, Dennis J

    2006-07-01

    Mapping ordinarily increases our understanding of nontrivial spatial and temporal heterogeneities in disease rates. However, the large number of parameters required by the corresponding statistical models often complicates detailed analysis. This study investigates the feasibility of a fully Bayesian hierarchical regression approach to the problem and identifies how it outperforms two more popular methods: crude rate estimates (CRE) and empirical Bayes standardization (EBS). In particular, we apply a fully Bayesian approach to the spatiotemporal analysis of Lyme disease incidence in New York state for the period 1990-2000. These results are compared with those obtained by CRE and EBS in Chen et al. (2005). We show that the fully Bayesian regression model not only gives more reliable estimates of disease rates than the other two approaches but also allows for tractable models that can accommodate more numerous sources of variation and unknown parameters.

  12. Reflectance measurements for the detection and mapping of soil limitations

    NASA Technical Reports Server (NTRS)

    Benson, L. A.; Frazee, C. J.

    1973-01-01

    During 1971 and 1972 research was conducted on two fallow fields in the proposed Oahe Irrigation Project to investigate the relationship between the tonal variations observed on aerial photographs and the principal soil limitations of the area. A grid sampling procedure was used to collected detailed field data during the 1972 growing season. The field data was compared to imagery collected on May 14, 1971 at 3050 meters altitude. The imagery and field data were initially evaluated by a visual analysis. Correlation and regression analysis revealed a highly significant correlation and regression analysis revealed a highly significant correlation between the digitized color infrared film data and soil properties such as organic matter content, color, depth to carbonates, bulk density and reflectivity. Computer classification of the multiemulsion film data resulted in maps delineating the areas containing claypan and erosion limitations. Reflectance data from the red spectral band provided the best results.

  13. Extramural vascular invasion and response to neoadjuvant chemoradiotherapy in rectal cancer: Influence of the CpG island methylator phenotype

    PubMed Central

    Williamson, Jeremy Stuart; Jones, Huw Geraint; Williams, Namor; Griffiths, Anthony Paul; Jenkins, Gareth; Beynon, John; Harris, Dean Anthony

    2017-01-01

    AIM To identify whether CpG island methylator phenotype (CIMP) is predictive of response to neoadjuvant chemoradiotherapy (NACRT) and outcomes in rectal cancer. METHODS Patients undergoing NACRT and surgical resection for rectal cancer in a tertiary referral centre between 2002-2011 were identified. Pre-treatment tumour biopsies were analysed for CIMP status (high, intermediate or low) using methylation specific PCR. KRAS and BRAF status were also determined using pyrosequencing analysis. Clinical information was extracted from case records and cancer services databases. Response to radiotherapy was measured by tumour regression scores determined upon histological examination of the resected specimen. The relationship between these molecular features, response to NACRT and oncological outcomes were analysed. RESULTS There were 160 patients analysed with a median follow-up time of 46.4 mo. Twenty-one (13%) patients demonstrated high levels of CIMP methylation (CIMP-H) and this was significantly associated with increased risk of extramural vascular invasion (EMVI) compared with CIMP-L [8/21 (38%) vs 15/99 (15%), P = 0.028]. CIMP status was not related to tumour regression after radiotherapy or survival, however EMVI was significantly associated with adverse survival (P < 0.001). Intermediate CIMP status was significantly associated with KRAS mutation (P = 0.01). There were 14 (9%) patients with a pathological complete response (pCR) compared to 116 (73%) patients having no or minimal regression after neoadjuvant chemoradiotherapy. Those patients with pCR had median survival of 106 mo compared to 65.8 mo with minimal regression, although this was not statistically significant (P = 0.26). Binary logistic regression analysis of the relationship between EMVI and other prognostic features revealed, EMVI positivity was associated with poor overall survival, advanced “T” stage and CIMP-H but not nodal status, age, sex, KRAS mutation status and presence of local or systemic recurrence. CONCLUSION We report a novel association of pre-treatment characterisation of CIMP-H with EMVI status which has prognostic implications and is not readily detectable on pre-treatment histological examination. PMID:28567185

  14. Extramural vascular invasion and response to neoadjuvant chemoradiotherapy in rectal cancer: Influence of the CpG island methylator phenotype.

    PubMed

    Williamson, Jeremy Stuart; Jones, Huw Geraint; Williams, Namor; Griffiths, Anthony Paul; Jenkins, Gareth; Beynon, John; Harris, Dean Anthony

    2017-05-15

    To identify whether CpG island methylator phenotype (CIMP) is predictive of response to neoadjuvant chemoradiotherapy (NACRT) and outcomes in rectal cancer. Patients undergoing NACRT and surgical resection for rectal cancer in a tertiary referral centre between 2002-2011 were identified. Pre-treatment tumour biopsies were analysed for CIMP status (high, intermediate or low) using methylation specific PCR. KRAS and BRAF status were also determined using pyrosequencing analysis. Clinical information was extracted from case records and cancer services databases. Response to radiotherapy was measured by tumour regression scores determined upon histological examination of the resected specimen. The relationship between these molecular features, response to NACRT and oncological outcomes were analysed. There were 160 patients analysed with a median follow-up time of 46.4 mo. Twenty-one (13%) patients demonstrated high levels of CIMP methylation (CIMP-H) and this was significantly associated with increased risk of extramural vascular invasion (EMVI) compared with CIMP-L [8/21 (38%) vs 15/99 (15%), P = 0.028]. CIMP status was not related to tumour regression after radiotherapy or survival, however EMVI was significantly associated with adverse survival ( P < 0.001). Intermediate CIMP status was significantly associated with KRAS mutation ( P = 0.01). There were 14 (9%) patients with a pathological complete response (pCR) compared to 116 (73%) patients having no or minimal regression after neoadjuvant chemoradiotherapy. Those patients with pCR had median survival of 106 mo compared to 65.8 mo with minimal regression, although this was not statistically significant ( P = 0.26). Binary logistic regression analysis of the relationship between EMVI and other prognostic features revealed, EMVI positivity was associated with poor overall survival, advanced "T" stage and CIMP-H but not nodal status, age, sex, KRAS mutation status and presence of local or systemic recurrence. We report a novel association of pre-treatment characterisation of CIMP-H with EMVI status which has prognostic implications and is not readily detectable on pre-treatment histological examination.

  15. Regression-based adaptive sparse polynomial dimensional decomposition for sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Tang, Kunkun; Congedo, Pietro; Abgrall, Remi

    2014-11-01

    Polynomial dimensional decomposition (PDD) is employed in this work for global sensitivity analysis and uncertainty quantification of stochastic systems subject to a large number of random input variables. Due to the intimate structure between PDD and Analysis-of-Variance, PDD is able to provide simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to polynomial chaos (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of the standard method unaffordable for real engineering applications. In order to address this problem of curse of dimensionality, this work proposes a variance-based adaptive strategy aiming to build a cheap meta-model by sparse-PDD with PDD coefficients computed by regression. During this adaptive procedure, the model representation by PDD only contains few terms, so that the cost to resolve repeatedly the linear system of the least-square regression problem is negligible. The size of the final sparse-PDD representation is much smaller than the full PDD, since only significant terms are eventually retained. Consequently, a much less number of calls to the deterministic model is required to compute the final PDD coefficients.

  16. Comparison of energy expenditure to walk or run a mile in adult normal weight and overweight men and women.

    PubMed

    Loftin, Mark; Waddell, Dwight E; Robinson, James H; Owens, Scott G

    2010-10-01

    We compared the energy expenditure to walk or run a mile in adult normal weight walkers (NWW), overweight walkers (OW), and marathon runners (MR). The sample consisted of 19 NWW, 11 OW, and 20 MR adults. Energy expenditure was measured at preferred walking speed (NWW and OW) and running speed of a recently completed marathon. Body composition was assessed via dual-energy x-ray absorptiometry. Analysis of variance was used to compare groups with the Scheffe's procedure used for post hoc analysis. Multiple regression analysis was used to predict energy expenditure. Results that indicated OW exhibited significantly higher (p < 0.05) mass and fat weight than NWW or MR. Similar values were found between NWW and MR. Absolute energy expenditure to walk or run a mile was similar between groups (NWW 93.9 ± 15.0, OW 98.4 ± 29.9, MR 99.3 ± 10.8 kcal); however, significant differences were noted when energy expenditure was expressed relative to mass (MR > NWW > OW). When energy expenditure was expressed per kilogram of fat-free mass, similar values were found across groups. Multiple regression analysis yielded mass and gender as significant predictors of energy expenditure (R = 0.795, SEE = 10.9 kcal). We suggest that walking is an excellent physical activity for energy expenditure in overweight individuals that are capable of walking without predisposed conditions such as osteoarthritis or cardiovascular risk factors. Moreover, from a practical perspective, our regression equation (kcal = mass (kg) × 0.789 - gender (men = 1, women = 2) × 7.634 + 51.109) allows for the prediction of energy expenditure for a given distance (mile) rather than predicting energy expenditure for a given time (minutes).

  17. A comparison between standard methods and structural nested modelling when bias from a healthy worker survivor effect is suspected: an iron-ore mining cohort study.

    PubMed

    Björ, Ove; Damber, Lena; Jonsson, Håkan; Nilsson, Tohr

    2015-07-01

    Iron-ore miners are exposed to extremely dusty and physically arduous work environments. The demanding activities of mining select healthier workers with longer work histories (ie, the Healthy Worker Survivor Effect (HWSE)), and could have a reversing effect on the exposure-response association. The objective of this study was to evaluate an iron-ore mining cohort to determine whether the effect of respirable dust was confounded by the presence of an HWSE. When an HWSE exists, standard modelling methods, such as Cox regression analysis, produce biased results. We compared results from g-estimation of accelerated failure-time modelling adjusted for HWSE with corresponding unadjusted Cox regression modelling results. For all-cause mortality when adjusting for the HWSE, cumulative exposure from respirable dust was associated with a 6% decrease of life expectancy if exposed ≥15 years, compared with never being exposed. Respirable dust continued to be associated with mortality after censoring outcomes known to be associated with dust when adjusting for the HWSE. In contrast, results based on Cox regression analysis did not support that an association was present. The adjustment for the HWSE made a difference when estimating the risk of mortality from respirable dust. The results of this study, therefore, support the recommendation that standard methods of analysis should be complemented with structural modelling analysis techniques, such as g-estimation of accelerated failure-time modelling, to adjust for the HWSE. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Heterogeneous Suppression of Sequential Effects in Random Sequence Generation, but Not in Operant Learning.

    PubMed

    Shteingart, Hanan; Loewenstein, Yonatan

    2016-01-01

    There is a long history of experiments in which participants are instructed to generate a long sequence of binary random numbers. The scope of this line of research has shifted over the years from identifying the basic psychological principles and/or the heuristics that lead to deviations from randomness, to one of predicting future choices. In this paper, we used generalized linear regression and the framework of Reinforcement Learning in order to address both points. In particular, we used logistic regression analysis in order to characterize the temporal sequence of participants' choices. Surprisingly, a population analysis indicated that the contribution of the most recent trial has only a weak effect on behavior, compared to more preceding trials, a result that seems irreconcilable with standard sequential effects that decay monotonously with the delay. However, when considering each participant separately, we found that the magnitudes of the sequential effect are a monotonous decreasing function of the delay, yet these individual sequential effects are largely averaged out in a population analysis because of heterogeneity. The substantial behavioral heterogeneity in this task is further demonstrated quantitatively by considering the predictive power of the model. We show that a heterogeneous model of sequential dependencies captures the structure available in random sequence generation. Finally, we show that the results of the logistic regression analysis can be interpreted in the framework of reinforcement learning, allowing us to compare the sequential effects in the random sequence generation task to those in an operant learning task. We show that in contrast to the random sequence generation task, sequential effects in operant learning are far more homogenous across the population. These results suggest that in the random sequence generation task, different participants adopt different cognitive strategies to suppress sequential dependencies when generating the "random" sequences.

  19. [An investigation on job burnout of medical personnel in a top three hospital].

    PubMed

    Li, Y Y; Li, L P

    2016-05-20

    To investigate job burnout status of medical Personnel in a top three hospitals, in order to provide basic data for intervention of the hospital management. A total of 549 doctors and nurses were assessed by Maslach Burnout Inventory-Human Service Survey (MBI-HSS). SPSS 19.0 software package was applied to data description and analysis, including univariate analysis and orderly classification Logistic regression analysis. The rate of high job burnout of doctors and nurses are 36.3% and 42.8% respectively. Female subjects got higher scores (29.4±13.5) on emotional exhaustion than male subjects (26.2±12.8) compared with.Doctors got lower scores (28.2±15.9) on emotional exhaustion and higher scores (31.4±9.3) on personal accomplishment than nurses.Compared with subjects with higher professional title, young subjects with primary professional title got lower scores on personal accomplishment.Subjects with 11-20 years working age got the highest scores on depersonalization.Among all the test departments, medical personnel of emergency department got the highest scores (31.9±12.6) on emotional exhaustion,while the lowest scores (28.1±8.0) on personal accomplishment. According to the results of orderly classification Logistic regression analysis, age, job type,professional qualifications and clinical departments type entered the regression model. Physical resources and emotional resources of medical personnel are overdraft so that they got some high degree of job burnout.Much more attention should be paid to professional mental health of nurses,and personnel who at low age,got low professional titles.Positive measures should be provided, including management mechanism,organizational culture, occupational protection and psychological intervention.

  20. [Breast feeding and systemic blood pressure in infants].

    PubMed

    Hernández-González, Martha A; Díaz-De-León, Luz V; Guízar-Mendoza, Juan M; Amador-Licona, Norma; Cipriano-González, Marisol; Díaz-Pérez, Raúl; Murillo-Ortiz, Blanca O; De-la-Roca-Chiapas, José María; Solorio-Meza, Sergio Eduardo

    2012-01-01

    Blood pressure levels in childhood influence these levels in adulthood, and breastfeeding has been considered such as a cardioprotective. We evaluated the association between blood pressure levels and feeding type in a group of infants. We conducted a comparative cross-sectional study in term infants with appropriate weight at birth, to compare blood pressure levels in those children with exclusively breastfeeding, mixed-feeding and formula feeding. The comparison of groups was performed using ANOVA and multiple regression analysis was used to identify variables associated with mean arterial blood pressure levels. A p value < 0.05 was considered significant. We included 20 men and 24 women per group. Infant Formula Feeding had higher current weight and weight gain compared with the other two groups (p < 0.05). Systolic, diastolic and mean blood pressure levels, as well as respiratory and heart rate were higher in the groups of exclusively formula feeding and mixed-feeding than in those with exclusively breastfeeding (p < 0.05). Multiple regression analysis identified that variables associated with mean blood pressure levels were current body mass index, weight gain and formula feeding. Infants in breastfeeding show lower blood pressure, BMI and weight gain.

  1. Is the perceived placebo effect comparable between adults and children? A meta-regression analysis.

    PubMed

    Janiaud, Perrine; Cornu, Catherine; Lajoinie, Audrey; Djemli, Amina; Cucherat, Michel; Kassai, Behrouz

    2017-01-01

    A potential larger perceived placebo effect in children compared with adults could influence the detection of the treatment effect and the extrapolation of the treatment benefit from adults to children. This study aims to explore this potential difference, using a meta-epidemiological approach. A systematic review of the literature was done to identify trials included in meta-analyses evaluating a drug intervention with separate data for adults and children. The standardized mean change and the proportion of responders (binary outcomes) were used to calculate the perceived placebo effect. A meta-regression analysis was conducted to test for the difference between adults and children of the perceived placebo effect. For binary outcomes, the perceived placebo effect was significantly more favorable in children compared with adults (β = 0.13; P = 0.001). Parallel group trials (β = -1.83; P < 0.001), subjective outcomes (β = -0.76; P < 0.001), and the disease type significantly influenced the perceived placebo effect. The perceived placebo effect is different between adults and children for binary outcomes. This difference seems to be influenced by the design, the disease, and outcomes. Calibration of new studies for children should consider cautiously the placebo effect in children.

  2. Comparison of Prediction Model for Cardiovascular Autonomic Dysfunction Using Artificial Neural Network and Logistic Regression Analysis

    PubMed Central

    Zeng, Fangfang; Li, Zhongtao; Yu, Xiaoling; Zhou, Linuo

    2013-01-01

    Background This study aimed to develop the artificial neural network (ANN) and multivariable logistic regression (LR) analyses for prediction modeling of cardiovascular autonomic (CA) dysfunction in the general population, and compare the prediction models using the two approaches. Methods and Materials We analyzed a previous dataset based on a Chinese population sample consisting of 2,092 individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN and LR analysis, and were tested in the validation set. Performances of these prediction models were then compared. Results Univariate analysis indicated that 14 risk factors showed statistically significant association with the prevalence of CA dysfunction (P<0.05). The mean area under the receiver-operating curve was 0.758 (95% CI 0.724–0.793) for LR and 0.762 (95% CI 0.732–0.793) for ANN analysis, but noninferiority result was found (P<0.001). The similar results were found in comparisons of sensitivity, specificity, and predictive values in the prediction models between the LR and ANN analyses. Conclusion The prediction models for CA dysfunction were developed using ANN and LR. ANN and LR are two effective tools for developing prediction models based on our dataset. PMID:23940593

  3. [The trial of business data analysis at the Department of Radiology by constructing the auto-regressive integrated moving-average (ARIMA) model].

    PubMed

    Tani, Yuji; Ogasawara, Katsuhiko

    2012-01-01

    This study aimed to contribute to the management of a healthcare organization by providing management information using time-series analysis of business data accumulated in the hospital information system, which has not been utilized thus far. In this study, we examined the performance of the prediction method using the auto-regressive integrated moving-average (ARIMA) model, using the business data obtained at the Radiology Department. We made the model using the data used for analysis, which was the number of radiological examinations in the past 9 years, and we predicted the number of radiological examinations in the last 1 year. Then, we compared the actual value with the forecast value. We were able to establish that the performance prediction method was simple and cost-effective by using free software. In addition, we were able to build the simple model by pre-processing the removal of trend components using the data. The difference between predicted values and actual values was 10%; however, it was more important to understand the chronological change rather than the individual time-series values. Furthermore, our method was highly versatile and adaptable compared to the general time-series data. Therefore, different healthcare organizations can use our method for the analysis and forecasting of their business data.

  4. Vitrified-warmed embryo transfer is associated with mean higher singleton birth weight compared to fresh embryo transfer.

    PubMed

    Beyer, Daniel Alexander; Griesinger, Georg

    2016-08-01

    To test for differences in birth weight between singletons born after IVF with fresh embryo transfer vs. vitrified-warmed 2PN embryo transfer (vitrification protocol). Retrospective analysis of 464 singleton live births after IVF or ICSI during a 12 year period. University hospital. Fresh embryo transfer, vitrified-warmed 2PN embryo transfer (vitrification protocol). Birth weight standardized as a z-score, adjusting for gestational week at delivery and fetal sex. As a reference, birth weight means from regular deliveries from the same hospital were used. Multivariate regression analysis was used to investigate the relationship between the dependent variable z-score (fetal birth weight) and the independent predictor variables maternal age, weight, height, body mass index, RDS prophylaxis, transfer protocol, number of embryos transferred, indication for IVF treatment and sperm quality. The mean z-score was significantly lower after fresh transfer (-0.11±92) as compared to vitrification transfer (0.72±83) (p<0.001). Multivariate regression analysis indicated that only maternal height and maternal body mass index, but not type of cryopreservation protocol, was a significant predictor of birth weight. In this analysis focusing on 2PN oocytes, vitrified-warmed embryo transfer is associated with mean higher birth weight compared to fresh embryo transfer. Maternal height and body mass index are significant confounders of fetal birth weight and need to be taken into account when studying birth weight differences between ART protocols. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Comparing Effects of Biologic Agents in Treating Patients with Rheumatoid Arthritis: A Multiple Treatment Comparison Regression Analysis.

    PubMed

    Tvete, Ingunn Fride; Natvig, Bent; Gåsemyr, Jørund; Meland, Nils; Røine, Marianne; Klemp, Marianne

    2015-01-01

    Rheumatoid arthritis patients have been treated with disease modifying anti-rheumatic drugs (DMARDs) and the newer biologic drugs. We sought to compare and rank the biologics with respect to efficacy. We performed a literature search identifying 54 publications encompassing 9 biologics. We conducted a multiple treatment comparison regression analysis letting the number experiencing a 50% improvement on the ACR score be dependent upon dose level and disease duration for assessing the comparable relative effect between biologics and placebo or DMARD. The analysis embraced all treatment and comparator arms over all publications. Hence, all measured effects of any biologic agent contributed to the comparison of all biologic agents relative to each other either given alone or combined with DMARD. We found the drug effect to be dependent on dose level, but not on disease duration, and the impact of a high versus low dose level was the same for all drugs (higher doses indicated a higher frequency of ACR50 scores). The ranking of the drugs when given without DMARD was certolizumab (ranked highest), etanercept, tocilizumab/ abatacept and adalimumab. The ranking of the drugs when given with DMARD was certolizumab (ranked highest), tocilizumab, anakinra/rituximab, golimumab/ infliximab/ abatacept, adalimumab/ etanercept [corrected]. Still, all drugs were effective. All biologic agents were effective compared to placebo, with certolizumab the most effective and adalimumab (without DMARD treatment) and adalimumab/ etanercept (combined with DMARD treatment) the least effective. The drugs were in general more effective, except for etanercept, when given together with DMARDs.

  6. Comparing Effects of Biologic Agents in Treating Patients with Rheumatoid Arthritis: A Multiple Treatment Comparison Regression Analysis

    PubMed Central

    Tvete, Ingunn Fride; Natvig, Bent; Gåsemyr, Jørund; Meland, Nils; Røine, Marianne; Klemp, Marianne

    2015-01-01

    Rheumatoid arthritis patients have been treated with disease modifying anti-rheumatic drugs (DMARDs) and the newer biologic drugs. We sought to compare and rank the biologics with respect to efficacy. We performed a literature search identifying 54 publications encompassing 9 biologics. We conducted a multiple treatment comparison regression analysis letting the number experiencing a 50% improvement on the ACR score be dependent upon dose level and disease duration for assessing the comparable relative effect between biologics and placebo or DMARD. The analysis embraced all treatment and comparator arms over all publications. Hence, all measured effects of any biologic agent contributed to the comparison of all biologic agents relative to each other either given alone or combined with DMARD. We found the drug effect to be dependent on dose level, but not on disease duration, and the impact of a high versus low dose level was the same for all drugs (higher doses indicated a higher frequency of ACR50 scores). The ranking of the drugs when given without DMARD was certolizumab (ranked highest), etanercept, tocilizumab/ abatacept and adalimumab. The ranking of the drugs when given with DMARD was certolizumab (ranked highest), tocilizumab, anakinra, rituximab, golimumab/ infliximab/ abatacept, adalimumab/ etanercept. Still, all drugs were effective. All biologic agents were effective compared to placebo, with certolizumab the most effective and adalimumab (without DMARD treatment) and adalimumab/ etanercept (combined with DMARD treatment) the least effective. The drugs were in general more effective, except for etanercept, when given together with DMARDs. PMID:26356639

  7. Comparative effectiveness analysis of anticoagulant strategies in a large observational database of percutaneous coronary interventions.

    PubMed

    Wise, Gregory R; Schwartz, Brian P; Dittoe, Nathaniel; Safar, Ammar; Sherman, Steven; Bowdy, Bruce; Hahn, Harvey S

    2012-06-01

    Percutaneous coronary intervention (PCI) is the most commonly used procedure for coronary revascularization. There are multiple adjuvant anticoagulation strategies available. In this era of cost containment, we performed a comparative effectiveness analysis of clinical outcomes and cost of the major anticoagulant strategies across all types of PCI procedures in a large observational database. A retrospective, comparative effectiveness analysis of the Premier observational database was conducted to determine the impact of anticoagulant treatment on outcomes. Multiple linear regression and logistic regression models were used to assess the association of initial antithrombotic treatment with outcomes while controlling for other factors. A total of 458,448 inpatient PCI procedures with known antithrombotic regimen from 299 hospitals between January 1, 2004 and March 31, 2008 were identified. Compared to patients treated with heparin plus glycoprotein IIb/IIIa inhibitor (GPI), bivalirudin was associated with a 41% relative risk reduction (RRR) for inpatient mortality, a 44% RRR for clinically apparent bleeding, and a 37% RRR for any transfusion. Furthermore, treatment with bivalirudin alone resulted in a cost savings of $976 per case. Similar results were seen between bivalirudin and heparin in all end-points. Combined use of both bivalirudin and GPI substantially attenuated the cost benefits demonstrated with bivalirudin alone. Bivalirudin use was associated with both improved clinical outcomes and decreased hospital costs in this large "real-world" database. To our knowledge, this study is the first to demonstrate the ideal comparative effectiveness end-point of both improved clinical outcomes with decreased costs in PCI. ©2012, Wiley Periodicals, Inc.

  8. Comparative Research of Navy Voluntary Education at Operational Commands

    DTIC Science & Technology

    2017-03-01

    return on investment, ROI, logistic regression, multivariate analysis, descriptive statistics, Markov, time-series, linear programming 15. NUMBER...21  B.  DESCRIPTIVE STATISTICS TABLES ...............................................25  C.  PRIVACY CONSIDERATIONS...THIS PAGE INTENTIONALLY LEFT BLANK xi LIST OF TABLES Table 1.  Variables and Descriptions . Adapted from NETC (2016). .......................21

  9. Effects of Writing Instruction on Kindergarten Students' Writing Achievement: An Experimental Study

    ERIC Educational Resources Information Center

    Jones, Cindy D'On

    2015-01-01

    This full-year experimental study examined how methods of writing instruction contribute to kindergarten students' acquisition of foundational and compositional early writing skills. Multiple regression with cluster analysis was used to compare 3 writing instructional groups: an interactive writing group, a writing workshop group, and a…

  10. Factors Associated with Living in Developmental Centers in California

    ERIC Educational Resources Information Center

    Harrington, Charlene; Kang, Taewoon; Chang, Jamie

    2009-01-01

    This study examined need, predisposing, market, and regional factors that predicted the likelihood of individuals with developmental disabilities living in state developmental centers (DCs) compared with living at home, in community care, or in intermediate care (ICFs) and other facilities. Secondary data analysis using logistic regression models…

  11. An analysis of ratings: A guide to RMRATE

    Treesearch

    Thomas C. Brown; Terry C. Daniel; Herbert W. Schroeder; Glen E. Brink

    1990-01-01

    This report describes RMRATE, a computer program for analyzing rating judgments. RMRATE scales ratings using several scaling procedures, and compares the resulting scale values. The scaling procedures include the median and simple mean, standardized values, scale values based on Thurstone's Law of Categorical Judgment, and regression-based values. RMRATE also...

  12. Artificial Neural Networks: A New Approach to Predicting Application Behavior.

    ERIC Educational Resources Information Center

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    2002-01-01

    Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)

  13. Comparison of naïve Bayes and logistic regression for computer-aided diagnosis of breast masses using ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Cary, Theodore W.; Cwanger, Alyssa; Venkatesh, Santosh S.; Conant, Emily F.; Sehgal, Chandra M.

    2012-03-01

    This study compares the performance of two proven but very different machine learners, Naïve Bayes and logistic regression, for differentiating malignant and benign breast masses using ultrasound imaging. Ultrasound images of 266 masses were analyzed quantitatively for shape, echogenicity, margin characteristics, and texture features. These features along with patient age, race, and mammographic BI-RADS category were used to train Naïve Bayes and logistic regression classifiers to diagnose lesions as malignant or benign. ROC analysis was performed using all of the features and using only a subset that maximized information gain. Performance was determined by the area under the ROC curve, Az, obtained from leave-one-out cross validation. Naïve Bayes showed significant variation (Az 0.733 +/- 0.035 to 0.840 +/- 0.029, P < 0.002) with the choice of features, but the performance of logistic regression was relatively unchanged under feature selection (Az 0.839 +/- 0.029 to 0.859 +/- 0.028, P = 0.605). Out of 34 features, a subset of 6 gave the highest information gain: brightness difference, margin sharpness, depth-to-width, mammographic BI-RADs, age, and race. The probabilities of malignancy determined by Naïve Bayes and logistic regression after feature selection showed significant correlation (R2= 0.87, P < 0.0001). The diagnostic performance of Naïve Bayes and logistic regression can be comparable, but logistic regression is more robust. Since probability of malignancy cannot be measured directly, high correlation between the probabilities derived from two basic but dissimilar models increases confidence in the predictive power of machine learning models for characterizing solid breast masses on ultrasound.

  14. An automated ranking platform for machine learning regression models for meat spoilage prediction using multi-spectral imaging and metabolic profiling.

    PubMed

    Estelles-Lopez, Lucia; Ropodi, Athina; Pavlidis, Dimitris; Fotopoulou, Jenny; Gkousari, Christina; Peyrodie, Audrey; Panagou, Efstathios; Nychas, George-John; Mohareb, Fady

    2017-09-01

    Over the past decade, analytical approaches based on vibrational spectroscopy, hyperspectral/multispectral imagining and biomimetic sensors started gaining popularity as rapid and efficient methods for assessing food quality, safety and authentication; as a sensible alternative to the expensive and time-consuming conventional microbiological techniques. Due to the multi-dimensional nature of the data generated from such analyses, the output needs to be coupled with a suitable statistical approach or machine-learning algorithms before the results can be interpreted. Choosing the optimum pattern recognition or machine learning approach for a given analytical platform is often challenging and involves a comparative analysis between various algorithms in order to achieve the best possible prediction accuracy. In this work, "MeatReg", a web-based application is presented, able to automate the procedure of identifying the best machine learning method for comparing data from several analytical techniques, to predict the counts of microorganisms responsible of meat spoilage regardless of the packaging system applied. In particularly up to 7 regression methods were applied and these are ordinary least squares regression, stepwise linear regression, partial least square regression, principal component regression, support vector regression, random forest and k-nearest neighbours. MeatReg" was tested with minced beef samples stored under aerobic and modified atmosphere packaging and analysed with electronic nose, HPLC, FT-IR, GC-MS and Multispectral imaging instrument. Population of total viable count, lactic acid bacteria, pseudomonads, Enterobacteriaceae and B. thermosphacta, were predicted. As a result, recommendations of which analytical platforms are suitable to predict each type of bacteria and which machine learning methods to use in each case were obtained. The developed system is accessible via the link: www.sorfml.com. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Observational studies using propensity score analysis underestimated the effect sizes in critical care medicine.

    PubMed

    Zhang, Zhongheng; Ni, Hongying; Xu, Xiao

    2014-08-01

    Propensity score (PS) analysis has been increasingly used in critical care medicine; however, its validation has not been systematically investigated. The present study aimed to compare effect sizes in PS-based observational studies vs. randomized controlled trials (RCTs) (or meta-analysis of RCTs). Critical care observational studies using PS were systematically searched in PubMed from inception to April 2013. Identified PS-based studies were matched to one or more RCTs in terms of population, intervention, comparison, and outcome. The effect sizes of experimental treatments were compared for PS-based studies vs. RCTs (or meta-analysis of RCTs) with sign test. Furthermore, ratio of odds ratio (ROR) was calculated from the interaction term of treatment × study type in a logistic regression model. A ROR < 1 indicates greater benefit for experimental treatment in RCTs compared with PS-based studies. RORs of each comparison were pooled by using meta-analytic approach with random-effects model. A total of 20 PS-based studies were identified and matched to RCTs. Twelve of the 20 comparisons showed greater beneficial effect for experimental treatment in RCTs than that in PS-based studies (sign test P = 0.503). The difference was statistically significant in four comparisons. ROR can be calculated from 13 comparisons, of which four showed significantly greater beneficial effect for experimental treatment in RCTs. The pooled ROR was 0.71 (95% CI: 0.63, 0.79; P = 0.002), suggesting that RCTs (or meta-analysis of RCTs) were more likely to report beneficial effect for the experimental treatment than PS-based studies. The result remained unchanged in sensitivity analysis and meta-regression. In critical care literature, PS-based observational study is likely to report less beneficial effect of experimental treatment compared with RCTs (or meta-analysis of RCTs). Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia

    NASA Astrophysics Data System (ADS)

    Pradhan, Biswajeet

    2010-05-01

    This paper presents the results of the cross-validation of a multivariate logistic regression model using remote sensing data and GIS for landslide hazard analysis on the Penang, Cameron, and Selangor areas in Malaysia. Landslide locations in the study areas were identified by interpreting aerial photographs and satellite images, supported by field surveys. SPOT 5 and Landsat TM satellite imagery were used to map landcover and vegetation index, respectively. Maps of topography, soil type, lineaments and land cover were constructed from the spatial datasets. Ten factors which influence landslide occurrence, i.e., slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, soil type, landcover, rainfall precipitation, and normalized difference vegetation index (ndvi), were extracted from the spatial database and the logistic regression coefficient of each factor was computed. Then the landslide hazard was analysed using the multivariate logistic regression coefficients derived not only from the data for the respective area but also using the logistic regression coefficients calculated from each of the other two areas (nine hazard maps in all) as a cross-validation of the model. For verification of the model, the results of the analyses were then compared with the field-verified landslide locations. Among the three cases of the application of logistic regression coefficient in the same study area, the case of Selangor based on the Selangor logistic regression coefficients showed the highest accuracy (94%), where as Penang based on the Penang coefficients showed the lowest accuracy (86%). Similarly, among the six cases from the cross application of logistic regression coefficient in other two areas, the case of Selangor based on logistic coefficient of Cameron showed highest (90%) prediction accuracy where as the case of Penang based on the Selangor logistic regression coefficients showed the lowest accuracy (79%). Qualitatively, the cross application model yields reasonable results which can be used for preliminary landslide hazard mapping.

  17. Health utility of patients with Crohn's disease and ulcerative colitis: a systematic review and meta-analysis.

    PubMed

    Malinowski, Krzysztof Piotr; Kawalec, Paweł

    2016-08-01

    The aim of this systematic review was to collect and summarize the current data on the utilities of patients with Crohn's disease (CD) and ulcerative colitis (UC). A meta-analysis of the obtained utilities was performed using a random-effects model and meta-regression by the disease type and severity. A bootstrap analysis was performed as it does not require assumption on distribution of the data. The highest utility among patients with CD and UC was observed when the diseases were in remission. The meta-regression analysis showed that both disease severity and an instrument/method/questionnaire used to obtain utilities were significant predictors of utility. Utility was the lowest for severe disease and the highest for disease in remission, the association was more notable in patients with CD compared with UC. Expert commentary: The issue of patients' utility is important for healthcare decision makers but it has not been fully investigated and requires further study.

  18. Analysis and improvement measures of flight delay in China

    NASA Astrophysics Data System (ADS)

    Zang, Yuhang

    2017-03-01

    Firstly, this paper establishes the principal component regression model to analyze the data quantitatively, based on principal component analysis to get the three principal component factors of flight delays. Then the least square method is used to analyze the factors and obtained the regression equation expression by substitution, and then found that the main reason for flight delays is airlines, followed by weather and traffic. Aiming at the above problems, this paper improves the controllable aspects of traffic flow control. For reasons of traffic flow control, an adaptive genetic queuing model is established for the runway terminal area. This paper, establish optimization method that fifteen planes landed simultaneously on the three runway based on Beijing capital international airport, comparing the results with the existing FCFS algorithm, the superiority of the model is proved.

  19. A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2013-01-01

    Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. PMID:23401213

  20. Evaluation of the magnitude and frequency of floods in urban watersheds in Phoenix and Tucson, Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Paretti, Nicholas V.

    2014-01-01

    Flooding in urban areas routinely causes severe damage to property and often results in loss of life. To investigate the effect of urbanization on the magnitude and frequency of flood peaks, a flood frequency analysis was carried out using data from urbanized streamgaging stations in Phoenix and Tucson, Arizona. Flood peaks at each station were predicted using the log-Pearson Type III distribution, fitted using the expected moments algorithm and the multiple Grubbs-Beck low outlier test. The station estimates were then compared to flood peaks estimated by rural-regression equations for Arizona, and to flood peaks adjusted for urbanization using a previously developed procedure for adjusting U.S. Geological Survey rural regression peak discharges in an urban setting. Only smaller, more common flood peaks at the 50-, 20-, 10-, and 4-percent annual exceedance probabilities (AEPs) demonstrate any increase in magnitude as a result of urbanization; the 1-, 0.5-, and 0.2-percent AEP flood estimates are predicted without bias by the rural-regression equations. Percent imperviousness was determined not to account for the difference in estimated flood peaks between stations, either when adjusting the rural-regression equations or when deriving urban-regression equations to predict flood peaks directly from basin characteristics. Comparison with urban adjustment equations indicates that flood peaks are systematically overestimated if the rural-regression-estimated flood peaks are adjusted upward to account for urbanization. At nearly every streamgaging station in the analysis, adjusted rural-regression estimates were greater than the estimates derived using station data. One likely reason for the lack of increase in flood peaks with urbanization is the presence of significant stormwater retention and detention structures within the watershed used in the study.

