Standardized Regression Coefficients as Indices of Effect Sizes in Meta-Analysis
ERIC Educational Resources Information Center
Kim, Rae Seon
2011-01-01
When conducting a meta-analysis, it is common to find many collected studies that report regression analyses, because multiple regression analysis is widely used in many fields. Meta-analysis uses effect sizes drawn from individual studies as a means of synthesizing a collection of results. However, indices of effect size from regression analyses…
Regression Analysis: Legal Applications in Institutional Research
ERIC Educational Resources Information Center
Frizell, Julie A.; Shippen, Benjamin S., Jr.; Luna, Andrew L.
2008-01-01
This article reviews multiple regression analysis, describes how its results should be interpreted, and instructs institutional researchers on how to conduct such analyses using an example focused on faculty pay equity between men and women. The use of multiple regression analysis will be presented as a method with which to compare salaries of…
NASA Technical Reports Server (NTRS)
Parsons, Vickie s.
2009-01-01
The request to conduct an independent review of regression models, developed for determining the expected Launch Commit Criteria (LCC) External Tank (ET)-04 cycle count for the Space Shuttle ET tanking process, was submitted to the NASA Engineering and Safety Center NESC on September 20, 2005. The NESC team performed an independent review of regression models documented in Prepress Regression Analysis, Tom Clark and Angela Krenn, 10/27/05. This consultation consisted of a peer review by statistical experts of the proposed regression models provided in the Prepress Regression Analysis. This document is the consultation's final report.
A Latent-Variable Causal Model of Faculty Reputational Ratings.
ERIC Educational Resources Information Center
King, Suzanne; Wolfle, Lee M.
A reanalysis was conducted of Saunier's research (1985) on sources of variation in the National Research Council (NRC) reputational ratings of university faculty. Saunier conducted a stepwise regression analysis using 12 predictor variables. Due to problems with multicollinearity and because of the atheoretical nature of stepwise regression,…
Regression Analysis of Physician Distribution to Identify Areas of Need: Some Preliminary Findings.
ERIC Educational Resources Information Center
Morgan, Bruce B.; And Others
A regression analysis was conducted of factors that help to explain the variance in physician distribution and which identify those factors that influence the maldistribution of physicians. Models were developed for different geographic areas to determine the most appropriate unit of analysis for the Western Missouri Area Health Education Center…
Computation of major solute concentrations and loads in German rivers using regression analysis.
Steele, T.D.
1980-01-01
Regression functions between concentrations of several inorganic solutes and specific conductance and between specific conductance and stream discharge were derived from intermittent samples collected for 2 rivers in West Germany. These functions, in conjunction with daily records of streamflow, were used to determine monthly and annual solute loadings. -from Author
Using Refined Regression Analysis To Assess The Ecological Services Of Restored Wetlands
A hierarchical approach to regression analysis of wetland water treatment was conducted to determine which factors are the most appropriate for characterizing wetlands of differing structure and function. We used this approach in an effort to identify the types and characteristi...
Method for nonlinear exponential regression analysis
NASA Technical Reports Server (NTRS)
Junkin, B. G.
1972-01-01
Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.
Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies
Vatcheva, Kristina P.; Lee, MinJae; McCormick, Joseph B.; Rahbar, Mohammad H.
2016-01-01
The adverse impact of ignoring multicollinearity on findings and data interpretation in regression analysis is very well documented in the statistical literature. The failure to identify and report multicollinearity could result in misleading interpretations of the results. A review of epidemiological literature in PubMed from January 2004 to December 2013, illustrated the need for a greater attention to identifying and minimizing the effect of multicollinearity in analysis of data from epidemiologic studies. We used simulated datasets and real life data from the Cameron County Hispanic Cohort to demonstrate the adverse effects of multicollinearity in the regression analysis and encourage researchers to consider the diagnostic for multicollinearity as one of the steps in regression analysis. PMID:27274911
Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies.
Vatcheva, Kristina P; Lee, MinJae; McCormick, Joseph B; Rahbar, Mohammad H
2016-04-01
The adverse impact of ignoring multicollinearity on findings and data interpretation in regression analysis is very well documented in the statistical literature. The failure to identify and report multicollinearity could result in misleading interpretations of the results. A review of epidemiological literature in PubMed from January 2004 to December 2013, illustrated the need for a greater attention to identifying and minimizing the effect of multicollinearity in analysis of data from epidemiologic studies. We used simulated datasets and real life data from the Cameron County Hispanic Cohort to demonstrate the adverse effects of multicollinearity in the regression analysis and encourage researchers to consider the diagnostic for multicollinearity as one of the steps in regression analysis.
ERIC Educational Resources Information Center
Fraas, John W.; Newman, Isadore
1996-01-01
In a conjoint-analysis consumer-preference study, researchers must determine whether the product factor estimates, which measure consumer preferences, should be calculated and interpreted for each respondent or collectively. Multiple regression models can determine whether to aggregate data by examining factor-respondent interaction effects. This…
A Methodology for Generating Placement Rules that Utilizes Logistic Regression
ERIC Educational Resources Information Center
Wurtz, Keith
2008-01-01
The purpose of this article is to provide the necessary tools for institutional researchers to conduct a logistic regression analysis and interpret the results. Aspects of the logistic regression procedure that are necessary to evaluate models are presented and discussed with an emphasis on cutoff values and choosing the appropriate number of…
ERIC Educational Resources Information Center
Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.
2006-01-01
Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seong W. Lee
During this reporting period, the literature survey including the gasifier temperature measurement literature, the ultrasonic application and its background study in cleaning application, and spray coating process are completed. The gasifier simulator (cold model) testing has been successfully conducted. Four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. The Analysis of Variance (ANOVA) was applied to analyze the test data. The analysis shows that all four factors are significant to the temperature measurements in the gasifier simulator (cold model). The regression analysis for the case with the normalizedmore » room temperature shows that linear model fits the temperature data with 82% accuracy (18% error). The regression analysis for the case without the normalized room temperature shows 72.5% accuracy (27.5% error). The nonlinear regression analysis indicates a better fit than that of the linear regression. The nonlinear regression model's accuracy is 88.7% (11.3% error) for normalized room temperature case, which is better than the linear regression analysis. The hot model thermocouple sleeve design and fabrication are completed. The gasifier simulator (hot model) design and the fabrication are completed. The system tests of the gasifier simulator (hot model) have been conducted and some modifications have been made. Based on the system tests and results analysis, the gasifier simulator (hot model) has met the proposed design requirement and the ready for system test. The ultrasonic cleaning method is under evaluation and will be further studied for the gasifier simulator (hot model) application. The progress of this project has been on schedule.« less
ERIC Educational Resources Information Center
Bel, Germa; Fageda, Xavier; Warner, Mildred E.
2010-01-01
Privatization of local government services is assumed to deliver cost savings, but empirical evidence for this from around the world is mixed. We conduct a meta-regression analysis of all econometric studies examining privatization of water distribution and solid waste collection services and find no systematic support for lower costs with private…
NASA Technical Reports Server (NTRS)
Kalton, G.
1983-01-01
A number of surveys were conducted to study the relationship between the level of aircraft or traffic noise exposure experienced by people living in a particular area and their annoyance with it. These surveys generally employ a clustered sample design which affects the precision of the survey estimates. Regression analysis of annoyance on noise measures and other variables is often an important component of the survey analysis. Formulae are presented for estimating the standard errors of regression coefficients and ratio of regression coefficients that are applicable with a two- or three-stage clustered sample design. Using a simple cost function, they also determine the optimum allocation of the sample across the stages of the sample design for the estimation of a regression coefficient.
Hitt, Nathaniel P.; Floyd, Michael; Compton, Michael; McDonald, Kenneth
2016-01-01
Chrosomus cumberlandensis (Blackside Dace [BSD]) and Etheostoma spilotum (Kentucky Arrow Darter [KAD]) are fish species of conservation concern due to their fragmented distributions, their low population sizes, and threats from anthropogenic stressors in the southeastern United States. We evaluated the relationship between fish abundance and stream conductivity, an index of environmental quality and potential physiological stressor. We modeled occurrence and abundance of KAD in the upper Kentucky River basin (208 samples) and BSD in the upper Cumberland River basin (294 samples) for sites sampled between 2003 and 2013. Segmented regression indicated a conductivity change-point for BSD abundance at 343 μS/cm (95% CI: 123–563 μS/cm) and for KAD abundance at 261 μS/cm (95% CI: 151–370 μS/cm). In both cases, abundances were negligible above estimated conductivity change-points. Post-hoc randomizations accounted for variance in estimated change points due to unequal sample sizes across the conductivity gradients. Boosted regression-tree analysis indicated stronger effects of conductivity than other natural and anthropogenic factors known to influence stream fishes. Boosted regression trees further indicated threshold responses of BSD and KAD occurrence to conductivity gradients in support of segmented regression results. We suggest that the observed conductivity relationship may indicate energetic limitations for insectivorous fishes due to changes in benthic macroinvertebrate community composition.
Regression analysis of informative current status data with the additive hazards model.
Zhao, Shishun; Hu, Tao; Ma, Ling; Wang, Peijie; Sun, Jianguo
2015-04-01
This paper discusses regression analysis of current status failure time data arising from the additive hazards model in the presence of informative censoring. Many methods have been developed for regression analysis of current status data under various regression models if the censoring is noninformative, and also there exists a large literature on parametric analysis of informative current status data in the context of tumorgenicity experiments. In this paper, a semiparametric maximum likelihood estimation procedure is presented and in the method, the copula model is employed to describe the relationship between the failure time of interest and the censoring time. Furthermore, I-splines are used to approximate the nonparametric functions involved and the asymptotic consistency and normality of the proposed estimators are established. A simulation study is conducted and indicates that the proposed approach works well for practical situations. An illustrative example is also provided.
How Many Subjects Does It Take to Do a Regression Analysis?
ERIC Educational Resources Information Center
Green, Samuel B.
1991-01-01
An evaluation of the rules-of-thumb used to determine the minimum number of subjects required to conduct multiple regression analyses suggests that researchers who use a rule of thumb rather than power analyses trade simplicity of use for accuracy and specificity of response. Insufficient power is likely to result. (SLD)
Hierarchical Multiple Regression in Counseling Research: Common Problems and Possible Remedies.
ERIC Educational Resources Information Center
Petrocelli, John V.
2003-01-01
A brief content analysis was conducted on the use of hierarchical regression in counseling research published in the "Journal of Counseling Psychology" and the "Journal of Counseling & Development" during the years 1997-2001. Common problems are cited and possible remedies are described. (Contains 43 references and 3 tables.) (Author)
Advanced microwave soil moisture studies. [Big Sioux River Basin, Iowa
NASA Technical Reports Server (NTRS)
Dalsted, K. J.; Harlan, J. C.
1983-01-01
Comparisons of low level L-band brightness temperature (TB) and thermal infrared (TIR) data as well as the following data sets: soil map and land cover data; direct soil moisture measurement; and a computer generated contour map were statistically evaluated using regression analysis and linear discriminant analysis. Regression analysis of footprint data shows that statistical groupings of ground variables (soil features and land cover) hold promise for qualitative assessment of soil moisture and for reducing variance within the sampling space. Dry conditions appear to be more conductive to producing meaningful statistics than wet conditions. Regression analysis using field averaged TB and TIR data did not approach the higher sq R values obtained using within-field variations. The linear discriminant analysis indicates some capacity to distinguish categories with the results being somewhat better on a field basis than a footprint basis.
Quantile regression in the presence of monotone missingness with sensitivity analysis
Liu, Minzhao; Daniels, Michael J.; Perri, Michael G.
2016-01-01
In this paper, we develop methods for longitudinal quantile regression when there is monotone missingness. In particular, we propose pattern mixture models with a constraint that provides a straightforward interpretation of the marginal quantile regression parameters. Our approach allows sensitivity analysis which is an essential component in inference for incomplete data. To facilitate computation of the likelihood, we propose a novel way to obtain analytic forms for the required integrals. We conduct simulations to examine the robustness of our approach to modeling assumptions and compare its performance to competing approaches. The model is applied to data from a recent clinical trial on weight management. PMID:26041008
Suzuki, Taku; Iwamoto, Takuji; Shizu, Kanae; Suzuki, Katsuji; Yamada, Harumoto; Sato, Kazuki
2017-05-01
This retrospective study was designed to investigate prognostic factors for postoperative outcomes for cubital tunnel syndrome (CubTS) using multiple logistic regression analysis with a large number of patients. Eighty-three patients with CubTS who underwent surgeries were enrolled. The following potential prognostic factors for disease severity were selected according to previous reports: sex, age, type of surgery, disease duration, body mass index, cervical lesion, presence of diabetes mellitus, Workers' Compensation status, preoperative severity, and preoperative electrodiagnostic testing. Postoperative severity of disease was assessed 2 years after surgery by Messina's criteria which is an outcome measure specifically for CubTS. Bivariate analysis was performed to select candidate prognostic factors for multiple linear regression analyses. Multiple logistic regression analysis was conducted to identify the association between postoperative severity and selected prognostic factors. Both bivariate and multiple linear regression analysis revealed only preoperative severity as an independent risk factor for poor prognosis, while other factors did not show any significant association. Although conflicting results exist regarding prognosis of CubTS, this study supports evidence from previous studies and concludes early surgical intervention portends the most favorable prognosis. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Quality of life in breast cancer patients--a quantile regression analysis.
Pourhoseingholi, Mohamad Amin; Safaee, Azadeh; Moghimi-Dehkordi, Bijan; Zeighami, Bahram; Faghihzadeh, Soghrat; Tabatabaee, Hamid Reza; Pourhoseingholi, Asma
2008-01-01
Quality of life study has an important role in health care especially in chronic diseases, in clinical judgment and in medical resources supplying. Statistical tools like linear regression are widely used to assess the predictors of quality of life. But when the response is not normal the results are misleading. The aim of this study is to determine the predictors of quality of life in breast cancer patients, using quantile regression model and compare to linear regression. A cross-sectional study conducted on 119 breast cancer patients that admitted and treated in chemotherapy ward of Namazi hospital in Shiraz. We used QLQ-C30 questionnaire to assessment quality of life in these patients. A quantile regression was employed to assess the assocciated factors and the results were compared to linear regression. All analysis carried out using SAS. The mean score for the global health status for breast cancer patients was 64.92+/-11.42. Linear regression showed that only grade of tumor, occupational status, menopausal status, financial difficulties and dyspnea were statistically significant. In spite of linear regression, financial difficulties were not significant in quantile regression analysis and dyspnea was only significant for first quartile. Also emotion functioning and duration of disease statistically predicted the QOL score in the third quartile. The results have demonstrated that using quantile regression leads to better interpretation and richer inference about predictors of the breast cancer patient quality of life.
Robust neural network with applications to credit portfolio data analysis.
Feng, Yijia; Li, Runze; Sudjianto, Agus; Zhang, Yiyun
2010-01-01
In this article, we study nonparametric conditional quantile estimation via neural network structure. We proposed an estimation method that combines quantile regression and neural network (robust neural network, RNN). It provides good smoothing performance in the presence of outliers and can be used to construct prediction bands. A Majorization-Minimization (MM) algorithm was developed for optimization. Monte Carlo simulation study is conducted to assess the performance of RNN. Comparison with other nonparametric regression methods (e.g., local linear regression and regression splines) in real data application demonstrate the advantage of the newly proposed procedure.
Ryberg, Karen R.
2007-01-01
This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the North Dakota State Water Commission, to estimate water-quality constituent concentrations at seven sites on the Sheyenne River, N. Dak. Regression analysis of water-quality data collected in 1980-2006 was used to estimate concentrations for hardness, dissolved solids, calcium, magnesium, sodium, and sulfate. The explanatory variables examined for the regression relations were continuously monitored streamflow, specific conductance, and water temperature. For the conditions observed in 1980-2006, streamflow was a significant explanatory variable for some constituents. Specific conductance was a significant explanatory variable for all of the constituents, and water temperature was not a statistically significant explanatory variable for any of the constituents in this study. The regression relations were evaluated using common measures of variability, including R2, the proportion of variability in the estimated constituent concentration explained by the explanatory variables and regression equation. R2 values ranged from 0.784 for calcium to 0.997 for dissolved solids. The regression relations also were evaluated by calculating the median relative percentage difference (RPD) between measured constituent concentration and the constituent concentration estimated by the regression equations. Median RPDs ranged from 1.7 for dissolved solids to 11.5 for sulfate. The regression relations also may be used to estimate daily constituent loads. The relations should be monitored for change over time, especially at sites 2 and 3 which have a short period of record. In addition, caution should be used when the Sheyenne River is affected by ice or when upstream sites are affected by isolated storm runoff. Almost all of the outliers and highly influential samples removed from the analysis were made during periods when the Sheyenne River might be affected by ice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seong W. Lee
2004-10-01
The systematic tests of the gasifier simulator on the clean thermocouple were completed in this reporting period. Within the systematic tests on the clean thermocouple, five (5) factors were considered as the experimental parameters including air flow rate, water flow rate, fine dust particle amount, ammonia addition and high/low frequency device (electric motor). The fractional factorial design method was used in the experiment design with sixteen (16) data sets of readings. Analysis of Variances (ANOVA) was applied to the results from systematic tests. The ANOVA results show that the un-balanced motor vibration frequency did not have the significant impact onmore » the temperature changes in the gasifier simulator. For the fine dust particles testing, the amount of fine dust particles has significant impact to the temperature measurements in the gasifier simulator. The effects of the air and water on the temperature measurements show the same results as reported in the previous report. The ammonia concentration was included as an experimental parameter for the reducing environment in this reporting period. The ammonia concentration does not seem to be a significant factor on the temperature changes. The linear regression analysis was applied to the temperature reading with five (5) factors. The accuracy of the linear regression is relatively low, which is less than 10% accuracy. Nonlinear regression was also conducted to the temperature reading with the same factors. Since the experiments were designed in two (2) levels, the nonlinear regression is not very effective with the dataset (16 readings). An extra central point test was conducted. With the data of the center point testing, the accuracy of the nonlinear regression is much better than the linear regression.« less
Li, Li; Nguyen, Kim-Huong; Comans, Tracy; Scuffham, Paul
2018-04-01
Several utility-based instruments have been applied in cost-utility analysis to assess health state values for people with dementia. Nevertheless, concerns and uncertainty regarding their performance for people with dementia have been raised. To assess the performance of available utility-based instruments for people with dementia by comparing their psychometric properties and to explore factors that cause variations in the reported health state values generated from those instruments by conducting meta-regression analyses. A literature search was conducted and psychometric properties were synthesized to demonstrate the overall performance of each instrument. When available, health state values and variables such as the type of instrument and cognitive impairment levels were extracted from each article. A meta-regression analysis was undertaken and available covariates were included in the models. A total of 64 studies providing preference-based values were identified and included. The EuroQol five-dimension questionnaire demonstrated the best combination of feasibility, reliability, and validity. Meta-regression analyses suggested that significant differences exist between instruments, type of respondents, and mode of administration and the variations in estimated utility values had influences on incremental quality-adjusted life-year calculation. This review finds that the EuroQol five-dimension questionnaire is the most valid utility-based instrument for people with dementia, but should be replaced by others under certain circumstances. Although no utility estimates were reported in the article, the meta-regression analyses that examined variations in utility estimates produced by different instruments impact on cost-utility analysis, potentially altering the decision-making process in some circumstances. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Wang, Wen-Cheng; Cho, Wen-Chien; Chen, Yin-Jen
2014-01-01
It is estimated that mainland Chinese tourists travelling to Taiwan can bring annual revenues of 400 billion NTD to the Taiwan economy. Thus, how the Taiwanese Government formulates relevant measures to satisfy both sides is the focus of most concern. Taiwan must improve the facilities and service quality of its tourism industry so as to attract more mainland tourists. This paper conducted a questionnaire survey of mainland tourists and used grey relational analysis in grey mathematics to analyze the satisfaction performance of all satisfaction question items. The first eight satisfaction items were used as independent variables, and the overall satisfaction performance was used as a dependent variable for quantile regression model analysis to discuss the relationship between the dependent variable under different quantiles and independent variables. Finally, this study further discussed the predictive accuracy of the least mean regression model and each quantile regression model, as a reference for research personnel. The analysis results showed that other variables could also affect the overall satisfaction performance of mainland tourists, in addition to occupation and age. The overall predictive accuracy of quantile regression model Q0.25 was higher than that of the other three models. PMID:24574916
Wang, Wen-Cheng; Cho, Wen-Chien; Chen, Yin-Jen
2014-01-01
It is estimated that mainland Chinese tourists travelling to Taiwan can bring annual revenues of 400 billion NTD to the Taiwan economy. Thus, how the Taiwanese Government formulates relevant measures to satisfy both sides is the focus of most concern. Taiwan must improve the facilities and service quality of its tourism industry so as to attract more mainland tourists. This paper conducted a questionnaire survey of mainland tourists and used grey relational analysis in grey mathematics to analyze the satisfaction performance of all satisfaction question items. The first eight satisfaction items were used as independent variables, and the overall satisfaction performance was used as a dependent variable for quantile regression model analysis to discuss the relationship between the dependent variable under different quantiles and independent variables. Finally, this study further discussed the predictive accuracy of the least mean regression model and each quantile regression model, as a reference for research personnel. The analysis results showed that other variables could also affect the overall satisfaction performance of mainland tourists, in addition to occupation and age. The overall predictive accuracy of quantile regression model Q0.25 was higher than that of the other three models.
Regression Analysis of Mixed Panel Count Data with Dependent Terminal Events
Yu, Guanglei; Zhu, Liang; Li, Yang; Sun, Jianguo; Robison, Leslie L.
2017-01-01
Event history studies are commonly conducted in many fields and a great deal of literature has been established for the analysis of the two types of data commonly arising from these studies: recurrent event data and panel count data. The former arises if all study subjects are followed continuously, while the latter means that each study subject is observed only at discrete time points. In reality, a third type of data, a mixture of the two types of the data above, may occur and furthermore, as with the first two types of the data, there may exist a dependent terminal event, which may preclude the occurrences of recurrent events of interest. This paper discusses regression analysis of mixed recurrent event and panel count data in the presence of a terminal event and an estimating equation-based approach is proposed for estimation of regression parameters of interest. In addition, the asymptotic properties of the proposed estimator are established and a simulation study conducted to assess the finite-sample performance of the proposed method suggests that it works well in practical situations. Finally the methodology is applied to a childhood cancer study that motivated this study. PMID:28098397
ERIC Educational Resources Information Center
Takusi, Gabriel Samuto
2010-01-01
This quantitative analysis explored the intrinsic and extrinsic turnover factors of relational database support specialists. Two hundred and nine relational database support specialists were surveyed for this research. The research was conducted based on Hackman and Oldham's (1980) Job Diagnostic Survey. Regression analysis and a univariate ANOVA…
ERIC Educational Resources Information Center
Chi, Olivia L.; Dow, Aaron W.
2014-01-01
This study focuses on how matching, a method of preprocessing data prior to estimation and analysis, can be used to reduce imbalance between treatment and control group in regression discontinuity design. To examine the effects of academic probation on student outcomes, researchers replicate and expand upon research conducted by Lindo, Sanders,…
ERIC Educational Resources Information Center
Akilli, Mustafa
2015-01-01
The aim of this study is to demonstrate the science success regression levels of chosen emotional features of 8th grade students using Structural Equation Model. The study was conducted by the analysis of students' questionnaires and science success in TIMSS 2011 data using SEM. Initially, the factors that are thought to have an effect on science…
Javanrouh, Niloufar; Daneshpour, Maryam S; Soltanian, Ali Reza; Tapak, Leili
2018-06-05
Obesity is a serious health problem that leads to low quality of life and early mortality. To the purpose of prevention and gene therapy for such a worldwide disease, genome wide association study is a powerful tool for finding SNPs associated with increased risk of obesity. To conduct an association analysis, kernel machine regression is a generalized regression method, has an advantage of considering the epistasis effects as well as the correlation between individuals due to unknown factors. In this study, information of the people who participated in Tehran cardio-metabolic genetic study was used. They were genotyped for the chromosomal region, evaluation 986 variations located at 16q12.2; build 38hg. Kernel machine regression and single SNP analysis were used to assess the association between obesity and SNPs genotyped data. We found that associated SNP sets with obesity, were almost in the FTO (P = 0.01), AIKTIP (P = 0.02) and MMP2 (P = 0.02) genes. Moreover, two SNPs, i.e., rs10521296 and rs11647470, showed significant association with obesity using kernel regression (P = 0.02). In conclusion, significant sets were randomly distributed throughout the region with more density around the FTO, AIKTIP and MMP2 genes. Furthermore, two intergenic SNPs showed significant association after using kernel machine regression. Therefore, more studies have to be conducted to assess their functionality or precise mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.
Khalil, Mohamed H.; Shebl, Mostafa K.; Kosba, Mohamed A.; El-Sabrout, Karim; Zaki, Nesma
2016-01-01
Aim: This research was conducted to determine the most affecting parameters on hatchability of indigenous and improved local chickens’ eggs. Materials and Methods: Five parameters were studied (fertility, early and late embryonic mortalities, shape index, egg weight, and egg weight loss) on four strains, namely Fayoumi, Alexandria, Matrouh, and Montazah. Multiple linear regression was performed on the studied parameters to determine the most influencing one on hatchability. Results: The results showed significant differences in commercial and scientific hatchability among strains. Alexandria strain has the highest significant commercial hatchability (80.70%). Regarding the studied strains, highly significant differences in hatching chick weight among strains were observed. Using multiple linear regression analysis, fertility made the greatest percent contribution (71.31%) to hatchability, and the lowest percent contributions were made by shape index and egg weight loss. Conclusion: A prediction of hatchability using multiple regression analysis could be a good tool to improve hatchability percentage in chickens. PMID:27651666
"Mad or bad?": burden on caregivers of patients with personality disorders.
Bauer, Rita; Döring, Antje; Schmidt, Tanja; Spießl, Hermann
2012-12-01
The burden on caregivers of patients with personality disorders is often greatly underestimated or completely disregarded. Possibilities for caregiver support have rarely been assessed. Thirty interviews were conducted with caregivers of such patients to assess illness-related burden. Responses were analyzed with a mixed method of qualitative and quantitative analysis in a sequential design. Patient and caregiver data, including sociodemographic and disease-related variables, were evaluated with regression analysis and regression trees. Caregiver statements (n = 404) were summarized into 44 global statements. The most frequent global statements were worries about the burden on other family members (70.0%), poor cooperation with clinical centers and other institutions (60.0%), financial burden (56.7%), worry about the patient's future (53.3%), and dissatisfaction with the patient's treatment and rehabilitation (53.3%). Linear regression and regression tree analysis identified predictors for more burdened caregivers. Caregivers of patients with personality disorders experience a variety of burdens, some disorder specific. Yet these caregivers often receive little attention or support.
NASA Astrophysics Data System (ADS)
Wang, Xuntao; Feng, Jianhu; Wang, Hu; Hong, Shidi; Zheng, Supei
2018-03-01
A three-dimensional finite element box girder bridge and its asphalt concrete deck pavement were established by ANSYS software, and the interlayer bonding condition of asphalt concrete deck pavement was assumed to be contact bonding condition. Orthogonal experimental design is used to arrange the testing plans of material parameters, and an evaluation of the effect of different material parameters in the mechanical response of asphalt concrete surface layer was conducted by multiple linear regression model and using the results from the finite element analysis. Results indicated that stress regression equations can well predict the stress of the asphalt concrete surface layer, and elastic modulus of waterproof layer has a significant influence on stress values of asphalt concrete surface layer.
Adolescent Domain Screening Inventory-Short Form: Development and Initial Validation
ERIC Educational Resources Information Center
Corrigan, Matthew J.
2017-01-01
This study sought to develop a short version of the ADSI, and investigate its psychometric properties. Methods: This is a secondary analysis. Analysis to determine the Cronbach's Alpha, correlations to determine concurrent criterion validity and known instrument validity and a logistic regression to determine predictive validity were conducted.…
The multiple imputation method: a case study involving secondary data analysis.
Walani, Salimah R; Cleland, Charles M
2015-05-01
To illustrate with the example of a secondary data analysis study the use of the multiple imputation method to replace missing data. Most large public datasets have missing data, which need to be handled by researchers conducting secondary data analysis studies. Multiple imputation is a technique widely used to replace missing values while preserving the sample size and sampling variability of the data. The 2004 National Sample Survey of Registered Nurses. The authors created a model to impute missing values using the chained equation method. They used imputation diagnostics procedures and conducted regression analysis of imputed data to determine the differences between the log hourly wages of internationally educated and US-educated registered nurses. The authors used multiple imputation procedures to replace missing values in a large dataset with 29,059 observations. Five multiple imputed datasets were created. Imputation diagnostics using time series and density plots showed that imputation was successful. The authors also present an example of the use of multiple imputed datasets to conduct regression analysis to answer a substantive research question. Multiple imputation is a powerful technique for imputing missing values in large datasets while preserving the sample size and variance of the data. Even though the chained equation method involves complex statistical computations, recent innovations in software and computation have made it possible for researchers to conduct this technique on large datasets. The authors recommend nurse researchers use multiple imputation methods for handling missing data to improve the statistical power and external validity of their studies.
High Loading of Polygenic Risk for ADHD in Children With Comorbid Aggression
Hamshere, Marian L.; Langley, Kate; Martin, Joanna; Agha, Sharifah Shameem; Stergiakouli, Evangelia; Anney, Richard J.L.; Buitelaar, Jan; Faraone, Stephen V.; Lesch, Klaus-Peter; Neale, Benjamin M.; Franke, Barbara; Sonuga-Barke, Edmund; Asherson, Philip; Merwood, Andrew; Kuntsi, Jonna; Medland, Sarah E.; Ripke, Stephan; Steinhausen, Hans-Christoph; Freitag, Christine; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Warnke, Andreas; Meyer, Jobst; Palmason, Haukur; Vasquez, Alejandro Arias; Lambregts-Rommelse, Nanda; Roeyers, Herbert; Biederman, Joseph; Doyle, Alysa E.; Hakonarson, Hakon; Rothenberger, Aribert; Banaschewski, Tobias; Oades, Robert D.; McGough, James J.; Kent, Lindsey; Williams, Nigel; Owen, Michael J.; Holmans, Peter
2013-01-01
Objective Although attention deficit hyperactivity disorder (ADHD) is highly heritable, genome-wide association studies (GWAS) have not yet identified any common genetic variants that contribute to risk. There is evidence that aggression or conduct disorder in children with ADHD indexes higher genetic loading and clinical severity. The authors examine whether common genetic variants considered en masse as polygenic scores for ADHD are especially enriched in children with comorbid conduct disorder. Method Polygenic scores derived from an ADHD GWAS meta-analysis were calculated in an independent ADHD sample (452 case subjects, 5,081 comparison subjects). Multivariate logistic regression analyses were employed to compare polygenic scores in the ADHD and comparison groups and test for higher scores in ADHD case subjects with comorbid conduct disorder relative to comparison subjects and relative to those without comorbid conduct disorder. Association with symptom scores was tested using linear regression. Results Polygenic risk for ADHD, derived from the meta-analysis, was higher in the independent ADHD group than in the comparison group. Polygenic score was significantly higher in ADHD case subjects with conduct disorder relative to ADHD case subjects without conduct disorder. ADHD polygenic score showed significant association with comorbid conduct disorder symptoms. This relationship was explained by the aggression items. Conclusions Common genetic variation is relevant to ADHD, especially in individuals with comorbid aggression. The findings suggest that the previously published ADHD GWAS meta-analysis contains weak but true associations with common variants, support for which falls below genome-wide significance levels. The findings also highlight the fact that aggression in ADHD indexes genetic as well as clinical severity. PMID:23599091
The intergenerational transmission of conduct problems.
Raudino, Alessandra; Fergusson, David M; Woodward, Lianne J; Horwood, L John
2013-03-01
Drawing on prospective longitudinal data, this paper examines the intergenerational transmission of childhood conduct problems in a sample of 209 parents and their 331 biological offspring studied as part of the Christchurch Health and Developmental Study. The aims were to estimate the association between parental and offspring conduct problems and to examine the extent to which this association could be explained by (a) confounding social/family factors from the parent's childhood and (b) intervening factors reflecting parental behaviours and family functioning. The same item set was used to assess childhood conduct problems in parents and offspring. Two approaches to data analysis (generalised estimating equation regression methods and latent variable structural equation modelling) were used to examine possible explanations of the intergenerational continuity in behaviour. Regression analysis suggested that there was moderate intergenerational continuity (r = 0.23, p < 0.001) between parental and offspring conduct problems. This continuity was not explained by confounding factors but was partially mediated by parenting behaviours, particularly parental over-reactivity. Latent variable modelling designed to take account of non-observed common genetic and environmental factors underlying the continuities in problem behaviours across generations also suggested that parenting behaviour played a role in mediating the intergenerational transmission of conduct problems. There is clear evidence of intergenerational continuity in conduct problems. In part this association reflects a causal chain process in which parental conduct problems are associated (directly or indirectly) with impaired parenting behaviours that in turn influence risks of conduct problems in offspring.
Digression and Value Concatenation to Enable Privacy-Preserving Regression.
Li, Xiao-Bai; Sarkar, Sumit
2014-09-01
Regression techniques can be used not only for legitimate data analysis, but also to infer private information about individuals. In this paper, we demonstrate that regression trees, a popular data-analysis and data-mining technique, can be used to effectively reveal individuals' sensitive data. This problem, which we call a "regression attack," has not been addressed in the data privacy literature, and existing privacy-preserving techniques are not appropriate in coping with this problem. We propose a new approach to counter regression attacks. To protect against privacy disclosure, our approach introduces a novel measure, called digression , which assesses the sensitive value disclosure risk in the process of building a regression tree model. Specifically, we develop an algorithm that uses the measure for pruning the tree to limit disclosure of sensitive data. We also propose a dynamic value-concatenation method for anonymizing data, which better preserves data utility than a user-defined generalization scheme commonly used in existing approaches. Our approach can be used for anonymizing both numeric and categorical data. An experimental study is conducted using real-world financial, economic and healthcare data. The results of the experiments demonstrate that the proposed approach is very effective in protecting data privacy while preserving data quality for research and analysis.
Local Linear Regression for Data with AR Errors.
Li, Runze; Li, Yan
2009-07-01
In many statistical applications, data are collected over time, and they are likely correlated. In this paper, we investigate how to incorporate the correlation information into the local linear regression. Under the assumption that the error process is an auto-regressive process, a new estimation procedure is proposed for the nonparametric regression by using local linear regression method and the profile least squares techniques. We further propose the SCAD penalized profile least squares method to determine the order of auto-regressive process. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed procedure, and to compare the performance of the proposed procedures with the existing one. From our empirical studies, the newly proposed procedures can dramatically improve the accuracy of naive local linear regression with working-independent error structure. We illustrate the proposed methodology by an analysis of real data set.
Meta-regression analysis of commensal and pathogenic Escherichia coli survival in soil and water.
Franz, Eelco; Schijven, Jack; de Roda Husman, Ana Maria; Blaak, Hetty
2014-06-17
The extent to which pathogenic and commensal E. coli (respectively PEC and CEC) can survive, and which factors predominantly determine the rate of decline, are crucial issues from a public health point of view. The goal of this study was to provide a quantitative summary of the variability in E. coli survival in soil and water over a broad range of individual studies and to identify the most important sources of variability. To that end, a meta-regression analysis on available literature data was conducted. The considerable variation in reported decline rates indicated that the persistence of E. coli is not easily predictable. The meta-analysis demonstrated that for soil and water, the type of experiment (laboratory or field), the matrix subtype (type of water and soil), and temperature were the main factors included in the regression analysis. A higher average decline rate in soil of PEC compared with CEC was observed. The regression models explained at best 57% of the variation in decline rate in soil and 41% of the variation in decline rate in water. This indicates that additional factors, not included in the current meta-regression analysis, are of importance but rarely reported. More complete reporting of experimental conditions may allow future inference on the global effects of these variables on the decline rate of E. coli.
Regression analysis of mixed panel count data with dependent terminal events.
Yu, Guanglei; Zhu, Liang; Li, Yang; Sun, Jianguo; Robison, Leslie L
2017-05-10
Event history studies are commonly conducted in many fields, and a great deal of literature has been established for the analysis of the two types of data commonly arising from these studies: recurrent event data and panel count data. The former arises if all study subjects are followed continuously, while the latter means that each study subject is observed only at discrete time points. In reality, a third type of data, a mixture of the two types of the data earlier, may occur and furthermore, as with the first two types of the data, there may exist a dependent terminal event, which may preclude the occurrences of recurrent events of interest. This paper discusses regression analysis of mixed recurrent event and panel count data in the presence of a terminal event and an estimating equation-based approach is proposed for estimation of regression parameters of interest. In addition, the asymptotic properties of the proposed estimator are established, and a simulation study conducted to assess the finite-sample performance of the proposed method suggests that it works well in practical situations. Finally, the methodology is applied to a childhood cancer study that motivated this study. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Correlation and simple linear regression.
Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G
2003-06-01
In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.
Syed, Hamzah; Jorgensen, Andrea L; Morris, Andrew P
2016-06-01
To evaluate the power to detect associations between SNPs and time-to-event outcomes across a range of pharmacogenomic study designs while comparing alternative regression approaches. Simulations were conducted to compare Cox proportional hazards modeling accounting for censoring and logistic regression modeling of a dichotomized outcome at the end of the study. The Cox proportional hazards model was demonstrated to be more powerful than the logistic regression analysis. The difference in power between the approaches was highly dependent on the rate of censoring. Initial evaluation of single-nucleotide polymorphism association signals using computationally efficient software with dichotomized outcomes provides an effective screening tool for some design scenarios, and thus has important implications for the development of analytical protocols in pharmacogenomic studies.
Sun, Jianguo; Feng, Yanqin; Zhao, Hui
2015-01-01
Interval-censored failure time data occur in many fields including epidemiological and medical studies as well as financial and sociological studies, and many authors have investigated their analysis (Sun, The statistical analysis of interval-censored failure time data, 2006; Zhang, Stat Modeling 9:321-343, 2009). In particular, a number of procedures have been developed for regression analysis of interval-censored data arising from the proportional hazards model (Finkelstein, Biometrics 42:845-854, 1986; Huang, Ann Stat 24:540-568, 1996; Pan, Biometrics 56:199-203, 2000). For most of these procedures, however, one drawback is that they involve estimation of both regression parameters and baseline cumulative hazard function. In this paper, we propose two simple estimation approaches that do not need estimation of the baseline cumulative hazard function. The asymptotic properties of the resulting estimates are given, and an extensive simulation study is conducted and indicates that they work well for practical situations.
Thermophysical Property Models for Lunar Regolith
NASA Technical Reports Server (NTRS)
Schreiner, Samuel S.; Dominguez, Jesus A.; Sibille, Laurent; Hoffman, Jeffrey A.
2015-01-01
We present a set of models for a wide range of lunar regolith material properties. Data from the literature are t with regression models for the following regolith properties: composition, density, specific heat, thermal conductivity, electrical conductivity, optical absorption length, and latent heat of melting/fusion. These models contain both temperature and composition dependencies so that they can be tailored for a range of applications. These models can enable more consistent, informed analysis and design of lunar regolith processing hardware. Furthermore, these models can be utilized to further inform lunar geological simulations. In addition to regression models for each material property, the raw data is also presented to allow for further interpretation and fitting as necessary.
NASA Astrophysics Data System (ADS)
Whitehead, James Joshua
The analysis documented herein provides an integrated approach for the conduct of optimization under uncertainty (OUU) using Monte Carlo Simulation (MCS) techniques coupled with response surface-based methods for characterization of mixture-dependent variables. This novel methodology provides an innovative means of conducting optimization studies under uncertainty in propulsion system design. Analytic inputs are based upon empirical regression rate information obtained from design of experiments (DOE) mixture studies utilizing a mixed oxidizer hybrid rocket concept. Hybrid fuel regression rate was selected as the target response variable for optimization under uncertainty, with maximization of regression rate chosen as the driving objective. Characteristic operational conditions and propellant mixture compositions from experimental efforts conducted during previous foundational work were combined with elemental uncertainty estimates as input variables. Response surfaces for mixture-dependent variables and their associated uncertainty levels were developed using quadratic response equations incorporating single and two-factor interactions. These analysis inputs, response surface equations and associated uncertainty contributions were applied to a probabilistic MCS to develop dispersed regression rates as a function of operational and mixture input conditions within design space. Illustrative case scenarios were developed and assessed using this analytic approach including fully and partially constrained operational condition sets over all of design mixture space. In addition, optimization sets were performed across an operationally representative region in operational space and across all investigated mixture combinations. These scenarios were selected as representative examples relevant to propulsion system optimization, particularly for hybrid and solid rocket platforms. Ternary diagrams, including contour and surface plots, were developed and utilized to aid in visualization. The concept of Expanded-Durov diagrams was also adopted and adapted to this study to aid in visualization of uncertainty bounds. Regions of maximum regression rate and associated uncertainties were determined for each set of case scenarios. Application of response surface methodology coupled with probabilistic-based MCS allowed for flexible and comprehensive interrogation of mixture and operating design space during optimization cases. Analyses were also conducted to assess sensitivity of uncertainty to variations in key elemental uncertainty estimates. The methodology developed during this research provides an innovative optimization tool for future propulsion design efforts.
Kovačević, Strahinja; Karadžić, Milica; Podunavac-Kuzmanović, Sanja; Jevrić, Lidija
2018-01-01
The present study is based on the quantitative structure-activity relationship (QSAR) analysis of binding affinity toward human prion protein (huPrP C ) of quinacrine, pyridine dicarbonitrile, diphenylthiazole and diphenyloxazole analogs applying different linear and non-linear chemometric regression techniques, including univariate linear regression, multiple linear regression, partial least squares regression and artificial neural networks. The QSAR analysis distinguished molecular lipophilicity as an important factor that contributes to the binding affinity. Principal component analysis was used in order to reveal similarities or dissimilarities among the studied compounds. The analysis of in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters was conducted. The ranking of the studied analogs on the basis of their ADMET parameters was done applying the sum of ranking differences, as a relatively new chemometric method. The main aim of the study was to reveal the most important molecular features whose changes lead to the changes in the binding affinities of the studied compounds. Another point of view on the binding affinity of the most promising analogs was established by application of molecular docking analysis. The results of the molecular docking were proven to be in agreement with the experimental outcome. Copyright © 2017 Elsevier B.V. All rights reserved.
Bae, Jong-Myon; Kim, Eun Hee
2016-03-01
Research on how the risk of gastric cancer increases with Epstein-Barr virus (EBV) infection is lacking. In a systematic review that investigated studies published until September 2014, the authors did not calculate the summary odds ratio (SOR) due to heterogeneity across studies. Therefore, we include here additional studies published until October 2015 and conduct a meta-analysis with meta-regression that controls for the heterogeneity among studies. Using the studies selected in the previously published systematic review, we formulated lists of references, cited articles, and related articles provided by PubMed. From the lists, only case-control studies that detected EBV in tissue samples were selected. In order to control for the heterogeneity among studies, subgroup analysis and meta-regression were performed. In the 33 case-control results with adjacent non-cancer tissue, the total number of test samples in the case and control groups was 5280 and 4962, respectively. In the 14 case-control results with normal tissue, the total number of test samples in case and control groups was 1393 and 945, respectively. Upon meta-regression, the type of control tissue was found to be a statistically significant variable with regard to heterogeneity. When the control tissue was normal tissue of healthy individuals, the SOR was 3.41 (95% CI, 1.78 to 6.51; I-squared, 65.5%). The results of the present study support the argument that EBV infection increases the risk of gastric cancer. In the future, age-matched and sex-matched case-control studies should be conducted.
Thematic Mapper Analysis of Blue Oak (Quercus douglasii) in Central California
Paul A. Lefebvre Jr.; Frank W. Davis; Mark Borchert
1991-01-01
Digital Thematic Mapper (TM) satellite data from September 1986 and December 1985 were analyzed to determine seasonal reflectance properties of blue oak rangeland in the La Panza mountains of San Luis Obispo County. Linear regression analysis was conducted to examine relationships between TM reflectance and oak canopy cover, basal area, and site topographic variables....
ERIC Educational Resources Information Center
Smedema, Susan Miller; Chan, Fong; Yaghmaian, Rana A.; Cardoso, Elizabeth DaSilva; Muller, Veronica; Keegan, John; Dutta, Alo; Ebener, Deborah J.
2015-01-01
This study examined the factorial structure of the construct core self-evaluations (CSE) and tested a mediational model of the relationship between CSE and life satisfaction in college students with disabilities. We conducted a quantitative descriptive design using exploratory and confirmatory factor analysis and multiple regression analysis.…
Pereira, Priscilla Perez da Silva; Da Mata, Fabiana A F; Figueiredo, Ana Claudia Godoy; de Andrade, Keitty Regina Cordeiro; Pereira, Maurício Gomes
2017-05-01
Smoking during pregnancy may negatively impact newborn birth weight. This study investigates the relationship between maternal active smoking during pregnancy and low birth weight in the Americas through systematic review and meta-analysis. A literature search was conducted through indexed databases and the grey literature. Case-control and cohort studies published between 1984 and 2016 conducted within the Americas were included without restriction regarding publication language. The article selection process and data extraction were performed by two independent investigators. A meta-analysis of random effects was conducted, and possible causes of between-study heterogeneity were evaluated by meta-regressions and subgroup analyses. Publication bias was assessed by visual inspection of Begg's funnel plot and by Egger's regression test. The literature search yielded 848 articles from which 34 studies were selected for systematic review and 30 for meta-analysis. Active maternal smoking was associated with low birth weight, OR = 2.00 (95% CI: 1.77-2.26; I2 = 66.3%). The funnel plot and Egger's test (p = .14) indicated no publication bias. Meta-regression revealed that sample size, study quality, and the number of confounders in the original studies did not account for the between-study heterogeneity. Subgroup analysis indicated no significant differences when studies were compared by design, sample size, and regions of the Americas. Low birth weight is associated with maternal active smoking during pregnancy regardless of the region in the Americas or the studies' methodological aspects. A previous search of the major electronic databases revealed that no studies appear to have been conducted to summarize the association between maternal active smoking during pregnancy and low birth weight within the Americas. Therefore, this systematic review may help to fill the information gap. The region of the Americas contains some of the most populous countries in the world; therefore, this study may provide useful data from this massive segment of the world's population. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Nguyen, Quynh C.; Osypuk, Theresa L.; Schmidt, Nicole M.; Glymour, M. Maria; Tchetgen Tchetgen, Eric J.
2015-01-01
Despite the recent flourishing of mediation analysis techniques, many modern approaches are difficult to implement or applicable to only a restricted range of regression models. This report provides practical guidance for implementing a new technique utilizing inverse odds ratio weighting (IORW) to estimate natural direct and indirect effects for mediation analyses. IORW takes advantage of the odds ratio's invariance property and condenses information on the odds ratio for the relationship between the exposure (treatment) and multiple mediators, conditional on covariates, by regressing exposure on mediators and covariates. The inverse of the covariate-adjusted exposure-mediator odds ratio association is used to weight the primary analytical regression of the outcome on treatment. The treatment coefficient in such a weighted regression estimates the natural direct effect of treatment on the outcome, and indirect effects are identified by subtracting direct effects from total effects. Weighting renders treatment and mediators independent, thereby deactivating indirect pathways of the mediators. This new mediation technique accommodates multiple discrete or continuous mediators. IORW is easily implemented and is appropriate for any standard regression model, including quantile regression and survival analysis. An empirical example is given using data from the Moving to Opportunity (1994–2002) experiment, testing whether neighborhood context mediated the effects of a housing voucher program on obesity. Relevant Stata code (StataCorp LP, College Station, Texas) is provided. PMID:25693776
Mainou, Maria; Madenidou, Anastasia-Vasiliki; Liakos, Aris; Paschos, Paschalis; Karagiannis, Thomas; Bekiari, Eleni; Vlachaki, Efthymia; Wang, Zhen; Murad, Mohammad Hassan; Kumar, Shaji; Tsapas, Apostolos
2017-06-01
We performed a systematic review and meta-regression analysis of randomized control trials to investigate the association between response to initial treatment and survival outcomes in patients with newly diagnosed multiple myeloma (MM). Response outcomes included complete response (CR) and the combined outcome of CR or very good partial response (VGPR), while survival outcomes were overall survival (OS) and progression-free survival (PFS). We used random-effect meta-regression models and conducted sensitivity analyses based on definition of CR and study quality. Seventy-two trials were included in the systematic review, 63 of which contributed data in meta-regression analyses. There was no association between OS and CR in patients without autologous stem cell transplant (ASCT) (regression coefficient: .02, 95% confidence interval [CI] -0.06, 0.10), in patients undergoing ASCT (-.11, 95% CI -0.44, 0.22) and in trials comparing ASCT with non-ASCT patients (.04, 95% CI -0.29, 0.38). Similarly, OS did not correlate with the combined metric of CR or VGPR, and no association was evident between response outcomes and PFS. Sensitivity analyses yielded similar results. This meta-regression analysis suggests that there is no association between conventional response outcomes and survival in patients with newly diagnosed MM. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Vajargah, Kianoush Fathi; Sadeghi-Bazargani, Homayoun; Mehdizadeh-Esfanjani, Robab; Savadi-Oskouei, Daryoush; Farhoudi, Mehdi
2012-01-01
The objective of the present study was to assess the comparable applicability of orthogonal projections to latent structures (OPLS) statistical model vs traditional linear regression in order to investigate the role of trans cranial doppler (TCD) sonography in predicting ischemic stroke prognosis. The study was conducted on 116 ischemic stroke patients admitted to a specialty neurology ward. The Unified Neurological Stroke Scale was used once for clinical evaluation on the first week of admission and again six months later. All data was primarily analyzed using simple linear regression and later considered for multivariate analysis using PLS/OPLS models through the SIMCA P+12 statistical software package. The linear regression analysis results used for the identification of TCD predictors of stroke prognosis were confirmed through the OPLS modeling technique. Moreover, in comparison to linear regression, the OPLS model appeared to have higher sensitivity in detecting the predictors of ischemic stroke prognosis and detected several more predictors. Applying the OPLS model made it possible to use both single TCD measures/indicators and arbitrarily dichotomized measures of TCD single vessel involvement as well as the overall TCD result. In conclusion, the authors recommend PLS/OPLS methods as complementary rather than alternative to the available classical regression models such as linear regression.
[Development of the lung cancer diagnostic system].
Lv, You-Jiang; Yu, Shou-Yi
2009-07-01
To develop a lung cancer diagnosis system. A retrospective analysis was conducted in 1883 patients with primary lung cancer or benign pulmonary diseases (pneumonia, tuberculosis, or pneumonia pseudotumor). SPSS11.5 software was used for data processing. For the relevant factors, a non-factor Logistic regression analysis was used followed by establishment of the regression model. Microsoft Visual Studio 2005 system development platform and VB.Net corresponding language were used to develop the lung cancer diagnosis system. The non-factor multi-factor regression model showed a goodness-of-fit (R2) of the model of 0.806, with a diagnostic accuracy for benign lung diseases of 92.8%, a diagnostic accuracy for lung cancer of 89.0%, and an overall accuracy of 90.8%. The model system for early clinical diagnosis of lung cancer has been established.