  1. Comparative effectiveness research in cancer with observational data.

    PubMed

    Giordano, Sharon H

    2015-01-01

    Observational studies are increasingly being used for comparative effectiveness research. These studies can have the greatest impact when randomized trials are not feasible or when randomized studies have not included the population or outcomes of interest. However, careful attention must be paid to study design to minimize the likelihood of selection biases. Analytic techniques, such as multivariable regression modeling, propensity score analysis, and instrumental variable analysis, also can also be used to help address confounding. Oncology has many existing large and clinically rich observational databases that can be used for comparative effectiveness research. With careful study design, observational studies can produce valid results to assess the benefits and harms of a treatment or intervention in representative real-world populations.

  2. Regression: The Apple Does Not Fall Far From the Tree.

    PubMed

    Vetter, Thomas R; Schober, Patrick

    2018-05-15

    Researchers and clinicians are frequently interested in either: (1) assessing whether there is a relationship or association between 2 or more variables and quantifying this association; or (2) determining whether 1 or more variables can predict another variable. The strength of such an association is mainly described by the correlation. However, regression analysis and regression models can be used not only to identify whether there is a significant relationship or association between variables but also to generate estimations of such a predictive relationship between variables. This basic statistical tutorial discusses the fundamental concepts and techniques related to the most common types of regression analysis and modeling, including simple linear regression, multiple regression, logistic regression, ordinal regression, and Poisson regression, as well as the common yet often underrecognized phenomenon of regression toward the mean. The various types of regression analysis are powerful statistical techniques, which when appropriately applied, can allow for the valid interpretation of complex, multifactorial data. Regression analysis and models can assess whether there is a relationship or association between 2 or more observed variables and estimate the strength of this association, as well as determine whether 1 or more variables can predict another variable. Regression is thus being applied more commonly in anesthesia, perioperative, critical care, and pain research. However, it is crucial to note that regression can identify plausible risk factors; it does not prove causation (a definitive cause and effect relationship). The results of a regression analysis instead identify independent (predictor) variable(s) associated with the dependent (outcome) variable. As with other statistical methods, applying regression requires that certain assumptions be met, which can be tested with specific diagnostics.

  3. A local equation for differential diagnosis of β-thalassemia trait and iron deficiency anemia by logistic regression analysis in Southeast Iran.

    PubMed

    Sargolzaie, Narjes; Miri-Moghaddam, Ebrahim

    2014-01-01

    The most common differential diagnosis of β-thalassemia (β-thal) trait is iron deficiency anemia. Several red blood cell equations were introduced during different studies for differential diagnosis between β-thal trait and iron deficiency anemia. Due to genetic variations in different regions, these equations cannot be useful in all population. The aim of this study was to determine a native equation with high accuracy for differential diagnosis of β-thal trait and iron deficiency anemia for the Sistan and Baluchestan population by logistic regression analysis. We selected 77 iron deficiency anemia and 100 β-thal trait cases. We used binary logistic regression analysis and determined best equations for probability prediction of β-thal trait against iron deficiency anemia in our population. We compared diagnostic values and receiver operative characteristic (ROC) curve related to this equation and another 10 published equations in discriminating β-thal trait and iron deficiency anemia. The binary logistic regression analysis determined the best equation for best probability prediction of β-thal trait against iron deficiency anemia with area under curve (AUC) 0.998. Based on ROC curves and AUC, Green & King, England & Frazer, and then Sirdah indices, respectively, had the most accuracy after our equation. We suggest that to get the best equation and cut-off in each region, one needs to evaluate specific information of each region, specifically in areas where populations are homogeneous, to provide a specific formula for differentiating between β-thal trait and iron deficiency anemia.

  4. Time series regression-based pairs trading in the Korean equities market

    NASA Astrophysics Data System (ADS)

    Kim, Saejoon; Heo, Jun

    2017-07-01

    Pairs trading is an instance of statistical arbitrage that relies on heavy quantitative data analysis to profit by capitalising low-risk trading opportunities provided by anomalies of related assets. A key element in pairs trading is the rule by which open and close trading triggers are defined. This paper investigates the use of time series regression to define the rule which has previously been identified with fixed threshold-based approaches. Empirical results indicate that our approach may yield significantly increased excess returns compared to ones obtained by previous approaches on large capitalisation stocks in the Korean equities market.

  5. Heat and moisture exchangers (HMEs) and heated humidifiers (HHs) in adult critically ill patients: a systematic review, meta-analysis and meta-regression of randomized controlled trials.

    PubMed

    Vargas, Maria; Chiumello, Davide; Sutherasan, Yuda; Ball, Lorenzo; Esquinas, Antonio M; Pelosi, Paolo; Servillo, Giuseppe

    2017-05-29

    The aims of this systematic review and meta-analysis of randomized controlled trials are to evaluate the effects of active heated humidifiers (HHs) and moisture exchangers (HMEs) in preventing artificial airway occlusion and pneumonia, and on mortality in adult critically ill patients. In addition, we planned to perform a meta-regression analysis to evaluate the relationship between the incidence of artificial airway occlusion, pneumonia and mortality and clinical features of adult critically ill patients. Computerized databases were searched for randomized controlled trials (RCTs) comparing HHs and HMEs and reporting artificial airway occlusion, pneumonia and mortality as predefined outcomes. Relative risk (RR), 95% confidence interval for each outcome and I 2 were estimated for each outcome. Furthermore, weighted random-effect meta-regression analysis was performed to test the relationship between the effect size on each considered outcome and covariates. Eighteen RCTs and 2442 adult critically ill patients were included in the analysis. The incidence of artificial airway occlusion (RR = 1.853; 95% CI 0.792-4.338), pneumonia (RR = 932; 95% CI 0.730-1.190) and mortality (RR = 1.023; 95% CI 0.878-1.192) were not different in patients treated with HMEs and HHs. However, in the subgroup analyses the incidence of airway occlusion was higher in HMEs compared with HHs with non-heated wire (RR = 3.776; 95% CI 1.560-9.143). According to the meta-regression, the effect size in the treatment group on artificial airway occlusion was influenced by the percentage of patients with pneumonia (β = -0.058; p = 0.027; favors HMEs in studies with high prevalence of pneumonia), and a trend was observed for an effect of the duration of mechanical ventilation (MV) (β = -0.108; p = 0.054; favors HMEs in studies with longer MV time). In this meta-analysis we found no superiority of HMEs and HHs, in terms of artificial airway occlusion, pneumonia and mortality. A trend favoring HMEs was observed in studies including a high percentage of patients with pneumonia diagnosis at admission and those with prolonged MV. However, the choice of humidifiers should be made according to the clinical context, trying to avoid possible complications and reaching the appropriate performance at lower costs.

  6. Open versus robotic-assisted transabdominal preperitoneal (R-TAPP) inguinal hernia repair: a multicenter matched analysis of clinical outcomes.

    PubMed

    Gamagami, R; Dickens, E; Gonzalez, A; D'Amico, L; Richardson, C; Rabaza, J; Kolachalam, R

    2018-04-26

    To compare the perioperative outcomes of initial, consecutive robotic-assisted transabdominal preperitoneal (R-TAPP) inguinal hernia repair (IHR) cases with consecutive open cases completed by the same surgeons. Multicenter, retrospective, comparative study of perioperative results from open and robotic IHR using standard univariate and multivariate regression analyses for propensity score matched (1:1) cohorts. Seven general surgeons at six institutions contributed 602 consecutive open IHR and 652 consecutive R-TAPP IHR cases. Baseline patient characteristics in the unmatched groups were similar with the exception of previous abdominal surgery and all baseline characteristics were comparable in the matched cohorts. In matched analyses, postoperative complications prior to discharge were comparable. However, from post discharge through 30 days, fewer patients experienced complications in the R-TAPP group than in the open group [4.3% vs 7.7% (p = 0.047)]. The R-TAPP group had no reoperations post discharge through 30 days of follow-up compared with five patients (1.1%) in the open group (p = 0.062), respectively. Multivariate logistic regression analysis which demonstrated patient age > 65 years and the open approach were risk factors for complications within 30 days post discharge in the matched group [age > 65 years: odds ratio (OR) = 3.33 (95% CI 1.89, 5.87; p < 0.0001); open approach: OR = 1.89 (95% CI 1.05, 3.38; p = 0.031)]. In this matched analysis, R-TAPP provides similar postoperative complications prior to discharge and a lower rate of postoperative complications through 30 days compared to open repair. R-TAPP is a promising and reproducible approach, and may facilitate adoption of minimally invasive repairs of inguinal hernias.

  7. Cerebrovascular risk factors for patients with cerebral watershed infarction: A case-control study based on computed tomography angiography in a population from Southwest China.

    PubMed

    Dong, Mei-Xue; Hu, Ling; Huang, Yuan-Jun; Xu, Xiao-Min; Liu, Yang; Wei, You-Dong

    2017-07-01

    To determine cerebrovascular risk factors for patients with cerebral watershed infarction (CWI) from Southwest China.Patients suffering from acute ischemic stroke were categorized into internal CWI (I-CWI), external CWI (E-CWI), or non-CWI (patients without CWI) groups. Clinical data were collected and degrees of steno-occlusion of all cerebral arteries were scored. Arteries associated with the circle of Willis were also assessed. Data were compared using Pearson chi-squared tests for categorical data and 1-way analysis of variance with Bonferroni post hoc tests for continuous data, as appropriate. Multivariate binary logistic regression analysis was performed to determine independent cerebrovascular risk factors for CWI.Compared with non-CWI, I-CWI had higher degrees of steno-occlusion of the ipsilateral middle cerebral artery, ipsilateral carotid artery, and contralateral middle cerebral artery. E-CWI showed no significant differences. All the 3 arteries were independent cerebrovascular risk factors for I-CWI confirmed by multivariate binary logistic regression analysis. I-CWI had higher degrees of steno-occlusion of the ipsilateral middle cerebral artery compared with E-CWI. No significant differences were found among arteries associated with the circle of Willis.The ipsilateral middle cerebral artery, carotid artery, and contralateral middle cerebral artery were independent cerebrovascular risk factors for I-CWI. No cerebrovascular risk factor was identified for E-CWI.

  8. Spatial interpolation schemes of daily precipitation for hydrologic modeling

    USGS Publications Warehouse

    Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.

    2012-01-01

    Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.

  9. Applied Multiple Linear Regression: A General Research Strategy

    ERIC Educational Resources Information Center

    Smith, Brandon B.

    1969-01-01

    Illustrates some of the basic concepts and procedures for using regression analysis in experimental design, analysis of variance, analysis of covariance, and curvilinear regression. Applications to evaluation of instruction and vocational education programs are illustrated. (GR)

  10. Effect of caffeic acid phenethyl ester on the regression of endometrial explants in an experimental rat model.

    PubMed

    Güney, Mehmet; Nasir, Serdar; Oral, Baha; Karahan, Nermin; Mungan, Tamer

    2007-04-01

    The objective of this study is to determine the effects of antioxidant and anti-inflammatory caffeic acid phenethyl ester (CAPE) on experimental endometriosis, peritoneal superoxide dismutase (SOD) and catalase (CAT) activities, and malondialdehyde (MDA) levels in the rat endometriosis model. Thirty rats with experimentally induced endometriosis were randomly divided into 2 groups and treated for 4 weeks with intraperitoneal CAPE (CAPE-treated group; 10 micromol/kg/d, n = 13) or vehicle (control group; n = 13). The volume and weight changes of the implants were calculated. Immunohistochemical and histologic examinations of endometriotic explants by semiquantitative analysis and measurements of peritoneal SOD, CAT, and MDA levels were made. Following 4 weeks of treatment with CAPE, there were significant differences in posttreatment spherical volumes (37.4 +/- 14.7 mm(3) vs 147.5 +/- 41.2 mm(3)) and explant weights (49.1 +/- 28.5 mg vs 158.9 +/- 50.3 mg) between the CAPE-treated groups and controls. The mean evaluation nomogram levels in glandular epithelium for COX-2 positivity by scoring system were 2.1 +/- 0.3 in the CAPE-treated group and 3.9 +/- 0.3 in the control group. In the CAPE-treated group, peritoneal levels of MDA and activities of SOD and CAT significantly decreased when compared with the control group (P < .01). Histologic analysis of the explants demonstrated mostly atrophy and regression in the treatment group, and semiquantitative analysis showed significantly lower scores in rats treated with CAPE compared with the control group. CAPE appeared to cause regression of experimental endometriosis.

  11. Inverse probability weighted least squares regression in the analysis of time-censored cost data: an evaluation of the approach using SEER-Medicare.

    PubMed

    Griffiths, Robert I; Gleeson, Michelle L; Danese, Mark D; O'Hagan, Anthony

    2012-01-01

    To assess the accuracy and precision of inverse probability weighted (IPW) least squares regression analysis for censored cost data. By using Surveillance, Epidemiology, and End Results-Medicare, we identified 1500 breast cancer patients who died and had complete cost information within the database. Patients were followed for up to 48 months (partitions) after diagnosis, and their actual total cost was calculated in each partition. We then simulated patterns of administrative and dropout censoring and also added censoring to patients receiving chemotherapy to simulate comparing a newer to older intervention. For each censoring simulation, we performed 1000 IPW regression analyses (bootstrap, sampling with replacement), calculated the average value of each coefficient in each partition, and summed the coefficients for each regression parameter to obtain the cumulative values from 1 to 48 months. The cumulative, 48-month, average cost was $67,796 (95% confidence interval [CI] $58,454-$78,291) with no censoring, $66,313 (95% CI $54,975-$80,074) with administrative censoring, and $66,765 (95% CI $54,510-$81,843) with administrative plus dropout censoring. In multivariate analysis, chemotherapy was associated with increased cost of $25,325 (95% CI $17,549-$32,827) compared with $28,937 (95% CI $20,510-$37,088) with administrative censoring and $29,593 ($20,564-$39,399) with administrative plus dropout censoring. Adding censoring to the chemotherapy group resulted in less accurate IPW estimates. This was ameliorated, however, by applying IPW within treatment groups. IPW is a consistent estimator of population mean costs if the weight is correctly specified. If the censoring distribution depends on some covariates, a model that accommodates this dependency must be correctly specified in IPW to obtain accurate estimates. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  12. Machine Learning Algorithms Outperform Conventional Regression Models in Predicting Development of Hepatocellular Carcinoma

    PubMed Central

    Singal, Amit G.; Mukherjee, Ashin; Elmunzer, B. Joseph; Higgins, Peter DR; Lok, Anna S.; Zhu, Ji; Marrero, Jorge A; Waljee, Akbar K

    2015-01-01

    Background Predictive models for hepatocellular carcinoma (HCC) have been limited by modest accuracy and lack of validation. Machine learning algorithms offer a novel methodology, which may improve HCC risk prognostication among patients with cirrhosis. Our study's aim was to develop and compare predictive models for HCC development among cirrhotic patients, using conventional regression analysis and machine learning algorithms. Methods We enrolled 442 patients with Child A or B cirrhosis at the University of Michigan between January 2004 and September 2006 (UM cohort) and prospectively followed them until HCC development, liver transplantation, death, or study termination. Regression analysis and machine learning algorithms were used to construct predictive models for HCC development, which were tested on an independent validation cohort from the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial. Both models were also compared to the previously published HALT-C model. Discrimination was assessed using receiver operating characteristic curve analysis and diagnostic accuracy was assessed with net reclassification improvement and integrated discrimination improvement statistics. Results After a median follow-up of 3.5 years, 41 patients developed HCC. The UM regression model had a c-statistic of 0.61 (95%CI 0.56-0.67), whereas the machine learning algorithm had a c-statistic of 0.64 (95%CI 0.60–0.69) in the validation cohort. The machine learning algorithm had significantly better diagnostic accuracy as assessed by net reclassification improvement (p<0.001) and integrated discrimination improvement (p=0.04). The HALT-C model had a c-statistic of 0.60 (95%CI 0.50-0.70) in the validation cohort and was outperformed by the machine learning algorithm (p=0.047). Conclusion Machine learning algorithms improve the accuracy of risk stratifying patients with cirrhosis and can be used to accurately identify patients at high-risk for developing HCC. PMID:24169273

  13. Locomotive syndrome is associated not only with physical capacity but also degree of depression.

    PubMed

    Ikemoto, Tatsunori; Inoue, Masayuki; Nakata, Masatoshi; Miyagawa, Hirofumi; Shimo, Kazuhiro; Wakabayashi, Toshiko; Arai, Young-Chang P; Ushida, Takahiro

    2016-05-01

    Reports of locomotive syndrome (LS) have recently been increasing. Although physical performance measures for LS have been well investigated to date, studies including psychiatric assessment are still scarce. Hence, the aim of this study was to investigate both physical and mental parameters in relation to presence and severity of LS using a 25-question geriatric locomotive function scale (GLFS-25) questionnaire. 150 elderly people aged over 60 years who were members of our physical-fitness center and displayed well-being were enrolled in this study. Firstly, using the previously determined GLFS-25 cutoff value (=16 points), subjects were divided into two groups accordingly: an LS and non-LS group in order to compare each parameter (age, grip strength, timed-up-and-go test (TUG), one-leg standing with eye open, back muscle and leg muscle strength, degree of depression and cognitive impairment) between the groups using the Mann-Whitney U-test followed by multiple logistic regression analysis. Secondly, a multiple linear regression was conducted to determine which variables showed the strongest correlation with severity of LS. We confirmed 110 people for non-LS (73%) and 40 people for LS using the GLFS-25 cutoff value. Comparative analysis between LS and non-LS revealed significant differences in parameters in age, grip strength, TUG, one-leg standing, back muscle strength and degree of depression (p < 0.006, after Bonferroni correction). Multiple logistic regression revealed that functional decline in grip strength, TUG and one-leg standing and degree of depression were significantly associated with LS. On the other hand, we observed that the significant contributors towards the GLFS-25 score were TUG and degree of depression in multiple linear regression analysis. The results indicate that LS is associated with not only the capacity of physical performance but also the degree of depression although most participants fell under the criteria of LS. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  14. Topological and canonical kriging for design flood prediction in ungauged catchments: an improvement over a traditional regional regression approach?

    USGS Publications Warehouse

    Archfield, Stacey A.; Pugliese, Alessio; Castellarin, Attilio; Skøien, Jon O.; Kiang, Julie E.

    2013-01-01

    In the United States, estimation of flood frequency quantiles at ungauged locations has been largely based on regional regression techniques that relate measurable catchment descriptors to flood quantiles. More recently, spatial interpolation techniques of point data have been shown to be effective for predicting streamflow statistics (i.e., flood flows and low-flow indices) in ungauged catchments. Literature reports successful applications of two techniques, canonical kriging, CK (or physiographical-space-based interpolation, PSBI), and topological kriging, TK (or top-kriging). CK performs the spatial interpolation of the streamflow statistic of interest in the two-dimensional space of catchment descriptors. TK predicts the streamflow statistic along river networks taking both the catchment area and nested nature of catchments into account. It is of interest to understand how these spatial interpolation methods compare with generalized least squares (GLS) regression, one of the most common approaches to estimate flood quantiles at ungauged locations. By means of a leave-one-out cross-validation procedure, the performance of CK and TK was compared to GLS regression equations developed for the prediction of 10, 50, 100 and 500 yr floods for 61 streamgauges in the southeast United States. TK substantially outperforms GLS and CK for the study area, particularly for large catchments. The performance of TK over GLS highlights an important distinction between the treatments of spatial correlation when using regression-based or spatial interpolation methods to estimate flood quantiles at ungauged locations. The analysis also shows that coupling TK with CK slightly improves the performance of TK; however, the improvement is marginal when compared to the improvement in performance over GLS.

  15. Data mining: Potential applications in research on nutrition and health.

    PubMed

    Batterham, Marijka; Neale, Elizabeth; Martin, Allison; Tapsell, Linda

    2017-02-01

    Data mining enables further insights from nutrition-related research, but caution is required. The aim of this analysis was to demonstrate and compare the utility of data mining methods in classifying a categorical outcome derived from a nutrition-related intervention. Baseline data (23 variables, 8 categorical) on participants (n = 295) in an intervention trial were used to classify participants in terms of meeting the criteria of achieving 10 000 steps per day. Results from classification and regression trees (CARTs), random forests, adaptive boosting, logistic regression, support vector machines and neural networks were compared using area under the curve (AUC) and error assessments. The CART produced the best model when considering the AUC (0.703), overall error (18%) and within class error (28%). Logistic regression also performed reasonably well compared to the other models (AUC 0.675, overall error 23%, within class error 36%). All the methods gave different rankings of variables' importance. CART found that body fat, quality of life using the SF-12 Physical Component Summary (PCS) and the cholesterol: HDL ratio were the most important predictors of meeting the 10 000 steps criteria, while logistic regression showed the SF-12PCS, glucose levels and level of education to be the most significant predictors (P ≤ 0.01). Differing outcomes suggest caution is required with a single data mining method, particularly in a dataset with nonlinear relationships and outliers and when exploring relationships that were not the primary outcomes of the research. © 2017 Dietitians Association of Australia.

  16. Regression discontinuity was a valid design for dichotomous outcomes in three randomized trials.

    PubMed

    van Leeuwen, Nikki; Lingsma, Hester F; Mooijaart, Simon P; Nieboer, Daan; Trompet, Stella; Steyerberg, Ewout W

    2018-06-01

    Regression discontinuity (RD) is a quasi-experimental design that may provide valid estimates of treatment effects in case of continuous outcomes. We aimed to evaluate validity and precision in the RD design for dichotomous outcomes. We performed validation studies in three large randomized controlled trials (RCTs) (Corticosteroid Randomization After Significant Head injury [CRASH], the Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries [GUSTO], and PROspective Study of Pravastatin in elderly individuals at risk of vascular disease [PROSPER]). To mimic the RD design, we selected patients above and below a cutoff (e.g., age 75 years) randomized to treatment and control, respectively. Adjusted logistic regression models using restricted cubic splines (RCS) and polynomials and local logistic regression models estimated the odds ratio (OR) for treatment, with 95% confidence intervals (CIs) to indicate precision. In CRASH, treatment increased mortality with OR 1.22 [95% CI 1.06-1.40] in the RCT. The RD estimates were 1.42 (0.94-2.16) and 1.13 (0.90-1.40) with RCS adjustment and local regression, respectively. In GUSTO, treatment reduced mortality (OR 0.83 [0.72-0.95]), with more extreme estimates in the RD analysis (OR 0.57 [0.35; 0.92] and 0.67 [0.51; 0.86]). In PROSPER, similar RCT and RD estimates were found, again with less precision in RD designs. We conclude that the RD design provides similar but substantially less precise treatment effect estimates compared with an RCT, with local regression being the preferred method of analysis. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Site-specific estimation of peak-streamflow frequency using generalized least-squares regression for natural basins in Texas

    USGS Publications Warehouse

    Asquith, William H.; Slade, R.M.

    1999-01-01

    The U.S. Geological Survey, in cooperation with the Texas Department of Transportation, has developed a computer program to estimate peak-streamflow frequency for ungaged sites in natural basins in Texas. Peak-streamflow frequency refers to the peak streamflows for recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Peak-streamflow frequency estimates are needed by planners, managers, and design engineers for flood-plain management; for objective assessment of flood risk; for cost-effective design of roads and bridges; and also for the desin of culverts, dams, levees, and other flood-control structures. The program estimates peak-streamflow frequency using a site-specific approach and a multivariate generalized least-squares linear regression. A site-specific approach differs from a traditional regional regression approach by developing unique equations to estimate peak-streamflow frequency specifically for the ungaged site. The stations included in the regression are selected using an informal cluster analysis that compares the basin characteristics of the ungaged site to the basin characteristics of all the stations in the data base. The program provides several choices for selecting the stations. Selecting the stations using cluster analysis ensures that the stations included in the regression will have the most pertinent information about flooding characteristics of the ungaged site and therefore provide the basis for potentially improved peak-streamflow frequency estimation. An evaluation of the site-specific approach in estimating peak-streamflow frequency for gaged sites indicates that the site-specific approach is at least as accurate as a traditional regional regression approach.

  18. Linear regression metamodeling as a tool to summarize and present simulation model results.

    PubMed

    Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M

    2013-10-01

    Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.

  19. Accounting for standard errors of vision-specific latent trait in regression models.

    PubMed

    Wong, Wan Ling; Li, Xiang; Li, Jialiang; Wong, Tien Yin; Cheng, Ching-Yu; Lamoureux, Ecosse L

    2014-07-11

    To demonstrate the effectiveness of Hierarchical Bayesian (HB) approach in a modeling framework for association effects that accounts for SEs of vision-specific latent traits assessed using Rasch analysis. A systematic literature review was conducted in four major ophthalmic journals to evaluate Rasch analysis performed on vision-specific instruments. The HB approach was used to synthesize the Rasch model and multiple linear regression model for the assessment of the association effects related to vision-specific latent traits. The effectiveness of this novel HB one-stage "joint-analysis" approach allows all model parameters to be estimated simultaneously and was compared with the frequently used two-stage "separate-analysis" approach in our simulation study (Rasch analysis followed by traditional statistical analyses without adjustment for SE of latent trait). Sixty-six reviewed articles performed evaluation and validation of vision-specific instruments using Rasch analysis, and 86.4% (n = 57) performed further statistical analyses on the Rasch-scaled data using traditional statistical methods; none took into consideration SEs of the estimated Rasch-scaled scores. The two models on real data differed for effect size estimations and the identification of "independent risk factors." Simulation results showed that our proposed HB one-stage "joint-analysis" approach produces greater accuracy (average of 5-fold decrease in bias) with comparable power and precision in estimation of associations when compared with the frequently used two-stage "separate-analysis" procedure despite accounting for greater uncertainty due to the latent trait. Patient-reported data, using Rasch analysis techniques, do not take into account the SE of latent trait in association analyses. The HB one-stage "joint-analysis" is a better approach, producing accurate effect size estimations and information about the independent association of exposure variables with vision-specific latent traits. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  20. A Quantile Regression Approach to Understanding the Relations Between Morphological Awareness, Vocabulary, and Reading Comprehension in Adult Basic Education Students

    PubMed Central

    Tighe, Elizabeth L.; Schatschneider, Christopher

    2015-01-01

    The purpose of this study was to investigate the joint and unique contributions of morphological awareness and vocabulary knowledge at five reading comprehension levels in Adult Basic Education (ABE) students. We introduce the statistical technique of multiple quantile regression, which enabled us to assess the predictive utility of morphological awareness and vocabulary knowledge at multiple points (quantiles) along the continuous distribution of reading comprehension. To demonstrate the efficacy of our multiple quantile regression analysis, we compared and contrasted our results with a traditional multiple regression analytic approach. Our results indicated that morphological awareness and vocabulary knowledge accounted for a large portion of the variance (82-95%) in reading comprehension skills across all quantiles. Morphological awareness exhibited the greatest unique predictive ability at lower levels of reading comprehension whereas vocabulary knowledge exhibited the greatest unique predictive ability at higher levels of reading comprehension. These results indicate the utility of using multiple quantile regression to assess trajectories of component skills across multiple levels of reading comprehension. The implications of our findings for ABE programs are discussed. PMID:25351773

  1. A Comparative Study of Pairwise Learning Methods Based on Kernel Ridge Regression.

    PubMed

    Stock, Michiel; Pahikkala, Tapio; Airola, Antti; De Baets, Bernard; Waegeman, Willem

    2018-06-12

    Many machine learning problems can be formulated as predicting labels for a pair of objects. Problems of that kind are often referred to as pairwise learning, dyadic prediction, or network inference problems. During the past decade, kernel methods have played a dominant role in pairwise learning. They still obtain a state-of-the-art predictive performance, but a theoretical analysis of their behavior has been underexplored in the machine learning literature. In this work we review and unify kernel-based algorithms that are commonly used in different pairwise learning settings, ranging from matrix filtering to zero-shot learning. To this end, we focus on closed-form efficient instantiations of Kronecker kernel ridge regression. We show that independent task kernel ridge regression, two-step kernel ridge regression, and a linear matrix filter arise naturally as a special case of Kronecker kernel ridge regression, implying that all these methods implicitly minimize a squared loss. In addition, we analyze universality, consistency, and spectral filtering properties. Our theoretical results provide valuable insights into assessing the advantages and limitations of existing pairwise learning methods.

  2. Detection of epistatic effects with logic regression and a classical linear regression model.

    PubMed

    Malina, Magdalena; Ickstadt, Katja; Schwender, Holger; Posch, Martin; Bogdan, Małgorzata

    2014-02-01

    To locate multiple interacting quantitative trait loci (QTL) influencing a trait of interest within experimental populations, usually methods as the Cockerham's model are applied. Within this framework, interactions are understood as the part of the joined effect of several genes which cannot be explained as the sum of their additive effects. However, if a change in the phenotype (as disease) is caused by Boolean combinations of genotypes of several QTLs, this Cockerham's approach is often not capable to identify them properly. To detect such interactions more efficiently, we propose a logic regression framework. Even though with the logic regression approach a larger number of models has to be considered (requiring more stringent multiple testing correction) the efficient representation of higher order logic interactions in logic regression models leads to a significant increase of power to detect such interactions as compared to a Cockerham's approach. The increase in power is demonstrated analytically for a simple two-way interaction model and illustrated in more complex settings with simulation study and real data analysis.

  3. Associations of financial stressors and physical intimate partner violence perpetration.

    PubMed

    Schwab-Reese, Laura M; Peek-Asa, Corinne; Parker, Edith

    2016-12-01

    Contextual factors, such as exposure to stressors, may be antecedents to IPV perpetration. These contextual factors may be amenable to modification through intervention and prevention. However, few studies have examined specific contextual factors. To begin to address this gap, we examined the associations between financial stressors and three types of physical IPV perpetration. This analysis used data from Wave IV of The National Longitudinal Study of Adolescent to Adult Health. We used logistic regression to examine the associations of financial stressors and each type of IPV (minor, severe, causing injury), and multinomial logit regression to examine the associations of financial stressors and patterns of co-occurring types of IPV perpetration (only minor; only severe; minor and severe; minor, severe, and causing injury; compared with no perpetration). Fewer men perpetrated threats/minor physical IPV (6.7 %) or severe physical IPV (3.4 %) compared with women (11.4 % and 8.8 %, respectively). However, among physical IPV perpetrators, a higher percentage of men (32.0 %) than women (21.0 %) reported their partner was injured as a result of the IPV. In logistic regression models of each type of IPV perpetration, both the number of stressors experienced and several types of financial stressors were associated with perpetrating each type of IPV. Utilities nonpayment, housing nonpayment, food insecurity, and no phone service were associated with increased odds of perpetrating each form of IPV in adjusted analysis. Eviction was associated with perpetrating severe physical IPV but not threats/minor IPV or IPV causing injury. In multinomial logit regression comparing patterns of IPV perpetration to perpetrating no physical IPV, the relationships of financial stressors were less consistent. Food insecurity was associated with perpetrating only minor physical IPV. Comparatively, overall number of financial stressors and four types of financial stressors (utilities nonpayment, housing nonpayment, food insecurity, and disconnected phone service) were associated with perpetrating all three forms of physical IPV. Combined with prior research, our results suggested interventions to improve financial well-being may be a novel way to reduce physical IPV perpetration.

  4. Associations of financial stressors and physical intimate partner violence perpetration.

    PubMed

    Schwab-Reese, Laura M; Peek-Asa, Corinne; Parker, Edith

    Contextual factors, such as exposure to stressors, may be antecedents to IPV perpetration. These contextual factors may be amenable to modification through intervention and prevention. However, few studies have examined specific contextual factors. To begin to address this gap, we examined the associations between financial stressors and three types of physical IPV perpetration. This analysis used data from Wave IV of The National Longitudinal Study of Adolescent to Adult Health. We used logistic regression to examine the associations of financial stressors and each type of IPV (minor, severe, causing injury), and multinomial logit regression to examine the associations of financial stressors and patterns of co-occurring types of IPV perpetration ( only minor; only severe; minor and severe; minor, severe, and causing injury; compared with no perpetration). Fewer men perpetrated threats/minor physical IPV (6.7 %) or severe physical IPV (3.4 %) compared with women (11.4 % and 8.8 %, respectively). However, among physical IPV perpetrators, a higher percentage of men (32.0 %) than women (21.0 %) reported their partner was injured as a result of the IPV. In logistic regression models of each type of IPV perpetration, both the number of stressors experienced and several types of financial stressors were associated with perpetrating each type of IPV. Utilities nonpayment, housing nonpayment, food insecurity, and no phone service were associated with increased odds of perpetrating each form of IPV in adjusted analysis. Eviction was associated with perpetrating severe physical IPV but not threats/minor IPV or IPV causing injury. In multinomial logit regression comparing patterns of IPV perpetration to perpetrating no physical IPV, the relationships of financial stressors were less consistent. Food insecurity was associated with perpetrating only minor physical IPV. Comparatively, overall number of financial stressors and four types of financial stressors (utilities nonpayment, housing nonpayment, food insecurity, and disconnected phone service) were associated with perpetrating all three forms of physical IPV. Combined with prior research, our results suggested interventions to improve financial well-being may be a novel way to reduce physical IPV perpetration.

  5. The Health-Related Quality of Life for Patients with Myalgic Encephalomyelitis / Chronic Fatigue Syndrome (ME/CFS).

    PubMed

    Falk Hvidberg, Michael; Brinth, Louise Schouborg; Olesen, Anne V; Petersen, Karin D; Ehlers, Lars

    2015-01-01

    Myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) is a common, severe condition affecting 0.2 to 0.4 per cent of the population. Even so, no recent international EQ-5D based health-related quality of life (HRQoL) estimates exist for ME/CFS patients. The main purpose of this study was to estimate HRQoL scores using the EQ-5D-3L with Danish time trade-off tariffs. Secondary, the aims were to explore whether the results are not influenced by other conditions using regression, to compare the estimates to 20 other conditions and finally to present ME/CFS patient characteristics for use in clinical practice. All members of the Danish ME/CFS Patient Association in 2013 (n=319) were asked to fill out a questionnaire including the EQ-5D-3L. From these, 105 ME/CFS patients were identified and gave valid responses. Unadjusted EQ-5D-3L means were calculated and compared to the population mean as well as to the mean of 20 other conditions. Furthermore, adjusted estimates were calculated using ordinary least squares (OLS) regression, adjusting for gender, age, education, and co-morbidity of 18 self-reported conditions. Data from the North Denmark Health Profile 2010 was used as population reference in the regression analysis (n=23,392). The unadjusted EQ-5D-3L mean of ME/CFS was 0.47 [0.41-0.53] compared to a population mean of 0.85 [0.84-0.86]. The OLS regression estimated a disutility of -0.29 [-0.21;-0.34] for ME/CFS patients in this study. The characteristics of ME/CFS patients are different from the population with respect to gender, relationship, employment etc. The EQ-5D-3L-based HRQoL of ME/CFS is significantly lower than the population mean and the lowest of all the compared conditions. The adjusted analysis confirms that poor HRQoL of ME/CFS is distinctly different from and not a proxy of the other included conditions. However, further studies are needed to exclude the possible selection bias of the current study.

  6. Prediction model for the return to work of workers with injuries in Hong Kong.

    PubMed

    Xu, Yanwen; Chan, Chetwyn C H; Lo, Karen Hui Yu-Ling; Tang, Dan

    2008-01-01

    This study attempts to formulate a prediction model of return to work for a group of workers who have been suffering from chronic pain and physical injury while also being out of work in Hong Kong. The study used Case-based Reasoning (CBR) method, and compared the result with the statistical method of logistic regression model. The database of the algorithm of CBR was composed of 67 cases who were also used in the logistic regression model. The testing cases were 32 participants who had a similar background and characteristics to those in the database. The methods of setting constraints and Euclidean distance metric were used in CBR to search the closest cases to the trial case based on the matrix. The usefulness of the algorithm was tested on 32 new participants, and the accuracy of predicting return to work outcomes was 62.5%, which was no better than the 71.2% accuracy derived from the logistic regression model. The results of the study would enable us to have a better understanding of the CBR applied in the field of occupational rehabilitation by comparing with the conventional regression analysis. The findings would also shed light on the development of relevant interventions for the return-to-work process of these workers.

  7. External Tank Liquid Hydrogen (LH2) Prepress Regression Analysis Independent Review Technical Consultation Report

    NASA Technical Reports Server (NTRS)

    Parsons, Vickie s.