Kitagawa, Yasuhisa; Teramoto, Tamio; Daida, Hiroyuki
2012-01-01
We evaluated the impact of adherence to preferable behavior on serum lipid control assessed by a self-reported questionnaire in high-risk patients taking pravastatin for primary prevention of coronary artery disease. High-risk patients taking pravastatin were followed for 2 years. Questionnaire surveys comprising 21 questions, including 18 questions concerning awareness of health, and current status of diet, exercise, and drug therapy, were conducted at baseline and after 1 year. Potential domains were established by factor analysis from the results of questionnaires, and adherence scores were calculated in each domain. The relationship between adherence scores and lipid values during the 1-year treatment period was analyzed by each domain using multiple regression analysis. A total of 5,792 patients taking pravastatin were included in the analysis. Multiple regression analysis showed a significant correlation in terms of "Intake of high fat/cholesterol/sugar foods" (regression coefficient -0.58, p=0.0105) and "Adherence to instructions for drug therapy" (regression coefficient -6.61, p<0.0001). Low-density lipoprotein cholesterol (LDL-C) values were significantly lower in patients who had an increase in the adherence score in the "Awareness of health" domain compared with those with a decreased score. There was a significant correlation between high-density lipoprotein (HDL-C) values and "Awareness of health" (regression coefficient 0.26; p= 0.0037), "Preferable dietary behaviors" (regression coefficient 0.75; p<0.0001), and "Exercise" (regression coefficient 0.73; p= 0.0002). Similar relations were seen with triglycerides. In patients who have a high awareness of their health, a positive attitude toward lipid-lowering treatment including diet, exercise, and high adherence to drug therapy, is related with favorable overall lipid control even in patients under treatment with pravastatin.
Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery
NASA Astrophysics Data System (ADS)
Monteiro, Sildomar Takahashi; Minekawa, Yohei; Kosugi, Yukio; Akazawa, Tsuneya; Oda, Kunio
Hyperspectral image data provides a powerful tool for non-destructive crop analysis. This paper investigates a hyperspectral image data-processing method to predict the sweetness and amino acid content of soybean crops. Regression models based on artificial neural networks were developed in order to calculate the level of sucrose, glucose, fructose, and nitrogen concentrations, which can be related to the sweetness and amino acid content of vegetables. A performance analysis was conducted comparing regression models obtained using different preprocessing methods, namely, raw reflectance, second derivative, and principal components analysis. This method is demonstrated using high-resolution hyperspectral data of wavelengths ranging from the visible to the near infrared acquired from an experimental field of green vegetable soybeans. The best predictions were achieved using a nonlinear regression model of the second derivative transformed dataset. Glucose could be predicted with greater accuracy, followed by sucrose, fructose and nitrogen. The proposed method provides the possibility to provide relatively accurate maps predicting the chemical content of soybean crop fields.
Selective Exposure to Televised Violence.
ERIC Educational Resources Information Center
Atkin, Charles; And Others
1979-01-01
Present the results of a study conducted to determine the correlation between children's selection of television programs and aggression. The regression analysis suggests that the relationship between viewing and aggression may be attributable to selective exposure rather than the reverse viewing-causes-aggression sequence. (Author/JVP)
NASA Technical Reports Server (NTRS)
Mcdermott, P. P.
1980-01-01
The design of an accelerated life test program for electric batteries is discussed. A number of observations and suggestions on the procedures and objectives for conducting an accelerated life test program are presented. Equations based on nonlinear regression analysis for predicting the accelerated life test parameters are discussed.
Use of Thematic Mapper for water quality assessment
NASA Technical Reports Server (NTRS)
Horn, E. M.; Morrissey, L. A.
1984-01-01
The evaluation of simulated TM data obtained on an ER-2 aircraft at twenty-five predesignated sample sites for mapping water quality factors such as conductivity, pH, suspended solids, turbidity, temperature, and depth, is discussed. Using a multiple regression for the seven TM bands, an equation is developed for the suspended solids. TM bands 1, 2, 3, 4, and 6 are used with logarithm conductivity in a multiple regression. The assessment of regression equations for a high coefficient of determination (R-squared) and statistical significance is considered. Confidence intervals about the mean regression point are calculated in order to assess the robustness of the regressions used for mapping conductivity, turbidity, and suspended solids, and by regressing random subsamples of sites and comparing the resultant range of R-squared, cross validation is conducted.
Lozier, Leah M; Cardinale, Elise M; VanMeter, John W; Marsh, Abigail A
2014-06-01
Among youths with conduct problems, callous-unemotional (CU) traits are known to be an important determinant of symptom severity, prognosis, and treatment responsiveness. But positive correlations between conduct problems and CU traits result in suppressor effects that may mask important neurobiological distinctions among subgroups of children with conduct problems. To assess the unique neurobiological covariates of CU traits and externalizing behaviors in youths with conduct problems and determine whether neural dysfunction linked to CU traits mediates the link between callousness and proactive aggression. This cross-sectional case-control study involved behavioral testing and neuroimaging that were conducted at a university research institution. Neuroimaging was conducted using a 3-T Siemens magnetic resonance imaging scanner. It included 46 community-recruited male and female juveniles aged 10 to 17 years, including 16 healthy control participants and 30 youths with conduct problems with both low and high levels of CU traits. Blood oxygenation level-dependent signal as measured via functional magnetic resonance imaging during an implicit face-emotion processing task and analyzed using whole-brain and region of interest-based analysis of variance and multiple-regression analyses. Analysis of variance revealed no group differences in the amygdala. By contrast, consistent with the existence of suppressor effects, multiple-regression analysis found amygdala responses to fearful expressions to be negatively associated with CU traits (x = 26, y = 0, z = -12; k = 1) and positively associated with externalizing behavior (x = 24, y = 0, z = -14; k = 8) when both variables were modeled simultaneously. Reduced amygdala responses mediated the relationship between CU traits and proactive aggression. The results linked proactive aggression in youths with CU traits to hypoactive amygdala responses to emotional distress cues, consistent with theories that externalizing behaviors, particularly proactive aggression, in youths with these traits stem from deficient empathic responses to distress. Amygdala hypoactivity may represent an intermediate phenotype, offering new insights into effective treatment strategies for conduct problems.
Petrou, Stavros; Kwon, Joseph; Madan, Jason
2018-05-10
Economic analysts are increasingly likely to rely on systematic reviews and meta-analyses of health state utility values to inform the parameter inputs of decision-analytic modelling-based economic evaluations. Beyond the context of economic evaluation, evidence from systematic reviews and meta-analyses of health state utility values can be used to inform broader health policy decisions. This paper provides practical guidance on how to conduct a systematic review and meta-analysis of health state utility values. The paper outlines a number of stages in conducting a systematic review, including identifying the appropriate evidence, study selection, data extraction and presentation, and quality and relevance assessment. The paper outlines three broad approaches that can be used to synthesise multiple estimates of health utilities for a given health state or condition, namely fixed-effect meta-analysis, random-effects meta-analysis and mixed-effects meta-regression. Each approach is illustrated by a synthesis of utility values for a hypothetical decision problem, and software code is provided. The paper highlights a number of methodological issues pertinent to the conduct of meta-analysis or meta-regression. These include the importance of limiting synthesis to 'comparable' utility estimates, for example those derived using common utility measurement approaches and sources of valuation; the effects of reliance on limited or poorly reported published data from primary utility assessment studies; the use of aggregate outcomes within analyses; approaches to generating measures of uncertainty; handling of median utility values; challenges surrounding the disentanglement of utility estimates collected serially within the context of prospective observational studies or prospective randomised trials; challenges surrounding the disentanglement of intervention effects; and approaches to measuring model validity. Areas of methodological debate and avenues for future research are highlighted.
NASA Astrophysics Data System (ADS)
Öktem, H.
2012-01-01
Plastic injection molding plays a key role in the production of high-quality plastic parts. Shrinkage is one of the most significant problems of a plastic part in terms of quality in the plastic injection molding. This article focuses on the study of the modeling and analysis of the effects of process parameters on the shrinkage by evaluating the quality of the plastic part of a DVD-ROM cover made with Acrylonitrile Butadiene Styrene (ABS) polymer material. An effective regression model was developed to determine the mathematical relationship between the process parameters (mold temperature, melt temperature, injection pressure, injection time, and cooling time) and the volumetric shrinkage by utilizing the analysis data. Finite element (FE) analyses designed by Taguchi (L27) orthogonal arrays were run in the Moldflow simulation program. Analysis of variance (ANOVA) was then performed to check the adequacy of the regression model and to determine the effect of the process parameters on the shrinkage. Experiments were conducted to control the accuracy of the regression model with the FE analyses obtained from Moldflow. The results show that the regression model agrees very well with the FE analyses and the experiments. From this, it can be concluded that this study succeeded in modeling the shrinkage problem in our application.
NASA Astrophysics Data System (ADS)
Abunama, Taher; Othman, Faridah
2017-06-01
Analysing the fluctuations of wastewater inflow rates in sewage treatment plants (STPs) is essential to guarantee a sufficient treatment of wastewater before discharging it to the environment. The main objectives of this study are to statistically analyze and forecast the wastewater inflow rates into the Bandar Tun Razak STP in Kuala Lumpur, Malaysia. A time series analysis of three years’ weekly influent data (156weeks) has been conducted using the Auto-Regressive Integrated Moving Average (ARIMA) model. Various combinations of ARIMA orders (p, d, q) have been tried to select the most fitted model, which was utilized to forecast the wastewater inflow rates. The linear regression analysis was applied to testify the correlation between the observed and predicted influents. ARIMA (3, 1, 3) model was selected with the highest significance R-square and lowest normalized Bayesian Information Criterion (BIC) value, and accordingly the wastewater inflow rates were forecasted to additional 52weeks. The linear regression analysis between the observed and predicted values of the wastewater inflow rates showed a positive linear correlation with a coefficient of 0.831.
NASA Astrophysics Data System (ADS)
Chu, Hone-Jay; Kong, Shish-Jeng; Chang, Chih-Hua
2018-03-01
The turbidity (TB) of a water body varies with time and space. Water quality is traditionally estimated via linear regression based on satellite images. However, estimating and mapping water quality require a spatio-temporal nonstationary model, while TB mapping necessitates the use of geographically and temporally weighted regression (GTWR) and geographically weighted regression (GWR) models, both of which are more precise than linear regression. Given the temporal nonstationary models for mapping water quality, GTWR offers the best option for estimating regional water quality. Compared with GWR, GTWR provides highly reliable information for water quality mapping, boasts a relatively high goodness of fit, improves the explanation of variance from 44% to 87%, and shows a sufficient space-time explanatory power. The seasonal patterns of TB and the main spatial patterns of TB variability can be identified using the estimated TB maps from GTWR and by conducting an empirical orthogonal function (EOF) analysis.
Experimental investigation of fuel regression rate in a HTPB based lab-scale hybrid rocket motor
NASA Astrophysics Data System (ADS)
Li, Xintian; Tian, Hui; Yu, Nanjia; Cai, Guobiao
2014-12-01
The fuel regression rate is an important parameter in the design process of the hybrid rocket motor. Additives in the solid fuel may have influences on the fuel regression rate, which will affect the internal ballistics of the motor. A series of firing experiments have been conducted on lab-scale hybrid rocket motors with 98% hydrogen peroxide (H2O2) oxidizer and hydroxyl terminated polybutadiene (HTPB) based fuels in this paper. An innovative fuel regression rate analysis method is established to diminish the errors caused by start and tailing stages in a short time firing test. The effects of the metal Mg, Al, aromatic hydrocarbon anthracene (C14H10), and carbon black (C) on the fuel regression rate are investigated. The fuel regression rate formulas of different fuel components are fitted according to the experiment data. The results indicate that the influence of C14H10 on the fuel regression rate of HTPB is not evident. However, the metal additives in the HTPB fuel can increase the fuel regression rate significantly.
A psycholinguistic database for traditional Chinese character naming.
Chang, Ya-Ning; Hsu, Chun-Hsien; Tsai, Jie-Li; Chen, Chien-Liang; Lee, Chia-Ying
2016-03-01
In this study, we aimed to provide a large-scale set of psycholinguistic norms for 3,314 traditional Chinese characters, along with their naming reaction times (RTs), collected from 140 Chinese speakers. The lexical and semantic variables in the database include frequency, regularity, familiarity, consistency, number of strokes, homophone density, semantic ambiguity rating, phonetic combinability, semantic combinability, and the number of disyllabic compound words formed by a character. Multiple regression analyses were conducted to examine the predictive powers of these variables for the naming RTs. The results demonstrated that these variables could account for a significant portion of variance (55.8%) in the naming RTs. An additional multiple regression analysis was conducted to demonstrate the effects of consistency and character frequency. Overall, the regression results were consistent with the findings of previous studies on Chinese character naming. This database should be useful for research into Chinese language processing, Chinese education, or cross-linguistic comparisons. The database can be accessed via an online inquiry system (http://ball.ling.sinica.edu.tw/namingdatabase/index.html).
Forecasting urban water demand: A meta-regression analysis.
Sebri, Maamar
2016-12-01
Water managers and planners require accurate water demand forecasts over the short-, medium- and long-term for many purposes. These range from assessing water supply needs over spatial and temporal patterns to optimizing future investments and planning future allocations across competing sectors. This study surveys the empirical literature on the urban water demand forecasting using the meta-analytical approach. Specifically, using more than 600 estimates, a meta-regression analysis is conducted to identify explanations of cross-studies variation in accuracy of urban water demand forecasting. Our study finds that accuracy depends significantly on study characteristics, including demand periodicity, modeling method, forecasting horizon, model specification and sample size. The meta-regression results remain robust to different estimators employed as well as to a series of sensitivity checks performed. The importance of these findings lies in the conclusions and implications drawn out for regulators and policymakers and for academics alike. Copyright © 2016. Published by Elsevier Ltd.
AGSuite: Software to conduct feature analysis of artificial grammar learning performance.
Cook, Matthew T; Chubala, Chrissy M; Jamieson, Randall K
2017-10-01
To simplify the problem of studying how people learn natural language, researchers use the artificial grammar learning (AGL) task. In this task, participants study letter strings constructed according to the rules of an artificial grammar and subsequently attempt to discriminate grammatical from ungrammatical test strings. Although the data from these experiments are usually analyzed by comparing the mean discrimination performance between experimental conditions, this practice discards information about the individual items and participants that could otherwise help uncover the particular features of strings associated with grammaticality judgments. However, feature analysis is tedious to compute, often complicated, and ill-defined in the literature. Moreover, the data violate the assumption of independence underlying standard linear regression models, leading to Type I error inflation. To solve these problems, we present AGSuite, a free Shiny application for researchers studying AGL. The suite's intuitive Web-based user interface allows researchers to generate strings from a database of published grammars, compute feature measures (e.g., Levenshtein distance) for each letter string, and conduct a feature analysis on the strings using linear mixed effects (LME) analyses. The LME analysis solves the inflation of Type I errors that afflicts more common methods of repeated measures regression analysis. Finally, the software can generate a number of graphical representations of the data to support an accurate interpretation of results. We hope the ease and availability of these tools will encourage researchers to take full advantage of item-level variance in their datasets in the study of AGL. We moreover discuss the broader applicability of the tools for researchers looking to conduct feature analysis in any field.
CATREG SOFTWARE FOR CATEGORICAL REGRESSION ANALYSIS
CatReg is a computer program, written in the R (http://cran.r-project.org) programming language, to support the conduct of exposure-response analyses by toxicologists and health scientists. CatReg can be used to perform categorical regressi...
NASA Astrophysics Data System (ADS)
Ravi, D.; Parammasivam, K. M.
2016-09-01
Numerical investigations were conducted on a turbine cascade, with end-wall cooling by a single row of cylindrical holes, inclined at 30°. The mainstream fluid was hot air and the coolant was CO2 gas. Based on the Reynolds number, the flow was turbulent at the inlet. The film hole row position, its pitch and blowing ratio was varied with five different values. Taguchi approach was used in designing a L25 orthogonal array (OA) for these parameters. The end-wall averaged film cooling effectiveness (bar η) was chosen as the quality characteristic. CFD analyses were carried out using Ansys Fluent on computational domains designed with inputs from OA. Experiments were conducted for one chosen OA configuration and the computational results were found to correlate well with experimental measurements. The responses from the CFD analyses were fed to the statistical tool to develop a correlation for bar η using regression analysis.
Pagano, Matthew J; De Fazio, Adam; Levy, Alison; RoyChoudhury, Arindam; Stahl, Peter J
2016-04-01
To identify clinical predictors of testosterone deficiency (TD) in men with erectile dysfunction (ED), thereby identifying subgroups that are most likely to benefit from targeted testosterone screening. Retrospective review was conducted on 498 men evaluated for ED between January 2013 and July 2014. Testing for TD by early morning serum measurement was offered to all eligible men. Patients with history of prostate cancer or testosterone replacement were excluded. Univariable linear regression was conducted to analyze 19 clinical variables for associations with serum total testosterone (TT), calculated free testosterone (cFT), and TD (T <300 ng/dL or cFT <6.5 ng/dL). Variables significant on univariable analysis were included in multiple regression models. A total of 225 men met inclusion criteria. Lower TT levels were associated with greater body mass index (BMI), less frequent sexual activity, and absence of clinical depression on multiple regression analysis. TT decreased by 49.5 ng/dL for each 5-point increase in BMI. BMI and age were the only independent predictors of cFT levels on multivariable analysis. Overall, 62 subjects (27.6%) met criteria for TD. Older age, greater BMI, and less frequent sexual activity were the only independent predictors of TD on multiple regression. We observed a 2.2-fold increase in the odds of TD for every 5-point increase in BMI, and a 1.8-fold increase for every 10 year increase in age. Men with ED and elevated BMI, advanced age, or infrequent sexual activity appear to be at high risk of TD, and such patients represent excellent potential candidates for targeted testosterone screening. Copyright © 2016 Elsevier Inc. All rights reserved.
Sanford, Ward E.; Nelms, David L.; Pope, Jason P.; Selnick, David L.
2012-01-01
This study by the U.S. Geological Survey, prepared in cooperation with the Virginia Department of Environmental Quality, quantifies the components of the hydrologic cycle across the Commonwealth of Virginia. Long-term, mean fluxes were calculated for precipitation, surface runoff, infiltration, total evapotranspiration (ET), riparian ET, recharge, base flow (or groundwater discharge) and net total outflow. Fluxes of these components were first estimated on a number of real-time-gaged watersheds across Virginia. Specific conductance was used to distinguish and separate surface runoff from base flow. Specific-conductance data were collected every 15 minutes at 75 real-time gages for approximately 18 months between March 2007 and August 2008. Precipitation was estimated for 1971–2000 using PRISM climate data. Precipitation and temperature from the PRISM data were used to develop a regression-based relation to estimate total ET. The proportion of watershed precipitation that becomes surface runoff was related to physiographic province and rock type in a runoff regression equation. Component flux estimates from the watersheds were transferred to flux estimates for counties and independent cities using the ET and runoff regression equations. Only 48 of the 75 watersheds yielded sufficient data, and data from these 48 were used in the final runoff regression equation. The base-flow proportion for the 48 watersheds averaged 72 percent using specific conductance, a value that was substantially higher than the 61 percent average calculated using a graphical-separation technique (the USGS program PART). Final results for the study are presented as component flux estimates for all counties and independent cities in Virginia.
Modeling Longitudinal Data Containing Non-Normal Within Subject Errors
NASA Technical Reports Server (NTRS)
Feiveson, Alan; Glenn, Nancy L.
2013-01-01
The mission of the National Aeronautics and Space Administration’s (NASA) human research program is to advance safe human spaceflight. This involves conducting experiments, collecting data, and analyzing data. The data are longitudinal and result from a relatively few number of subjects; typically 10 – 20. A longitudinal study refers to an investigation where participant outcomes and possibly treatments are collected at multiple follow-up times. Standard statistical designs such as mean regression with random effects and mixed–effects regression are inadequate for such data because the population is typically not approximately normally distributed. Hence, more advanced data analysis methods are necessary. This research focuses on four such methods for longitudinal data analysis: the recently proposed linear quantile mixed models (lqmm) by Geraci and Bottai (2013), quantile regression, multilevel mixed–effects linear regression, and robust regression. This research also provides computational algorithms for longitudinal data that scientists can directly use for human spaceflight and other longitudinal data applications, then presents statistical evidence that verifies which method is best for specific situations. This advances the study of longitudinal data in a broad range of applications including applications in the sciences, technology, engineering and mathematics fields.
Quattrocchi, C C; Giona, A; Di Martino, A; Gaudino, F; Mallio, C A; Errante, Y; Occhicone, F; Vitali, M A; Zobel, B B; Denaro, V
2015-08-01
This study was designed to determine the association between LSE, spondylolisthesis, facet arthropathy, lumbar canal stenosis, BMI, radiculopathy and bone marrow edema at conventional lumbar spine MR imaging. This is a retrospective radiological study; 441 consecutive patients with low back pain (224 men and 217 women; mean age 57.3 years; mean BMI 26) underwent conventional lumbar MRI using a 1.5-T magnet (Avanto, Siemens). Lumbar MR images were reviewed by consensus for the presence of LSE, spondylolisthesis, facet arthropathy, lumbar canal stenosis, radiculopathy and bone marrow edema. Descriptive statistics and association studies were conducted using STATA software 11.0. Association studies have been performed using linear univariate regression analysis and multivariate regression analysis, considering LSE as response variable. The overall prevalence of LSE was 40%; spondylolisthesis (p = 0.01), facet arthropathy (p < 0.001), BMI (p = 0.008) and lumbar canal stenosis (p < 0.001) were included in the multivariate regression model, whereas bone marrow edema, radiculopathy and age were not. LSE is highly associated with spondylolisthesis, facet arthropathy and BMI, suggesting underestimation of its clinical impact as an integral component in chronic lumbar back pain. Longitudinal simultaneous X-ray/MRI studies should be conducted to test the relationship of LSE with lumbar spinal instability and low back pain.
United States Marine Corps Basic Reconnaissance Course: Predictors of Success
2017-03-01
PAGE INTENTIONALLY LEFT BLANK 81 VI. CONCLUSIONS AND RECOMMENDATIONS A. CONCLUSIONS The objective of my research is to provide quantitative ...percent over the last three years, illustrating there is room for improvement. This study conducts a quantitative and qualitative analysis of the...criteria used to select candidates for the BRC. The research uses multi-variate logistic regression models and survival analysis to determine to what
Analysis on the Correlation of Traffic Flow in Hainan Province Based on Baidu Search
NASA Astrophysics Data System (ADS)
Chen, Caixia; Shi, Chun
2018-03-01
Internet search data records user’s search attention and consumer demand, providing necessary database for the Hainan traffic flow model. Based on Baidu Index, with Hainan traffic flow as example, this paper conduct both qualitative and quantitative analysis on the relationship between search keyword from Baidu Index and actual Hainan tourist traffic flow, and build multiple regression model by SPSS.
USDA-ARS?s Scientific Manuscript database
Cooperative studies comprising growth performance, bone mineralization, and nutrient balance experiments were conducted at 11 stations to determine the standardized total-tract digestible (STTD) P requirement of 20-kg pigs using broken-line regression analysis. Monocalcium phosphate and limestone we...
Faculty Research Productivity in Hong Kong across Academic Discipline
ERIC Educational Resources Information Center
Jung, Jisun
2012-01-01
This study examines the research productivity of Hong Kong academics. Specifically, it explores the individual and institutional factors that contribute to their productivity while also comparing determinants across academic disciplines. We have conducted OLS regression analysis using the international survey data from "The Changing Academics…
Validation of the Juhnke-Balkin Life Balance Inventory
ERIC Educational Resources Information Center
Davis, R. J.; Balkin, Richard S.; Juhnke, Gerald A.
2014-01-01
Life balance is an important construct within the counseling profession. A validation study utilizing exploratory factor analysis and multiple regression was conducted on the Juhnke-Balkin Life Balance Inventory. Results from the study serve as evidence of validity for an assessment instrument designed to measure life balance.
Black Female Community College Students' Satisfaction: A National Regression Analysis
ERIC Educational Resources Information Center
Strayhorn, Terrell L.; Johnson, Royel M.
2014-01-01
Data from the Community College Student Experiences Questionnaire were analyzed for a sample of 315 Black women attending community colleges. Specifically, we conducted multivariate analyses to assess the relationship between background traits, commitments, engagement, academic performance, and satisfaction for Black women at community colleges.…
The Relative Impact of Educational Attainment and Fatherlessness on Criminality.
ERIC Educational Resources Information Center
Koski, Douglas D.
1996-01-01
Regression analysis of 40 years of data on median income, education, divorce rate, and female-headed households was conducted to determine their influence on crime rates, especially homicide. Educational attainment had a significant bearing on criminality. Single parenting was less significant than low income. (SK)
Marital status integration and suicide: A meta-analysis and meta-regression.
Kyung-Sook, Woo; SangSoo, Shin; Sangjin, Shin; Young-Jeon, Shin
2018-01-01
Marital status is an index of the phenomenon of social integration within social structures and has long been identified as an important predictor suicide. However, previous meta-analyses have focused only on a particular marital status, or not sufficiently explored moderators. A meta-analysis of observational studies was conducted to explore the relationships between marital status and suicide and to understand the important moderating factors in this association. Electronic databases were searched to identify studies conducted between January 1, 2000 and June 30, 2016. We performed a meta-analysis, subgroup analysis, and meta-regression of 170 suicide risk estimates from 36 publications. Using random effects model with adjustment for covariates, the study found that the suicide risk for non-married versus married was OR = 1.92 (95% CI: 1.75-2.12). The suicide risk was higher for non-married individuals aged <65 years than for those aged ≥65 years, and higher for men than for women. According to the results of stratified analysis by gender, non-married men exhibited a greater risk of suicide than their married counterparts in all sub-analyses, but women aged 65 years or older showed no significant association between marital status and suicide. The suicide risk in divorced individuals was higher than for non-married individuals in both men and women. The meta-regression showed that gender, age, and sample size affected between-study variation. The results of the study indicated that non-married individuals have an aggregate higher suicide risk than married ones. In addition, gender and age were confirmed as important moderating factors in the relationship between marital status and suicide. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gentili, Claudio; Pietrini, Pietro; Cuijpers, Pim
2017-01-01
Background The influence of factors related to the background of investigators conducting trials comparing psychotherapy and pharmacotherapy has remained largely unstudied. Specializations emphasizing biological determinants of mental disorders, like psychiatry, might favor pharmacotherapy, while others stressing psychosocial factors, like psychology, could promote psychotherapy. Yet financial conflict of interest (COI) could be a confounding factor as authors with a medical specialization might receive more sponsoring from the pharmaceutical industry. Method We conducted a meta-analysis with subgroup and meta-regression analysis examining whether the specialization and affiliation of trial authors were associated to outcomes in the direct comparison of psychotherapy and pharmacotherapy for the acute treatment of depression. Meta-regression analysis also included trial risk of bias and author conflict of interest in relationship to the pharmaceutical industry. Results We included 45 trials. In half, the first author was psychologist. The last author was psychiatrist/MD in half of the trials, and a psychologist or statistician/other technical in the rest. Most lead authors had medical affiliations. Subgroup analysis indicated that studies with last authors statisticians favored pharmacotherapy. Univariate analysis showed a negative relationship between the presence of statisticians and outcomes favoring psychotherapy. Multivariate analysis showed that trials including authors with financial COI reported findings more favorable to pharmacotherapy. Discussion We report the first detailed overview of the background of authors conducting head to head trials for depression. Trials co-authored by statisticians appear to subtly favor pharmacotherapy. Receiving funding from the industry is more closely related to finding better outcomes for the industry’s elective treatment than are factors related to authors’ background. Limitations For a minority of authors we could not retrieve background information. The number of trials was insufficient to evidence subtler effects. PMID:28158281
Online Patient Education for Chronic Disease Management: Consumer Perspectives.
Win, Khin Than; Hassan, Naffisah Mohd; Oinas-Kukkonen, Harri; Probst, Yasmine
2016-04-01
Patient education plays an important role in chronic disease management. The aim of this study is to identify patients' preferences in regard to the design features of effective online patient education (OPE) and the benefits. A review of the existing literature was conducted in order to identify the benefits of OPE and its essential design features. These design features were empirically tested by conducting survey with patients and caregivers. Reliability analysis, construct validity and regression analysis were performed for data analysis. The results identified patient-tailored information, interactivity, content credibility, clear presentation of content, use of multimedia and interpretability as the essential design features of online patient education websites for chronic disease management.
Toh, Sengwee; Gagne, Joshua J; Rassen, Jeremy A; Fireman, Bruce H; Kulldorff, Martin; Brown, Jeffrey S
2013-08-01
A distributed research network (DRN) of electronic health care databases, in which data reside behind the firewall of each data partner, can support a wide range of comparative effectiveness research (CER) activities. An essential component of a fully functional DRN is the capability to perform robust statistical analyses to produce valid, actionable evidence without compromising patient privacy, data security, or proprietary interests. We describe the strengths and limitations of different confounding adjustment approaches that can be considered in observational CER studies conducted within DRNs, and the theoretical and practical issues to consider when selecting among them in various study settings. Several methods can be used to adjust for multiple confounders simultaneously, either as individual covariates or as confounder summary scores (eg, propensity scores and disease risk scores), including: (1) centralized analysis of patient-level data, (2) case-centered logistic regression of risk set data, (3) stratified or matched analysis of aggregated data, (4) distributed regression analysis, and (5) meta-analysis of site-specific effect estimates. These methods require different granularities of information be shared across sites and afford investigators different levels of analytic flexibility. DRNs are growing in use and sharing of highly detailed patient-level information is not always feasible in DRNs. Methods that incorporate confounder summary scores allow investigators to adjust for a large number of confounding factors without the need to transfer potentially identifiable information in DRNs. They have the potential to let investigators perform many analyses traditionally conducted through a centralized dataset with detailed patient-level information.
Johansson, Johannes D; Eriksson, Ola; Wren, Joakim; Loyd, Dan; Wårdell, Karin
2006-09-01
Radio-frequency brain lesioning is a method for reducing e.g. symptoms of movement disorders. A small electrode is used to thermally coagulate malfunctioning tissue. Influence on lesion size from thermal and electric conductivity of the tissue, microvascular perfusion and preset electrode temperature was investigated using a finite-element model. Perfusion was modelled as an increased thermal conductivity in non-coagulated tissue. The parameters were analysed using a 2(4)-factorial design (n=16) and quadratic regression analysis (n=47). Increased thermal conductivity of the tissue increased lesion volume, while increased perfusion decreased it since coagulation creates a thermally insulating layer due to the cessation of blood perfusion. These effects were strengthened with increased preset temperature. The electric conductivity had negligible effect. Simulations were found realistic compared to in vivo experimental lesions.
Evaluating differential effects using regression interactions and regression mixture models
Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung
2015-01-01
Research increasingly emphasizes understanding differential effects. This paper focuses on understanding regression mixture models, a relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their formulation, and their assumptions are compared using Monte Carlo simulations and real data analysis. The capabilities of regression mixture models are described and specific issues to be addressed when conducting regression mixtures are proposed. The paper aims to clarify the role that regression mixtures can take in the estimation of differential effects and increase awareness of the benefits and potential pitfalls of this approach. Regression mixture models are shown to be a potentially effective exploratory method for finding differential effects when these effects can be defined by a small number of classes of respondents who share a typical relationship between a predictor and an outcome. It is also shown that the comparison between regression mixture models and interactions becomes substantially more complex as the number of classes increases. It is argued that regression interactions are well suited for direct tests of specific hypotheses about differential effects and regression mixtures provide a useful approach for exploring effect heterogeneity given adequate samples and study design. PMID:26556903
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Hu, Fan; Wang, Donghui; Okolo. N, Patrick; Zhang, Weihua
2017-07-01
Numerical simulations on processes within a hybrid rocket motor were conducted in the past, where most of these simulations carried out majorly focused on steady state analysis. Solid fuel regression rate strongly depends on complicated physicochemical processes and internal fluid dynamic behavior within the rocket motor, which changes with both space and time during its operation, and are therefore more unsteady in characteristics. Numerical simulations on the unsteady operational processes of N2O/HTPB hybrid rocket motor with and without diaphragm are conducted within this research paper. A numerical model is established based on two dimensional axisymmetric unsteady Navier-Stokes equations having turbulence, combustion and coupled gas/solid phase formulations. Discrete phase model is used to simulate injection and vaporization of the liquid oxidizer. A dynamic mesh technique is applied to the non-uniform regression of fuel grain, while results of unsteady flow field, variation of regression rate distribution with time, regression process of burning surface and internal ballistics are all obtained. Due to presence of eddy flow, the diaphragm increases regression rate further downstream. Peak regression rates are observed close to flow reattachment regions, while these peak values decrease gradually, and peak position shift further downstream with time advancement. Motor performance is analyzed accordingly, and it is noticed that the case with diaphragm included results in combustion efficiency and specific impulse efficiency increase of roughly 10%, and ground thrust increase of 17.8%.
Viswanathan, M; Pearl, D L; Taboada, E N; Parmley, E J; Mutschall, S K; Jardine, C M
2017-05-01
Using data collected from a cross-sectional study of 25 farms (eight beef, eight swine and nine dairy) in 2010, we assessed clustering of molecular subtypes of C. jejuni based on a Campylobacter-specific 40 gene comparative genomic fingerprinting assay (CGF40) subtypes, using unweighted pair-group method with arithmetic mean (UPGMA) analysis, and multiple correspondence analysis. Exact logistic regression was used to determine which genes differentiate wildlife and livestock subtypes in our study population. A total of 33 bovine livestock (17 beef and 16 dairy), 26 wildlife (20 raccoon (Procyon lotor), five skunk (Mephitis mephitis) and one mouse (Peromyscus spp.) C. jejuni isolates were subtyped using CGF40. Dendrogram analysis, based on UPGMA, showed distinct branches separating bovine livestock and mammalian wildlife isolates. Furthermore, two-dimensional multiple correspondence analysis was highly concordant with dendrogram analysis showing clear differentiation between livestock and wildlife CGF40 subtypes. Based on multilevel logistic regression models with a random intercept for farm of origin, we found that isolates in general, and raccoons more specifically, were significantly more likely to be part of the wildlife branch. Exact logistic regression conducted gene by gene revealed 15 genes that were predictive of whether an isolate was of wildlife or bovine livestock isolate origin. Both multiple correspondence analysis and exact logistic regression revealed that in most cases, the presence of a particular gene (13 of 15) was associated with an isolate being of livestock rather than wildlife origin. In conclusion, the evidence gained from dendrogram analysis, multiple correspondence analysis and exact logistic regression indicates that mammalian wildlife carry CGF40 subtypes of C. jejuni distinct from those carried by bovine livestock. Future studies focused on source attribution of C. jejuni in human infections will help determine whether wildlife transmit Campylobacter jejuni directly to humans. © 2016 Blackwell Verlag GmbH.
Fish assemblages at 16 sites in the upper French Broad River basin, North Carolina were related to environmental variables using detrended correspondence analysis (DCA) and linear regression. This study was conducted at the landscape scale because regional variables are controlle...
CatReg Software for Categorical Regression Analysis (Jul 2012)
CatReg is a computer program, written in the R (http://cran.r-project.org) programming language, to support the conduct of exposure-response analyses by toxicologists and health scientists. CatReg can be used to perform categorical regressi...
CatReg Software for Categorical Regression Analysis (Nov 2006)
CatReg is a computer program, written in the R (http://cran.r-project.org) programming language, to support the conduct of exposure-response analyses by toxicologists and health scientists. CatReg can be used to perform categorical regressi...
CatReg Software for Categorical Regression Analysis (Feb 2011)
CatReg is a computer program, written in the R (http://cran.r-project.org) programming language, to support the conduct of exposure-response analyses by toxicologists and health scientists. CatReg can be used to perform categorical regressi...
ERIC Educational Resources Information Center
Wang, Xueli
2012-01-01
This study examined factors associated with the upward transfer of baccalaureate aspirants beginning at community colleges. Based on data from the National Education Longitudinal Study of 1988 and the Postsecondary Education Transcript Study, a sequential logistic regression analysis was conducted to predict bachelor's degree-seeking community…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... for age and race in a regression analysis. Using America Community Survey (ACS) data and conducting a.... All models were run using the American Community Survey 2008-2010 Public Use Microdata (PUMS). The... that contractors maintain several quantitative measurements and comparisons for the number of veterans...
Totton, Sarah C; Farrar, Ashley M; Wilkins, Wendy; Bucher, Oliver; Waddell, Lisa A; Wilhelm, Barbara J; McEwen, Scott A; Rajić, Andrijana
2012-10-01
Eating inappropriately prepared poultry meat is a major cause of foodborne salmonellosis. Our objectives were to determine the efficacy of feed and water additives (other than competitive exclusion and antimicrobials) on reducing Salmonella prevalence or concentration in broiler chickens using systematic review-meta-analysis and to explore sources of heterogeneity found in the meta-analysis through meta-regression. Six electronic databases were searched (Current Contents (1999-2009), Agricola (1924-2009), MEDLINE (1860-2009), Scopus (1960-2009), Centre for Agricultural Bioscience (CAB) (1913-2009), and CAB Global Health (1971-2009)), five topic experts were contacted, and the bibliographies of review articles and a topic-relevant textbook were manually searched to identify all relevant research. Study inclusion criteria comprised: English-language primary research investigating the effects of feed and water additives on the Salmonella prevalence or concentration in broiler chickens. Data extraction and study methodological assessment were conducted by two reviewers independently using pretested forms. Seventy challenge studies (n=910 unique treatment-control comparisons), seven controlled studies (n=154), and one quasi-experiment (n=1) met the inclusion criteria. Compared to an assumed control group prevalence of 44 of 1000 broilers, random-effects meta-analysis indicated that the Salmonella cecal colonization in groups with prebiotics (fructooligosaccharide, lactose, whey, dried milk, lactulose, lactosucrose, sucrose, maltose, mannanoligosaccharide) added to feed or water was 15 out of 1000 broilers; with lactose added to feed or water it was 10 out of 1000 broilers; with experimental chlorate product (ECP) added to feed or water it was 21 out of 1000. For ECP the concentration of Salmonella in the ceca was decreased by 0.61 log(10)cfu/g in the treated group compared to the control group. Significant heterogeneity (Cochran's Q-statistic p≤0.10) was observed among studies examining all organic acids (controlled or challenge experiments), butyric acid, formic acid, a formic/propionic acid mixture, fermented liquid feed, and D-mannose. Meta-regressions were conducted to examine the source of heterogeneity among studies. For prevalence outcomes, 36% and 60% of the total variance was within and between studies, respectively. For concentration outcomes, 39% and 33% of the total variance was within and between studies, respectively. Inadequate blinding and randomization was common, and no studies undergoing meta-analysis or meta-regression were conducted on a commercial farm. The strength of evidence of the effect of these additives was very low. Studies conducted under commercial conditions are needed to understand the potential benefit of these interventions for the poultry industry and to improve the strength of evidence of the effectiveness of these additives. Copyright © 2012 Elsevier B.V. All rights reserved.
Schümberg, Katharina; Polyakova, Maryna; Steiner, Johann; Schroeter, Matthias L.
2016-01-01
S100B has been linked to glial pathology in several psychiatric disorders. Previous studies found higher S100B serum levels in patients with schizophrenia compared to healthy controls, and a number of covariates influencing the size of this effect have been proposed in the literature. Here, we conducted a meta-analysis and meta-regression analysis on alterations of serum S100B in schizophrenia in comparison with healthy control subjects. The meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to guarantee a high quality and reproducibility. With strict inclusion criteria 19 original studies could be included in the quantitative meta-analysis, comprising a total of 766 patients and 607 healthy control subjects. The meta-analysis confirmed higher values of the glial serum marker S100B in schizophrenia if compared with control subjects. Meta-regression analyses revealed significant effects of illness duration and clinical symptomatology, in particular the total score of the Positive and Negative Syndrome Scale (PANSS), on serum S100B levels in schizophrenia. In sum, results confirm glial pathology in schizophrenia that is modulated by illness duration and related to clinical symptomatology. Further studies are needed to investigate mechanisms and mediating factors related to these findings. PMID:26941608
Real-time soil sensing based on fiber optics and spectroscopy
NASA Astrophysics Data System (ADS)
Li, Minzan
2005-08-01
Using NIR spectroscopic techniques, correlation analysis and regression analysis for soil parameter estimation was conducted with raw soil samples collected in a cornfield and a forage field. Soil parameters analyzed were soil moisture, soil organic matter, nitrate nitrogen, soil electrical conductivity and pH. Results showed that all soil parameters could be evaluated by NIR spectral reflectance. For soil moisture, a linear regression model was available at low moisture contents below 30 % db, while an exponential model can be used in a wide range of moisture content up to 100 % db. Nitrate nitrogen estimation required a multi-spectral exponential model and electrical conductivity could be evaluated by a single spectral regression. According to the result above mentioned, a real time soil sensor system based on fiber optics and spectroscopy was developed. The sensor system was composed of a soil subsoiler with four optical fiber probes, a spectrometer, and a control unit. Two optical fiber probes were used for illumination and the other two optical fiber probes for collecting soil reflectance from visible to NIR wavebands at depths around 30 cm. The spectrometer was used to obtain the spectra of reflected lights. The control unit consisted of a data logging device, a personal computer, and a pulse generator. The experiment showed that clear photo-spectral reflectance was obtained from the underground soil. The soil reflectance was equal to that obtained by the desktop spectrophotometer in laboratory tests. Using the spectral reflectance, the soil parameters, such as soil moisture, pH, EC and SOM, were evaluated.
Kim, Seong-Gil
2018-01-01
Background The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. Material/Methods This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. Results In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). Conclusions Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement. PMID:29760375
Kim, Seong-Gil; Kim, Wan-Soo
2018-05-15
BACKGROUND The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. MATERIAL AND METHODS This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. RESULTS In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). CONCLUSIONS Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement.
Radiomorphometric analysis of frontal sinus for sex determination.
Verma, Saumya; Mahima, V G; Patil, Karthikeya
2014-09-01
Sex determination of unknown individuals carries crucial significance in forensic research, in cases where fragments of skull persist with no likelihood of identification based on dental arch. In these instances sex determination becomes important to rule out certain number of possibilities instantly and helps in establishing a biological profile of human remains. The aim of the study is to evaluate a mathematical method based on logistic regression analysis capable of ascertaining the sex of individuals in the South Indian population. The study was conducted in the department of Oral Medicine and Radiology. The right and left areas, maximum height, width of frontal sinus were determined in 100 Caldwell views of 50 women and 50 men aged 20 years and above, with the help of Vernier callipers and a square grid with 1 square measuring 1mm(2) in area. Student's t-test, logistic regression analysis. The mean values of variables were greater in men, based on Student's t-test at 5% level of significance. The mathematical model based on logistic regression analysis gave percentage agreement of total area to correctly predict the female gender as 55.2%, of right area as 60.9% and of left area as 55.2%. The areas of the frontal sinus and the logistic regression proved to be unreliable in sex determination. (Logit = 0.924 - 0.00217 × right area).
Malnutrition among women in sub-Saharan Africa: rural-urban disparity.
Uthman, O A; Aremu, O
2008-01-01
Malnutrition is a serious public health problem, particularly in developing countries, linked to a substantial increase in the risk of mortality and morbidity. Women and young children are most often affected. Rural disadvantage is a known factor, but little attention has been paid to rural-urban disparity among women. To provide a reliable source of information for policy-makers, the current study used nationally representative data from 26 countries in sub-Saharan Africa to update knowledge about the prevalence malnutrition and its rural-urban disparities among women. The data sources were the demographic and health surveys of 26 countries conducted between 1995 and 2006. The methods included meta-analysis, meta-regression, sub-group and sensitivity. Overall, rural women were 68% more likely to be malnourished compared with their urban counterparts. In the meta-regression analysis, sub-region, sample size, and the year the study was conducted explained the observed heterogeneity. This meta-analysis provided usable data for women in sub-Saharan Africa. The magnitude of rural-urban malnutrition disparity revealed provides a baseline that will be of assistance to clinicians, researchers, and policy-makers in the detection, prevention and treatment of malnutrition among rural women.
Patterson, Megan S; Goodson, Patricia
2017-05-01
Compulsive exercise, a form of unhealthy exercise often associated with prioritizing exercise and feeling guilty when exercise is missed, is a common precursor to and symptom of eating disorders. College-aged women are at high risk of exercising compulsively compared with other groups. Social network analysis (SNA) is a theoretical perspective and methodology allowing researchers to observe the effects of relational dynamics on the behaviors of people. SNA was used to assess the relationship between compulsive exercise and body dissatisfaction, physical activity, and network variables. Descriptive statistics were conducted using SPSS, and quadratic assignment procedure (QAP) analyses were conducted using UCINET. QAP regression analysis revealed a statistically significant model (R 2 = .375, P < .0001) predicting compulsive exercise behavior. Physical activity, body dissatisfaction, and network variables were statistically significant predictor variables in the QAP regression model. In our sample, women who are connected to "important" or "powerful" people in their network are likely to have higher compulsive exercise scores. This result provides healthcare practitioners key target points for intervention within similar groups of women. For scholars researching eating disorders and associated behaviors, this study supports looking into group dynamics and network structure in conjunction with body dissatisfaction and exercise frequency.
Li, Saijiao; He, Aiyan; Yang, Jing; Yin, TaiLang; Xu, Wangming
2011-01-01
To investigate factors that can affect compliance with treatment of polycystic ovary syndrome (PCOS) in infertile patients and to provide a basis for clinical treatment, specialist consultation and health education. Patient compliance was assessed via a questionnaire based on the Morisky-Green test and the treatment principles of PCOS. Then interviews were conducted with 99 infertile patients diagnosed with PCOS at Renmin Hospital of Wuhan University in China, from March to September 2009. Finally, these data were analyzed using logistic regression analysis. Logistic regression analysis revealed that a total of 23 (25.6%) of the participants showed good compliance. Factors that significantly (p < 0.05) affected compliance with treatment were the patient's body mass index, convenience of medical treatment and concerns about adverse drug reactions. Patients who are obese, experience inconvenient medical treatment or are concerned about adverse drug reactions are more likely to exhibit noncompliance. Treatment education and intervention aimed at these patients should be strengthened in the clinic to improve treatment compliance. Further research is needed to better elucidate the compliance behavior of patients with PCOS.
Specific factors for prenatal lead exposure in the border area of China.
Kawata, Kimiko; Li, Yan; Liu, Hao; Zhang, Xiao Qin; Ushijima, Hiroshi
2006-07-01
The objectives of this study are to examine the prevalence of increased blood lead concentrations in mothers and their umbilical cords, and to identify risk factors for prenatal lead exposure in Kunming city, Yunnan province, China. The study was conducted at two obstetrics departments, and 100 peripartum women were enrolled. The mean blood lead concentrations of the mothers and the umbilical cords were 67.3microg/l and 53.1microg/l, respectively. In multiple linear regression analysis, maternal occupational exposure, maternal consumption of homemade dehydrated vegetables and maternal habitation period in Kunming city were significantly associated with an increase of umbilical cord blood lead concentration. In addition, logistic regression analysis was used to assess the association of umbilical cord blood lead concentrations that possibly have adverse effects on brain development of newborns with each potential risk factor. Maternal frequent use of tableware with color patterns inside was significantly associated with higher cord blood lead concentration in addition to the three items in the multiple linear regression analysis. These points should be considered as specific recommendations for maternal and fetal lead exposure in this city.
Ayuso, Mercedes; Bermúdez, Lluís; Santolino, Miguel
2016-04-01
The analysis of factors influencing the severity of the personal injuries suffered by victims of motor accidents is an issue of major interest. Yet, most of the extant literature has tended to address this question by focusing on either the severity of temporary disability or the severity of permanent injury. In this paper, a bivariate copula-based regression model for temporary disability and permanent injury severities is introduced for the joint analysis of the relationship with the set of factors that might influence both categories of injury. Using a motor insurance database with 21,361 observations, the copula-based regression model is shown to give a better performance than that of a model based on the assumption of independence. The inclusion of the dependence structure in the analysis has a higher impact on the variance estimates of the injury severities than it does on the point estimates. By taking into account the dependence between temporary and permanent severities a more extensive factor analysis can be conducted. We illustrate that the conditional distribution functions of injury severities may be estimated, thus, providing decision makers with valuable information. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nguyen, Quynh C; Osypuk, Theresa L; Schmidt, Nicole M; Glymour, M Maria; Tchetgen Tchetgen, Eric J
2015-03-01
Despite the recent flourishing of mediation analysis techniques, many modern approaches are difficult to implement or applicable to only a restricted range of regression models. This report provides practical guidance for implementing a new technique utilizing inverse odds ratio weighting (IORW) to estimate natural direct and indirect effects for mediation analyses. IORW takes advantage of the odds ratio's invariance property and condenses information on the odds ratio for the relationship between the exposure (treatment) and multiple mediators, conditional on covariates, by regressing exposure on mediators and covariates. The inverse of the covariate-adjusted exposure-mediator odds ratio association is used to weight the primary analytical regression of the outcome on treatment. The treatment coefficient in such a weighted regression estimates the natural direct effect of treatment on the outcome, and indirect effects are identified by subtracting direct effects from total effects. Weighting renders treatment and mediators independent, thereby deactivating indirect pathways of the mediators. This new mediation technique accommodates multiple discrete or continuous mediators. IORW is easily implemented and is appropriate for any standard regression model, including quantile regression and survival analysis. An empirical example is given using data from the Moving to Opportunity (1994-2002) experiment, testing whether neighborhood context mediated the effects of a housing voucher program on obesity. Relevant Stata code (StataCorp LP, College Station, Texas) is provided. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Parker, Kristin M; Wilson, Mark G; Vandenberg, Robert J; DeJoy, David M; Orpinas, Pamela
2009-10-01
This study tests the hypothesis that employees with comorbid physical health conditions and mental health symptoms are less productive than other employees. Self-reported health status and productivity measures were collected from 1723 employees of a national retail organization. chi2, analysis of variance, and linear contrast analyses were conducted to evaluate whether health status groups differed on productivity measures. Multivariate linear regression and multinomial logistic regression analyses were conducted to analyze how predictive health status was of productivity. Those with comorbidities were significantly less productive on all productivity measures compared with all other health status groups and those with only physical health conditions or mental health symptoms. Health status also significantly predicted levels of employee productivity. These findings provide evidence for the relationship between health statuses and productivity, which has potential programmatic implications.
Lozier, Leah M.; Cardinale, Elise M.; VanMeter, John W.; Marsh, Abigail A.
2015-01-01
Importance Among youths with conduct problems, callous-unemotional (CU) traits are known to be an important determinant of symptom severity, prognosis, and treatment responsiveness. But positive correlations between conduct problems and CU traits result in suppressor effects that may mask important neurobiological distinctions among subgroups of children with conduct problems. Objective To assess the unique neurobiological covariates of CU traits and externalizing behaviors in youths with conduct problems and determine whether neural dysfunction linked to CU traits mediates the link between callousness and proactive aggression. Design, Setting, and Participants This cross-sectional case-control study involved behavioral testing and neuroimaging that were conducted at a university research institution. Neuroimaging was conducted using a 3-T Siemens magnetic resonance imaging scanner. It included 46 community-recruited male and female juveniles aged 10 to 17 years, including 16 healthy control participants and 30 youths with conduct problems with both low and high levels of CU traits. Main Outcomes and Measures Blood oxygenation level–dependent signal as measured via functional magnetic resonance imaging during an implicit face-emotion processing task and analyzed using whole-brain and region of interest–based analysis of variance and multiple-regression analyses. Results Analysis of variance revealed no group differences in the amygdala. By contrast, consistent with the existence of suppressor effects, multiple-regression analysis found amygdala responses to fearful expressions to be negatively associated with CU traits (x = 26, y = 0, z = −12; k = 1) and positively associated with externalizing behavior (x = 24, y = 0, z = −14; k = 8) when both variables were modeled simultaneously. Reduced amygdala responses mediated the relationship between CU traits and proactive aggression. Conclusions and Relevance The results linked proactive aggression in youths with CU traits to hypoactive amygdala responses to emotional distress cues, consistent with theories that externalizing behaviors, particularly proactive aggression, in youths with these traits stem from deficient empathic responses to distress. Amygdala hypoactivity may represent an intermediate phenotype, offering new insights into effective treatment strategies for conduct problems. PMID:24671141
Independent Prognostic Factors for Acute Organophosphorus Pesticide Poisoning.