    2009-01-01

    The request to conduct an independent review of regression models, developed for determining the expected Launch Commit Criteria (LCC) External Tank (ET)-04 cycle count for the Space Shuttle ET tanking process, was submitted to the NASA Engineering and Safety Center NESC on September 20, 2005. The NESC team performed an independent review of regression models documented in Prepress Regression Analysis, Tom Clark and Angela Krenn, 10/27/05. This consultation consisted of a peer review by statistical experts of the proposed regression models provided in the Prepress Regression Analysis. This document is the consultation's final report.

  8. Methodologic considerations in the design and analysis of nested case-control studies: association between cytokines and postoperative delirium.

    PubMed

    Ngo, Long H; Inouye, Sharon K; Jones, Richard N; Travison, Thomas G; Libermann, Towia A; Dillon, Simon T; Kuchel, George A; Vasunilashorn, Sarinnapha M; Alsop, David C; Marcantonio, Edward R

    2017-06-06

    The nested case-control study (NCC) design within a prospective cohort study is used when outcome data are available for all subjects, but the exposure of interest has not been collected, and is difficult or prohibitively expensive to obtain for all subjects. A NCC analysis with good matching procedures yields estimates that are as efficient and unbiased as estimates from the full cohort study. We present methodological considerations in a matched NCC design and analysis, which include the choice of match algorithms, analysis methods to evaluate the association of exposures of interest with outcomes, and consideration of overmatching. Matched, NCC design within a longitudinal observational prospective cohort study in the setting of two academic hospitals. Study participants are patients aged over 70 years who underwent scheduled major non-cardiac surgery. The primary outcome was postoperative delirium from in-hospital interviews and medical record review. The main exposure was IL-6 concentration (pg/ml) from blood sampled at three time points before delirium occurred. We used nonparametric signed ranked test to test for the median of the paired differences. We used conditional logistic regression to model the risk of IL-6 on delirium incidence. Simulation was used to generate a sample of cohort data on which unconditional multivariable logistic regression was used, and the results were compared to those of the conditional logistic regression. Partial R-square was used to assess the level of overmatching. We found that the optimal match algorithm yielded more matched pairs than the greedy algorithm. The choice of analytic strategy-whether to consider measured cytokine levels as the predictor or outcome-- yielded inferences that have different clinical interpretations but similar levels of statistical significance. Estimation results from NCC design using conditional logistic regression, and from simulated cohort design using unconditional logistic regression, were similar. We found minimal evidence for overmatching. Using a matched NCC approach introduces methodological challenges into the study design and data analysis. Nonetheless, with careful selection of the match algorithm, match factors, and analysis methods, this design is cost effective and, for our study, yields estimates that are similar to those from a prospective cohort study design.

  9. Advantages of continuous genotype values over genotype classes for GWAS in higher polyploids: a comparative study in hexaploid chrysanthemum.

    PubMed

    Grandke, Fabian; Singh, Priyanka; Heuven, Henri C M; de Haan, Jorn R; Metzler, Dirk

    2016-08-24

    Association studies are an essential part of modern plant breeding, but are limited for polyploid crops. The increased number of possible genotype classes complicates the differentiation between them. Available methods are limited with respect to the ploidy level or data producing technologies. While genotype classification is an established noise reduction step in diploids, it gains complexity with increasing ploidy levels. Eventually, the errors produced by misclassifications exceed the benefits of genotype classes. Alternatively, continuous genotype values can be used for association analysis in higher polyploids. We associated continuous genotypes to three different traits and compared the results to the output of the genotype caller SuperMASSA. Linear, Bayesian and partial least squares regression were applied, to determine if the use of continuous genotypes is limited to a specific method. A disease, a flowering and a growth trait with h (2) of 0.51, 0.78 and 0.91 were associated with a hexaploid chrysanthemum genotypes. The data set consisted of 55,825 probes and 228 samples. We were able to detect associating probes using continuous genotypes for multiple traits, using different regression methods. The identified probe sets were overlapping, but not identical between the methods. Baysian regression was the most restrictive method, resulting in ten probes for one trait and none for the others. Linear and partial least squares regression led to numerous associating probes. Association based on genotype classes resulted in similar values, but missed several significant probes. A simulation study was used to successfully validate the number of associating markers. Association of various phenotypic traits with continuous genotypes is successful with both uni- and multivariate regression methods. Genotype calling does not improve the association and shows no advantages in this study. Instead, use of continuous genotypes simplifies the analysis, saves computational time and results more potential markers.

  10. Comparing least-squares and quantile regression approaches to analyzing median hospital charges.

    PubMed

    Olsen, Cody S; Clark, Amy E; Thomas, Andrea M; Cook, Lawrence J

    2012-07-01

    Emergency department (ED) and hospital charges obtained from administrative data sets are useful descriptors of injury severity and the burden to EDs and the health care system. However, charges are typically positively skewed due to costly procedures, long hospital stays, and complicated or prolonged treatment for few patients. The median is not affected by extreme observations and is useful in describing and comparing distributions of hospital charges. A least-squares analysis employing a log transformation is one approach for estimating median hospital charges, corresponding confidence intervals (CIs), and differences between groups; however, this method requires certain distributional properties. An alternate method is quantile regression, which allows estimation and inference related to the median without making distributional assumptions. The objective was to compare the log-transformation least-squares method to the quantile regression approach for estimating median hospital charges, differences in median charges between groups, and associated CIs. The authors performed simulations using repeated sampling of observed statewide ED and hospital charges and charges randomly generated from a hypothetical lognormal distribution. The median and 95% CI and the multiplicative difference between the median charges of two groups were estimated using both least-squares and quantile regression methods. Performance of the two methods was evaluated. In contrast to least squares, quantile regression produced estimates that were unbiased and had smaller mean square errors in simulations of observed ED and hospital charges. Both methods performed well in simulations of hypothetical charges that met least-squares method assumptions. When the data did not follow the assumed distribution, least-squares estimates were often biased, and the associated CIs had lower than expected coverage as sample size increased. Quantile regression analyses of hospital charges provide unbiased estimates even when lognormal and equal variance assumptions are violated. These methods may be particularly useful in describing and analyzing hospital charges from administrative data sets. © 2012 by the Society for Academic Emergency Medicine.

  11. Understanding Child Stunting in India: A Comprehensive Analysis of Socio-Economic, Nutritional and Environmental Determinants Using Additive Quantile Regression

    PubMed Central

    Fenske, Nora; Burns, Jacob; Hothorn, Torsten; Rehfuess, Eva A.

    2013-01-01

    Background Most attempts to address undernutrition, responsible for one third of global child deaths, have fallen behind expectations. This suggests that the assumptions underlying current modelling and intervention practices should be revisited. Objective We undertook a comprehensive analysis of the determinants of child stunting in India, and explored whether the established focus on linear effects of single risks is appropriate. Design Using cross-sectional data for children aged 0–24 months from the Indian National Family Health Survey for 2005/2006, we populated an evidence-based diagram of immediate, intermediate and underlying determinants of stunting. We modelled linear, non-linear, spatial and age-varying effects of these determinants using additive quantile regression for four quantiles of the Z-score of standardized height-for-age and logistic regression for stunting and severe stunting. Results At least one variable within each of eleven groups of determinants was significantly associated with height-for-age in the 35% Z-score quantile regression. The non-modifiable risk factors child age and sex, and the protective factors household wealth, maternal education and BMI showed the largest effects. Being a twin or multiple birth was associated with dramatically decreased height-for-age. Maternal age, maternal BMI, birth order and number of antenatal visits influenced child stunting in non-linear ways. Findings across the four quantile and two logistic regression models were largely comparable. Conclusions Our analysis confirms the multifactorial nature of child stunting. It emphasizes the need to pursue a systems-based approach and to consider non-linear effects, and suggests that differential effects across the height-for-age distribution do not play a major role. PMID:24223839

  12. Understanding child stunting in India: a comprehensive analysis of socio-economic, nutritional and environmental determinants using additive quantile regression.

    PubMed

    Fenske, Nora; Burns, Jacob; Hothorn, Torsten; Rehfuess, Eva A

    2013-01-01

    Most attempts to address undernutrition, responsible for one third of global child deaths, have fallen behind expectations. This suggests that the assumptions underlying current modelling and intervention practices should be revisited. We undertook a comprehensive analysis of the determinants of child stunting in India, and explored whether the established focus on linear effects of single risks is appropriate. Using cross-sectional data for children aged 0-24 months from the Indian National Family Health Survey for 2005/2006, we populated an evidence-based diagram of immediate, intermediate and underlying determinants of stunting. We modelled linear, non-linear, spatial and age-varying effects of these determinants using additive quantile regression for four quantiles of the Z-score of standardized height-for-age and logistic regression for stunting and severe stunting. At least one variable within each of eleven groups of determinants was significantly associated with height-for-age in the 35% Z-score quantile regression. The non-modifiable risk factors child age and sex, and the protective factors household wealth, maternal education and BMI showed the largest effects. Being a twin or multiple birth was associated with dramatically decreased height-for-age. Maternal age, maternal BMI, birth order and number of antenatal visits influenced child stunting in non-linear ways. Findings across the four quantile and two logistic regression models were largely comparable. Our analysis confirms the multifactorial nature of child stunting. It emphasizes the need to pursue a systems-based approach and to consider non-linear effects, and suggests that differential effects across the height-for-age distribution do not play a major role.

  13. Analysis of the discriminative methods for diagnosis of benign and malignant solitary pulmonary nodules based on serum markers.

    PubMed

    Wang, Wanping; Liu, Mingyue; Wang, Jing; Tian, Rui; Dong, Junqiang; Liu, Qi; Zhao, Xianping; Wang, Yuanfang

    2014-01-01

    Screening indexes of tumor serum markers for benign and malignant solitary pulmonary nodules (SPNs) were analyzed to find the optimum method for diagnosis. Enzyme-linked immunosorbent assays, an automatic immune analyzer and radioimmunoassay methods were used to examine the levels of 8 serum markers in 164 SPN patients, and the sensitivity for differential diagnosis of malignant or benign SPN was compared for detection using a single plasma marker or a combination of markers. The results for serological indicators that closely relate to benign and malignant SPNs were screened using the Fisher discriminant analysis and a non-conditional logistic regression analysis method, respectively. The results were then verified by the k-means clustering analysis method. The sensitivity when using a combination of serum markers to detect SPN was higher than that using a single marker. By Fisher discriminant analysis, cytokeratin 19 fragments (CYFRA21-1), carbohydrate antigen 125 (CA125), squamous cell carcinoma antigen (SCC) and breast cancer antigen (CA153), which relate to the benign and malignant SPNs, were screened. Through non-conditional logistic regression analysis, CYFRA21-1, SCC and CA153 were obtained. Using the k-means clustering analysis, the cophenetic correlation coefficient (0.940) obtained by the Fisher discriminant analysis was higher than that obtained with logistic regression analysis (0.875). This study indicated that the Fisher discriminant analysis functioned better in screening out serum markers to recognize the benign and malignant SPN. The combined detection of CYFRA21-1, CA125, SCC and CA153 is an effective way to distinguish benign and malignant SPN, and will find an important clinical application in the early diagnosis of SPN. © 2014 S. Karger GmbH, Freiburg.

  14. Grassland and cropland net ecosystem production of the U.S. Great Plains: Regression tree model development and comparative analysis

    USGS Publications Warehouse

    Wylie, Bruce K.; Howard, Daniel; Dahal, Devendra; Gilmanov, Tagir; Ji, Lei; Zhang, Li; Smith, Kelcy

    2016-01-01

    This paper presents the methodology and results of two ecological-based net ecosystem production (NEP) regression tree models capable of up scaling measurements made at various flux tower sites throughout the U.S. Great Plains. Separate grassland and cropland NEP regression tree models were trained using various remote sensing data and other biogeophysical data, along with 15 flux towers contributing to the grassland model and 15 flux towers for the cropland model. The models yielded weekly mean daily grassland and cropland NEP maps of the U.S. Great Plains at 250 m resolution for 2000–2008. The grassland and cropland NEP maps were spatially summarized and statistically compared. The results of this study indicate that grassland and cropland ecosystems generally performed as weak net carbon (C) sinks, absorbing more C from the atmosphere than they released from 2000 to 2008. Grasslands demonstrated higher carbon sink potential (139 g C·m−2·year−1) than non-irrigated croplands. A closer look into the weekly time series reveals the C fluctuation through time and space for each land cover type.

  15. Changes in aerobic power of men, ages 25-70 yr

    NASA Technical Reports Server (NTRS)

    Jackson, A. S.; Beard, E. F.; Wier, L. T.; Ross, R. M.; Stuteville, J. E.; Blair, S. N.

    1995-01-01

    This study quantified and compared the cross-sectional and longitudinal influence of age, self-report physical activity (SR-PA), and body composition (%fat) on the decline of maximal aerobic power (VO2peak). The cross-sectional sample consisted of 1,499 healthy men ages 25-70 yr. The 156 men of the longitudinal sample were from the same population and examined twice, the mean time between tests was 4.1 (+/- 1.2) yr. Peak oxygen uptake was determined by indirect calorimetry during a maximal treadmill exercise test. The zero-order correlations between VO2peak and %fat (r = -0.62) and SR-PA (r = 0.58) were significantly (P < 0.05) higher that the age correlation (r = -0.45). Linear regression defined the cross-sectional age-related decline in VO2peak at 0.46 ml.kg-1.min-1.yr-1. Multiple regression analysis (R = 0.79) showed that nearly 50% of this cross-sectional decline was due to %fat and SR-PA, adding these lifestyle variables to the multiple regression model reduced the age regression weight to -0.26 ml.kg-1.min-1.yr-1. Statistically controlling for time differences between tests, general linear models analysis showed that longitudinal changes in aerobic power were due to independent changes in %fat and SR-PA, confirming the cross-sectional results.

  16. The 11-year solar cycle in current reanalyses: a (non)linear attribution study of the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Kuchar, A.; Sacha, P.; Miksovsky, J.; Pisoft, P.

    2015-06-01

    This study focusses on the variability of temperature, ozone and circulation characteristics in the stratosphere and lower mesosphere with regard to the influence of the 11-year solar cycle. It is based on attribution analysis using multiple nonlinear techniques (support vector regression, neural networks) besides the multiple linear regression approach. The analysis was applied to several current reanalysis data sets for the 1979-2013 period, including MERRA, ERA-Interim and JRA-55, with the aim to compare how these types of data resolve especially the double-peaked solar response in temperature and ozone variables and the consequent changes induced by these anomalies. Equatorial temperature signals in the tropical stratosphere were found to be in qualitative agreement with previous attribution studies, although the agreement with observational results was incomplete, especially for JRA-55. The analysis also pointed to the solar signal in the ozone data sets (i.e. MERRA and ERA-Interim) not being consistent with the observed double-peaked ozone anomaly extracted from satellite measurements. The results obtained by linear regression were confirmed by the nonlinear approach through all data sets, suggesting that linear regression is a relevant tool to sufficiently resolve the solar signal in the middle atmosphere. The seasonal evolution of the solar response was also discussed in terms of dynamical causalities in the winter hemispheres. The hypothetical mechanism of a weaker Brewer-Dobson circulation at solar maxima was reviewed together with a discussion of polar vortex behaviour.

  17. Multi Objective Optimization of Multi Wall Carbon Nanotube Based Nanogrinding Wheel Using Grey Relational and Regression Analysis

    NASA Astrophysics Data System (ADS)

    Sethuramalingam, Prabhu; Vinayagam, Babu Kupusamy

    2016-07-01

    Carbon nanotube mixed grinding wheel is used in the grinding process to analyze the surface characteristics of AISI D2 tool steel material. Till now no work has been carried out using carbon nanotube based grinding wheel. Carbon nanotube based grinding wheel has excellent thermal conductivity and good mechanical properties which are used to improve the surface finish of the workpiece. In the present study, the multi response optimization of process parameters like surface roughness and metal removal rate of grinding process of single wall carbon nanotube (CNT) in mixed cutting fluids is undertaken using orthogonal array with grey relational analysis. Experiments are performed with designated grinding conditions obtained using the L9 orthogonal array. Based on the results of the grey relational analysis, a set of optimum grinding parameters is obtained. Using the analysis of variance approach the significant machining parameters are found. Empirical model for the prediction of output parameters has been developed using regression analysis and the results are compared empirically, for conditions of with and without CNT grinding wheel in grinding process.

  18. A novel spinal kinematic analysis using X-ray imaging and vicon motion analysis: a case study.

    PubMed

    Noh, Dong K; Lee, Nam G; You, Joshua H

    2014-01-01

    This study highlights a novel spinal kinematic analysis method and the feasibility of X-ray imaging measurements to accurately assess thoracic spine motion. The advanced X-ray Nash-Moe method and analysis were used to compute the segmental range of motion in thoracic vertebra pedicles in vivo. This Nash-Moe X-ray imaging method was compared with a standardized method using the Vicon 3-dimensional motion capture system. Linear regression analysis showed an excellent and significant correlation between the two methods (R2 = 0.99, p < 0.05), suggesting that the analysis of spinal segmental range of motion using X-ray imaging measurements was accurate and comparable to the conventional 3-dimensional motion analysis system. Clinically, this novel finding is compelling evidence demonstrating that measurements with X-ray imaging are useful to accurately decipher pathological spinal alignment and movement impairments in idiopathic scoliosis (IS).

  19. Regression equations for disinfection by-products for the Mississippi, Ohio and Missouri rivers

    USGS Publications Warehouse

    Rathbun, R.E.

    1996-01-01

    Trihalomethane and nonpurgeable total organic-halide formation potentials were determined for the chlorination of water samples from the Mississippi, Ohio and Missouri Rivers. Samples were collected during the summer and fall of 1991 and the spring of 1992 at twelve locations on the Mississippi from New Orleans to Minneapolis, and on the Ohio and Missouri 1.6 km upstream from their confluences with the Mississippi. Formation potentials were determined as a function of pH, initial free-chlorine concentration, and reaction time. Multiple linear regression analysis of the data indicated that pH, reaction time, and the dissolved organic carbon concentration and/or the ultraviolet absorbance of the water were the most significant variables. The initial free-chlorine concentration had less significance and bromide concentration had little or no significance. Analysis of combinations of the dissolved organic carbon concentration and the ultraviolet absorbance indicated that use of the ultraviolet absorbance alone provided the best prediction of the experimental data. Regression coefficients for the variables were generally comparable to coefficients previously presented in the literature for waters from other parts of the United States.

  20. A subagging regression method for estimating the qualitative and quantitative state of groundwater

    NASA Astrophysics Data System (ADS)

    Jeong, Jina; Park, Eungyu; Han, Weon Shik; Kim, Kue-Young

    2017-08-01

    A subsample aggregating (subagging) regression (SBR) method for the analysis of groundwater data pertaining to trend-estimation-associated uncertainty is proposed. The SBR method is validated against synthetic data competitively with other conventional robust and non-robust methods. From the results, it is verified that the estimation accuracies of the SBR method are consistent and superior to those of other methods, and the uncertainties are reasonably estimated; the others have no uncertainty analysis option. To validate further, actual groundwater data are employed and analyzed comparatively with Gaussian process regression (GPR). For all cases, the trend and the associated uncertainties are reasonably estimated by both SBR and GPR regardless of Gaussian or non-Gaussian skewed data. However, it is expected that GPR has a limitation in applications to severely corrupted data by outliers owing to its non-robustness. From the implementations, it is determined that the SBR method has the potential to be further developed as an effective tool of anomaly detection or outlier identification in groundwater state data such as the groundwater level and contaminant concentration.

  1. Ranibizumab alone or in combination with photodynamic therapy vs photodynamic therapy for polypoidal choroidal vasculopathy: a systematic review and Meta-analysis.

    PubMed

    Tang, Kai; Si, Jun-Kang; Guo, Da-Dong; Cui, Yan; Du, Yu-Xiang; Pan, Xue-Mei; Bi, Hong-Sheng

    2015-01-01

    To compare the efficacy of intravitreal ranibizumab (IVR) alone or in combination with photodynamic therapy (PDT) vs PDT in patients with symptomatic polypoidal choroidal vasculopathy (PCV). A systematic search of a wide range of databases (including PubMed, EMBASE, Cochrane Library and Web of Science) was searched to identify relevant studies. Both randomized controlled trials (RCTs) and non-RCT studies were included. Methodological quality of included literatures was evaluated according to the Newcastle-Ottawa Scale. RevMan 5.2.7 software was used to do the Meta-analysis. Three RCTs and 6 retrospective studies were included. The results showed that PDT monotherapy had a significantly higher proportion in patients who achieved complete regression of polyps than IVR monotherapy at months 3, 6, and 12 (All P≤0.01), respectively. However, IVR had a tendency to be more effective in improving vision on the basis of RCTs. The proportion of patients who gained complete regression of polyps revealed that there was no significant difference between the combination treatment and PDT monotherapy. The mean change of best-corrected visual acuity (BCVA) from baseline showed that the combination treatment had significant superiority in improving vision vs PDT monotherapy at months 3, 6 and 24 (All P<0.05), respectively. In the mean time, this comparison result was also significant at month 12 (P<0.01) after removal of a heterogeneous study. IVR has non-inferiority compare with PDT either in stabilizing or in improving vision, although it can hardly promote the regression of polyps. The combination treatment of PDT and IVR can exert a synergistic effect on regressing polyps and on maintaining or improving visual acuity. Thus, it can be the first-line therapy for PCV.

  2. Ranibizumab alone or in combination with photodynamic therapy vs photodynamic therapy for polypoidal choroidal vasculopathy: a systematic review and Meta-analysis

    PubMed Central

    Tang, Kai; Si, Jun-Kang; Guo, Da-Dong; Cui, Yan; Du, Yu-Xiang; Pan, Xue-Mei; Bi, Hong-Sheng

    2015-01-01

    AIM To compare the efficacy of intravitreal ranibizumab (IVR) alone or in combination with photodynamic therapy (PDT) vs PDT in patients with symptomatic polypoidal choroidal vasculopathy (PCV). METHODS A systematic search of a wide range of databases (including PubMed, EMBASE, Cochrane Library and Web of Science) was searched to identify relevant studies. Both randomized controlled trials (RCTs) and non-RCT studies were included. Methodological quality of included literatures was evaluated according to the Newcastle-Ottawa Scale. RevMan 5.2.7 software was used to do the Meta-analysis. RESULTS Three RCTs and 6 retrospective studies were included. The results showed that PDT monotherapy had a significantly higher proportion in patients who achieved complete regression of polyps than IVR monotherapy at months 3, 6, and 12 (All P≤0.01), respectively. However, IVR had a tendency to be more effective in improving vision on the basis of RCTs. The proportion of patients who gained complete regression of polyps revealed that there was no significant difference between the combination treatment and PDT monotherapy. The mean change of best-corrected visual acuity (BCVA) from baseline showed that the combination treatment had significant superiority in improving vision vs PDT monotherapy at months 3, 6 and 24 (All P<0.05), respectively. In the mean time, this comparison result was also significant at month 12 (P<0.01) after removal of a heterogeneous study. CONCLUSION IVR has non-inferiority compare with PDT either in stabilizing or in improving vision, although it can hardly promote the regression of polyps. The combination treatment of PDT and IVR can exert a synergistic effect on regressing polyps and on maintaining or improving visual acuity. Thus, it can be the first-line therapy for PCV. PMID:26558226

  3. Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes

    NASA Astrophysics Data System (ADS)

    Mekanik, F.; Imteaz, M. A.; Gato-Trinidad, S.; Elmahdi, A.

    2013-10-01

    In this study, the application of Artificial Neural Networks (ANN) and Multiple regression analysis (MR) to forecast long-term seasonal spring rainfall in Victoria, Australia was investigated using lagged El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) as potential predictors. The use of dual (combined lagged ENSO-IOD) input sets for calibrating and validating ANN and MR Models is proposed to investigate the simultaneous effect of past values of these two major climate modes on long-term spring rainfall prediction. The MR models that did not violate the limits of statistical significance and multicollinearity were selected for future spring rainfall forecast. The ANN was developed in the form of multilayer perceptron using Levenberg-Marquardt algorithm. Both MR and ANN modelling were assessed statistically using mean square error (MSE), mean absolute error (MAE), Pearson correlation (r) and Willmott index of agreement (d). The developed MR and ANN models were tested on out-of-sample test sets; the MR models showed very poor generalisation ability for east Victoria with correlation coefficients of -0.99 to -0.90 compared to ANN with correlation coefficients of 0.42-0.93; ANN models also showed better generalisation ability for central and west Victoria with correlation coefficients of 0.68-0.85 and 0.58-0.97 respectively. The ability of multiple regression models to forecast out-of-sample sets is compatible with ANN for Daylesford in central Victoria and Kaniva in west Victoria (r = 0.92 and 0.67 respectively). The errors of the testing sets for ANN models are generally lower compared to multiple regression models. The statistical analysis suggest the potential of ANN over MR models for rainfall forecasting using large scale climate modes.

  4. Differential response rates to irradiation among patients with human papillomavirus positive and negative oropharyngeal cancer.

    PubMed

    Chen, Allen M; Li, Judy; Beckett, Laurel A; Zhara, Talia; Farwell, Gregory; Lau, Derick H; Gandour-Edwards, Regina; Vaughan, Andrew T; Purdy, James A

    2013-01-01

    To evaluate the responsiveness of human papillomavirus (HPV) -positive and HPV-negative oropharyngeal cancer to intensity-modulated radiotherapy (IMRT), using axial imaging obtained daily during the course of image-guided radiotherapy (IGRT). Observational cohort study with matched-pair analysis of patients irradiated for HPV-positive and HPV-negative oropharygeal cancer. Ten patients treated by IMRT to 70 Gy for locally advanced, HPV-positive squamous cell carcinoma of the oropharynx were matched to one HPV-negative control subject by age, gender, performance status, T-category, tumor location, and the use of concurrent chemotherapy. The gross tumor volume (GTV) was delineated on daily IGRT scans obtained via kilovoltage cone-beam computed tomography (CBCT). Mathematical modeling using fitted mixed-effects repeated measure analysis was performed to quantitatively and descriptively assess the trajectory of tumor regression. Patients with HPV-positive tumors experienced a more rapid rate of tumor regression between day 1 of IMRT and the beginning of week 2 (-33% Δ GTV) compared to their counterparts with HPV-negative tumors (-10% Δ GTV), which was statistically significant (p<0.001). During this initial period, the average absolute change in GTV was -22.9 cc/week for HPV-positive tumors and -5.9 cc/week for HPV-negative tumors (p<0.001). After week 2 of IMRT, the rates of GTV regression were comparable between the two groups. HPV-positive oropharyngeal cancers exhibited an enhanced response to radiation, characterized by a dramatically more rapid initial regression than those with HPV-negative tumors. Implications for treatment de-intensification in the context of future clinical trials and the possible mechanisms underlying this increased radiosensitivity will be discussed. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  5. School Cost Functions: A Meta-Regression Analysis

    ERIC Educational Resources Information Center

    Colegrave, Andrew D.; Giles, Margaret J.

    2008-01-01

    The education cost literature includes econometric studies attempting to determine economies of scale, or estimate an optimal school or district size. Not only do their results differ, but the studies use dissimilar data, techniques, and models. To derive value from these studies requires that the estimates be made comparable. One method to do…

  6. Does the EDI Measure School Readiness in the Same Way across Different Groups of Children?

    ERIC Educational Resources Information Center

    Guhn, Martin; Gadermann, Anne; Zumbo, Bruno D.

    2007-01-01

    The present study investigates whether the Early Development Instrument (Offord & Janus, 1999) measures school readiness similarly across different groups of children. We employ ordinal logistic regression to investigate differential item functioning, a method of examining measurement bias. For 40,000 children, our analysis compares groups…

  7. Effects of eye artifact removal methods on single trial P300 detection, a comparative study.

    PubMed

    Ghaderi, Foad; Kim, Su Kyoung; Kirchner, Elsa Andrea

    2014-01-15

    Electroencephalographic signals are commonly contaminated by eye artifacts, even if recorded under controlled conditions. The objective of this work was to quantitatively compare standard artifact removal methods (regression, filtered regression, Infomax, and second order blind identification (SOBI)) and two artifact identification approaches for independent component analysis (ICA) methods, i.e. ADJUST and correlation. To this end, eye artifacts were removed and the cleaned datasets were used for single trial classification of P300 (a type of event related potentials elicited using the oddball paradigm). Statistical analysis of the results confirms that the combination of Infomax and ADJUST provides a relatively better performance (0.6% improvement on average of all subject) while the combination of SOBI and correlation performs the worst. Low-pass filtering the data at lower cutoffs (here 4 Hz) can also improve the classification accuracy. Without requiring any artifact reference channel, the combination of Infomax and ADJUST improves the classification performance more than the other methods for both examined filtering cutoffs, i.e., 4 Hz and 25 Hz. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Multivariate Time Series Forecasting of Crude Palm Oil Price Using Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Kanchymalay, Kasturi; Salim, N.; Sukprasert, Anupong; Krishnan, Ramesh; Raba'ah Hashim, Ummi

    2017-08-01

    The aim of this paper was to study the correlation between crude palm oil (CPO) price, selected vegetable oil prices (such as soybean oil, coconut oil, and olive oil, rapeseed oil and sunflower oil), crude oil and the monthly exchange rate. Comparative analysis was then performed on CPO price forecasting results using the machine learning techniques. Monthly CPO prices, selected vegetable oil prices, crude oil prices and monthly exchange rate data from January 1987 to February 2017 were utilized. Preliminary analysis showed a positive and high correlation between the CPO price and soy bean oil price and also between CPO price and crude oil price. Experiments were conducted using multi-layer perception, support vector regression and Holt Winter exponential smoothing techniques. The results were assessed by using criteria of root mean square error (RMSE), means absolute error (MAE), means absolute percentage error (MAPE) and Direction of accuracy (DA). Among these three techniques, support vector regression(SVR) with Sequential minimal optimization (SMO) algorithm showed relatively better results compared to multi-layer perceptron and Holt Winters exponential smoothing method.

  9. Maintenance Operations in Mission Oriented Protective Posture Level IV (MOPPIV)

    DTIC Science & Technology

    1987-10-01

    Repair FADAC Printed Circuit Board ............. 6 3. Data Analysis Techniques ............................. 6 a. Multiple Linear Regression... ANALYSIS /DISCUSSION ............................... 12 1. Exa-ple of Regression Analysis ..................... 12 S2. Regression results for all tasks...6 * TABLE 9. Task Grouping for Analysis ........................ 7 "TABXLE 10. Remove/Replace H60A3 Power Pack................. 8 TABLE

  10. Variable Selection for Regression Models of Percentile Flows

    NASA Astrophysics Data System (ADS)

    Fouad, G.

    2017-12-01

    Percentile flows describe the flow magnitude equaled or exceeded for a given percent of time, and are widely used in water resource management. However, these statistics are normally unavailable since most basins are ungauged. Percentile flows of ungauged basins are often predicted using regression models based on readily observable basin characteristics, such as mean elevation. The number of these independent variables is too large to evaluate all possible models. A subset of models is typically evaluated using automatic procedures, like stepwise regression. This ignores a large variety of methods from the field of feature (variable) selection and physical understanding of percentile flows. A study of 918 basins in the United States was conducted to compare an automatic regression procedure to the following variable selection methods: (1) principal component analysis, (2) correlation analysis, (3) random forests, (4) genetic programming, (5) Bayesian networks, and (6) physical understanding. The automatic regression procedure only performed better than principal component analysis. Poor performance of the regression procedure was due to a commonly used filter for multicollinearity, which rejected the strongest models because they had cross-correlated independent variables. Multicollinearity did not decrease model performance in validation because of a representative set of calibration basins. Variable selection methods based strictly on predictive power (numbers 2-5 from above) performed similarly, likely indicating a limit to the predictive power of the variables. Similar performance was also reached using variables selected based on physical understanding, a finding that substantiates recent calls to emphasize physical understanding in modeling for predictions in ungauged basins. The strongest variables highlighted the importance of geology and land cover, whereas widely used topographic variables were the weakest predictors. Variables suffered from a high degree of multicollinearity, possibly illustrating the co-evolution of climatic and physiographic conditions. Given the ineffectiveness of many variables used here, future work should develop new variables that target specific processes associated with percentile flows.

  11. Features of natural and gonadotropin-releasing hormone antagonist-induced corpus luteum regression and effects of in vivo human chorionic gonadotropin.

    PubMed

    Del Canto, Felipe; Sierralta, Walter; Kohen, Paulina; Muñoz, Alex; Strauss, Jerome F; Devoto, Luigi

    2007-11-01

    The natural process of luteolysis and luteal regression is induced by withdrawal of gonadotropin support. The objectives of this study were: 1) to compare the functional changes and apoptotic features of natural human luteal regression and induced luteal regression; 2) to define the ultrastructural characteristics of the corpus luteum at the time of natural luteal regression and induced luteal regression; and 3) to examine the effect of human chorionic gonadotropin (hCG) on the steroidogenic response and apoptotic markers within the regressing corpus luteum. Twenty-three women with normal menstrual cycles undergoing tubal ligation donated corpus luteum at specific stages in the luteal phase. Some women received a GnRH antagonist prior to collection of corpus luteum, others received an injection of hCG with or without prior treatment with a GnRH antagonist. Main outcome measures were plasma hormone levels and analysis of excised luteal tissue for markers of apoptosis, histology, and ultrastructure. The progesterone and estradiol levels, corpus luteum DNA, and protein contents in induced luteal regression resembled those of natural luteal regression. hCG treatment raised progesterone and estradiol in both natural luteal regression and induced luteal regression. The increase in apoptosis detected in induced luteal regression by cytochrome c in the cytosol, activated caspase-3, and nuclear DNA fragmentation, was similar to that observed in natural luteal regression. The antiapoptotic protein Bcl-2 was significantly lower during natural luteal regression. The proapoptotic proteins Bax and Bak were at a constant level. Apoptotic and nonapoptotic death of luteal cells was observed in natural luteal regression and induced luteal regression at the ultrastructural level. hCG prevented apoptotic cell death, but not autophagy. The low number of apoptotic cells disclosed and the frequent autophagocytic suggest that multiple mechanisms are involved in cell death at luteal regression. hCG restores steroidogenic function and restrains the apoptotic process, but not autophagy.

  12. Off-pump versus on-pump coronary artery bypass surgery: meta-analysis and meta-regression of 13,524 patients from randomized trials.

    PubMed

    Sá, Michel Pompeu Barros de Oliveira; Ferraz, Paulo Ernando; Escobar, Rodrigo Renda; Martins, Wendell Nunes; Lustosa, Pablo César; Nunes, Eliobas de Oliveira; Vasconcelos, Frederico Pires; Lima, Ricardo Carvalho

    2012-12-01

    Most recent published meta-analysis of randomized controlled trials (RCTs) showed that off-pump coronary artery bypass graft surgery (CABG) reduces incidence of stroke by 30% compared with on-pump CABG, but showed no difference in other outcomes. New RCTs were published, indicating need of new meta-analysis to investigate pooled results adding these further studies. MEDLINE, EMBASE, CENTRAL/CCTR, SciELO, LILACS, Google Scholar and reference lists of relevant articles were searched for RCTs that compared outcomes (30-day mortality for all-cause, myocardial infarction or stroke) between off-pump versus on-pump CABG until May 2012. The principal summary measures were relative risk (RR) with 95% Confidence Interval (CI) and P values (considered statistically significant when <0.05). The RR's were combined across studies using DerSimonian-Laird random effects weighted model. Meta-analysis and meta-regression were completed using the software Comprehensive Meta-Analysis version 2 (Biostat Inc., Englewood, New Jersey, USA). Forty-seven RCTs were identified and included 13,524 patients (6,758 for off-pump and 6,766 for on-pump CABG). There was no significant difference between off-pump and on-pump CABG groups in RR for 30-day mortality or myocardial infarction, but there was difference about stroke in favor to off-pump CABG (RR 0.793, 95% CI 0.660-0.920, P=0.049). It was observed no important heterogeneity of effects about any outcome, but it was observed publication bias about outcome "stroke". Meta-regression did not demonstrate influence of female gender, number of grafts or age in outcomes. Off-pump CABG reduces the incidence of post-operative stroke by 20.7% and has no substantial effect on mortality or myocardial infarction in comparison to on-pump CABG. Patient gender, number of grafts performed and age do not seem to explain the effect of off-pump CABG on mortality, myocardial infarction or stroke, respectively.

  13. Resting-state functional magnetic resonance imaging: the impact of regression analysis.

    PubMed

    Yeh, Chia-Jung; Tseng, Yu-Sheng; Lin, Yi-Ru; Tsai, Shang-Yueh; Huang, Teng-Yi

    2015-01-01

    To investigate the impact of regression methods on resting-state functional magnetic resonance imaging (rsfMRI). During rsfMRI preprocessing, regression analysis is considered effective for reducing the interference of physiological noise on the signal time course. However, it is unclear whether the regression method benefits rsfMRI analysis. Twenty volunteers (10 men and 10 women; aged 23.4 ± 1.5 years) participated in the experiments. We used node analysis and functional connectivity mapping to assess the brain default mode network by using five combinations of regression methods. The results show that regressing the global mean plays a major role in the preprocessing steps. When a global regression method is applied, the values of functional connectivity are significantly lower (P ≤ .01) than those calculated without a global regression. This step increases inter-subject variation and produces anticorrelated brain areas. rsfMRI data processed using regression should be interpreted carefully. The significance of the anticorrelated brain areas produced by global signal removal is unclear. Copyright © 2014 by the American Society of Neuroimaging.

  14. Random forest models to predict aqueous solubility.

    PubMed

    Palmer, David S; O'Boyle, Noel M; Glen, Robert C; Mitchell, John B O

    2007-01-01

    Random Forest regression (RF), Partial-Least-Squares (PLS) regression, Support Vector Machines (SVM), and Artificial Neural Networks (ANN) were used to develop QSPR models for the prediction of aqueous solubility, based on experimental data for 988 organic molecules. The Random Forest regression model predicted aqueous solubility more accurately than those created by PLS, SVM, and ANN and offered methods for automatic descriptor selection, an assessment of descriptor importance, and an in-parallel measure of predictive ability, all of which serve to recommend its use. The prediction of log molar solubility for an external test set of 330 molecules that are solid at 25 degrees C gave an r2 = 0.89 and RMSE = 0.69 log S units. For a standard data set selected from the literature, the model performed well with respect to other documented methods. Finally, the diversity of the training and test sets are compared to the chemical space occupied by molecules in the MDL drug data report, on the basis of molecular descriptors selected by the regression analysis.

  15. The comparison of robust partial least squares regression with robust principal component regression on a real

    NASA Astrophysics Data System (ADS)

    Polat, Esra; Gunay, Suleyman

    2013-10-01

    One of the problems encountered in Multiple Linear Regression (MLR) is multicollinearity, which causes the overestimation of the regression parameters and increase of the variance of these parameters. Hence, in case of multicollinearity presents, biased estimation procedures such as classical Principal Component Regression (CPCR) and Partial Least Squares Regression (PLSR) are then performed. SIMPLS algorithm is the leading PLSR algorithm because of its speed, efficiency and results are easier to interpret. However, both of the CPCR and SIMPLS yield very unreliable results when the data set contains outlying observations. Therefore, Hubert and Vanden Branden (2003) have been presented a robust PCR (RPCR) method and a robust PLSR (RPLSR) method called RSIMPLS. In RPCR, firstly, a robust Principal Component Analysis (PCA) method for high-dimensional data on the independent variables is applied, then, the dependent variables are regressed on the scores using a robust regression method. RSIMPLS has been constructed from a robust covariance matrix for high-dimensional data and robust linear regression. The purpose of this study is to show the usage of RPCR and RSIMPLS methods on an econometric data set, hence, making a comparison of two methods on an inflation model of Turkey. The considered methods have been compared in terms of predictive ability and goodness of fit by using a robust Root Mean Squared Error of Cross-validation (R-RMSECV), a robust R2 value and Robust Component Selection (RCS) statistic.

  16. Regression of coronary atherosclerosis with infusions of the high-density lipoprotein mimetic CER-001 in patients with more extensive plaque burden.

    PubMed

    Kataoka, Yu; Andrews, Jordan; Duong, MyNgan; Nguyen, Tracy; Schwarz, Nisha; Fendler, Jessica; Puri, Rishi; Butters, Julie; Keyserling, Constance; Paolini, John F; Dasseux, Jean-Louis; Nicholls, Stephen J

    2017-06-01

    CER-001 is an engineered pre-beta high-density lipoprotein (HDL) mimetic, which rapidly mobilizes cholesterol. Infusion of CER-001 3 mg/kg exhibited a potentially favorable effect on plaque burden in the CHI-SQUARE (Can HDL Infusions Significantly Quicken Atherosclerosis Regression) study. Since baseline atheroma burden has been shown as a determinant for the efficacy of HDL infusions, the degree of baseline atheroma burden might influence the effect of CER-001. CHI-SQUARE compared the effect of 6 weekly infusions of CER-001 (3, 6 and 12 mg/kg) vs. placebo on coronary atherosclerosis in 369 patients with acute coronary syndrome (ACS) using serial intravascular ultrasound (IVUS). Baseline percent atheroma volume (B-PAV) cutoff associated with atheroma regression following CER-001 infusions was determined by receiver-operating characteristics curve analysis. 369 subjects were stratified according to the cutoff. The effect of CER-001 at different doses was compared to placebo in each group. A B-PAV ≥30% was the optimal cutoff associated with PAV regression following CER-001 infusions. CER-001 induced PAV regression in patients with B-PAV ≥30% but not in those with B-PAV <30% (-0.45%±2.65% vs. +0.34%±1.69%, P=0.01). Compared to placebo, the greatest PAV regression was observed with CER-001 3mg/kg in patients with B-PAV ≥30% (-0.96%±0.34% vs. -0.25%±0.31%, P=0.01), whereas there were no differences between placebo (+0.09%±0.36%) versus CER-001 in patients with B-PAV <30% (3 mg/kg; +0.41%±0.32%, P=0.39; 6 mg/kg; +0.27%±0.36%, P=0.76; 12 mg/kg; +0.32%±0.37%, P=0.97). Infusions of CER-001 3 mg/kg induced the greatest atheroma regression in ACS patients with higher B-PAV. These findings identify ACS patients with more extensive disease as most likely to benefit from HDL mimetic therapy.

  17. Regression of coronary atherosclerosis with infusions of the high-density lipoprotein mimetic CER-001 in patients with more extensive plaque burden

    PubMed Central

    Kataoka, Yu; Andrews, Jordan; Duong, MyNgan; Nguyen, Tracy; Schwarz, Nisha; Fendler, Jessica; Puri, Rishi; Butters, Julie; Keyserling, Constance; Paolini, John F.; Dasseux, Jean-Louis

    2017-01-01

    Background CER-001 is an engineered pre-beta high-density lipoprotein (HDL) mimetic, which rapidly mobilizes cholesterol. Infusion of CER-001 3 mg/kg exhibited a potentially favorable effect on plaque burden in the CHI-SQUARE (Can HDL Infusions Significantly Quicken Atherosclerosis Regression) study. Since baseline atheroma burden has been shown as a determinant for the efficacy of HDL infusions, the degree of baseline atheroma burden might influence the effect of CER-001. Methods CHI-SQUARE compared the effect of 6 weekly infusions of CER-001 (3, 6 and 12 mg/kg) vs. placebo on coronary atherosclerosis in 369 patients with acute coronary syndrome (ACS) using serial intravascular ultrasound (IVUS). Baseline percent atheroma volume (B-PAV) cutoff associated with atheroma regression following CER-001 infusions was determined by receiver-operating characteristics curve analysis. 369 subjects were stratified according to the cutoff. The effect of CER-001 at different doses was compared to placebo in each group. Results A B-PAV ≥30% was the optimal cutoff associated with PAV regression following CER-001 infusions. CER-001 induced PAV regression in patients with B-PAV ≥30% but not in those with B-PAV <30% (−0.45%±2.65% vs. +0.34%±1.69%, P=0.01). Compared to placebo, the greatest PAV regression was observed with CER-001 3mg/kg in patients with B-PAV ≥30% (−0.96%±0.34% vs. −0.25%±0.31%, P=0.01), whereas there were no differences between placebo (+0.09%±0.36%) versus CER-001 in patients with B-PAV <30% (3 mg/kg; +0.41%±0.32%, P=0.39; 6 mg/kg; +0.27%±0.36%, P=0.76; 12 mg/kg; +0.32%±0.37%, P=0.97). Conclusions Infusions of CER-001 3 mg/kg induced the greatest atheroma regression in ACS patients with higher B-PAV. These findings identify ACS patients with more extensive disease as most likely to benefit from HDL mimetic therapy. PMID:28567351

  18. [Spatial interpolation of soil organic matter using regression Kriging and geographically weighted regression Kriging].

    PubMed

    Yang, Shun-hua; Zhang, Hai-tao; Guo, Long; Ren, Yan

    2015-06-01

    Relative elevation and stream power index were selected as auxiliary variables based on correlation analysis for mapping soil organic matter. Geographically weighted regression Kriging (GWRK) and regression Kriging (RK) were used for spatial interpolation of soil organic matter and compared with ordinary Kriging (OK), which acts as a control. The results indicated that soil or- ganic matter was significantly positively correlated with relative elevation whilst it had a significantly negative correlation with stream power index. Semivariance analysis showed that both soil organic matter content and its residuals (including ordinary least square regression residual and GWR resi- dual) had strong spatial autocorrelation. Interpolation accuracies by different methods were esti- mated based on a data set of 98 validation samples. Results showed that the mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) of RK were respectively 39.2%, 17.7% and 20.6% lower than the corresponding values of OK, with a relative-improvement (RI) of 20.63. GWRK showed a similar tendency, having its ME, MAE and RMSE to be respectively 60.6%, 23.7% and 27.6% lower than those of OK, with a RI of 59.79. Therefore, both RK and GWRK significantly improved the accuracy of OK interpolation of soil organic matter due to their in- corporation of auxiliary variables. In addition, GWRK performed obviously better than RK did in this study, and its improved performance should be attributed to the consideration of sample spatial locations.

  19. Comparative amino acid digestibility for broiler chickens and White Pekin ducks.

    PubMed

    Kong, C; Adeola, O

    2013-09-01

    A total of 608 three-week-old male broiler chickens and White Pekin ducks were used in a 5-d trial to compare ileal amino acid (AA) digestibility of soybean meal (SBM) and canola meal (CM) using the regression method. A corn-casein-cornstarch-based diet was mixed to contain 15% CP. Cornstarch was replaced with test ingredient (SBM or CM) to contain 18 or 21% of CP in 4 other diets. A nitrogen-free diet (NFD) was used for standardization of apparent digestibility. Birds received a standard starter diet (23% CP) from d 0 to 14 posthatch and then 6 experimental diets for 5 d. On d 19 posthatch, birds were asphyxiated with CO(2), and digesta from the distal section of ileum was collected. The ileal digestibility of AA from the test ingredients was assessed by multiple linear regression analysis using data on daily apparent ileal digestible AA and total AA intakes. The basal endogenous losses of N and all AA for ducks were significantly higher than those for broilers. For ileal AA digestibility by regression of apparent digestible AA intake against AA intake, there was a higher (P < 0.05) digestibility for Cys and Pro in ducks compared with broilers (P < 0.05). Within species, digestibility was not different between SBM and CM except for Lys of ducks, and Lys and Pro of broilers (P < 0.05). The results of this study showed that ducks have higher basal endogenous AA losses compared with broiler chickens as well as higher ileal Cys and Pro digestibility estimates derived from regression approach, indicating that data obtained from broilers should not be used to formulate diets for ducks.

  20. Comparison of partial least squares and random forests for evaluating relationship between phenolics and bioactivities of Neptunia oleracea.

    PubMed

    Lee, Soo Yee; Mediani, Ahmed; Maulidiani, Maulidiani; Khatib, Alfi; Ismail, Intan Safinar; Zawawi, Norhasnida; Abas, Faridah

    2018-01-01

    Neptunia oleracea is a plant consumed as a vegetable and which has been used as a folk remedy for several diseases. Herein, two regression models (partial least squares, PLS; and random forest, RF) in a metabolomics approach were compared and applied to the evaluation of the relationship between phenolics and bioactivities of N. oleracea. In addition, the effects of different extraction conditions on the phenolic constituents were assessed by pattern recognition analysis. Comparison of the PLS and RF showed that RF exhibited poorer generalization and hence poorer predictive performance. Both the regression coefficient of PLS and the variable importance of RF revealed that quercetin and kaempferol derivatives, caffeic acid and vitexin-2-O-rhamnoside were significant towards the tested bioactivities. Furthermore, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) results showed that sonication and absolute ethanol are the preferable extraction method and ethanol ratio, respectively, to produce N. oleracea extracts with high phenolic levels and therefore high DPPH scavenging and α-glucosidase inhibitory activities. Both PLS and RF are useful regression models in metabolomics studies. This work provides insight into the performance of different multivariate data analysis tools and the effects of different extraction conditions on the extraction of desired phenolics from plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. A comparison of radiometric correction techniques in the evaluation of the relationship between LST and NDVI in Landsat imagery.

    PubMed

    Tan, Kok Chooi; Lim, Hwee San; Matjafri, Mohd Zubir; Abdullah, Khiruddin

    2012-06-01

    Atmospheric corrections for multi-temporal optical satellite images are necessary, especially in change detection analyses, such as normalized difference vegetation index (NDVI) rationing. Abrupt change detection analysis using remote-sensing techniques requires radiometric congruity and atmospheric correction to monitor terrestrial surfaces over time. Two atmospheric correction methods were used for this study: relative radiometric normalization and the simplified method for atmospheric correction (SMAC) in the solar spectrum. A multi-temporal data set consisting of two sets of Landsat images from the period between 1991 and 2002 of Penang Island, Malaysia, was used to compare NDVI maps, which were generated using the proposed atmospheric correction methods. Land surface temperature (LST) was retrieved using ATCOR3_T in PCI Geomatica 10.1 image processing software. Linear regression analysis was utilized to analyze the relationship between NDVI and LST. This study reveals that both of the proposed atmospheric correction methods yielded high accuracy through examination of the linear correlation coefficients. To check for the accuracy of the equation obtained through linear regression analysis for every single satellite image, 20 points were randomly chosen. The results showed that the SMAC method yielded a constant value (in terms of error) to predict the NDVI value from linear regression analysis-derived equation. The errors (average) from both proposed atmospheric correction methods were less than 10%.

  2. Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors.

    PubMed

    Baek, Hyun Jae; Kim, Ko Keun; Kim, Jung Soo; Lee, Boreom; Park, Kwang Suk

    2010-02-01

    A new method of blood pressure (BP) estimation using multiple regression with pulse arrival time (PAT) and two confounding factors was evaluated in clinical and unconstrained monitoring situations. For the first analysis with clinical data, electrocardiogram (ECG), photoplethysmogram (PPG) and invasive BP signals were obtained by a conventional patient monitoring device during surgery. In the second analysis, ECG, PPG and non-invasive BP were measured using systems developed to obtain data under conditions in which the subject was not constrained. To enhance the performance of BP estimation methods, heart rate (HR) and arterial stiffness were considered as confounding factors in regression analysis. The PAT and HR were easily extracted from ECG and PPG signals. For arterial stiffness, the duration from the maximum derivative point to the maximum of the dicrotic notch in the PPG signal, a parameter called TDB, was employed. In two experiments that normally cause BP variation, the correlation between measured BP and the estimated BP was investigated. Multiple-regression analysis with the two confounding factors improved correlation coefficients for diastolic blood pressure and systolic blood pressure to acceptable confidence levels, compared to existing methods that consider PAT only. In addition, reproducibility for the proposed method was determined using constructed test sets. Our results demonstrate that non-invasive, non-intrusive BP estimation can be obtained using methods that can be applied in both clinical and daily healthcare situations.

  3. Standards for Standardized Logistic Regression Coefficients

    ERIC Educational Resources Information Center

    Menard, Scott

    2011-01-01

    Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…

  4. Linear regression analysis: part 14 of a series on evaluation of scientific publications.

    PubMed

    Schneider, Astrid; Hommel, Gerhard; Blettner, Maria

    2010-11-01

    Regression analysis is an important statistical method for the analysis of medical data. It enables the identification and characterization of relationships among multiple factors. It also enables the identification of prognostically relevant risk factors and the calculation of risk scores for individual prognostication. This article is based on selected textbooks of statistics, a selective review of the literature, and our own experience. After a brief introduction of the uni- and multivariable regression models, illustrative examples are given to explain what the important considerations are before a regression analysis is performed, and how the results should be interpreted. The reader should then be able to judge whether the method has been used correctly and interpret the results appropriately. The performance and interpretation of linear regression analysis are subject to a variety of pitfalls, which are discussed here in detail. The reader is made aware of common errors of interpretation through practical examples. Both the opportunities for applying linear regression analysis and its limitations are presented.

  5. An improved multiple linear regression and data analysis computer program package

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.

    1972-01-01

    NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.

  6. On The Impact of Climate Change to Agricultural Productivity in East Java

    NASA Astrophysics Data System (ADS)

    Kuswanto, Heri; Salamah, Mutiah; Mumpuni Retnaningsih, Sri; Dwi Prastyo, Dedy

    2018-03-01

    Many researches showed that climate change has significant impact on agricultural sector, which threats the food security especially in developing countries. It has been observed also that the climate change increases the intensity of extreme events. This research investigated the impact climate to the agricultural productivity in East Java, as one of the main rice producers in Indonesia. Standard regression as well as panel regression models have been performed in order to find the best model which is able to describe the climate change impact. The analysis found that the fixed effect model of panel regression outperforms the others showing that climate change had negatively impacted the rice productivity in East Java. The effect in Malang and Pasuruan were almost the same, while the impact in Sumenep was the least one compared to other districts.

  7. Linear Regression with a Randomly Censored Covariate: Application to an Alzheimer's Study.

    PubMed

    Atem, Folefac D; Qian, Jing; Maye, Jacqueline E; Johnson, Keith A; Betensky, Rebecca A

    2017-01-01

    The association between maternal age of onset of dementia and amyloid deposition (measured by in vivo positron emission tomography (PET) imaging) in cognitively normal older offspring is of interest. In a regression model for amyloid, special methods are required due to the random right censoring of the covariate of maternal age of onset of dementia. Prior literature has proposed methods to address the problem of censoring due to assay limit of detection, but not random censoring. We propose imputation methods and a survival regression method that do not require parametric assumptions about the distribution of the censored covariate. Existing imputation methods address missing covariates, but not right censored covariates. In simulation studies, we compare these methods to the simple, but inefficient complete case analysis, and to thresholding approaches. We apply the methods to the Alzheimer's study.

  8. The increasing financial impact of chronic kidney disease in australia.

    PubMed

    Tucker, Patrick S; Kingsley, Michael I; Morton, R Hugh; Scanlan, Aaron T; Dalbo, Vincent J

    2014-01-01

    The aim of this investigation was to determine and compare current and projected expenditure associated with chronic kidney disease (CKD), renal replacement therapy (RRT), and cardiovascular disease (CVD) in Australia. Data published by Australia and New Zealand Dialysis and Transplant Registry, Australian Institute of Health and Welfare, and World Bank were used to compare CKD-, RRT-, and CVD-related expenditure and prevalence rates. Prevalence and expenditure predictions were made using a linear regression model. Direct statistical comparisons of rates of annual increase utilised indicator variables in combined regressions. Statistical significance was set at P < 0.05. Dollar amounts were adjusted for inflation prior to analysis. Between 2012 and 2020, prevalence, per-patient expenditure, and total disease expenditure associated with CKD and RRT are estimated to increase significantly more rapidly than CVD. RRT prevalence is estimated to increase by 29%, compared to 7% in CVD. Average annual RRT per-patient expenditure is estimated to increase by 16%, compared to 8% in CVD. Total CKD- and RRT-related expenditure had been estimated to increase by 37%, compared to 14% in CVD. Per-patient, CKD produces a considerably greater financial impact on Australia's healthcare system, compared to CVD. Research focusing on novel preventative/therapeutic interventions is warranted.

  9. Oral Microbiota and Risk for Esophageal Squamous Cell Carcinoma in a High-Risk Area of China.

    PubMed

    Chen, Xingdong; Winckler, Björn; Lu, Ming; Cheng, Hongwei; Yuan, Ziyu; Yang, Yajun; Jin, Li; Ye, Weimin

    2015-01-01

    Poor oral health has been linked with an increased risk of esophageal squamous cell carcinoma (ESCC). We investigated whether alteration of oral microbiota is associated with ESCC risk. Fasting saliva samples were collected from 87 incident and histopathologicallly diagnosed ESCC cases, 63 subjects with dysplasia and 85 healthy controls. All subjects were also interviewed with a questionnaire. V3-V4 region of 16S rRNA was amplified and sequenced by 454-pyrosequencing platform. Carriage of each genus was compared by means of multivariate-adjusted odds ratios derived from logistic regression model. Relative abundance was compared using Metastats method. Beta diversity was estimated using Unifrac and weighted Unifrac distances. Principal coordinate analysis (PCoA) was applied to ordinate dissimilarity matrices. Multinomial logistic regression was used to compare the coordinates between different groups. ESCC subjects had an overall decreased microbial diversity compared to control and dysplasia subjects (P<0.001). Decreased carriage of genera Lautropia, Bulleidia, Catonella, Corynebacterium, Moryella, Peptococcus and Cardiobacterium were found in ESCC subjects compared to non-ESCC subjects. Multinomial logistic regression analyses on PCoA coordinates also revealed that ESCC subjects had significantly different levels for several coordinates compared to non-ESCC subjects. In conclusion, we observed a correlation between altered salivary bacterial microbiota and ESCC risk. The results of our study on the saliva microbiome are of particular interest as it reflects the shift in microbial communities. Further studies are warranted to verify this finding, and if being verified, to explore the underlying mechanisms.

  10. Drug-Eluting Stents versus Bare-Metal Stents in Taiwanese Patients with Acute Coronary Syndrome: An Outcome Report of a Multicenter Registry

    PubMed Central

    Lai, Chi-Cheng; Yip, Hon-Kan; Lin, Tsung-Hsien; Wu, Chiung-Jen; Lai, Wen-Ter; Liu, Chun-Peng; Chang, Shu-Chen; Mar, Guang-Yuan

    2014-01-01

    Background The study aims to compare cardiovascular outcomes of using bare-metal stents (BMS) and drug-eluting stents (DES) in patients with acute coronary syndrome (ACS) through analysis of the database from the Taiwan ACS registry. Large domestic studies comparing outcomes of interventional strategies using DES and BMS in a Taiwanese population with ACS are limited. Methods and Results Collected data regarding characteristics and cardiovascular outcomes from the registry database were compared between the BMS and DES groups. A Cox regression model was used in an unadjusted or adjusted manner for analysis. Baseline characteristics apparently varied between DES group (n = 650) and BMS group (n = 1672) such as ACS types, Killip’s classifications, or coronary blood flows. Compared with the BMS group, the DES group was associated with significantly lower cumulative incidence of all-cause mortality (3.4% vs. 5.8%, p = 0.008), target vessel revascularization (TVR) (5.2% vs. 7.4%, p = 0.035), or major adverse cardiac events (MACE) (10.2% vs. 15.6%, p < 0.001) at 1 year in a real-world setting. Cox regression analysis showed the BMS group referenced as the DES group had significantly higher risk-adjusted total mortality [hazard ratio (HR) = 1.85, p = 0.026], target vessel revascularization (TVR) (HR = 1.59, p = 0.035), and MACE (HR = 1.68, p = 0.001). Conclusions The data show use of DES over BMS provided advantages to patients with ACS in terms of lower 1-year mortality, TVR, and MACE. The study suggests implantation of DES compared with BMS in Taiwanese patients with ACS is safe and beneficial in the real-world setting. PMID:27122834

  11. A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction.

    PubMed

    Abulnaga, S Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M; Onyike, Chiadi U; Ying, Sarah H; Prince, Jerry L

    2016-02-27

    The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.

  12. A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction

    NASA Astrophysics Data System (ADS)

    Abulnaga, S. Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M.; Onyike, Chiadi U.; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.

  13. Lipid levels among African and Middle-Eastern Bedouin populations.

    PubMed

    Dreiher, Jacob; Cohen, Arnon D; Weitzman, Shimon; Sharf, Amir; Shvartzman, Pesach

    2008-06-01

    Previous studies observed higher high-density lipoprotein (HDL) levels and lower triglycerides levels among people of African ancestry. The goal of this study was to characterize lipid levels in Bedouins of African vs. Middle-Eastern ethnicity. A cross-sectional study was conducted in a Bedouin primary care clinic in southern Israel, with 4470 listed individuals over the age of 21, of whom 402 (9%) were of African origin. A stratified random sample was included in the analysis. Associations between ethnicity, age, gender and lipid levels were assessed. Multiple linear regression and logistic regression models were used for multivariate analysis. The study included 261 African Bedouins and 406 Middle-Eastern Bedouins. (median age: 37 years, 58.6% females). The average total cholesterol and low-density lipoprotein (LDL) levels were 10 mg/dl lower among African Bedouins as compared to Middle-Eastern Bedouins (total cholesterol: 168.6 vs. 179.6 mg/dl, p<0.001; LDL: 99.5 vs. 109.0 mg/dl, respectively, p<0.001). Average triglycerides levels were 36 mg/dl lower among African Bedouins as compared to Middle-Eastern Bedouins (102.8 vs. 138.9 mg/dl, respectively, p<0.001). Average HDL levels were 3 mg/dl higher among African Bedouins as compared to Middle-Eastern Bedouins (48.3 vs. 44.6 mg/dl, respectively, p<0.001). A lower prevalence of dyslipidemia was found in African Bedouins, as compared with Middle-Eastern Bedouins.

  14. A comparison of time dependent Cox regression, pooled logistic regression and cross sectional pooling with simulations and an application to the Framingham Heart Study.

    PubMed

    Ngwa, Julius S; Cabral, Howard J; Cheng, Debbie M; Pencina, Michael J; Gagnon, David R; LaValley, Michael P; Cupples, L Adrienne

    2016-11-03

    Typical survival studies follow individuals to an event and measure explanatory variables for that event, sometimes repeatedly over the course of follow up. The Cox regression model has been used widely in the analyses of time to diagnosis or death from disease. The associations between the survival outcome and time dependent measures may be biased unless they are modeled appropriately. In this paper we explore the Time Dependent Cox Regression Model (TDCM), which quantifies the effect of repeated measures of covariates in the analysis of time to event data. This model is commonly used in biomedical research but sometimes does not explicitly adjust for the times at which time dependent explanatory variables are measured. This approach can yield different estimates of association compared to a model that adjusts for these times. In order to address the question of how different these estimates are from a statistical perspective, we compare the TDCM to Pooled Logistic Regression (PLR) and Cross Sectional Pooling (CSP), considering models that adjust and do not adjust for time in PLR and CSP. In a series of simulations we found that time adjusted CSP provided identical results to the TDCM while the PLR showed larger parameter estimates compared to the time adjusted CSP and the TDCM in scenarios with high event rates. We also observed upwardly biased estimates in the unadjusted CSP and unadjusted PLR methods. The time adjusted PLR had a positive bias in the time dependent Age effect with reduced bias when the event rate is low. The PLR methods showed a negative bias in the Sex effect, a subject level covariate, when compared to the other methods. The Cox models yielded reliable estimates for the Sex effect in all scenarios considered. We conclude that survival analyses that explicitly account in the statistical model for the times at which time dependent covariates are measured provide more reliable estimates compared to unadjusted analyses. We present results from the Framingham Heart Study in which lipid measurements and myocardial infarction data events were collected over a period of 26 years.

  15. [A SAS marco program for batch processing of univariate Cox regression analysis for great database].

    PubMed

    Yang, Rendong; Xiong, Jie; Peng, Yangqin; Peng, Xiaoning; Zeng, Xiaomin

    2015-02-01

    To realize batch processing of univariate Cox regression analysis for great database by SAS marco program. We wrote a SAS macro program, which can filter, integrate, and export P values to Excel by SAS9.2. The program was used for screening survival correlated RNA molecules of ovarian cancer. A SAS marco program could finish the batch processing of univariate Cox regression analysis, the selection and export of the results. The SAS macro program has potential applications in reducing the workload of statistical analysis and providing a basis for batch processing of univariate Cox regression analysis.

  16. Regression Verification Using Impact Summaries

    NASA Technical Reports Server (NTRS)

    Backes, John; Person, Suzette J.; Rungta, Neha; Thachuk, Oksana

    2013-01-01

    Regression verification techniques are used to prove equivalence of syntactically similar programs. Checking equivalence of large programs, however, can be computationally expensive. Existing regression verification techniques rely on abstraction and decomposition techniques to reduce the computational effort of checking equivalence of the entire program. These techniques are sound but not complete. In this work, we propose a novel approach to improve scalability of regression verification by classifying the program behaviors generated during symbolic execution as either impacted or unimpacted. Our technique uses a combination of static analysis and symbolic execution to generate summaries of impacted program behaviors. The impact summaries are then checked for equivalence using an o-the-shelf decision procedure. We prove that our approach is both sound and complete for sequential programs, with respect to the depth bound of symbolic execution. Our evaluation on a set of sequential C artifacts shows that reducing the size of the summaries can help reduce the cost of software equivalence checking. Various reduction, abstraction, and compositional techniques have been developed to help scale software verification techniques to industrial-sized systems. Although such techniques have greatly increased the size and complexity of systems that can be checked, analysis of large software systems remains costly. Regression analysis techniques, e.g., regression testing [16], regression model checking [22], and regression verification [19], restrict the scope of the analysis by leveraging the differences between program versions. These techniques are based on the idea that if code is checked early in development, then subsequent versions can be checked against a prior (checked) version, leveraging the results of the previous analysis to reduce analysis cost of the current version. Regression verification addresses the problem of proving equivalence of closely related program versions [19]. These techniques compare two programs with a large degree of syntactic similarity to prove that portions of one program version are equivalent to the other. Regression verification can be used for guaranteeing backward compatibility, and for showing behavioral equivalence in programs with syntactic differences, e.g., when a program is refactored to improve its performance, maintainability, or readability. Existing regression verification techniques leverage similarities between program versions by using abstraction and decomposition techniques to improve scalability of the analysis [10, 12, 19]. The abstractions and decomposition in the these techniques, e.g., summaries of unchanged code [12] or semantically equivalent methods [19], compute an over-approximation of the program behaviors. The equivalence checking results of these techniques are sound but not complete-they may characterize programs as not functionally equivalent when, in fact, they are equivalent. In this work we describe a novel approach that leverages the impact of the differences between two programs for scaling regression verification. We partition program behaviors of each version into (a) behaviors impacted by the changes and (b) behaviors not impacted (unimpacted) by the changes. Only the impacted program behaviors are used during equivalence checking. We then prove that checking equivalence of the impacted program behaviors is equivalent to checking equivalence of all program behaviors for a given depth bound. In this work we use symbolic execution to generate the program behaviors and leverage control- and data-dependence information to facilitate the partitioning of program behaviors. The impacted program behaviors are termed as impact summaries. The dependence analyses that facilitate the generation of the impact summaries, we believe, could be used in conjunction with other abstraction and decomposition based approaches, [10, 12], as a complementary reduction technique. An evaluation of our regression verification technique shows that our approach is capable of leveraging similarities between program versions to reduce the size of the queries and the time required to check for logical equivalence. The main contributions of this work are: - A regression verification technique to generate impact summaries that can be checked for functional equivalence using an off-the-shelf decision procedure. - A proof that our approach is sound and complete with respect to the depth bound of symbolic execution. - An implementation of our technique using the LLVMcompiler infrastructure, the klee Symbolic Virtual Machine [4], and a variety of Satisfiability Modulo Theory (SMT) solvers, e.g., STP [7] and Z3 [6]. - An empirical evaluation on a set of C artifacts which shows that the use of impact summaries can reduce the cost of regression verification.

  17. Endovascular Therapy is Effective and Safe for Patients with Severe Ischemic Stroke: Pooled Analysis of IMS III and MR CLEAN Data

    PubMed Central

    Broderick, Joseph P.; Berkhemer, Olvert A.; Palesch, Yuko Y.; Dippel, Diederik W.J.; Foster, Lydia D.; Roos, Yvo B.W.E.M.; van der Lugt, Aad; Tomsick, Thomas A.; Majoie, Charles B.L.M.; van Zwam, Wim H.; Demchuk, Andrew M.; van Oostenbrugge, Robert J.; Khatri, Pooja; Lingsma, Hester F.; Hill, Michael D.; Roozenbeek, Bob; Jauch, Edward C.; Jovin, Tudor G.; Yan, Bernard; von Kummer, Rüdiger; Molina, Carlos A.; Goyal, Mayank; Schonewille, Wouter J.; Mazighi, Mikael; Engelter, Stefan T.; Anderson, Craig S.; Spilker, Judith; Carrozzella, Janice; Ryckborst, Karla J.; Janis, L. Scott; Simpson, Kit

    2015-01-01

    Background and Purpose We assessed the effect of endovascular treatment in acute ischemic stroke patients with severe neurological deficit (NIHSS ≥20) following a pre-specified analysis plan. Methods The pooled analysis of the IMS III and MR CLEAN trial included participants with an NIHSS ≥20 prior to intravenous (IV) t-PA treatment (IMS III) or randomization (MR CLEAN) who were treated with IV t-PA ≤ 3 hours of stroke onset. Our hypothesis was that participants with severe stroke randomized to endovascular therapy following IV t-PA would have improved 90-day outcome (distribution of modified Rankin scale [mRS] scores), as compared to those who received IV t-PA alone. Results Among 342 participants in the pooled analysis (194 from IMS III, 148 from MR CLEAN), an ordinal logistic regression model showed that the endovascular group had superior 90-day outcome compared to the IV t-PA group (adjusted odds ratio [aOR] 1.78; 95% confidence interval [CI] 1.20-2.66). In the logistic regression model of the dichotomous outcome (mRS 0-2, or ‘functional independence’), the endovascular group had superior outcomes (aOR 1.97; 95% CI 1.09-3.56). Functional independence (mRS ≤2) at 90 days was 25% in the endovascular group as compared to 14% in the IV t-PA group. Conclusions Endovascular therapy following IV t-PA within 3 hours of symptom onset improves functional outcome at 90 days after severe ischemic stroke. PMID:26486865

  18. "A Bayesian sensitivity analysis to evaluate the impact of unmeasured confounding with external data: a real world comparative effectiveness study in osteoporosis".

    PubMed

    Zhang, Xiang; Faries, Douglas E; Boytsov, Natalie; Stamey, James D; Seaman, John W

    2016-09-01

    Observational studies are frequently used to assess the effectiveness of medical interventions in routine clinical practice. However, the use of observational data for comparative effectiveness is challenged by selection bias and the potential of unmeasured confounding. This is especially problematic for analyses using a health care administrative database, in which key clinical measures are often not available. This paper provides an approach to conducting a sensitivity analyses to investigate the impact of unmeasured confounding in observational studies. In a real world osteoporosis comparative effectiveness study, the bone mineral density (BMD) score, an important predictor of fracture risk and a factor in the selection of osteoporosis treatments, is unavailable in the data base and lack of baseline BMD could potentially lead to significant selection bias. We implemented Bayesian twin-regression models, which simultaneously model both the observed outcome and the unobserved unmeasured confounder, using information from external sources. A sensitivity analysis was also conducted to assess the robustness of our conclusions to changes in such external data. The use of Bayesian modeling in this study suggests that the lack of baseline BMD did have a strong impact on the analysis, reversing the direction of the estimated effect (odds ratio of fracture incidence at 24 months: 0.40 vs. 1.36, with/without adjusting for unmeasured baseline BMD). The Bayesian twin-regression models provide a flexible sensitivity analysis tool to quantitatively assess the impact of unmeasured confounding in observational studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Exact Analysis of Squared Cross-Validity Coefficient in Predictive Regression Models

    ERIC Educational Resources Information Center

    Shieh, Gwowen

    2009-01-01

    In regression analysis, the notion of population validity is of theoretical interest for describing the usefulness of the underlying regression model, whereas the presumably more important concept of population cross-validity represents the predictive effectiveness for the regression equation in future research. It appears that the inference…

  20. Selective principal component regression analysis of fluorescence hyperspectral image to assess aflatoxin contamination in corn

    USDA-ARS?s Scientific Manuscript database

    Selective principal component regression analysis (SPCR) uses a subset of the original image bands for principal component transformation and regression. For optimal band selection before the transformation, this paper used genetic algorithms (GA). In this case, the GA process used the regression co...