Tang, Weidong; Ruan, Feng; Chen, Qi; Chen, Suping; Shao, Xuebo; Gao, Jianbo; Zhang, Mao
2016-07-01
Acute organophosphorus pesticide poisoning (AOPP) is becoming a significant problem and a potential cause of human mortality because of the abuse of organophosphate compounds. This study aims to determine the independent prognostic factors of AOPP by using multivariate logistic regression analysis. The clinical data for 71 subjects with AOPP admitted to our hospital were retrospectively analyzed. This information included the Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, admission blood cholinesterase levels, 6-h post-admission blood cholinesterase levels, cholinesterase activity, blood pH, and other factors. Univariate analysis and multivariate logistic regression analyses were conducted to identify all prognostic factors and independent prognostic factors, respectively. A receiver operating characteristic curve was plotted to analyze the testing power of independent prognostic factors. Twelve of 71 subjects died. Admission blood lactate levels, 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, blood pH, and APACHE II scores were identified as prognostic factors for AOPP according to the univariate analysis, whereas only 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, and blood pH were independent prognostic factors identified by multivariate logistic regression analysis. The receiver operating characteristic analysis suggested that post-admission 6-h lactate clearance rates were of moderate diagnostic value. High 6-h post-admission blood lactate levels, low blood pH, and low post-admission 6-h lactate clearance rates were independent prognostic factors identified by multivariate logistic regression analysis. Copyright © 2016 by Daedalus Enterprises.
Nakajima, Hisato; Yano, Kouya; Nagasawa, Kaoko; Katou, Satoka; Yokota, Kuninobu
2017-01-01
The objective of this study is to examine the factors that influence the operation income and expenditure balance ratio of school corporations running university hospitals by multiple regression analysis. 1. We conducted cluster analysis of the financial ratio and classified the school corporations into those running colleges and universities.2. We conducted multiple regression analysis using the operation income and expenditure balance ratio of the colleges as the variables and the Diagnosis Procedure Combination data as the explaining variables.3. The predictive expression was used for multiple regression analysis. 1. The school corporations were divided into those running universities (7), colleges (20) and others. The medical income ratio and the debt ratio were high and the student payment ratio was low in the colleges.2. The numbers of emergency care hospitalizations, operations, radiation therapies, and ambulance conveyances, and the complexity index had a positive influence on the operation income and expenditure balance ratio. On the other hand, the number of general anesthesia procedures, the cover rate index, and the emergency care index had a negative influence.3. The predictive expression was as follows.Operation income and expenditure balance ratio = 0.027 × number of emergency care hospitalizations + 0.005 × number of operations + 0.019 × number of radiation therapies + 0.007 × number of ambulance conveyances - 0.003 × number of general anesthesia procedures + 648.344 × complexity index - 5877.210 × cover rate index - 2746.415 × emergency care index - 38.647Conclusion: In colleges, the number of emergency care hospitalizations, the number of operations, the number of radiation therapies, and the number of ambulance conveyances and the complexity index were factors for gaining ordinary profit.
Wavelet regression model in forecasting crude oil price
NASA Astrophysics Data System (ADS)
Hamid, Mohd Helmie; Shabri, Ani
2017-05-01
This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.
[Academic burnout and selection-optimization-compensation strategy in medical students].
Chun, Kyung Hee; Park, Young Soon; Lee, Young Hwan; Kim, Seong Yong
2014-12-01
This study was conducted to examine the relationship between academic demand, academic burnout, and the selection-optimization-compensation (SOC) strategy in medical students. A total of 317 students at Yeungnam University, comprising 90 premedical course students, 114 medical course students, and 113 graduate course students, completed a survey that addressed the factors of academic burnout and the selection-optimization-compensation strategy. We analyzed variances of burnout and SOC strategy use by group, and stepwise multiple regression analysis was conducted. There were significant differences in emotional exhaustion and cynicism between groups and year in school. In the SOC strategy, there were no significant differences between groups except for elective selection. The second-year medical and graduate students experienced significantly greater exhaustion (p<0.001), and first-year premedical students experienced significantly higher cynicism (p<0.001). By multiple regression analysis, subfactors of academic burnout and emotional exhaustion were significantly affected by academic demand (p<0.001), and 46% of the variance was explained. Cynicism was significantly affected by elective selection (p<0.05), and inefficacy was significantly influenced by optimization (p<0.001). To improve adaptation, prescriptive strategies and preventive support should be implemented with regard to academic burnout in medical school. Longitudinal and qualitative studies on burnout must be conducted.
Ang, Boon Hong; Chen, Won Sun; Lee, Shaun Wen Huey
2017-09-01
This study aims to estimate the burden of road traffic accidents and death among older adults. A systematic literature review was conducted on 10 electronic databases for articles describing Road Traffic Accident(RTA) mortality in older adults until September 2016. A random-effects meta-regression analyses was conducted to estimate the pooled rates of road traffic accidents and death. A total 5018 studies were identified and 23 studies were included. Most of the reported older adults were aged between 60 and 74 years, with majority being male gender and sustained minor trauma due to Motor-Vehicle Collision (MVC). The overall pooled mortality rate was 14% (95% Confidence Interval, CI: 11%, 16%), with higher mortality rates in studies conducted in North America (15%, 95% CI: 12%, 18%) and older adults admitted to trauma centers (17%, 95% CI: 14%, 21%). Secondary analysis showed that the very elderly adults (aged >75years) and pedestrians had higher odds of mortality death (Odds Ratio, OR: 2.05, 95% CI: 1.25, 3.38; OR: 2.08, 95% CI: 1.63, 2.66, respectively). A new comprehensive trauma management guidelines tailored to older adults should be established in low and middle-income countries where such guidelines are still lacking. Copyright © 2017 Elsevier B.V. All rights reserved.
Motor Nerve Conduction Velocity In Postmenopausal Women with Peripheral Neuropathy.
Singh, Akanksha; Asif, Naiyer; Singh, Paras Nath; Hossain, Mohd Mobarak
2016-12-01
The post-menopausal phase is characterized by a decline in the serum oestrogen and progesterone levels. This phase is also associated with higher incidence of peripheral neuropathy. To explore the relationship between the peripheral motor nerve status and serum oestrogen and progesterone levels through assessment of Motor Nerve Conduction Velocity (MNCV) in post-menopausal women with peripheral neuropathy. This cross-sectional study was conducted at Jawaharlal Nehru Medical College during 2011-2013. The study included 30 post-menopausal women with peripheral neuropathy (age: 51.4±7.9) and 30 post-menopausal women without peripheral neuropathy (control) (age: 52.5±4.9). They were compared for MNCV in median, ulnar and common peroneal nerves and serum levels of oestrogen and progesterone estimated through enzyme immunoassays. To study the relationship between hormone levels and MNCV, a stepwise linear regression analysis was done. The post-menopausal women with peripheral neuropathy had significantly lower MNCV and serum oestrogen and progesterone levels as compared to control subjects. Stepwise linear regression analysis showed oestrogen with main effect on MNCV. The findings of the present study suggest that while the post-menopausal age group is at a greater risk of peripheral neuropathy, it is the decline in the serum estrogen levels which is critical in the development of peripheral neuropathy.
On the use of log-transformation vs. nonlinear regression for analyzing biological power laws.
Xiao, Xiao; White, Ethan P; Hooten, Mevin B; Durham, Susan L
2011-10-01
Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain.
Chen, Chau-Kuang; Bruce, Michelle; Tyler, Lauren; Brown, Claudine; Garrett, Angelica; Goggins, Susan; Lewis-Polite, Brandy; Weriwoh, Mirabel L; Juarez, Paul D.; Hood, Darryl B.; Skelton, Tyler
2014-01-01
The goal of this study was to analyze a 54-item instrument for assessment of perception of exposure to environmental contaminants within the context of the built environment, or exposome. This exposome was defined in five domains to include 1) home and hobby, 2) school, 3) community, 4) occupation, and 5) exposure history. Interviews were conducted with child-bearing-age minority women at Metro Nashville General Hospital at Meharry Medical College. Data were analyzed utilizing DTReg software for Support Vector Machine (SVM) modeling followed by an SPSS package for a logistic regression model. The target (outcome) variable of interest was respondent's residence by ZIP code. The results demonstrate that the rank order of important variables with respect to SVM modeling versus traditional logistic regression models is almost identical. This is the first study documenting that SVM analysis has discriminate power for determination of higher-ordered spatial relationships on an environmental exposure history questionnaire. PMID:23395953
Chen, Chau-Kuang; Bruce, Michelle; Tyler, Lauren; Brown, Claudine; Garrett, Angelica; Goggins, Susan; Lewis-Polite, Brandy; Weriwoh, Mirabel L; Juarez, Paul D; Hood, Darryl B; Skelton, Tyler
2013-02-01
The goal of this study was to analyze a 54-item instrument for assessment of perception of exposure to environmental contaminants within the context of the built environment, or exposome. This exposome was defined in five domains to include 1) home and hobby, 2) school, 3) community, 4) occupation, and 5) exposure history. Interviews were conducted with child-bearing-age minority women at Metro Nashville General Hospital at Meharry Medical College. Data were analyzed utilizing DTReg software for Support Vector Machine (SVM) modeling followed by an SPSS package for a logistic regression model. The target (outcome) variable of interest was respondent's residence by ZIP code. The results demonstrate that the rank order of important variables with respect to SVM modeling versus traditional logistic regression models is almost identical. This is the first study documenting that SVM analysis has discriminate power for determination of higher-ordered spatial relationships on an environmental exposure history questionnaire.
TG study of the Li0.4Fe2.4Zn0.2O4 ferrite synthesis
NASA Astrophysics Data System (ADS)
Lysenko, E. N.; Nikolaev, E. V.; Surzhikov, A. P.
2016-02-01
In this paper, the kinetic analysis of Li-Zn ferrite synthesis was studied using thermogravimetry (TG) method through the simultaneous application of non-linear regression to several measurements run at different heating rates (multivariate non-linear regression). Using TG-curves obtained for the four heating rates and Netzsch Thermokinetics software package, the kinetic models with minimal adjustable parameters were selected to quantitatively describe the reaction of Li-Zn ferrite synthesis. It was shown that the experimental TG-curves clearly suggest a two-step process for the ferrite synthesis and therefore a model-fitting kinetic analysis based on multivariate non-linear regressions was conducted. The complex reaction was described by a two-step reaction scheme consisting of sequential reaction steps. It is established that the best results were obtained using the Yander three-dimensional diffusion model at the first stage and Ginstling-Bronstein model at the second step. The kinetic parameters for lithium-zinc ferrite synthesis reaction were found and discussed.
NASA Astrophysics Data System (ADS)
Wang, Ji-Peng; François, Bertrand; Lambert, Pierre
2017-09-01
Estimating hydraulic conductivity from particle size distribution (PSD) is an important issue for various engineering problems. Classical models such as Hazen model, Beyer model, and Kozeny-Carman model usually regard the grain diameter at 10% passing (d10) as an effective grain size and the effects of particle size uniformity (in Beyer model) or porosity (in Kozeny-Carman model) are sometimes embedded. This technical note applies the dimensional analysis (Buckingham's ∏ theorem) to analyze the relationship between hydraulic conductivity and particle size distribution (PSD). The porosity is regarded as a dependent variable on the grain size distribution in unconsolidated conditions. It indicates that the coefficient of grain size uniformity and a dimensionless group representing the gravity effect, which is proportional to the mean grain volume, are the main two determinative parameters for estimating hydraulic conductivity. Regression analysis is then carried out on a database comprising 431 samples collected from different depositional environments and new equations are developed for hydraulic conductivity estimation. The new equation, validated in specimens beyond the database, shows an improved prediction comparing to using the classic models.
A mass transfer model of ethanol emission from thin layers of corn silage
USDA-ARS?s Scientific Manuscript database
A mass transfer model of ethanol emission from thin layers of corn silage was developed and validated. The model was developed based on data from wind tunnel experiments conducted at different temperatures and air velocities. Multiple regression analysis was used to derive an equation that related t...
Spatial Analysis and Land Use Regression of VOCs and NO2 in Dallas, Texas during Two Seasons
Passive air sampling for nitrogen dioxide (NO2) and select volatile organic compounds (VOCs) was conducted at 24 fire stations and a compliance monitoring site in Dallas, Texas, USA during summer 2006 and winter 2008. This ambient air monitoring network was established...
ERIC Educational Resources Information Center
Deignan, Gerard M.; And Others
This report contains a comparative analysis of the differential effectiveness of computer-assisted instruction (CAI), programmed instructional text (PIT), and lecture methods of instruction in three medical courses--Medical Laboratory, Radiology, and Dental. The summative evaluation includes (1) multiple regression analyses conducted to predict…
Status on Trial: Social Characteristics and Influence in the Jury Room
ERIC Educational Resources Information Center
York, Erin; Cornwell, Benjamin
2006-01-01
The American jury is heralded as an institution that is simultaneously representative and egalitarian. However, jury studies conducted 50 years ago found that white, upper-class men dominate jury deliberations, presumably due to their higher status outside of the jury room. Logistic regression analysis of dyadic influence inside the jury room…
Salary Equity Studies: The State of the Art. ASHE Annual Meeting 1982 Paper.
ERIC Educational Resources Information Center
Hengstler, Dennis D.; And Others
The strengths and weaknesses of various methodologies in conducting salary equity studies are examined. Particular attention is paid to the problems of identifying appropriate matches in the paired-comparison approach and to the sample, predictor and decision-rule problems associated with the regression analysis approach. In addition, highlights…
Mediation Effects of Internet Addiction on Shame and Social Networking
ERIC Educational Resources Information Center
Dogan, Ugur; Kaya, Sinem
2016-01-01
A survey of 488 college students was conducted in Turkey to investigate the relationship between social network usage, shame and Internet addiction. It was hypothesized that a relationship between shame and social network usage was mediated by Internet addiction. First of all, according to simple regression analysis, it was found that shame…
Quality Curriculum for Under-Threes: The Impact of Structural Standards
ERIC Educational Resources Information Center
Wertfein, Monika; Spies-Kofler, Anita; Becker-Stoll, Fabienne
2009-01-01
The purpose of this study conducted in 36 infant-toddler centres ("Kinderkrippen") in the city of Munich in Bavaria/Germany was to explore structural characteristics of early child care and education and their effects on child care quality. Stepwise regressions and variance analysis (Manova) examined the relation between quality of care…
Consequences of Self-Leadership: A Study on Primary School Teachers
ERIC Educational Resources Information Center
Sesen, Harun; Tabak, Akif; Arli, Ozgur
2017-01-01
This study explores the consequences of self-leadership on job satisfaction, organizational commitment and innovative behaviors of teachers. For this purpose, a field study was conducted with the data gathered from 440 primary school teachers who work in different cities. To test the research hypotheses, correlation and regression analysis were…
Predictors of Burnout in Community College Faculty: A Regression Analysis
ERIC Educational Resources Information Center
Phronebarger, Andrea L.
2014-01-01
The present study was conducted in an effort to develop a model to predict "burnout" in community college faculty members using the demographic predictors of employment status, teaching load, age, teaching experience and gender. Originally termed by Herbert Freudenberger in 1974, burnout is a phenomenon that has been investigated in a…
Revisiting the Relationship between Marketing Education and Marketing Career Success
ERIC Educational Resources Information Center
Bacon, Donald R.
2017-01-01
In a replication of a classic article by Hunt, Chonko, and Wood, regression analysis was conducted using data from a sample of 864 marketing professionals. In contrast to Hunt, Chonko, and Wood, an undergraduate degree in marketing was positively related to income in marketing jobs, but surprisingly, respondents with some nonmarketing majors…
African American Career Aspirations: Examining the Relative Influence of Internalized Racism
ERIC Educational Resources Information Center
Brown, Danice L.; Segrist, Daniel
2016-01-01
The present study examined the relative influence of aspects of internalized racism on the career aspirations of a sample of African American adults. Participants (N = 315), ranging in age from 18 to 62 years, completed measures of internalized racism and career aspirations online. A hierarchical multiple regression analysis was conducted to…
Narratives Boost Entrepreneurial Attitudes: Making an Entrepreneurial Career Attractive?
ERIC Educational Resources Information Center
Fellnhofer, Katharina
2018-01-01
This article analyses the impact of narratives on entrepreneurial attitudes and intentions. To this end, a quasi-experiment was conducted to evaluate web-based entrepreneurial narratives. The paired-sample tests and regression analysis use a sample of 466 people from Austria, Finland, and Greece and indicate that individuals' perceptions of the…
Bullied Status and Physical Activity in Texas Adolescents
ERIC Educational Resources Information Center
Case, Kathleen R.; Pérez, Adriana; Saxton, Debra L.; Hoelscher, Deanna M.; Springer, Andrew E.
2016-01-01
This study examined the association between having been bullied at school during the past 6 months ("bullied status") and not meeting physical activity (PA) recommendations of 60 minutes of daily PA during the past week among 8th- and 11th-grade Texas adolescents. Multiple logistic regression analysis was conducted to examine this…
Wang, Huaqing; Hu, Yongmei; Zhang, Guomin; Zheng, Jingshan; Li, Li; An, Zhijie
2014-08-20
To evaluate vaccine effectiveness (VE) of mumps-containing vaccine (MuV) under different immunization strategies. We conducted Medline, Embase, China National Knowledge Internet (CNKI), and Wan Fang Database (WF) searches for Chinese and English language articles describing studies of mumps VE in a Chinese population. Evaluated articles were scored on quality using the Newcastle-Ottawa Scale. Meta-analysis was conducted using random effects models. Sensitivity analysis, subgroup analysis and meta-regression were conducted to explore heterogeneity. A total of 32 studies in 19 papers were included; 14 were case-control studies, and 18 were cohort studies. Half of the studies were of high quality; 41% were of moderate quality. The overall VE for mumps containing vaccine (either one dose or two doses) was 85% (95% CI 76-90%) for cohort studies and 88% (95% CI 82-92%) for case-control studies. Using random effects meta-regression we found significant differences in some study covariates; for instance, VE varied by population (VE=88% in day care versus 69% in pupil, p=0.008) and emergency versus routine immunization (VE=80% for routine immunization versus 95% for emergency immunization, p=0.041). However, these results must be interpreted with caution due to the low number of studies in subgroups, with the permutation test giving non-significant results that indicated that the results may be due to chance. MuV provides good protection from mumps infection. Further studies of mumps VE with larger sample sizes enabling subgroup analyses will be needed to confirm our findings. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hu, Yannan; van Lenthe, Frank J; Hoffmann, Rasmus; van Hedel, Karen; Mackenbach, Johan P
2017-04-20
The scientific evidence-base for policies to tackle health inequalities is limited. Natural policy experiments (NPE) have drawn increasing attention as a means to evaluating the effects of policies on health. Several analytical methods can be used to evaluate the outcomes of NPEs in terms of average population health, but it is unclear whether they can also be used to assess the outcomes of NPEs in terms of health inequalities. The aim of this study therefore was to assess whether, and to demonstrate how, a number of commonly used analytical methods for the evaluation of NPEs can be applied to quantify the effect of policies on health inequalities. We identified seven quantitative analytical methods for the evaluation of NPEs: regression adjustment, propensity score matching, difference-in-differences analysis, fixed effects analysis, instrumental variable analysis, regression discontinuity and interrupted time-series. We assessed whether these methods can be used to quantify the effect of policies on the magnitude of health inequalities either by conducting a stratified analysis or by including an interaction term, and illustrated both approaches in a fictitious numerical example. All seven methods can be used to quantify the equity impact of policies on absolute and relative inequalities in health by conducting an analysis stratified by socioeconomic position, and all but one (propensity score matching) can be used to quantify equity impacts by inclusion of an interaction term between socioeconomic position and policy exposure. Methods commonly used in economics and econometrics for the evaluation of NPEs can also be applied to assess the equity impact of policies, and our illustrations provide guidance on how to do this appropriately. The low external validity of results from instrumental variable analysis and regression discontinuity makes these methods less desirable for assessing policy effects on population-level health inequalities. Increased use of the methods in social epidemiology will help to build an evidence base to support policy making in the area of health inequalities.
General Framework for Meta-analysis of Rare Variants in Sequencing Association Studies
Lee, Seunggeun; Teslovich, Tanya M.; Boehnke, Michael; Lin, Xihong
2013-01-01
We propose a general statistical framework for meta-analysis of gene- or region-based multimarker rare variant association tests in sequencing association studies. In genome-wide association studies, single-marker meta-analysis has been widely used to increase statistical power by combining results via regression coefficients and standard errors from different studies. In analysis of rare variants in sequencing studies, region-based multimarker tests are often used to increase power. We propose meta-analysis methods for commonly used gene- or region-based rare variants tests, such as burden tests and variance component tests. Because estimation of regression coefficients of individual rare variants is often unstable or not feasible, the proposed method avoids this difficulty by calculating score statistics instead that only require fitting the null model for each study and then aggregating these score statistics across studies. Our proposed meta-analysis rare variant association tests are conducted based on study-specific summary statistics, specifically score statistics for each variant and between-variant covariance-type (linkage disequilibrium) relationship statistics for each gene or region. The proposed methods are able to incorporate different levels of heterogeneity of genetic effects across studies and are applicable to meta-analysis of multiple ancestry groups. We show that the proposed methods are essentially as powerful as joint analysis by directly pooling individual level genotype data. We conduct extensive simulations to evaluate the performance of our methods by varying levels of heterogeneity across studies, and we apply the proposed methods to meta-analysis of rare variant effects in a multicohort study of the genetics of blood lipid levels. PMID:23768515
Zhang, Xiaona; Sun, Xiaoxuan; Wang, Junhong; Tang, Liou; Xie, Anmu
2017-01-01
Rapid eye movement sleep behavior disorder (RBD) is thought to be one of the most frequent preceding symptoms of Parkinson's disease (PD). However, the prevalence of RBD in PD stated in the published studies is still inconsistent. We conducted a meta and meta-regression analysis in this paper to estimate the pooled prevalence. We searched the electronic databases of PubMed, ScienceDirect, EMBASE and EBSCO up to June 2016 for related articles. STATA 12.0 statistics software was used to calculate the available data from each research. The prevalence of RBD in PD patients in each study was combined to a pooled prevalence with a 95 % confidence interval (CI). Subgroup analysis and meta-regression analysis were performed to search for the causes of the heterogeneity. A total of 28 studies with 6869 PD cases were deemed eligible and included in our meta-analysis based on the inclusion and exclusion criteria. The pooled prevalence of RBD in PD was 42.3 % (95 % CI 37.4-47.1 %). In subgroup analysis and meta-regression analysis, we found that the important causes of heterogeneity were the diagnosis criteria of RBD and age of PD patients (P = 0.016, P = 0.019, respectively). The results indicate that nearly half of the PD patients are suffering from RBD. Older age and longer duration are risk factors for RBD in PD. We can use the minimal diagnosis criteria for RBD according to the International Classification of Sleep Disorders to diagnose RBD patients in our daily work if polysomnography is not necessary.
Ryberg, Karen R.
2006-01-01
This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Bureau of Reclamation, U.S. Department of the Interior, to estimate water-quality constituent concentrations in the Red River of the North at Fargo, North Dakota. Regression analysis of water-quality data collected in 2003-05 was used to estimate concentrations and loads for alkalinity, dissolved solids, sulfate, chloride, total nitrite plus nitrate, total nitrogen, total phosphorus, and suspended sediment. The explanatory variables examined for regression relation were continuously monitored physical properties of water-streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen. For the conditions observed in 2003-05, streamflow was a significant explanatory variable for all estimated constituents except dissolved solids. pH, water temperature, and dissolved oxygen were not statistically significant explanatory variables for any of the constituents in this study. Specific conductance was a significant explanatory variable for alkalinity, dissolved solids, sulfate, and chloride. Turbidity was a significant explanatory variable for total phosphorus and suspended sediment. For the nutrients, total nitrite plus nitrate, total nitrogen, and total phosphorus, cosine and sine functions of time also were used to explain the seasonality in constituent concentrations. The regression equations were evaluated using common measures of variability, including R2, or the proportion of variability in the estimated constituent explained by the regression equation. R2 values ranged from 0.703 for total nitrogen concentration to 0.990 for dissolved-solids concentration. The regression equations also were evaluated by calculating the median relative percentage difference (RPD) between measured constituent concentration and the constituent concentration estimated by the regression equations. Median RPDs ranged from 1.1 for dissolved solids to 35.2 for total nitrite plus nitrate. Regression equations also were used to estimate daily constituent loads. Load estimates can be used by water-quality managers for comparison of current water-quality conditions to water-quality standards expressed as total maximum daily loads (TMDLs). TMDLs are a measure of the maximum amount of chemical constituents that a water body can receive and still meet established water-quality standards. The peak loads generally occurred in June and July when streamflow also peaked.
Reflectance measurements for the detection and mapping of soil limitations
NASA Technical Reports Server (NTRS)
Benson, L. A.; Frazee, C. J.
1973-01-01
During 1971 and 1972 research was conducted on two fallow fields in the proposed Oahe Irrigation Project to investigate the relationship between the tonal variations observed on aerial photographs and the principal soil limitations of the area. A grid sampling procedure was used to collected detailed field data during the 1972 growing season. The field data was compared to imagery collected on May 14, 1971 at 3050 meters altitude. The imagery and field data were initially evaluated by a visual analysis. Correlation and regression analysis revealed a highly significant correlation and regression analysis revealed a highly significant correlation between the digitized color infrared film data and soil properties such as organic matter content, color, depth to carbonates, bulk density and reflectivity. Computer classification of the multiemulsion film data resulted in maps delineating the areas containing claypan and erosion limitations. Reflectance data from the red spectral band provided the best results.
Improved Correction of Atmospheric Pressure Data Obtained by Smartphones through Machine Learning
Kim, Yong-Hyuk; Ha, Ji-Hun; Kim, Na-Young; Im, Hyo-Hyuc; Sim, Sangjin; Choi, Reno K. Y.
2016-01-01
A correction method using machine learning aims to improve the conventional linear regression (LR) based method for correction of atmospheric pressure data obtained by smartphones. The method proposed in this study conducts clustering and regression analysis with time domain classification. Data obtained in Gyeonggi-do, one of the most populous provinces in South Korea surrounding Seoul with the size of 10,000 km2, from July 2014 through December 2014, using smartphones were classified with respect to time of day (daytime or nighttime) as well as day of the week (weekday or weekend) and the user's mobility, prior to the expectation-maximization (EM) clustering. Subsequently, the results were analyzed for comparison by applying machine learning methods such as multilayer perceptron (MLP) and support vector regression (SVR). The results showed a mean absolute error (MAE) 26% lower on average when regression analysis was performed through EM clustering compared to that obtained without EM clustering. For machine learning methods, the MAE for SVR was around 31% lower for LR and about 19% lower for MLP. It is concluded that pressure data from smartphones are as good as the ones from national automatic weather station (AWS) network. PMID:27524999
Saunders, Christina T; Blume, Jeffrey D
2017-10-26
Mediation analysis explores the degree to which an exposure's effect on an outcome is diverted through a mediating variable. We describe a classical regression framework for conducting mediation analyses in which estimates of causal mediation effects and their variance are obtained from the fit of a single regression model. The vector of changes in exposure pathway coefficients, which we named the essential mediation components (EMCs), is used to estimate standard causal mediation effects. Because these effects are often simple functions of the EMCs, an analytical expression for their model-based variance follows directly. Given this formula, it is instructive to revisit the performance of routinely used variance approximations (e.g., delta method and resampling methods). Requiring the fit of only one model reduces the computation time required for complex mediation analyses and permits the use of a rich suite of regression tools that are not easily implemented on a system of three equations, as would be required in the Baron-Kenny framework. Using data from the BRAIN-ICU study, we provide examples to illustrate the advantages of this framework and compare it with the existing approaches. © The Author 2017. Published by Oxford University Press.
Yoo, Kyung Hee
2007-06-01
This study was conducted to investigate the correlation among uncertainty, mastery and appraisal of uncertainty in hospitalized children's mothers. Self report questionnaires were used to measure the variables. Variables were uncertainty, mastery and appraisal of uncertainty. In data analysis, the SPSSWIN 12.0 program was utilized for descriptive statistics, Pearson's correlation coefficients, and regression analysis. Reliability of the instruments was cronbach's alpha=.84~.94. Mastery negatively correlated with uncertainty(r=-.444, p=.000) and danger appraisal of uncertainty(r=-.514, p=.000). In regression of danger appraisal of uncertainty, uncertainty and mastery were significant predictors explaining 39.9%. Mastery was a significant mediating factor between uncertainty and danger appraisal of uncertainty in hospitalized children's mothers. Therefore, nursing interventions which improve mastery must be developed for hospitalized children's mothers.
Criteria for the use of regression analysis for remote sensing of sediment and pollutants
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Kuo, C. Y.; Lecroy, S. R.
1982-01-01
An examination of limitations, requirements, and precision of the linear multiple-regression technique for quantification of marine environmental parameters is conducted. Both environmental and optical physics conditions have been defined for which an exact solution to the signal response equations is of the same form as the multiple regression equation. Various statistical parameters are examined to define a criteria for selection of an unbiased fit when upwelled radiance values contain error and are correlated with each other. Field experimental data are examined to define data smoothing requirements in order to satisfy the criteria of Daniel and Wood (1971). Recommendations are made concerning improved selection of ground-truth locations to maximize variance and to minimize physical errors associated with the remote sensing experiment.
Accuracy of magnetic resonance venography in diagnosing cerebral venous sinus thrombosis.
Gao, Liansheng; Xu, Weilin; Li, Tao; Yu, Xiaobo; Cao, Shenglong; Xu, Hangzhe; Yan, Feng; Chen, Gao
2018-05-17
The non-specific clinical manifestations and lack of effective diagnostic techniques have made cerebral venous sinus thrombosis (CVST) difficult to recognize and easy to misdiagnose. Several studies have suggested that different types of magnetic resonance venography (MRV) have advantages in diagnosing CVST. We conducted this meta-analysis to assess the accuracy of MRV in identifying CVST. We searched the Embase, PubMed, and Chinese Biomedical (CBM) databases comprehensively to retrieve eligible articles up to Mar 31, 2018. The methodological quality of each article was evaluated individually. The summary diagnostic accuracy of MRV for CVST was obtained from pooled analysis with random-effects models. Sensitivity analysis, subgroup analysis, and meta-regression were used to explore the sources of heterogeneity. A trim and fill analysis was conducted to correct the funnel plot asymmetry. The meta-analysis synthesized 12 articles containing 27 cohorts with a total of 1933 cases. The pooled sensitivity and specificity were 0.86 (95% CI: 0.83, 0.89) and 0.94 (95% CI: 0.93, 0.95), respectively. The pooled diagnostic odds ratio (DOR) was 75.24 (95% CI: 38.33, 147.72). The area under the curve (AUC) was 0.9472 (95% CI: 0.9229, 0.9715). Subgroup analysis and meta-regression analysis revealed the technical types of MRV and the methods of counting cases contributing to the heterogeneity. The trim and fill method confirmed that publication bias has little effect on our results. MRV has excellent diagnostic performance and is accurate in confirming CVST. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lin, Dongxin; Ou, Qianting; Lin, Jialing; Peng, Yang; Yao, Zhenjiang
2017-04-01
Health care workers may potentially spread Staphylococcus aureus and methicillin-resistant S aureus (MRSA) to patients by contaminated high-touch items. We aimed to determine the pooled rates of S aureus and MRSA contamination and influencing factors. A literature search of the PubMed, ScienceDirect, Embase, Ovid, and Scopus databases was performed. Pooled contamination rates were determined using random effect models. Subgroup and meta-regression analyses were conducted to identify factors potentially influencing the rates of S aureus and MRSA contamination. Sensitivity and publication bias analyses were performed. Thirty-eight studies were included in the meta-analysis. The pooled contamination rates were 15.0% (95% confidence interval [CI], 9.8%-21.1%) for S aureus and 5.0% (95% CI, 2.7%-7.7%) for MRSA. The subgroup analyses indicated that the pooled rate of S aureus contamination was significantly higher for studies conducted in South America, in developing countries, and during 2010-2015. The pooled rate of MRSA contamination was significantly higher for studies conducted in Africa. The meta-regression analysis suggested that the pooled rate of S aureus contamination was lower for studies conducted in developed countries (odds ratio, 0.664; 95% CI, 0.509-0.867; P = .004). No bias was found in the publication of the rates of S aureus and MRSA contamination. S aureus and MRSA contamination statuses of high-touch items are worrisome and should be paid greater attention. Developing country status was a risk factor for S aureus contamination. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Breeding habitat preference of preimaginal black flies (Diptera: Simuliidae) in Peninsular Malaysia.
Ya'cob, Zubaidah; Takaoka, Hiroyuki; Pramual, Pairot; Low, Van Lun; Sofian-Azirun, Mohd
2016-01-01
To investigate the breeding habitat preference of black flies, a comprehensive black fly survey was conducted for the first time in Peninsular Malaysia. Preimaginal black flies (pupae and larvae) were collected manually from 180 stream points encompassing northern, southern, central and east coast of the Peninsular Malaysia. A total of 47 black fly species were recorded in this study. The predominant species were Simulium trangense (36.7%) and Simulium angulistylum (33.3%). Relatively common species were Simulium cheongi (29.4%), Simulium tani (25.6%), Simulium nobile (16.2%), Simulium sheilae (14.5%) and Simulium bishopi (10.6%). Principal Component Analysis (PCA) of all stream variables revealed four PCs that accounted for 69.3% of the total intersite variance. Regression analysis revealed that high species richness is associated with larger, deeper, faster and higher discharge streams with larger streambed particles, more riparian vegetation and low pH (F=22.7, d.f.=1, 173; P<0.001). Relationship between species occurrence of seven common species (present in >10% of the sampling sites) was assessed. Forward logistic regression analysis indicated that four species were significantly related to the stream variables. S. nobile and S. tani prefer large, fast flowing streams with higher pH, large streambed particles and riparian trees. S. bishopi was commonly found at high elevation with cooler stream, low conductivity, higher conductivity and more riparian trees. In contrast, S. sheilae was negatively correlated with PC-2, thus, this species commonly found at low elevation, warmer stream with low conductivity and less riparian trees. The results of this study are consistent with previous studies from other geographic regions, which indicated that both physical and chemical stream conditions are the key factors for black fly ecology. Copyright © 2015 Elsevier B.V. All rights reserved.
Xie, Heping; Wang, Fuxing; Hao, Yanbin; Chen, Jiaxue; An, Jing; Wang, Yuxin; Liu, Huashan
2017-01-01
Cueing facilitates retention and transfer of multimedia learning. From the perspective of cognitive load theory (CLT), cueing has a positive effect on learning outcomes because of the reduction in total cognitive load and avoidance of cognitive overload. However, this has not been systematically evaluated. Moreover, what remains ambiguous is the direct relationship between the cue-related cognitive load and learning outcomes. A meta-analysis and two subsequent meta-regression analyses were conducted to explore these issues. Subjective total cognitive load (SCL) and scores on a retention test and transfer test were selected as dependent variables. Through a systematic literature search, 32 eligible articles encompassing 3,597 participants were included in the SCL-related meta-analysis. Among them, 25 articles containing 2,910 participants were included in the retention-related meta-analysis and the following retention-related meta-regression, while there were 29 articles containing 3,204 participants included in the transfer-related meta-analysis and the transfer-related meta-regression. The meta-analysis revealed a statistically significant cueing effect on subjective ratings of cognitive load (d = -0.11, 95% CI = [-0.19, -0.02], p < 0.05), retention performance (d = 0.27, 95% CI = [0.08, 0.46], p < 0.01), and transfer performance (d = 0.34, 95% CI = [0.12, 0.56], p < 0.01). The subsequent meta-regression analyses showed that dSCL for cueing significantly predicted dretention for cueing (β = -0.70, 95% CI = [-1.02, -0.38], p < 0.001), as well as dtransfer for cueing (β = -0.60, 95% CI = [-0.92, -0.28], p < 0.001). Thus in line with CLT, adding cues in multimedia materials can indeed reduce SCL and promote learning outcomes, and the more SCL is reduced by cues, the better retention and transfer of multimedia learning.
Hao, Yanbin; Chen, Jiaxue; An, Jing; Wang, Yuxin; Liu, Huashan
2017-01-01
Cueing facilitates retention and transfer of multimedia learning. From the perspective of cognitive load theory (CLT), cueing has a positive effect on learning outcomes because of the reduction in total cognitive load and avoidance of cognitive overload. However, this has not been systematically evaluated. Moreover, what remains ambiguous is the direct relationship between the cue-related cognitive load and learning outcomes. A meta-analysis and two subsequent meta-regression analyses were conducted to explore these issues. Subjective total cognitive load (SCL) and scores on a retention test and transfer test were selected as dependent variables. Through a systematic literature search, 32 eligible articles encompassing 3,597 participants were included in the SCL-related meta-analysis. Among them, 25 articles containing 2,910 participants were included in the retention-related meta-analysis and the following retention-related meta-regression, while there were 29 articles containing 3,204 participants included in the transfer-related meta-analysis and the transfer-related meta-regression. The meta-analysis revealed a statistically significant cueing effect on subjective ratings of cognitive load (d = −0.11, 95% CI = [−0.19, −0.02], p < 0.05), retention performance (d = 0.27, 95% CI = [0.08, 0.46], p < 0.01), and transfer performance (d = 0.34, 95% CI = [0.12, 0.56], p < 0.01). The subsequent meta-regression analyses showed that dSCL for cueing significantly predicted dretention for cueing (β = −0.70, 95% CI = [−1.02, −0.38], p < 0.001), as well as dtransfer for cueing (β = −0.60, 95% CI = [−0.92, −0.28], p < 0.001). Thus in line with CLT, adding cues in multimedia materials can indeed reduce SCL and promote learning outcomes, and the more SCL is reduced by cues, the better retention and transfer of multimedia learning. PMID:28854205
Eke, Gemma; Holttum, Sue; Hayward, Mark
2012-03-01
Previous research highlights barriers to clinical psychologists conducting research, but has rarely examined U.K. clinical psychologists. The study investigated U.K. clinical psychologists' self-reported research output and tested part of a theoretical model of factors influencing their intention to conduct research. Questionnaires were mailed to 1,300 U.K. clinical psychologists. Three hundred and seventy-four questionnaires were returned (29% response-rate). This study replicated in a U.K. sample the finding that the modal number of publications was zero, highlighted in a number of U.K. and U.S. studies. Research intention was bimodally distributed, and logistic regression classified 78% of cases successfully. Outcome expectations, perceived behavioral control and normative beliefs mediated between research training environment and intention. Further research should explore how research is negotiated in clinical roles, and this issue should be incorporated into prequalification training. © 2012 Wiley Periodicals, Inc.
Hendricks, Brian; Mark-Carew, Miguella; Conley, Jamison
2017-11-13
Domestic dogs and cats are potentially effective sentinel populations for monitoring occurrence and spread of Lyme disease. Few studies have evaluated the public health utility of sentinel programmes using geo-analytic approaches. Confirmed Lyme disease cases diagnosed by physicians and ticks submitted by veterinarians to the West Virginia State Health Department were obtained for 2014-2016. Ticks were identified to species, and only Ixodes scapularis were incorporated in the analysis. Separate ordinary least squares (OLS) and spatial lag regression models were conducted to estimate the association between average numbers of Ix. scapularis collected on pets and human Lyme disease incidence. Regression residuals were visualised using Local Moran's I as a diagnostic tool to identify spatial dependence. Statistically significant associations were identified between average numbers of Ix. scapularis collected from dogs and human Lyme disease in the OLS (β=20.7, P<0.001) and spatial lag (β=12.0, P=0.002) regression. No significant associations were identified for cats in either regression model. Statistically significant (P≤0.05) spatial dependence was identified in all regression models. Local Moran's I maps produced for spatial lag regression residuals indicated a decrease in model over- and under-estimation, but identified a higher number of statistically significant outliers than OLS regression. Results support previous conclusions that dogs are effective sentinel populations for monitoring risk of human exposure to Lyme disease. Findings reinforce the utility of spatial analysis of surveillance data, and highlight West Virginia's unique position within the eastern United States in regards to Lyme disease occurrence.
Independent contrasts and PGLS regression estimators are equivalent.
Blomberg, Simon P; Lefevre, James G; Wells, Jessie A; Waterhouse, Mary
2012-05-01
We prove that the slope parameter of the ordinary least squares regression of phylogenetically independent contrasts (PICs) conducted through the origin is identical to the slope parameter of the method of generalized least squares (GLSs) regression under a Brownian motion model of evolution. This equivalence has several implications: 1. Understanding the structure of the linear model for GLS regression provides insight into when and why phylogeny is important in comparative studies. 2. The limitations of the PIC regression analysis are the same as the limitations of the GLS model. In particular, phylogenetic covariance applies only to the response variable in the regression and the explanatory variable should be regarded as fixed. Calculation of PICs for explanatory variables should be treated as a mathematical idiosyncrasy of the PIC regression algorithm. 3. Since the GLS estimator is the best linear unbiased estimator (BLUE), the slope parameter estimated using PICs is also BLUE. 4. If the slope is estimated using different branch lengths for the explanatory and response variables in the PIC algorithm, the estimator is no longer the BLUE, so this is not recommended. Finally, we discuss whether or not and how to accommodate phylogenetic covariance in regression analyses, particularly in relation to the problem of phylogenetic uncertainty. This discussion is from both frequentist and Bayesian perspectives.
Farid, Asam; Jadoon, Khanzaib; Akhter, Gulraiz; Iqbal, Muhammad Asim
2013-03-01
Hydrostratigraphy and hydrogeology of the Maira vicinity is important for the characterization of aquifer system and developing numerical groundwater flow models to predict the future availability of the water resource. Conventionally, the aquifer parameters are obtained by the analysis of pumping tests data which provide limited spatial information and turn out to be costly and time consuming. Vertical electrical soundings and pump testing of boreholes were conducted to delineate the aquifer system at the western part of the Maira area, Khyber Pakhtun Khwa, Pakistan. Aquifer lithology in the eastern part of the study area is dominated by coarse sand and gravel whereas the western part is characterized by fine sand. An attempt has been made to estimate the hydraulic conductivity of the aquifer system by establishing a relationship between the pumping test results and vertical electrical soundings by using regression technique. The relationship is applied to the area along the resistivity profiles where boreholes are not drilled. Our findings show a good match between pumped hydraulic conductivity and estimated hydraulic conductivity. In case of sparse borehole data, regression technique is useful in estimating hydraulic properties for aquifers with varying lithology.
Blanco, Emily A; Duque, Laura M; Rachamallu, Vivekananda; Yuen, Eunice; Kane, John M; Gallego, Juan A
2018-05-01
The aim of this study is to determine odds of aggression and associated factors in patients with schizophrenia-spectrum disorders (SSD) and affective disorders who were evaluated in an emergency department setting. A retrospective study was conducted using de-identified data from electronic medical records from 3.322 patients who were evaluated at emergency psychiatric settings. Data extracted included demographic information, variables related to aggression towards people or property in the past 6months, and other factors that could potentially impact the risk of aggression, such as comorbid diagnoses, physical abuse and sexual abuse. Bivariate analyses and multivariate regression analyses were conducted to determine the variables significantly associated with aggression. An initial multivariate regression analysis showed that SSD had 3.1 times the odds of aggression, while bipolar disorder had 2.2 times the odds of aggression compared to unipolar depression. A second regression analysis including bipolar subtypes showed, using unipolar depression as the reference group, that bipolar disorder with a recent mixed episode had an odds ratio (OR) of 4.3, schizophrenia had an OR of 2.6 and bipolar disorder with a recent manic episode had an OR of 2.2. Generalized anxiety disorder was associated with lower odds in both regression analyses. As a whole, the SSD group had higher odds of aggression than the bipolar disorder group. However, after subdividing the groups, schizophrenia had higher odds of aggression than bipolar disorder with a recent manic episode and lower odds of aggression than bipolar disorder with a recent mixed episode. Copyright © 2017 Elsevier B.V. All rights reserved.
Valle, Denis; Lima, Joanna M Tucker; Millar, Justin; Amratia, Punam; Haque, Ubydul
2015-11-04
Logistic regression is a statistical model widely used in cross-sectional and cohort studies to identify and quantify the effects of potential disease risk factors. However, the impact of imperfect tests on adjusted odds ratios (and thus on the identification of risk factors) is under-appreciated. The purpose of this article is to draw attention to the problem associated with modelling imperfect diagnostic tests, and propose simple Bayesian models to adequately address this issue. A systematic literature review was conducted to determine the proportion of malaria studies that appropriately accounted for false-negatives/false-positives in a logistic regression setting. Inference from the standard logistic regression was also compared with that from three proposed Bayesian models using simulations and malaria data from the western Brazilian Amazon. A systematic literature review suggests that malaria epidemiologists are largely unaware of the problem of using logistic regression to model imperfect diagnostic test results. Simulation results reveal that statistical inference can be substantially improved when using the proposed Bayesian models versus the standard logistic regression. Finally, analysis of original malaria data with one of the proposed Bayesian models reveals that microscopy sensitivity is strongly influenced by how long people have lived in the study region, and an important risk factor (i.e., participation in forest extractivism) is identified that would have been missed by standard logistic regression. Given the numerous diagnostic methods employed by malaria researchers and the ubiquitous use of logistic regression to model the results of these diagnostic tests, this paper provides critical guidelines to improve data analysis practice in the presence of misclassification error. Easy-to-use code that can be readily adapted to WinBUGS is provided, enabling straightforward implementation of the proposed Bayesian models.
How Can I Improve My Ratings: A Regression Analysis of Student Evaluations of University Professors
ERIC Educational Resources Information Center
Watson, Tyler A.
2011-01-01
Research on the utility of student evaluations to measure teaching effectiveness of university professors could be the largest body of work conducted on pedagogy in the academe. The literature suggests that student evaluations are valid and reliable measures of effective teaching and student learning. Unfortunately, while there have been many…
Passive ambient air sampling for nitrogen dioxide (NO2 and volatioe organic compounds (VOCs) was conducted at 25 schools and two compliance sites in Detroit and Dearborne, Michigan. Geographic Information System (GIS) data were calculated at each of 116 schools. The ...
ERIC Educational Resources Information Center
Maschi, Tina
2006-01-01
This study examined how the cumulative (additive) versus differential (individual) effects of trauma influenced male delinquency. Using a comprehensive measure of trauma, a secondary data analysis was conducted on a nationally representative sample of male youths between the ages of 12 and 17. Logistic regression analyses revealed that all three…
ERIC Educational Resources Information Center
Ozen, Hamit
2016-01-01
Experiencing social phobia is an important factor which can hinder academic success during university years. In this study, research of social phobia with several variables is conducted among university students. The research group of the study consists of total 736 students studying at various departments at universities in Turkey. Students are…
Faculty Salary Equity: Issues in Regression Model Selection. AIR 1992 Annual Forum Paper.
ERIC Educational Resources Information Center
Moore, Nelle
This paper discusses the determination of college faculty salary inequity and identifies the areas in which human judgment must be used in order to conduct a statistical analysis of salary equity. In addition, it provides some informed guidelines for making those judgments. The paper provides a framework for selecting salary equity models, based…
ERIC Educational Resources Information Center
Chou, Chih-Chin; Robb, Jayci Lynn; Clay, Matthew Christopher; Chronister, Julie Ann
2013-01-01
In this study, 51 individuals from online substance abuse support groups were surveyed to investigate the mediating role of social support on the relationship between internalized stigma and coping. Regression and bootstrapping were conducted to perform mediation analysis. Findings suggest that social support mediates the negative impact of…
ERIC Educational Resources Information Center
Jang, Michael; Lee, Evelyn; Woo, Kent
1998-01-01
The effects of income, language, and citizenship on the use of health-care services by Chinese Americans is examined (N=1808). Focus groups, a telephone survey, and key informant interviews were conducted. Data analysis included an acculturation index, demographic profile, and logistical regression. Health insurance and social factors are…
Maurya, Rakesh Kumar; Saxena, Mohit Raj; Rai, Piyush; Bhardwaj, Aashish
2018-05-01
Currently, diesel engines are more preferred over gasoline engines due to their higher torque output and fuel economy. However, diesel engines confront major challenge of meeting the future stringent emission norms (especially soot particle emissions) while maintaining the same fuel economy. In this study, nanosize range soot particle emission characteristics of a stationary (non-road) diesel engine have been experimentally investigated. Experiments are conducted at a constant speed of 1500 rpm for three compression ratios and nozzle opening pressures at different engine loads. In-cylinder pressure history for 2000 consecutive engine cycles is recorded and averaged data is used for analysis of combustion characteristics. An electrical mobility-based fast particle sizer is used for analyzing particle size and mass distributions of engine exhaust particles at different test conditions. Soot particle distribution from 5 to 1000 nm was recorded. Results show that total particle concentration decreases with an increase in engine operating loads. Moreover, the addition of butanol in the diesel fuel leads to the reduction in soot particle concentration. Regression analysis was also conducted to derive a correlation between combustion parameters and particle number emissions for different compression ratios. Regression analysis shows a strong correlation between cylinder pressure-based combustion parameters and particle number emission.
Sumiyoshi, Chika; Uetsuki, Miki; Suga, Motomu; Kasai, Kiyoto; Sumiyoshi, Tomiki
2013-12-30
Short forms (SF) of the Wechsler Intelligence Scale have been developed to enhance its practicality. However, only a few studies have addressed the Wechsler Intelligence Scale Revised (WAIS-R) SFs based on data from patients with schizophrenia. The current study was conducted to develop the WAIS-R SFs for these patients based on the intelligence structure and predictability of the Full IQ (FIQ). Relations to demographic and clinical variables were also examined on selecting plausible subtests. The WAIS-R was administered to 90 Japanese patients with schizophrenia. Exploratory factor analysis (EFA) and multiple regression analysis were conducted to find potential subtests. EFA extracted two dominant factors corresponding to Verbal IQ and Performance IQ measures. Subtests with higher factor loadings on those factors were initially nominated. Regression analysis was carried out to reach the model containing all the nominated subtests. The optimality of the potential subtests included in that model was evaluated from the perspectives of the representativeness of intelligence structure, FIQ predictability, and the relation with demographic and clinical variables. Taken together, the dyad of Vocabulary and Block Design was considered to be the most optimal WAIS-R SF for patients with schizophrenia, reflecting both intelligence structure and FIQ predictability. © 2013 Elsevier Ireland Ltd. All rights reserved.
Robinson, Jo; Spittal, Matthew J; Carter, Greg
2016-01-01
Objective To examine the efficacy of psychological and psychosocial interventions for reductions in repeated self-harm. Design We conducted a systematic review, meta-analysis and meta-regression to examine the efficacy of psychological and psychosocial interventions to reduce repeat self-harm in adults. We included a sensitivity analysis of studies with a low risk of bias for the meta-analysis. For the meta-regression, we examined whether the type, intensity (primary analyses) and other components of intervention or methodology (secondary analyses) modified the overall intervention effect. Data sources A comprehensive search of MEDLINE, PsycInfo and EMBASE (from 1999 to June 2016) was performed. Eligibility criteria for selecting studies Randomised controlled trials of psychological and psychosocial interventions for adult self-harm patients. Results Forty-five trials were included with data available from 36 (7354 participants) for the primary analysis. Meta-analysis showed a significant benefit of all psychological and psychosocial interventions combined (risk ratio 0.84; 95% CI 0.74 to 0.96; number needed to treat=33); however, sensitivity analyses showed that this benefit was non-significant when restricted to a limited number of high-quality studies. Meta-regression showed that the type of intervention did not modify the treatment effects. Conclusions Consideration of a psychological or psychosocial intervention over and above treatment as usual is worthwhile; with the public health benefits of ensuring that this practice is widely adopted potentially worth the investment. However, the specific type and nature of the intervention that should be delivered is not yet clear. Cognitive–behavioural therapy or interventions with an interpersonal focus and targeted on the precipitants to self-harm may be the best candidates on the current evidence. Further research is required. PMID:27660314
Estimated prevalence of halitosis: a systematic review and meta-regression analysis.