  1. The relationship between hemoglobin level and the type 1 diabetic nephropathy in Anhui Han's patients.

    PubMed

    Jiang, Jun; Lei, Lan; Zhou, Xiaowan; Li, Peng; Wei, Ren

    2018-02-20

    Recent studies have shown that low hemoglobin (Hb) level promote the progression of chronic kidney disease. This study assessed the relationship between Hb level and type 1 diabetic nephropathy (DN) in Anhui Han's patients. There were a total of 236 patients diagnosed with type 1 diabetes mellitus and (T1DM) seen between January 2014 and December 2016 in our centre. Hemoglobin levels in patients with DN were compared with those without DN. The relationship between Hb level and the urinary albumin-creatinine ratio (ACR) was examined by Spearman's correlational analysis and multiple stepwise regression analysis. The binary logistic multivariate regression analysis was performed to analyze the correlated factors for type 1 DN, calculate the Odds Ratio (OR) and 95%confidence interval (CI). The predicting value of Hb level for DN was evaluated by area under receiver operation characteristic curve (AUROC) for discrimination and Hosmer-Lemeshow goodness-of-fit test for calibration. The average Hb levels in the DN group (116.1 ± 20.8 g/L) were significantly lower than the non-DN group (131.9 ± 14.4 g/L) , P < 0.001. Hb levels were independently correlated with the urinary ACR in multiple stepwise regression analysis. The logistic multivariate regression analysis showed that the Hb level (OR: 0.936, 95% CI: 0.910 to 0.963, P < 0.001) was inversely correlated with DN in patients with T1DM. In sub-analysis, low Hb level (Hb < 120g/L in female, Hb < 130g/L in male) was still negatively associated with DN in patients with T1DM. The AUROC was 0.721 (95% CI: 0.655 to 0.787) in assessing the discrimination of the Hb level for DN. The value of P was 0.593 in Hosmer-Lemeshow goodness-of-fit test. In Anhui Han's patients with T1DM, the Hb level is inversely correlated with urinary ACR and DN. This article is protected by copyright. All rights reserved.

  2. Treatments of Missing Values in Large National Data Affect Conclusions: The Impact of Multiple Imputation on Arthroplasty Research.

    PubMed

    Ondeck, Nathaniel T; Fu, Michael C; Skrip, Laura A; McLynn, Ryan P; Su, Edwin P; Grauer, Jonathan N

    2018-03-01

    Despite the advantages of large, national datasets, one continuing concern is missing data values. Complete case analysis, where only cases with complete data are analyzed, is commonly used rather than more statistically rigorous approaches such as multiple imputation. This study characterizes the potential selection bias introduced using complete case analysis and compares the results of common regressions using both techniques following unicompartmental knee arthroplasty. Patients undergoing unicompartmental knee arthroplasty were extracted from the 2005 to 2015 National Surgical Quality Improvement Program. As examples, the demographics of patients with and without missing preoperative albumin and hematocrit values were compared. Missing data were then treated with both complete case analysis and multiple imputation (an approach that reproduces the variation and associations that would have been present in a full dataset) and the conclusions of common regressions for adverse outcomes were compared. A total of 6117 patients were included, of which 56.7% were missing at least one value. Younger, female, and healthier patients were more likely to have missing preoperative albumin and hematocrit values. The use of complete case analysis removed 3467 patients from the study in comparison with multiple imputation which included all 6117 patients. The 2 methods of handling missing values led to differing associations of low preoperative laboratory values with commonly studied adverse outcomes. The use of complete case analysis can introduce selection bias and may lead to different conclusions in comparison with the statistically rigorous multiple imputation approach. Joint surgeons should consider the methods of handling missing values when interpreting arthroplasty research. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Reporting quality of statistical methods in surgical observational studies: protocol for systematic review.

    PubMed

    Wu, Robert; Glen, Peter; Ramsay, Tim; Martel, Guillaume

    2014-06-28

    Observational studies dominate the surgical literature. Statistical adjustment is an important strategy to account for confounders in observational studies. Research has shown that published articles are often poor in statistical quality, which may jeopardize their conclusions. The Statistical Analyses and Methods in the Published Literature (SAMPL) guidelines have been published to help establish standards for statistical reporting.This study will seek to determine whether the quality of statistical adjustment and the reporting of these methods are adequate in surgical observational studies. We hypothesize that incomplete reporting will be found in all surgical observational studies, and that the quality and reporting of these methods will be of lower quality in surgical journals when compared with medical journals. Finally, this work will seek to identify predictors of high-quality reporting. This work will examine the top five general surgical and medical journals, based on a 5-year impact factor (2007-2012). All observational studies investigating an intervention related to an essential component area of general surgery (defined by the American Board of Surgery), with an exposure, outcome, and comparator, will be included in this systematic review. Essential elements related to statistical reporting and quality were extracted from the SAMPL guidelines and include domains such as intent of analysis, primary analysis, multiple comparisons, numbers and descriptive statistics, association and correlation analyses, linear regression, logistic regression, Cox proportional hazard analysis, analysis of variance, survival analysis, propensity analysis, and independent and correlated analyses. Each article will be scored as a proportion based on fulfilling criteria in relevant analyses used in the study. A logistic regression model will be built to identify variables associated with high-quality reporting. A comparison will be made between the scores of surgical observational studies published in medical versus surgical journals. Secondary outcomes will pertain to individual domains of analysis. Sensitivity analyses will be conducted. This study will explore the reporting and quality of statistical analyses in surgical observational studies published in the most referenced surgical and medical journals in 2013 and examine whether variables (including the type of journal) can predict high-quality reporting.

  4. Optimization of isotherm models for pesticide sorption on biopolymer-nanoclay composite by error analysis.

    PubMed

    Narayanan, Neethu; Gupta, Suman; Gajbhiye, V T; Manjaiah, K M

    2017-04-01

    A carboxy methyl cellulose-nano organoclay (nano montmorillonite modified with 35-45 wt % dimethyl dialkyl (C 14 -C 18 ) amine (DMDA)) composite was prepared by solution intercalation method. The prepared composite was characterized by infrared spectroscopy (FTIR), X-Ray diffraction spectroscopy (XRD) and scanning electron microscopy (SEM). The composite was utilized for its pesticide sorption efficiency for atrazine, imidacloprid and thiamethoxam. The sorption data was fitted into Langmuir and Freundlich isotherms using linear and non linear methods. The linear regression method suggested best fitting of sorption data into Type II Langmuir and Freundlich isotherms. In order to avoid the bias resulting from linearization, seven different error parameters were also analyzed by non linear regression method. The non linear error analysis suggested that the sorption data fitted well into Langmuir model rather than in Freundlich model. The maximum sorption capacity, Q 0 (μg/g) was given by imidacloprid (2000) followed by thiamethoxam (1667) and atrazine (1429). The study suggests that the degree of determination of linear regression alone cannot be used for comparing the best fitting of Langmuir and Freundlich models and non-linear error analysis needs to be done to avoid inaccurate results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. On the equivalence of case-crossover and time series methods in environmental epidemiology.

    PubMed

    Lu, Yun; Zeger, Scott L

    2007-04-01

    The case-crossover design was introduced in epidemiology 15 years ago as a method for studying the effects of a risk factor on a health event using only cases. The idea is to compare a case's exposure immediately prior to or during the case-defining event with that same person's exposure at otherwise similar "reference" times. An alternative approach to the analysis of daily exposure and case-only data is time series analysis. Here, log-linear regression models express the expected total number of events on each day as a function of the exposure level and potential confounding variables. In time series analyses of air pollution, smooth functions of time and weather are the main confounders. Time series and case-crossover methods are often viewed as competing methods. In this paper, we show that case-crossover using conditional logistic regression is a special case of time series analysis when there is a common exposure such as in air pollution studies. This equivalence provides computational convenience for case-crossover analyses and a better understanding of time series models. Time series log-linear regression accounts for overdispersion of the Poisson variance, while case-crossover analyses typically do not. This equivalence also permits model checking for case-crossover data using standard log-linear model diagnostics.

  6. Hyperspectral analysis of soil organic matter in coal mining regions using wavelets, correlations, and partial least squares regression.

    PubMed

    Lin, Lixin; Wang, Yunjia; Teng, Jiyao; Wang, Xuchen

    2016-02-01

    Hyperspectral estimation of soil organic matter (SOM) in coal mining regions is an important tool for enhancing fertilization in soil restoration programs. The correlation--partial least squares regression (PLSR) method effectively solves the information loss problem of correlation--multiple linear stepwise regression, but results of the correlation analysis must be optimized to improve precision. This study considers the relationship between spectral reflectance and SOM based on spectral reflectance curves of soil samples collected from coal mining regions. Based on the major absorption troughs in the 400-1006 nm spectral range, PLSR analysis was performed using 289 independent bands of the second derivative (SDR) with three levels and measured SOM values. A wavelet-correlation-PLSR (W-C-PLSR) model was then constructed. By amplifying useful information that was previously obscured by noise, the W-C-PLSR model was optimal for estimating SOM content, with smaller prediction errors in both calibration (R(2) = 0.970, root mean square error (RMSEC) = 3.10, and mean relative error (MREC) = 8.75) and validation (RMSEV = 5.85 and MREV = 14.32) analyses, as compared with other models. Results indicate that W-C-PLSR has great potential to estimate SOM in coal mining regions.

  7. Estimation of standard liver volume in Chinese adult living donors.

    PubMed

    Fu-Gui, L; Lu-Nan, Y; Bo, L; Yong, Z; Tian-Fu, W; Ming-Qing, X; Wen-Tao, W; Zhe-Yu, C

    2009-12-01

    To determine a formula predicting the standard liver volume based on body surface area (BSA) or body weight in Chinese adults. A total of 115 consecutive right-lobe living donors not including the middle hepatic vein underwent right hemi-hepatectomy. No organs were used from prisoners, and no subjects were prisoners. Donor anthropometric data including age, gender, body weight, and body height were recorded prospectively. The weights and volumes of the right lobe liver grafts were measured at the back table. Liver weights and volumes were calculated from the right lobe graft weight and volume obtained at the back table, divided by the proportion of the right lobe on computed tomography. By simple linear regression analysis and stepwise multiple linear regression analysis, we correlated calculated liver volume and body height, body weight, or body surface area. The subjects had a mean age of 35.97 +/- 9.6 years, and a female-to-male ratio of 60:55. The mean volume of the right lobe was 727.47 +/- 136.17 mL, occupying 55.59% +/- 6.70% of the whole liver by computed tomography. The volume of the right lobe was 581.73 +/- 96.137 mL, and the estimated liver volume was 1053.08 +/- 167.56 mL. Females of the same body weight showed a slightly lower liver weight. By simple linear regression analysis and stepwise multiple linear regression analysis, a formula was derived based on body weight. All formulae except the Hong Kong formula overestimated liver volume compared to this formula. The formula of standard liver volume, SLV (mL) = 11.508 x body weight (kg) + 334.024, may be applied to estimate liver volumes in Chinese adults.

  8. Human Resources Data in Weapon System Design: An Initial Plan for Development of a Unified Data Base.

    DTIC Science & Technology

    1980-11-01

    Dela Bnrted) Item 19 Continued: system design design handbooks maintenance manpower simulation de’ision options cost estimating relationships prediction...determine the extent to which human resources data (HRD) are used in early system design. The third was to assess the availability and ade - quacy of...relationships, regression analysis, comparability analysis, expected value techniques) to provide initial data values in the very early stages of weapon system

  9. A comparative evaluation of end-emic and non-endemic region of visceral leishmaniasis (Kala-azar) in India with ground survey and space technology.

    PubMed

    Kesari, Shreekant; Bhunia, Gouri Sankar; Kumar, Vijay; Jeyaram, Algarswamy; Ranjan, Alok; Das, Pradeep

    2011-08-01

    In visceral leishmaniasis, phlebotomine vectors are targets for control measures. Understanding the ecosystem of the vectors is a prerequisite for creating these control measures. This study endeavours to delineate the suitable locations of Phlebotomus argentipes with relation to environmental characteristics between endemic and non-endemic districts in India. A cross-sectional survey was conducted on 25 villages in each district. Environmental data were obtained through remote sensing images and vector density was measured using a CDC light trap. Simple linear regression analysis was used to measure the association between climatic parameters and vector density. Using factor analysis, the relationship between land cover classes and P. argentipes density among the villages in both districts was investigated. The results of the regression analysis indicated that indoor temperature and relative humidity are the best predictors for P. argentipes distribution. Factor analysis confirmed breeding preferences for P. argentipes by landscape element. Minimum Normalised Difference Vegetation Index, marshy land and orchard/settlement produced high loading in an endemic region, whereas water bodies and dense forest were preferred in non-endemic sites. Soil properties between the two districts were studied and indicated that soil pH and moisture content is higher in endemic sites compared to non-endemic sites. The present study should be utilised to make critical decisions for vector surveillance and controlling Kala-azar disease vectors.

  10. A Meta-Analysis of the Relative Risk of Mortality for Type 1 Diabetes Patients Compared to the General Population: Exploring Temporal Changes in Relative Mortality

    PubMed Central

    Lung, Tom W. C.; Hayes, Alison J.; Herman, William H.; Si, Lei; Palmer, Andrew J.; Clarke, Philip M.

    2014-01-01

    Aims Type 1 diabetes has been associated with an elevated relative risk (RR) of mortality compared to the general population. To review published studies on the RR of mortality of Type 1 diabetes patients compared to the general population, we conducted a meta-analysis and examined the temporal changes in the RR of mortality over time. Methods Systematic review of studies reporting RR of mortality for Type 1 diabetes compared to the general population. We conducted meta-analyses using a DerSimonian and Laird random effects model to obtain the average effect and the distribution of RR estimates. Sub-group meta-analyses and multivariate meta-regression analysis was performed to examine heterogeneity. Summary RR with 95% CIs was calculated using a random-effects model. Results 26 studies with a total of 88 subpopulations were included in the meta-analysis and overall RR of mortality was 3.82 (95% CI 3.41, 3.4.29) compared to the general population. Observations using data prior to 1971 had a much larger estimated RR (5.80 (95% CI 4.20, 8.01)) when compared to: data between; 1971 and 1980 (5.06 (95% CI 3.44, 7.45)); 1981–90 (3.59 (95% CI 3.15, 4.09)); and those after 1990 (3.11 (95% CI 2.47, 3.91)); suggesting mortality of Type 1 diabetes patients when compared to the general population have been improving over time. Similarly, females (4.54 (95% CI 3.79–5.45)) had a larger RR estimate when compared to males (3.25 (95% CI 2.82–3.73) and the meta-regression found evidence for temporal trends and sex (p<0.01) accounting for heterogeneity between studies. Conclusions Type 1 diabetes patients’ mortality has declined at a faster rate than the general population. However, the largest relative improvements have occurred prior to 1990. Emphasis on intensive blood glucose control alongside blood pressure control and statin therapy may translate into further reductions in mortality in coming years. PMID:25426948

  11. First World War and Mental Health: a retrospective comparative study of veterans admitted to a psychiatric hospital between 1915 and 1918.

    PubMed

    Lagonia, Paolo; Aloi, Matteo; Magliocco, Fabio; Cerminara, Gregorio; Segura-Garcia, Cristina; Del Vecchio, Valeria; Luciano, Mario; Fiorillo, Andrea; De Fazio, Pasquale

    2017-01-01

    The association between mental illness and war has been repeatedly investigated. Higher levels of depressive symptoms and an increased suicidal risk have been found in veterans. In this study we investigated the mental health conditions among Italian soldiers during the “Great War”, who were hospitalized in a mental health hospital in Italy. The study sample consists of 498 soldiers who were admitted during the World War I between 1915 and 1918, and 498 civilian patients admitted in two different periods (1898-1914, 1919- 1932). Psychiatric diagnoses have been recorded retrospectively by a detailed examination of clinical records. Socio-demographic informations, diagnosis at first admission, number of admissions, and deployment in war zones were collected. A logistic regression analysis was performed, the diagnosis of depression was considered as dependent variable while clinical and demographic variables as independent predictors. Soldiers deployed in war zones were more likely to have a diagnosis of depression compared to those not serving on the frontline. The logistic regression analysis showed that the diagnosis of depression is predicted by being a soldier and being deployed in a war area. Our data confirm that soldiers engaged in war are at higher risk of developing depression compared to non-deployed soldiers.

  12. Knowledge and perception on tuberculosis transmission in Tanzania: Multinomial logistic regression analysis of secondary data.

    PubMed

    Ismail, Abbas; Josephat, Peter

    2014-01-01

    Tuberculosis (TB) is one of the most important public health problems in Tanzania and was declared as a national public health emergency in 2006. Community and individual knowledge and perceptions are critical factors in the control of the disease. The objective of this study was to analyze the knowledge and perception on the transmission of TB in Tanzania. Multinomial Logistic Regression analysis was considered in order to quantify the impact of knowledge and perception on TB. The data used was adopted as secondary data from larger national survey 2007-08 Tanzania HIV/AIDS and Malaria Indicator Survey. The findings across groups revealed that knowledge on TB transmission increased with an increase in age and level of education. People in rural areas had less knowledge regarding tuberculosis transmission compared to urban areas [OR = 0.7]. People with the access to radio [OR = 1.7] were more knowledgeable on tuberculosis transmission compared to those who did not have access to radio. People who did not have telephone [OR = 0.6] were less knowledgeable on tuberculosis route of transmission compared to those who had telephone. The findings showed that socio-demographic factors such as age, education, place of residence and owning telephone or radio varied systematically with knowledge on tuberculosis transmission.

  13. Association of urinary cadmium and myocardial infarction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everett, Charles J.; Frithsen, Ivar L.

    We conducted a cross-sectional analysis of individuals 45-79 years old in the National Health and Nutrition Examination Survey III (1988-1994) (NHANES III). Myocardial infarction was determined by electrocardiogram (ECG). Our sample included 4912 participants, which when weighted represented 52,234,055 Americans. We performed adjusted logistic regressions with the Framingham risk score, pack-years of smoking, race-ethnicity, and family history of heart attack, and diabetes as covariates. Urinary cadmium {>=}0.88 {mu}g/g creatinine had an odds ratio of 1.86 (95% CI 1.26-2.75) compared to urinary cadmium <0.43 {mu}g/g creatinine. This result supports the hypothesis that cadmium is associated with coronary heart disease. When logisticmore » regressions were done by gender, women, but not men, showed a significant association of urinary cadmium with myocardial infarction. Women with urinary cadmium {>=}0.88 {mu}g/g creatinine had an odds ratio of 1.80 (95% CI 1.06-3.04) compared to urinary cadmium <0.43 {mu}g/g creatinine. When the analysis was restricted to never smokers (N=2187) urinary cadmium {>=}0.88 {mu}g/g creatinine had an odds ratio of 1.85 (95% CI 1.10-3.14) compared to urinary cadmium <0.43 {mu}g/g creatinine.« less

  14. Has there been a change in the knowledge of GP registrars between 2011 and 2016 as measured by performance on common items in the Applied Knowledge Test?

    PubMed

    Neden, Catherine A; Parkin, Claire; Blow, Carol; Siriwardena, Aloysius Niroshan

    2018-05-08

    The aim of this study was to assess whether the absolute standard of candidates sitting the MRCGP Applied Knowledge Test (AKT) between 2011 and 2016 had changed. It is a descriptive study comparing the performance on marker questions of a reference group of UK graduates taking the AKT for the first time between 2011 and 2016. Using aggregated examination data, the performance of individual 'marker' questions was compared using Pearson's chi-squared tests and trend-line analysis. Binary logistic regression was used to analyse changes in performance over the study period. Changes in performance of individual marker questions using Pearson's chi-squared test showed statistically significant differences in 32 of the 49 questions included in the study. Trend line analysis showed a positive trend in 29 questions and a negative trend in the remaining 23. The magnitude of change was small. Logistic regression did not demonstrate any evidence for a change in the performance of the question set over the study period. However, candidates were more likely to get items on administration wrong compared with clinical medicine or research. There was no evidence of a change in performance of the question set as a whole.

  15. Early Change in Stroke Size Performs Best in Predicting Response to Therapy.

    PubMed

    Simpkins, Alexis Nétis; Dias, Christian; Norato, Gina; Kim, Eunhee; Leigh, Richard

    2017-01-01

    Reliable imaging biomarkers of response to therapy in acute stroke are needed. The final infarct volume and percent of early reperfusion have been used for this purpose. Early fluctuation in stroke size is a recognized phenomenon, but its utility as a biomarker for response to therapy has not been established. This study examined the clinical relevance of early change in stroke volume and compared it with the final infarct volume and percent of early reperfusion in identifying early neurologic improvement (ENI). Acute stroke patients, enrolled between 2013 and 2014 with serial magnetic resonance imaging (MRI) scans (pretreatment baseline, 2 h post, and 24 h post), who received thrombolysis were included in the analysis. Early change in stroke volume, infarct volume at 24 h on diffusion, and percent of early reperfusion were calculated from the baseline and 2 h MRI scans were compared. ENI was defined as ≥4 point decrease in National Institutes of Health Stroke Scales within 24 h. Logistic regression models and receiver operator characteristics analysis were used to compare the efficacy of 3 imaging biomarkers. Serial MRIs of 58 acute stroke patients were analyzed. Early change in stroke volume was significantly associated with ENI by logistic regression analysis (OR 0.93, p = 0.048) and remained significant after controlling for stroke size and severity (OR 0.90, p = 0.032). Thus, for every 1 mL increase in stroke volume, there was a 10% decrease in the odds of ENI, while for every 1 mL decrease in stroke volume, there was a 10% increase in the odds of ENI. Neither infarct volume at 24 h nor percent of early reperfusion were significantly associated with ENI by logistic regression. Receiver-operator characteristic analysis identified early change in stroke volume as the only biomarker of the 3 that performed significantly different than chance (p = 0.03). Early fluctuations in stroke size may represent a more reliable biomarker for response to therapy than the more traditional measures of final infarct volume and percent of early reperfusion. © 2017 S. Karger AG, Basel.

  16. Development of hybrid genetic-algorithm-based neural networks using regression trees for modeling air quality inside a public transportation bus.

    PubMed

    Kadiyala, Akhil; Kaur, Devinder; Kumar, Ashok

    2013-02-01

    The present study developed a novel approach to modeling indoor air quality (IAQ) of a public transportation bus by the development of hybrid genetic-algorithm-based neural networks (also known as evolutionary neural networks) with input variables optimized from using the regression trees, referred as the GART approach. This study validated the applicability of the GART modeling approach in solving complex nonlinear systems by accurately predicting the monitored contaminants of carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), sulfur dioxide (SO2), 0.3-0.4 microm sized particle numbers, 0.4-0.5 microm sized particle numbers, particulate matter (PM) concentrations less than 1.0 microm (PM10), and PM concentrations less than 2.5 microm (PM2.5) inside a public transportation bus operating on 20% grade biodiesel in Toledo, OH. First, the important variables affecting each monitored in-bus contaminant were determined using regression trees. Second, the analysis of variance was used as a complimentary sensitivity analysis to the regression tree results to determine a subset of statistically significant variables affecting each monitored in-bus contaminant. Finally, the identified subsets of statistically significant variables were used as inputs to develop three artificial neural network (ANN) models. The models developed were regression tree-based back-propagation network (BPN-RT), regression tree-based radial basis function network (RBFN-RT), and GART models. Performance measures were used to validate the predictive capacity of the developed IAQ models. The results from this approach were compared with the results obtained from using a theoretical approach and a generalized practicable approach to modeling IAQ that included the consideration of additional independent variables when developing the aforementioned ANN models. The hybrid GART models were able to capture majority of the variance in the monitored in-bus contaminants. The genetic-algorithm-based neural network IAQ models outperformed the traditional ANN methods of the back-propagation and the radial basis function networks. The novelty of this research is the development of a novel approach to modeling vehicular indoor air quality by integration of the advanced methods of genetic algorithms, regression trees, and the analysis of variance for the monitored in-vehicle gaseous and particulate matter contaminants, and comparing the results obtained from using the developed approach with conventional artificial intelligence techniques of back propagation networks and radial basis function networks. This study validated the newly developed approach using holdout and threefold cross-validation methods. These results are of great interest to scientists, researchers, and the public in understanding the various aspects of modeling an indoor microenvironment. This methodology can easily be extended to other fields of study also.

  17. Development of a User Interface for a Regression Analysis Software Tool

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert Manfred; Volden, Thomas R.

    2010-01-01

    An easy-to -use user interface was implemented in a highly automated regression analysis tool. The user interface was developed from the start to run on computers that use the Windows, Macintosh, Linux, or UNIX operating system. Many user interface features were specifically designed such that a novice or inexperienced user can apply the regression analysis tool with confidence. Therefore, the user interface s design minimizes interactive input from the user. In addition, reasonable default combinations are assigned to those analysis settings that influence the outcome of the regression analysis. These default combinations will lead to a successful regression analysis result for most experimental data sets. The user interface comes in two versions. The text user interface version is used for the ongoing development of the regression analysis tool. The official release of the regression analysis tool, on the other hand, has a graphical user interface that is more efficient to use. This graphical user interface displays all input file names, output file names, and analysis settings for a specific software application mode on a single screen which makes it easier to generate reliable analysis results and to perform input parameter studies. An object-oriented approach was used for the development of the graphical user interface. This choice keeps future software maintenance costs to a reasonable limit. Examples of both the text user interface and graphical user interface are discussed in order to illustrate the user interface s overall design approach.

  18. Regression Analysis and the Sociological Imagination

    ERIC Educational Resources Information Center

    De Maio, Fernando

    2014-01-01

    Regression analysis is an important aspect of most introductory statistics courses in sociology but is often presented in contexts divorced from the central concerns that bring students into the discipline. Consequently, we present five lesson ideas that emerge from a regression analysis of income inequality and mortality in the USA and Canada.

  19. White donor, younger donor and double lung transplant are associated with better survival in sarcoidosis patients.

    PubMed

    Salamo, Oriana; Roghaee, Shiva; Schweitzer, Michael D; Mantero, Alejandro; Shafazand, Shirin; Campos, Michael; Mirsaeidi, Mehdi

    2018-05-03

    Sarcoidosis commonly affects the lung. Lung transplantation (LT) is required when there is a severe and refractory involvement. We compared post-transplant survival rates of sarcoidosis patients with chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). We also explored whether the race and age of the donor, and double lung transplant have any effect on the survival in the post transplant setting. We analyzed 9,727 adult patients with sarcoidosis, COPD, and IPF who underwent LT worldwide between 2005-2015 based on United Network for Organ Sharing (UNOS) database. Survival rates were compared with Kaplan-Meier, and risk factors were investigated by Cox-regression analysis. 469 (5%) were transplanted because of sarcoidosis, 3,688 (38%) for COPD and 5,570 (57%) for IPF. Unadjusted survival analysis showed a better post-transplant survival rate for patients with sarcoidosis (p < 0.001, Log-rank test). In Cox-regression analysis, double lung transplant and white race of the lung donor showed to have a significant survival advantage. Since double lung transplant, those who are younger and have lower Lung Allocation Score (LAS) at the time of transplant have a survival advantage, we suggest double lung transplant as the procedure of choice, especially in younger sarcoidosis subjects and with lower LAS scores.

  20. Eye movement analysis of reading from computer displays, eReaders and printed books.

    PubMed

    Zambarbieri, Daniela; Carniglia, Elena

    2012-09-01

    To compare eye movements during silent reading of three eBooks and a printed book. The three different eReading tools were a desktop PC, iPad tablet and Kindle eReader. Video-oculographic technology was used for recording eye movements. In the case of reading from the computer display the recordings were made by a video camera placed below the computer screen, whereas for reading from the iPad tablet, eReader and printed book the recording system was worn by the subject and had two cameras: one for recording the movement of the eyes and the other for recording the scene in front of the subject. Data analysis provided quantitative information in terms of number of fixations, their duration, and the direction of the movement, the latter to distinguish between fixations and regressions. Mean fixation duration was different only in reading from the computer display, and was similar for the Tablet, eReader and printed book. The percentage of regressions with respect to the total amount of fixations was comparable for eReading tools and the printed book. The analysis of eye movements during reading an eBook from different eReading tools suggests that subjects' reading behaviour is similar to reading from a printed book. © 2012 The College of Optometrists.

  1. To Control False Positives in Gene-Gene Interaction Analysis: Two Novel Conditional Entropy-Based Approaches

    PubMed Central

    Lin, Meihua; Li, Haoli; Zhao, Xiaolei; Qin, Jiheng

    2013-01-01

    Genome-wide analysis of gene-gene interactions has been recognized as a powerful avenue to identify the missing genetic components that can not be detected by using current single-point association analysis. Recently, several model-free methods (e.g. the commonly used information based metrics and several logistic regression-based metrics) were developed for detecting non-linear dependence between genetic loci, but they are potentially at the risk of inflated false positive error, in particular when the main effects at one or both loci are salient. In this study, we proposed two conditional entropy-based metrics to challenge this limitation. Extensive simulations demonstrated that the two proposed metrics, provided the disease is rare, could maintain consistently correct false positive rate. In the scenarios for a common disease, our proposed metrics achieved better or comparable control of false positive error, compared to four previously proposed model-free metrics. In terms of power, our methods outperformed several competing metrics in a range of common disease models. Furthermore, in real data analyses, both metrics succeeded in detecting interactions and were competitive with the originally reported results or the logistic regression approaches. In conclusion, the proposed conditional entropy-based metrics are promising as alternatives to current model-based approaches for detecting genuine epistatic effects. PMID:24339984

  2. Agreement evaluation of AVHRR and MODIS 16-day composite NDVI data sets

    USGS Publications Warehouse

    Ji, Lei; Gallo, Kevin P.; Eidenshink, Jeffery C.; Dwyer, John L.

    2008-01-01

    Satellite-derived normalized difference vegetation index (NDVI) data have been used extensively to detect and monitor vegetation conditions at regional and global levels. A combination of NDVI data sets derived from AVHRR and MODIS can be used to construct a long NDVI time series that may also be extended to VIIRS. Comparative analysis of NDVI data derived from AVHRR and MODIS is critical to understanding the data continuity through the time series. In this study, the AVHRR and MODIS 16-day composite NDVI products were compared using regression and agreement analysis methods. The analysis shows a high agreement between the AVHRR-NDVI and MODIS-NDVI observed from 2002 and 2003 for the conterminous United States, but the difference between the two data sets is appreciable. Twenty per cent of the total difference between the two data sets is due to systematic difference, with the remainder due to unsystematic difference. The systematic difference can be eliminated with a linear regression-based transformation between two data sets, and the unsystematic difference can be reduced partially by applying spatial filters to the data. We conclude that the continuity of NDVI time series from AVHRR to MODIS is satisfactory, but a linear transformation between the two sets is recommended.

  3. The Uncertain Geographic Context Problem in the Analysis of the Relationships between Obesity and the Built Environment in Guangzhou

    PubMed Central

    Zhao, Pengxiang; Zhou, Suhong

    2018-01-01

    Traditionally, static units of analysis such as administrative units are used when studying obesity. However, using these fixed contextual units ignores environmental influences experienced by individuals in areas beyond their residential neighborhood and may render the results unreliable. This problem has been articulated as the uncertain geographic context problem (UGCoP). This study investigates the UGCoP through exploring the relationships between the built environment and obesity based on individuals’ activity space. First, a survey was conducted to collect individuals’ daily activity and weight information in Guangzhou in January 2016. Then, the data were used to calculate and compare the values of several built environment variables based on seven activity space delineations, including home buffers, workplace buffers (WPB), fitness place buffers (FPB), the standard deviational ellipse at two standard deviations (SDE2), the weighted standard deviational ellipse at two standard deviations (WSDE2), the minimum convex polygon (MCP), and road network buffers (RNB). Lastly, we conducted comparative analysis and regression analysis based on different activity space measures. The results indicate that significant differences exist between variables obtained with different activity space delineations. Further, regression analyses show that the activity space delineations used in the analysis have a significant influence on the results concerning the relationships between the built environment and obesity. The study sheds light on the UGCoP in analyzing the relationships between obesity and the built environment. PMID:29439392

  4. Extension of the Haseman-Elston regression model to longitudinal data.

    PubMed

    Won, Sungho; Elston, Robert C; Park, Taesung

    2006-01-01

    We propose an extension to longitudinal data of the Haseman and Elston regression method for linkage analysis. The proposed model is a mixed model having several random effects. As response variable, we investigate the sibship sample mean corrected cross-product (smHE) and the BLUP-mean corrected cross product (pmHE), comparing them with the original squared difference (oHE), the overall mean corrected cross-product (rHE), and the weighted average of the squared difference and the squared mean-corrected sum (wHE). The proposed model allows for the correlation structure of longitudinal data. Also, the model can test for gene x time interaction to discover genetic variation over time. The model was applied in an analysis of the Genetic Analysis Workshop 13 (GAW13) simulated dataset for a quantitative trait simulating systolic blood pressure. Independence models did not preserve the test sizes, while the mixed models with both family and sibpair random effects tended to preserve size well. Copyright 2006 S. Karger AG, Basel.

  5. A comparison between Bayes discriminant analysis and logistic regression for prediction of debris flow in southwest Sichuan, China

    NASA Astrophysics Data System (ADS)

    Xu, Wenbo; Jing, Shaocai; Yu, Wenjuan; Wang, Zhaoxian; Zhang, Guoping; Huang, Jianxi

    2013-11-01

    In this study, the high risk areas of Sichuan Province with debris flow, Panzhihua and Liangshan Yi Autonomous Prefecture, were taken as the studied areas. By using rainfall and environmental factors as the predictors and based on the different prior probability combinations of debris flows, the prediction of debris flows was compared in the areas with statistical methods: logistic regression (LR) and Bayes discriminant analysis (BDA). The results through the comprehensive analysis show that (a) with the mid-range scale prior probability, the overall predicting accuracy of BDA is higher than those of LR; (b) with equal and extreme prior probabilities, the overall predicting accuracy of LR is higher than those of BDA; (c) the regional predicting models of debris flows with rainfall factors only have worse performance than those introduced environmental factors, and the predicting accuracies of occurrence and nonoccurrence of debris flows have been changed in the opposite direction as the supplemented information.

  6. Evaluation of sampling methods used to estimate irrigation pumpage in Chase, Dundy, and Perkins counties, Nebraska

    USGS Publications Warehouse

    Heimes, F.J.; Luckey, R.R.; Stephens, D.M.

    1986-01-01

    Combining estimates of applied irrigation water, determined for selected sample sites, with information on irrigated acreage provides one alternative for developing areal estimates of groundwater pumpage for irrigation. The reliability of this approach was evaluated by comparing estimated pumpage with metered pumpage for two years for a three-county area in southwestern Nebraska. Meters on all irrigation wells in the three counties provided a complete data set for evaluation of equipment and comparison with pumpage estimates. Regression analyses were conducted on discharge, time-of-operation, and pumpage data collected at 52 irrigation sites in 1983 and at 57 irrigation sites in 1984 using data from inline flowmeters as the independent variable. The standard error of the estimate for regression analysis of discharge measurements made using a portable flowmeter was 6.8% of the mean discharge metered by inline flowmeters. The standard error of the estimate for regression analysis of time of operation determined from electric meters was 8.1% of the mean time of operation determined from in-line and 15.1% for engine-hour meters. Sampled pumpage, calculated by multiplying the average discharge obtained from the portable flowmeter by the time of operation obtained from energy or hour meters, was compared with metered pumpage from in-line flowmeters at sample sites. The standard error of the estimate for the regression analysis of sampled pumpage was 10.3% of the mean of the metered pumpage for 1983 and 1984 combined. The difference in the mean of the sampled pumpage and the mean of the metered pumpage was only 1.8% for 1983 and 2.3% for 1984. Estimated pumpage, for each county and for the study area, was calculated by multiplying application (sampled pumpage divided by irrigated acreages at sample sites) by irrigated acreage compiled from Landsat (Land satellite) imagery. Estimated pumpage was compared with total metered pumpage for each county and the study area. Estimated pumpage by county varied from 9% less, to 20% more, than metered pumpage in 1983 and from 0 to 15% more than metered pumpage in 1984. Estimated pumpage for the study area was 11 % more than metered pumpage in 1983 and 5% more than metered pumpage in 1984. (Author 's abstract)

  7. Subjective Global Assessment-Dialysis Malnutrition Score and cardiovascular risk in hemodialysis patients: an observational cohort study.