Silva, Manuela F; Leite, Fábio R M; Ferreira, Larissa B; Pola, Natália M; Scannapieco, Frank A; Demarco, Flávio F; Nascimento, Gustavo G
2018-01-01
This study aims to conduct a systematic review to determine the prevalence of halitosis in adolescents and adults. Electronic searches were performed using four different databases without restrictions: PubMed, Scopus, Web of Science, and SciELO. Population-based observational studies that provided data about the prevalence of halitosis in adolescents and adults were included. Additionally, meta-analyses, meta-regression, and sensitivity analyses were conducted to synthesize the evidence. A total of 584 articles were initially found and considered for title and abstract evaluation. Thirteen articles met inclusion criteria. The combined prevalence of halitosis was found to be 31.8% (95% CI 24.6-39.0%). Methodological aspects such as the year of publication and the socioeconomic status of the country where the study was conducted seemed to influence the prevalence of halitosis. Our results demonstrated that the estimated prevalence of halitosis was 31.8%, with high heterogeneity between studies. The results suggest a worldwide trend towards a rise in halitosis prevalence. Given the high prevalence of halitosis and its complex etiology, dental professionals should be aware of their roles in halitosis prevention and treatment.
A guide to understanding meta-analysis.
Israel, Heidi; Richter, Randy R
2011-07-01
With the focus on evidence-based practice in healthcare, a well-conducted systematic review that includes a meta-analysis where indicated represents a high level of evidence for treatment effectiveness. The purpose of this commentary is to assist clinicians in understanding meta-analysis as a statistical tool using both published articles and explanations of components of the technique. We describe what meta-analysis is, what heterogeneity is, and how it affects meta-analysis, effect size, the modeling techniques of meta-analysis, and strengths and weaknesses of meta-analysis. Common components like forest plot interpretation, software that may be used, special cases for meta-analysis, such as subgroup analysis, individual patient data, and meta-regression, and a discussion of criticisms, are included.
Zhao, Pengxiang; Zhou, Suhong
2018-01-01
Traditionally, static units of analysis such as administrative units are used when studying obesity. However, using these fixed contextual units ignores environmental influences experienced by individuals in areas beyond their residential neighborhood and may render the results unreliable. This problem has been articulated as the uncertain geographic context problem (UGCoP). This study investigates the UGCoP through exploring the relationships between the built environment and obesity based on individuals’ activity space. First, a survey was conducted to collect individuals’ daily activity and weight information in Guangzhou in January 2016. Then, the data were used to calculate and compare the values of several built environment variables based on seven activity space delineations, including home buffers, workplace buffers (WPB), fitness place buffers (FPB), the standard deviational ellipse at two standard deviations (SDE2), the weighted standard deviational ellipse at two standard deviations (WSDE2), the minimum convex polygon (MCP), and road network buffers (RNB). Lastly, we conducted comparative analysis and regression analysis based on different activity space measures. The results indicate that significant differences exist between variables obtained with different activity space delineations. Further, regression analyses show that the activity space delineations used in the analysis have a significant influence on the results concerning the relationships between the built environment and obesity. The study sheds light on the UGCoP in analyzing the relationships between obesity and the built environment. PMID:29439392
Miyagi, Atsushi
2017-09-01
Detailed exploration of sensory perception as well as preference across gender and age for a certain food is very useful for developing a vendible food commodity related to physiological and psychological motivation for food preference. Sensory tests including color, sweetness, bitterness, fried peanut aroma, textural preference and overall liking of deep-fried peanuts with varying frying time (2, 4, 6, 9, 12 and 15 min) at 150 °C were carried out using 417 healthy Japanese consumers. To determine the influence of gender and age on sensory evaluation, systematic statistical analysis including one-way analysis of variance, polynomial regression analysis and multiple regression analysis was conducted using the collected data. The results indicated that females were more sensitive to bitterness than males. This may affect sensory preference; female subjects favored peanuts prepared with a shorter frying time more than male subjects did. With advancing age, textural preference played a more important role in overall preference. Older subjects liked deeper-fried peanuts, which are more brittle, more than younger subjects did. In the present study, systematic statistical analysis based on collected sensory evaluation data using deep-fried peanuts was conducted and the tendency of sensory perception and preference across gender and age was clarified. These results may be useful for engineering optimal strategies to target specific segments to gain greater acceptance in the market. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Contact With Mental Health Services Prior to Suicide: A Systematic Review and Meta-Analysis.
Walby, Fredrik A; Myhre, Martin Øverlien; Kildahl, Anine Therese
2018-04-16
Access to mental health care is regarded as a central suicide prevention strategy. This is the first systematic review and meta-analysis of the prevalence of contact with mental health services preceding suicide. A systematic search for articles reporting prevalence of contact with mental health services before suicide was conducted in MEDLINE and PsycINFO, restricted to studies published from January 1, 2000, to January 12, 2017. A random-effects meta-analysis with double arcsine transformations was conducted, with meta-regression used to explore heterogeneity. Thirty-five studies were included in the systematic review, and 20 were included in the meta-analysis. Among suicide decedents in the population, 3.7% (95% confidence interval [CI]=2.6%-4.8%) were inpatients at the time of death. In the year before death, 18.3% (CI=14.6%-22.4%) of suicide decedents had contact with inpatient mental health services, 26.1% (CI=16.5%-37.0%) had contact with outpatient mental health services, and 25.7% (CI=22.7%-28.9%) had contact with inpatient or outpatient mental health services. Meta-regression showed that women had significantly higher levels of contact compared with men and that the prevalence of contact with inpatient or outpatient services increased according to the sample year. Contact with services prior to suicide was found to be common and contact with inpatient or outpatient mental health services before suicide seems to be increasing. However, the reviewed studies were mainly conducted in Western European and North American countries, and most studies focused on psychiatric hospitalization, which resulted in limited data on contact with outpatient services. Better monitoring and data on suicides that occur during and after treatment seem warranted.
Liu, Chaoqun; Zhong, Chunrong; Zhou, Xuezhen; Chen, Renjuan; Wu, Jiangyue; Wang, Weiye; Li, Xiating; Ding, Huisi; Guo, Yanfang; Gao, Qin; Hu, Xingwen; Xiong, Guoping; Yang, Xuefeng; Hao, Liping; Xiao, Mei; Yang, Nianhong
2017-01-01
Bilirubin concentrations have been recently reported to be negatively associated with type 2 diabetes mellitus. We examined the association between bilirubin concentrations and gestational diabetes mellitus. In a prospective cohort study, 2969 pregnant women were recruited prior to 16 weeks of gestation and were followed up until delivery. The value of bilirubin was tested and oral glucose tolerance test was conducted to screen gestational diabetes mellitus. The relationship between serum bilirubin concentration and gestational weeks was studied by two-piecewise linear regression. A subsample of 1135 participants with serum bilirubin test during 16-18 weeks gestation was conducted to research the association between serum bilirubin levels and risk of gestational diabetes mellitus by logistic regression. Gestational diabetes mellitus developed in 8.5 % of the participants (223 of 2969). Two-piecewise linear regression analyses demonstrated that the levels of bilirubin decreased with gestational week up to the turning point 23 and after that point, levels of bilirubin were increased slightly. In multiple logistic regression analysis, the relative risk of developing gestational diabetes mellitus was lower in the highest tertile of direct bilirubin than that in the lowest tertile (RR 0.60; 95 % CI, 0.35-0.89). The results suggested that women with higher serum direct bilirubin levels during the second trimester of pregnancy have lower risk for development of gestational diabetes mellitus.
Individual Participant Data Meta-Analysis of Mechanical Workplace Risk Factors and Low Back Pain
Shannon, Harry S.; Wells, Richard P.; Walter, Stephen D.; Cole, Donald C.; Côté, Pierre; Frank, John; Hogg-Johnson, Sheilah; Langlois, Lacey E.
2012-01-01
Objectives. We used individual participant data from multiple studies to conduct a comprehensive meta-analysis of mechanical exposures in the workplace and low back pain. Methods. We conducted a systematic literature search and contacted an author of each study to request their individual participant data. Because outcome definitions and exposure measures were not uniform across studies, we conducted 2 substudies: (1) to identify sets of outcome definitions that could be combined in a meta-analysis and (2) to develop methods to translate mechanical exposure onto a common metric. We used generalized estimating equation regression to analyze the data. Results. The odds ratios (ORs) for posture exposures ranged from 1.1 to 2.0. Force exposure ORs ranged from 1.4 to 2.1. The magnitudes of the ORs differed according to the definition of low back pain, and heterogeneity was associated with both study-level and individual-level characteristics. Conclusions. We found small to moderate ORs for the association of mechanical exposures and low back pain, although the relationships were complex. The presence of individual-level OR modifiers in such an area can be best understood by conducting a meta-analysis of individual participant data. PMID:22390445
Osmani, M G; Thornton, R N; Dhand, N K; Hoque, M A; Milon, Sk M A; Kalam, M A; Hossain, M; Yamage, M
2014-12-01
A case-control study conducted during 2011 involved 90 randomly selected commercial layer farms infected with highly pathogenic avian influenza type A subtype H5N1 (HPAI) and 175 control farms randomly selected from within 5 km of infected farms. A questionnaire was designed to obtain information about potential risk factors for contracting HPAI and was administered to farm owners or managers. Logistic regression analyses were conducted to identify significant risk factors. A total of 20 of 43 risk factors for contracting HPAI were identified after univariable logistic regression analysis. A multivariable logistic regression model was derived by forward stepwise selection. Both unmatched and matched analyses were performed. The key risk factors identified were numbers of staff, frequency of veterinary visits, presence of village chickens roaming on the farm and staff trading birds. Aggregating these findings with those from other studies resulted in a list of 16 key risk factors identified in Bangladesh. Most of these related to biosecurity. It is considered feasible for Bangladesh to achieve a very low incidence of HPAI. Using the cumulative list of risk factors to enhance biosecurity pertaining to commercial farms would facilitate this objective. © 2013 Blackwell Verlag GmbH.
Martinez-Fiestas, Myriam; Rodríguez-Garzón, Ignacio; Delgado-Padial, Antonio; Lucas-Ruiz, Valeriano
2017-09-01
This article presents a cross-cultural study on perceived risk in the construction industry. Worker samples from three different countries were studied: Spain, Peru and Nicaragua. The main goal was to explain how construction workers perceive their occupational hazard and to analyze how this is related to their national culture. The model used to measure perceived risk was the psychometric paradigm. The results show three very similar profiles, indicating that risk perception is independent of nationality. A cultural analysis was conducted using the Hofstede model. The results of this analysis and the relation to perceived risk showed that risk perception in construction is independent of national culture. Finally, a multiple lineal regression analysis was conducted to determine what qualitative attributes could predict the global quantitative size of risk perception. All of the findings have important implications regarding the management of safety in the workplace.
NASA Astrophysics Data System (ADS)
Sethuramalingam, Prabhu; Vinayagam, Babu Kupusamy
2016-07-01
Carbon nanotube mixed grinding wheel is used in the grinding process to analyze the surface characteristics of AISI D2 tool steel material. Till now no work has been carried out using carbon nanotube based grinding wheel. Carbon nanotube based grinding wheel has excellent thermal conductivity and good mechanical properties which are used to improve the surface finish of the workpiece. In the present study, the multi response optimization of process parameters like surface roughness and metal removal rate of grinding process of single wall carbon nanotube (CNT) in mixed cutting fluids is undertaken using orthogonal array with grey relational analysis. Experiments are performed with designated grinding conditions obtained using the L9 orthogonal array. Based on the results of the grey relational analysis, a set of optimum grinding parameters is obtained. Using the analysis of variance approach the significant machining parameters are found. Empirical model for the prediction of output parameters has been developed using regression analysis and the results are compared empirically, for conditions of with and without CNT grinding wheel in grinding process.
Jang, Seung-Ho; Ryu, Han-Seung; Choi, Suck-Chei; Lee, Sang-Yeol
2016-10-01
The purpose of this study was to examine psychosocial factors related to gastroesophageal reflux disease (GERD) and their effects on quality of life (QOL) in firefighters. Data were collected from 1217 firefighters in a Korean province. We measured psychological symptoms using the scale. In order to observe the influence of the high-risk group on occupational stress, we conduct logistic multiple linear regression. The correlation between psychological factors and QOL was also analyzed and performed a hierarchical regression analysis. GERD was observed in 32.2% of subjects. Subjects with GERD showed higher depressive symptom, anxiety and occupational stress scores, and lower self-esteem and QOL scores relative to those observed in GERD - negative subject. GERD risk was higher for the following occupational stress subcategories: job demand, lack of reward, interpersonal conflict, and occupational climate. The stepwise regression analysis showed that depressive symptoms, occupational stress, self-esteem, and anxiety were the best predictors of QOL. The results suggest that psychological and medical approaches should be combined in GERD assessment.
Jang, Seung-Ho; Ryu, Han-Seung; Choi, Suck-Chei; Lee, Sang-Yeol
2016-01-01
Objectives The purpose of this study was to examine psychosocial factors related to gastroesophageal reflux disease (GERD) and their effects on quality of life (QOL) in firefighters. Methods Data were collected from 1217 firefighters in a Korean province. We measured psychological symptoms using the scale. In order to observe the influence of the high-risk group on occupational stress, we conduct logistic multiple linear regression. The correlation between psychological factors and QOL was also analyzed and performed a hierarchical regression analysis. Results GERD was observed in 32.2% of subjects. Subjects with GERD showed higher depressive symptom, anxiety and occupational stress scores, and lower self-esteem and QOL scores relative to those observed in GERD – negative subject. GERD risk was higher for the following occupational stress subcategories: job demand, lack of reward, interpersonal conflict, and occupational climate. The stepwise regression analysis showed that depressive symptoms, occupational stress, self-esteem, and anxiety were the best predictors of QOL. Conclusions The results suggest that psychological and medical approaches should be combined in GERD assessment. PMID:27691373
On the use of log-transformation vs. nonlinear regression for analyzing biological power laws
Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L.
2011-01-01
Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain. ?? 2011 by the Ecological Society of America.
DiLorio, Colleen; Dudley, William N; Soet, Johanna E; McCarty, Frances
2004-12-01
To examine sexual possibility situations (SPS) and protective practices associated with involvement in intimate sexual behaviors and the initiation of sexual intercourse among young adolescents and to determine if protective factors moderate the relationship between SPS and sexual behaviors. Data for these analyses were obtained from the baseline assessment for adolescents conducted as part of an HIV prevention study called "Keepin' it R.E.A.L.!" The study was conducted with a community-based organization (CBO) in an urban area serving a predominantly African-American population. In addition to items assessing SPS, intimate sexual behaviors, and initiation of sexual intercourse, adolescents provided information on the following protective factors: educational goals, self-concept, future time perspective, orientation to health, self-efficacy, outcome expectations, parenting, communication, values, and prosocial activities. Background personal information, including age and gender, was also collected. The analyses were conducted on data from 491 predominantly African-American adolescents, 61% of whom were boys. Variables were combined to form SPS and protective indices that were used in the first set of regression analyses. In a second set of analyses, the indices were unbundled and individual variables were entered into regression analyses. Both SPS and protective indices explained significant portions of variance in intimate sexual behaviors, and the SPS index explained a significant portion of variance in the initiation of sexual intercourse. The regression analysis using the unbundled SPS and protective factors revealed the following statistically significant predictors for intimate sexual behaviors: age, gender, time alone with groups of peers, time alone with a member of the opposite sex, behavior self-concept, popularity self-concept, self-efficacy for abstinence, outcome expectations for abstinence, parental control, personal values, and parental values. A similar regression analysis revealed that age, time alone with a member of the opposite sex, and personal values were significant predictors of initiation of sexual intercourse. These results provide evidence for the important role of protective factors in explaining early involvement in sexual behaviors and show that protective factors extend beyond personal characteristics to include both familial and peer factors.
ERIC Educational Resources Information Center
Balcazar, Fabricio E.; Oberoi, Ashmeet K.; Suarez-Balcazar, Yolanda; Alvarado, Francisco
2012-01-01
A review of vocational rehabilitation (VR) data from a Midwestern state was conducted to identify predictors of rehabilitation outcomes for African American consumers. The database included 37,404 African Americans who were referred or self-referred over a period of five years. Logistic regression analysis indicated that except for age and…
Katherine J. Elliott; James M. Vose
1994-01-01
We measured net photosynthesis,leaf conductance, xylem water potential, and growth of Pinus strbus L. seedlings two years after planting on two clear-cut and burned sites in the southern Appalachians. Multiple regression analysis was used to relate seedling net pholosynthesis to vapor pressure deficit, seedling crown temperature, photosynthetically active radiation (...
ERIC Educational Resources Information Center
Zha, Shenghua; Adams, Andrea Harpine; Calcagno-Roach, Jamie Marie; Stringham, David A.
2017-01-01
This study explored factors that predicted learners' transformative learning in an online employee training program in a higher education institution in the U.S. A multivariate multiple regression analysis was conducted with a sample of 74 adult learners on their learning of a new learning management system. Four types of participants' behaviors…
ERIC Educational Resources Information Center
Silva, Janelle M.; Langhout, Regina Day; Kohfeldt, Danielle; Gurrola, Edith
2015-01-01
Using 8,265 positive behavior cards and 544 conduct reports for 244 students, regressions of how race and gender influence the allocation of punishments or rewards for students at a New England elementary school with an Effective Behavioral Support (EBS) program were examined. Girls were most likely to receive a positive behavior card for…
ERIC Educational Resources Information Center
Merianos, Ashley L.; King, Keith A.; Vidourek, Rebecca A.; Hardee, Angelica M.
2016-01-01
The study purpose was to examine the effect alcohol abuse/dependence and school experiences have on depression among a nationwide sample of adolescents. A secondary analysis of the 2013 National Survey on Drug Use and Health was conducted. The results of the final multivariable logistic regression model revealed that adolescents who reported…
Social determinants of cataract surgery utilization in south India. The Operations Research Group.
Brilliant, G E; Lepkowski, J M; Zurita, B; Thulasiraj, R D
1991-04-01
A field trial was conducted to compare the effects of eight health education and economic incentive interventions on the awareness and acceptance of cataract surgery. Cataract screening and follow-up surgery were offered to more than 19,000 residents age 40 years and older in a probability sample of 90 villages in south India. Eight months after intervention, an evaluation was conducted to identify those in need of surgery who had been operated on. Two principal measures of program effectiveness are examined: awareness of cataract surgery and acceptance of the surgery. The type of intervention had a negligible effect on awareness of cataract surgery. A multiple logistic regression analysis revealed that individuals who were aware of surgery tended to be male, literate, and more affluent than those who were unaware of that option. Interventions that covered the complete costs of surgery had higher surgery acceptance rates. One health education strategy, house-to-house visits by a subject with aphakia, increased acceptance of the procedure more than others. In a multiple logistic regression analysis of acceptance rates, persons accepting surgery tended to be male; other factors were not important in explaining variation in acceptance rates.
NASA Astrophysics Data System (ADS)
Lukman, Iing; Ibrahim, Noor A.; Daud, Isa B.; Maarof, Fauziah; Hassan, Mohd N.
2002-03-01
Survival analysis algorithm is often applied in the data mining process. Cox regression is one of the survival analysis tools that has been used in many areas, and it can be used to analyze the failure times of aircraft crashed. Another survival analysis tool is the competing risks where we have more than one cause of failure acting simultaneously. Lunn-McNeil analyzed the competing risks in the survival model using Cox regression with censored data. The modified Lunn-McNeil technique is a simplify of the Lunn-McNeil technique. The Kalbfleisch-Prentice technique is involving fitting models separately from each type of failure, treating other failure types as censored. To compare the two techniques, (the modified Lunn-McNeil and Kalbfleisch-Prentice) a simulation study was performed. Samples with various sizes and censoring percentages were generated and fitted using both techniques. The study was conducted by comparing the inference of models, using Root Mean Square Error (RMSE), the power tests, and the Schoenfeld residual analysis. The power tests in this study were likelihood ratio test, Rao-score test, and Wald statistics. The Schoenfeld residual analysis was conducted to check the proportionality of the model through its covariates. The estimated parameters were computed for the cause-specific hazard situation. Results showed that the modified Lunn-McNeil technique was better than the Kalbfleisch-Prentice technique based on the RMSE measurement and Schoenfeld residual analysis. However, the Kalbfleisch-Prentice technique was better than the modified Lunn-McNeil technique based on power tests measurement.
Non-ignorable missingness in logistic regression.
Wang, Joanna J J; Bartlett, Mark; Ryan, Louise
2017-08-30
Nonresponses and missing data are common in observational studies. Ignoring or inadequately handling missing data may lead to biased parameter estimation, incorrect standard errors and, as a consequence, incorrect statistical inference and conclusions. We present a strategy for modelling non-ignorable missingness where the probability of nonresponse depends on the outcome. Using a simple case of logistic regression, we quantify the bias in regression estimates and show the observed likelihood is non-identifiable under non-ignorable missing data mechanism. We then adopt a selection model factorisation of the joint distribution as the basis for a sensitivity analysis to study changes in estimated parameters and the robustness of study conclusions against different assumptions. A Bayesian framework for model estimation is used as it provides a flexible approach for incorporating different missing data assumptions and conducting sensitivity analysis. Using simulated data, we explore the performance of the Bayesian selection model in correcting for bias in a logistic regression. We then implement our strategy using survey data from the 45 and Up Study to investigate factors associated with worsening health from the baseline to follow-up survey. Our findings have practical implications for the use of the 45 and Up Study data to answer important research questions relating to health and quality-of-life. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Comparison of various tool wear prediction methods during end milling of metal matrix composite
NASA Astrophysics Data System (ADS)
Wiciak, Martyna; Twardowski, Paweł; Wojciechowski, Szymon
2018-02-01
In this paper, the problem of tool wear prediction during milling of hard-to-cut metal matrix composite Duralcan™ was presented. The conducted research involved the measurements of acceleration of vibrations during milling with constant cutting conditions, and evaluation of the flank wear. Subsequently, the analysis of vibrations in time and frequency domain, as well as the correlation of the obtained measures with the tool wear values were conducted. The validation of tool wear diagnosis in relation to selected diagnostic measures was carried out with the use of one variable and two variables regression models, as well as with the application of artificial neural networks (ANN). The comparative analysis of the obtained results enable.
Electronic conductivity studies on oxyhalide glasses containing TMO
NASA Astrophysics Data System (ADS)
Vijayatha, D.; Viswanatha, R.; Sujatha, B.; Narayana Reddy, C.
2016-05-01
Microwave-assisted synthesis is cleaner, more economical and much faster than conventional methods. The development of new routes for the synthesis of solid materials is an integral part of material science and technology. The electronic conductivity studies on xPbCl2 - 60 PbO - (40-x) V2O5 (1 ≥ x ≤ 10) glass system has been carried out over a wide range of composition and temperature (300 K to 423 K). X-ray diffraction study confirms the amorphous nature of the samples. The Scanning electron microscopic studies reveal the formation of cluster like morphology in PbCl2 containing glasses. The d.c conductivity exhibits Arrhenius behaviour and increases with V2O5 concentration. Analysis of the results is interpreted in view Austin-Mott's small polaron model of electron transport. Activation energies calculated using regression analysis exhibit composition dependent trend and the variation is explained in view of the structure of lead-vanadate glass.
Aydan, Seda; Kaya, Sidika
2018-01-01
Objectives: To reveal the effect of perception of ethical climate by nurses and secretaries and their level of organizational trust on their whistleblowing intention. Methods: Nurses and secretaries working in a University Hospital in Ankara, Turkey, were enrolled in the study conducted in 2016. Responses were received from 369 nurses and secretaries working at Clinics and Polyclinics. Path analysis, investigation of structural equation models used while multi-regression analysis was also applied. Results: According to the regression model, ethical climate dimensions, profession, gender, and work place had significant impact on the whistleblowing intention. According to Path analysis, ethical climate had direct impact of 69% on whistleblowing intention. It was seen that organizational trust had an indirect impact of 27% on the whistleblowing score when ethical climate had a moderator role. Conclusion: In order to promote whistleblowing in organizations, it is important to keep the ethical climate perception of employees and the level of their organizational trust at high levels. PMID:29805421
Aydan, Seda; Kaya, Sidika
2018-01-01
To reveal the effect of perception of ethical climate by nurses and secretaries and their level of organizational trust on their whistleblowing intention. Nurses and secretaries working in a University Hospital in Ankara, Turkey, were enrolled in the study conducted in 2016. Responses were received from 369 nurses and secretaries working at Clinics and Polyclinics. Path analysis, investigation of structural equation models used while multi-regression analysis was also applied. According to the regression model, ethical climate dimensions, profession, gender, and work place had significant impact on the whistleblowing intention. According to Path analysis, ethical climate had direct impact of 69% on whistleblowing intention. It was seen that organizational trust had an indirect impact of 27% on the whistleblowing score when ethical climate had a moderator role. In order to promote whistleblowing in organizations, it is important to keep the ethical climate perception of employees and the level of their organizational trust at high levels.
Stubbs, Brendon; Firth, Joseph; Berry, Alexandra; Schuch, Felipe B; Rosenbaum, Simon; Gaughran, Fiona; Veronesse, Nicola; Williams, Julie; Craig, Tom; Yung, Alison R; Vancampfort, Davy
2016-10-01
Physical activity (PA) improves health outcomes in people with schizophrenia. It is unclear how much PA people with schizophrenia undertake and what influences PA participation. We conducted a meta-analysis to investigate PA levels and predictors in people with schizophrenia. Major databases were searched from inception till 02/2016 for articles measuring PA (self-report questionnaire (SRQ) or objective measure (e.g. accelerometer)) in people with schizophrenia, including first episode psychosis (FEP). A random effects meta-analysis and meta-regression analysis were conducted. 35 studies representing 3453 individuals with schizophrenia (40.0years; 64.0% male) were included. Engagement in light PA was 80.44min (95% CI 68.32-92.52, n=2658), 47.1min moderate-vigorous PA (95% CI 31.5-62.8, n=559) and 1.05min (95% CI 0.48-1.62, n=2533) vigorous PA per day. People with schizophrenia engaged in significantly less moderate (hedges g=-0.45, 95% CI -0.79 to -0.1, p=0.01) and vigorous PA (g=-0.4, 95% CI -0.60 to -0.18) versus controls. Higher light to moderate, but lower vigorous PA levels were observed in outpatients and in studies utilizing objective measures versus SRQ. 56.6% (95% CI 45.8-66.8, studies=12) met the recommended 150min of moderate physical activity per week. Depressive symptoms and older age were associated with less vigorous PA in meta-regression analyses. Our data confirm that people with schizophrenia engage in significantly less moderate and vigorous PA versus controls. Interventions aiming to increase PA, regardless of intensity are indicated for people with schizophrenia, while specifically increasing moderate-vigorous PA should be a priority given the established health benefits. Copyright © 2016 Elsevier B.V. All rights reserved.
Antoniou, George A; Georgiadis, George S; Georgakarakos, Efstratios I; Antoniou, Stavros A; Bessias, Nikos; Smyth, John Vincent; Murray, David; Lazarides, Miltos K
2013-12-01
Uncertainty exists about the influence of advanced age on the outcomes of carotid revascularization. To undertake a comprehensive review of the literature and conduct an analysis of the outcomes of carotid interventions in the elderly. A systematic literature review was conducted to identify articles comparing early outcomes of carotid endarterectomy (CEA) or carotid stenting (CAS) in elderly and young patients. Combined overall effect sizes were calculated using fixed or random effects models. Meta-regression models were formed to explore potential heterogeneity as a result of changes in practice over time. RESULTS Our analysis comprised 44 studies reporting data on 512,685 CEA and 75,201 CAS procedures. Carotid stenting was associated with increased incidence of stroke in elderly patients compared with their young counterparts (odds ratio [OR], 1.56; 95% CI, 1.40-1.75), whereas CEA had equivalent cerebrovascular outcomes in old and young age groups (OR, 0.94; 95% CI, 0.88-0.99). Carotid stenting had similar peri-interventional mortality risks in old and young patients (OR, 0.86; 95% CI, 0.72-1.03), whereas CEA was associated with heightened mortality in elderly patients (OR, 1.62; 95% CI, 1.47-1.77). The incidence of myocardial infarction was increased in patients of advanced age in both CEA and CAS (OR, 1.64; 95% CI, 1.57-1.72 and OR, 1.30; 95% CI, 1.16-1.45, respectively). Meta-regression analyses revealed a significant effect of publication date on peri-interventional stroke (P = .003) and mortality (P < .001) in CAS. Age should be considered when planning a carotid intervention. Carotid stenting has an increased risk of adverse cerebrovascular events in elderly patients but mortality equivalent to younger patients. Carotid endarterectomy is associated with similar neurologic outcomes in elderly and young patients, at the expense of increased mortality.
Tsai, Alexander C.; Tomlinson, Mark; Comulada, W. Scott; Rotheram-Borus, Mary Jane
2016-01-01
Background Violence against women by intimate partners remains unacceptably common worldwide. The evidence base for the assumed psychological impacts of intimate partner violence (IPV) is derived primarily from studies conducted in high-income countries. A recently published systematic review identified 13 studies linking IPV to incident depression, none of which were conducted in sub-Saharan Africa. To address this gap in the literature, we analyzed longitudinal data collected during the course of a 3-y cluster-randomized trial with the aim of estimating the association between IPV and depression symptom severity. Methods and Findings We conducted a secondary analysis of population-based, longitudinal data collected from 1,238 pregnant women during a 3-y cluster-randomized trial of a home visiting intervention in Cape Town, South Africa. Surveys were conducted at baseline, 6 mo, 18 mo, and 36 mo (85% retention). The primary explanatory variable of interest was exposure to four types of physical IPV in the past year. Depression symptom severity was measured using the Xhosa version of the ten-item Edinburgh Postnatal Depression Scale. In a pooled cross-sectional multivariable regression model adjusting for potentially confounding time-fixed and time-varying covariates, lagged IPV intensity had a statistically significant association with depression symptom severity (regression coefficient b = 1.04; 95% CI, 0.61–1.47), with estimates from a quantile regression model showing greater adverse impacts at the upper end of the conditional depression distribution. Fitting a fixed effects regression model accounting for all time-invariant confounding (e.g., history of childhood sexual abuse) yielded similar findings (b = 1.54; 95% CI, 1.13–1.96). The magnitudes of the coefficients indicated that a one–standard-deviation increase in IPV intensity was associated with a 12.3% relative increase in depression symptom severity over the same time period. The most important limitations of our study include exposure assessment that lacked measurement of sexual violence, which could have caused us to underestimate the severity of exposure; the extended latency period in the lagged analysis, which could have caused us to underestimate the strength of the association; and outcome assessment that was limited to the use of a screening instrument for depression symptom severity. Conclusions In this secondary analysis of data from a population-based, 3-y cluster-randomized controlled trial, IPV had a statistically significant association with depression symptom severity. The estimated associations were relatively large in magnitude, consistent with findings from high-income countries, and robust to potential confounding by time-invariant factors. Intensive health sector responses to reduce IPV and improve women’s mental health should be explored. PMID:26784110
Second hip fractures at Chiang Mai University Hospital.
Wongtriratanachai, Prasit; Chiewchantanakit, Siripong; Vaseenon, Tanawat; Rojanasthien, Sattaya; Leerapun, Taninnit
2015-02-01
Hip fractures are a major public health problem. Patients who have suffered a hip fracture have an increased risk of a subsequent hip fracture. This study examines the incidence ofsecondhip fractures and attempts to identify underlying risk factors. To examine the incidence ofsecond hip fractures in osteoporotic patients at Chiang Mai University Hospital and to identify risk factors related to second hip fractures. A retrospective review was conducted of all low-energy mechanism hip fracture patients admitted during 2008 and 2009. Analysis of second hip fractures was conducted using survival analysis and logistic regression analysis. A total of 191 patients were observed for 391.68 person-years (mean 2.05 person-years per patient). Among that group, nine second hip fractures were identified, an overall incidence rate of 0.023 second fractures per person-year. Second hip fractures tended to occur within the first year following an initial hip fracture. There were no significant differences related to either gender or comorbid medical conditions. Logistic regression analysis revealed that increased risk of a second hip fracture was associated with age (highest between 80 to 89 years) and patients who were not treated for osteoporosis following their initial fracture. The incidence of second hip fractures at Chiang Mai University Hospital was 0.023 per person-year Careful follow-up of older patients, especially those over 80, and treatment ofosteoporosis with bisphosphonate plus vitamin D and calcium supplements was correlated with a reduction in the incidence of second hip fractures.
Shackelford, S D; Wheeler, T L; Koohmaraie, M
2003-01-01
The present experiment was conducted to evaluate the ability of the U.S. Meat Animal Research Center's beef carcass image analysis system to predict calculated yield grade, longissimus muscle area, preliminary yield grade, adjusted preliminary yield grade, and marbling score under commercial beef processing conditions. In two commercial beef-processing facilities, image analysis was conducted on 800 carcasses on the beef-grading chain immediately after the conventional USDA beef quality and yield grades were applied. Carcasses were blocked by plant and observed calculated yield grade. The carcasses were then separated, with 400 carcasses assigned to a calibration data set that was used to develop regression equations, and the remaining 400 carcasses assigned to a prediction data set used to validate the regression equations. Prediction equations, which included image analysis variables and hot carcass weight, accounted for 90, 88, 90, 88, and 76% of the variation in calculated yield grade, longissimus muscle area, preliminary yield grade, adjusted preliminary yield grade, and marbling score, respectively, in the prediction data set. In comparison, the official USDA yield grade as applied by online graders accounted for 73% of the variation in calculated yield grade. The technology described herein could be used by the beef industry to more accurately determine beef yield grades; however, this system does not provide an accurate enough prediction of marbling score to be used without USDA grader interaction for USDA quality grading.
2012-01-01
Background For complex diseases like cancer, pooled-analysis of individual data represents a powerful tool to investigate the joint contribution of genetic, phenotypic and environmental factors to the development of a disease. Pooled-analysis of epidemiological studies has many advantages over meta-analysis, and preliminary results may be obtained faster and with lower costs than with prospective consortia. Design and methods Based on our experience with the study design of the Melanocortin-1 receptor (MC1R) gene, SKin cancer and Phenotypic characteristics (M-SKIP) project, we describe the most important steps in planning and conducting a pooled-analysis of genetic epidemiological studies. We then present the statistical analysis plan that we are going to apply, giving particular attention to methods of analysis recently proposed to account for between-study heterogeneity and to explore the joint contribution of genetic, phenotypic and environmental factors in the development of a disease. Within the M-SKIP project, data on 10,959 skin cancer cases and 14,785 controls from 31 international investigators were checked for quality and recoded for standardization. We first proposed to fit the aggregated data with random-effects logistic regression models. However, for the M-SKIP project, a two-stage analysis will be preferred to overcome the problem regarding the availability of different study covariates. The joint contribution of MC1R variants and phenotypic characteristics to skin cancer development will be studied via logic regression modeling. Discussion Methodological guidelines to correctly design and conduct pooled-analyses are needed to facilitate application of such methods, thus providing a better summary of the actual findings on specific fields. PMID:22862891
Soleimani, Robabeh; Salehi, Zivar; Soltanipour, Soheil; Hasandokht, Tolou; Jalali, Mir Mohammad
2018-04-01
Methylphenidate (MPH) is the most commonly used treatment for attention-deficit hyperactivity disorder (ADHD) in children. However, the response to MPH is not similar in all patients. This meta-analysis investigated the potential role of SLC6A3 polymorphisms in response to MPH in children with ADHD. Clinical trials or naturalistic studies were selected from electronic databases. A meta-analysis was conducted using a random-effects model. Cohen's d effect size and 95% confidence intervals (CIs) were determined. Sensitivity analysis and meta-regression were performed. Q-statistic and Egger's tests were conducted to evaluate heterogeneity and publication bias, respectively. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was used to assess the quality of evidence. Sixteen studies with follow-up periods of 1-28 weeks were eligible. The mean treatment acceptability of MPH was 97.2%. In contrast to clinical trials, the meta-analysis of naturalistic studies indicated that children without 10/10 repeat carriers had better response to MPH (Cohen's d: -0.09 and 0.44, respectively). The 9/9 repeat polymorphism had no effect on the response rate (Cohen's d: -0.43). In the meta-regression, a significant association was observed between baseline severity of ADHD, MPH dosage, and combined type of ADHD in some genetic models. Sensitivity analysis indicated the robustness of our findings. No publication bias was observed in our meta-analysis. The GRADE evaluations revealed very low levels of confidence for each outcome of response to MPH. The results of clinical trials and naturalistic studies regarding the effect size between different polymorphisms of SLC6A3 were contradictory. Therefore, further research is recommended. © 2017 Wiley Periodicals, Inc.
Regression Analysis of Mixed Recurrent-Event and Panel-Count Data with Additive Rate Models
Zhu, Liang; Zhao, Hui; Sun, Jianguo; Leisenring, Wendy; Robison, Leslie L.
2015-01-01
Summary Event-history studies of recurrent events are often conducted in fields such as demography, epidemiology, medicine, and social sciences (Cook and Lawless, 2007; Zhao et al., 2011). For such analysis, two types of data have been extensively investigated: recurrent-event data and panel-count data. However, in practice, one may face a third type of data, mixed recurrent-event and panel-count data or mixed event-history data. Such data occur if some study subjects are monitored or observed continuously and thus provide recurrent-event data, while the others are observed only at discrete times and hence give only panel-count data. A more general situation is that each subject is observed continuously over certain time periods but only at discrete times over other time periods. There exists little literature on the analysis of such mixed data except that published by Zhu et al. (2013). In this paper, we consider the regression analysis of mixed data using the additive rate model and develop some estimating equation-based approaches to estimate the regression parameters of interest. Both finite sample and asymptotic properties of the resulting estimators are established, and the numerical studies suggest that the proposed methodology works well for practical situations. The approach is applied to a Childhood Cancer Survivor Study that motivated this study. PMID:25345405
Reinholz, Emilee L.; Roberts, Scott A.; Apblett, Christopher A.; ...
2016-06-11
The electrical conductivity is key to the performance of thermal battery cathodes. In this work we present the effects of manufacturing and processing conditions on the electrical conductivity of Li/FeS2 thermal battery cathodes. Finite element simulations were used to compute the conductivity of three-dimensional microcomputed tomography cathode microstructures and compare results to experimental impedance spectroscopy measurements. A regression analysis reveals a predictive relationship between composition, processing conditions, and electrical conductivity; a trend which is largely erased after thermally-induced deformation. Moreover, the trend applies to both experimental and simulation results, although is not as apparent in simulations. This research is amore » step toward a more fundamental understanding of the effects of processing and composition on thermal battery component microstructure, properties, and performance.« less
Hu, Hongwei; Gao, Jiamin; Jiang, Haochen; Jiang, Haixia; Guo, Shaoyun; Chen, Kun; Jin, Kaili; Qi, Yingying
2018-04-01
This study aims to estimate the prevalence of behavioral problems among left-behind children, migrant children and local children in China, and to compare the risks of behavioral problems among the three types of children. Data on 4479 children aged 6-16 used in this study were from a survey conducted in China in 2017. The school-age version of the Children Behavior Checklist was used to measure children's behavioral problems. Descriptive analysis, correlation analysis, and logistic regressions were conducted. The prevalence of behavioral problems was 18.80% and 13.59% for left-behind children and migrant children, respectively, both of which were higher than that of local children. Logistic regression analysis showed that after adjustments for individual and environmental variables, the likelihood of total, internalizing and externalizing behavior problems for left-behind children and migrant children were higher than those for local children; left-behind children had a higher likelihood of internalizing problems than externalizing problems, while migrant children had a higher prevalence of externalizing problems. Left-behind children had a higher prevalence of each specific syndrome than migrant and local children. Both individual and environmental factors were associated with child behavioral problems, and family migration may contribute to the increased risks. Left-behind and migrant children were more vulnerable than local children to behavioral problems.
Hu, Hongwei; Gao, Jiamin; Jiang, Haochen; Jiang, Haixia; Guo, Shaoyun; Chen, Kun; Jin, Kaili; Qi, Yingying
2018-01-01
This study aims to estimate the prevalence of behavioral problems among left-behind children, migrant children and local children in China, and to compare the risks of behavioral problems among the three types of children. Data on 4479 children aged 6–16 used in this study were from a survey conducted in China in 2017. The school-age version of the Children Behavior Checklist was used to measure children’s behavioral problems. Descriptive analysis, correlation analysis, and logistic regressions were conducted. The prevalence of behavioral problems was 18.80% and 13.59% for left-behind children and migrant children, respectively, both of which were higher than that of local children. Logistic regression analysis showed that after adjustments for individual and environmental variables, the likelihood of total, internalizing and externalizing behavior problems for left-behind children and migrant children were higher than those for local children; left-behind children had a higher likelihood of internalizing problems than externalizing problems, while migrant children had a higher prevalence of externalizing problems. Left-behind children had a higher prevalence of each specific syndrome than migrant and local children. Both individual and environmental factors were associated with child behavioral problems, and family migration may contribute to the increased risks. Left-behind and migrant children were more vulnerable than local children to behavioral problems. PMID:29614783
Tan, Ge; Yuan, Ruozhen; Wei, ChenChen; Xu, Mangmang; Liu, Ming
2018-05-26
Association between serum calcium and magnesium versus hemorrhagic transformation (HT) remains to be identified. A total of 1212 non-thrombolysis patients with serum calcium and magnesium collected within 24 h from stroke onset were enrolled. Backward stepwise multivariate logistic regression analysis was conducted to investigate association between calcium and magnesium versus HT. Calcium and magnesium were entered into logistic regression analysis in two models, separately: model 1, as continuous variable (per 1-mmol/L increase), and model 2, as four-categorized variable (being collapsed into quartiles). HT occurred in 140 patients (11.6%). Serum calcium was slightly lower in patients with HT than in patient without HT (P = 0.273). But serum magnesium was significantly lower in patients with HT than in patients without HT (P = 0.007). In logistic regression analysis, calcium displayed no association with HT. Magnesium, as either continuous or four-categorized variable, was independently and inversely associated with HT in stroke overall and stroke of large-artery atherosclerosis (LAA). The results demonstrated that serum calcium had no association with HT in patients without thrombolysis after acute ischemic stroke. Serum magnesium in low level was independently associated with increasing HT in stroke overall and particularly in stroke of LAA.
Application of Regression-Discontinuity Analysis in Pharmaceutical Health Services Research
Zuckerman, Ilene H; Lee, Euni; Wutoh, Anthony K; Xue, Zhenyi; Stuart, Bruce
2006-01-01
Objective To demonstrate how a relatively underused design, regression-discontinuity (RD), can provide robust estimates of intervention effects when stronger designs are impossible to implement. Data Sources/Study Setting Administrative claims from a Mid-Atlantic state Medicaid program were used to evaluate the effectiveness of an educational drug utilization review intervention. Study Design Quasi-experimental design. Data Collection/Extraction Methods A drug utilization review study was conducted to evaluate a letter intervention to physicians treating Medicaid children with potentially excessive use of short-acting β2-agonist inhalers (SAB). The outcome measure is change in seasonally-adjusted SAB use 5 months pre- and postintervention. To determine if the intervention reduced monthly SAB utilization, results from an RD analysis are compared to findings from a pretest–posttest design using repeated-measure ANOVA. Principal Findings Both analyses indicated that the intervention significantly reduced SAB use among the high users. Average monthly SAB use declined by 0.9 canisters per month (p<.001) according to the repeated-measure ANOVA and by 0.2 canisters per month (p<.001) from RD analysis. Conclusions Regression-discontinuity design is a useful quasi-experimental methodology that has significant advantages in internal validity compared to other pre–post designs when assessing interventions in which subjects' assignment is based on cutoff scores for a critical variable. PMID:16584464
NASA Astrophysics Data System (ADS)
POP, A. B.; ȚÎȚU, M. A.
2016-11-01
In the metal cutting process, surface quality is intrinsically related to the cutting parameters and to the cutting tool geometry. At the same time, metal cutting processes are closely related to the machining costs. The purpose of this paper is to reduce manufacturing costs and processing time. A study was made, based on the mathematical modelling of the average of the absolute value deviation (Ra) resulting from the end milling process on 7136 aluminium alloy, depending on cutting process parameters. The novel element brought by this paper is the 7136 aluminium alloy type, chosen to conduct the experiments, which is a material developed and patented by Universal Alloy Corporation. This aluminium alloy is used in the aircraft industry to make parts from extruded profiles, and it has not been studied for the proposed research direction. Based on this research, a mathematical model of surface roughness Ra was established according to the cutting parameters studied in a set experimental field. A regression analysis was performed, which identified the quantitative relationships between cutting parameters and the surface roughness. Using the variance analysis ANOVA, the degree of confidence for the achieved results by the regression equation was determined, and the suitability of this equation at every point of the experimental field.
ERIC Educational Resources Information Center
Ainsworth, Martha; And Others
This paper examines the relationship between female schooling and two behaviors--cumulative fertility and contraceptive use--in 14 Sub-Saharan African countries where Demographic and Health Surveys (DHS) have been conducted since the mid-1980s. Using multivariate regression analysis, the paper compares the effect of schooling across countries, in…
ERIC Educational Resources Information Center
Cebeci, Halil Ibrahim; Yazgan, Harun Resit; Geyik, Abdulkadir
2009-01-01
This study explores the relationship between the student performance and instructional design. The research was conducted at the E-Learning School at a university in Turkey. A list of design factors that had potential influence on student success was created through a review of the literature and interviews with relevant experts. From this, the…
Predicting Hospital Admissions With Poisson Regression Analysis
2009-06-01
East and Four West. Four East is where bariatric , general, neurologic, otolaryngology (ENT), ophthalmologic, orthopedic, and plastic surgery ...where care is provided for cardiovascular, thoracic, and vascular surgery patients. Figure 1 shows a bar graph for each unit, giving the proportion of...provided at NMCSD, or a study could be conducted on the amount of time that patients generally wait for elective surgeries . There is also the
Study of Personnel Attrition and Revocation within U.S. Marine Corps Air Traffic Control Specialties
2012-03-01
Entrance Processing Stations (MEPS) and recruit depots, to include non-cognitive testing, such as Navy Computer Adaptive Personality Scales ( NCAPS ...Revocation, Selection, MOS, Regression, Probit, dProbit, STATA, Statistics, Marginal Effects, ASVAB, AFQT, Composite Scores, Screening, NCAPS 15. NUMBER...Navy Computer Adaptive Personality Scales ( NCAPS ), during recruitment. It is also recommended that an economic analysis be conducted comparing the
Presence and absence of bats across habitat scales in the Upper Coastal Plain of South Carolina
W. Mark Ford; Jennifer M. Menzel; Michael A. Menzel; John W. Edwards; John C. Kilgo
2006-01-01
During 2001, we used active acoustical sampling (Anabat II) to survey foraging habitat relationships of bats on the Savannah River Site (SRS) in the upper Coastal Plain of South Carolina. Using an a priori information-theoretic approach, we conducted logistic regression analysis to examine presence of individual bat species relative to a suite of microhabitat, stand,...
Research and absence of bats across habitat scales in the upper coastal plain of South Carolina
W. Mark Ford; Jennifer M. Menzel; Michael A. Menzel; John W. Edwards; John C. Kilgo
2006-01-01
During 2001, we used active acoustical sampling (Anabat 11) to survey foraging habitat relationships of bats on the Savannah River Site (SRS) in the upper Coastal Plain of South Carolina. Using an a priori information-theoretic approach, we conducted logistic regression analysis to examine presence of individual bat species relative to a suite of microhabitat, stand,...
Prediction of anthropometric foot characteristics in children.
Morrison, Stewart C; Durward, Brian R; Watt, Gordon F; Donaldson, Malcolm D C
2009-01-01
The establishment of growth reference values is needed in pediatric practice where pathologic conditions can have a detrimental effect on the growth and development of the pediatric foot. This study aims to use multiple regression to evaluate the effects of multiple predictor variables (height, age, body mass, and gender) on anthropometric characteristics of the peripubescent foot. Two hundred children aged 9 to 12 years were recruited, and three anthropometric measurements of the pediatric foot were recorded (foot length, forefoot width, and navicular height). Multiple regression analysis was conducted, and coefficients for gender, height, and body mass all had significant relationships for the prediction of forefoot width and foot length (P < or = .05, r > or = 0.7). The coefficients for gender and body mass were not significant for the prediction of navicular height (P > or = .05), whereas height was (P < or = .05). Normative growth reference values and prognostic regression equations are presented for the peripubescent foot.
NASA Astrophysics Data System (ADS)
Lee, Jangho; Kim, Kwang-Yul
2018-02-01
CSEOF analysis is applied for the springtime (March, April, May) daily PM10 concentrations measured at 23 Ministry of Environment stations in Seoul, Korea for the period of 2003-2012. Six meteorological variables at 12 pressure levels are also acquired from the ERA Interim reanalysis datasets. CSEOF analysis is conducted for each meteorological variable over East Asia. Regression analysis is conducted in CSEOF space between the PM10 concentrations and individual meteorological variables to identify associated atmospheric conditions for each CSEOF mode. By adding the regressed loading vectors with the mean meteorological fields, the daily atmospheric conditions are obtained for the first five CSEOF modes. Then, HYSPLIT model is run with the atmospheric conditions for each CSEOF mode in order to back trace the air parcels and dust reaching Seoul. The K-means clustering algorithm is applied to identify major source regions for each CSEOF mode of the PM10 concentrations in Seoul. Three main source regions identified based on the mean fields are: (1) northern Taklamakan Desert (NTD), (2) Gobi Desert and (GD), and (3) East China industrial area (ECI). The main source regions for the mean meteorological fields are consistent with those of previous study; 41% of the source locations are located in GD followed by ECI (37%) and NTD (21%). Back trajectory calculations based on CSEOF analysis of meteorological variables identify distinct source characteristics associated with each CSEOF mode and greatly facilitate the interpretation of the PM10 variability in Seoul in terms of transportation route and meteorological conditions including the source area.
Chen, Ling; Feng, Yanqin; Sun, Jianguo
2017-10-01
This paper discusses regression analysis of clustered failure time data, which occur when the failure times of interest are collected from clusters. In particular, we consider the situation where the correlated failure times of interest may be related to cluster sizes. For inference, we present two estimation procedures, the weighted estimating equation-based method and the within-cluster resampling-based method, when the correlated failure times of interest arise from a class of additive transformation models. The former makes use of the inverse of cluster sizes as weights in the estimating equations, while the latter can be easily implemented by using the existing software packages for right-censored failure time data. An extensive simulation study is conducted and indicates that the proposed approaches work well in both the situations with and without informative cluster size. They are applied to a dental study that motivated this study.
Correlates of Protective Motivation Theory (PMT) to Adolescents’ Drug Use Intention
Wu, Cynthia Sau Ting; Wong, Ho Ting; Chou, Lai Yan; To, Bobby Pak Wai; Lee, Wai Lok; Loke, Alice Yuen
2014-01-01
Early onset and increasing proliferation of illicit adolescent drug-use poses a global health concern. This study aimed to examine the correlation between Protective Motivation Theory (PMT) measures and the intention to use drugs among adolescents. An exploratory quantitative correlation design and convenience sampling were adopted. A total of 318 students completed a self-reported questionnaire that solicited information related to their demographics and activities, measures of threat appraisal and coping appraisal, and the intention to use drugs. Logistic regression analysis showed that intrinsic and extrinsic rewards were significant predictors of intention. The odds ratios were equal to 2.90 (p < 0.05) and 8.04 (p < 0.001), respectively. The logistic regression model analysis resulted in a high Nagelkerke R2 of 0.49, which suggests that PMT related measures could be used in predicting drug use intention among adolescents. Further research should be conducted with non-school adolescents to confirm the application. PMID:24394215
Correlates of Protective Motivation Theory (PMT) to adolescents' drug use intention.
Wu, Cynthia Sau Ting; Wong, Ho Ting; Chou, Lai Yan; To, Bobby Pak Wai; Lee, Wai Lok; Loke, Alice Yuen
2014-01-03
Early onset and increasing proliferation of illicit adolescent drug-use poses a global health concern. This study aimed to examine the correlation between Protective Motivation Theory (PMT) measures and the intention to use drugs among adolescents. An exploratory quantitative correlation design and convenience sampling were adopted. A total of 318 students completed a self-reported questionnaire that solicited information related to their demographics and activities, measures of threat appraisal and coping appraisal, and the intention to use drugs. Logistic regression analysis showed that intrinsic and extrinsic rewards were significant predictors of intention. The odds ratios were equal to 2.90 (p < 0.05) and 8.04 (p < 0.001), respectively. The logistic regression model analysis resulted in a high Nagelkerke R2 of 0.49, which suggests that PMT related measures could be used in predicting drug use intention among adolescents. Further research should be conducted with non-school adolescents to confirm the application.
NASA Astrophysics Data System (ADS)
George, Anna Ray Bayless
A study was conducted to determine the relationship between the credentials held by science teachers who taught at a school that administered the Science Texas Assessment on Knowledge and Skills (Science TAKS), the state standardized exam in science, at grade 11 and student performance on a state standardized exam in science administered in grade 11. Years of teaching experience, teacher certification type(s), highest degree level held, teacher and school demographic information, and the percentage of students who met the passing standard on the Science TAKS were obtained through a public records request to the Texas Education Agency (TEA) and the State Board for Educator Certification (SBEC). Analysis was performed through the use of canonical correlation analysis and multiple linear regression analysis. The results of the multiple linear regression analysis indicate that a larger percentage of students met the passing standard on the Science TAKS state attended schools in which a large portion of the high school science teachers held post baccalaureate degrees, elementary and physical science certifications, and had 11-20 years of teaching experience.
Wu, Ping-An; Li, Yun-Liang; Wu, Han-Jiang; Wang, Kai; Fan, Guo-Zheng
2007-09-01
To investigate the relationship between muscle segment homeobox gene-1 (MSX1) and the genetic susceptibility of nonsyndromic cleft lip and palate (NSCLP) in Hunan Hans. One microsatellite DNA marker CA repeat in MSX1 intron region was used as genetic marker. The genotypes of 387 members in 129 NSCLP nuclear family trios were analyzed by polymerase chain reaction (PCR) and denaturing polyacrylamide gel electrophoresis. Then transmission disequilibrium test (TDT) and Logistic regression analysis were used to conduct association analysis. TDT analysis confirmed that CA4 allele in CL/P and CPO groups preferentially transmitted to the affected offspring (P = 0.018, P = 0.041). Logistic regression analysis indicated that the recessive model of inheritance was supported, and CA4 itself or CA4 acting as a marker for a disease allele or haplotype was inherited in a recessive fashion (P = 0.009). MSX1 gene is associated with NSCLP, and MSX1 gene may be directly involved either in the etiology of NSCLP or in linkage disequilibrium with disease-predisposing sites.
Regression analysis of mixed recurrent-event and panel-count data with additive rate models.
Zhu, Liang; Zhao, Hui; Sun, Jianguo; Leisenring, Wendy; Robison, Leslie L
2015-03-01
Event-history studies of recurrent events are often conducted in fields such as demography, epidemiology, medicine, and social sciences (Cook and Lawless, 2007, The Statistical Analysis of Recurrent Events. New York: Springer-Verlag; Zhao et al., 2011, Test 20, 1-42). For such analysis, two types of data have been extensively investigated: recurrent-event data and panel-count data. However, in practice, one may face a third type of data, mixed recurrent-event and panel-count data or mixed event-history data. Such data occur if some study subjects are monitored or observed continuously and thus provide recurrent-event data, while the others are observed only at discrete times and hence give only panel-count data. A more general situation is that each subject is observed continuously over certain time periods but only at discrete times over other time periods. There exists little literature on the analysis of such mixed data except that published by Zhu et al. (2013, Statistics in Medicine 32, 1954-1963). In this article, we consider the regression analysis of mixed data using the additive rate model and develop some estimating equation-based approaches to estimate the regression parameters of interest. Both finite sample and asymptotic properties of the resulting estimators are established, and the numerical studies suggest that the proposed methodology works well for practical situations. The approach is applied to a Childhood Cancer Survivor Study that motivated this study. © 2014, The International Biometric Society.
Hassan, A K
2015-01-01
In this work, O/W emulsion sets were prepared by using different concentrations of two nonionic surfactants. The two surfactants, tween 80(HLB=15.0) and span 80(HLB=4.3) were used in a fixed proportions equal to 0.55:0.45 respectively. HLB value of the surfactants blends were fixed at 10.185. The surfactants blend concentration is starting from 3% up to 19%. For each O/W emulsion set the conductivity was measured at room temperature (25±2°), 40, 50, 60, 70 and 80°. Applying the simple linear regression least squares method statistical analysis to the temperature-conductivity obtained data determines the effective surfactants blend concentration required for preparing the most stable O/W emulsion. These results were confirmed by applying the physical stability centrifugation testing and the phase inversion temperature range measurements. The results indicated that, the relation which represents the most stable O/W emulsion has the strongest direct linear relationship between temperature and conductivity. This relationship is linear up to 80°. This work proves that, the most stable O/W emulsion is determined via the determination of the maximum R² value by applying of the simple linear regression least squares method to the temperature-conductivity obtained data up to 80°, in addition to, the true maximum slope is represented by the equation which has the maximum R² value. Because the conditions would be changed in a more complex formulation, the method of the determination of the effective surfactants blend concentration was verified by applying it for more complex formulations of 2% O/W miconazole nitrate cream and the results indicate its reproducibility.
Kim, J; Nagano, Y; Furumai, H
2012-01-01
Easy-to-measure surrogate parameters for water quality indicators are needed for real time monitoring as well as for generating data for model calibration and validation. In this study, a novel linear regression model for estimating total nitrogen (TN) based on two surrogate parameters is proposed based on evaluation of pollutant loads flowing into a eutrophic lake. Based on their runoff characteristics during wet weather, electric conductivity (EC) and turbidity were selected as surrogates for particulate nitrogen (PN) and dissolved nitrogen (DN), respectively. Strong linear relationships were established between PN and turbidity and DN and EC, and both models subsequently combined for estimation of TN. This model was evaluated by comparison of estimated and observed TN runoff loads during rainfall events. This analysis showed that turbidity and EC are viable surrogates for PN and DN, respectively, and that the linear regression model for TN concentration was successful in estimating TN runoff loads during rainfall events and also under dry weather conditions.
Variable Selection for Regression Models of Percentile Flows
NASA Astrophysics Data System (ADS)
Fouad, G.
2017-12-01
Percentile flows describe the flow magnitude equaled or exceeded for a given percent of time, and are widely used in water resource management. However, these statistics are normally unavailable since most basins are ungauged. Percentile flows of ungauged basins are often predicted using regression models based on readily observable basin characteristics, such as mean elevation. The number of these independent variables is too large to evaluate all possible models. A subset of models is typically evaluated using automatic procedures, like stepwise regression. This ignores a large variety of methods from the field of feature (variable) selection and physical understanding of percentile flows. A study of 918 basins in the United States was conducted to compare an automatic regression procedure to the following variable selection methods: (1) principal component analysis, (2) correlation analysis, (3) random forests, (4) genetic programming, (5) Bayesian networks, and (6) physical understanding. The automatic regression procedure only performed better than principal component analysis. Poor performance of the regression procedure was due to a commonly used filter for multicollinearity, which rejected the strongest models because they had cross-correlated independent variables. Multicollinearity did not decrease model performance in validation because of a representative set of calibration basins. Variable selection methods based strictly on predictive power (numbers 2-5 from above) performed similarly, likely indicating a limit to the predictive power of the variables. Similar performance was also reached using variables selected based on physical understanding, a finding that substantiates recent calls to emphasize physical understanding in modeling for predictions in ungauged basins. The strongest variables highlighted the importance of geology and land cover, whereas widely used topographic variables were the weakest predictors. Variables suffered from a high degree of multicollinearity, possibly illustrating the co-evolution of climatic and physiographic conditions. Given the ineffectiveness of many variables used here, future work should develop new variables that target specific processes associated with percentile flows.
Sperm Retrieval in Patients with Klinefelter Syndrome: A Skewed Regression Model Analysis.
Chehrazi, Mohammad; Rahimiforoushani, Abbas; Sabbaghian, Marjan; Nourijelyani, Keramat; Sadighi Gilani, Mohammad Ali; Hoseini, Mostafa; Vesali, Samira; Yaseri, Mehdi; Alizadeh, Ahad; Mohammad, Kazem; Samani, Reza Omani
2017-01-01
The most common chromosomal abnormality due to non-obstructive azoospermia (NOA) is Klinefelter syndrome (KS) which occurs in 1-1.72 out of 500-1000 male infants. The probability of retrieving sperm as the outcome could be asymmetrically different between patients with and without KS, therefore logistic regression analysis is not a well-qualified test for this type of data. This study has been designed to evaluate skewed regression model analysis for data collected from microsurgical testicular sperm extraction (micro-TESE) among azoospermic patients with and without non-mosaic KS syndrome. This cohort study compared the micro-TESE outcome between 134 men with classic KS and 537 men with NOA and normal karyotype who were referred to Royan Institute between 2009 and 2011. In addition to our main outcome, which was sperm retrieval, we also used logistic and skewed regression analyses to compare the following demographic and hormonal factors: age, level of follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone between the two groups. A comparison of the micro-TESE between the KS and control groups showed a success rate of 28.4% (38/134) for the KS group and 22.2% (119/537) for the control group. In the KS group, a significantly difference (P<0.001) existed between testosterone levels for the successful sperm retrieval group (3.4 ± 0.48 mg/mL) compared to the unsuccessful sperm retrieval group (2.33 ± 0.23 mg/mL). The index for quasi Akaike information criterion (QAIC) had a goodness of fit of 74 for the skewed model which was lower than logistic regression (QAIC=85). According to the results, skewed regression is more efficient in estimating sperm retrieval success when the data from patients with KS are analyzed. This finding should be investigated by conducting additional studies with different data structures.
2011-01-01
Background The majority of studies of the local food environment in relation to obesity risk have been conducted in the US, UK, and Australia. The evidence remains limited to western societies. The aim of this paper is to examine the association of local food environment to body mass index (BMI) in a study of older Japanese individuals. Methods The analysis was based on 12,595 respondents from cross-sectional data of the Aichi Gerontological Evaluation Study (AGES), conducted in 2006 and 2007. Using Geographic Information Systems (GIS), we mapped respondents' access to supermarkets, convenience stores, and fast food outlets, based on a street network (both the distance to the nearest stores and the number of stores within 500 m of the respondents' home). Multiple linear regression and logistic regression analyses were performed to examine the association between food environment and BMI. Results In contrast to previous reports, we found that better access to supermarkets was related to higher BMI. Better access to fast food outlets or convenience stores was also associated with higher BMI, but only among those living alone. The logistic regression analysis, using categorized BMI, showed that the access to supermarkets was only related to being overweight or obese, but not related to being underweight. Conclusions Our findings provide mixed support for the types of food environment measures previously used in western settings. Importantly, our results suggest the need to develop culture-specific approaches to characterizing neighborhood contexts when hypotheses are extrapolated across national borders. PMID:21777439
Binary logistic regression-Instrument for assessing museum indoor air impact on exhibits.
Bucur, Elena; Danet, Andrei Florin; Lehr, Carol Blaziu; Lehr, Elena; Nita-Lazar, Mihai
2017-04-01
This paper presents a new way to assess the environmental impact on historical artifacts using binary logistic regression. The prediction of the impact on the exhibits during certain pollution scenarios (environmental impact) was calculated by a mathematical model based on the binary logistic regression; it allows the identification of those environmental parameters from a multitude of possible parameters with a significant impact on exhibitions and ranks them according to their severity effect. Air quality (NO 2 , SO 2 , O 3 and PM 2.5 ) and microclimate parameters (temperature, humidity) monitoring data from a case study conducted within exhibition and storage spaces of the Romanian National Aviation Museum Bucharest have been used for developing and validating the binary logistic regression method and the mathematical model. The logistic regression analysis was used on 794 data combinations (715 to develop of the model and 79 to validate it) by a Statistical Package for Social Sciences (SPSS 20.0). The results from the binary logistic regression analysis demonstrated that from six parameters taken into consideration, four of them present a significant effect upon exhibits in the following order: O 3 >PM 2.5 >NO 2 >humidity followed at a significant distance by the effects of SO 2 and temperature. The mathematical model, developed in this study, correctly predicted 95.1 % of the cumulated effect of the environmental parameters upon the exhibits. Moreover, this model could also be used in the decisional process regarding the preventive preservation measures that should be implemented within the exhibition space. The paper presents a new way to assess the environmental impact on historical artifacts using binary logistic regression. The mathematical model developed on the environmental parameters analyzed by the binary logistic regression method could be useful in a decision-making process establishing the best measures for pollution reduction and preventive preservation of exhibits.
Multiple imputation for cure rate quantile regression with censored data.
Wu, Yuanshan; Yin, Guosheng
2017-03-01
The main challenge in the context of cure rate analysis is that one never knows whether censored subjects are cured or uncured, or whether they are susceptible or insusceptible to the event of interest. Considering the susceptible indicator as missing data, we propose a multiple imputation approach to cure rate quantile regression for censored data with a survival fraction. We develop an iterative algorithm to estimate the conditionally uncured probability for each subject. By utilizing this estimated probability and Bernoulli sample imputation, we can classify each subject as cured or uncured, and then employ the locally weighted method to estimate the quantile regression coefficients with only the uncured subjects. Repeating the imputation procedure multiple times and taking an average over the resultant estimators, we obtain consistent estimators for the quantile regression coefficients. Our approach relaxes the usual global linearity assumption, so that we can apply quantile regression to any particular quantile of interest. We establish asymptotic properties for the proposed estimators, including both consistency and asymptotic normality. We conduct simulation studies to assess the finite-sample performance of the proposed multiple imputation method and apply it to a lung cancer study as an illustration. © 2016, The International Biometric Society.
ERT to aid in WSN based early warning system for landslides
NASA Astrophysics Data System (ADS)
T, H.
2017-12-01
Amrita University's landslide monitoring and early warning system using Wireless Sensor Networks (WSN) consists of heterogeneous sensors like rain gauge, moisture sensor, piezometer, geophone, inclinometer, tilt meter etc. The information from the sensors are accurate and limited to that point. In order to monitor a large area, ERT can be used in conjunction with WSN technology. To accomplish the feasibility of ERT in landslide early warning along with WSN technology, we have conducted experiments in Amrita's landslide laboratory setup. The experiment was aimed to simulate landslide, and monitor the changes happening in the soil using moisture sensor and ERT. Simulating moisture values from resistivity measurements to a greater accuracy can help in landslide monitoring for large areas. For accomplishing the same we have adapted two mathematical approaches, 1) Regression analysis between resistivity measurements and actual moisture values from moisture sensor, and 2) Using Waxman Smith model to simulate moisture values from resistivity measurements. The simulated moisture values from Waxman Smith model is compared with the actual moisture values and the Mean Square Error (MSE) is found to be 46.33. Regression curve is drawn for the resistivity vs simulated moisture values from Waxman model, and it is compared with the regression curve of actual model, which is shown in figure-1. From figure-1, it is clear that there the regression curve from actual moisture values and the regression curve from simulated moisture values, follow the similar pattern and there is a small difference between them. Moisture values can be simulated to a greater accuracy using actual regression equation, but the limitation is that, regression curves will differ for different sites and different soils. Regression equation from actual moisture values can be used, if we have conducted experiment in the laboratory for a particular soil sample, otherwise with the knowledge of soil properties, Waxman model can be used to simulate moisture values. The promising results assure that, ERT measurements when used in conjunction with WSN technique, vital paramters triggering landslides like moisture can be simulated for a large area, which will help in providing early warning for large areas.
2016-01-01
This review aimed to arrange the process of a systematic review of genome-wide association studies in order to practice and apply a genome-wide meta-analysis (GWMA). The process has a series of five steps: searching and selection, extraction of related information, evaluation of validity, meta-analysis by type of genetic model, and evaluation of heterogeneity. In contrast to intervention meta-analyses, GWMA has to evaluate the Hardy–Weinberg equilibrium (HWE) in the third step and conduct meta-analyses by five potential genetic models, including dominant, recessive, homozygote contrast, heterozygote contrast, and allelic contrast in the fourth step. The ‘genhwcci’ and ‘metan’ commands of STATA software evaluate the HWE and calculate a summary effect size, respectively. A meta-regression using the ‘metareg’ command of STATA should be conducted to evaluate related factors of heterogeneities. PMID:28092928
NASA Astrophysics Data System (ADS)
Goovaerts, Pierre
2013-06-01
Analyzing temporal trends in health outcomes can provide a more comprehensive picture of the burden of a disease like cancer and generate new insights about the impact of various interventions. In the United States such an analysis is increasingly conducted using joinpoint regression outside a spatial framework, which overlooks the existence of significant variation among U.S. counties and states with regard to the incidence of cancer. This paper presents several innovative ways to account for space in joinpoint regression: (1) prior filtering of noise in the data by binomial kriging and use of the kriging variance as measure of reliability in weighted least-square regression, (2) detection of significant boundaries between adjacent counties based on tests of parallelism of time trends and confidence intervals of annual percent change of rates, and (3) creation of spatially compact groups of counties with similar temporal trends through the application of hierarchical cluster analysis to the results of boundary analysis. The approach is illustrated using time series of proportions of prostate cancer late-stage cases diagnosed yearly in every county of Florida since 1980s. The annual percent change (APC) in late-stage diagnosis and the onset years for significant declines vary greatly across Florida. Most counties with non-significant average APC are located in the north-western part of Florida, known as the Panhandle, which is more rural than other parts of Florida. The number of significant boundaries peaked in the early 1990s when prostate-specific antigen (PSA) test became widely available, a temporal trend that suggests the existence of geographical disparities in the implementation and/or impact of the new screening procedure, in particular as it began available.
Yusuf, O B; Bamgboye, E A; Afolabi, R F; Shodimu, M A
2014-09-01
Logistic regression model is widely used in health research for description and predictive purposes. Unfortunately, most researchers are sometimes not aware that the underlying principles of the techniques have failed when the algorithm for maximum likelihood does not converge. Young researchers particularly postgraduate students may not know why separation problem whether quasi or complete occurs, how to identify it and how to fix it. This study was designed to critically evaluate convergence issues in articles that employed logistic regression analysis published in an African Journal of Medicine and medical sciences between 2004 and 2013. Problems of quasi or complete separation were described and were illustrated with the National Demographic and Health Survey dataset. A critical evaluation of articles that employed logistic regression was conducted. A total of 581 articles was reviewed, of which 40 (6.9%) used binary logistic regression. Twenty-four (60.0%) stated the use of logistic regression model in the methodology while none of the articles assessed model fit. Only 3 (12.5%) properly described the procedures. Of the 40 that used the logistic regression model, the problem of convergence occurred in 6 (15.0%) of the articles. Logistic regression tends to be poorly reported in studies published between 2004 and 2013. Our findings showed that the procedure may not be well understood by researchers since very few described the process in their reports and may be totally unaware of the problem of convergence or how to deal with it.
NASA Astrophysics Data System (ADS)
Stigter, T. Y.; Ribeiro, L.; Dill, A. M. M. Carvalho
2008-07-01
SummaryFactorial regression models, based on correspondence analysis, are built to explain the high nitrate concentrations in groundwater beneath an agricultural area in the south of Portugal, exceeding 300 mg/l, as a function of chemical variables, electrical conductivity (EC), land use and hydrogeological setting. Two important advantages of the proposed methodology are that qualitative parameters can be involved in the regression analysis and that multicollinearity is avoided. Regression is performed on eigenvectors extracted from the data similarity matrix, the first of which clearly reveals the impact of agricultural practices and hydrogeological setting on the groundwater chemistry of the study area. Significant correlation exists between response variable NO3- and explanatory variables Ca 2+, Cl -, SO42-, depth to water, aquifer media and land use. Substituting Cl - by the EC results in the most accurate regression model for nitrate, when disregarding the four largest outliers (model A). When built solely on land use and hydrogeological setting, the regression model (model B) is less accurate but more interesting from a practical viewpoint, as it is based on easily obtainable data and can be used to predict nitrate concentrations in groundwater in other areas with similar conditions. This is particularly useful for conservative contaminants, where risk and vulnerability assessment methods, based on assumed rather than established correlations, generally produce erroneous results. Another purpose of the models can be to predict the future evolution of nitrate concentrations under influence of changes in land use or fertilization practices, which occur in compliance with policies such as the Nitrates Directive. Model B predicts a 40% decrease in nitrate concentrations in groundwater of the study area, when horticulture is replaced by other land use with much lower fertilization and irrigation rates.
Choe, Jee-Hwan; Choi, Mi-Hee; Rhee, Min-Suk; Kim, Byoung-Chul
2016-01-01
This study investigated the degree to which instrumental measurements explain the variation in pork loin tenderness as assessed by the sensory evaluation of trained panelists. Warner-Bratzler shear force (WBS) had a significant relationship with the sensory tenderness variables, such as softness, initial tenderness, chewiness, and rate of breakdown. In a regression analysis, WBS could account variations in these sensory variables, though only to a limited proportion of variation. On the other hand, three parameters from texture profile analysis (TPA)—hardness, gumminess, and chewiness—were significantly correlated with all sensory evaluation variables. In particular, from the result of stepwise regression analysis, TPA hardness alone explained over 15% of variation in all sensory evaluation variables, with the exception of perceptible residue. Based on these results, TPA analysis was found to be better than WBS measurement, with the TPA parameter hardness likely to prove particularly useful, in terms of predicting pork loin tenderness as rated by trained panelists. However, sensory evaluation should be conducted to investigate practical pork tenderness perceived by consumer, because both instrumental measurements could explain only a small portion (less than 20%) of the variability in sensory evaluation. PMID:26954174
Liu, Hui-lin; Wan, Xia; Yang, Gong-huan
2013-02-01
To explore the relationship between the strength of tobacco control and the effectiveness of creating smoke-free hospital, and summarize the main factors that affect the program of creating smoke-free hospitals. A total of 210 hospitals from 7 provinces/municipalities directly under the central government were enrolled in this study using stratified random sampling method. Principle component analysis and regression analysis were conducted to analyze the strength of tobacco control and the effectiveness of creating smoke-free hospitals. Two principal components were extracted in the strength of tobacco control index, which respectively reflected the tobacco control policies and efforts, and the willingness and leadership of hospital managers regarding tobacco control. The regression analysis indicated that only the first principal component was significantly correlated with the progression in creating smoke-free hospital (P<0.001), i.e. hospitals with higher scores on the first principal component had better achievements in smoke-free environment creation. Tobacco control policies and efforts are critical in creating smoke-free hospitals. The principal component analysis provides a comprehensive and objective tool for evaluating the creation of smoke-free hospitals.
Choe, Jee-Hwan; Choi, Mi-Hee; Rhee, Min-Suk; Kim, Byoung-Chul
2016-07-01
This study investigated the degree to which instrumental measurements explain the variation in pork loin tenderness as assessed by the sensory evaluation of trained panelists. Warner-Bratzler shear force (WBS) had a significant relationship with the sensory tenderness variables, such as softness, initial tenderness, chewiness, and rate of breakdown. In a regression analysis, WBS could account variations in these sensory variables, though only to a limited proportion of variation. On the other hand, three parameters from texture profile analysis (TPA)-hardness, gumminess, and chewiness-were significantly correlated with all sensory evaluation variables. In particular, from the result of stepwise regression analysis, TPA hardness alone explained over 15% of variation in all sensory evaluation variables, with the exception of perceptible residue. Based on these results, TPA analysis was found to be better than WBS measurement, with the TPA parameter hardness likely to prove particularly useful, in terms of predicting pork loin tenderness as rated by trained panelists. However, sensory evaluation should be conducted to investigate practical pork tenderness perceived by consumer, because both instrumental measurements could explain only a small portion (less than 20%) of the variability in sensory evaluation.
Adelian, R; Jamali, J; Zare, N; Ayatollahi, S M T; Pooladfar, G R; Roustaei, N
2015-01-01
Identification of the prognostic factors for survival in patients with liver transplantation is challengeable. Various methods of survival analysis have provided different, sometimes contradictory, results from the same data. To compare Cox's regression model with parametric models for determining the independent factors for predicting adults' and pediatrics' survival after liver transplantation. This study was conducted on 183 pediatric patients and 346 adults underwent liver transplantation in Namazi Hospital, Shiraz, southern Iran. The study population included all patients undergoing liver transplantation from 2000 to 2012. The prognostic factors sex, age, Child class, initial diagnosis of the liver disease, PELD/MELD score, and pre-operative laboratory markers were selected for survival analysis. Among 529 patients, 346 (64.5%) were adult and 183 (34.6%) were pediatric cases. Overall, the lognormal distribution was the best-fitting model for adult and pediatric patients. Age in adults (HR=1.16, p<0.05) and weight (HR=2.68, p<0.01) and Child class B (HR=2.12, p<0.05) in pediatric patients were the most important factors for prediction of survival after liver transplantation. Adult patients younger than the mean age and pediatric patients weighing above the mean and Child class A (compared to those with classes B or C) had better survival. Parametric regression model is a good alternative for the Cox's regression model.
[Associations between dormitory environment/other factors and sleep quality of medical students].
Zheng, Bang; Wang, Kailu; Pan, Ziqi; Li, Man; Pan, Yuting; Liu, Ting; Xu, Dan; Lyu, Jun
2016-03-01
To investigate the sleep quality and related factors among medical students in China, understand the association between dormitory environment and sleep quality, and provide evidence and recommendations for sleep hygiene intervention. A total of 555 undergraduate students were selected from a medical school of an university in Beijing through stratified-cluster random-sampling to conduct a questionnaire survey by using Chinese version of Pittsburgh Sleep Quality Index (PSQI) and self-designed questionnaire. Analyses were performed by using multiple logistic regression model as well as multilevel linear regression model. The prevalence of sleep disorder was 29.1%(149/512), and 39.1%(200/512) of the students reported that the sleep quality was influenced by dormitory environment. PSQI score was negatively correlated with self-reported rating of dormitory environment (γs=-0.310, P<0.001). Logistic regression analysis showed the related factors of sleep disorder included grade, sleep regularity, self-rated health status, pressures of school work and employment, as well as dormitory environment. RESULTS of multilevel regression analysis also indicated that perception on dormitory environment (individual level) was associated with sleep quality with the dormitory level random effects under control (b=-0.619, P<0.001). The prevalence of sleep disorder was high in medical students, which was associated with multiple factors. Dormitory environment should be taken into consideration when the interventions are taken to improve the sleep quality of students.
Comparison of Survival Models for Analyzing Prognostic Factors in Gastric Cancer Patients
Habibi, Danial; Rafiei, Mohammad; Chehrei, Ali; Shayan, Zahra; Tafaqodi, Soheil
2018-03-27
Objective: There are a number of models for determining risk factors for survival of patients with gastric cancer. This study was conducted to select the model showing the best fit with available data. Methods: Cox regression and parametric models (Exponential, Weibull, Gompertz, Log normal, Log logistic and Generalized Gamma) were utilized in unadjusted and adjusted forms to detect factors influencing mortality of patients. Comparisons were made with Akaike Information Criterion (AIC) by using STATA 13 and R 3.1.3 softwares. Results: The results of this study indicated that all parametric models outperform the Cox regression model. The Log normal, Log logistic and Generalized Gamma provided the best performance in terms of AIC values (179.2, 179.4 and 181.1, respectively). On unadjusted analysis, the results of the Cox regression and parametric models indicated stage, grade, largest diameter of metastatic nest, largest diameter of LM, number of involved lymph nodes and the largest ratio of metastatic nests to lymph nodes, to be variables influencing the survival of patients with gastric cancer. On adjusted analysis, according to the best model (log normal), grade was found as the significant variable. Conclusion: The results suggested that all parametric models outperform the Cox model. The log normal model provides the best fit and is a good substitute for Cox regression. Creative Commons Attribution License
Supporting Regularized Logistic Regression Privately and Efficiently.
Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei
2016-01-01
As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc.
Ahmed, Sharmina; Makrides, Maria; Sim, Nicholas; McPhee, Andy; Quinlivan, Julie; Gibson, Robert; Umberger, Wendy
2015-12-01
Recent research emphasized the nutritional benefits of omega-3 long chain polyunsaturated fatty acids (LCPUFAs) during pregnancy. Based on a double-blind randomised controlled trial named "DHA to Optimize Mother and Infant Outcome" (DOMInO), we examined how omega 3 DHA supplementation during pregnancy may affect pregnancy related in-patient hospital costs. We conducted an econometric analysis based on ordinary least square and quantile regressions with bootstrapped standard errors. Using these approaches, we also examined whether smoking, drinking, maternal age and BMI could influence the effect of DHA supplementation during pregnancy on hospital costs. Our regressions showed that in-patient hospital costs could decrease by AUD92 (P<0.05) on average per singleton pregnancy when DHA supplements were consumed during pregnancy. Our regression results also showed that the cost savings to the Australian public hospital system could be between AUD15 - AUD51 million / year. Given that a simple intervention like DHA-rich fish-oil supplementation could generate savings to the public, it may be worthwhile from a policy perspective to encourage DHA supplementation among pregnant women. Copyright © 2015 Elsevier Ltd. All rights reserved.
Supporting Regularized Logistic Regression Privately and Efficiently
Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei
2016-01-01
As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc. PMID:27271738
The influence of authentic leadership on safety climate in nursing.
Dirik, Hasan Fehmi; Seren Intepeler, Seyda
2017-07-01
This study analysed nurses' perceptions of authentic leadership and safety climate and examined the contribution of authentic leadership to the safety climate. It has been suggested and emphasised that authentic leadership should be used as a guidance to ensure quality care and the safety of patients and health-care personnel. This predictive study was conducted with 350 nurses in three Turkish hospitals. The data were collected using the Authentic Leadership Questionnaire and the Safety Climate Survey and analysed using hierarchical regression analysis. The mean authentic leadership perception and the safety climate scores of the nurses were 2.92 and 3.50, respectively. The percentage of problematic responses was found to be less than 10% for only four safety climate items. Hierarchical regression analysis revealed that authentic leadership significantly predicted the safety climate. Procedural and political improvements are required in terms of the safety climate in institutions, where the study was conducted, and authentic leadership increases positive perceptions of safety climate. Exhibiting the characteristics of authentic leadership, or improving them and reflecting them on to personnel can enhance the safety climate. Planning information sharing meetings to raise the personnel's awareness of safety climate and systemic improvements can contribute to creating safe care climates. © 2017 John Wiley & Sons Ltd.
Brown, Brandon; Wachowiak-Smolíková, Renata; Spence, Nicholas D.; Wachowiak, Mark P.; Walters, Dan F.
2016-01-01
Securing safe and adequate drinking water is an ongoing issue for many Canadian First Nations communities despite nearly 15 years of reports, studies, policy changes, financial commitments, and regulations. The federal drinking water evaluation scheme is narrowly scoped, ignoring community level social factors, which may play a role in access to safe water in First Nations. This research used the 2006 Aboriginal Affairs and Northern Development Canada First Nations Drinking Water System Risk Survey data and the Community Well-Being Index, including labour force, education, housing, and income, from the 2006 Census. Bivariate analysis was conducted using the Spearman’s correlation, Kendall’s tau correlation, and Pearson’s correlation. Multivariable analysis was conducted using an ordinal (proportional or cumulative odds) regression model. Results showed that the regression model was significant. Community socioeconomic indicators had no relationship with drinking water risk characterization in both the bivariate and multivariable models, with the sole exception of labour force, which had a significantly positive effect on drinking water risk rankings. Socioeconomic factors were not important in explaining access to safe drinking water in First Nations communities. Improvements in the quality of safe water data as well as an examination of other community processes are required to address this pressing policy issue. PMID:27157172
Brown, Brandon; Wachowiak-Smolíková, Renata; Spence, Nicholas D; Wachowiak, Mark P; Walters, Dan F
2016-09-01
Securing safe and adequate drinking water is an ongoing issue for many Canadian First Nations communities despite nearly 15 years of reports, studies, policy changes, financial commitments, and regulations. The federal drinking water evaluation scheme is narrowly scoped, ignoring community level social factors, which may play a role in access to safe water in First Nations. This research used the 2006 Aboriginal Affairs and Northern Development Canada First Nations Drinking Water System Risk Survey data and the Community Well-Being Index, including labour force, education, housing, and income, from the 2006 Census. Bivariate analysis was conducted using the Spearman's correlation, Kendall's tau correlation, and Pearson's correlation. Multivariable analysis was conducted using an ordinal (proportional or cumulative odds) regression model. Results showed that the regression model was significant. Community socioeconomic indicators had no relationship with drinking water risk characterization in both the bivariate and multivariable models, with the sole exception of labour force, which had a significantly positive effect on drinking water risk rankings. Socioeconomic factors were not important in explaining access to safe drinking water in First Nations communities. Improvements in the quality of safe water data as well as an examination of other community processes are required to address this pressing policy issue.
Principal component regression analysis with SPSS.
Liu, R X; Kuang, J; Gong, Q; Hou, X L
2003-06-01
The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.
Dietary consumption patterns and laryngeal cancer risk.
Vlastarakos, Petros V; Vassileiou, Andrianna; Delicha, Evie; Kikidis, Dimitrios; Protopapas, Dimosthenis; Nikolopoulos, Thomas P
2016-06-01
We conducted a case-control study to investigate the effect of diet on laryngeal carcinogenesis. Our study population was made up of 140 participants-70 patients with laryngeal cancer (LC) and 70 controls with a non-neoplastic condition that was unrelated to diet, smoking, or alcohol. A food-frequency questionnaire determined the mean consumption of 113 different items during the 3 years prior to symptom onset. Total energy intake and cooking mode were also noted. The relative risk, odds ratio (OR), and 95% confidence interval (CI) were estimated by multiple logistic regression analysis. We found that the total energy intake was significantly higher in the LC group (p < 0.001), and that the difference remained statistically significant after logistic regression analysis (p < 0.001; OR: 118.70). Notably, meat consumption was higher in the LC group (p < 0.001), and the difference remained significant after logistic regression analysis (p = 0.029; OR: 1.16). LC patients also consumed significantly more fried food (p = 0.036); this difference also remained significant in the logistic regression model (p = 0.026; OR: 5.45). The LC group also consumed significantly more seafood (p = 0.012); the difference persisted after logistic regression analysis (p = 0.009; OR: 2.48), with the consumption of shrimp proving detrimental (p = 0.049; OR: 2.18). Finally, the intake of zinc was significantly higher in the LC group before and after logistic regression analysis (p = 0.034 and p = 0.011; OR: 30.15, respectively). Cereal consumption (including pastas) was also higher among the LC patients (p = 0.043), with logistic regression analysis showing that their negative effect was possibly associated with the sauces and dressings that traditionally accompany pasta dishes (p = 0.006; OR: 4.78). Conversely, a higher consumption of dairy products was found in controls (p < 0.05); logistic regression analysis showed that calcium appeared to be protective at the micronutrient level (p < 0.001; OR: 0.27). We found no difference in the overall consumption of fruits and vegetables between the LC patients and controls; however, the LC patients did have a greater consumption of cooked tomatoes and cooked root vegetables (p = 0.039 for both), and the controls had more consumption of leeks (p = 0.042) and, among controls younger than 65 years, cooked beans (p = 0.037). Lemon (p = 0.037), squeezed fruit juice (p = 0.032), and watermelon (p = 0.018) were also more frequently consumed by the controls. Other differences at the micronutrient level included greater consumption by the LC patients of retinol (p = 0.044), polyunsaturated fats (p = 0.041), and linoleic acid (p = 0.008); LC patients younger than 65 years also had greater intake of riboflavin (p = 0.045). We conclude that the differences in dietary consumption patterns between LC patients and controls indicate a possible role for lifestyle modifications involving nutritional factors as a means of decreasing the risk of laryngeal cancer.
Li, Liang; Wang, Yiying; Xu, Jiting; Flora, Joseph R V; Hoque, Shamia; Berge, Nicole D
2018-08-01
Hydrothermal carbonization (HTC) is a wet, low temperature thermal conversion process that continues to gain attention for the generation of hydrochar. The importance of specific process conditions and feedstock properties on hydrochar characteristics is not well understood. To evaluate this, linear and non-linear models were developed to describe hydrochar characteristics based on data collected from HTC-related literature. A Sobol analysis was subsequently conducted to identify parameters that most influence hydrochar characteristics. Results from this analysis indicate that for each investigated hydrochar property, the model fit and predictive capability associated with the random forest models is superior to both the linear and regression tree models. Based on results from the Sobol analysis, the feedstock properties and process conditions most influential on hydrochar yield, carbon content, and energy content were identified. In addition, a variational process parameter sensitivity analysis was conducted to determine how feedstock property importance changes with process conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Xie, Weixing; Jin, Daxiang; Ma, Hui; Ding, Jinyong; Xu, Jixi; Zhang, Shuncong; Liang, De
2016-05-01
The risk factors for cement leakage were retrospectively reviewed in 192 patients who underwent percutaneous vertebral augmentation (PVA). To discuss the factors related to the cement leakage in PVA procedure for the treatment of osteoporotic vertebral compression fractures. PVA is widely applied for the treatment of osteoporotic vertebral fractures. Cement leakage is a major complication of this procedure. The risk factors for cement leakage were controversial. A retrospective review of 192 patients who underwent PVA was conducted. The following data were recorded: age, sex, bone density, number of fractured vertebrae before surgery, number of treated vertebrae, severity of the treated vertebrae, operative approach, volume of injected bone cement, preoperative vertebral compression ratio, preoperative local kyphosis angle, intraosseous clefts, preoperative vertebral cortical bone defect, and ratio and type of cement leakage. To study the correlation between each factor and cement leakage ratio, bivariate regression analysis was employed to perform univariate analysis, whereas multivariate linear regression analysis was employed to perform multivariate analysis. The study included 192 patients (282 treated vertebrae), and cement leakage occurred in 100 vertebrae (35.46%). The vertebrae with preoperative cortical bone defects generally exhibited higher cement leakage ratio, and the leakage is typically type C. Vertebrae with intact cortical bones before the procedure tend to experience type S leakage. Univariate analysis showed that patient age, bone density, number of fractured vertebrae before surgery, and vertebral cortical bone were associated with cement leakage ratio (P<0.05). Multivariate analysis showed that the main factors influencing bone cement leakage are bone density and vertebral cortical bone defect, with standardized partial regression coefficients of -0.085 and 0.144, respectively. High bone density and vertebral cortical bone defect are independent risk factors associated with bone cement leakage.
The relationship between depressive symptoms among female workers and job stress and sleep quality.
Cho, Ho-Sung; Kim, Young-Wook; Park, Hyoung-Wook; Lee, Kang-Ho; Jeong, Baek-Geun; Kang, Yune-Sik; Park, Ki-Soo
2013-07-22
Recently, workers' mental health has become important focus in the field of occupational health management. Depression is a psychiatric illness with a high prevalence. The association between job stress and depressive symptoms has been demonstrated in many studies. Recently, studies about the association between sleep quality and depressive symptoms have been reported, but there has been no large-scaled study in Korean female workers. Therefore, this study was designed to investigate the relationship between job stress and sleep quality, and depressive symptoms in female workers. From Mar 2011 to Aug 2011, 4,833 female workers in the manufacturing, finance, and service fields at 16 workplaces in Yeungnam province participated in this study, conducted in combination with a worksite-based health checkup initiated by the National Health Insurance Service (NHIS). In this study, a questionnaire survey was carried out using the Korean Occupational Stress Scale-Short Form(KOSS-SF), Pittsburgh Sleep Quality Index(PSQI) and Center for Epidemiological Studies-Depression Scale(CES-D). The collected data was entered in the system and analyzed using the PASW (version 18.0) program. A correlation analysis, cross analysis, multivariate logistic regression analysis, and hierarchical multiple regression analysis were conducted. Among the 4,883 subjects, 978 subjects (20.0%) were in the depression group. Job stress(OR=3.58, 95% CI=3.06-4.21) and sleep quality(OR=3.81, 95% CI=3.18-4.56) were strongly associated with depressive symptoms. Hierarchical multiple regression analysis revealed that job stress displayed explanatory powers of 15.6% on depression while sleep quality displayed explanatory powers of 16.2%, showing that job stress and sleep quality had a closer relationship with depressive symptoms, compared to the other factors. The multivariate logistic regression analysis yielded odds ratios between the 7 subscales of job stress and depressive symptoms in the range of 1.30-2.72 and the odds ratio for the lack of reward was the highest(OR=2.72, 95% CI=2.32-3.19). In the partial correlation analysis between each of the 7 subscales of sleep quality (PSQI) and depressive symptoms, the correlation coefficient of subjective sleep quality and daytime dysfunction were 0.352 and 0.362, respectively. This study showed that the depressive symptoms of female workers are closely related to their job stress and sleep quality. In particular, the lack of reward and subjective sleep factors are the greatest contributors to depression. In the future, a large-scale study should be performed to augment the current study and to reflect all age groups in a balanced manner. The findings on job stress, sleep, and depression can be utilized as source data to establish standards for mental health management of the ever increasing numbers of female members of the workplace.
Wong, Brian M; Coffey, Maitreya; Nousiainen, Markku T; Brydges, Ryan; McDonald-Blumer, Heather; Atkinson, Adelle; Levinson, Wendy; Stroud, Lynfa
2017-02-01
Residents' attitudes toward error disclosure have improved over time. It is unclear whether this has been accompanied by improvements in disclosure skills. To measure the disclosure skills of internal medicine (IM), paediatrics, and orthopaedic surgery residents, and to explore resident perceptions of formal versus informal training in preparing them for disclosure in real-world practice. We assessed residents' error disclosure skills using a structured role play with a standardized patient in 2012-2013. We compared disclosure skills across programs using analysis of variance. We conducted a multiple linear regression, including data from a historical cohort of IM residents from 2005, to investigate the influence of predictor variables on performance: training program, cohort year, and prior disclosure training and experience. We conducted a qualitative descriptive analysis of data from semistructured interviews with residents to explore resident perceptions of formal versus informal disclosure training. In a comparison of disclosure skills for 49 residents, there was no difference in overall performance across specialties (4.1 to 4.4 of 5, P = .19). In regression analysis, only the current cohort was significantly associated with skill: current residents performed better than a historical cohort of 42 IM residents ( P < .001). Qualitative analysis identified the importance of both formal (workshops, morbidity and mortality rounds) and informal (role modeling, debriefing) activities in preparation for disclosure in real-world practice. Residents across specialties have similar skills in disclosure of errors. Residents identified role modeling and a strong local patient safety culture as key facilitators for disclosure.
Zhang, Xiang; Faries, Douglas E; Boytsov, Natalie; Stamey, James D; Seaman, John W
2016-09-01
Observational studies are frequently used to assess the effectiveness of medical interventions in routine clinical practice. However, the use of observational data for comparative effectiveness is challenged by selection bias and the potential of unmeasured confounding. This is especially problematic for analyses using a health care administrative database, in which key clinical measures are often not available. This paper provides an approach to conducting a sensitivity analyses to investigate the impact of unmeasured confounding in observational studies. In a real world osteoporosis comparative effectiveness study, the bone mineral density (BMD) score, an important predictor of fracture risk and a factor in the selection of osteoporosis treatments, is unavailable in the data base and lack of baseline BMD could potentially lead to significant selection bias. We implemented Bayesian twin-regression models, which simultaneously model both the observed outcome and the unobserved unmeasured confounder, using information from external sources. A sensitivity analysis was also conducted to assess the robustness of our conclusions to changes in such external data. The use of Bayesian modeling in this study suggests that the lack of baseline BMD did have a strong impact on the analysis, reversing the direction of the estimated effect (odds ratio of fracture incidence at 24 months: 0.40 vs. 1.36, with/without adjusting for unmeasured baseline BMD). The Bayesian twin-regression models provide a flexible sensitivity analysis tool to quantitatively assess the impact of unmeasured confounding in observational studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Teacher psychological needs, locus of control and engagement.
Betoret, Fernando Doménech
2013-01-01
This study examines the relationships among psychological needs, locus of control and engagement in a sample of 282 Spanish secondary school teachers. Nine teacher needs were identified based on the study of Bess (1977) and on the Self-Determination Theory (Deci & Ryan, 1985, 2000, 2002). Self-report questionnaires were used to measure the construct selected for this study and their interrelationships were examined by conducting hierarchical regression analyses. An analysis of teacher responses using hierarchical regression reveals that psychological needs have significant positive effects on the three engagement dimensions (vigor, dedication and absorption). Furthermore, the results show the moderator role played by locus of control in the relationship between teacher psychological needs and the so-called core of engagement (vigor and dedication). Finally, practical implications are discussed.
Regression Analysis by Example. 5th Edition
ERIC Educational Resources Information Center
Chatterjee, Samprit; Hadi, Ali S.
2012-01-01
Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. "Regression Analysis by Example, Fifth Edition" has been expanded and thoroughly…
Stubbs, Brendon; Vancampfort, Davy; Rosenbaum, Simon; Ward, Philip B; Richards, Justin; Soundy, Andrew; Veronese, Nicola; Solmi, Marco; Schuch, Felipe B
2016-01-15
Exercise has established efficacy in improving depressive symptoms. Dropouts from randomized controlled trials (RCT's) pose a threat to the validity of this evidence base, with dropout rates varying across studies. We conducted a systematic review and meta-analysis to investigate the prevalence and predictors of dropout rates among adults with depression participating in exercise RCT's. Three authors identified RCT's from a recent Cochrane review and conducted updated searches of major electronic databases from 01/2013 to 08/2015. We included RCT's of exercise interventions in people with depression (including major depressive disorder (MDD) and depressive symptoms) that reported dropout rates. A random effects meta-analysis and meta regression were conducted. Overall, 40 RCT's were included reporting dropout rates across 52 exercise interventions including 1720 people with depression (49.1 years (range=19-76 years), 72% female (range=0-100)). The trim and fill adjusted prevalence of dropout across all studies was 18.1% (95%CI=15.0-21.8%) and 17.2% (95%CI=13.5-21.7, N=31) in MDD only. In MDD participants, higher baseline depressive symptoms (β=0.0409, 95%CI=0.0809-0.0009, P=0.04) predicted greater dropout, whilst supervised interventions delivered by physiotherapists (β=-1.2029, 95%CI=-2.0967 to -0.3091, p=0.008) and exercise physiologists (β=-1.3396, 95%CI=-2.4478 to -0.2313, p=0.01) predicted lower dropout. A comparative meta-analysis (N=29) established dropout was lower in exercise than control conditions (OR=0.642, 95%CI=0.43-0.95, p=0.02). Exercise is well tolerated by people with depression and drop out in RCT's is lower than control conditions. Thus, exercise is a feasible treatment, in particular when delivered by healthcare professionals with specific training in exercise prescription. Copyright © 2015 Elsevier B.V. All rights reserved.
Analysis of the thermal comfort model in an environment of metal mechanical branch.
Pinto, N M; Xavier, A A P; do Amaral, Regiane T
2012-01-01
This study aims to identify the correlation between the Predicted Mean Vote (PMV) with the thermal sensation (S) of 55 employees, establishing a linear multiple regression equation. The measurement of environmental variables followed established standards. The survey was conducted in a metal industry located in Ponta Grossa of the State of Parana in Brazil. It was applied the physical model of thermal comfort to the environmental variables and also to the subjective data on the thermal sensations of employees. The survey was conducted from May to November, 2010, with 48 measurements. This study will serve as the basis for a dissertation consisting of 72 measurements.
Quantifying female bodily attractiveness by a statistical analysis of body measurements.
Gründl, Martin; Eisenmann-Klein, Marita; Prantl, Lukas
2009-03-01
To investigate what makes a female figure attractive, an extensive experiment was conducted using high-quality photographic stimulus material and several systematically varied figure parameters. The objective was to predict female bodily attractiveness by using figure measurements. For generating stimulus material, a frontal-view photograph of a woman with normal body proportions was taken. Using morphing software, 243 variations of this photograph were produced by systematically manipulating the following features: weight, hip width, waist width, bust size, and leg length. More than 34,000 people participated in the web-based experiment and judged the attractiveness of the figures. All of the altered figures were measured (e.g., bust width, underbust width, waist width, hip width, and so on). Based on these measurements, ratios were calculated (e.g., waist-to-hip ratio). A multiple regression analysis was designed to predict the attractiveness rank of a figure by using figure measurements. The results show that the attractiveness of a woman's figure may be predicted by using her body measurements. The regression analysis explains a variance of 80 percent. Important predictors are bust-to-underbust ratio, bust-to-waist ratio, waist-to-hip ratio, and an androgyny index (an indicator of a typical female body). The study shows that the attractiveness of a female figure is the result of complex interactions of numerous factors. It affirms the importance of viewing the appearance of a bodily feature in the context of other bodily features when performing preoperative analysis. Based on the standardized beta-weights of the regression model, the relative importance of figure parameters in context of preoperative analysis is discussed.
Sharma, Bimala; Cosme Chavez, Rosemary; Jeong, Ae Suk; Nam, Eun Woo
2017-04-05
The study assessed television viewing >2 h a day and its association with sedentary behaviors, self-rated health, and academic performance among secondary school adolescents. A cross-sectional survey was conducted among randomly selected students in Lima in 2015. We measured self-reported responses of students using a standard questionnaire, and conducted in-depth interviews with 10 parents and 10 teachers. Chi-square test, correlation and multivariate logistic regression analysis were performed among 1234 students, and thematic analysis technique was used for qualitative information. A total of 23.1% adolescents reported watching television >2 h a day. Qualitative findings also show that adolescents spend most of their leisure time watching television, playing video games or using the Internet. Television viewing had a significant positive correlation with video game use in males and older adolescents, with Internet use in both sexes, and a negative correlation with self-rated health and academic performance in females. Multivariate logistic regression analysis shows that television viewing >2 h a day, independent of physical activity was associated with video games use >2 h a day, Internet use >2 h a day, poor/fair self-rated health and poor self-reported academic performance. Television viewing time and sex had a significant interaction effect on both video game use >2 h a day and Internet use >2 h a day. Reducing television viewing time may be an effective strategy for improving health and academic performance in adolescents.
Factors Associated With Surgery Clerkship Performance and Subsequent USMLE Step Scores.