    PubMed

    Spatola, Leonardo; Finazzi, Silvia; Calvetta, Albania; Reggiani, Francesco; Morenghi, Emanuela; Santostasi, Silvia; Angelini, Claudio; Badalamenti, Salvatore; Mugnai, Giacomo

    2018-06-23

    Malnutrition is an important risk factor for cardiovascular mortality in hemodialysis (HD) patients. However, current malnutrition biomarkers seem unable to accurately estimate the role of malnutrition in predicting cardiovascular risk. Our aim was to investigate the role of the Subjective Global Assessment-Dialysis Malnutrition Score (SGA-DMS) compared to two well-recognized comorbidity scores-Charlson Comorbidity Index (CCI) and modified CCI (excluding age-factor) (mCCI)-in predicting cardiovascular events in HD patients. In 86 maintenance HD patients followed from June 2015 to June 2017, we analyzed biohumoral data and clinical scores as risk factors for cardiovascular events (acute heart failure, acute coronary syndrome and stroke). Their impact on outcome was investigated by linear regression, Cox regression models and ROC analysis. Cardiovascular events occurred in 26/86 (30%) patients during the 2-year follow-up. Linear regression showed only age and dialysis vintage to be positively related to SGA-DMS: B 0.21 (95% CI 0.01; 0.30) p 0.05, and B 0.24 (0.09; 0.34) p 0.02, respectively, while serum albumin, normalized protein catabolic rate (nPCR) and dialysis dose (Kt/V) were negatively related to SGA-DMS: B - 1.29 (- 3.29; - 0.81) p 0.02; B - 0.08 (- 1.52; - 0.35) p 0.04 and B - 2.63 (- 5.25; - 0.22) p 0.03, respectively. At Cox regression analysis, SGA-DMS was not a risk predictor for cardiovascular events: HR 1.09 (0.9; 1.22), while both CCI and mCCI were significant predictors: HR 1.43 (1.13; 1.87) and HR 1.57 (1.20; 2.06) also in Cox adjusted models. ROC analysis reported similar AUCs for CCI and mCCI: 0.72 (0.60; 0.89) p 0.00 and 0.70 (0.58; 0.82) p 0.00, respectively, compared to SGA-DMS 0.56 (0.49; 0.72) p 0.14. SGA-DMS is not a superior and significant prognostic tool compared to CCI and mCCI in assessing cardiovascular risk in HD patients, even it allows to appraise both malnutrition and comorbidity status.

  8. Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components.

    PubMed

    Riccardi, M; Mele, G; Pulvento, C; Lavini, A; d'Andria, R; Jacobsen, S-E

    2014-06-01

    Leaf chlorophyll content provides valuable information about physiological status of plants; it is directly linked to photosynthetic potential and primary production. In vitro assessment by wet chemical extraction is the standard method for leaf chlorophyll determination. This measurement is expensive, laborious, and time consuming. Over the years alternative methods, rapid and non-destructive, have been explored. The aim of this work was to evaluate the applicability of a fast and non-invasive field method for estimation of chlorophyll content in quinoa and amaranth leaves based on RGB components analysis of digital images acquired with a standard SLR camera. Digital images of leaves from different genotypes of quinoa and amaranth were acquired directly in the field. Mean values of each RGB component were evaluated via image analysis software and correlated to leaf chlorophyll provided by standard laboratory procedure. Single and multiple regression models using RGB color components as independent variables have been tested and validated. The performance of the proposed method was compared to that of the widely used non-destructive SPAD method. Sensitivity of the best regression models for different genotypes of quinoa and amaranth was also checked. Color data acquisition of the leaves in the field with a digital camera was quick, more effective, and lower cost than SPAD. The proposed RGB models provided better correlation (highest R (2)) and prediction (lowest RMSEP) of the true value of foliar chlorophyll content and had a lower amount of noise in the whole range of chlorophyll studied compared with SPAD and other leaf image processing based models when applied to quinoa and amaranth.

  9. Comparison of the Chiron Quantiplex branched DNA (bDNA) assay and the Abbott Genostics solution hybridization assay for quantification of hepatitis B viral DNA.

    PubMed

    Kapke, G E; Watson, G; Sheffler, S; Hunt, D; Frederick, C

    1997-01-01

    Several assays for quantification of DNA have been developed and are currently used in research and clinical laboratories. However, comparison of assay results has been difficult owing to the use of different standards and units of measurements as well as differences between assays in dynamic range and quantification limits. Although a few studies have compared results generated by different assays, there has been no consensus on conversion factors and thorough analysis has been precluded by small sample size and limited dynamic range studied. In this study, we have compared the Chiron branched DNA (bDNA) and Abbott liquid hybridization assays for quantification of hepatitis B virus (HBV) DNA in clinical specimens and have derived conversion factors to facilitate comparison of assay results. Additivity and variance stabilizing (AVAS) regression, a form of non-linear regression analysis, was performed on assay results for specimens from HBV clinical trials. Our results show that there is a strong linear relationship (R2 = 0.96) between log Chiron and log Abbott assay results. Conversion factors derived from regression analyses were found to be non-constant and ranged from 6-40. Analysis of paired assay results below and above each assay's limit of quantification (LOQ) indicated that a significantly (P < 0.01) larger proportion of observations were below the Abbott assay LOQ but above the Chiron assay LOQ, indicating that the Chiron assay is significantly more sensitive than the Abbott assay. Testing of replicate specimens showed that the Chiron assay consistently yielded lower per cent coefficients of variance (% CVs) than the Abbott assay, indicating that the Chiron assay provides superior precision.

  10. The role of muscle strengthening in exercise therapy for knee osteoarthritis: A systematic review and meta-regression analysis of randomized trials.

    PubMed

    Bartholdy, Cecilie; Juhl, Carsten; Christensen, Robin; Lund, Hans; Zhang, Weiya; Henriksen, Marius

    2017-08-01

    To analyze if exercise interventions for patients with knee osteoarthritis (OA) following the American College of Sports Medicine (ACSM) definition of muscle strength training differs from other types of exercise, and to analyze associations between changes in muscle strength, pain, and disability. A systematic search in 5 electronic databases was performed to identify randomized controlled trials comparing exercise interventions with no intervention in knee OA, and reporting changes in muscle strength and in pain or disability assessed as standardized mean differences (SMD) with 95% confidence intervals (95% CI). Interventions were categorized as ACSM interventions or not-ACSM interventions and compared using stratified random effects meta-analysis models. Associations between knee extensor strength gain and changes in pain/disability were assessed using meta-regression analyses. The 45 eligible trials with 4699 participants and 56 comparisons (22 ACSM interventions) were included in this analysis. A statistically significant difference favoring the ACSM interventions with respect to knee extensor strength was found [SMD difference: 0.448 (95% CI: 0.091-0.805)]. No differences were observed regarding effects on pain and disability. The meta-regressions indicated that increases in knee extensor strength of 30-40% would be necessary for a likely concomitant beneficial effect on pain and disability, respectively. Exercise interventions following the ACSM criteria for strength training provide superior outcomes in knee extensor strength but not in pain or disability. An increase of less than 30% in knee extensor strength is not likely to be clinically beneficial in terms of changes in pain and disability (PROSPERO: CRD42014015344). Copyright © 2017 Elsevier Inc. All rights reserved.

  11. 3D volumetry comparison using 3T magnetic resonance imaging between normal and adenoma-containing pituitary glands.

    PubMed

    Roldan-Valadez, Ernesto; Garcia-Ulloa, Ana Cristina; Gonzalez-Gutierrez, Omar; Martinez-Lopez, Manuel

    2011-01-01

    Computed-assisted three-dimensional data (3D) allows for an accurate evaluation of volumes compared with traditional measurements. An in vitro method comparison between geometric volume and 3D volumetry to obtain reference data for pituitary volumes in normal pituitary glands (PGs) and PGs containing adenomas. Prospective, transverse, analytical study. Forty-eight subjects underwent brain magnetic resonance imaging (MRI) with 3D sequencing for computer-aided volumetry. PG phantom volumes by both methods were compared. Using the best volumetric method, volumes of normal PGs and PGs with adenoma were compared. Statistical analysis used the Bland-Altman method, t-statistics, effect size and linear regression analysis. Method comparison between 3D volumetry and geometric volume revealed a lower bias and precision for 3D volumetry. A total of 27 patients exhibited normal PGs (mean age, 42.07 ± 16.17 years), although length, height, width, geometric volume and 3D volumetry were greater in women than in men. A total of 21 patients exhibited adenomas (mean age 39.62 ± 10.79 years), and length, height, width, geometric volume and 3D volumetry were greater in men than in women, with significant volumetric differences. Age did not influence pituitary volumes on linear regression analysis. Results from the present study showed that 3D volumetry was more accurate than the geometric method. In addition, the upper normal limits of PGs overlapped with lower volume limits during early stage microadenomas.

  12. Multivariate Regression Analysis and Slaughter Livestock,

    DTIC Science & Technology

    AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY

  13. Evaluation of Factors Determining the Results of Vocational Rehabilitation. Norwegian Monographs on Medical Science.

    ERIC Educational Resources Information Center

    Gogstad, Anders C.

    Physical disability from disease or injury often results in a permanent state of social insufficiency, especially when the disability is reinforced by individual or environmental factors. In a study of almost 700 persons treated at a Norwegian rehabilitation center, regression analysis was used to compare those who benefited from the program with…

  14. Comparing Forest/Nonforest Classifications of Landsat TM Imagery for Stratifying FIA Estimates of Forest Land Area

    Treesearch

    Mark D. Nelson; Ronald E. McRoberts; Greg C. Liknes; Geoffrey R. Holden

    2005-01-01

    Landsat Thematic Mapper (TM) satellite imagery and Forest Inventory and Analysis (FIA) plot data were used to construct forest/nonforest maps of Mapping Zone 41, National Land Cover Dataset 2000 (NLCD 2000). Stratification approaches resulting from Maximum Likelihood, Fuzzy Convolution, Logistic Regression, and k-Nearest Neighbors classification/prediction methods were...

  15. Predicting Academic Success in First-Year Mathematics Courses Using ACT Mathematics Scores and High School Grade Point Average

    ERIC Educational Resources Information Center

    Mayo, Sandra Sims

    2012-01-01

    Improving college performance and retention is a daunting task for colleges and universities. Many institutions are taking action to increase retention rates by exploring their academic programs. Regression analysis was used to compare the effectiveness of ACT mathematics scores, high school grade point averages (HSGPA), and demographic factors…

  16. Poverty and Algebra Performance: A Comparative Spatial Analysis of a Border South State

    ERIC Educational Resources Information Center

    Tate, William F.; Hogrebe, Mark C.

    2015-01-01

    This research uses two measures of poverty, as well as mobility and selected education variables to study how their relationships vary across 543 Missouri high school districts. Using Missouri and U.S. Census American Community Survey (ACS) data, local R[superscript 2]'s from geographically weighted regressions are spatially mapped to demonstrate…

  17. Using twig diameters to estimate browse utilization on three shrub species in southeastern Montana

    Treesearch

    Mark A. Rumble

    1987-01-01

    Browse utilization estimates based on twig length and twig weight were compared for skunkbush sumac, wax currant, and chokecherry. Linear regression analysis was valid for twig length data; twig weight equations are nonlinear. Estimates of twig weight are more accurate. Problems encountered during development of a utilization model are discussed.

  18. The Effect of a Campaign Internship on Political Efficacy and Trust

    ERIC Educational Resources Information Center

    Mariani, Mack; Klinkner, Philip

    2009-01-01

    This study examines the effect of a 10-week campaign internship course on political efficacy and trust. We compared changes in these key political attitudes between a group of 33 undergraduate students in a campaign internship course and a control group of 65 students taking government courses. A multiple regression analysis indicates that…

  19. Macroeconomic Knowledge of Higher Education Students in Germany and Japan--A Multilevel Analysis of Contextual and Personal Effects

    ERIC Educational Resources Information Center

    Zlatkin-Troitschanskaia, Olga; Schmidt, Susanne; Brückner, Sebastian; Förster, Manuel; Yamaoka, Michio; Asano, Tadayoshi

    2016-01-01

    Recent trends towards harmonising and internationalising business and economics studies in higher education are affecting the structure and content of programmes and courses, and necessitate more transparent and comparable information on students' economic knowledge and skills. In this study, we examine by linear multilevel regression modelling…

  20. Using Performance Data Gathered at Several Stages of Achievement in Predicting Subsequent Performance.

    ERIC Educational Resources Information Center

    Owen, Steven V.; Feldhusen, John F.

    This study compares the effectiveness of three models of multivariate prediction for academic success in identifying the criterion variance of achievement in nursing education. The first model involves the use of an optimum set of predictors and one equation derived from a regression analysis on first semester grade average in predicting the…

  1. TSS concentration in sewers estimated from turbidity measurements by means of linear regression accounting for uncertainties in both variables.

    PubMed

    Bertrand-Krajewski, J L

    2004-01-01

    In order to replace traditional sampling and analysis techniques, turbidimeters can be used to estimate TSS concentration in sewers, by means of sensor and site specific empirical equations established by linear regression of on-site turbidity Tvalues with TSS concentrations C measured in corresponding samples. As the ordinary least-squares method is not able to account for measurement uncertainties in both T and C variables, an appropriate regression method is used to solve this difficulty and to evaluate correctly the uncertainty in TSS concentrations estimated from measured turbidity. The regression method is described, including detailed calculations of variances and covariance in the regression parameters. An example of application is given for a calibrated turbidimeter used in a combined sewer system, with data collected during three dry weather days. In order to show how the established regression could be used, an independent 24 hours long dry weather turbidity data series recorded at 2 min time interval is used, transformed into estimated TSS concentrations, and compared to TSS concentrations measured in samples. The comparison appears as satisfactory and suggests that turbidity measurements could replace traditional samples. Further developments, including wet weather periods and other types of sensors, are suggested.

  2. Technical Assistance and Changes in Nutrition and Physical Activity Practices in the National Early Care and Education Learning Collaboratives Project, 2015-2016.

    PubMed

    Chiappone, Alethea; Smith, Teresa M; Estabrooks, Paul A; Rasmussen, Cristy Geno; Blaser, Casey; Yaroch, Amy L

    2018-04-26

    The National Early Care and Education Learning Collaboratives Project (ECELC) aims to improve best practices in early care and education (ECE) programs in topic areas of the Nutrition and Physical Activity Self-Assessment in Child Care (NAP SACC). Technical assistance is a component of the ECELC, yet its effect on outcomes is unclear. Beyond dose and duration of technical assistance, limited research exists on characteristics of technical assistance that contribute to outcomes. The objective of this study was to identify and describe technical assistance characteristics and explore associations with NAP SACC outcomes. We collected data from 10 collaboratives comprising 84 ECE programs in 2 states in 2015-2016. The objective of technical assistance was to support programs in improving best practices. Technical assistance was provided to programs via on-site, telephone, or email and was tailored to program needs. We used a mixed-methods design to examine associations between technical assistance and NAP SACC outcomes. We used multiple regression analysis to assess quantitative data and qualitative comparative analysis to determine necessary and sufficient technical assistance conditions supporting NAP SACC outcomes. We also conducted a document review to describe technical assistance that referred conditions identified by the qualitative comparative analysis. Regression analyses detected an inverse relationship between changes in NAP SACC scores and hours of technical assistance. No clear pattern emerged in the qualitative comparative analysis, leaving no necessary and sufficient conditions. However, the qualitative comparative analysis identified feedback as a potentially important component of technical assistance, whereas resource sharing and frequent email were characteristics that seemed to reduce the likelihood of improved outcomes. Email and resource sharing were considered primarily general information rather than tailored technical assistance. Technical assistance may be used in programs and made adaptable to program needs. The inclusion and evaluation of technical assistance, especially tailored approaches, is warranted for environmental interventions, including ECE settings.

  3. Time-resolved perfusion imaging at the angiography suite: preclinical comparison of a new flat-detector application to computed tomography perfusion.

    PubMed

    Jürgens, Julian H W; Schulz, Nadine; Wybranski, Christian; Seidensticker, Max; Streit, Sebastian; Brauner, Jan; Wohlgemuth, Walter A; Deuerling-Zheng, Yu; Ricke, Jens; Dudeck, Oliver

    2015-02-01

    The objective of this study was to compare the parameter maps of a new flat-panel detector application for time-resolved perfusion imaging in the angiography room (FD-CTP) with computed tomography perfusion (CTP) in an experimental tumor model. Twenty-four VX2 tumors were implanted into the hind legs of 12 rabbits. Three weeks later, FD-CTP (Artis zeego; Siemens) and CTP (SOMATOM Definition AS +; Siemens) were performed. The parameter maps for the FD-CTP were calculated using a prototype software, and those for the CTP were calculated with VPCT-body software on a dedicated syngo MultiModality Workplace. The parameters were compared using Pearson product-moment correlation coefficient and linear regression analysis. The Pearson product-moment correlation coefficient showed good correlation values for both the intratumoral blood volume of 0.848 (P < 0.01) and the blood flow of 0.698 (P < 0.01). The linear regression analysis of the perfusion between FD-CTP and CTP showed for the blood volume a regression equation y = 4.44x + 36.72 (P < 0.01) and for the blood flow y = 0.75x + 14.61 (P < 0.01). This preclinical study provides evidence that FD-CTP allows a time-resolved (dynamic) perfusion imaging of tumors similar to CTP, which provides the basis for clinical applications such as the assessment of tumor response to locoregional therapies directly in the angiography suite.

  4. System dynamic modeling: an alternative method for budgeting.

    PubMed

    Srijariya, Witsanuchai; Riewpaiboon, Arthorn; Chaikledkaew, Usa

    2008-03-01

    To construct, validate, and simulate a system dynamic financial model and compare it against the conventional method. The study was a cross-sectional analysis of secondary data retrieved from the National Health Security Office (NHSO) in the fiscal year 2004. The sample consisted of all emergency patients who received emergency services outside their registered hospital-catchments area. The dependent variable used was the amount of reimbursed money. Two types of model were constructed, namely, the system dynamic model using the STELLA software and the multiple linear regression model. The outputs of both methods were compared. The study covered 284,716 patients from various levels of providers. The system dynamic model had the capability of producing various types of outputs, for example, financial and graphical analyses. For the regression analysis, statistically significant predictors were composed of service types (outpatient or inpatient), operating procedures, length of stay, illness types (accident or not), hospital characteristics, age, and hospital location (adjusted R(2) = 0.74). The total budget arrived at from using the system dynamic model and regression model was US$12,159,614.38 and US$7,301,217.18, respectively, whereas the actual NHSO reimbursement cost was US$12,840,805.69. The study illustrated that the system dynamic model is a useful financial management tool, although it is not easy to construct. The model is not only more accurate in prediction but is also more capable of analyzing large and complex real-world situations than the conventional method.

  5. Resting state fMRI reveals a default mode dissociation between retrosplenial and medial prefrontal subnetworks in ASD despite motion scrubbing.

    PubMed

    Starck, Tuomo; Nikkinen, Juha; Rahko, Jukka; Remes, Jukka; Hurtig, Tuula; Haapsamo, Helena; Jussila, Katja; Kuusikko-Gauffin, Sanna; Mattila, Marja-Leena; Jansson-Verkasalo, Eira; Pauls, David L; Ebeling, Hanna; Moilanen, Irma; Tervonen, Osmo; Kiviniemi, Vesa J

    2013-01-01

    In resting state functional magnetic resonance imaging (fMRI) studies of autism spectrum disorders (ASDs) decreased frontal-posterior functional connectivity is a persistent finding. However, the picture of the default mode network (DMN) hypoconnectivity remains incomplete. In addition, the functional connectivity analyses have been shown to be susceptible even to subtle motion. DMN hypoconnectivity in ASD has been specifically called for re-evaluation with stringent motion correction, which we aimed to conduct by so-called scrubbing. A rich set of default mode subnetworks can be obtained with high dimensional group independent component analysis (ICA) which can potentially provide more detailed view of the connectivity alterations. We compared the DMN connectivity in high-functioning adolescents with ASDs to typically developing controls using ICA dual-regression with decompositions from typical to high dimensionality. Dual-regression analysis within DMN subnetworks did not reveal alterations but connectivity between anterior and posterior DMN subnetworks was decreased in ASD. The results were very similar with and without motion scrubbing thus indicating the efficacy of the conventional motion correction methods combined with ICA dual-regression. Specific dissociation between DMN subnetworks was revealed on high ICA dimensionality, where networks centered at the medial prefrontal cortex and retrosplenial cortex showed weakened coupling in adolescents with ASDs compared to typically developing control participants. Generally the results speak for disruption in the anterior-posterior DMN interplay on the network level whereas local functional connectivity in DMN seems relatively unaltered.

  6. Improving Consensus Scoring of Crowdsourced Data Using the Rasch Model: Development and Refinement of a Diagnostic Instrument.

    PubMed

    Brady, Christopher John; Mudie, Lucy Iluka; Wang, Xueyang; Guallar, Eliseo; Friedman, David Steven

    2017-06-20

    Diabetic retinopathy (DR) is a leading cause of vision loss in working age individuals worldwide. While screening is effective and cost effective, it remains underutilized, and novel methods are needed to increase detection of DR. This clinical validation study compared diagnostic gradings of retinal fundus photographs provided by volunteers on the Amazon Mechanical Turk (AMT) crowdsourcing marketplace with expert-provided gold-standard grading and explored whether determination of the consensus of crowdsourced classifications could be improved beyond a simple majority vote (MV) using regression methods. The aim of our study was to determine whether regression methods could be used to improve the consensus grading of data collected by crowdsourcing. A total of 1200 retinal images of individuals with diabetes mellitus from the Messidor public dataset were posted to AMT. Eligible crowdsourcing workers had at least 500 previously approved tasks with an approval rating of 99% across their prior submitted work. A total of 10 workers were recruited to classify each image as normal or abnormal. If half or more workers judged the image to be abnormal, the MV consensus grade was recorded as abnormal. Rasch analysis was then used to calculate worker ability scores in a random 50% training set, which were then used as weights in a regression model in the remaining 50% test set to determine if a more accurate consensus could be devised. Outcomes of interest were the percent correctly classified images, sensitivity, specificity, and area under the receiver operating characteristic (AUROC) for the consensus grade as compared with the expert grading provided with the dataset. Using MV grading, the consensus was correct in 75.5% of images (906/1200), with 75.5% sensitivity, 75.5% specificity, and an AUROC of 0.75 (95% CI 0.73-0.78). A logistic regression model using Rasch-weighted individual scores generated an AUROC of 0.91 (95% CI 0.88-0.93) compared with 0.89 (95% CI 0.86-92) for a model using unweighted scores (chi-square P value<.001). Setting a diagnostic cut-point to optimize sensitivity at 90%, 77.5% (465/600) were graded correctly, with 90.3% sensitivity, 68.5% specificity, and an AUROC of 0.79 (95% CI 0.76-0.83). Crowdsourced interpretations of retinal images provide rapid and accurate results as compared with a gold-standard grading. Creating a logistic regression model using Rasch analysis to weight crowdsourced classifications by worker ability improves accuracy of aggregated grades as compared with simple majority vote. ©Christopher John Brady, Lucy Iluka Mudie, Xueyang Wang, Eliseo Guallar, David Steven Friedman. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 20.06.2017.

  7. RAWS II: A MULTIPLE REGRESSION ANALYSIS PROGRAM,

    DTIC Science & Technology

    This memorandum gives instructions for the use and operation of a revised version of RAWS, a multiple regression analysis program. The program...of preprocessed data, the directed retention of variable, listing of the matrix of the normal equations and its inverse, and the bypassing of the regression analysis to provide the input variable statistics only. (Author)

  8. Enhanced ID Pit Sizing Using Multivariate Regression Algorithm

    NASA Astrophysics Data System (ADS)

    Krzywosz, Kenji

    2007-03-01

    EPRI is funding a program to enhance and improve the reliability of inside diameter (ID) pit sizing for balance-of plant heat exchangers, such as condensers and component cooling water heat exchangers. More traditional approaches to ID pit sizing involve the use of frequency-specific amplitude or phase angles. The enhanced multivariate regression algorithm for ID pit depth sizing incorporates three simultaneous input parameters of frequency, amplitude, and phase angle. A set of calibration data sets consisting of machined pits of various rounded and elongated shapes and depths was acquired in the frequency range of 100 kHz to 1 MHz for stainless steel tubing having nominal wall thickness of 0.028 inch. To add noise to the acquired data set, each test sample was rotated and test data acquired at 3, 6, 9, and 12 o'clock positions. The ID pit depths were estimated using a second order and fourth order regression functions by relying on normalized amplitude and phase angle information from multiple frequencies. Due to unique damage morphology associated with the microbiologically-influenced ID pits, it was necessary to modify the elongated calibration standard-based algorithms by relying on the algorithm developed solely from the destructive sectioning results. This paper presents the use of transformed multivariate regression algorithm to estimate ID pit depths and compare the results with the traditional univariate phase angle analysis. Both estimates were then compared with the destructive sectioning results.

  9. Comparing Methods for Assessing Reliability Uncertainty Based on Pass/Fail Data Collected Over Time

    DOE PAGES

    Abes, Jeff I.; Hamada, Michael S.; Hills, Charles R.

    2017-12-20

    In this paper, we compare statistical methods for analyzing pass/fail data collected over time; some methods are traditional and one (the RADAR or Rationale for Assessing Degradation Arriving at Random) was recently developed. These methods are used to provide uncertainty bounds on reliability. We make observations about the methods' assumptions and properties. Finally, we illustrate the differences between two traditional methods, logistic regression and Weibull failure time analysis, and the RADAR method using a numerical example.

  10. Comparing Methods for Assessing Reliability Uncertainty Based on Pass/Fail Data Collected Over Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abes, Jeff I.; Hamada, Michael S.; Hills, Charles R.

    In this paper, we compare statistical methods for analyzing pass/fail data collected over time; some methods are traditional and one (the RADAR or Rationale for Assessing Degradation Arriving at Random) was recently developed. These methods are used to provide uncertainty bounds on reliability. We make observations about the methods' assumptions and properties. Finally, we illustrate the differences between two traditional methods, logistic regression and Weibull failure time analysis, and the RADAR method using a numerical example.

  11. Which Measurement of Blood Pressure Is More Associated With Albuminuria in Patients With Type 2 Diabetes: Central Blood Pressure or Peripheral Blood Pressure?

    PubMed

    Kitagawa, Noriyuki; Okada, Hiroshi; Tanaka, Muhei; Hashimoto, Yoshitaka; Kimura, Toshihiro; Nakano, Koji; Yamazaki, Masahiro; Hasegawa, Goji; Nakamura, Naoto; Fukui, Michiaki

    2016-08-01

    The aim of this study was to investigate whether central systolic blood pressure (SBP) was associated with albuminuria, defined as urinary albumin excretion (UAE) ≥30 mg/g creatinine, and, if so, whether the relationship of central SBP with albuminuria was stronger than that of peripheral SBP in patients with type 2 diabetes. The authors performed a cross-sectional study in 294 outpatients with type 2 diabetes. The relationship between peripheral SBP or central SBP and UAE using regression analysis was evaluated, and the odds ratios of peripheral SBP or central SBP were calculated to identify albuminuria using logistic regression model. Moreover, the area under the receiver operating characteristic curve (AUC) of central SBP was compared with that of peripheral SBP to identify albuminuria. Multiple regression analysis demonstrated that peripheral SBP (β=0.255, P<.0001) or central SBP (r=0.227, P<.0001) was associated with UAE. Multiple logistic regression analysis demonstrated that peripheral SBP (odds ratio, 1.029; 95% confidence interval, 1.016-1.043) or central SBP (odds ratio, 1.022; 95% confidence interval, 1.011-1.034) was associated with an increased odds of albuminuria. In addition, AUC of peripheral SBP was significantly greater than that of central SBP to identify albuminuria (P=0.035). Peripheral SBP is superior to central SBP in identifying albuminuria, although both peripheral and central SBP are associated with UAE in patients with type 2 diabetes. © 2016 Wiley Periodicals, Inc.

  12. Improving Lidar-based Aboveground Biomass Estimation with Site Productivity for Central Hardwood Forests, USA

    NASA Astrophysics Data System (ADS)

    Shao, G.; Gallion, J.; Fei, S.

    2016-12-01

    Sound forest aboveground biomass estimation is required to monitor diverse forest ecosystems and their impacts on the changing climate. Lidar-based regression models provided promised biomass estimations in most forest ecosystems. However, considerable uncertainties of biomass estimations have been reported in the temperate hardwood and hardwood-dominated mixed forests. Varied site productivities in temperate hardwood forests largely diversified height and diameter growth rates, which significantly reduced the correlation between tree height and diameter at breast height (DBH) in mature and complex forests. It is, therefore, difficult to utilize height-based lidar metrics to predict DBH-based field-measured biomass through a simple regression model regardless the variation of site productivity. In this study, we established a multi-dimension nonlinear regression model incorporating lidar metrics and site productivity classes derived from soil features. In the regression model, lidar metrics provided horizontal and vertical structural information and productivity classes differentiated good and poor forest sites. The selection and combination of lidar metrics were discussed. Multiple regression models were employed and compared. Uncertainty analysis was applied to the best fit model. The effects of site productivity on the lidar-based biomass model were addressed.

  13. A Quantile Regression Approach to Understanding the Relations Among Morphological Awareness, Vocabulary, and Reading Comprehension in Adult Basic Education Students.

    PubMed

    Tighe, Elizabeth L; Schatschneider, Christopher

    2016-07-01

    The purpose of this study was to investigate the joint and unique contributions of morphological awareness and vocabulary knowledge at five reading comprehension levels in adult basic education (ABE) students. We introduce the statistical technique of multiple quantile regression, which enabled us to assess the predictive utility of morphological awareness and vocabulary knowledge at multiple points (quantiles) along the continuous distribution of reading comprehension. To demonstrate the efficacy of our multiple quantile regression analysis, we compared and contrasted our results with a traditional multiple regression analytic approach. Our results indicated that morphological awareness and vocabulary knowledge accounted for a large portion of the variance (82%-95%) in reading comprehension skills across all quantiles. Morphological awareness exhibited the greatest unique predictive ability at lower levels of reading comprehension whereas vocabulary knowledge exhibited the greatest unique predictive ability at higher levels of reading comprehension. These results indicate the utility of using multiple quantile regression to assess trajectories of component skills across multiple levels of reading comprehension. The implications of our findings for ABE programs are discussed. © Hammill Institute on Disabilities 2014.

  14. Advantage of the modified Lunn-McNeil technique over Kalbfleisch-Prentice technique in competing risks

    NASA Astrophysics Data System (ADS)

    Lukman, Iing; Ibrahim, Noor A.; Daud, Isa B.; Maarof, Fauziah; Hassan, Mohd N.

    2002-03-01

    Survival analysis algorithm is often applied in the data mining process. Cox regression is one of the survival analysis tools that has been used in many areas, and it can be used to analyze the failure times of aircraft crashed. Another survival analysis tool is the competing risks where we have more than one cause of failure acting simultaneously. Lunn-McNeil analyzed the competing risks in the survival model using Cox regression with censored data. The modified Lunn-McNeil technique is a simplify of the Lunn-McNeil technique. The Kalbfleisch-Prentice technique is involving fitting models separately from each type of failure, treating other failure types as censored. To compare the two techniques, (the modified Lunn-McNeil and Kalbfleisch-Prentice) a simulation study was performed. Samples with various sizes and censoring percentages were generated and fitted using both techniques. The study was conducted by comparing the inference of models, using Root Mean Square Error (RMSE), the power tests, and the Schoenfeld residual analysis. The power tests in this study were likelihood ratio test, Rao-score test, and Wald statistics. The Schoenfeld residual analysis was conducted to check the proportionality of the model through its covariates. The estimated parameters were computed for the cause-specific hazard situation. Results showed that the modified Lunn-McNeil technique was better than the Kalbfleisch-Prentice technique based on the RMSE measurement and Schoenfeld residual analysis. However, the Kalbfleisch-Prentice technique was better than the modified Lunn-McNeil technique based on power tests measurement.

  15. Influence of salinity and temperature on acute toxicity of cadmium to Mysidopsis bahia molenock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voyer, R.A.; Modica, G.

    1990-01-01

    Acute toxicity tests were conducted to compare estimates of toxicity, as modified by salinity and temperature, based on response surface techniques with those derived using conventional test methods, and to compare effect of a single episodic exposure to cadmium as a function of salinity with that of continuous exposure. Regression analysis indicated that mortality following continuous 96-hr exposure is related to linear and quadratic effects of salinity and cadmium at 20 C, and to the linear and quadratic effects of cadmium only at 25C. LC50s decreased with increases in temperature and decreases in salinity. Based on the regression model developed,more » 96-hr LC50s ranged from 15.5 to 28.0 micro Cd/L at 10 and 30% salinities, respectively, at 25C; and from 47 to 85 microgram Cd/L at these salinities at 20C.« less

  16. Water quality parameter measurement using spectral signatures

    NASA Technical Reports Server (NTRS)

    White, P. E.

    1973-01-01

    Regression analysis is applied to the problem of measuring water quality parameters from remote sensing spectral signature data. The equations necessary to perform regression analysis are presented and methods of testing the strength and reliability of a regression are described. An efficient algorithm for selecting an optimal subset of the independent variables available for a regression is also presented.

  17. Serum Irisin Predicts Mortality Risk in Acute Heart Failure Patients.

    PubMed

    Shen, Shutong; Gao, Rongrong; Bei, Yihua; Li, Jin; Zhang, Haifeng; Zhou, Yanli; Yao, Wenming; Xu, Dongjie; Zhou, Fang; Jin, Mengchao; Wei, Siqi; Wang, Kai; Xu, Xuejuan; Li, Yongqin; Xiao, Junjie; Li, Xinli

    2017-01-01

    Irisin is a peptide hormone cleaved from a plasma membrane protein fibronectin type III domain containing protein 5 (FNDC5). Emerging studies have indicated association between serum irisin and many major chronic diseases including cardiovascular diseases. However, the role of serum irisin as a predictor for mortality risk in acute heart failure (AHF) patients is not clear. AHF patients were enrolled and serum was collected at the admission and all patients were followed up for 1 year. Enzyme-linked immunosorbent assay was used to measure serum irisin levels. To explore predictors for AHF mortality, the univariate and multivariate logistic regression analysis, and receiver-operator characteristic (ROC) curve analysis were used. To determine the role of serum irisin levels in predicting survival, Kaplan-Meier survival analysis was used. In this study, 161 AHF patients were enrolled and serum irisin level was found to be significantly higher in patients deceased in 1-year follow-up. The univariate logistic regression analysis identified 18 variables associated with all-cause mortality in AHF patients, while the multivariate logistic regression analysis identified 2 variables namely blood urea nitrogen and serum irisin. ROC curve analysis indicated that blood urea nitrogen and the most commonly used biomarker, NT-pro-BNP, displayed poor prognostic value for AHF (AUCs ≤ 0.700) compared to serum irisin (AUC = 0.753). Kaplan-Meier survival analysis demonstrated that AHF patients with higher serum irisin had significantly higher mortality (P<0.001). Collectively, our study identified serum irisin as a predictive biomarker for 1-year all-cause mortality in AHF patients though large multicenter studies are highly needed. © 2017 The Author(s). Published by S. Karger AG, Basel.

  18. Random regression analyses using B-splines functions to model growth from birth to adult age in Canchim cattle.

    PubMed

    Baldi, F; Alencar, M M; Albuquerque, L G

    2010-12-01

    The objective of this work was to estimate covariance functions using random regression models on B-splines functions of animal age, for weights from birth to adult age in Canchim cattle. Data comprised 49,011 records on 2435 females. The model of analysis included fixed effects of contemporary groups, age of dam as quadratic covariable and the population mean trend taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were modelled through a step function with four classes. The direct and maternal additive genetic effects, and animal and maternal permanent environmental effects were included as random effects in the model. A total of seventeen analyses, considering linear, quadratic and cubic B-splines functions and up to seven knots, were carried out. B-spline functions of the same order were considered for all random effects. Random regression models on B-splines functions were compared to a random regression model on Legendre polynomials and with a multitrait model. Results from different models of analyses were compared using the REML form of the Akaike Information criterion and Schwarz' Bayesian Information criterion. In addition, the variance components and genetic parameters estimated for each random regression model were also used as criteria to choose the most adequate model to describe the covariance structure of the data. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most adequate to describe the covariance structure of the data. Random regression models using B-spline functions as base functions fitted the data better than Legendre polynomials, especially at mature ages, but higher number of parameters need to be estimated with B-splines functions. © 2010 Blackwell Verlag GmbH.

  19. The novel application of artificial neural network on bioelectrical impedance analysis to assess the body composition in elderly

    PubMed Central

    2013-01-01

    Background This study aims to improve accuracy of Bioelectrical Impedance Analysis (BIA) prediction equations for estimating fat free mass (FFM) of the elderly by using non-linear Back Propagation Artificial Neural Network (BP-ANN) model and to compare the predictive accuracy with the linear regression model by using energy dual X-ray absorptiometry (DXA) as reference method. Methods A total of 88 Taiwanese elderly adults were recruited in this study as subjects. Linear regression equations and BP-ANN prediction equation were developed using impedances and other anthropometrics for predicting the reference FFM measured by DXA (FFMDXA) in 36 male and 26 female Taiwanese elderly adults. The FFM estimated by BIA prediction equations using traditional linear regression model (FFMLR) and BP-ANN model (FFMANN) were compared to the FFMDXA. The measuring results of an additional 26 elderly adults were used to validate than accuracy of the predictive models. Results The results showed the significant predictors were impedance, gender, age, height and weight in developed FFMLR linear model (LR) for predicting FFM (coefficient of determination, r2 = 0.940; standard error of estimate (SEE) = 2.729 kg; root mean square error (RMSE) = 2.571kg, P < 0.001). The above predictors were set as the variables of the input layer by using five neurons in the BP-ANN model (r2 = 0.987 with a SD = 1.192 kg and relatively lower RMSE = 1.183 kg), which had greater (improved) accuracy for estimating FFM when compared with linear model. The results showed a better agreement existed between FFMANN and FFMDXA than that between FFMLR and FFMDXA. Conclusion When compared the performance of developed prediction equations for estimating reference FFMDXA, the linear model has lower r2 with a larger SD in predictive results than that of BP-ANN model, which indicated ANN model is more suitable for estimating FFM. PMID:23388042

  20. An Experimental Study in Determining Energy Expenditure from Treadmill Walking using Hip-Worn Inertial Sensors

    PubMed Central

    Vathsangam, Harshvardhan; Emken, Adar; Schroeder, E. Todd; Spruijt-Metz, Donna; Sukhatme, Gaurav S.

    2011-01-01

    This paper describes an experimental study in estimating energy expenditure from treadmill walking using a single hip-mounted triaxial inertial sensor comprised of a triaxial accelerometer and a triaxial gyroscope. Typical physical activity characterization using accelerometer generated counts suffers from two drawbacks - imprecison (due to proprietary counts) and incompleteness (due to incomplete movement description). We address these problems in the context of steady state walking by directly estimating energy expenditure with data from a hip-mounted inertial sensor. We represent the cyclic nature of walking with a Fourier transform of sensor streams and show how one can map this representation to energy expenditure (as measured by V O2 consumption, mL/min) using three regression techniques - Least Squares Regression (LSR), Bayesian Linear Regression (BLR) and Gaussian Process Regression (GPR). We perform a comparative analysis of the accuracy of sensor streams in predicting energy expenditure (measured by RMS prediction accuracy). Triaxial information is more accurate than uniaxial information. LSR based approaches are prone to outlier sensitivity and overfitting. Gyroscopic information showed equivalent if not better prediction accuracy as compared to accelerometers. Combining accelerometer and gyroscopic information provided better accuracy than using either sensor alone. We also analyze the best algorithmic approach among linear and nonlinear methods as measured by RMS prediction accuracy and run time. Nonlinear regression methods showed better prediction accuracy but required an order of magnitude of run time. This paper emphasizes the role of probabilistic techniques in conjunction with joint modeling of triaxial accelerations and rotational rates to improve energy expenditure prediction for steady-state treadmill walking. PMID:21690001

  1. Comparative evaluation of urban storm water quality models

    NASA Astrophysics Data System (ADS)

    Vaze, J.; Chiew, Francis H. S.

    2003-10-01

    The estimation of urban storm water pollutant loads is required for the development of mitigation and management strategies to minimize impacts to receiving environments. Event pollutant loads are typically estimated using either regression equations or "process-based" water quality models. The relative merit of using regression models compared to process-based models is not clear. A modeling study is carried out here to evaluate the comparative ability of the regression equations and process-based water quality models to estimate event diffuse pollutant loads from impervious surfaces. The results indicate that, once calibrated, both the regression equations and the process-based model can estimate event pollutant loads satisfactorily. In fact, the loads estimated using the regression equation as a function of rainfall intensity and runoff rate are better than the loads estimated using the process-based model. Therefore, if only estimates of event loads are required, regression models should be used because they are simpler and require less data compared to process-based models.

  2. SPSS and SAS programs for comparing Pearson correlations and OLS regression coefficients.

    PubMed

    Weaver, Bruce; Wuensch, Karl L

    2013-09-01

    Several procedures that use summary data to test hypotheses about Pearson correlations and ordinary least squares regression coefficients have been described in various books and articles. To our knowledge, however, no single resource describes all of the most common tests. Furthermore, many of these tests have not yet been implemented in popular statistical software packages such as SPSS and SAS. In this article, we describe all of the most common tests and provide SPSS and SAS programs to perform them. When they are applicable, our code also computes 100 × (1 - α)% confidence intervals corresponding to the tests. For testing hypotheses about independent regression coefficients, we demonstrate one method that uses summary data and another that uses raw data (i.e., Potthoff analysis). When the raw data are available, the latter method is preferred, because use of summary data entails some loss of precision due to rounding.

  3. Quantification of brain lipids by FTIR spectroscopy and partial least squares regression

    NASA Astrophysics Data System (ADS)

    Dreissig, Isabell; Machill, Susanne; Salzer, Reiner; Krafft, Christoph

    2009-01-01

    Brain tissue is characterized by high lipid content. Its content decreases and the lipid composition changes during transformation from normal brain tissue to tumors. Therefore, the analysis of brain lipids might complement the existing diagnostic tools to determine the tumor type and tumor grade. Objective of this work is to extract lipids from gray matter and white matter of porcine brain tissue, record infrared (IR) spectra of these extracts and develop a quantification model for the main lipids based on partial least squares (PLS) regression. IR spectra of the pure lipids cholesterol, cholesterol ester, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, galactocerebroside and sulfatide were used as references. Two lipid mixtures were prepared for training and validation of the quantification model. The composition of lipid extracts that were predicted by the PLS regression of IR spectra was compared with lipid quantification by thin layer chromatography.

  4. Classical Testing in Functional Linear Models.

    PubMed

    Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab

    2016-01-01

    We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications.

  5. Classical Testing in Functional Linear Models

    PubMed Central

    Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab

    2016-01-01

    We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications. PMID:28955155

  6. THE DISTRIBUTION OF COOK’S D STATISTIC

    PubMed Central

    Muller, Keith E.; Mok, Mario Chen

    2013-01-01

    Cook (1977) proposed a diagnostic to quantify the impact of deleting an observation on the estimated regression coefficients of a General Linear Univariate Model (GLUM). Simulations of models with Gaussian response and predictors demonstrate that his suggestion of comparing the diagnostic to the median of the F for overall regression captures an erratically varying proportion of the values. We describe the exact distribution of Cook’s statistic for a GLUM with Gaussian predictors and response. We also present computational forms, simple approximations, and asymptotic results. A simulation supports the accuracy of the results. The methods allow accurate evaluation of a single value or the maximum value from a regression analysis. The approximations work well for a single value, but less well for the maximum. In contrast, the cut-point suggested by Cook provides widely varying tail probabilities. As with all diagnostics, the data analyst must use scientific judgment in deciding how to treat highlighted observations. PMID:24363487

  7. Ridge Regression Signal Processing

    NASA Technical Reports Server (NTRS)

    Kuhl, Mark R.

    1990-01-01

    The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.

  8. Handling nonnormality and variance heterogeneity for quantitative sublethal toxicity tests.

    PubMed

    Ritz, Christian; Van der Vliet, Leana

    2009-09-01

    The advantages of using regression-based techniques to derive endpoints from environmental toxicity data are clear, and slowly, this superior analytical technique is gaining acceptance. As use of regression-based analysis becomes more widespread, some of the associated nuances and potential problems come into sharper focus. Looking at data sets that cover a broad spectrum of standard test species, we noticed that some model fits to data failed to meet two key assumptions-variance homogeneity and normality-that are necessary for correct statistical analysis via regression-based techniques. Failure to meet these assumptions often is caused by reduced variance at the concentrations showing severe adverse effects. Although commonly used with linear regression analysis, transformation of the response variable only is not appropriate when fitting data using nonlinear regression techniques. Through analysis of sample data sets, including Lemna minor, Eisenia andrei (terrestrial earthworm), and algae, we show that both the so-called Box-Cox transformation and use of the Poisson distribution can help to correct variance heterogeneity and nonnormality and so allow nonlinear regression analysis to be implemented. Both the Box-Cox transformation and the Poisson distribution can be readily implemented into existing protocols for statistical analysis. By correcting for nonnormality and variance heterogeneity, these two statistical tools can be used to encourage the transition to regression-based analysis and the depreciation of less-desirable and less-flexible analytical techniques, such as linear interpolation.

  9. The use of bulk collectors in monitoring wet deposition at high-altitude sites in winter

    USGS Publications Warehouse

    Ranalli, A.J.; Turk, J.T.; Campbell, D.H.

    1997-01-01

    Concentrations of dissolved ions from samples collected by wet/dry collectors were compared to those collected by bulk collectors at Halfmoon Creek and Ned Wilson Lake in western Colorado to determine if bulk collectors can be used to monitor wet deposition chemistry in remote, high-altitude regions in winter. Hydrogen-ion concentration was significantly lower (p 0.05) at Halfmoon Creek. Wet deposition concentrations were predicated from bulk deposition concentrations through linear regression analysis. Results indicate that anions (chloride, nitrate and sulfate) can be predicted with a high degree of confidence. Lack of significant differences between seasonal (winter and summer) ratios of bulk to wet deposition concentrations indicates that at sites where operation of a wet/dry collector during the winter is not practical, wet deposition concentrations can be predicted from bulk collector samples through regression analysis of wet and bulk deposition data collected during the summer.

  10. Viewing the viewers: how adults with attentional deficits watch educational videos.

    PubMed

    Hassner, Tal; Wolf, Lior; Lerner, Anat; Leitner, Yael

    2014-10-01

    Knowing how adults with ADHD interact with prerecorded video lessons at home may provide a novel means of early screening and long-term monitoring for ADHD. Viewing patterns of 484 students with known ADHD were compared with 484 age, gender, and academically matched controls chosen from 8,699 non-ADHD students. Transcripts generated by their video playback software were analyzed using t tests and regression analysis. ADHD students displayed significant tendencies (p ≤ .05) to watch videos with more pauses and more reviews of previously watched parts. Other parameters showed similar tendencies. Regression analysis indicated that attentional deficits remained constant for age and gender but varied for learning experience. There were measurable and significant differences between the video-viewing habits of the ADHD and non-ADHD students. This provides a new perspective on how adults cope with attention deficits and suggests a novel means of early screening for ADHD. © 2011 SAGE Publications.

  11. Abnormal proliferation of CD4- CD8+ gammadelta+ T cells with chromosome 6 anomaly: role of Fas ligand expression in spontaneous regression of the cells.

    PubMed

    Ichikawa, N; Kitano, K; Ito, T; Nakazawa, T; Shimodaira, S; Ishida, F; Kiyosawa, K

    1999-04-01

    We report a case of granular lymphocyte proliferative disorder accompanied with hemolytic anemia and neutropenia. Phenotypes of the cells were T cell receptor gammadelta+ CD3+ CD4- CD8+ CD16+ CD56- CD57-. Southern blot analysis of T cell receptor beta and gamma chains demonstrated rearranged bands in both. Chromosomal analysis after IL-2 stimulation showed deletion of chromosome 6. Sorted gammadelta+ T cells showed an increase in Fas ligand expression compared with the levels in sorted alphabeta+ T cells. The expression of Fas ligand on these gammadelta+ T cells increased after IL-2 stimulation. The patient's anemia improved along with a decrease in granular lymphocyte count and disappearance of the abnormal karyotype without treatment. The expression of Fas ligand may be involved in spontaneous regression of granular lymphocyte proliferation with hemolytic anemia.

  12. Regressive research: The pitfalls of post hoc data selection in the study of unconscious mental processes.

    PubMed

    Shanks, David R

    2017-06-01

    Many studies of unconscious processing involve comparing a performance measure (e.g., some assessment of perception or memory) with an awareness measure (such as a verbal report or a forced-choice response) taken either concurrently or separately. Unconscious processing is inferred when above-chance performance is combined with null awareness. Often, however, aggregate awareness is better than chance, and data analysis therefore employs a form of extreme group analysis focusing post hoc on participants, trials, or items where awareness is absent or at chance. The pitfalls of this analytic approach are described with particular reference to recent research on implicit learning and subliminal perception. Because of regression to the mean, the approach can mislead researchers into erroneous conclusions concerning unconscious influences on behavior. Recommendations are made about future use of post hoc selection in research on unconscious cognition.

  13. Self-reported mental health among US military personnel prior and subsequent to the terrorist attacks of September 11, 2001.

    PubMed

    Smith, Tyler C; Smith, Besa; Corbeil, Thomas E; Riddle, James R; Ryan, Margaret A K

    2004-08-01

    There is much concern over the potential for short- and long-term adverse mental health effects caused by the terrorist attacks on September 11, 2001. This analysis used data from the Millennium Cohort Study to identify subgroups of US military members who enrolled in the cohort and reported their mental health status before the traumatic events of September 11 and soon after September 11. While adjusting for confounding, multivariable logistic regression, analysis of variance, and multivariate ordinal, or polychotomous logistic regression were used to compare 18 self-reported mental health measures in US military members who enrolled in the cohort before September 11, 2001 with those military personnel who enrolled after September 11, 2001. In contrast to studies of other populations, military respondents reported fewer mental health problems in the months immediately after September 11, 2001.

  14. Melanin and blood concentration in human skin studied by multiple regression analysis: experiments

    NASA Astrophysics Data System (ADS)

    Shimada, M.; Yamada, Y.; Itoh, M.; Yatagai, T.

    2001-09-01

    Knowledge of the mechanism of human skin colour and measurement of melanin and blood concentration in human skin are needed in the medical and cosmetic fields. The absorbance spectrum from reflectance at the visible wavelength of human skin increases under several conditions such as a sunburn or scalding. The change of the absorbance spectrum from reflectance including the scattering effect does not correspond to the molar absorption spectrum of melanin and blood. The modified Beer-Lambert law is applied to the change in the absorbance spectrum from reflectance of human skin as the change in melanin and blood is assumed to be small. The concentration of melanin and blood was estimated from the absorbance spectrum reflectance of human skin using multiple regression analysis. Estimated concentrations were compared with the measured one in a phantom experiment and this method was applied to in vivo skin.

  15. Sublobar resection is equivalent to lobectomy for clinical stage 1A lung cancer in solid nodules.

    PubMed

    Altorki, Nasser K; Yip, Rowena; Hanaoka, Takaomi; Bauer, Thomas; Aye, Ralph; Kohman, Leslie; Sheppard, Barry; Thurer, Richard; Andaz, Shahriyour; Smith, Michael; Mayfield, William; Grannis, Fred; Korst, Robert; Pass, Harvey; Straznicka, Michaela; Flores, Raja; Henschke, Claudia I

    2014-02-01

    A single randomized trial established lobectomy as the standard of care for the surgical treatment of early-stage non-small cell lung cancer. Recent advances in imaging/staging modalities and detection of smaller tumors have once again rekindled interest in sublobar resection for early-stage disease. The objective of this study was to compare lung cancer survival in patients with non-small cell lung cancer with a diameter of 30 mm or less with clinical stage 1 disease who underwent lobectomy or sublobar resection. We identified 347 patients diagnosed with lung cancer who underwent lobectomy (n = 294) or sublobar resection (n = 53) for non-small cell lung cancer manifesting as a solid nodule in the International Early Lung Cancer Action Program from 1993 to 2011. Differences in the distribution of the presurgical covariates between sublobar resection and lobectomy were assessed using unadjusted P values determined by logistic regression analysis. Propensity scoring was performed using the same covariates. Differences in the distribution of the same covariates between sublobar resection and lobectomy were assessed using adjusted P values determined by logistic regression analysis with adjustment for the propensity scores. Lung cancer-specific survival was determined by the Kaplan-Meier method. Cox survival regression analysis was used to compare sublobar resection with lobectomy, adjusted for the propensity scores, surgical, and pathology findings, when adjusted and stratified by propensity quintiles. Among 347 patients, 10-year Kaplan-Meier for 53 patients treated by sublobar resection compared with 294 patients treated by lobectomy was 85% (95% confidence interval, 80-91) versus 86% (confidence interval, 75-96) (P = .86). Cox survival analysis showed no significant difference between sublobar resection and lobectomy when adjusted for propensity scores or when using propensity quintiles (P = .62 and P = .79, respectively). For those with cancers 20 mm or less in diameter, the 10-year rates were 88% (95% confidence interval, 82-93) versus 84% (95% confidence interval, 73-96) (P = .45), and Cox survival analysis showed no significant difference between sublobar resection and lobectomy using either approach (P = .42 and P = .52, respectively). Sublobar resection and lobectomy have equivalent survival for patients with clinical stage IA non-small cell lung cancer in the context of computed tomography screening for lung cancer. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  16. Network Approach to Understanding Emotion Dynamics in Relation to Childhood Trauma and Genetic Liability to Psychopathology: Replication of a Prospective Experience Sampling Analysis

    PubMed Central

    Hasmi, Laila; Drukker, Marjan; Guloksuz, Sinan; Menne-Lothmann, Claudia; Decoster, Jeroen; van Winkel, Ruud; Collip, Dina; Delespaul, Philippe; De Hert, Marc; Derom, Catherine; Thiery, Evert; Jacobs, Nele; Rutten, Bart P. F.; Wichers, Marieke; van Os, Jim

    2017-01-01

    Background: The network analysis of intensive time series data collected using the Experience Sampling Method (ESM) may provide vital information in gaining insight into the link between emotion regulation and vulnerability to psychopathology. The aim of this study was to apply the network approach to investigate whether genetic liability (GL) to psychopathology and childhood trauma (CT) are associated with the network structure of the emotions “cheerful,” “insecure,” “relaxed,” “anxious,” “irritated,” and “down”—collected using the ESM method. Methods: Using data from a population-based sample of twin pairs and siblings (704 individuals), we examined whether momentary emotion network structures differed across strata of CT and GL. GL was determined empirically using the level of psychopathology in monozygotic and dizygotic co-twins. Network models were generated using multilevel time-lagged regression analysis and were compared across three strata (low, medium, and high) of CT and GL, respectively. Permutations were utilized to calculate p values and compare regressions coefficients, density, and centrality indices. Regression coefficients were presented as connections, while variables represented the nodes in the network. Results: In comparison to the low GL stratum, the high GL stratum had significantly denser overall (p = 0.018) and negative affect network density (p < 0.001). The medium GL stratum also showed a directionally similar (in-between high and low GL strata) but statistically inconclusive association with network density. In contrast to GL, the results of the CT analysis were less conclusive, with increased positive affect density (p = 0.021) and overall density (p = 0.042) in the high CT stratum compared to the medium CT stratum but not to the low CT stratum. The individual node comparisons across strata of GL and CT yielded only very few significant results, after adjusting for multiple testing. Conclusions: The present findings demonstrate that the network approach may have some value in understanding the relation between established risk factors for mental disorders (particularly GL) and the dynamic interplay between emotions. The present finding partially replicates an earlier analysis, suggesting it may be instructive to model negative emotional dynamics as a function of genetic influence. PMID:29163289

  17. Efficacy of Statin Therapy in Inducing Coronary Plaque Regression in Patients with Low Baseline Cholesterol Levels

    PubMed Central

    Nozue, Tsuyoshi; Yamamoto, Shingo; Tohyama, Shinichi; Fukui, Kazuki; Umezawa, Shigeo; Onishi, Yuko; Kunishima, Tomoyuki; Sato, Akira; Miyake, Shogo; Morino, Yoshihiro; Yamauchi, Takao; Muramatsu, Toshiya; Hibi, Kiyoshi; Terashima, Mitsuyasu; Suzuki, Hiroshi; Michishita, Ichiro

    2016-01-01

    Aim: The efficacy of statin therapy in inducing coronary plaque regression may depend on baseline cholesterol levels. We aimed to determine the efficacy of statin therapy in inducing coronary plaque regression in statin-naïve patients with low cholesterol levels using serial intravascular ultrasound (IVUS) data from the treatment with statin on atheroma regression evaluated by virtual histology IVUS (TRUTH) study. Methods: The TRUTH study is a prospective, multicenter trial, comparing the efficacies of pitavastatin and pravastatin in coronary plaque regression in 164 patients. All patients were statin-naïve and received statin therapy only after study enrollment. The primary endpoint was the observation of coronary plaque progression, despite statin therapy. Results: Serial IVUS data, at baseline and after an 8-month follow-up, were available for 119 patients. The patients were divided into three groups based on non-high-density lipoprotein cholesterol (HDL-C) levels—low: ≤ 140 mg/dl, n = 38; moderate: 141–169 mg/dl, n = 42; and high: ≥ 170 mg/dl, n = 39. Coronary plaque progression was noted in the low cholesterol group, whereas plaque regression was noted in the moderate and high cholesterol groups [%Δplaque volume: 2.3 ± 7.4 vs. − 2.7 ± 10.7 vs. − 3.2 ± 7.5, p = 0.004 (analysis of variance)]. After adjusting for all variables, a low non-HDLC level (≤ 140 mg/dl) was identified as an independent predictor of coronary plaque progression [odds ratio, 3.7; 95% confidence interval, 1.5–9.1, p = 0.004]. Conclusion: Serial IVUS data analysis indicated that statin therapy was less effective in inducing coronary plaque regression in patients with low cholesterol levels but more effective in those with high cholesterol levels at baseline. University Hospital Medical Information Network (UMIN) (UMIN ID: C000000311). PMID:27040362

  18. A Quasi-Experiment To Study the Impact of Vancomycin Area under the Concentration-Time Curve-Guided Dosing on Vancomycin-Associated Nephrotoxicity

    PubMed Central

    Finch, Natalie A.; Zasowski, Evan J.; Murray, Kyle P.; Mynatt, Ryan P.; Zhao, Jing J.; Yost, Raymond; Pogue, Jason M.

    2017-01-01

    ABSTRACT Evidence suggests that maintenance of vancomycin trough concentrations at between 15 and 20 mg/liter, as currently recommended, is frequently unnecessary to achieve the daily area under the concentration-time curve (AUC24) target of ≥400 mg · h/liter. Many patients with trough concentrations in this range have AUC24 values in excess of the therapeutic threshold and within the exposure range associated with nephrotoxicity. On the basis of this, the Detroit Medical Center switched from trough concentration-guided dosing to AUC-guided dosing to minimize potentially unnecessary vancomycin exposure. The primary objective of this analysis was to assess the impact of this intervention on vancomycin-associated nephrotoxicity in a single-center, retrospective quasi-experiment of hospitalized adult patients receiving intravenous vancomycin from 2014 to 2015. The primary analysis compared the incidence of nephrotoxicity between patients monitored by assessment of the AUC24 and those monitored by assessment of the trough concentration. Multivariable logistic and Cox proportional hazards regression examined the independent association between the monitoring strategy and nephrotoxicity. Secondary analysis compared vancomycin exposures (total daily dose, AUC, and trough concentrations) between monitoring strategies. Overall, 1,280 patients were included in the analysis. After adjusting for severity of illness, comorbidity, duration of vancomycin therapy, and concomitant receipt of nephrotoxins, AUC-guided dosing was independently associated with lower nephrotoxicity by both logistic regression (odds ratio, 0.52; 95% confidence interval [CI], 0.34 to 0.80; P = 0.003) and Cox proportional hazards regression (hazard ratio, 0.53; 95% CI, 0.35 to 0.78; P = 0.002). AUC-guided dosing was associated with lower total daily vancomycin doses, AUC values, and trough concentrations. Vancomycin AUC-guided dosing was associated with reduced nephrotoxicity, which appeared to be a result of reduced vancomycin exposure. PMID:28923869

  19. Meta-analysis and meta-regression analysis of outcomes of carotid endarterectomy and stenting in the elderly.

    PubMed

    Antoniou, George A; Georgiadis, George S; Georgakarakos, Efstratios I; Antoniou, Stavros A; Bessias, Nikos; Smyth, John Vincent; Murray, David; Lazarides, Miltos K

    2013-12-01

    Uncertainty exists about the influence of advanced age on the outcomes of carotid revascularization. To undertake a comprehensive review of the literature and conduct an analysis of the outcomes of carotid interventions in the elderly. A systematic literature review was conducted to identify articles comparing early outcomes of carotid endarterectomy (CEA) or carotid stenting (CAS) in elderly and young patients. Combined overall effect sizes were calculated using fixed or random effects models. Meta-regression models were formed to explore potential heterogeneity as a result of changes in practice over time. RESULTS Our analysis comprised 44 studies reporting data on 512,685 CEA and 75,201 CAS procedures. Carotid stenting was associated with increased incidence of stroke in elderly patients compared with their young counterparts (odds ratio [OR], 1.56; 95% CI, 1.40-1.75), whereas CEA had equivalent cerebrovascular outcomes in old and young age groups (OR, 0.94; 95% CI, 0.88-0.99). Carotid stenting had similar peri-interventional mortality risks in old and young patients (OR, 0.86; 95% CI, 0.72-1.03), whereas CEA was associated with heightened mortality in elderly patients (OR, 1.62; 95% CI, 1.47-1.77). The incidence of myocardial infarction was increased in patients of advanced age in both CEA and CAS (OR, 1.64; 95% CI, 1.57-1.72 and OR, 1.30; 95% CI, 1.16-1.45, respectively). Meta-regression analyses revealed a significant effect of publication date on peri-interventional stroke (P = .003) and mortality (P < .001) in CAS. Age should be considered when planning a carotid intervention. Carotid stenting has an increased risk of adverse cerebrovascular events in elderly patients but mortality equivalent to younger patients. Carotid endarterectomy is associated with similar neurologic outcomes in elderly and young patients, at the expense of increased mortality.

  20. A Quasi-Experiment To Study the Impact of Vancomycin Area under the Concentration-Time Curve-Guided Dosing on Vancomycin-Associated Nephrotoxicity.

    PubMed

    Finch, Natalie A; Zasowski, Evan J; Murray, Kyle P; Mynatt, Ryan P; Zhao, Jing J; Yost, Raymond; Pogue, Jason M; Rybak, Michael J

    2017-12-01

    Evidence suggests that maintenance of vancomycin trough concentrations at between 15 and 20 mg/liter, as currently recommended, is frequently unnecessary to achieve the daily area under the concentration-time curve (AUC 24 ) target of ≥400 mg · h/liter. Many patients with trough concentrations in this range have AUC 24 values in excess of the therapeutic threshold and within the exposure range associated with nephrotoxicity. On the basis of this, the Detroit Medical Center switched from trough concentration-guided dosing to AUC-guided dosing to minimize potentially unnecessary vancomycin exposure. The primary objective of this analysis was to assess the impact of this intervention on vancomycin-associated nephrotoxicity in a single-center, retrospective quasi-experiment of hospitalized adult patients receiving intravenous vancomycin from 2014 to 2015. The primary analysis compared the incidence of nephrotoxicity between patients monitored by assessment of the AUC 24 and those monitored by assessment of the trough concentration. Multivariable logistic and Cox proportional hazards regression examined the independent association between the monitoring strategy and nephrotoxicity. Secondary analysis compared vancomycin exposures (total daily dose, AUC, and trough concentrations) between monitoring strategies. Overall, 1,280 patients were included in the analysis. After adjusting for severity of illness, comorbidity, duration of vancomycin therapy, and concomitant receipt of nephrotoxins, AUC-guided dosing was independently associated with lower nephrotoxicity by both logistic regression (odds ratio, 0.52; 95% confidence interval [CI], 0.34 to 0.80; P = 0.003) and Cox proportional hazards regression (hazard ratio, 0.53; 95% CI, 0.35 to 0.78; P = 0.002). AUC-guided dosing was associated with lower total daily vancomycin doses, AUC values, and trough concentrations. Vancomycin AUC-guided dosing was associated with reduced nephrotoxicity, which appeared to be a result of reduced vancomycin exposure. Copyright © 2017 American Society for Microbiology.

  1. Using Robust Standard Errors to Combine Multiple Regression Estimates with Meta-Analysis

    ERIC Educational Resources Information Center

    Williams, Ryan T.

    2012-01-01

    Combining multiple regression estimates with meta-analysis has continued to be a difficult task. A variety of methods have been proposed and used to combine multiple regression slope estimates with meta-analysis, however, most of these methods have serious methodological and practical limitations. The purpose of this study was to explore the use…

  2. A Quality Assessment Tool for Non-Specialist Users of Regression Analysis

    ERIC Educational Resources Information Center

    Argyrous, George

    2015-01-01

    This paper illustrates the use of a quality assessment tool for regression analysis. It is designed for non-specialist "consumers" of evidence, such as policy makers. The tool provides a series of questions such consumers of evidence can ask to interrogate regression analysis, and is illustrated with reference to a recent study published…

  3. Visual grading characteristics and ordinal regression analysis during optimisation of CT head examinations.

    PubMed

    Zarb, Francis; McEntee, Mark F; Rainford, Louise

    2015-06-01

    To evaluate visual grading characteristics (VGC) and ordinal regression analysis during head CT optimisation as a potential alternative to visual grading assessment (VGA), traditionally employed to score anatomical visualisation. Patient images (n = 66) were obtained using current and optimised imaging protocols from two CT suites: a 16-slice scanner at the national Maltese centre for trauma and a 64-slice scanner in a private centre. Local resident radiologists (n = 6) performed VGA followed by VGC and ordinal regression analysis. VGC alone indicated that optimised protocols had similar image quality as current protocols. Ordinal logistic regression analysis provided an in-depth evaluation, criterion by criterion allowing the selective implementation of the protocols. The local radiology review panel supported the implementation of optimised protocols for brain CT examinations (including trauma) in one centre, achieving radiation dose reductions ranging from 24 % to 36 %. In the second centre a 29 % reduction in radiation dose was achieved for follow-up cases. The combined use of VGC and ordinal logistic regression analysis led to clinical decisions being taken on the implementation of the optimised protocols. This improved method of image quality analysis provided the evidence to support imaging protocol optimisation, resulting in significant radiation dose savings. • There is need for scientifically based image quality evaluation during CT optimisation. • VGC and ordinal regression analysis in combination led to better informed clinical decisions. • VGC and ordinal regression analysis led to dose reductions without compromising diagnostic efficacy.

  4. A support vector regression-firefly algorithm-based model for limiting velocity prediction in sewer pipes.

    PubMed

    Ebtehaj, Isa; Bonakdari, Hossein

    2016-01-01

    Sediment transport without deposition is an essential consideration in the optimum design of sewer pipes. In this study, a novel method based on a combination of support vector regression (SVR) and the firefly algorithm (FFA) is proposed to predict the minimum velocity required to avoid sediment settling in pipe channels, which is expressed as the densimetric Froude number (Fr). The efficiency of support vector machine (SVM) models depends on the suitable selection of SVM parameters. In this particular study, FFA is used by determining these SVM parameters. The actual effective parameters on Fr calculation are generally identified by employing dimensional analysis. The different dimensionless variables along with the models are introduced. The best performance is attributed to the model that employs the sediment volumetric concentration (C(V)), ratio of relative median diameter of particles to hydraulic radius (d/R), dimensionless particle number (D(gr)) and overall sediment friction factor (λ(s)) parameters to estimate Fr. The performance of the SVR-FFA model is compared with genetic programming, artificial neural network and existing regression-based equations. The results indicate the superior performance of SVR-FFA (mean absolute percentage error = 2.123%; root mean square error =0.116) compared with other methods.

  5. REGRESSION ANALYSIS OF SEA-SURFACE-TEMPERATURE PATTERNS FOR THE NORTH PACIFIC OCEAN.

    DTIC Science & Technology

    SEA WATER, *SURFACE TEMPERATURE, *OCEANOGRAPHIC DATA, PACIFIC OCEAN, REGRESSION ANALYSIS , STATISTICAL ANALYSIS, UNDERWATER EQUIPMENT, DETECTION, UNDERWATER COMMUNICATIONS, DISTRIBUTION, THERMAL PROPERTIES, COMPUTERS.

  6. Fast Quantitative Analysis Of Museum Objects Using Laser-Induced Breakdown Spectroscopy And Multiple Regression Algorithms

    NASA Astrophysics Data System (ADS)

    Lorenzetti, G.; Foresta, A.; Palleschi, V.; Legnaioli, S.

    2009-09-01

    The recent development of mobile instrumentation, specifically devoted to in situ analysis and study of museum objects, allows the acquisition of many LIBS spectra in very short time. However, such large amount of data calls for new analytical approaches which would guarantee a prompt analysis of the results obtained. In this communication, we will present and discuss the advantages of statistical analytical methods, such as Partial Least Squares Multiple Regression algorithms vs. the classical calibration curve approach. PLS algorithms allows to obtain in real time the information on the composition of the objects under study; this feature of the method, compared to the traditional off-line analysis of the data, is extremely useful for the optimization of the measurement times and number of points associated with the analysis. In fact, the real time availability of the compositional information gives the possibility of concentrating the attention on the most `interesting' parts of the object, without over-sampling the zones which would not provide useful information for the scholars or the conservators. Some example on the applications of this method will be presented, including the studies recently performed by the researcher of the Applied Laser Spectroscopy Laboratory on museum bronze objects.

  7. Combined statistical analyses for long-term stability data with multiple storage conditions: a simulation study.

    PubMed

    Almalik, Osama; Nijhuis, Michiel B; van den Heuvel, Edwin R

    2014-01-01

    Shelf-life estimation usually requires that at least three registration batches are tested for stability at multiple storage conditions. The shelf-life estimates are often obtained by linear regression analysis per storage condition, an approach implicitly suggested by ICH guideline Q1E. A linear regression analysis combining all data from multiple storage conditions was recently proposed in the literature when variances are homogeneous across storage conditions. The combined analysis is expected to perform better than the separate analysis per storage condition, since pooling data would lead to an improved estimate of the variation and higher numbers of degrees of freedom, but this is not evident for shelf-life estimation. Indeed, the two approaches treat the observed initial batch results, the intercepts in the model, and poolability of batches differently, which may eliminate or reduce the expected advantage of the combined approach with respect to the separate approach. Therefore, a simulation study was performed to compare the distribution of simulated shelf-life estimates on several characteristics between the two approaches and to quantify the difference in shelf-life estimates. In general, the combined statistical analysis does estimate the true shelf life more consistently and precisely than the analysis per storage condition, but it did not outperform the separate analysis in all circumstances.

  8. The process and utility of classification and regression tree methodology in nursing research

    PubMed Central

    Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda

    2014-01-01

    Aim This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Background Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Design Discussion paper. Data sources English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984–2013. Discussion Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Implications for Nursing Research Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Conclusion Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. PMID:24237048

  9. The process and utility of classification and regression tree methodology in nursing research.

    PubMed

    Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda

    2014-06-01

    This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Discussion paper. English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984-2013. Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. © 2013 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  10. Optical scatterometry of quarter-micron patterns using neural regression

    NASA Astrophysics Data System (ADS)

    Bischoff, Joerg; Bauer, Joachim J.; Haak, Ulrich; Hutschenreuther, Lutz; Truckenbrodt, Horst

    1998-06-01

    With shrinking dimensions and increasing chip areas, a rapid and non-destructive full wafer characterization after every patterning cycle is an inevitable necessity. In former publications it was shown that Optical Scatterometry (OS) has the potential to push the attainable feature limits of optical techniques from 0.8 . . . 0.5 microns for imaging methods down to 0.1 micron and below. Thus the demands of future metrology can be met. Basically being a nonimaging method, OS combines light scatter (or diffraction) measurements with modern data analysis schemes to solve the inverse scatter issue. For very fine patterns with lambda-to-pitch ratios grater than one, the specular reflected light versus the incidence angle is recorded. Usually, the data analysis comprises two steps -- a training cycle connected the a rigorous forward modeling and the prediction itself. Until now, two data analysis schemes are usually applied -- the multivariate regression based Partial Least Squares method (PLS) and a look-up-table technique which is also referred to as Minimum Mean Square Error approach (MMSE). Both methods are afflicted with serious drawbacks. On the one hand, the prediction accuracy of multivariate regression schemes degrades with larger parameter ranges due to the linearization properties of the method. On the other hand, look-up-table methods are rather time consuming during prediction thus prolonging the processing time and reducing the throughput. An alternate method is an Artificial Neural Network (ANN) based regression which combines the advantages of multivariate regression and MMSE. Due to the versatility of a neural network, not only can its structure be adapted more properly to the scatter problem, but also the nonlinearity of the neuronal transfer functions mimic the nonlinear behavior of optical diffraction processes more adequately. In spite of these pleasant properties, the prediction speed of ANN regression is comparable with that of the PLS-method. In this paper, the viability and performance of ANN-regression will be demonstrated with the example of sub-quarter-micron resist metrology. To this end, 0.25 micrometer line/space patterns have been printed in positive photoresist by means of DUV projection lithography. In order to evaluate the total metrology chain from light scatter measurement through data analysis, a thorough modeling has been performed. Assuming a trapezoidal shape of the developed resist profile, a training data set was generated by means of the Rigorous Coupled Wave Approach (RCWA). After training the model, a second data set was computed and deteriorated by Gaussian noise to imitate real measuring conditions. Then, these data have been fed into the models established before resulting in a Standard Error of Prediction (SEP) which corresponds to the measuring accuracy. Even with putting only little effort in the design of a back-propagation network, the ANN is clearly superior to the PLS-method. Depending on whether a network with one or two hidden layers was used, accuracy gains between 2 and 5 can be achieved compared with PLS regression. Furthermore, the ANN is less noise sensitive, for there is only a doubling of the SEP at 5% noise for ANN whereas for PLS the accuracy degrades rapidly with increasing noise. The accuracy gain also depends on the light polarization and on the measured parameters. Finally, these results have been proven experimentally, where the OS-results are in good accordance with the profiles obtained from cross- sectioning micrographs.