Dong, Ting; Copeland, Annesley; Gangidine, Matthew; Schreiber-Gregory, Deanna; Ritter, E Matthew; Durning, Steven J
2018-03-12
We conducted an in-depth empirical investigation to achieve a better understanding of the surgery clerkship from multiple perspectives, including the influence of clerkship sequence on performance, the relationship between self-logged work hours and performance, as well as the association between surgery clerkship performance with subsequent USMLE Step exams' scores. The study cohort consisted of medical students graduating between 2015 and 2018 (n = 687). The primary measures of interest were clerkship sequence (internal medicine clerkship before or after surgery clerkship), self-logged work hours during surgery clerkship, surgery NBME subject exam score, surgery clerkship overall grade, and Step 1, Step 2 CK, and Step 3 exam scores. We reported the descriptive statistics and conducted correlation analysis, stepwise linear regression analysis, and variable selection analysis of logistic regression to answer the research questions. Students who completed internal medicine clerkship prior to surgery clerkship had better performance on surgery subject exam. The subject exam score explained an additional 28% of the variance of the Step 2 CK score, and the clerkship overall score accounted for an additional 24% of the variance after the MCAT scores and undergraduate GPA were controlled. Our finding suggests that the clerkship sequence does matter when it comes to performance on the surgery NBME subject exam. Performance on the surgery subject exam is predictive of subsequent performance on future USMLE Step exams. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Sharma, Bimala; Cosme Chavez, Rosemary; Jeong, Ae Suk; Nam, Eun Woo
2017-01-01
The study assessed television viewing >2 h a day and its association with sedentary behaviors, self-rated health, and academic performance among secondary school adolescents. A cross-sectional survey was conducted among randomly selected students in Lima in 2015. We measured self-reported responses of students using a standard questionnaire, and conducted in-depth interviews with 10 parents and 10 teachers. Chi-square test, correlation and multivariate logistic regression analysis were performed among 1234 students, and thematic analysis technique was used for qualitative information. A total of 23.1% adolescents reported watching television >2 h a day. Qualitative findings also show that adolescents spend most of their leisure time watching television, playing video games or using the Internet. Television viewing had a significant positive correlation with video game use in males and older adolescents, with Internet use in both sexes, and a negative correlation with self-rated health and academic performance in females. Multivariate logistic regression analysis shows that television viewing >2 h a day, independent of physical activity was associated with video games use >2 h a day, Internet use >2 h a day, poor/fair self-rated health and poor self-reported academic performance. Television viewing time and sex had a significant interaction effect on both video game use >2 h a day and Internet use >2 h a day. Reducing television viewing time may be an effective strategy for improving health and academic performance in adolescents. PMID:28379202
Picco, Louisa; Abdin, Edimanysah; Chong, Siow Ann; Pang, Shirlene; Shafie, Saleha; Chua, Boon Yiang; Vaingankar, Janhavi A.; Ong, Lue Ping; Tay, Jenny; Subramaniam, Mythily
2016-01-01
Attitudes toward seeking professional psychological help (ATSPPH) are complex. Help seeking preferences are influenced by various attitudinal and socio-demographic factors and can often result in unmet needs, treatment gaps, and delays in help-seeking. The aims of the current study were to explore the factor structure of the ATSPPH short form (-SF) scale and determine whether any significant socio-demographic differences exist in terms of help-seeking attitudes. Data were extracted from a population-based survey conducted among Singapore residents aged 18–65 years. Respondents provided socio-demographic information and were administered the ATSPPH-SF. Weighted mean and standard error of the mean were calculated for continuous variables, and frequencies and percentages for categorical variables. Confirmatory factor analysis and exploratory factor analysis were performed to establish the validity of the factor structure of the ATSPPH-SF scale. Multivariable linear regressions were conducted to examine predictors of each of the ATSPPH-SF factors. The factor analysis revealed that the ATSPPH-SF formed three distinct dimensions: “Openness to seeking professional help,” “Value in seeking professional help,” and “Preference to cope on one's own.” Multiple linear regression analyses showed that age, ethnicity, marital status, education, and income were significantly associated with the ATSPPH-SF factors. Population subgroups that were less open to or saw less value in seeking psychological help should be targeted via culturally appropriate education campaigns and tailored and supportive interventions. PMID:27199794
Effect of heat stress on age at first calving of Japanese Black cows in Okinawa.
Oikawa, Takuro
2017-03-01
Calving records from birth certificates of cows were analyzed to investigate the effect of heat stress on age at first calving (AFC) of Japanese Black cows. The data set covered 20 years (1990-2009) of calving records. Total number of records was 9279. Daily weather information from weather stations in the vicinity of the farms was used. Temperature-humidity index (THI) fitted to a linear model covered 30 days pre-insemination to 61 days post-insemination. Statistical analysis was conducted with procedures of SAS/STAT. Preliminary analysis showed that THI of the lowest temperature and humidity was most conducive to AFC. Covariance analysis, including main effect of sire, farm and year of insemination and covariates of THI on days showed that regression coefficients of THI on day -7, day -2 and day +31 were statistically significant. The estimated piecewise regression line showed different responses of AFC to THI on days: roof-shasped downward trend on day -7, hockey-stick shaped upward trend on day -2 and day +31. The difference among the estimated regression lines may be caused by direct and indirect factors on reproduction: indirect effect of reduced feed intake, failure of conception at previous insemination, direct effect of heat stress on oocyte and embryo development. © 2016 Japanese Society of Animal Science.
Damman, Olga C; Stubbe, Janine H; Hendriks, Michelle; Arah, Onyebuchi A; Spreeuwenberg, Peter; Delnoij, Diana M J; Groenewegen, Peter P
2009-04-01
Ratings on the quality of healthcare from the consumer's perspective need to be adjusted for consumer characteristics to ensure fair and accurate comparisons between healthcare providers or health plans. Although multilevel analysis is already considered an appropriate method for analyzing healthcare performance data, it has rarely been used to assess case-mix adjustment of such data. The purpose of this article is to investigate whether multilevel regression analysis is a useful tool to detect case-mix adjusters in consumer assessment of healthcare. We used data on 11,539 consumers from 27 Dutch health plans, which were collected using the Dutch Consumer Quality Index health plan instrument. We conducted multilevel regression analyses of consumers' responses nested within health plans to assess the effects of consumer characteristics on consumer experience. We compared our findings to the results of another methodology: the impact factor approach, which combines the predictive effect of each case-mix variable with its heterogeneity across health plans. Both multilevel regression and impact factor analyses showed that age and education were the most important case-mix adjusters for consumer experience and ratings of health plans. With the exception of age, case-mix adjustment had little impact on the ranking of health plans. On both theoretical and practical grounds, multilevel modeling is useful for adequate case-mix adjustment and analysis of performance ratings.
NASA Astrophysics Data System (ADS)
Haris, A.; Nafian, M.; Riyanto, A.
2017-07-01
Danish North Sea Fields consist of several formations (Ekofisk, Tor, and Cromer Knoll) that was started from the age of Paleocene to Miocene. In this study, the integration of seismic and well log data set is carried out to determine the chalk sand distribution in the Danish North Sea field. The integration of seismic and well log data set is performed by using the seismic inversion analysis and seismic multi-attribute. The seismic inversion algorithm, which is used to derive acoustic impedance (AI), is model-based technique. The derived AI is then used as external attributes for the input of multi-attribute analysis. Moreover, the multi-attribute analysis is used to generate the linear and non-linear transformation of among well log properties. In the case of the linear model, selected transformation is conducted by weighting step-wise linear regression (SWR), while for the non-linear model is performed by using probabilistic neural networks (PNN). The estimated porosity, which is resulted by PNN shows better suited to the well log data compared with the results of SWR. This result can be understood since PNN perform non-linear regression so that the relationship between the attribute data and predicted log data can be optimized. The distribution of chalk sand has been successfully identified and characterized by porosity value ranging from 23% up to 30%.
Ximenes, Sofia; Silva, Ana; Soares, António; Flores-Colen, Inês; de Brito, Jorge
2016-05-04
Statistical models using multiple linear regression are some of the most widely used methods to study the influence of independent variables in a given phenomenon. This study's objective is to understand the influence of the various components of aerogel-based renders on their thermal and mechanical performance, namely cement (three types), fly ash, aerial lime, silica sand, expanded clay, type of aerogel, expanded cork granules, expanded perlite, air entrainers, resins (two types), and rheological agent. The statistical analysis was performed using SPSS (Statistical Package for Social Sciences), based on 85 mortar mixes produced in the laboratory and on their values of thermal conductivity and compressive strength obtained using tests in small-scale samples. The results showed that aerial lime assumes the main role in improving the thermal conductivity of the mortars. Aerogel type, fly ash, expanded perlite and air entrainers are also relevant components for a good thermal conductivity. Expanded clay can improve the mechanical behavior and aerogel has the opposite effect.
Electronic conductivity studies on oxyhalide glasses containing TMO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayatha, D.; Department of Physics, Gurunanak Institute of Technology, Hyderabad -040; Viswanatha, R.
2016-05-06
Microwave-assisted synthesis is cleaner, more economical and much faster than conventional methods. The development of new routes for the synthesis of solid materials is an integral part of material science and technology. The electronic conductivity studies on xPbCl{sub 2} – 60 PbO – (40-x) V{sub 2}O{sub 5} (1 ≥ x ≤ 10) glass system has been carried out over a wide range of composition and temperature (300 K to 423 K). X-ray diffraction study confirms the amorphous nature of the samples. The Scanning electron microscopic studies reveal the formation of cluster like morphology in PbCl{sub 2} containing glasses. The d.c conductivity exhibitsmore » Arrhenius behaviour and increases with V{sub 2}O{sub 5} concentration. Analysis of the results is interpreted in view Austin-Mott’s small polaron model of electron transport. Activation energies calculated using regression analysis exhibit composition dependent trend and the variation is explained in view of the structure of lead-vanadate glass.« less
Ximenes, Sofia; Silva, Ana; Soares, António; Flores-Colen, Inês; de Brito, Jorge
2016-01-01
Statistical models using multiple linear regression are some of the most widely used methods to study the influence of independent variables in a given phenomenon. This study’s objective is to understand the influence of the various components of aerogel-based renders on their thermal and mechanical performance, namely cement (three types), fly ash, aerial lime, silica sand, expanded clay, type of aerogel, expanded cork granules, expanded perlite, air entrainers, resins (two types), and rheological agent. The statistical analysis was performed using SPSS (Statistical Package for Social Sciences), based on 85 mortar mixes produced in the laboratory and on their values of thermal conductivity and compressive strength obtained using tests in small-scale samples. The results showed that aerial lime assumes the main role in improving the thermal conductivity of the mortars. Aerogel type, fly ash, expanded perlite and air entrainers are also relevant components for a good thermal conductivity. Expanded clay can improve the mechanical behavior and aerogel has the opposite effect. PMID:28773460
Fornaro, Michele; Stubbs, Brendon
2015-06-01
Uncertainty exists regarding the prevalence and moderators of migraine comorbidity among people with bipolar disorder (BD). We conducted a meta-analysis and meta-regression to investigate the prevalence and moderators of migraine among people with BD. Two authors independently searched major electronic databases from inception till 02/2015. Articles were included that reported the prevalence of migraine in people with BD with or without a control group. A random effects meta-analysis and exploratory meta-regression were conducted. Fourteen studies were included encompassing 3976 individuals with BD (mean age 35.5 years, SD 7.6, 29% male). The overall pooled prevalence of migraine was 34.8% (95% CI=25.54-44.69). The prevalence of migraine was higher among people with BD-II (54.17%, 95% CI=31.52-75.95, n=742) compared to BD-I (32.7%, 95% CI=18.16-49.19, n=2138, z=3.97, p<0.0001). The prevalence of migraine was 33.9% (95% CI=26.02-42.44), 39.5% (95% CI=18.81-62.39) and 47.11% (95% CI=22.24-72.77) in North America, Europe and South America respectively. The prevalence of migraine was higher when classified according to recognized criteria at 47.91% (95% CI=32.51-63.5) compared to non-recognized criteria (20.0%, 95% CI=12.44-29.06, z=-8.40, p<0.0001). Meta regression suggests mean age may be a potential moderator. Migraine is common and burdensome among people with BD. People with BD-II appear to be particularly affected. Nonetheless, future research is required to better understand these relationships, with a special emphasis toward the course specifiers of comorbid migraine cases of either BD-I vs. BD-II. Copyright © 2015 Elsevier B.V. All rights reserved.
Hahn-Holbrook, Jennifer; Cornwell-Hinrichs, Taylor; Anaya, Itzel
2017-01-01
Postpartum depression (PPD) poses a major global public health challenge. PPD is the most common complication associated with childbirth and exerts harmful effects on children. Although hundreds of PPD studies have been published, we lack accurate global or national PPD prevalence estimates and have no clear account of why PPD appears to vary so dramatically between nations. Accordingly, we conducted a meta-analysis to estimate the global and national prevalence of PPD and a meta-regression to identify economic, health, social, or policy factors associated with national PPD prevalence. We conducted a systematic review of all papers reporting PPD prevalence using the Edinburgh Postnatal Depression Scale. PPD prevalence and methods were extracted from each study. Random effects meta-analysis was used to estimate global and national PPD prevalence. To test for country level predictors, we drew on data from UNICEF, WHO, and the World Bank. Random effects meta-regression was used to test national predictors of PPD prevalence. 291 studies of 296284 women from 56 countries were identified. The global pooled prevalence of PPD was 17.7% (95% confidence interval: 16.6-18.8%), with significant heterogeneity across nations ( Q = 16,823, p = 0.000, I 2 = 98%), ranging from 3% (2-5%) in Singapore to 38% (35-41%) in Chile. Nations with significantly higher rates of income inequality ( R 2 = 41%), maternal mortality ( R 2 = 19%), infant mortality ( R 2 = 16%), or women of childbearing age working ≥40 h a week ( R 2 = 31%) have higher rates of PPD. Together, these factors explain 73% of the national variation in PPD prevalence. The global prevalence of PPD is greater than previously thought and varies dramatically by nation. Disparities in wealth inequality and maternal-child-health factors explain much of the national variation in PPD prevalence.
Knowledge, Attitude, and Practices Regarding Vector-borne Diseases in Western Jamaica.
Alobuia, Wilson M; Missikpode, Celestin; Aung, Maung; Jolly, Pauline E
2015-01-01
Outbreaks of vector-borne diseases (VBDs) such as dengue and malaria can overwhelm health systems in resource-poor countries. Environmental management strategies that reduce or eliminate vector breeding sites combined with improved personal prevention strategies can help to significantly reduce transmission of these infections. The aim of this study was to assess the knowledge, attitudes, and practices (KAPs) of residents in western Jamaica regarding control of mosquito vectors and protection from mosquito bites. A cross-sectional study was conducted between May and August 2010 among patients or family members of patients waiting to be seen at hospitals in western Jamaica. Participants completed an interviewer-administered questionnaire on sociodemographic factors and KAPs regarding VBDs. KAP scores were calculated and categorized as high or low based on the number of correct or positive responses. Logistic regression analyses were conducted to identify predictors of KAP and linear regression analysis conducted to determine if knowledge and attitude scores predicted practice scores. In all, 361 (85 men and 276 women) people participated in the study. Most participants (87%) scored low on knowledge and practice items (78%). Conversely, 78% scored high on attitude items. By multivariate logistic regression, housewives were 82% less likely than laborers to have high attitude scores; homeowners were 65% less likely than renters to have high attitude scores. Participants from households with 1 to 2 children were 3.4 times more likely to have high attitude scores compared with those from households with no children. Participants from households with at least 5 people were 65% less likely than those from households with fewer than 5 people to have high practice scores. By multivariable linear regression knowledge and attitude scores were significant predictors of practice score. The study revealed poor knowledge of VBDs and poor prevention practices among participants. It identified specific groups that can be targeted with vector control and personal protection interventions to decrease transmission of the infections. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Dubois, Jean-Daniel; Cantin, Vincent; Piché, Mathieu; Descarreaux, Martin
2016-01-01
Despite an elusive pathophysiology, common characteristics are often observed in individuals with chronic low back pain (LBP). These include psychological symptoms, altered pain perception, altered pain modulation and altered muscle activation. These factors have been explored as possible determinants of disability, either separately or in cross-sectional studies, but were never assessed in a single longitudinal study. Therefore, the objective was to determine the relative contribution of psychological and neurophysiological factors to future disability in individuals with past LBP. The study included two experimental sessions (baseline and six months later) to assess cutaneous heat pain and pain tolerance thresholds, pain inhibition, as well as trunk muscle activation. Both sessions included the completion of validated questionnaires to determine clinical pain, disability, pain catastrophizing, fear-avoidance beliefs and pain vigilance. One hundred workers with a history of LBP and 19 healthy individuals took part in the first experimental session. The second experimental session was exclusively conducted on workers with a history of LBP (77/100). Correlation analyses between initial measures and disability at six months were conducted, and measures significantly associated with disability were used in multiple regression analyses. A first regression analysis showed that psychological symptoms contributed unique variance to future disability (R2 = 0.093, p = .009). To control for the fluctuating nature of LBP, a hierarchical regression was conducted while controlling for clinical pain at six months (R2 = 0.213, p < .001) where pain inhibition contributed unique variance in the second step of the regression (R2 change = 0.094, p = .005). These results indicate that pain inhibition processes may constitute potential targets for treatment to alleviate future disability in individuals with past or present LBP. Then again, the link between psychological symptoms and pain inhibition needs to be clarified as both of these factors are linked together and influence disability in their own way. PMID:27783666
Liu, Quan; Ma, Li; Fan, Shou-Zen; Abbod, Maysam F; Shieh, Jiann-Shing
2018-01-01
Estimating the depth of anaesthesia (DoA) in operations has always been a challenging issue due to the underlying complexity of the brain mechanisms. Electroencephalogram (EEG) signals are undoubtedly the most widely used signals for measuring DoA. In this paper, a novel EEG-based index is proposed to evaluate DoA for 24 patients receiving general anaesthesia with different levels of unconsciousness. Sample Entropy (SampEn) algorithm was utilised in order to acquire the chaotic features of the signals. After calculating the SampEn from the EEG signals, Random Forest was utilised for developing learning regression models with Bispectral index (BIS) as the target. Correlation coefficient, mean absolute error, and area under the curve (AUC) were used to verify the perioperative performance of the proposed method. Validation comparisons with typical nonstationary signal analysis methods (i.e., recurrence analysis and permutation entropy) and regression methods (i.e., neural network and support vector machine) were conducted. To further verify the accuracy and validity of the proposed methodology, the data is divided into four unconsciousness-level groups on the basis of BIS levels. Subsequently, analysis of variance (ANOVA) was applied to the corresponding index (i.e., regression output). Results indicate that the correlation coefficient improved to 0.72 ± 0.09 after filtering and to 0.90 ± 0.05 after regression from the initial values of 0.51 ± 0.17. Similarly, the final mean absolute error dramatically declined to 5.22 ± 2.12. In addition, the ultimate AUC increased to 0.98 ± 0.02, and the ANOVA analysis indicates that each of the four groups of different anaesthetic levels demonstrated significant difference from the nearest levels. Furthermore, the Random Forest output was extensively linear in relation to BIS, thus with better DoA prediction accuracy. In conclusion, the proposed method provides a concrete basis for monitoring patients' anaesthetic level during surgeries.
Coelho, Lúcia H G; Gutz, Ivano G R
2006-03-15
A chemometric method for analysis of conductometric titration data was introduced to extend its applicability to lower concentrations and more complex acid-base systems. Auxiliary pH measurements were made during the titration to assist the calculation of the distribution of protonable species on base of known or guessed equilibrium constants. Conductivity values of each ionized or ionizable species possibly present in the sample were introduced in a general equation where the only unknown parameters were the total concentrations of (conjugated) bases and of strong electrolytes not involved in acid-base equilibria. All these concentrations were adjusted by a multiparametric nonlinear regression (NLR) method, based on the Levenberg-Marquardt algorithm. This first conductometric titration method with NLR analysis (CT-NLR) was successfully applied to simulated conductometric titration data and to synthetic samples with multiple components at concentrations as low as those found in rainwater (approximately 10 micromol L(-1)). It was possible to resolve and quantify mixtures containing a strong acid, formic acid, acetic acid, ammonium ion, bicarbonate and inert electrolyte with accuracy of 5% or better.
Recurrent shoulder dystocia: is it predictable?
Kleitman, Vered; Feldman, Roi; Walfisch, Asnat; Toledano, Ronen; Sheiner, Eyal
2016-11-01
To examine the course and outcome of deliveries occurring in women who previously experienced shoulder dystocia. In addition, recurrent shoulder dystocia risk factors were assessed. A retrospective cohort analysis comparing all singleton deliveries with and without shoulder dystocia in their preceding delivery was conducted. Independent predictors of recurrent shoulder dystocia were investigated using a multiple logistic regression model. Of the 201,422 deliveries included in the analysis, 307 occurred in women with a previous shoulder dystocia (0.015 %). Women with a history of shoulder dystocia were more likely to be older, experienced higher rates of gestational diabetes mellitus, polyhydramnios, prolonged second stage, operative delivery and macrosomia (>4000 g) in the following delivery. Previous shoulder dystocia was found to be an independent risk factor for recurrent shoulder dystocia (OR = 6.1, 95 % CI 3.2-11.8, p value <0.001) in the multivariable regression analysis. Shoulder dystocia is an independent risk factor for recurrent shoulder dystocia. Deliveries in women with a history of shoulder dystocia are characterized by higher rates of operative delivery, prolonged second stage of labor and macrosomia.
On statistical analysis of factors affecting anthocyanin extraction from Ixora siamensis
NASA Astrophysics Data System (ADS)
Mat Nor, N. A.; Arof, A. K.
2016-10-01
This study focused on designing an experimental model in order to evaluate the influence of operative extraction parameters employed for anthocyanin extraction from Ixora siamensis on CIE color measurements (a*, b* and color saturation). Extractions were conducted at temperatures of 30, 55 and 80°C, soaking time of 60, 120 and 180 min using acidified methanol solvent with different trifluoroacetic acid (TFA) contents of 0.5, 1.75 and 3% (v/v). The statistical evaluation was performed by running analysis of variance (ANOVA) and regression calculation to investigate the significance of the generated model. Results show that the generated regression models adequately explain the data variation and significantly represented the actual relationship between the independent variables and the responses. Analysis of variance (ANOVA) showed high coefficient determination values (R2) of 0.9687 for a*, 0.9621 for b* and 0.9758 for color saturation, thus ensuring a satisfactory fit of the developed models with the experimental data. Interaction between TFA content and extraction temperature exhibited to the highest significant influence on CIE color parameter.
NASA Astrophysics Data System (ADS)
Kamaruddin, Ainur Amira; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Ahmad, Wan Muhamad Amir W.
2014-07-01
Logistic regression analysis examines the influence of various factors on a dichotomous outcome by estimating the probability of the event's occurrence. Logistic regression, also called a logit model, is a statistical procedure used to model dichotomous outcomes. In the logit model the log odds of the dichotomous outcome is modeled as a linear combination of the predictor variables. The log odds ratio in logistic regression provides a description of the probabilistic relationship of the variables and the outcome. In conducting logistic regression, selection procedures are used in selecting important predictor variables, diagnostics are used to check that assumptions are valid which include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers and a test statistic is calculated to determine the aptness of the model. This study used the binary logistic regression model to investigate overweight and obesity among rural secondary school students on the basis of their demographics profile, medical history, diet and lifestyle. The results indicate that overweight and obesity of students are influenced by obesity in family and the interaction between a student's ethnicity and routine meals intake. The odds of a student being overweight and obese are higher for a student having a family history of obesity and for a non-Malay student who frequently takes routine meals as compared to a Malay student.
Orthodontic bracket bonding without previous adhesive priming: A meta-regression analysis.
Altmann, Aline Segatto Pires; Degrazia, Felipe Weidenbach; Celeste, Roger Keller; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo
2016-05-01
To determine the consensus among studies that adhesive resin application improves the bond strength of orthodontic brackets and the association of methodological variables on the influence of bond strength outcome. In vitro studies were selected to answer whether adhesive resin application increases the immediate shear bond strength of metal orthodontic brackets bonded with a photo-cured orthodontic adhesive. Studies included were those comparing a group having adhesive resin to a group without adhesive resin with the primary outcome measurement shear bond strength in MPa. A systematic electronic search was performed in PubMed and Scopus databases. Nine studies were included in the analysis. Based on the pooled data and due to a high heterogeneity among studies (I(2) = 93.3), a meta-regression analysis was conducted. The analysis demonstrated that five experimental conditions explained 86.1% of heterogeneity and four of them had significantly affected in vitro shear bond testing. The shear bond strength of metal brackets was not significantly affected when bonded with adhesive resin, when compared to those without adhesive resin. The adhesive resin application can be set aside during metal bracket bonding to enamel regardless of the type of orthodontic adhesive used.
[Factors associated with physical activity among Chinese immigrant women].
Cho, Sung-Hye; Lee, Hyeonkyeong
2013-12-01
This study was done to assess the level of physical activity among Chinese immigrant women and to determine the relationships of physical activity with individual characteristics and behavior-specific cognition. A cross-sectional descriptive study was conducted with 161 Chinese immigrant women living in Busan. A health promotion model of physical activity adapted from Pender's Health Promotion Model was used. Self-administered questionnaires were used to collect data during the period from September 25 to November 20, 2012. Using SPSS 18.0 program, descriptive statistics, t-test, analysis of variance, correlation analysis, and multiple regression analysis were done. The average level of physical activity of the Chinese immigrant women was 1,050.06 ± 686.47 MET-min/week and the minimum activity among types of physical activity was most dominant (59.6%). As a result of multiple regression analysis, it was confirmed that self-efficacy and acculturation were statistically significant variables in the model (p<.001), with an explanatory power of 23.7%. The results indicate that the development and application of intervention strategies to increase acculturation and self-efficacy for immigrant women will aid in increasing the physical activity in Chinese immigrant women.
Ionic-to-electronic conductivity of glasses in the P2O5-V2O5-ZnO-Li2O system
NASA Astrophysics Data System (ADS)
Langar, A.; Sdiri, N.; Elhouichet, H.; Ferid, M.
2016-12-01
Glasses having a composition 15V2O5-5ZnO-(80- x P2O5- xLi2O ( x = 5 , 10, 15 mol%) were prepared by the conventional melt quenching. Conduction and relaxation mechanisms in these glasses were studied using impedance spectroscopy in a frequency range from 10 Hz to 10 MHz and in a temperature range from 513 K to 566 K. The structure of the amorphous synthetic product was corroborated by X-ray diffraction (disappearance of nacrite peaks). The DC conductivity follows the Arrhenius law and the activation energy determined by regression analysis varies with the content of Li2O. Frequency-dependent AC conductivity was analyzed by Jonscher's universal power law, which is varying as ωn, and the temperature-dependent power parameter supported by the Correlated Barrier Hopping (CBH) model. For x = 15 mol%, the values of n ≤ 0.5 confirm the dominance of ionic conductivity. The analysis of the modulus formalism with a distribution of relaxation times was carried out using the Kohlrausch-Williams-Watts (KWW) stretched exponential function. The stretching exponent, β, is dependent on temperature. The analysis of the temperature variation of the M" peak indicates that the relaxation process is thermally activated. Modulus study reveals the temperature-dependent non-Debye-type relaxation phenomenon.
NASA Technical Reports Server (NTRS)
Baxa, E. G., Jr.
1974-01-01
A theoretical formulation of differential and composite OMEGA error is presented to establish hypotheses about the functional relationships between various parameters and OMEGA navigational errors. Computer software developed to provide for extensive statistical analysis of the phase data is described. Results from the regression analysis used to conduct parameter sensitivity studies on differential OMEGA error tend to validate the theoretically based hypothesis concerning the relationship between uncorrected differential OMEGA error and receiver separation range and azimuth. Limited results of measurement of receiver repeatability error and line of position measurement error are also presented.
NASA Astrophysics Data System (ADS)
Yan, Jun; Lei, Yuanyuan; Zhang, Xiaoyan; Zhang, Junjie
2018-04-01
The effects of pre-aging temperature (125°C, 135°C, 145°C) and regression time (5min 25min) on Al-B electric round rod were studied by tensile strength test, conductivity test, XRD and SEM. The results showed that the tensile strength of the alloy first increased and then decreased, while the electrical conductivity decreased first and then increased after re-aging treatment. When the regression and re-aging process is 145 °C × 4h+200 °C × 5min+145 °C × 4h, the comprehensive properties of the sample are better, the tensile strength is 78MPa and the conductivity is 63.1% IACS.
Quantifying prosthetic gait deviation using simple outcome measures
Kark, Lauren; Odell, Ross; McIntosh, Andrew S; Simmons, Anne
2016-01-01
AIM: To develop a subset of simple outcome measures to quantify prosthetic gait deviation without needing three-dimensional gait analysis (3DGA). METHODS: Eight unilateral, transfemoral amputees and 12 unilateral, transtibial amputees were recruited. Twenty-eight able-bodied controls were recruited. All participants underwent 3DGA, the timed-up-and-go test and the six-minute walk test (6MWT). The lower-limb amputees also completed the Prosthesis Evaluation Questionnaire. Results from 3DGA were summarised using the gait deviation index (GDI), which was subsequently regressed, using stepwise regression, against the other measures. RESULTS: Step-length (SL), self-selected walking speed (SSWS) and the distance walked during the 6MWT (6MWD) were significantly correlated with GDI. The 6MWD was the strongest, single predictor of the GDI, followed by SL and SSWS. The predictive ability of the regression equations were improved following inclusion of self-report data related to mobility and prosthetic utility. CONCLUSION: This study offers a practicable alternative to quantifying kinematic deviation without the need to conduct complete 3DGA. PMID:27335814
Occupational exposures and non-Hodgkin's lymphoma: Canadian case-control study.
Karunanayake, Chandima P; McDuffie, Helen H; Dosman, James A; Spinelli, John J; Pahwa, Punam
2008-08-07
The objective was to study the association between Non-Hodgkin's Lymphoma (NHL) and occupational exposures related to long held occupations among males in six provinces of Canada. A population based case-control study was conducted from 1991 to 1994. Males with newly diagnosed NHL (ICD-10) were stratified by province of residence and age group. A total of 513 incident cases and 1506 population based controls were included in the analysis. Conditional logistic regression was conducted to fit statistical models. Based on conditional logistic regression modeling, the following factors independently increased the risk of NHL: farmer and machinist as long held occupations; constant exposure to diesel exhaust fumes; constant exposure to ionizing radiation (radium); and personal history of another cancer. Men who had worked for 20 years or more as farmer and machinist were the most likely to develop NHL. An increased risk of developing NHL is associated with the following: long held occupations of faer and machinist; exposure to diesel fumes; and exposure to ionizing radiation (radium). The risk of NHL increased with the duration of employment as a farmer or machinist.
Magnitude and Frequency of Floods for Urban and Small Rural Streams in Georgia, 2008
Gotvald, Anthony J.; Knaak, Andrew E.
2011-01-01
A study was conducted that updated methods for estimating the magnitude and frequency of floods in ungaged urban basins in Georgia that are not substantially affected by regulation or tidal fluctuations. Annual peak-flow data for urban streams from September 2008 were analyzed for 50 streamgaging stations (streamgages) in Georgia and 6 streamgages on adjacent urban streams in Florida and South Carolina having 10 or more years of data. Flood-frequency estimates were computed for the 56 urban streamgages by fitting logarithms of annual peak flows for each streamgage to a Pearson Type III distribution. Additionally, basin characteristics for the streamgages were computed by using a geographical information system and computer algorithms. Regional regression analysis, using generalized least-squares regression, was used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged urban basins in Georgia. In addition to the 56 urban streamgages, 171 rural streamgages were included in the regression analysis to maintain continuity between flood estimates for urban and rural basins as the basin characteristics pertaining to urbanization approach zero. Because 21 of the rural streamgages have drainage areas less than 1 square mile, the set of equations developed for this study can also be used for estimating small ungaged rural streams in Georgia. Flood-frequency estimates and basin characteristics for 227 streamgages were combined to form the final database used in the regional regression analysis. Four hydrologic regions were developed for Georgia. The final equations are functions of drainage area and percentage of impervious area for three of the regions and drainage area, percentage of developed land, and mean basin slope for the fourth region. Average standard errors of prediction for these regression equations range from 20.0 to 74.5 percent.
Association Between Dietary Intake and Function in Amyotrophic Lateral Sclerosis.
Nieves, Jeri W; Gennings, Chris; Factor-Litvak, Pam; Hupf, Jonathan; Singleton, Jessica; Sharf, Valerie; Oskarsson, Björn; Fernandes Filho, J Americo M; Sorenson, Eric J; D'Amico, Emanuele; Goetz, Ray; Mitsumoto, Hiroshi
2016-12-01
There is growing interest in the role of nutrition in the pathogenesis and progression of amyotrophic lateral sclerosis (ALS). To evaluate the associations between nutrients, individually and in groups, and ALS function and respiratory function at diagnosis. A cross-sectional baseline analysis of the Amyotrophic Lateral Sclerosis Multicenter Cohort Study of Oxidative Stress study was conducted from March 14, 2008, to February 27, 2013, at 16 ALS clinics throughout the United States among 302 patients with ALS symptom duration of 18 months or less. Nutrient intake, measured using a modified Block Food Frequency Questionnaire (FFQ). Amyotrophic lateral sclerosis function, measured using the ALS Functional Rating Scale-Revised (ALSFRS-R), and respiratory function, measured using percentage of predicted forced vital capacity (FVC). Baseline data were available on 302 patients with ALS (median age, 63.2 years [interquartile range, 55.5-68.0 years]; 178 men and 124 women). Regression analysis of nutrients found that higher intakes of antioxidants and carotenes from vegetables were associated with higher ALSFRS-R scores or percentage FVC. Empirically weighted indices using the weighted quantile sum regression method of "good" micronutrients and "good" food groups were positively associated with ALSFRS-R scores (β [SE], 2.7 [0.69] and 2.9 [0.9], respectively) and percentage FVC (β [SE], 12.1 [2.8] and 11.5 [3.4], respectively) (all P < .001). Positive and significant associations with ALSFRS-R scores (β [SE], 1.5 [0.61]; P = .02) and percentage FVC (β [SE], 5.2 [2.2]; P = .02) for selected vitamins were found in exploratory analyses. Antioxidants, carotenes, fruits, and vegetables were associated with higher ALS function at baseline by regression of nutrient indices and weighted quantile sum regression analysis. We also demonstrated the usefulness of the weighted quantile sum regression method in the evaluation of diet. Those responsible for nutritional care of the patient with ALS should consider promoting fruit and vegetable intake since they are high in antioxidants and carotenes.
Hypomagnesemia predicts postoperative biochemical hypocalcemia after thyroidectomy.
Luo, Han; Yang, Hongliu; Zhao, Wanjun; Wei, Tao; Su, Anping; Wang, Bin; Zhu, Jingqiang
2017-05-25
To investigate the role of magnesium in biochemical and symptomatic hypocalcemia, a retrospective study was conducted. Less-than-total thyroidectomy patients were excluded from the final analysis. Identified the risk factors of biochemical and symptomatic hypocalcemia, and investigated the correlation by logistic regression and correlation test respectively. A total of 304 patients were included in the final analysis. General incidence of hypomagnesemia was 23.36%. Logistic regression showed that gender (female) (OR = 2.238, p = 0.015) and postoperative hypomagnesemia (OR = 2.010, p = 0.017) were independent risk factors for biochemical hypocalcemia. Both Pearson and partial correlation tests indicated there was indeed significant relation between calcium and magnesium. However, relative decreasing of iPTH (>70%) (6.691, p < 0.001) and hypocalcemia (2.222, p = 0.046) were identified as risk factors of symptomatic hypocalcemia. The difference remained significant even in normoparathyroidism patients. Postoperative hypomagnesemia was independent risk factor of biochemical hypocalcemia. Relative decline of iPTH was predominating in predicting symptomatic hypocalcemia.
NASA Astrophysics Data System (ADS)
de Andrés, Javier; Landajo, Manuel; Lorca, Pedro; Labra, Jose; Ordóñez, Patricia
Artificial neural networks have proven to be useful tools for solving financial analysis problems such as financial distress prediction and audit risk assessment. In this paper we focus on the performance of robust (least absolute deviation-based) neural networks on measuring liquidity of firms. The problem of learning the bivariate relationship between the components (namely, current liabilities and current assets) of the so-called current ratio is analyzed, and the predictive performance of several modelling paradigms (namely, linear and log-linear regressions, classical ratios and neural networks) is compared. An empirical analysis is conducted on a representative data base from the Spanish economy. Results indicate that classical ratio models are largely inadequate as a realistic description of the studied relationship, especially when used for predictive purposes. In a number of cases, especially when the analyzed firms are microenterprises, the linear specification is improved by considering the flexible non-linear structures provided by neural networks.
Genotype-phenotype association study via new multi-task learning model
Huo, Zhouyuan; Shen, Dinggang
2018-01-01
Research on the associations between genetic variations and imaging phenotypes is developing with the advance in high-throughput genotype and brain image techniques. Regression analysis of single nucleotide polymorphisms (SNPs) and imaging measures as quantitative traits (QTs) has been proposed to identify the quantitative trait loci (QTL) via multi-task learning models. Recent studies consider the interlinked structures within SNPs and imaging QTs through group lasso, e.g. ℓ2,1-norm, leading to better predictive results and insights of SNPs. However, group sparsity is not enough for representing the correlation between multiple tasks and ℓ2,1-norm regularization is not robust either. In this paper, we propose a new multi-task learning model to analyze the associations between SNPs and QTs. We suppose that low-rank structure is also beneficial to uncover the correlation between genetic variations and imaging phenotypes. Finally, we conduct regression analysis of SNPs and QTs. Experimental results show that our model is more accurate in prediction than compared methods and presents new insights of SNPs. PMID:29218896
Trends in Alabama teen driving death and injury.
Monroe, Kathy; Irons, Elizabeth; Crew, Marie; Norris, Jesse; Nichols, Michele; King, William D
2014-09-01
Motor vehicle crashes (MVCs) are a leading cause of morbidity and mortality in teens. Alabama has been in the Top 5 states for MVC fatality rate among teens in the United States for several years. Twelve years of teen MVC deaths and injuries were evaluated. Our hypothesis is that the teen driving motor vehicle-related deaths and injuries have decreased related to legislative and community awareness activities. A retrospective analysis of Alabama teen MVC deaths and injury for the years 2000 to 2011 was conducted. MVC data were obtained from a Fatality Analysis Reporting System data set managed by the Center for Advanced Public Safety at the University of Alabama. A Lowess regression-scattergram analysis was used to identify period specific changes in deaths and injury over time. Statistical analysis was conducted using True Epistat 5.0 software. When the Lowess regression was applied, there was an obvious change in the trend line in 2007. To test that observation, we then compared medians in the pre-2007 and post-2007 periods, which validated our observation. Moreover, it provided a near-even number of observations for comparison. The Spearman rank correlation was used to test for correlation of deaths and injury over time. The Mann-Whitney U-test was used to evaluate median differences in deaths and injury comparing pre-2007 and post-2007 data. Alabama teen MVC deaths and injury demonstrated a significant negative correlation over the 12-year period (Rs for deaths and injury, -0.87 [p < 0.001] and -0.92 [p < 0.001], respectively). Lowess regression identified a notable decline in deaths and injury after the year 2006. Median deaths and injury for the pre-2007 period were significantly higher than the post-2007 period, (U = 35.0, p = 0.003). Alabama teen driver deaths and injury have decreased during the 12-year study period, most notably after 2006. Factors that may have contributed to this trend may include stricter laws for teen drivers (enacted in 2002 and updated in 2010), less teen driving because of a nationwide economic downturn, delayed licensing in teens, steady improvements in overall seat belt use, and heightened public awareness of risky behaviors in teen driving.
Assessment of parametric uncertainty for groundwater reactive transport modeling,
Shi, Xiaoqing; Ye, Ming; Curtis, Gary P.; Miller, Geoffery L.; Meyer, Philip D.; Kohler, Matthias; Yabusaki, Steve; Wu, Jichun
2014-01-01
The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gaussian assumption, Gaussian residuals are widely used. This paper shows that the residuals of the reactive transport model are non-Gaussian, heteroscedastic, and correlated in time; characterizing them requires using a generalized likelihood function such as the formal generalized likelihood function developed by Schoups and Vrugt (2010). For the surface complexation model considered in this study for simulating uranium reactive transport in groundwater, parametric uncertainty is quantified using the least squares regression methods and Bayesian methods with both Gaussian and formal generalized likelihood functions. While the least squares methods and Bayesian methods with Gaussian likelihood function produce similar Gaussian parameter distributions, the parameter distributions of Bayesian uncertainty quantification using the formal generalized likelihood function are non-Gaussian. In addition, predictive performance of formal generalized likelihood function is superior to that of least squares regression and Bayesian methods with Gaussian likelihood function. The Bayesian uncertainty quantification is conducted using the differential evolution adaptive metropolis (DREAM(zs)) algorithm; as a Markov chain Monte Carlo (MCMC) method, it is a robust tool for quantifying uncertainty in groundwater reactive transport models. For the surface complexation model, the regression-based local sensitivity analysis and Morris- and DREAM(ZS)-based global sensitivity analysis yield almost identical ranking of parameter importance. The uncertainty analysis may help select appropriate likelihood functions, improve model calibration, and reduce predictive uncertainty in other groundwater reactive transport and environmental modeling.
Adelian, R.; Jamali, J.; Zare, N.; Ayatollahi, S. M. T.; Pooladfar, G. R.; Roustaei, N.
2015-01-01
Background: Identification of the prognostic factors for survival in patients with liver transplantation is challengeable. Various methods of survival analysis have provided different, sometimes contradictory, results from the same data. Objective: To compare Cox’s regression model with parametric models for determining the independent factors for predicting adults’ and pediatrics’ survival after liver transplantation. Method: This study was conducted on 183 pediatric patients and 346 adults underwent liver transplantation in Namazi Hospital, Shiraz, southern Iran. The study population included all patients undergoing liver transplantation from 2000 to 2012. The prognostic factors sex, age, Child class, initial diagnosis of the liver disease, PELD/MELD score, and pre-operative laboratory markers were selected for survival analysis. Result: Among 529 patients, 346 (64.5%) were adult and 183 (34.6%) were pediatric cases. Overall, the lognormal distribution was the best-fitting model for adult and pediatric patients. Age in adults (HR=1.16, p<0.05) and weight (HR=2.68, p<0.01) and Child class B (HR=2.12, p<0.05) in pediatric patients were the most important factors for prediction of survival after liver transplantation. Adult patients younger than the mean age and pediatric patients weighing above the mean and Child class A (compared to those with classes B or C) had better survival. Conclusion: Parametric regression model is a good alternative for the Cox’s regression model. PMID:26306158
Creating a non-linear total sediment load formula using polynomial best subset regression model
NASA Astrophysics Data System (ADS)
Okcu, Davut; Pektas, Ali Osman; Uyumaz, Ali
2016-08-01
The aim of this study is to derive a new total sediment load formula which is more accurate and which has less application constraints than the well-known formulae of the literature. 5 most known stream power concept sediment formulae which are approved by ASCE are used for benchmarking on a wide range of datasets that includes both field and flume (lab) observations. The dimensionless parameters of these widely used formulae are used as inputs in a new regression approach. The new approach is called Polynomial Best subset regression (PBSR) analysis. The aim of the PBRS analysis is fitting and testing all possible combinations of the input variables and selecting the best subset. Whole the input variables with their second and third powers are included in the regression to test the possible relation between the explanatory variables and the dependent variable. While selecting the best subset a multistep approach is used that depends on significance values and also the multicollinearity degrees of inputs. The new formula is compared to others in a holdout dataset and detailed performance investigations are conducted for field and lab datasets within this holdout data. Different goodness of fit statistics are used as they represent different perspectives of the model accuracy. After the detailed comparisons are carried out we figured out the most accurate equation that is also applicable on both flume and river data. Especially, on field dataset the prediction performance of the proposed formula outperformed the benchmark formulations.
Mei, Lin; He, Lin; Song, Yuhua; Lv, Yang; Zhang, Lijiu; Hao, Fengxi; Xu, Mengmeng
2018-05-01
To investigate the relationship between obesity and disease-free survival (DFS) and overall survival (OS) of triple-negative breast cancer. Citations were searched in PubMed, Cochrane Library, and Web of Science. Random effect model meta-analysis was conducted by using Revman software version 5.0, and publication bias was evaluated by creating Egger regression with STATA software version 12. Nine studies (4412 patients) were included for DFS meta-analysis, 8 studies (4392 patients) include for OS meta-analysis. There were no statistical significances between obesity with DFS (P = .60) and OS (P = .71) in triple-negative breast cancer (TNBC) patients. Obesity has no impact on DFS and OS in patients with TNBC.
Taljaard, Monica; McKenzie, Joanne E; Ramsay, Craig R; Grimshaw, Jeremy M
2014-06-19
An interrupted time series design is a powerful quasi-experimental approach for evaluating effects of interventions introduced at a specific point in time. To utilize the strength of this design, a modification to standard regression analysis, such as segmented regression, is required. In segmented regression analysis, the change in intercept and/or slope from pre- to post-intervention is estimated and used to test causal hypotheses about the intervention. We illustrate segmented regression using data from a previously published study that evaluated the effectiveness of a collaborative intervention to improve quality in pre-hospital ambulance care for acute myocardial infarction (AMI) and stroke. In the original analysis, a standard regression model was used with time as a continuous variable. We contrast the results from this standard regression analysis with those from segmented regression analysis. We discuss the limitations of the former and advantages of the latter, as well as the challenges of using segmented regression in analysing complex quality improvement interventions. Based on the estimated change in intercept and slope from pre- to post-intervention using segmented regression, we found insufficient evidence of a statistically significant effect on quality of care for stroke, although potential clinically important effects for AMI cannot be ruled out. Segmented regression analysis is the recommended approach for analysing data from an interrupted time series study. Several modifications to the basic segmented regression analysis approach are available to deal with challenges arising in the evaluation of complex quality improvement interventions.
Burnout, stress and satisfaction among Australian and New Zealand radiation oncology trainees.
Leung, John; Rioseco, Pilar
2017-02-01
To evaluate the incidence of burnout among radiation oncology trainees in Australia and New Zealand and the stress and satisfaction factors related to burnout. A survey of trainees was conducted in mid-2015. There were 42 Likert scale questions on stress, 14 Likert scale questions on satisfaction and the Maslach Burnout Inventory-Human Services Survey assessed burnout. A principal component analysis identified specific stress and satisfaction areas. Categorical variables for the stress and satisfaction factors were computed. Associations between respondent's characteristics and stress and satisfaction subscales were examined by independent sample t-tests and analysis of variance. Effect sizes were calculated using Cohens's d when significant mean differences were observed. This was also done for respondent characteristics and the three burnout subscales. Multiple regression analyses were performed. The response rate was 81.5%. The principal component analysis for stress identified five areas: demands on time, professional development/training, delivery demands, interpersonal demands and administration/organizational issues. There were no significant differences by demographic group or area of interest after P-values were adjusted for the multiple tests conducted. The principal component analysis revealed two satisfaction areas: resources/professional activities and value/delivery of services. There were no significant differences by demographic characteristics or area of interest in the level of satisfaction after P-values were adjusted for the multiple tests conducted. The burnout results revealed 49.5% of respondents scored highly in emotional exhaustion and/or depersonalization and 13.1% had burnout in all three measures. Multiple regression analysis revealed the stress subscales 'demands on time' and 'interpersonal demands' were associated with emotional exhaustion. 'Interpersonal demands' was also associated with depersonalization and correlated negatively with personal accomplishment. The satisfaction of value/delivery of services subscale was associated with higher levels of personal accomplishment. There is a significant level of burnout among radiation oncology trainees in Australia and New Zealand. Further work addressing intervention would be appropriate to reduce levels of burnout. © 2016 The Authors. Journal of Medical Imaging and Radiation Oncology published by John Wiley & Sons Australia, Ltd on behalf of The Royal Australian and New Zealand College of Radiologists.
Qian, Xiaoai; Cao, Xiaobin; Zhao, Yan; Wang, Changhe; Luo, Wei; Rou, Keming; Zhang, Bo; Min, Xiangdong; Duan, Song; Tang, Renhai; Wu, Zunyou
2015-06-01
To explore the impacts of antiretroviral treatment on drug use and high risk sexual behaviors among HIV-positive MMT clients. A cross-sectional study was conducted in patients undergoing ART (ART-experienced) and patients not undergoing ART (ART-naive) attending MMT in 5 clinics in Yunnan Honghe and Dehong prefectures in 2014. A questionnaire was designed to collect socio-demographic characteristics, ART and MMT information and sexual and drug use behaviors within 3 months before the investigation was conducted. Logistic regression analysis was conducted to identify the predictors for drug use and risky sexual behaviors. A total of 328 cases were included in the analysis, among which 202 were ART-experienced and 126 were ART-naÏve. Among 152 respondents who were sexually active, 61 (40.1%) reported having unprotected sex (UPS) with their regular partners in the prior 3 months. A total of 57.6% (189/328) of the respondents used drugs in the prior 3 months. Multiple logistic regression analysis revealed that younger than 35 years old (OR = 3.57, 95% CI: 1.23-10.37), fertility desire (OR = 4.47, 95% CI: 1.49-13.41), partner being HIV-positive (OR = 4.62, 95% CI: 1.80-11.86), length of MMT attendance less than 5 years (OR = 2.92, 95% CI: 1.14-7.53), agreed that it was necessary to use condom no matter the viral load is high or low (OR = 0.14, 95% CI: 0.04-0.51) were protective factors of UPS in the prior 3 months. Multiple logistic regression analysis revealed that being Han (OR = 0.46, 95% CI: 0.24-0.89), feeling having good health status (OR = 0.39, 95% CI: 0.18-0.85), being enrolled in ART (OR = 0.32, 95% CI: 0.17-0.60) were protective factors for drug use in the prior three months, having contact with drug using friends (OR = 4.41, 95% CI: 2.31-8.29), having experience of missing an MMT dose (OR = 3.47, 95% CI: 1.92-6.29), and not satisfied with current MMT dose (OR = 13.92, 95% CI: 3.24-59.93) were risk factors for drug use during the prior three months. ART was not associated with risky sexual behavior and drug use in the prior 3 months in this population. Future interventions should promote ART among this population, and provide education at the same time to prevent the emergence of cross infections and drug-resistant strains.
Suzuki, Mizue; Kurata, Sadami; Yamamoto, Emiko; Makino, Kumiko; Kanamori, Masao
2012-09-01
The purpose of this study was to clarify potential fall-related behaviors as fall risk factors that may predict the potential for falls among the elderly patients with dementia at a geriatric facility in Japan. This study was conducted from April 2008 to May 2009. A baseline study was conducted in April 2008 to evaluate Mini-Mental State Examination, Physical Self-Maintenance Scale, fall-related behaviors, and other factors. For statistical analysis, paired t test and logistic analysis were used to compare each item between fallers and nonfallers. A total of 135 participants were followed up for 1 year; 50 participants (37.04%) fell during that period. Results of multiple logistic regression analysis showed that the total score for fall-related behaviors was significantly related to falls. It was suggested that 11 fall-related behaviors may be effective indicators to predict falls among the elderly patients with dementia.
Chae, Su Jin; Jeong, So Mi; Chung, Yoon-Sok
2017-09-01
This study is aimed at identifying the relationships between medical school students' academic burnout, empathy, and calling, and determining whether their calling has a mediating effect on the relationship between academic burnout and empathy. A mixed method study was conducted. One hundred twenty-seven medical students completed a survey. Scales measuring academic burnout, medical students' empathy, and calling were utilized. For statistical analysis, correlation analysis, descriptive statistics analysis, and hierarchical multiple regression analyses were conducted. For qualitative approach, eight medical students participated in a focus group interview. The study found that empathy has a statistically significant, negative correlation with academic burnout, while having a significant, positive correlation with calling. Sense of calling proved to be an effective mediator of the relationship between academic burnout and empathy. This result demonstrates that calling is a key variable that mediates the relationship between medical students' academic burnout and empathy. As such, this study provides baseline data for an education that could improve medical students' empathy skills.
Dietary patterns and risk of ductal carcinoma of the breast: a factor analysis in Uruguay.
Ronco, Alvaro L; De Stefani, Eduardo; Deneo-Pellegrini, Hugo; Boffetta, Paolo; Aune, Dagfinn; Silva, Cecilia; Landó, Gabriel; Luaces, María E; Acosta, Gisele; Mendilaharsu, María
2010-01-01
Breast cancer (BC) shows very high incidence rates in Uruguayan women. The present factor analysis of ductal carcinoma of the breast, the most frequent histological type of this malignancy both in Uruguay and in the World, was conducted at a prepaid hospital of Montevideo, Uruguay. We identified 111 cases with ductal BC and 222 controls with normal mammograms. A factor analysis was conducted using 39 food groups, allowing retention of six factors analyzed through logistic regression in order to obtain odds ratios (OR) associated with ductal BC. The low fat and non-alcoholic beverage patterns were inversely associated (OR=0.30 and OR=0.45, respectively) with risk. Conversely, the fatty cheese pattern was positively associated (OR=4.17) as well as the fried white meat (OR=2.28) and Western patterns (OR 2.13). Ductal BC shared similar dietary risk patterns as those identified by studies not discriminating between histologic type of breast cancer.
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
NASA Astrophysics Data System (ADS)
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-03-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.
Lamont, Andrea E.; Vermunt, Jeroen K.; Van Horn, M. Lee
2016-01-01
Regression mixture models are increasingly used as an exploratory approach to identify heterogeneity in the effects of a predictor on an outcome. In this simulation study, we test the effects of violating an implicit assumption often made in these models – i.e., independent variables in the model are not directly related to latent classes. Results indicated that the major risk of failing to model the relationship between predictor and latent class was an increase in the probability of selecting additional latent classes and biased class proportions. Additionally, this study tests whether regression mixture models can detect a piecewise relationship between a predictor and outcome. Results suggest that these models are able to detect piecewise relations, but only when the relationship between the latent class and the predictor is included in model estimation. We illustrate the implications of making this assumption through a re-analysis of applied data examining heterogeneity in the effects of family resources on academic achievement. We compare previous results (which assumed no relation between independent variables and latent class) to the model where this assumption is lifted. Implications and analytic suggestions for conducting regression mixture based on these findings are noted. PMID:26881956
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-01-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254
Oral health status and the epidemiologic paradox within latino immigrant groups
2012-01-01
Background According to the United States census, there are 28 categories that define “Hispanic/Latinos.” This paper compares differences in oral health status between Mexican immigrants and other Latino immigrant groups. Methods Derived from a community-based sample (N = 240) in Los Angeles, this cross-sectional study uses an interview covering demographic and behavioral measures, and an intraoral examination using NIDCR epidemiologic criteria. Descriptive, bivariate analysis, and multiple regression analysis were conducted to examine the determinants that are associated with the Oral Health Status Index (OHSI). Results Mexican immigrants had a significantly higher OHSI (p < .05) compared to other Latinos. The multilinear regression showed that both age and gender (p < .05), percentage of untreated decayed teeth (p < .001), number of replaced missing teeth (p < .001), and attachment loss (p < .001) were significant. Conclusions Compared with the other Latino immigrants in our sample, Mexican immigrants have significantly better oral health status. This confirms the epidemiologic paradox previously found in comparisons of Mexicans with whites and African Americans. In this case of oral health status the paradox also occurs between Mexicans and other Latinos. Therefore, when conducting oral health studies of Latinos, more consideration needs to be given to differences within Latino subgroups, such as their country of origin and their unique ethnic and cultural characteristics. PMID:22958726
Wang, Wen; Wang, Tong; Feng, Xiaoshuang; Sun, Li
2017-03-01
Acute kidney injury (AKI) has been increasingly recognized as a common and serious postoperative complication. Although many studies have been conducted to investigate postoperative AKI after thoracic surgery, little is known about AKI after esophageal surgery. Thus, we conducted this study to determine the incidence and identify risk factors of postoperative AKI after esophageal cancer surgery. A retrospective nested case-control study of patients undergoing elective esophageal cancer surgery between July 2013 and July 2016 in a single tertiary specialized cancer hospital was performed. The primary outcome was development of AKI. Conditional logistic regression analysis was performed to identify independent risk factors for AKI. Of 2094 patients, 51 (2.4%) developed postoperative AKI after esophageal cancer surgery. In multivariate conditional logistic regression analysis, four risk factors for AKI after esophageal surgery for cancer were identified: preoperative serum creatinine level (OR 1.040; 95% CI 1.012-1.069), duration of surgery (OR 1.009; 95% CI 1.005-1.014), smoking history (OR 3.029; 95% CI 1.092-8.399) and hypertension (OR 6.422; 95% CI 2.736-15.070). Postoperative AKI occurred in 2.4% of patients after esophageal surgery for cancer. Preoperative serum creatinine level, duration of surgery, smoking history and hypertension were independent risk factors for postoperative AKI. Copyright © 2017 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Kobayashi, Tohru
2017-01-01
Objective The present study aimed to explore the effects of sense of coherence (SOC) on depressive symptoms after employment in the Japan Self-Defense Force among male young adults.Methods In April 2013, 953 new male members of the Japan Ground Self-Defense Force (JGSDF; age range: 18-24 years) participated in this study. Depressive symptoms were assessed using the 20-item version of the Center for Epidemiologic Studies Depression scale (CES-D), which defines a score of 16 or greater as indicating the presence of depressive symptoms. The SOC score was assessed using a 13-item version (SOC-13), in which a score of 59 or greater is as assigned to the high score group. A second survey was conducted two months later, in June of 2013. For the analysis, we selected participants without depressive symptoms at the baseline survey. The association between SOC scores at baseline and the onset of depressive symptoms was examined using a logistic regression analysis.Results The final analysis was conducted on data on 389 new male members of the JGSDF. The logistic regression analysis showed a significant reduction in the onset of depressive symptoms among the group with high SOC scores (odds ratios: 0.59, 95% confidence interval=0.35-0.98) as compared with that observed in the group with low SOC scores.Conclusions The present study clarified that SOC among male young adults has a buffering effect on the risk of developing depressive symptoms after employment in the Japan Self-Defense Force. Our results may be useful for improving the mental health of new employees.
Saber, W.; Moua, T.; Williams, E. C.; Verso, M.; Agnelli, G.; Couban, S.; Young, A.; De Cicco, M.; Biffi, R.; van Rooden, C. J.; Huisman, M. V.; Fagnani, D.; Cimminiello, C.; Moia, M.; Magagnoli, M.; Povoski, S. P.; Malak, S. F.; Lee, A. Y.
2010-01-01
Background Knowledge of independent, baseline risk factors of catheter-related thrombosis (CRT) may help select adult cancer patients at high risk to receive thromboprophylaxis. Objectives We conducted a meta-analysis of individual patient-level data to identify these baseline risk factors. Patients/Methods MEDLINE, EMBASE, CINAHL, CENTRAL, DARE, Grey literature databases were searched in all languages from 1995-2008. Prospective studies and randomized controlled trials (RCTs) were eligible. Studies were included if original patient-level data were provided by the investigators and if CRT was objectively confirmed with valid imaging. Multivariate logistic regression analysis of 17 prespecified baseline characteristics was conducted. Adjusted odds ratios (OR) and 95% confidence intervals (CI) were estimated. Results A total sample of 5636 subjects from 5 RCTs and 7 prospective studies was included in the analysis. Among these subjects, 425 CRT events were observed. In multivariate logistic regression, the use of implanted ports as compared with peripherally implanted central venous catheters (PICC), decreased CRT risk (OR = 0.43; 95% CI, 0.23-0.80), whereas past history of deep vein thrombosis (DVT) (OR = 2.03; 95% CI, 1.05-3.92), subclavian venipuncture insertion technique (OR = 2.16; 95% CI, 1.07-4.34), and improper catheter tip location (OR = 1.92; 95% CI, 1.22-3.02), increased CRT risk. Conclusions CRT risk is increased with using PICC catheters, previous history of DVT, subclavian venipuncture insertion technique and improper positioning of the catheter tip. These factors may be useful for risk stratifying patients to select those for thromboprophylaxis. Prospective studies are needed to validate these findings. PMID:21040443
Revealing the association between cerebrovascular accidents and ambient temperature: a meta-analysis
NASA Astrophysics Data System (ADS)
Zorrilla-Vaca, Andrés; Healy, Ryan Jacob; Silva-Medina, Melissa M.
2017-05-01
The association between cerebrovascular accidents (CVA) and weather has been described across several studies showing multiple conflicting results. In this paper, we aim to conduct a meta-analysis to further clarify this association, as well as to find the potential sources of heterogeneity. PubMed, EMBASE, and Google Scholar were searched from inception through 2015, for articles analyzing the correlation between the incidence of CVA and temperature. A pooled effect size (ES) was estimated using random effects model and expressed as absolute values. Subgroup analyses by type of CVA were also performed. Heterogeneity and influence of covariates—including geographic latitude of the study site, male percentage, average temperature, and time interval—were assessed by meta-regression analysis. Twenty-six articles underwent full data extraction and scoring. A total of 19,736 subjects with CVA from 12 different countries were included and grouped as ischemic strokes (IS; n = 14,199), intracerebral hemorrhages (ICH; n = 3798), and subarachnoid hemorrhages (SAH; n = 1739). Lower ambient temperature was significantly associated with increase in incidence of overall CVA when using unadjusted (pooled ES = 0.23, P < 0.001) and adjusted data (pooled ES = 0.03, P = 0.003). Subgroup analyses showed that lower temperature has higher impact on the incidence of ICH (pooled ES = 0.34, P < 0.001), than that of IS (pooled ES = 0.22, P < 0.001) and SAH (pooled ES = 0.11, P = 0.012). In meta-regression analysis, the geographic latitude of the study site was the most influencing factor on this association ( Z-score = 8.68). Synthesis of the existing data provides evidence supporting that a lower ambient temperature increases the incidence of CVA. Further population-based studies conducted at negative latitudes are needed to clarify the influence of this factor.
A structure-activity analysis of the variation in oxime efficacy against nerve agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, Donald M.; Koplovitz, Irwin; Worek, Franz
2008-09-01
A structure-activity analysis was used to evaluate the variation in oxime efficacy of 2-PAM, obidoxime, HI-6 and ICD585 against nerve agents. In vivo oxime protection and in vitro oxime reactivation were used as indicators of oxime efficacy against VX, sarin, VR and cyclosarin. Analysis of in vivo oxime protection was conducted with oxime protective ratios (PR) from guinea pigs receiving oxime and atropine therapy after sc administration of nerve agent. Analysis of in vitro reactivation was conducted with second-order rate contants (k{sub r2}) for oxime reactivation of agent-inhibited acetylcholinesterase (AChE) from guinea pig erythrocytes. In vivo oxime PR and inmore » vitro k{sub r2} decreased as the volume of the alkylmethylphosphonate moiety of nerve agents increased from VX to cyclosarin. This effect was greater with 2-PAM and obidoxime (> 14-fold decrease in PR) than with HI-6 and ICD585 (< 3.7-fold decrease in PR). The decrease in oxime PR and k{sub r2} as the volume of the agent moiety conjugated to AChE increased was consistent with a steric hindrance mechanism. Linear regression of log (PR-1) against log (k{sub r2} {center_dot} [oxime dose]) produced two offset parallel regression lines that delineated a significant difference between the coupling of oxime reactivation and oxime protection for HI-6 and ICD585 compared to 2-PAM and obidoxime. HI-6 and ICD585 appeared to be 6.8-fold more effective than 2-PAM and obidoxime at coupling oxime reactivation to oxime protection, which suggested that the isonicotinamide group that is common to both of these oximes, but absent from 2-PAM and obidoxime, is important for oxime efficacy.« less
HIV Rapid Testing in a VA Emergency Department Setting: Cost Analysis at 5 Years.
Knapp, Herschel; Chan, Kee
2015-07-01
To conduct a comprehensive cost-minimization analysis to comprehend the financial attributes of the first 5 years of an implementation wherein emergency department (ED) registered nurses administered HIV oral rapid tests to patients. A health science research implementation team coordinated with ED stakeholders and staff to provide training, implementation guidelines, and support to launch ED registered nurse-administered HIV oral rapid testing. Deidentified quantitative data were gathered from the electronic medical records detailing quarterly HIV rapid test rates in the ED setting spanning the first 5 years. Comprehensive cost analyses were conducted to evaluate the financial impact of this implementation. At 5 years, a total of 2,620 tests were conducted with a quarterly mean of 131 ± 81. Despite quarterly variability in testing rates, regression analysis revealed an average increase of 3.58 tests per quarter. Over the course of this implementation, Veterans Health Administration policy transitioned from written to verbal consent for HIV testing, serving to reduce the time and cost(s) associated with the testing process. Our data indicated salient health outcome benefits for patients with respect to the potential for earlier detection, and associated long-run cost savings. Copyright © 2015. Published by Elsevier Inc.
Analyzing industrial energy use through ordinary least squares regression models
NASA Astrophysics Data System (ADS)
Golden, Allyson Katherine
Extensive research has been performed using regression analysis and calibrated simulations to create baseline energy consumption models for residential buildings and commercial institutions. However, few attempts have been made to discuss the applicability of these methodologies to establish baseline energy consumption models for industrial manufacturing facilities. In the few studies of industrial facilities, the presented linear change-point and degree-day regression analyses illustrate ideal cases. It follows that there is a need in the established literature to discuss the methodologies and to determine their applicability for establishing baseline energy consumption models of industrial manufacturing facilities. The thesis determines the effectiveness of simple inverse linear statistical regression models when establishing baseline energy consumption models for industrial manufacturing facilities. Ordinary least squares change-point and degree-day regression methods are used to create baseline energy consumption models for nine different case studies of industrial manufacturing facilities located in the southeastern United States. The influence of ambient dry-bulb temperature and production on total facility energy consumption is observed. The energy consumption behavior of industrial manufacturing facilities is only sometimes sufficiently explained by temperature, production, or a combination of the two variables. This thesis also provides methods for generating baseline energy models that are straightforward and accessible to anyone in the industrial manufacturing community. The methods outlined in this thesis may be easily replicated by anyone that possesses basic spreadsheet software and general knowledge of the relationship between energy consumption and weather, production, or other influential variables. With the help of simple inverse linear regression models, industrial manufacturing facilities may better understand their energy consumption and production behavior, and identify opportunities for energy and cost savings. This thesis study also utilizes change-point and degree-day baseline energy models to disaggregate facility annual energy consumption into separate industrial end-user categories. The baseline energy model provides a suitable and economical alternative to sub-metering individual manufacturing equipment. One case study describes the conjoined use of baseline energy models and facility information gathered during a one-day onsite visit to perform an end-point energy analysis of an injection molding facility conducted by the Alabama Industrial Assessment Center. Applying baseline regression model results to the end-point energy analysis allowed the AIAC to better approximate the annual energy consumption of the facility's HVAC system.
2013-01-01
Background In recent years, there has been growing interest in measuring the efficiency of hospitals in Iran and several studies have been conducted on the topic. The main objective of this paper was to review studies in the field of hospital efficiency and examine the estimated technical efficiency (TE) of Iranian hospitals. Methods Persian and English databases were searched for studies related to measuring hospital efficiency in Iran. Ordinary least squares (OLS) regression models were applied for statistical analysis. The PRISMA guidelines were followed in the search process. Results A total of 43 efficiency scores from 29 studies were retrieved and used to approach the research question. Data envelopment analysis was the principal frontier efficiency method in the estimation of efficiency scores. The pooled estimate of mean TE was 0.846 (±0.134). There was a considerable variation in the efficiency scores between the different studies performed in Iran. There were no differences in efficiency scores between data envelopment analysis (DEA) and stochastic frontier analysis (SFA) techniques. The reviewed studies are generally similar and suffer from similar methodological deficiencies, such as no adjustment for case mix and quality of care differences. The results of OLS regression revealed that studies that included more variables and more heterogeneous hospitals generally reported higher TE. Larger sample size was associated with reporting lower TE. Conclusions The features of frontier-based techniques had a profound impact on the efficiency scores among Iranian hospital studies. These studies suffer from major methodological deficiencies and were of sub-optimal quality, limiting their validity and reliability. It is suggested that improving data collection and processing in Iranian hospital databases may have a substantial impact on promoting the quality of research in this field. PMID:23945011
The Association of Fever with Total Mechanical Ventilation Time in Critically Ill Patients.
Park, Dong Won; Egi, Moritoki; Nishimura, Masaji; Chang, Youjin; Suh, Gee Young; Lim, Chae Man; Kim, Jae Yeol; Tada, Keiichi; Matsuo, Koichi; Takeda, Shinhiro; Tsuruta, Ryosuke; Yokoyama, Takeshi; Kim, Seon Ok; Koh, Younsuck
2016-12-01
This research aims to investigate the impact of fever on total mechanical ventilation time (TVT) in critically ill patients. Subgroup analysis was conducted using a previous prospective, multicenter observational study. We included mechanically ventilated patients for more than 24 hours from 10 Korean and 15 Japanese intensive care units (ICU), and recorded maximal body temperature under the support of mechanical ventilation (MAX(MV)). To assess the independent association of MAX(MV) with TVT, we used propensity-matched analysis in a total of 769 survived patients with medical or surgical admission, separately. Together with multiple linear regression analysis to evaluate the association between the severity of fever and TVT, the effect of MAX(MV) on ventilator-free days was also observed by quantile regression analysis in all subjects including non-survivors. After propensity score matching, a MAX(MV) ≥ 37.5°C was significantly associated with longer mean TVT by 5.4 days in medical admission, and by 1.2 days in surgical admission, compared to those with MAX(MV) of 36.5°C to 37.4°C. In multivariate linear regression analysis, patients with three categories of fever (MAX(MV) of 37.5°C to 38.4°C, 38.5°C to 39.4°C, and ≥ 39.5°C) sustained a significantly longer duration of TVT than those with normal range of MAX(MV) in both categories of ICU admission. A significant association between MAX(MV) and mechanical ventilator-free days was also observed in all enrolled subjects. Fever may be a detrimental factor to prolong TVT in mechanically ventilated patients. These findings suggest that fever in mechanically ventilated patients might be associated with worse mechanical ventilation outcome.
A quantitative description of normal AV nodal conduction curve in man.
Teague, S; Collins, S; Wu, D; Denes, P; Rosen, K; Arzbaecher, R
1976-01-01
The AV nodal conduction curve generated by the atrial extrastimulus technique has been described only qualitatively in man, making clinical comparison of known normal curves with those of suspected AV nodal dysfunction difficult. Also, the effects of physiological and pharmacological interventions have not been quantifiable. In 50 patients with normal AV conduction as defined by normal AH (less than 130 ms), normal AV nodal effective and functional refractory periods (less than 380 and less than 500 ms), and absence of demonstrable dual AV nodal pathways, we found that conduction curves (at sinus rhythm or longest paced cycle length) can be described by an exponential equation of the form delta = Ae-Bx. In this equation, delta is the increase in AV nodal conduction time of an extrastimulus compared to that of a regular beat and x is extrastimulus interval. The natural logarithm of this equation is linear in the semilogarithmic plane, thus permitting the constants A and B to be easily determined by a least-squares regression analysis with a hand calculator.
Using Dominance Analysis to Determine Predictor Importance in Logistic Regression
ERIC Educational Resources Information Center
Azen, Razia; Traxel, Nicole
2009-01-01
This article proposes an extension of dominance analysis that allows researchers to determine the relative importance of predictors in logistic regression models. Criteria for choosing logistic regression R[superscript 2] analogues were determined and measures were selected that can be used to perform dominance analysis in logistic regression. A…
Lorio, Morgan; Martinson, Melissa; Ferrara, Lisa
2016-01-01
Minimally invasive sacroiliac joint arthrodesis ("MI SIJ fusion") received a Category I CPT ® code (27279) effective January 1, 2015 and was assigned a work relative value unit ("RVU") of 9.03. The International Society for the Advancement of Spine Surgery ("ISASS") conducted a study consisting of a Rasch analysis of two separate surveys of surgeons to assess the accuracy of the assigned work RVU. A survey was developed and sent to ninety-three ISASS surgeon committee members. Respondents were asked to compare CPT ® 27279 to ten other comparator CPT ® codes reflective of common spine surgeries. The survey presented each comparator CPT ® code with its code descriptor as well as the description of CPT ® 27279 and asked respondents to indicate whether CPT ® 27279 was greater, equal, or less in terms of work effort than the comparator code. A second survey was sent to 557 U.S.-based spine surgeon members of ISASS and 241 spine surgeon members of the Society for Minimally Invasive Spine Surgery ("SMISS"). The design of the second survey mirrored that of the first survey except for the use of a broader set of comparator CPT ® codes (27 vs. 10). Using the work RVUs of the comparator codes, a Rasch analysis was performed to estimate the relative difficulty of CPT ® 27279, after which the work RVU of CPT ® 27279 was estimated by regression analysis. Twenty surgeons responded to the first survey and thirty-four surgeons responded to the second survey. The results of the regression analysis of the first survey indicate a work RVU for CPT ® 27279 of 14.36 and the results of the regression analysis of the second survey indicate a work RVU for CPT ® 27279 of 14.1. The Rasch analysis indicates that the current work RVU assigned to CPT ® 27279 is undervalued at 9.03. Averaging the results of the regression analyses of the two surveys indicates a work RVU for CPT ® 27279 of 14.23.
Wang, L F; Ding, Y J; Zhao, Q; Zhang, X L
2015-12-09
We conducted a case-control study to investigate the association between 3 common NALP3 polymorphisms (rs10754558, rs7512998, and rs12137901) and the susceptibility to primary gout. A total of 320 patients with primary gout and 320 controls were included in this study. The genotyping of NALP3 rs10754558, rs7512998, and rs12137901 were conducted by polymerase chain reaction-restriction fragment length polymorphism. Comparison analysis showed that primary gout patients were more likely to have higher body mass index, prevalence of hypertension, blood glucose, triglycerides, urea nitrogen, and uric acid (P < 0.05). Logistic regression analysis revealed no significant association between the NALP3 rs10754558, rs7512998, and rs12137901 polymorphisms and the risk of gouty arthritis. In conclusion, we found no significant association between NALP3 gene polymorphisms and the risk of primary gout.
NASA Technical Reports Server (NTRS)
Caldas, M.; Walker, R. T.; Shirota, R.; Perz, S.; Skole, D.
2003-01-01
This paper examines the relationships between the socio-demographic characteristics of small settlers in the Brazilian Amazon and the life cycle hypothesis in the process of deforestation. The analysis was conducted combining remote sensing and geographic data with primary data of 153 small settlers along the TransAmazon Highway. Regression analyses and spatial autocorrelation tests were conducted. The results from the empirical model indicate that socio-demographic characteristics of households as well as institutional and market factors, affect the land use decision. Although remotely sensed information is not very popular among Brazilian social scientists, these results confirm that they can be very useful for this kind of study. Furthermore, the research presented by this paper strongly indicates that family and socio-demographic data, as well as market data, may result in misspecification problems. The same applies to models that do not incorporate spatial analysis.
Geospatial Resource Access Analysis In Hedaru, Tanzania
NASA Astrophysics Data System (ADS)
Clark, Dylan G.; Premkumar, Deepak; Mazur, Robert; Kisimbo, Elibariki
2013-12-01
Populations around the world are facing increased impacts of anthropogenic-induced environmental changes and rapid population movements. These environmental and social shifts are having an elevated impact on the livelihoods of agriculturalists and pastoralists in developing countries. This appraisal integrates various tools—usually used independently— to gain a comprehensive understanding of the regional livelihood constraints in the rural Hedaru Valley of northeastern Tanzania. Conducted in three villages with different natural resources, using three primary methods: 1) participatory mapping of infrastructures; 2) administration of quantitative, spatially-tied surveys (n=80) and focus groups (n=14) that examined land use, household health, education, and demographics; 3) conducting quantitative time series analysis of Landsat- based Normalized Difference Vegetation Index images. Through various geospatial and multivariate linear regression analyses, significant geospatial trends emerged. This research added to the academic understanding of the region while establishing pathways for climate change adaptation strategies.
Huang, Chi-Jung; Wang, Wei-Ting; Sung, Shih-Hsien; Chen, Chen-Huan; Lip, Gregory Yh; Cheng, Hao-Min; Chiang, Chern-En
2018-05-02
To investigate the effects of blood glucose control with antihyperglycemic agents with minimal hypoglycemia risk on cardiovascular outcomes in patients with type 2 diabetes (T2D). Randomized controlled trials (RCTs) comparing the relative efficacy and safety of antidiabetic drugs with less hypoglycemia risk were comprehensively searched in MEDLINE, Embase, and the Cochrane Library up to January 27, 2018. Mixed-effects meta-regression analysis was conducted to explore the relationship between haemoglobin A1c (HbA1c) reduction and the risk of major adverse cardiovascular events (MACE), myocardial infarction, stroke, cardiovascular death, all-cause death, and hospitalization for heart failure. Ten RCTs comprising 92400 participants with T2D were included and provided information on 9773 MACE during a median follow-up of 2.6 years. The mean HbA1c concentration was 0.42% lower (median, 0.27-0.86%) for participants given antihyperglycemic agents than those given placebo. The meta-regression analysis demonstrated that HbA1c reduction was significantly associated with a decreased risk of MACE (β value, -0.39 to -0.55; P<0.02) even after adjusting for each of the following possible confounding factors including age, sex, baseline HbA1c, duration of follow-up, difference in achieved systolic blood pressure, difference in achieved body weight, or risk difference in hypoglycemia. Lowering HbA1c by 1% conferred a significant risk reduction of 30% (95% CI, 17-40%) for MACE. By contrast, the meta-regression analysis for trials using conventional agents failed to demonstrate a significant relationship between achieved HbA1c difference and MACE risk (P>0.74). Compared with placebo, newer T2D agents with less hypoglycemic hazard significantly reduced the risk of MACE. The MACE reduction seems to be associated with HbA1c reduction in a linear relationship. This article is protected by copyright. All rights reserved.
Galloway, Joel M.
2014-01-01
The Red River of the North (hereafter referred to as “Red River”) Basin is an important hydrologic region where water is a valuable resource for the region’s economy. Continuous water-quality monitors have been operated by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, Minnesota Pollution Control Agency, City of Fargo, City of Moorhead, City of Grand Forks, and City of East Grand Forks at the Red River at Fargo, North Dakota, from 2003 through 2012 and at Grand Forks, N.Dak., from 2007 through 2012. The purpose of the monitoring was to provide a better understanding of the water-quality dynamics of the Red River and provide a way to track changes in water quality. Regression equations were developed that can be used to estimate concentrations and loads for dissolved solids, sulfate, chloride, nitrate plus nitrite, total phosphorus, and suspended sediment using explanatory variables such as streamflow, specific conductance, and turbidity. Specific conductance was determined to be a significant explanatory variable for estimating dissolved solids concentrations at the Red River at Fargo and Grand Forks. The regression equations provided good relations between dissolved solid concentrations and specific conductance for the Red River at Fargo and at Grand Forks, with adjusted coefficients of determination of 0.99 and 0.98, respectively. Specific conductance, log-transformed streamflow, and a seasonal component were statistically significant explanatory variables for estimating sulfate in the Red River at Fargo and Grand Forks. Regression equations provided good relations between sulfate concentrations and the explanatory variables, with adjusted coefficients of determination of 0.94 and 0.89, respectively. For the Red River at Fargo and Grand Forks, specific conductance, streamflow, and a seasonal component were statistically significant explanatory variables for estimating chloride. For the Red River at Grand Forks, a time component also was a statistically significant explanatory variable for estimating chloride. The regression equations for chloride at the Red River at Fargo provided a fair relation between chloride concentrations and the explanatory variables, with an adjusted coefficient of determination of 0.66 and the equation for the Red River at Grand Forks provided a relatively good relation between chloride concentrations and the explanatory variables, with an adjusted coefficient of determination of 0.77. Turbidity and streamflow were statistically significant explanatory variables for estimating nitrate plus nitrite concentrations at the Red River at Fargo and turbidity was the only statistically significant explanatory variable for estimating nitrate plus nitrite concentrations at Grand Forks. The regression equation for the Red River at Fargo provided a relatively poor relation between nitrate plus nitrite concentrations, turbidity, and streamflow, with an adjusted coefficient of determination of 0.46. The regression equation for the Red River at Grand Forks provided a fair relation between nitrate plus nitrite concentrations and turbidity, with an adjusted coefficient of determination of 0.73. Some of the variability that was not explained by the equations might be attributed to different sources contributing nitrates to the stream at different times. Turbidity, streamflow, and a seasonal component were statistically significant explanatory variables for estimating total phosphorus at the Red River at Fargo and Grand Forks. The regression equation for the Red River at Fargo provided a relatively fair relation between total phosphorus concentrations, turbidity, streamflow, and season, with an adjusted coefficient of determination of 0.74. The regression equation for the Red River at Grand Forks provided a good relation between total phosphorus concentrations, turbidity, streamflow, and season, with an adjusted coefficient of determination of 0.87. For the Red River at Fargo, turbidity and streamflow were statistically significant explanatory variables for estimating suspended-sediment concentrations. For the Red River at Grand Forks, turbidity was the only statistically significant explanatory variable for estimating suspended-sediment concentration. The regression equation at the Red River at Fargo provided a good relation between suspended-sediment concentration, turbidity, and streamflow, with an adjusted coefficient of determination of 0.95. The regression equation for the Red River at Grand Forks provided a good relation between suspended-sediment concentration and turbidity, with an adjusted coefficient of determination of 0.96.
A primer on marginal effects-part II: health services research applications.
Onukwugha, E; Bergtold, J; Jain, R
2015-02-01
Marginal analysis evaluates changes in a regression function associated with a unit change in a relevant variable. The primary statistic of marginal analysis is the marginal effect (ME). The ME facilitates the examination of outcomes for defined patient profiles or individuals while measuring the change in original units (e.g., costs, probabilities). The ME has a long history in economics; however, it is not widely used in health services research despite its flexibility and ability to provide unique insights. This article, the second in a two-part series, discusses practical issues that arise in the estimation and interpretation of the ME for a variety of regression models often used in health services research. Part one provided an overview of prior studies discussing ME followed by derivation of ME formulas for various regression models relevant for health services research studies examining costs and utilization. The current article illustrates the calculation and interpretation of ME in practice and discusses practical issues that arise during the implementation, including: understanding differences between software packages in terms of functionality available for calculating the ME and its confidence interval, interpretation of average marginal effect versus marginal effect at the mean, and the difference between ME and relative effects (e.g., odds ratio). Programming code to calculate ME using SAS, STATA, LIMDEP, and MATLAB are also provided. The illustration, discussion, and application of ME in this two-part series support the conduct of future studies applying the concept of marginal analysis.
A comparison of two microscale laboratory reporting methods in a secondary chemistry classroom
NASA Astrophysics Data System (ADS)
Martinez, Lance Michael
This study attempted to determine if there was a difference between the laboratory achievement of students who used a modified reporting method and those who used traditional laboratory reporting. The study also determined the relationships between laboratory performance scores and the independent variables score on the Group Assessment of Logical Thinking (GALT) test, chronological age in months, gender, and ethnicity for each of the treatment groups. The study was conducted using 113 high school students who were enrolled in first-year general chemistry classes at Pueblo South High School in Colorado. The research design used was the quasi-experimental Nonequivalent Control Group Design. The statistical treatment consisted of the Multiple Regression Analysis and the Analysis of Covariance. Based on the GALT, students in the two groups were generally in the concrete and transitional stages of the Piagetian cognitive levels. The findings of the study revealed that the traditional and the modified methods of laboratory reporting did not have any effect on the laboratory performance outcome of the subjects. However, the students who used the traditional method of reporting showed a higher laboratory performance score when evaluation was conducted using the New Standards rubric recommended by the state. Multiple Regression Analysis revealed that there was a significant relationship between the criterion variable student laboratory performance outcome of individuals who employed traditional laboratory reporting methods and the composite set of predictor variables. On the contrary, there was no significant relationship between the criterion variable student laboratory performance outcome of individuals who employed modified laboratory reporting methods and the composite set of predictor variables.
Ibrahim, Inas Rifaat; Ibrahim, Mohamed Izham Mohamed; Al-Haddad, Mahmoud Sa'di
2012-10-01
Beyond the direct pharmacological effect of medicines, preferences and perceptions toward a particular oral solid dosage form (OSDF) play a crucial role in recovery and may reduce adherence to the prescribed treatment. This study conducted to investigate the most preferred OSDF and the degree to which swallowing solid medication is an issue, to assess perceptions of the therapeutic benefits of the OSDF, and to find predictors of the most preferred OSDF. A cross-sectional study, through convenience sample method, was conducted to survey consumers visiting community pharmacies in Baghdad, Iraq. Data was collected by self-administered and pre-piloted questionnaires, and analyzed using Statistical Package for Social Science. Multiple logistic regression analysis and Chi-square tests were used at alpha level = 0.05. A total of 1,000 questionnaire were included in the analysis. Of all respondents, 52.9 % preferred capsule among other OSDF and this preference varied significantly with a number of socio-demographic factors. Ease of swallowing solid medication was the main issue which resulted in preferences for a particular form. A negative perception of the therapeutic benefits of the OSDF was found among 89.1 % of the consumers. Multiple logistic regression analysis indicated that gender, ease of swallowing, and perceptions of the therapeutic benefits of the OSDF were significant predictors of capsule preferences. Given the fact that consumers are the end users of medicines and their preferences may influence response to the treatment, efforts are worthwhile by the prescribers and medicines' manufactures to understand consumers' preferences of a particular dosage form in order to achieve successful therapy outcomes.
The relationship between depressive symptoms among female workers and job stress and sleep quality
2013-01-01
Objective Recently, workers' mental health has become important focus in the field of occupational health management. Depression is a psychiatric illness with a high prevalence. The association between job stress and depressive symptoms has been demonstrated in many studies. Recently, studies about the association between sleep quality and depressive symptoms have been reported, but there has been no large-scaled study in Korean female workers. Therefore, this study was designed to investigate the relationship between job stress and sleep quality, and depressive symptoms in female workers. Methods From Mar 2011 to Aug 2011, 4,833 female workers in the manufacturing, finance, and service fields at 16 workplaces in Yeungnam province participated in this study, conducted in combination with a worksite-based health checkup initiated by the National Health Insurance Service (NHIS). In this study, a questionnaire survey was carried out using the Korean Occupational Stress Scale-Short Form(KOSS-SF), Pittsburgh Sleep Quality Index(PSQI) and Center for Epidemiological Studies-Depression Scale(CES-D). The collected data was entered in the system and analyzed using the PASW (version 18.0) program. A correlation analysis, cross analysis, multivariate logistic regression analysis, and hierarchical multiple regression analysis were conducted. Results Among the 4,883 subjects, 978 subjects (20.0%) were in the depression group. Job stress(OR=3.58, 95% CI=3.06-4.21) and sleep quality(OR=3.81, 95% CI=3.18-4.56) were strongly associated with depressive symptoms. Hierarchical multiple regression analysis revealed that job stress displayed explanatory powers of 15.6% on depression while sleep quality displayed explanatory powers of 16.2%, showing that job stress and sleep quality had a closer relationship with depressive symptoms, compared to the other factors. The multivariate logistic regression analysis yielded odds ratios between the 7 subscales of job stress and depressive symptoms in the range of 1.30-2.72 and the odds ratio for the lack of reward was the highest(OR=2.72, 95% CI=2.32-3.19). In the partial correlation analysis between each of the 7 subscales of sleep quality (PSQI) and depressive symptoms, the correlation coefficient of subjective sleep quality and daytime dysfunction were 0.352 and 0.362, respectively. Conclusion This study showed that the depressive symptoms of female workers are closely related to their job stress and sleep quality. In particular, the lack of reward and subjective sleep factors are the greatest contributors to depression. In the future, a large-scale study should be performed to augment the current study and to reflect all age groups in a balanced manner. The findings on job stress, sleep, and depression can be utilized as source data to establish standards for mental health management of the ever increasing numbers of female members of the workplace. PMID:24472381
Nishimura, Motonobu; Kato, Yasuhisa; Tanaka, Tsuyoshi; Taki, Hideki; Tone, Atsuhito; Yamada, Kazunori; Suzuki, Seiji; Saito, Miho; Ando, Yutaka; Hoshiyama, Yoshiharu
2017-08-01
The Home Blood Pressure for Diabetic Nephropathy study is a prospective observational study conducted to determine the effect of home blood pressure (HBP) on remission/regression of microalbuminuria in patients with type 2 diabetes mellitus (DM). Patients with type 2 DM having microalbuminuria were followed-up for 3 years. Remission of microalbuminuria was defined as shift from microalbuminuria to normoalbuminuria. Regression of microalbuminuria was defined as a 50% reduction in urinary albumin-creatinine ratio from baseline. All measurements of morning and evening HBP were averaged every year and defined as all HBP. In total, 235 patients were followed up. The 3-year cumulative incidences of remission and regression were 32.3% and 44.7%, respectively. Following analysis of all cases, the degree of decline in all home systolic blood pressure (AHSBP), rather than mean AHSBP, influenced the incidence of remission/regression. There was a strong relationship between the decline in AHSBP during the follow-up period and AHSBP at baseline. Therefore, separate analyses of the patients with AHSBP below 140 mm Hg at baseline were performed, which revealed that mean AHSBP during the follow-up period independently affected the incidence of remission/regression. The hazard ratio for inducing remission/regression was significantly lower in patients with AHSBP during the follow-up period above 130 mm Hg than in those with AHSBP below 120 mm Hg. Optimal AHSBP for the induction of remission/regression of microalbuminuria might be below 130 mm Hg. It is required to confirm whether keeping AHSBP below 130 mm Hg leads to subsequent renoprotection or not. Trial Number UMIN000000804. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com
NASA Technical Reports Server (NTRS)
Yeager, W. T., Jr.; Hamouda, M. N. H.; Mantay, W. R.
1983-01-01
A research effort of analysis and testing was conducted to investigate the ground resonance phenomenon of a soft in-plane hingeless rotor. Experimental data were obtained using a 9 ft. (2.74 m) diameter model rotor in hover and forward flight. Eight model rotor configurations were investigated. Configuration parameters included pitch flap coupling, blade sweep and droop, and precone of the blade feathering axis. An analysis based on a comprehensive analytical model of rotorcraft aerodynamics and dynamics was used. The moving block was used to experimentally determine the regressing lead lag mode damping. Good agreement was obtained between the analysis and test. Both analysis and experiment indicated ground resonance instability in hover. An outline of the analysis, a description of the experimental model and procedures, and comparison of the analytical and experimental data are presented.
Valeri, A; Briollais, L; Azzouzi, R; Fournier, G; Mangin, P; Berthon, P; Cussenot, O; Demenais, F
2003-03-01
Four segregation analyses concerning prostate cancer (CaP), three conducted in the United States and one in Northern Europe, have shown evidence for a dominant major gene but with different parameter estimates. A recent segregation analysis of Australian pedigrees has found a better fit of a two-locus model than single-locus models. This model included a dominantly inherited increased risk that was greater at younger ages and a recessively inherited or X-linked increased risk that was greater at older ages. Recent linkage analyses have led to the detection of at least 8 CaP predisposing genes, suggesting a complex inheritance and genetic heterogeneity. To assess the nature of familial aggregation of prostate cancer in France, segregation analysis was conducted in 691 families ascertained through 691 CaP patients, recruited from three French hospitals and unselected with respect to age at diagnosis, clinical stage or family history. This mode of family inclusion, without any particular selection of the probands, is unique, as probands from all previous analyses were selected according to various criteria. Segregation analysis was carried out using the logistic hazard regressive model, as incorporated in the REGRESS program, which can accommodate a major gene effect, residual familial dependences of any origin (genetic and/or environmental), and covariates, while including survival analysis concepts. Segregation analysis showed evidence for the segregation of an autosomal dominant gene (allele frequency of 0.03%) with an additional brother-brother dependence. The estimated cumulative risks of prostate cancer by age 85 years, among subjects with the at-risk genotype, were 86% in the fathers' generation and 99% in the probands' generation. This study supports the model of Mendelian transmission of a rare autosomal dominant gene with high penetrance, and demonstrates that additional genetic and/or common sibling environmental factors are involved to account for the familial clustering of CaP.
Poursafa, Parinaz; Baradaran-Mahdavi, Sadegh; Moradi, Bita; Haghjooy Javanmard, Shaghayegh; Tajadini, Mohammadhasan; Mehrabian, Ferdous; Kelishadi, Roya
2016-04-01
This study aims to investigate the association of exposure to ambient air pollution during pregnancy with cord blood concentrations of surrogate markers of endothelial dysfunction. This population-based cohort was conducted from March 2014 to March 2015 among 250 mother-neonate pairs in urban areas of Isfahan, the second large and air-polluted city in Iran. We analyzed the association between the ambient carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), particular matter 10 (PM10), and air quality index (AQI) with cord blood levels of endothelin-1, vascular adhesion molecule (VCAM), and intercellular adhesion molecule (ICAM). Multiple regression analysis was conducted after adjustment for potential confounding factors and covariates. The regression coefficient (beta), standard error of the estimate (SE), and 95% confidence intervals for each regression coefficient (95% CI) are reported. Data of 233 mother-neonate pairs were complete, and included in the analysis. Multiple regression analyses showed that AQI, CO and O3 had significant correlation with cord blood ICAM-1 [Beta (SE), 95%CI: 2.93 (0.72), 1.33,5.54; 2.28(1.44), 1.56,5.12; and 2.02(0.01), 1.03,2.04, respectively] as well as with VCAM-1 [2.78(0.91), 1.69,4.57; 2.47(1.47), 1.43,5.37; and 2.01(0.01),1.07,2.04, respectively]. AQI, PM10, and SO2 were significantly associated with Endothelin-1 concentrations [Beta (SE), 95%CI: 10.16(5.08),7.61,14.28; 9.70(3.46), 2.88,16.52; and 1.07(0.02), 1.03,2.11, respectively]. The significant associations of air pollutants with markers of endothelial dysfunction during fetal period may provide another evidence on the adverse health effects of air pollutants on early stages of atherosclerosis from fetal period. Our findings underscore the importance of considering environmental factors in primordial prevention of chronic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Prevalence of hyperphagia in Alzheimer's disease: a meta-analysis.
Shea, Yat-Fung; Lee, Shui-Ching; Chu, Leung-Wing
2018-02-06
Unlike other behavioural and psychological symptoms of dementia, hyperphagia is less recognized among patients with Alzheimer's disease (AD). The prevalence of hyperphagia varies among studies, but there has been no systematic review or meta-analysis. An extensive search on the literature on hyperphagia in AD published between 1 January 1980 and 30 October 2017 was conducted. Data on the prevalence were retrieved. Meta-analysis with a random effect model was performed to determine the pooled estimate of prevalence. Meta-regression analysis was performed based on study characteristics, population demographics, or condition information. Results from 20 studies were extracted. Twenty-six reported cases of hyperphagia were identified. The mean age of onset was 70.7 ± 8.9 years, with a male predominance (68.4%). Hyperphagia occurred in all stages of AD. Only eight studies reported the prevalence of hyperphagia. Meta-analysis showed a pooled prevalence of hyperphagia of 18.6%. Publication bias may have been present. Meta-regression showed that ethnicity accounted for the variance among studies (coefficient: -1.247 (95% confidence interval: -1.978 to -0.516), R 2 analogue: 0.77, P < 0.001). Hyperphagia occurs in all stages of AD. In this meta-analysis of eight published studies, the prevalence of hyperphagia was 18.6%. In view of the possible publication bias, a large-scale study on hyperphagia is recommended in the future. © 2018 Japanese Psychogeriatric Society.
Chang, Sherilyn; Ong, Hui Lin; Seow, Esmond; Chua, Boon Yiang; Abdin, Edimansyah; Samari, Ellaisha; Chong, Siow Ann; Subramaniam, Mythily
2017-01-01
Objectives To assess stigma towards people with mental illness among Singapore medical and nursing students using the Opening Minds Stigma Scale for Health Care Providers (OMS-HC), and to examine the relationship of students’ stigmatising attitudes with sociodemographic and education factors. Design and setting Cross-sectional study conducted in Singapore Participants The study was conducted among 1002 healthcare (502 medical and 500 nursing) students during April to September 2016. Students had to be Singapore citizens or permanent residents and enrolled in public educational institutions to be included in the study. The mean (SD) age of the participants was 21.3 (3.3) years, with the majority being females (71.1%). 75.2% of the participants were Chinese, 14.1% were Malays, and 10.7% were either Indians or of other ethnicity. Methods Factor analysis was conducted to validate the OMS-HC scale in the study sample and to examine its factor structure. Descriptive statistics and multivariate linear regression were used to examine sociodemographic and education correlates. Results Factor analysis revealed a three-factor structure with 14 items. The factors were labelled as attitudes towards help-seeking and people with mental illness, social distance and disclosure. Multivariable linear regression analysis showed that medical students were found to be associated with lower total OMS-HC scores (P<0.05), less negative attitudes (P<0.001) and greater disclosure (P<0.05) than nursing students. Students who had a monthly household income of below S$4000 had more unfavourable attitudes than those with an income of SGD$10 000 and above (P<0.05). Having attended clinical placement was associated with more negative attitudes (P<0.05) among the students. Conclusion Healthcare students generally possessed positive attitudes towards help-seeking and persons with mental illness, though they preferred not to disclose their own mental health condition. Academic curriculum may need to enhance the component of mental health training, particularly on reducing stigma in certain groups of students. PMID:29208617
Pathan, Sameer A; Bhutta, Zain A; Moinudheen, Jibin; Jenkins, Dominic; Silva, Ashwin D; Sharma, Yogdutt; Saleh, Warda A; Khudabakhsh, Zeenat; Irfan, Furqan B; Thomas, Stephen H
2016-01-01
Background: Standard Emergency Department (ED) operations goals include minimization of the time interval (tMD) between patients' initial ED presentation and initial physician evaluation. This study assessed factors known (or suspected) to influence tMD with a two-step goal. The first step was generation of a multivariate model identifying parameters associated with prolongation of tMD at a single study center. The second step was the use of a study center-specific multivariate tMD model as a basis for predictive marginal probability analysis; the marginal model allowed for prediction of the degree of ED operations benefit that would be affected with specific ED operations improvements. Methods: The study was conducted using one month (May 2015) of data obtained from an ED administrative database (EDAD) in an urban academic tertiary ED with an annual census of approximately 500,000; during the study month, the ED saw 39,593 cases. The EDAD data were used to generate a multivariate linear regression model assessing the various demographic and operational covariates' effects on the dependent variable tMD. Predictive marginal probability analysis was used to calculate the relative contributions of key covariates as well as demonstrate the likely tMD impact on modifying those covariates with operational improvements. Analyses were conducted with Stata 14MP, with significance defined at p < 0.05 and confidence intervals (CIs) reported at the 95% level. Results: In an acceptable linear regression model that accounted for just over half of the overall variance in tMD (adjusted r 2 0.51), important contributors to tMD included shift census ( p = 0.008), shift time of day ( p = 0.002), and physician coverage n ( p = 0.004). These strong associations remained even after adjusting for each other and other covariates. Marginal predictive probability analysis was used to predict the overall tMD impact (improvement from 50 to 43 minutes, p < 0.001) of consistent staffing with 22 physicians. Conclusions: The analysis identified expected variables contributing to tMD with regression demonstrating significance and effect magnitude of alterations in covariates including patient census, shift time of day, and number of physicians. Marginal analysis provided operationally useful demonstration of the need to adjust physician coverage numbers, prompting changes at the study ED. The methods used in this analysis may prove useful in other EDs wishing to analyze operations information with the goal of predicting which interventions may have the most benefit.
Examining gender salary disparities: an analysis of the 2003 multistate salary survey.
Brown, Lawrence M; Schommer, Jon C; Mott, Dave; Gaither, Caroline A; Doucette, William R; Zgarrick, Dave P; Droege, Marcus
2006-09-01
Pharmacist salary and wage surveys have been conducted at the state and national level for more than 20 years; however, it is not known to what extent, if any, wage disparities due to gender still exist. The overall objective of this study was to determine if wage disparities exist among male and female pharmacists at the multistate and individual state level for each of 6 states studied. A secondary objective was to explore the effect of various demographic variables on the hourly wages of pharmacists. Data were collected from 1,688 pharmacists in 6 states during 2003 using a cross-sectional descriptive survey design. A multiple regression analysis on hourly wage testing the effects of state of practice, practice setting, position, terminal degree, and years in practice was conducted. Subsequent multiple regression analyses were conducted individually for each of the 6 states to test the effects of the above variables on hourly wage for both male and female pharmacists, followed by state-level analyses for male and female pharmacists, respectively. For the pooled data, all variables were found to be significant predictors of hourly wage, except for earning a PharmD degree without a residency or graduate degree. Gender was not a significant predictor of wage disparities in the state-level analyses. Position was the only significant predictor of wage disparities in all states (except Tennessee) such that pharmacists in management positions make significantly higher salaries than those in staff positions. The results of these analyses suggest that wage disparities due to gender do not exist at the state level for the 6 states surveyed, when controlling for practice setting, position, terminal degree, and years in practice. The larger number of men in management positions may explain lower wages for female pharmacists.
Chala, Sanaa; Houzmali, Soumia; Abouqal, Redouane; Abdallaoui, Faïza
2018-05-11
The occurrence of severe dental caries is particularly prevalent and harmful in children. A better understanding of parental factors that may be indicators of children's risk of developing dental caries is important for the development of preventive measures. This study was conducted to assess knowledge, attitudes, and practices (KAP) of mothers in Salé, Morocco regarding oral health and their predictors. A cross-sectional KAP study was conducted of Mother and Child units in Salé, Morocco. Mothers attending the selected units from November 2014 to 29 January 2015 were recruited. Data were collected using a semi-structured questionnaire, administered by face-to-face interviews, to record socio-demographic factors and KAPs. The main outcome measures included knowledge about oral health diseases and preventive measures, and attitudes and practices related to oral health prevention measures and dental care. KAPs scores were then recoded based on responses and scores were determined for each KAP domain. Linear regression analysis was conducted to assess predictors of KAP scores. Among 502 mothers included, 140 (27.8%) were illiterate and 285 (60.9%) were aware that fluoride has a beneficial effect in caries prevention. Mothers' own practices about dental care were statistically related to their children's use of dental care services (p < 0.001). Multiple linear regression analysis revealed that the knowledge score was associated with mother's age (β = 0.05; 95% CI; p < 0.001), education level, and median income (β = 0.38; p = 0.04). Significant predictors of oral health-related practices were mother's education level and children's health status. Limited KAP scores were observed among the studied population. A great emphasis on oral health education and some risk factor modifications are recommended.
Acosta, Oscar; Gao, Xiaofan; Sullivan, Elizabeth K; Padilla-Zakour, Olga I
2014-05-01
U.S. federal regulations require that acidified foods must reach a pH of 4.6 or lower within 24 h of packaging or be kept refrigerated until then. Processes and formulations should be designed to satisfy this requirement, unless proper studies demonstrate the safety of other conditions. Our objective was to determine the effect of brine acetic acid concentration and packing conditions on the acidification rate of hard-boiled eggs. Eggs were acidified (60/40 egg-to-brine ratio) at various conditions of brine temperature, heat treatment to filled jars, and postpacking temperature: (i) 25 °C/none/25 °C (cold fill), (ii) 25 °C/none/2 °C (cold fill/refrigerated), (iii) 85 °C/none/25 °C (hot fill), and (iv) 25 °C/100 °C for 16 min/25 °C (water bath). Three brine concentrations were evaluated (7.5, 4.9, and 2.5% acetic acid) and egg pH values (whole, yolk, four points within egg) were measured from 4 to 144 h, with eggs equilibrating at pH 3.8, 4.0, and 4.3, respectively. Experiments were conducted in triplicate, and effects were considered significant when P < 0.05. Multiple linear regression analysis was conducted to evaluate the effect on pH values at the center of the yolk. Regression analysis showed that brine concentration of 2.5% decreased the acidification rate, while packing conditions of the hot fill trial increased it. Inverse prediction was used to determine the time for the center of the yolk and the total yolk to reach a pH value of 4.6. These results demonstrate the importance of conducting acidification studies with proper pH measurements to determine safe conditions to manufacture commercially stable pickled eggs.