  11. Advantages of the net benefit regression framework for economic evaluations of interventions in the workplace: a case study of the cost-effectiveness of a collaborative mental health care program for people receiving short-term disability benefits for psychiatric disorders.

    PubMed

    Hoch, Jeffrey S; Dewa, Carolyn S

    2014-04-01

    Economic evaluations commonly accompany trials of new treatments or interventions; however, regression methods and their corresponding advantages for the analysis of cost-effectiveness data are not well known. To illustrate regression-based economic evaluation, we present a case study investigating the cost-effectiveness of a collaborative mental health care program for people receiving short-term disability benefits for psychiatric disorders. We implement net benefit regression to illustrate its strengths and limitations. Net benefit regression offers a simple option for cost-effectiveness analyses of person-level data. By placing economic evaluation in a regression framework, regression-based techniques can facilitate the analysis and provide simple solutions to commonly encountered challenges. Economic evaluations of person-level data (eg, from a clinical trial) should use net benefit regression to facilitate analysis and enhance results.

  12. The quantile regression approach to efficiency measurement: insights from Monte Carlo simulations.

    PubMed

    Liu, Chunping; Laporte, Audrey; Ferguson, Brian S

    2008-09-01

    In the health economics literature there is an ongoing debate over approaches used to estimate the efficiency of health systems at various levels, from the level of the individual hospital - or nursing home - up to that of the health system as a whole. The two most widely used approaches to evaluating the efficiency with which various units deliver care are non-parametric data envelopment analysis (DEA) and parametric stochastic frontier analysis (SFA). Productivity researchers tend to have very strong preferences over which methodology to use for efficiency estimation. In this paper, we use Monte Carlo simulation to compare the performance of DEA and SFA in terms of their ability to accurately estimate efficiency. We also evaluate quantile regression as a potential alternative approach. A Cobb-Douglas production function, random error terms and a technical inefficiency term with different distributions are used to calculate the observed output. The results, based on these experiments, suggest that neither DEA nor SFA can be regarded as clearly dominant, and that, depending on the quantile estimated, the quantile regression approach may be a useful addition to the armamentarium of methods for estimating technical efficiency.

  13. Improved spatial regression analysis of diffusion tensor imaging for lesion detection during longitudinal progression of multiple sclerosis in individual subjects

    NASA Astrophysics Data System (ADS)

    Liu, Bilan; Qiu, Xing; Zhu, Tong; Tian, Wei; Hu, Rui; Ekholm, Sven; Schifitto, Giovanni; Zhong, Jianhui

    2016-03-01

    Subject-specific longitudinal DTI study is vital for investigation of pathological changes of lesions and disease evolution. Spatial Regression Analysis of Diffusion tensor imaging (SPREAD) is a non-parametric permutation-based statistical framework that combines spatial regression and resampling techniques to achieve effective detection of localized longitudinal diffusion changes within the whole brain at individual level without a priori hypotheses. However, boundary blurring and dislocation limit its sensitivity, especially towards detecting lesions of irregular shapes. In the present study, we propose an improved SPREAD (dubbed improved SPREAD, or iSPREAD) method by incorporating a three-dimensional (3D) nonlinear anisotropic diffusion filtering method, which provides edge-preserving image smoothing through a nonlinear scale space approach. The statistical inference based on iSPREAD was evaluated and compared with the original SPREAD method using both simulated and in vivo human brain data. Results demonstrated that the sensitivity and accuracy of the SPREAD method has been improved substantially by adapting nonlinear anisotropic filtering. iSPREAD identifies subject-specific longitudinal changes in the brain with improved sensitivity, accuracy, and enhanced statistical power, especially when the spatial correlation is heterogeneous among neighboring image pixels in DTI.

  14. The role of health-related behaviors in the socioeconomic disparities in oral health.

    PubMed

    Sabbah, Wael; Tsakos, Georgios; Sheiham, Aubrey; Watt, Richard G

    2009-01-01

    This study aimed to examine the socioeconomic disparities in health-related behaviors and to assess if behaviors eliminate socioeconomic disparities in oral health in a nationally representative sample of adult Americans. Data are from the US Third National Health and Nutrition Examination Survey (1988-1994). Behaviors were indicated by smoking, dental visits, frequency of eating fresh fruits and vegetables and extent of calculus, used as a marker for oral hygiene. Oral health outcomes were gingival bleeding, loss of periodontal attachment, tooth loss and perceived oral health. Education and income indicated socioeconomic position. Sex, age, ethnicity, dental insurance and diabetes were adjusted for in the regression analysis. Regression analysis was used to assess socioeconomic disparities in behaviors. Regression models adjusting and not adjusting for behaviors were compared to assess the change in socioeconomic disparities in oral health. The results showed clear socioeconomic disparities in all behaviors. After adjusting for behaviors, the association between oral health and socioeconomic indicators attenuated but did not disappear. These findings imply that improvement in health-related behaviors may lessen, but not eliminate socioeconomic disparities in oral health, and suggest the presence of more complex determinants of these disparities which should be addressed by oral health preventive policies.

  15. Linear regression analysis of emissions factors when firing fossil fuels and biofuels in a commercial water-tube boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharon Falcone Miller; Bruce G. Miller

    2007-12-15

    This paper compares the emissions factors for a suite of liquid biofuels (three animal fats, waste restaurant grease, pressed soybean oil, and a biodiesel produced from soybean oil) and four fossil fuels (i.e., natural gas, No. 2 fuel oil, No. 6 fuel oil, and pulverized coal) in Penn State's commercial water-tube boiler to assess their viability as fuels for green heat applications. The data were broken into two subsets, i.e., fossil fuels and biofuels. The regression model for the liquid biofuels (as a subset) did not perform well for all of the gases. In addition, the coefficient in the modelsmore » showed the EPA method underestimating CO and NOx emissions. No relation could be studied for SO{sub 2} for the liquid biofuels as they contain no sulfur; however, the model showed a good relationship between the two methods for SO{sub 2} in the fossil fuels. AP-42 emissions factors for the fossil fuels were also compared to the mass balance emissions factors and EPA CFR Title 40 emissions factors. Overall, the AP-42 emissions factors for the fossil fuels did not compare well with the mass balance emissions factors or the EPA CFR Title 40 emissions factors. Regression analysis of the AP-42, EPA, and mass balance emissions factors for the fossil fuels showed a significant relationship only for CO{sub 2} and SO{sub 2}. However, the regression models underestimate the SO{sub 2} emissions by 33%. These tests illustrate the importance in performing material balances around boilers to obtain the most accurate emissions levels, especially when dealing with biofuels. The EPA emissions factors were very good at predicting the mass balance emissions factors for the fossil fuels and to a lesser degree the biofuels. While the AP-42 emissions factors and EPA CFR Title 40 emissions factors are easier to perform, especially in large, full-scale systems, this study illustrated the shortcomings of estimation techniques. 23 refs., 3 figs., 8 tabs.« less

  16. Study on relationship of nitric oxide, oxidation, peroxidation, lipoperoxidation with chronic chole-cystitis

    PubMed Central

    Zhou, Jun-Fu; Cai, Dong; Zhu, You-Gen; Yang, Jin-Lu; Peng, Cheng-Hong; Yu, Yang-Hai

    2000-01-01

    AIM: To study relationship of injury induced by nitric oxide, oxidation, peroxidation, lipoperoxidation with chronic cholecystitis. METHODS: The values of plasma nitric oxide (P-NO), plasma vitamin C (P-VC), plasma vitamin E (P-VE), plasma β-carotene (P-β-CAR), plasma lipoperoxides (P-LPO), erythrocyte superoxide dismutase (E-SOD), erythrocyte catalase (E-CAT), erythrocyte glutathione peroxidase (E-GSH-Px) activities and erythrocyte lipoperoxides (E-LPO) level in 77 patients with chro nic cholecystitis and 80 healthy control subjects were determined, differences of the above average values between t he patient group and the control group and differences of the average values bet ween preoperative and postoperative patients were analyzed and compared, linear regression and correlation of the disease course with the above determination values as well as the stepwise regression and correlation of the course with th e values were analyzed. RESULTS: Compared with the control group, the average values of P-NO, P-LPO, E-LPO were significantly increased (P < 0.01), and of P-VC, P-VE, P-β-CAR, E-SOD, E-CAT and E-GSH-Px decreased (P < 0.01) in the patient group. The analysis of the lin ear regression and correlation s howed that with prolonging of the course, the values of P-NO, P-LPO and E-LPO in the patients were gradually ascended and the values of P-VC, P-VE, P-β-CAR, E-SOD, E-CAT and E-GSH-Px descended (P < 0.01). The analysis of the stepwise regression and correlation indicated that the correlation of the course with P-NO, P-VE and P-β-CAR values was the closest. Compared with the preoperative patients, the average values of P-NO, P-LPO and E-LPO were significantly decre ased (P < 0.01) and the average values of P-VC, E-SOD, E-CAT and E-GSH-Px in postoperative pa tients increased (P < 0.01) in postoperative patients. But there was no signif icant difference in the average values of P-VE, P-β-CAR preope rative and postoperative patients. CONCLUSION: Chronic cholecystitis could induce the increase of nitric oxide, oxidation, peroxidation and lipoperoxidation. PMID:11819637

  17. Comparing the index-flood and multiple-regression methods using L-moments

    NASA Astrophysics Data System (ADS)

    Malekinezhad, H.; Nachtnebel, H. P.; Klik, A.

    In arid and semi-arid regions, the length of records is usually too short to ensure reliable quantile estimates. Comparing index-flood and multiple-regression analyses based on L-moments was the main objective of this study. Factor analysis was applied to determine main influencing variables on flood magnitude. Ward’s cluster and L-moments approaches were applied to several sites in the Namak-Lake basin in central Iran to delineate homogeneous regions based on site characteristics. Homogeneity test was done using L-moments-based measures. Several distributions were fitted to the regional flood data and index-flood and multiple-regression methods as two regional flood frequency methods were compared. The results of factor analysis showed that length of main waterway, compactness coefficient, mean annual precipitation, and mean annual temperature were the main variables affecting flood magnitude. The study area was divided into three regions based on the Ward’s method of clustering approach. The homogeneity test based on L-moments showed that all three regions were acceptably homogeneous. Five distributions were fitted to the annual peak flood data of three homogeneous regions. Using the L-moment ratios and the Z-statistic criteria, GEV distribution was identified as the most robust distribution among five candidate distributions for all the proposed sub-regions of the study area, and in general, it was concluded that the generalised extreme value distribution was the best-fit distribution for every three regions. The relative root mean square error (RRMSE) measure was applied for evaluating the performance of the index-flood and multiple-regression methods in comparison with the curve fitting (plotting position) method. In general, index-flood method gives more reliable estimations for various flood magnitudes of different recurrence intervals. Therefore, this method should be adopted as regional flood frequency method for the study area and the Namak-Lake basin in central Iran. To estimate floods of various return periods for gauged catchments in the study area, the mean annual peak flood of the catchments may be multiplied by corresponding values of the growth factors, and computed using the GEV distribution.

  18. Sparse multivariate factor analysis regression models and its applications to integrative genomics analysis.

    PubMed

    Zhou, Yan; Wang, Pei; Wang, Xianlong; Zhu, Ji; Song, Peter X-K

    2017-01-01

    The multivariate regression model is a useful tool to explore complex associations between two kinds of molecular markers, which enables the understanding of the biological pathways underlying disease etiology. For a set of correlated response variables, accounting for such dependency can increase statistical power. Motivated by integrative genomic data analyses, we propose a new methodology-sparse multivariate factor analysis regression model (smFARM), in which correlations of response variables are assumed to follow a factor analysis model with latent factors. This proposed method not only allows us to address the challenge that the number of association parameters is larger than the sample size, but also to adjust for unobserved genetic and/or nongenetic factors that potentially conceal the underlying response-predictor associations. The proposed smFARM is implemented by the EM algorithm and the blockwise coordinate descent algorithm. The proposed methodology is evaluated and compared to the existing methods through extensive simulation studies. Our results show that accounting for latent factors through the proposed smFARM can improve sensitivity of signal detection and accuracy of sparse association map estimation. We illustrate smFARM by two integrative genomics analysis examples, a breast cancer dataset, and an ovarian cancer dataset, to assess the relationship between DNA copy numbers and gene expression arrays to understand genetic regulatory patterns relevant to the disease. We identify two trans-hub regions: one in cytoband 17q12 whose amplification influences the RNA expression levels of important breast cancer genes, and the other in cytoband 9q21.32-33, which is associated with chemoresistance in ovarian cancer. © 2016 WILEY PERIODICALS, INC.

  19. Signal Analysis Algorithms for Optimized Fitting of Nonresonant Laser Induced Thermal Acoustics Damped Sinusoids

    NASA Technical Reports Server (NTRS)

    Balla, R. Jeffrey; Miller, Corey A.

    2008-01-01

    This study seeks a numerical algorithm which optimizes frequency precision for the damped sinusoids generated by the nonresonant LITA technique. It compares computed frequencies, frequency errors, and fit errors obtained using five primary signal analysis methods. Using variations on different algorithms within each primary method, results from 73 fits are presented. Best results are obtained using an AutoRegressive method. Compared to previous results using Prony s method, single shot waveform frequencies are reduced approx.0.4% and frequency errors are reduced by a factor of approx.20 at 303K to approx. 0.1%. We explore the advantages of high waveform sample rates and potential for measurements in low density gases.

  20. Advertising for Demand Creation for Voluntary Medical Male Circumcision.

    PubMed

    Wilson, Nicholas; Frade, Sasha; Rech, Dino; Friedman, Willa

    2016-08-15

    To measure the effects of information, a challenge, and a conditional cash transfer on take-up of voluntary medical male circumcision (VMMC). A randomized, controlled experiment with 4000 postcard recipients in Soweto (Johannesburg), South Africa. We examined differences in take-up of several decisions in the VMMC cascade between the control arm and each of several intervention arms using logistic regression. Logistic regression analysis indicated that the group offered US $10 as compensation and the group challenged with "Are you tough enough?" had significantly higher take-up of the VMMC procedure than did the control group [odds ratios, respectively, 5.30 (CI: 2.20 to 12.76) and 2.70 (CI: 1.05 to 6.91)]. Similarly, the compensation group had significantly higher take-up of the VMMC counseling session than did the control group [odds ratio 3.76 (CI: 1.79 to 7.89)]. The analysis did not reveal significantly different take-up of either the VMMC counseling session or the procedure in the partner preference information group compared with the control group [odds ratios, respectively, 1.23 (CI: 0.51 to 2.97) and 1.67 (CI: 0.61 to 4.62)]. The analysis did not reveal significantly higher take-up of the VMMC nurse hotline in any intervention group compared with the control group [odds ratios for US $10, information, and challenge, respectively, 1.17 (CI: 0.67 to 2.07), 0.69 (CI: 0.36 to 1.32), and 0.60 (0.31 to 1.18)]. Among adult males in Soweto, South Africa, compensation of US $10 provided conditional on completing the VMMC counseling session compared with no compensation offer and a postcard with a challenge, "Are you tough enough?" compared with no challenge, resulted in moderate increases in take-up of circumcision.

  1. Does rectal indomethacin eliminate the need for prophylactic pancreatic stent placement in patients undergoing high-risk ERCP? Post hoc efficacy and cost-benefit analyses using prospective clinical trial data.

    PubMed

    Elmunzer, B Joseph; Higgins, Peter D R; Saini, Sameer D; Scheiman, James M; Parker, Robert A; Chak, Amitabh; Romagnuolo, Joseph; Mosler, Patrick; Hayward, Rodney A; Elta, Grace H; Korsnes, Sheryl J; Schmidt, Suzette E; Sherman, Stuart; Lehman, Glen A; Fogel, Evan L

    2013-03-01

    A recent large-scale randomized controlled trial (RCT) demonstrated that rectal indomethacin administration is effective in addition to pancreatic stent placement (PSP) for preventing post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP) in high-risk cases. We performed a post hoc analysis of this RCT to explore whether rectal indomethacin can replace PSP in the prevention of PEP and to estimate the potential cost savings of such an approach. We retrospectively classified RCT subjects into four prevention groups: (1) no prophylaxis, (2) PSP alone, (3) rectal indomethacin alone, and (4) the combination of PSP and indomethacin. Multivariable logistic regression was used to adjust for imbalances in the prevalence of risk factors for PEP between the groups. Based on these adjusted PEP rates, we conducted an economic analysis comparing the costs associated with PEP prevention strategies employing rectal indomethacin alone, PSP alone, or the combination of both. After adjusting for risk using two different logistic regression models, rectal indomethacin alone appeared to be more effective for preventing PEP than no prophylaxis, PSP alone, and the combination of indomethacin and PSP. Economic analysis revealed that indomethacin alone was a cost-saving strategy in 96% of Monte Carlo trials. A prevention strategy employing rectal indomethacin alone could save approximately $150 million annually in the United States compared with a strategy of PSP alone, and $85 million compared with a strategy of indomethacin and PSP. This hypothesis-generating study suggests that prophylactic rectal indomethacin could replace PSP in patients undergoing high-risk ERCP, potentially improving clinical outcomes and reducing healthcare costs. A RCT comparing rectal indomethacin alone vs. indomethacin plus PSP is needed.

  2. Impact of Precision Medicine in Diverse Cancers: A Meta-Analysis of Phase II Clinical Trials

    PubMed Central

    Schwaederle, Maria; Zhao, Melissa; Lee, J. Jack; Eggermont, Alexander M.; Schilsky, Richard L.; Mendelsohn, John; Lazar, Vladimir; Kurzrock, Razelle

    2015-01-01

    Purpose The impact of a personalized cancer treatment strategy (ie, matching patients with drugs based on specific biomarkers) is still a matter of debate. Methods We reviewed phase II single-agent studies (570 studies; 32,149 patients) published between January 1, 2010, and December 31, 2012 (PubMed search). Response rate (RR), progression-free survival (PFS), and overall survival (OS) were compared for arms that used a personalized strategy versus those that did not. Results Multivariable analysis (both weighted multiple linear regression and random effects meta-regression) demonstrated that the personalized approach, compared with a nonpersonalized approach, consistently and independently correlated with higher median RR (31% v 10.5%, respectively; P < .001) and prolonged median PFS (5.9 v 2.7 months, respectively; P < .001) and OS (13.7 v 8.9 months, respectively; P < .001). Nonpersonalized targeted arms had poorer outcomes compared with either personalized targeted therapy or cytotoxics, with median RR of 4%, 30%, and 11.9%, respectively; median PFS of 2.6, 6.9, and 3.3 months, respectively (all P < .001); and median OS of 8.7, 15.9, and 9.4 months, respectively (all P < .05). Personalized arms using a genomic biomarker had higher median RR and prolonged median PFS and OS (all P ≤ .05) compared with personalized arms using a protein biomarker. A personalized strategy was associated with a lower treatment-related death rate than a nonpersonalized strategy (median, 1.5% v 2.3%, respectively; P < .001). Conclusion Comprehensive analysis of phase II, single-agent arms revealed that, across malignancies, a personalized strategy was an independent predictor of better outcomes and fewer toxic deaths. In addition, nonpersonalized targeted therapies were associated with significantly poorer outcomes than cytotoxic agents, which in turn were worse than personalized targeted therapy. PMID:26304871

  3. CADDIS Volume 4. Data Analysis: Basic Analyses

    EPA Pesticide Factsheets

    Use of statistical tests to determine if an observation is outside the normal range of expected values. Details of CART, regression analysis, use of quantile regression analysis, CART in causal analysis, simplifying or pruning resulting trees.

  4. Placement Model for First-Time Freshmen in Calculus I (Math 131): University of Northern Colorado

    ERIC Educational Resources Information Center

    Heiny, Robert L.; Heiny, Erik L.; Raymond, Karen

    2017-01-01

    Two approaches, Linear Discriminant Analysis, and Logistic Regression are used and compared to predict success or failure for first-time freshmen in the first calculus course at a medium-sized public, 4-year institution prior to Fall registration. The predictor variables are high school GPA, the number, and GPA's of college prep mathematics…

  5. Application of Logistic Regression and Survival Analysis to the Study of CEP, Manpower Performance and Attrition

    DTIC Science & Technology

    1993-09-01

    compared to the male counterparts, the study does not discriminate between the two sexes . Out of the total of about 17000 records, about 30% of them are...few naval officers and pilots. Almost all the officers are in the Army. Hence, for the support vocations and sevice groups effects the study does not

  6. Characterizing trends in fruit and vegetable intake in the US by self-report and by supply-and-disappearance data: 2001-2014

    USDA-ARS?s Scientific Manuscript database

    Objective: To examine the comparability of fruit and vegetable (F&V) intake data in the US from 2001-2014 between data acquired from two national data collection programs. Design: Cross-sectional analysis. Linear regression models estimated trends in daily per-capita intake of total F&V. Pooled di...

  7. Interactive Visual Least Absolutes Method: Comparison with the Least Squares and the Median Methods

    ERIC Educational Resources Information Center

    Kim, Myung-Hoon; Kim, Michelle S.

    2016-01-01

    A visual regression analysis using the least absolutes method (LAB) was developed, utilizing an interactive approach of visually minimizing the sum of the absolute deviations (SAB) using a bar graph in Excel; the results agree very well with those obtained from nonvisual LAB using a numerical Solver in Excel. These LAB results were compared with…

  8. Using the Rural-Urban Continuum to Explore Adolescent Alcohol, Tobacco, and Other Drug Use in Montana

    ERIC Educational Resources Information Center

    Hanson, Carl L.; Novilla, M. Lelinneth L. B.; Barnes, Michael D.; Eggett, Dennis; McKell, Chelsea; Reichman, Peter; Havens, Mike

    2009-01-01

    The purpose of the study was to compare 30-day prevalence of alcohol, tobacco, and other drug use among twelfth-grade students in Montana across a rural-urban continuum during 2000, 2002, and 2004. The methods include an analysis of the Montana Prevention Needs Assessment (N = 15,372) using multivariable logistic regression adjusting for risk…

  9. A Comparison of Health-Risk Behaviors of Rural Migrants with Rural Residents and Urban Residents in China

    ERIC Educational Resources Information Center

    Chen, Xinguang; Stanton, Bonita; Li, Xiaoming; Fang, Xiaoyi; Lin, Danhua; Xiong, Qing

    2009-01-01

    Objective: To determine whether rural-to-urban migrants in China are more likely than rural and urban residents to engage in risk behaviors. Methods: Comparative analysis of survey data between migrants and rural and urban residents using age standardized rate and multiple logistic regression. Results: The prevalence and frequency of tobacco…

  10. Worker productivity and herbicide usage for pine release with manual application methods

    Treesearch

    James H. Miller; G.R. Glover

    1993-01-01

    Abstract. Productivity, herbicide usage, and costs of manually-applied pine release treatments were examined with linear regression analysis and compared. Data came from a replicated study in a 3-year-old loblolly pine plantation in Alabama’s Piedmont. Brush sawing had the highest labor costs but lowest total treatment costs. While of the...

  11. Implications of Interactions among Society, Education and Technology: A Comparison of Multiple Linear Regression and Multilevel Modeling in Mathematics Achievement Analyses

    ERIC Educational Resources Information Center

    Deering, Pamela Rose

    2014-01-01

    This research compares and contrasts two approaches to predictive analysis of three years' of school district data to investigate relationships between student and teacher characteristics and math achievement as measured by the state-mandated Maryland School Assessment mathematics exam. The sample for the study consisted of 3,514 students taught…

  12. A watershed's response to logging and roads: South Fork of Caspar Creek, California, 1967-1976

    Treesearch

    Raymond M. Rice; Forest B. Tilley; Patricia A. Datzman

    1979-01-01

    The effect of logging and roadbuilding on erosion and sedimentation are analyzed by comparing the North Fork and South Fork of Caspar Creek, in northern California. Increased sediment production during the 4 years after road construction, was 326 cu yd/sq mi/yr—80 percent greater than that predicted by the predisturbance regression analysis. The average...

  13. Solutions for Determining the Significance Region Using the Johnson-Neyman Type Procedure in Generalized Linear (Mixed) Models

    ERIC Educational Resources Information Center

    Lazar, Ann A.; Zerbe, Gary O.

    2011-01-01

    Researchers often compare the relationship between an outcome and covariate for two or more groups by evaluating whether the fitted regression curves differ significantly. When they do, researchers need to determine the "significance region," or the values of the covariate where the curves significantly differ. In analysis of covariance (ANCOVA),…

  14. Neural correlates of gait variability in people with multiple sclerosis with fall history.

    PubMed

    Kalron, Alon; Allali, Gilles; Achiron, Anat

    2018-05-28

    Investigate the association between step time variability and related brain structures in accordance with fall status in people with multiple sclerosis (PwMS). The study included 225 PwMS. A whole-brain MRI was performed by a high-resolution 3.0-Telsa MR scanner in addition to volumetric analysis based on 3D T1-weighted images using the FreeSurfer image analysis suite. Step time variability was measured by an electronic walkway. Participants were defined as "fallers" (at least two falls during the previous year) and "non-fallers". One hundred and five PwMS were defined as fallers and had a greater step time variability compared to non-fallers (5.6% (S.D.=3.4) vs. 3.4% (S.D.=1.5); p=0.001). MS fallers exhibited a reduced volume in the left caudate and both cerebellum hemispheres compared to non-fallers. By using a linear regression analysis no association was found between gait variability and related brain structures in the total cohort and non-fallers group. However, the analysis found an association between the left hippocampus and left putamen volumes with step time variability in the faller group; p=0.031, 0.048, respectively, controlling for total cranial volume, walking speed, disability, age and gender. Nevertheless, according to the hierarchical regression model, the contribution of these brain measures to predict gait variability was relatively small compared to walking speed. An association between low left hippocampal, putamen volumes and step time variability was found in PwMS with a history of falls, suggesting brain structural characteristics may be related to falls and increased gait variability in PwMS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Cost-effectiveness of sacubitril/valsartan in chronic heart-failure patients with reduced ejection fraction.

    PubMed

    Ademi, Zanfina; Pfeil, Alena M; Hancock, Elizabeth; Trueman, David; Haroun, Rola Haroun; Deschaseaux, Celine; Schwenkglenks, Matthias

    2017-11-29

    We aimed to assess the cost effectiveness of sacubitril/valsartan compared to angiotensin-converting enzyme inhibitors (ACEIs) for the treatment of individuals with chronic heart failure and reduced-ejection fraction (HFrEF) from the perspective of the Swiss health care system. The cost-effectiveness analysis was implemented as a lifelong regression-based cohort model. We compared sacubitril/valsartan with enalapril in chronic heart failure patients with HFrEF and New York-Heart Association Functional Classification II-IV symptoms. Regression models based on the randomised clinical phase III PARADIGM-HF trials were used to predict events (all-cause mortality, hospitalisations, adverse events and quality of life) for each treatment strategy modelled over the lifetime horizon, with adjustments for patient characteristics. Unit costs were obtained from Swiss public sources for the year 2014, and costs and effects were discounted by 3%. The main outcome of interest was the incremental cost-effectiveness ratio (ICER), expressed as cost per quality-adjusted life years (QALYs) gained. Deterministic sensitivity analysis (DSA) and scenario and probabilistic sensitivity analysis (PSA) were performed. In the base-case analysis, the sacubitril/valsartan strategy showed a decrease in the number of hospitalisations (6.0% per year absolute reduction) and lifetime hospital costs by 8.0% (discounted) when compared with enalapril. Sacubitril/valsartan was predicted to improve overall and quality-adjusted survival by 0.50 years and 0.42 QALYs, respectively. Additional net-total costs were CHF 10 926. This led to an ICER of CHF 25 684. In PSA, the probability of sacubitril/valsartan being cost-effective at thresholds of CHF 50 000 was 99.0%. The treatment of HFrEF patients with sacubitril/valsartan versus enalapril is cost effective, if a willingness-to-pay threshold of CHF 50 000 per QALY gained ratio is assumed.

  16. Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards.

    PubMed

    Churpek, Matthew M; Yuen, Trevor C; Winslow, Christopher; Meltzer, David O; Kattan, Michael W; Edelson, Dana P

    2016-02-01

    Machine learning methods are flexible prediction algorithms that may be more accurate than conventional regression. We compared the accuracy of different techniques for detecting clinical deterioration on the wards in a large, multicenter database. Observational cohort study. Five hospitals, from November 2008 until January 2013. Hospitalized ward patients None Demographic variables, laboratory values, and vital signs were utilized in a discrete-time survival analysis framework to predict the combined outcome of cardiac arrest, intensive care unit transfer, or death. Two logistic regression models (one using linear predictor terms and a second utilizing restricted cubic splines) were compared to several different machine learning methods. The models were derived in the first 60% of the data by date and then validated in the next 40%. For model derivation, each event time window was matched to a non-event window. All models were compared to each other and to the Modified Early Warning score, a commonly cited early warning score, using the area under the receiver operating characteristic curve (AUC). A total of 269,999 patients were admitted, and 424 cardiac arrests, 13,188 intensive care unit transfers, and 2,840 deaths occurred in the study. In the validation dataset, the random forest model was the most accurate model (AUC, 0.80 [95% CI, 0.80-0.80]). The logistic regression model with spline predictors was more accurate than the model utilizing linear predictors (AUC, 0.77 vs 0.74; p < 0.01), and all models were more accurate than the MEWS (AUC, 0.70 [95% CI, 0.70-0.70]). In this multicenter study, we found that several machine learning methods more accurately predicted clinical deterioration than logistic regression. Use of detection algorithms derived from these techniques may result in improved identification of critically ill patients on the wards.

  17. [Comparative evaluation of the sensitivity of Acinetobacter to colistin, using the prediffusion and minimum inhibitory concentration methods: detection of heteroresistant isolates].

    PubMed

    Herrera, Melina E; Mobilia, Liliana N; Posse, Graciela R

    2011-01-01

    The objective of this study is to perform a comparative evaluation of the prediffusion and minimum inhibitory concentration (MIC) methods for the detection of sensitivity to colistin, and to detect Acinetobacter baumanii-calcoaceticus complex (ABC) heteroresistant isolates to colistin. We studied 75 isolates of ABC recovered from clinically significant samples obtained from various centers. Sensitivity to colistin was determined by prediffusion as well as by MIC. All the isolates were sensitive to colistin, with MIC = 2µg/ml. The results were analyzed by dispersion graph and linear regression analysis, revealing that the prediffusion method did not correlate with the MIC values for isolates sensitive to colistin (r² = 0.2017). Detection of heteroresistance to colistin was determined by plaque efficiency of all the isolates with the same initial MICs of 2, 1, and 0.5 µg/ml, which resulted in 14 of them with a greater than 8-fold increase in the MIC in some cases. When the sensitivity of these resistant colonies was determined by prediffusion, the resulting dispersion graph and linear regression analysis yielded an r² = 0.604, which revealed a correlation between the methodologies used.

  18. MAGMA: Generalized Gene-Set Analysis of GWAS Data

    PubMed Central

    de Leeuw, Christiaan A.; Mooij, Joris M.; Heskes, Tom; Posthuma, Danielle

    2015-01-01

    By aggregating data for complex traits in a biologically meaningful way, gene and gene-set analysis constitute a valuable addition to single-marker analysis. However, although various methods for gene and gene-set analysis currently exist, they generally suffer from a number of issues. Statistical power for most methods is strongly affected by linkage disequilibrium between markers, multi-marker associations are often hard to detect, and the reliance on permutation to compute p-values tends to make the analysis computationally very expensive. To address these issues we have developed MAGMA, a novel tool for gene and gene-set analysis. The gene analysis is based on a multiple regression model, to provide better statistical performance. The gene-set analysis is built as a separate layer around the gene analysis for additional flexibility. This gene-set analysis also uses a regression structure to allow generalization to analysis of continuous properties of genes and simultaneous analysis of multiple gene sets and other gene properties. Simulations and an analysis of Crohn’s Disease data are used to evaluate the performance of MAGMA and to compare it to a number of other gene and gene-set analysis tools. The results show that MAGMA has significantly more power than other tools for both the gene and the gene-set analysis, identifying more genes and gene sets associated with Crohn’s Disease while maintaining a correct type 1 error rate. Moreover, the MAGMA analysis of the Crohn’s Disease data was found to be considerably faster as well. PMID:25885710

  19. MAGMA: generalized gene-set analysis of GWAS data.

    PubMed

    de Leeuw, Christiaan A; Mooij, Joris M; Heskes, Tom; Posthuma, Danielle

    2015-04-01

    By aggregating data for complex traits in a biologically meaningful way, gene and gene-set analysis constitute a valuable addition to single-marker analysis. However, although various methods for gene and gene-set analysis currently exist, they generally suffer from a number of issues. Statistical power for most methods is strongly affected by linkage disequilibrium between markers, multi-marker associations are often hard to detect, and the reliance on permutation to compute p-values tends to make the analysis computationally very expensive. To address these issues we have developed MAGMA, a novel tool for gene and gene-set analysis. The gene analysis is based on a multiple regression model, to provide better statistical performance. The gene-set analysis is built as a separate layer around the gene analysis for additional flexibility. This gene-set analysis also uses a regression structure to allow generalization to analysis of continuous properties of genes and simultaneous analysis of multiple gene sets and other gene properties. Simulations and an analysis of Crohn's Disease data are used to evaluate the performance of MAGMA and to compare it to a number of other gene and gene-set analysis tools. The results show that MAGMA has significantly more power than other tools for both the gene and the gene-set analysis, identifying more genes and gene sets associated with Crohn's Disease while maintaining a correct type 1 error rate. Moreover, the MAGMA analysis of the Crohn's Disease data was found to be considerably faster as well.

  20. Comparison between light scattering and gravimetric samplers for PM10 mass concentration in poultry and pig houses

    NASA Astrophysics Data System (ADS)

    Cambra-López, María; Winkel, Albert; Mosquera, Julio; Ogink, Nico W. M.; Aarnink, André J. A.

    2015-06-01

    The objective of this study was to compare co-located real-time light scattering devices and equivalent gravimetric samplers in poultry and pig houses for PM10 mass concentration, and to develop animal-specific calibration factors for light scattering samplers. These results will contribute to evaluate the comparability of different sampling instruments for PM10 concentrations. Paired DustTrak light scattering device (DustTrak aerosol monitor, TSI, U.S.) and PM10 gravimetric cyclone sampler were used for measuring PM10 mass concentrations during 24 h periods (from noon to noon) inside animal houses. Sampling was conducted in 32 animal houses in the Netherlands, including broilers, broiler breeders, layers in floor and in aviary system, turkeys, piglets, growing-finishing pigs in traditional and low emission housing with dry and liquid feed, and sows in individual and group housing. A total of 119 pairs of 24 h measurements (55 for poultry and 64 for pigs) were recorded and analyzed using linear regression analysis. Deviations between samplers were calculated and discussed. In poultry, cyclone sampler and DustTrak data fitted well to a linear regression, with a regression coefficient equal to 0.41, an intercept of 0.16 mg m-3 and a correlation coefficient of 0.91 (excluding turkeys). Results in turkeys showed a regression coefficient equal to 1.1 (P = 0.49), an intercept of 0.06 mg m-3 (P < 0.0001) and a correlation coefficient of 0.98. In pigs, we found a regression coefficient equal to 0.61, an intercept of 0.05 mg m-3 and a correlation coefficient of 0.84. Measured PM10 concentrations using DustTraks were clearly underestimated (approx. by a factor 2) in both poultry and pig housing systems compared with cyclone pre-separators. Absolute, relative, and random deviations increased with concentration. DustTrak light scattering devices should be self-calibrated to investigate PM10 mass concentrations accurately in animal houses. We recommend linear regression equations as animal-specific calibration factors for DustTraks instead of manufacturer calibration factors, especially in heavily dusty environments such as animal houses.

Top