Topsakal, Vedat; Fransen, Erik; Schmerber, Sébastien; Declau, Frank; Yung, Matthew; Gordts, Frans; Van Camp, Guy; Van de Heyning, Paul
2006-09-01
To report the preoperative audiometric profile of surgically confirmed otosclerosis. Retrospective, multicenter study. Four tertiary referral centers. One thousand sixty-four surgically confirmed patients with otosclerosis. Therapeutic ear surgery for hearing improvement. Preoperative audiometric air conduction (AC) and bone conduction (BC) hearing thresholds were obtained retrospectively for 1064 patients with otosclerosis. A cross-sectional multiple linear regression analysis was performed on audiometric data of affected ears. Influences of age and sex were analyzed and age-related typical audiograms were created. Bone conduction thresholds were corrected for Carhart effect and presbyacusis; in addition, we tested to see if separate cochlear otosclerosis component existed. Corrected thresholds were than analyzed separately for progression of cochlear otosclerosis. The study population consisted of 35% men and 65% women (mean age, 44 yr). The mean pure-tone average at 0.5, 1, and 2 kHz was 57 dB hearing level. Multiple linear regression analysis showed significant progression for all measured AC and BC thresholds. The average annual threshold deterioration for AC was 0.45 dB/yr and the annual threshold deterioration for BC was 0.37 dB/yr. The average annual gap expansion was 0.08 dB/year. The corrected BC thresholds for Carhart effect and presbyacusis remained significantly different from zero, but only showed progression at 2 kHz. The preoperative audiological profile of otosclerosis is described. There is a significant sensorineural component in patients with otosclerosis planned for stapedotomy, which is worse than age-related hearing loss by itself. Deterioration rates of AC and BC thresholds have been reported, which can be helpful in clinical practice and might also guide the characterization of allegedly different phenotypes for familial and sporadic otosclerosis.
Uncertainty in Pedotransfer Functions from Soil Survey Data
NASA Astrophysics Data System (ADS)
Pachepsky, Y. A.; Rawls, W. J.
2002-05-01
Pedotransfer functions (PTFs) are empirical relationships between hard-to-get soil parameters, i.e. hydraulic properties, and more easily obtainable basic soil properties, such as texture. Use of PTFs in large-scale projects and pilot studies relies on data of soil survey that provides soil basic data as a categorical information. Unlike numerical variables, categorical data cannot be directly used in statistical regressions or neural networks to develop PTFs. Objectives of this work were (a) to find and test techniques to develop PTFs for soil water retention and saturated hydraulic conductivity with soil categorical data as inputs, (b) to evaluate sources of uncertainty in results of such PTFs and to research opportunities of mitigating the uncertainty. We used a subset of about 12,000 samples from the US National Soil characterization database to estimate water retention, and the data set for circa 1000 hydraulic conductivity measurements done in the US. Regression trees and polynomial neural networks based on dummy coding were the techniques tried for the PTF development. The jackknife validation was used to prevent the over-parameterization. Both techniques were equally efficient in developing PTFs, but regression trees gave much more transparent results. Textural class was the leading predictor with RMSE values of about 6.5 and 4.1 vol.% for water retention at -33 and -1500 kPa, respectively. The RMSE values decreased 10% when the laboratory textural analysis was used to establish the textural class. Textural class in the field was determined correctly only in 41% of all cases. To mitigate this source of error, we added slopes, position on the slope classes, and land surface shape classes to the list of PTF inputs. Regression trees generated topotextural groups that encompassed several textural classes. Using topographic variables and soil horizon appeared to be the way to make up for errors made in field determination of texture. Adding field descriptors of soil structure to the field-determined textural class gave similar results. No large improvement was achieved probably because textural class, topographic descriptors and structure descriptors were correlated predictors in many cases. Both median values and uncertainty of the saturated hydraulic conductivity had a power-law decrease as clay content increased. Defining two classes of bulk density helped to estimate hydraulic conductivity within textural classes. We conclude that categorical field soil survey data can be used in PTF-based estimating soil water retention and saturated hydraulic conductivity with quantified uncertainty
Component analysis and initial validity of the exercise fear avoidance scale.
Wingo, Brooks C; Baskin, Monica; Ard, Jamy D; Evans, Retta; Roy, Jane; Vogtle, Laura; Grimley, Diane; Snyder, Scott
2013-01-01
To develop the Exercise Fear Avoidance Scale (EFAS) to measure fear of exercise-induced discomfort. We conducted principal component analysis to determine component structure and Cronbach's alpha to assess internal consistency of the EFAS. Relationships between EFAS scores, BMI, physical activity, and pain were analyzed using multivariate regression. The best fit was a 3-component structure: weight-specific fears, cardiorespiratory fears, and musculoskeletal fears. Cronbach's alpha for the EFAS was α=.86. EFAS scores significantly predicted BMI, physical activity, and PDI scores. Psychometric properties of this scale suggest it may be useful for tailoring exercise prescriptions to address fear of exercise-related discomfort.
Using decision tree analysis to identify risk factors for relapse to smoking
Piper, Megan E.; Loh, Wei-Yin; Smith, Stevens S.; Japuntich, Sandra J.; Baker, Timothy B.
2010-01-01
This research used classification tree analysis and logistic regression models to identify risk factors related to short- and long-term abstinence. Baseline and cessation outcome data from two smoking cessation trials, conducted from 2001 to 2002, in two Midwestern urban areas, were analyzed. There were 928 participants (53.1% women, 81.8% white) with complete data. Both analyses suggest that relapse risk is produced by interactions of risk factors and that early and late cessation outcomes reflect different vulnerability factors. The results illustrate the dynamic nature of relapse risk and suggest the importance of efficient modeling of interactions in relapse prediction. PMID:20397871
Passenger comfort during terminal-area flight maneuvers. M.S. Thesis.
NASA Technical Reports Server (NTRS)
Schoonover, W. E., Jr.
1976-01-01
A series of flight experiments was conducted to obtain passenger subjective responses to closely controlled and repeatable flight maneuvers. In 8 test flights, reactions were obtained from 30 passenger subjects to a wide range of terminal-area maneuvers, including descents, turns, decelerations, and combinations thereof. Analysis of the passenger rating variance indicated that the objective of a repeatable flight passenger environment was achieved. Multiple linear regression models developed from the test data were used to define maneuver motion boundaries for specified degrees of passenger acceptance.
The relationship among self-efficacy, perfectionism and academic burnout in medical school students.
Yu, Ji Hye; Chae, Su Jin; Chang, Ki Hong
2016-03-01
The purpose of this study was to examine the relationship among academic self-efficacy, socially-prescribed perfectionism, and academic burnout in medical school students and to determine whether academic self-efficacy had a mediating role in the relationship between perfectionism and academic burnout. A total of 244 first-year and second-year premed medical students and first- to fourth-year medical students were enrolled in this study. As study tools, socially-prescribed perfectionism, academic self-efficacy, and academic burnout scales were utilized. For data analysis, correlation analysis, multiple regression analysis, and hierarchical multiple regression analyses were conducted. Academic burnout had correlation with socially-prescribed perfectionism. It had negative correlation with academic self-efficacy. Socially-prescribed perfectionism and academic self-efficacy had 54% explanatory power for academic burnout. When socially-prescribed perfectionism and academic self-efficacy were simultaneously used as input, academic self-efficacy partially mediated the relationship between socially-prescribed perfectionism and academic burnout. Socially-prescribed perfectionism had a negative effect on academic self-efficacy, ultimately triggering academic burnout. This suggests that it is important to have educational and counseling interventions to improve academic self-efficacy by relieving academic burnout of medical school students.
The relationship among self-efficacy, perfectionism and academic burnout in medical school students
Yu, Ji Hye; Chae, Su Jin; Chang, Ki Hong
2016-01-01
Purpose: The purpose of this study was to examine the relationship among academic self-efficacy, socially-prescribed perfectionism, and academic burnout in medical school students and to determine whether academic self-efficacy had a mediating role in the relationship between perfectionism and academic burnout. Methods: A total of 244 first-year and second-year premed medical students and first- to fourth-year medical students were enrolled in this study. As study tools, socially-prescribed perfectionism, academic self-efficacy, and academic burnout scales were utilized. For data analysis, correlation analysis, multiple regression analysis, and hierarchical multiple regression analyses were conducted. Results: Academic burnout had correlation with socially-prescribed perfectionism. It had negative correlation with academic self-efficacy. Socially-prescribed perfectionism and academic self-efficacy had 54% explanatory power for academic burnout. When socially-prescribed perfectionism and academic self-efficacy were simultaneously used as input, academic self-efficacy partially mediated the relationship between socially-prescribed perfectionism and academic burnout. Conclusion: Socially-prescribed perfectionism had a negative effect on academic self-efficacy, ultimately triggering academic burnout. This suggests that it is important to have educational and counseling interventions to improve academic self-efficacy by relieving academic burnout of medical school students. PMID:26838568
Takaesu, Yoshikazu; Kishimoto, Taishiro; Murakoshi, Akiko; Takahashi, Nobutada; Inoue, Yuichi
2016-02-28
The purpose of the study was to identify factors associated with discontinuation of aripiprazole after switching from other antipsychotics in patients with schizophrenia in real world clinical settings. From January 2011 to December 2012, a prospective, 48-week open-label study was undertaken. Thirty-eight subjects on antipsychotic monotherapy were switched to aripiprazole. Patients who discontinued aripiprazole were compared to those who continued with regards to demographic characteristics as well as treatment factors. Multiple regression analysis was conducted to identify predictors for aripiprazole discontinuation. Thirteen out of 38 patients (34.2%) discontinued aripiprazole during the follow up period. Nine patients (23.7%) discontinued aripiprazole due to worsening of psychotic symptoms. Multiple logistic regression analysis revealed that only the duration of previous antipsychotic treatment was associated with aripiprazole discontinuation after switching to aripiprazole. The receiver operating curve (ROC) analysis identified that the cut-off length for duration of illness to predict aripiprazole discontinuation was 10.5 years. Longer duration of illness was associated with aripiprazole discontinuation. Greater caution may be required when treating such patients with aripiprazole. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Regression: The Apple Does Not Fall Far From the Tree.
Vetter, Thomas R; Schober, Patrick
2018-05-15
Researchers and clinicians are frequently interested in either: (1) assessing whether there is a relationship or association between 2 or more variables and quantifying this association; or (2) determining whether 1 or more variables can predict another variable. The strength of such an association is mainly described by the correlation. However, regression analysis and regression models can be used not only to identify whether there is a significant relationship or association between variables but also to generate estimations of such a predictive relationship between variables. This basic statistical tutorial discusses the fundamental concepts and techniques related to the most common types of regression analysis and modeling, including simple linear regression, multiple regression, logistic regression, ordinal regression, and Poisson regression, as well as the common yet often underrecognized phenomenon of regression toward the mean. The various types of regression analysis are powerful statistical techniques, which when appropriately applied, can allow for the valid interpretation of complex, multifactorial data. Regression analysis and models can assess whether there is a relationship or association between 2 or more observed variables and estimate the strength of this association, as well as determine whether 1 or more variables can predict another variable. Regression is thus being applied more commonly in anesthesia, perioperative, critical care, and pain research. However, it is crucial to note that regression can identify plausible risk factors; it does not prove causation (a definitive cause and effect relationship). The results of a regression analysis instead identify independent (predictor) variable(s) associated with the dependent (outcome) variable. As with other statistical methods, applying regression requires that certain assumptions be met, which can be tested with specific diagnostics.
Jia, Yongliang; Leung, Siu-wai
2015-11-01
There have been no systematic reviews, let alone meta-analyses, of randomized controlled trials (RCTs) comparing tongxinluo capsule (TXL) and beta-blockers in treating angina pectoris. This study aimed to evaluate the efficacy of TXL and beta-blockers in treating angina pectoris by a meta-analysis of eligible RCTs. The RCTs comparing TXL with beta-blockers (including metoprolol) in treating angina pectoris were searched and retrieved from databases including PubMed, Chinese National Knowledge Infrastructure, and WanFang Data. Eligible RCTs were selected according to prespecified criteria. Meta-analysis was performed on the odds ratios (OR) of symptomatic and electrocardiographic (ECG) improvements after treatment. Subgroup analysis, sensitivity analysis, meta-regression, and publication biases analysis were conducted to evaluate the robustness of the results. Seventy-three RCTs published between 2000 and 2014 with 7424 participants were eligible. Overall ORs comparing TXL with beta-blockers were 3.40 (95% confidence interval [CI], 2.97-3.89; p<0.0001) for symptomatic improvement and 2.63 (95% CI, 2.29-3.02; p<0.0001) for ECG improvement. Subgroup analysis and sensitivity analysis found no statistically significant dependence of overall ORs on specific study characteristics except efficacy criteria. Meta-regression found no significant except sample sizes for data on symptomatic improvement. Publication biases were statistically significant. TXL seems to be more effective than beta-blockers in treating angina pectoris, on the basis of the eligible RCTs. Further RCTs are warranted to reduce publication bias and verify efficacy.
Youth tobacco sales in a metropolitan county: factors associated with compliance.
Pearson, Dave C; Song, Lin; Valdez, Roger B; Angulo, Antoinette S
2007-08-01
To describe and identify factors associated with tobacco sales in a metropolitan county. King County, Washington is the largest county in Washington State with an estimated population of 1.8 million or about 30% of the state's population. The data analysis is based on compliance checks in King County between January 2001 and March 2005. The 8879 checks were conducted by 91 youth operatives aged 14-17. Analysis of data was completed in 2006. The outcome variable for this analysis was whether "a sale was made" to a youth operative during a compliance check. Associations between independent variables and the outcome variable were examined using 2 x 2 tables, univariate (unadjusted) logistic regression, and multivariate (adjusted) logistic regression analysis. Overall tobacco sales during the 4-year and 3-month period was 7.7%. Convenience stores selling gas were significantly more likely to sell tobacco products to minors, whereas restaurants, bars, and tobacco discount stores were less likely to sell to minors. Other factors that were significantly associated with sales are described. In a county that has adopted many of the required youth access laws, opportunities still exist to reduce sales of tobacco products to minors. Asking for age and photo identification still appears to be an effective strategy in reducing sales of tobacco products to minors.
Climate change and epidemics in Chinese history: A multi-scalar analysis.
Lee, Harry F; Fei, Jie; Chan, Christopher Y S; Pei, Qing; Jia, Xin; Yue, Ricci P H
2017-02-01
This study seeks to provide further insight regarding the relationship of climate-epidemics in Chinese history through a multi-scalar analysis. Based on 5961 epidemic incidents in China during 1370-1909 CE we applied Ordinary Least Square regression and panel data regression to verify the climate-epidemic nexus over a range of spatial scales (country, macro region, and province). Results show that epidemic outbreaks were negatively correlated with the temperature in historical China at various geographic levels, while a stark reduction in the correlational strength was observed at lower geographic levels. Furthermore, cooling drove up epidemic outbreaks in northern and central China, where population pressure reached a clear threshold for amplifying the vulnerability of epidemic outbreaks to climate change. Our findings help to illustrate the modifiable areal unit and the uncertain geographic context problems in climate-epidemics research. Researchers need to consider the scale effect in the course of statistical analyses, which are currently predominantly conducted on a national/single scale; and also the importance of how the study area is delineated, an issue which is rarely discussed in the climate-epidemics literature. Future research may leverage our results and provide a cross-analysis with those derived from spatial analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Global Prevalence of Elder Abuse: A Meta-analysis and Meta-regression.
Ho, C Sh; Wong, S Y; Chiu, M M; Ho, R Cm
2017-06-01
Elder abuse is increasingly recognised as a global public health and social problem. There has been limited inter-study comparison of the prevalence and risk factors for elder abuse. This study aimed to estimate the pooled and subtype prevalence of elder abuse worldwide and identify significant associated risk factors. We conducted a meta-analysis and meta-regression of 34 population-based and 17 non-population-based studies. The pooled prevalences of elder abuse were 10.0% (95% confidence interval, 5.2%-18.6%) and 34.3% (95% confidence interval, 22.9%-47.8%) in population-based studies and third party- or caregiver-reported studies, respectively. Being in a marital relationship was found to be a significant moderator using random-effects model. This meta-analysis revealed that third parties or caregivers were more likely to report abuse than older abused adults. Subgroup analyses showed that females and those resident in non-western countries were more likely to be abused. Emotional abuse was the most prevalent elder abuse subtype and financial abuse was less commonly reported by third parties or caregivers. Heterogeneity in the prevalence was due to the high proportion of married older adults in the sample. Subgroup analysis showed that cultural factors, subtypes of abuse, and gender also contributed to heterogeneity in the pooled prevalence of elder abuse.
Use of Longitudinal Regression in Quality Control. Research Report. ETS RR-14-31
ERIC Educational Resources Information Center
Lu, Ying; Yen, Wendy M.
2014-01-01
This article explores the use of longitudinal regression as a tool for identifying scoring inaccuracies. Student progression patterns, as evaluated through longitudinal regressions, typically are more stable from year to year than are scale score distributions and statistics, which require representative samples to conduct credibility checks.…
Applied Multiple Linear Regression: A General Research Strategy
ERIC Educational Resources Information Center
Smith, Brandon B.
1969-01-01
Illustrates some of the basic concepts and procedures for using regression analysis in experimental design, analysis of variance, analysis of covariance, and curvilinear regression. Applications to evaluation of instruction and vocational education programs are illustrated. (GR)
Portable Electronic Tongue Based on Microsensors for the Analysis of Cava Wines.
Giménez-Gómez, Pablo; Escudé-Pujol, Roger; Capdevila, Fina; Puig-Pujol, Anna; Jiménez-Jorquera, Cecilia; Gutiérrez-Capitán, Manuel
2016-10-27
Cava is a quality sparkling wine produced in Spain. As a product with a designation of origin, Cava wine has to meet certain quality requirements throughout its production process; therefore, the analysis of several parameters is of great interest. In this work, a portable electronic tongue for the analysis of Cava wine is described. The system is comprised of compact and low-power-consumption electronic equipment and an array of microsensors formed by six ion-selective field effect transistors sensitive to pH, Na⁺, K⁺, Ca 2+ , Cl - , and CO₃ 2- , one conductivity sensor, one redox potential sensor, and two amperometric gold microelectrodes. This system, combined with chemometric tools, has been applied to the analysis of 78 Cava wine samples. Results demonstrate that the electronic tongue is able to classify the samples according to the aging time, with a percentage of correct prediction between 80% and 96%, by using linear discriminant analysis, as well as to quantify the total acidity, pH, volumetric alcoholic degree, potassium, conductivity, glycerol, and methanol parameters, with mean relative errors between 2.3% and 6.0%, by using partial least squares regressions.
Portable Electronic Tongue Based on Microsensors for the Analysis of Cava Wines
Giménez-Gómez, Pablo; Escudé-Pujol, Roger; Capdevila, Fina; Puig-Pujol, Anna; Jiménez-Jorquera, Cecilia; Gutiérrez-Capitán, Manuel
2016-01-01
Cava is a quality sparkling wine produced in Spain. As a product with a designation of origin, Cava wine has to meet certain quality requirements throughout its production process; therefore, the analysis of several parameters is of great interest. In this work, a portable electronic tongue for the analysis of Cava wine is described. The system is comprised of compact and low-power-consumption electronic equipment and an array of microsensors formed by six ion-selective field effect transistors sensitive to pH, Na+, K+, Ca2+, Cl−, and CO32−, one conductivity sensor, one redox potential sensor, and two amperometric gold microelectrodes. This system, combined with chemometric tools, has been applied to the analysis of 78 Cava wine samples. Results demonstrate that the electronic tongue is able to classify the samples according to the aging time, with a percentage of correct prediction between 80% and 96%, by using linear discriminant analysis, as well as to quantify the total acidity, pH, volumetric alcoholic degree, potassium, conductivity, glycerol, and methanol parameters, with mean relative errors between 2.3% and 6.0%, by using partial least squares regressions. PMID:27801796
Women, Physical Activity, and Quality of Life: Self-concept as a Mediator.
Gonzalo Silvestre, Tamara; Ubillos Landa, Silvia
2016-02-22
The objectives of this research are: (a) analyze the incremental validity of physical activity's (PA) influence on perceived quality of life (PQL); (b) determine if PA's predictive power is mediated by self-concept; and (c) study if results vary according to a unidimensional or multidimensional approach to self-concept measurement. The sample comprised 160 women from Burgos, Spain aged 18 to 45 years old. Non-probability sampling was used. Two three-step hierarchical regression analyses were applied to forecast PQL. The hedonic quality-of-life indicators, self-concept, self-esteem, and PA were included as independent variables. The first regression analysis included global self-concept as predictor variable, while the second included its five dimensions. Two mediation analyses were conducted to see if PA's ability to predict PQL was mediated by global and physical self-concept. Results from the first regression shows that self-concept, satisfaction with life, and PA were significant predictors. PA slightly but significantly increased explained variance in PQL (2.1%). In the second regression, substituting global self-concept with its five constituent factors, only the physical dimension and satisfaction with life predicted PQL, while PA ceased to be a significant predictor. Mediation analysis revealed that only physical self-concept mediates the relationship between PA and PQL (z = 1.97, p < .050), and not global self-concept. Physical self-concept was the strongest predictor and approximately 32.45 % of PA's effect on PQL was mediated by it. This study's findings support a multidimensional view of self-concept, and represent a more accurate image of the relationship between PQL, PA, and self-concept.
Network structure and travel time perception.
Parthasarathi, Pavithra; Levinson, David; Hochmair, Hartwig
2013-01-01
The purpose of this research is to test the systematic variation in the perception of travel time among travelers and relate the variation to the underlying street network structure. Travel survey data from the Twin Cities metropolitan area (which includes the cities of Minneapolis and St. Paul) is used for the analysis. Travelers are classified into two groups based on the ratio of perceived and estimated commute travel time. The measures of network structure are estimated using the street network along the identified commute route. T-test comparisons are conducted to identify statistically significant differences in estimated network measures between the two traveler groups. The combined effect of these estimated network measures on travel time is then analyzed using regression models. The results from the t-test and regression analyses confirm the influence of the underlying network structure on the perception of travel time.
Kelleher, John D; Ross, Robert J; Sloan, Colm; Mac Namee, Brian
2011-02-01
Although data-driven spatial template models provide a practical and cognitively motivated mechanism for characterizing spatial term meaning, the influence of perceptual rather than solely geometric and functional properties has yet to be systematically investigated. In the light of this, in this paper, we investigate the effects of the perceptual phenomenon of object occlusion on the semantics of projective terms. We did this by conducting a study to test whether object occlusion had a noticeable effect on the acceptance values assigned to projective terms with respect to a 2.5-dimensional visual stimulus. Based on the data collected, a regression model was constructed and presented. Subsequent analysis showed that the regression model that included the occlusion factor outperformed an adaptation of Regier & Carlson's well-regarded AVS model for that same spatial configuration.
Sentiment analysis in twitter data using data analytic techniques for predictive modelling
NASA Astrophysics Data System (ADS)
Razia Sulthana, A.; Jaithunbi, A. K.; Sai Ramesh, L.
2018-04-01
Sentiment analysis refers to the task of natural language processing to determine whether a piece of text contains subjective information and the kind of subjective information it expresses. The subjective information represents the attitude behind the text: positive, negative or neutral. Understanding the opinions behind user-generated content automatically is of great concern. We have made data analysis with huge amount of tweets taken as big data and thereby classifying the polarity of words, sentences or entire documents. We use linear regression for modelling the relationship between a scalar dependent variable Y and one or more explanatory variables (or independent variables) denoted X. We conduct a series of experiments to test the performance of the system.
Fan, Shou-Zen; Abbod, Maysam F.
2018-01-01
Estimating the depth of anaesthesia (DoA) in operations has always been a challenging issue due to the underlying complexity of the brain mechanisms. Electroencephalogram (EEG) signals are undoubtedly the most widely used signals for measuring DoA. In this paper, a novel EEG-based index is proposed to evaluate DoA for 24 patients receiving general anaesthesia with different levels of unconsciousness. Sample Entropy (SampEn) algorithm was utilised in order to acquire the chaotic features of the signals. After calculating the SampEn from the EEG signals, Random Forest was utilised for developing learning regression models with Bispectral index (BIS) as the target. Correlation coefficient, mean absolute error, and area under the curve (AUC) were used to verify the perioperative performance of the proposed method. Validation comparisons with typical nonstationary signal analysis methods (i.e., recurrence analysis and permutation entropy) and regression methods (i.e., neural network and support vector machine) were conducted. To further verify the accuracy and validity of the proposed methodology, the data is divided into four unconsciousness-level groups on the basis of BIS levels. Subsequently, analysis of variance (ANOVA) was applied to the corresponding index (i.e., regression output). Results indicate that the correlation coefficient improved to 0.72 ± 0.09 after filtering and to 0.90 ± 0.05 after regression from the initial values of 0.51 ± 0.17. Similarly, the final mean absolute error dramatically declined to 5.22 ± 2.12. In addition, the ultimate AUC increased to 0.98 ± 0.02, and the ANOVA analysis indicates that each of the four groups of different anaesthetic levels demonstrated significant difference from the nearest levels. Furthermore, the Random Forest output was extensively linear in relation to BIS, thus with better DoA prediction accuracy. In conclusion, the proposed method provides a concrete basis for monitoring patients’ anaesthetic level during surgeries. PMID:29844970
2014-01-01
Background Greater use of antibiotics during the past 50 years has exerted selective pressure on susceptible bacteria and may have favoured the survival of resistant strains. Existing information on antibiotic resistance patterns from pathogens circulating among community-based patients is substantially less than from hospitalized patients on whom guidelines are often based. We therefore chose to assess the relationship between the antibiotic resistance pattern of bacteria circulating in the community and the consumption of antibiotics in the community. Methods Both gray literature and published scientific literature in English and other European languages was examined. Multiple regression analysis was used to analyse whether studies found a positive relationship between antibiotic consumption and resistance. A subsequent meta-analysis and meta-regression was conducted for studies for which a common effect size measure (odds ratio) could be calculated. Results Electronic searches identified 974 studies but only 243 studies were considered eligible for inclusion by the two independent reviewers who extracted the data. A binomial test revealed a positive relationship between antibiotic consumption and resistance (p < .001) but multiple regression modelling did not produce any significant predictors of study outcome. The meta-analysis generated a significant pooled odds ratio of 2.3 (95% confidence interval 2.2 to 2.5) with a meta-regression producing several significant predictors (F(10,77) = 5.82, p < .01). Countries in southern Europe produced a stronger link between consumption and resistance than other regions. Conclusions Using a large set of studies we found that antibiotic consumption is associated with the development of antibiotic resistance. A subsequent meta-analysis, with a subsample of the studies, generated several significant predictors. Countries in southern Europe produced a stronger link between consumption and resistance than other regions so efforts at reducing antibiotic consumption may need to be strengthened in this area. Increased consumption of antibiotics may not only produce greater resistance at the individual patient level but may also produce greater resistance at the community, country, and regional levels, which can harm individual patients. PMID:24405683
Shah, Drishti; Shah, Anuj; Tan, Xi; Sambamoorthi, Usha
2017-08-01
In 2009, the FDA required a black box warning (BBW) on bupropion and varenicline, the two commonly prescribed smoking cessation agents due to reports of adverse neuropsychiatric events. We investigated if there was a decline in use of bupropion and varenicline after the BBW by comparing the percent using these medications before and after BBW. We conducted a retrospective observational study using data from the Medical Expenditure Panel Survey from 2007 to 2014. The study sample consisted of adult smokers, who were advised by their physicians to quit smoking. We divided the time period into "pre-warning", "post-warning: immediate", and "post-warning: late." Unadjusted analysis using chi-square tests and adjusted analyses using logistic regressions were conducted to evaluate the change in bupropion and varenicline use before and after the BBW. Secondary analyses using piecewise regression were also conducted. On an average, 49.04% of smokers were advised by their physicians to quit smoking. We observed a statistically significant decline in varenicline use from 22.1% in year 2007 to 9.23% in 2014 (p value<0.001). In the logistic (Adjusted Odds Ratio=0.36, 95% CI=0.22-0.58) and piecewise regressions (Odds Ratio=0.64, 95% CI=0.41-0.99) smokers who were advised to quit smoking by their physicians were less likely to use varenicline in the immediate post-BBW period as compared to pre-BBW period. While the use of varenicline continued to be significantly low in the late post-BBW period (AOR=0.45, 95% CI=0.31-0.64) as compared to the pre-BBW period, the trend in use as seen in piecewise regression remained stable (OR=0.90, 95% CI=0.75-1.06). We did not observe significant differences in bupropion use between the pre- and post-BBW periods. The passage of the FDA boxed warning was associated with a significant decline in the use of varenicline, but not in the use of bupropion. Copyright © 2017 Elsevier B.V. All rights reserved.
Estimating top-of-atmosphere thermal infrared radiance using MERRA-2 atmospheric data
NASA Astrophysics Data System (ADS)
Kleynhans, Tania; Montanaro, Matthew; Gerace, Aaron; Kanan, Christopher
2017-05-01
Thermal infrared satellite images have been widely used in environmental studies. However, satellites have limited temporal resolution, e.g., 16 day Landsat or 1 to 2 day Terra MODIS. This paper investigates the use of the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis data product, produced by NASA's Global Modeling and Assimilation Office (GMAO) to predict global topof-atmosphere (TOA) thermal infrared radiance. The high temporal resolution of the MERRA-2 data product presents opportunities for novel research and applications. Various methods were applied to estimate TOA radiance from MERRA-2 variables namely (1) a parameterized physics based method, (2) Linear regression models and (3) non-linear Support Vector Regression. Model prediction accuracy was evaluated using temporally and spatially coincident Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared data as reference data. This research found that Support Vector Regression with a radial basis function kernel produced the lowest error rates. Sources of errors are discussed and defined. Further research is currently being conducted to train deep learning models to predict TOA thermal radiance
Fowler, Stephanie M; Ponnampalam, Eric N; Schmidt, Heinar; Wynn, Peter; Hopkins, David L
2015-12-01
A hand held Raman spectroscopic device was used to predict intramuscular fat (IMF) levels and the major fatty acid (FA) groups of fresh intact ovine M. longissimus lumborum (LL). IMF levels were determined using the Soxhlet method, while FA analysis was conducted using a rapid (KOH in water, methanol and sulphuric acid in water) extraction procedure. IMF levels and FA values were regressed against Raman spectra using partial least squares regression and against each other using linear regression. The results indicate that there is potential to predict PUFA (R(2)=0.93) and MUFA (R(2)=0.54) as well as SFA values that had been adjusted for IMF content (R(2)=0.54). However, this potential was significantly reduced when correlations between predicted and observed values were determined by cross validation (R(2)cv=0.21-0.00). Overall, the prediction of major FA groups using Raman spectra was more precise (relative reductions in error of 0.3-40.8%) compared to the null models. Copyright © 2015 Elsevier Ltd. All rights reserved.
Suresh, Arumuganainar; Choi, Hong Lim
2011-10-01
Swine waste land application has increased due to organic fertilization, but excess application in an arable system can cause environmental risk. Therefore, in situ characterizations of such resources are important prior to application. To explore this, 41 swine slurry samples were collected from Korea, and wide differences were observed in the physico-biochemical properties. However, significant (P<0.001) multiple property correlations (R²) were obtained between nutrients with specific gravity (SG), electrical conductivity (EC), total solids (TS) and pH. The different combinations of hydrometer, EC meter, drying oven and pH meter were found useful to estimate Mn, Fe, Ca, K, Al, Na, N and 5-day biochemical oxygen demands (BOD₅) at improved R² values of 0.83, 0.82, 0.77, 0.75, 0.67, 0.47, 0.88 and 0.70, respectively. The results from this study suggest that multiple property regressions can facilitate the prediction of micronutrients and organic matter much better than a single property regression for livestock waste. Copyright © 2011 Elsevier Ltd. All rights reserved.
New machine-learning algorithms for prediction of Parkinson's disease
NASA Astrophysics Data System (ADS)
Mandal, Indrajit; Sairam, N.
2014-03-01
This article presents an enhanced prediction accuracy of diagnosis of Parkinson's disease (PD) to prevent the delay and misdiagnosis of patients using the proposed robust inference system. New machine-learning methods are proposed and performance comparisons are based on specificity, sensitivity, accuracy and other measurable parameters. The robust methods of treating Parkinson's disease (PD) includes sparse multinomial logistic regression, rotation forest ensemble with support vector machines and principal components analysis, artificial neural networks, boosting methods. A new ensemble method comprising of the Bayesian network optimised by Tabu search algorithm as classifier and Haar wavelets as projection filter is used for relevant feature selection and ranking. The highest accuracy obtained by linear logistic regression and sparse multinomial logistic regression is 100% and sensitivity, specificity of 0.983 and 0.996, respectively. All the experiments are conducted over 95% and 99% confidence levels and establish the results with corrected t-tests. This work shows a high degree of advancement in software reliability and quality of the computer-aided diagnosis system and experimentally shows best results with supportive statistical inference.
Reconstruction of missing daily streamflow data using dynamic regression models
NASA Astrophysics Data System (ADS)
Tencaliec, Patricia; Favre, Anne-Catherine; Prieur, Clémentine; Mathevet, Thibault
2015-12-01
River discharge is one of the most important quantities in hydrology. It provides fundamental records for water resources management and climate change monitoring. Even very short data-gaps in this information can cause extremely different analysis outputs. Therefore, reconstructing missing data of incomplete data sets is an important step regarding the performance of the environmental models, engineering, and research applications, thus it presents a great challenge. The objective of this paper is to introduce an effective technique for reconstructing missing daily discharge data when one has access to only daily streamflow data. The proposed procedure uses a combination of regression and autoregressive integrated moving average models (ARIMA) called dynamic regression model. This model uses the linear relationship between neighbor and correlated stations and then adjusts the residual term by fitting an ARIMA structure. Application of the model to eight daily streamflow data for the Durance river watershed showed that the model yields reliable estimates for the missing data in the time series. Simulation studies were also conducted to evaluate the performance of the procedure.
NASA Astrophysics Data System (ADS)
Dokuchaev, P. M.; Meshalkina, J. L.; Yaroslavtsev, A. M.
2018-01-01
Comparative analysis of soils geospatial modeling using multinomial logistic regression, decision trees, random forest, regression trees and support vector machines algorithms was conducted. The visual interpretation of the digital maps obtained and their comparison with the existing map, as well as the quantitative assessment of the individual soil groups detection overall accuracy and of the models kappa showed that multiple logistic regression, support vector method, and random forest models application with spatial prediction of the conditional soil groups distribution can be reliably used for mapping of the study area. It has shown the most accurate detection for sod-podzolics soils (Phaeozems Albic) lightly eroded and moderately eroded soils. In second place, according to the mean overall accuracy of the prediction, there are sod-podzolics soils - non-eroded and warp one, as well as sod-gley soils (Umbrisols Gleyic) and alluvial soils (Fluvisols Dystric, Umbric). Heavy eroded sod-podzolics and gray forest soils (Phaeozems Albic) were detected by methods of automatic classification worst of all.
Determinants of Internet use as a preferred source of information on personal health.
Lemire, Marc; Paré, Guy; Sicotte, Claude; Harvey, Charmian
2008-11-01
To understand the personal, social and cultural factors likely to explain recourse to the Internet as a preferred source of personal health information. A cross-sectional survey was conducted among a population of 2923 Internet users visiting a firmly established website that offers information on personal health. Multiple regression analysis was performed to identify the determinants of site use. The analysis template comprised four classes of determinants likely to explain Internet use: beliefs, intentions, user satisfaction and socio-demographic characteristics. Seven-point Likert scales were used. An analysis of the psychometric qualities of the variables provided compelling evidence of the construct's validity and reliability. A confirmatory factor analysis confirmed the correspondence with the factors predicted by the theoretical model. The regression analysis explained 35% of the variance in Internet use. Use was directly associated with five factors: perceived usefulness, importance given to written media in searches for health information, concern for personal health, importance given to the opinions of physicians and other health professionals, and the trust placed in the information available on the site itself. This study confirms the importance of the credibility of information on the frequency of Internet use as a preferred source of information on personal health. It also shows the potentially influential role of the Internet in the development of personal knowledge of health issues.
Vergés, Alvaro; Haeny, Angela M; Jackson, Kristina M; Bucholz, Kathleen K; Grant, Julia D; Trull, Timothy J; Wood, Phillip K; Sher, Kenneth J
2013-12-01
Our aim was to determine if the decrease in drug use disorders with age is attributable to changes in persistence, as implied by the notion of maturing out. Also, we examined the association between role transitions and persistence, recurrence, and new onset of drug use disorders. We performed secondary analysis of the 2 waves of the National Epidemiologic Survey on Alcohol and Related Conditions data (baseline assessment 2001-2002, follow-up conducted 2004-2005). We conducted logistic regressions and multinomial logistic regression to determine the effect of age on wave 2 diagnosis status, as well as the interaction between age and role transitions. Rates of persistence were stable over the life span, whereas rates of new onset and recurrence decreased with age. Changes in parenthood, marital, and employment status were associated with persistence, new onset, and recurrence. We found an interaction between marital status and age. Our findings challenge commonly held notions that the age-related decrease in drug use disorders is attributable to an increase in persistence, and that the effects of role transitions are stronger during young, compared with middle and older, adulthood.
Four Major South Korea's Rivers Using Deep Learning Models.
Lee, Sangmok; Lee, Donghyun
2018-06-24
Harmful algal blooms are an annual phenomenon that cause environmental damage, economic losses, and disease outbreaks. A fundamental solution to this problem is still lacking, thus, the best option for counteracting the effects of algal blooms is to improve advance warnings (predictions). However, existing physical prediction models have difficulties setting a clear coefficient indicating the relationship between each factor when predicting algal blooms, and many variable data sources are required for the analysis. These limitations are accompanied by high time and economic costs. Meanwhile, artificial intelligence and deep learning methods have become increasingly common in scientific research; attempts to apply the long short-term memory (LSTM) model to environmental research problems are increasing because the LSTM model exhibits good performance for time-series data prediction. However, few studies have applied deep learning models or LSTM to algal bloom prediction, especially in South Korea, where algal blooms occur annually. Therefore, we employed the LSTM model for algal bloom prediction in four major rivers of South Korea. We conducted short-term (one week) predictions by employing regression analysis and deep learning techniques on a newly constructed water quality and quantity dataset drawn from 16 dammed pools on the rivers. Three deep learning models (multilayer perceptron, MLP; recurrent neural network, RNN; and long short-term memory, LSTM) were used to predict chlorophyll-a, a recognized proxy for algal activity. The results were compared to those from OLS (ordinary least square) regression analysis and actual data based on the root mean square error (RSME). The LSTM model showed the highest prediction rate for harmful algal blooms and all deep learning models out-performed the OLS regression analysis. Our results reveal the potential for predicting algal blooms using LSTM and deep learning.
Constitution of traditional chinese medicine and related factors in women of childbearing age.
Jiang, Qiao-Yu; Li, Jue; Zheng, Liang; Wang, Guang-Hua; Wang, Jing
2018-04-01
This study investigates the constitution of traditional Chinese medicine (TCM) among women who want to be pregnant in one year and explores factors related to TCM constitution. This study was conducted on women who participated in free preconception check-ups provided by the Zhabei District Maternity and Child Care Center in Shanghai, China. The information regarding the female demographic characteristics, physical condition, history of pregnancy and childbearing, diet and behavior, and social psychological factors was collected, and TCM constitution assessment was performed. The Chi-square test, t-test, logistic regression analysis, and multinomial logistic regression analysis were used to explore the related factors of TCM constitution. The participants in this study were aged 28.3 ± 3.0 years. Approximately fifty-five women in this study had Unbalanced Constitution. Logistic regression analysis showed that Shanghai residence, dysmenorrhea, gum bleeding, aversion to vegetables, preference for raw meat, job stress, and economic stress were significantly and negatively associated with Balanced Constitution. Multinomial logistic analysis showed that Shanghai residence was significantly associated with Yang-deficiency, Yin-deficiency, and Stagnant Qi Constitutions; gum bleeding was significantly associated with Yin-deficiency, Stagnant Blood, Stagnant Qi, and Inherited Special Constitutions; aversion to vegetables was significantly associated with Damp-heat Constitution; job stress was significantly associated with Yang-deficiency, Phlegm-dampness, Damp-heat, Stagnant Blood, and Stagnant Qi Constitutions; and economic stress was significantly associated with Yang-deficiency, and Stagnant Qi Constitutions. The application of TCM constitution to preconception care would be beneficial for early identification of potential TCM constitution risks and be beneficial for early intervention (e.g., health education, and dietary education), especially during the women who do not have a medical condition and those who have related factors found in this study. Copyright © 2018. Published by Elsevier Taiwan LLC.
Zhou, Hua-ying; Luo, Yue; Chen, Wen-dong; Gong, Guo-zhong
2015-06-01
A number of studies have confirmed that antiviral therapy with nucleotide analogs (NAs) can improve the prognosis of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) after curative therapy. However, what factors affected the prognosis of HBV-HCC after removal of the primary tumor and inhibition of HBV replication? A meta-regression analysis was conducted to explore the prognostic factor for this subgroup of patients. MEDLINE, EMBASE, Web of Science, and Cochrane library were searched from January 1995 to February 2014 for clinical trials evaluating the effect of NAs on the prognosis of HBV-HCC after curative therapy. Data were extracted for host, viral, and intervention information. Single-arm meta-analysis was performed to assess overall survival (OS) rates and HCC recurrence. Meta-regression analysis was carried out to explore risk factors for 1-year OS rate and HCC recurrence for HBV-HCC patients after curative therapy and antiviral therapy. Fourteen observational studies with 1284 patients met the inclusion criteria. Influential factors for prognosis of HCC were mainly baseline HBeAg positivity, cirrhotic stage, advanced Tumor-Node-Metastasis (TNM) stage, macrovascular invasion, and antiviral agent type. The 1-year OS rate decreased by more than four times (coefficient -4.45, P<0.001) and the 1-year HCC recurrence increased by more than one time (coefficient 1.20, P=0.003) when lamivudine was chosen for HCC after curative therapy, relative to entecavir for HCC. HBV mutation may play a role in HCC recurrence. Entecavir or tenofovir, a high genetic barrier to resistance, should be recommended for HBV-HCC patients. © 2015 The Authors. Journal of Gastroenterology and Hepatology published by Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.
Model parameter uncertainty analysis for an annual field-scale P loss model
NASA Astrophysics Data System (ADS)
Bolster, Carl H.; Vadas, Peter A.; Boykin, Debbie
2016-08-01
Phosphorous (P) fate and transport models are important tools for developing and evaluating conservation practices aimed at reducing P losses from agricultural fields. Because all models are simplifications of complex systems, there will exist an inherent amount of uncertainty associated with their predictions. It is therefore important that efforts be directed at identifying, quantifying, and communicating the different sources of model uncertainties. In this study, we conducted an uncertainty analysis with the Annual P Loss Estimator (APLE) model. Our analysis included calculating parameter uncertainties and confidence and prediction intervals for five internal regression equations in APLE. We also estimated uncertainties of the model input variables based on values reported in the literature. We then predicted P loss for a suite of fields under different management and climatic conditions while accounting for uncertainties in the model parameters and inputs and compared the relative contributions of these two sources of uncertainty to the overall uncertainty associated with predictions of P loss. Both the overall magnitude of the prediction uncertainties and the relative contributions of the two sources of uncertainty varied depending on management practices and field characteristics. This was due to differences in the number of model input variables and the uncertainties in the regression equations associated with each P loss pathway. Inspection of the uncertainties in the five regression equations brought attention to a previously unrecognized limitation with the equation used to partition surface-applied fertilizer P between leaching and runoff losses. As a result, an alternate equation was identified that provided similar predictions with much less uncertainty. Our results demonstrate how a thorough uncertainty and model residual analysis can be used to identify limitations with a model. Such insight can then be used to guide future data collection and model development and evaluation efforts.
[Photosynthetic characteristics of five arbor species in Shenyang urban area].
Li, Hai-Me; He, Xing-Yuan; Wang, Kui-Ling; Chen, Wei
2007-08-01
By using LI-6400 infrared gas analyzer, this paper studied the diurnal and seasonal variations of the photosynthetic rate of main arbor species (Populus alba x P. berolinensis, Salix matsudana, Ulmus pumila, Robinia pseudoacacia and Prunus davidiana) in Shenyang urban area. The correlations between net photosynthetic rate and environmental factors (photosynthetic active radiation, temperature, and stomatal conductance) were assessed by multivariate regression analysis, and related equations were constructed. The results showed that for test arbor species, the diurnal variation of photosynthetic rate mainly presented a single peak curve, and the seasonal variation was in the order of summer > autumn > spring. The major factors affecting the photosynthetic rate were photosynthetic active radiation, stomatal conductance, and intercellular CO2 concentration.
Rong, Hu; Nianhua, Xie; Jun, Xu; Lianguo, Ruan; Si, Wu; Sheng, Wei; Heng, Guo; Xia, Wang
2017-12-01
We aimed to explore the prevalence of and risk factors for depressive symptoms (DS) among people living with HIV/AIDS (PLWHA) receiving antiretroviral treatment (ART) in Wuhan, Hubei, China. A cross-sectional study evaluating adult PLWHA receiving ART in nine designated clinical hospitals was conducted from October to December 2015. The validated Beck Depression Inventory (BDI) was used to assess DS in eligible participants. Socio-demographical, epidemiological and clinical data were directly extracted from the case reporting database of the China HIV/AIDS Information Network. Multinomial regression analysis was used to explore the risk factors for DS. 394 participants were finally included in all analyses. 40.3% were found to have DS with 13.7% having mild DS and 26.6% having moderate to severe DS. The results of multinomial regression analysis suggested that being married or living with a partner, recent experience of ART-related side effects, and/or history of HCV infection were positively associated with mild DS, while increasing age was positively associated with moderate to severe DS.
Yu, Cai-Xia; Zhang, Xiu-Zhen; Zhang, Keqin; Tang, Zihui
2015-12-09
The main aim of this study was to evaluate the association between education level and osteoporosis (OP) in general Chinese Men. We conducted a large-scale, community-based, cross-sectional study to investigate the association by using self-report questionnaire to assess education levels. The data of 1092 men were available for analysis in this study. Multiple regression models controlling for confounding factors to include education level were performed to explore the relationship between education level and OP. Positive correlations between education level and T-score of quantitative bone ultrasound (QUS-T score) were reported (β = 0.108, P value < 0.001). Multiple regression analysis indicated that the education level was independently and significantly associated with OP (P < 0.1 for all models). The men with lower education level had a higher prevalence of OP. The education level was independently and significantly associated with OP. The prevalence of OP was more frequent in Chinese men with lower education level. ClinicalTrials.gov Identifier: NCT02451397 ; date of registration: 05/28/2015).
de Albuquerque Seixas, Emerson; Carmello, Beatriz Leone; Kojima, Christiane Akemi; Contti, Mariana Moraes; Modeli de Andrade, Luiz Gustavo; Maiello, José Roberto; Almeida, Fernando Antonio; Martin, Luis Cuadrado
2015-05-01
Cardiovascular diseases are major causes of mortality in chronic renal failure patients before and after renal transplantation. Among them, coronary disease presents a particular risk; however, risk predictors have been used to diagnose coronary heart disease. This study evaluated the frequency and importance of clinical predictors of coronary artery disease in chronic renal failure patients undergoing dialysis who were renal transplant candidates, and assessed a previously developed scoring system. Coronary angiographies conducted between March 2008 and April 2013 from 99 candidates for renal transplantation from two transplant centers in São Paulo state were analyzed for associations between significant coronary artery diseases (≥70% stenosis in one or more epicardial coronary arteries or ≥50% in the left main coronary artery) and clinical parameters. Univariate logistic regression analysis identified diabetes, angina, and/or previous infarction, clinical peripheral arterial disease and dyslipidemia as predictors of coronary artery disease. Multiple logistic regression analysis identified only diabetes and angina and/or previous infarction as independent predictors. The results corroborate previous studies demonstrating the importance of these factors when selecting patients for coronary angiography in clinical pretransplant evaluation.
Myxomatosis in wild rabbit: design of control programs in Mediterranean ecosystems.
García-Bocanegra, Ignacio; Astorga, Rafael Jesús; Napp, Sebastián; Casal, Jordi; Huerta, Belén; Borge, Carmen; Arenas, Antonio
2010-01-01
A cross-sectional study was carried out in natural wild rabbit (Oryctolagus cuniculus) populations from southern Spain to identify risk factors associated to myxoma virus infection. Blood samples from 619 wild rabbits were collected, and questionnaires which included variables related to host, disease, game management and environment were completed. A logistic regression analysis was conducted to investigate the associations between myxomatosis seropositivity (dependent variable) across 7 hunting estates and an extensive set of explanatory variables obtained from the questionnaires. The prevalence of antibodies against myxomatosis virus was 56.4% (95% CI: 52.5-60.3) and ranged between 21.4% (95% CI: 9.0-33.8) and 70.2% (95% CI: 58.3-82.1) among the different sampling areas. The logistic regression analysis showed that autumn (OR 9.0), high abundance of mosquitoes (OR 8.2), reproductive activity (OR 4.1), warren's insecticide treatment (OR 3.7), rabbit haemorrhagic disease (RHD) seropositivity (OR 2.6), high hunting pressure (OR 6.3) and sheep presence (OR 6.4) were associated with seropositivity to myxomatosis. Based on the results, diverse management measures for myxomatosis control are proposed.
Multivariate Time Series Forecasting of Crude Palm Oil Price Using Machine Learning Techniques
NASA Astrophysics Data System (ADS)
Kanchymalay, Kasturi; Salim, N.; Sukprasert, Anupong; Krishnan, Ramesh; Raba'ah Hashim, Ummi
2017-08-01
The aim of this paper was to study the correlation between crude palm oil (CPO) price, selected vegetable oil prices (such as soybean oil, coconut oil, and olive oil, rapeseed oil and sunflower oil), crude oil and the monthly exchange rate. Comparative analysis was then performed on CPO price forecasting results using the machine learning techniques. Monthly CPO prices, selected vegetable oil prices, crude oil prices and monthly exchange rate data from January 1987 to February 2017 were utilized. Preliminary analysis showed a positive and high correlation between the CPO price and soy bean oil price and also between CPO price and crude oil price. Experiments were conducted using multi-layer perception, support vector regression and Holt Winter exponential smoothing techniques. The results were assessed by using criteria of root mean square error (RMSE), means absolute error (MAE), means absolute percentage error (MAPE) and Direction of accuracy (DA). Among these three techniques, support vector regression(SVR) with Sequential minimal optimization (SMO) algorithm showed relatively better results compared to multi-layer perceptron and Holt Winters exponential smoothing method.
Life stress and atherosclerosis: a pathway through unhealthy lifestyle.
Mainous, Arch G; Everett, Charles J; Diaz, Vanessa A; Player, Marty S; Gebregziabher, Mulugeta; Smith, Daniel W
2010-01-01
To examine the relationship between a general measure of chronic life stress and atherosclerosis among middle aged adults without clinical cardiovascular disease via pathways through unhealthy lifestyle characteristics. We conducted an analysis of The Multi-Ethnic Study of Atherosclerosis (MESA). The MESA collected in 2000 includes 5,773 participants, aged 45-84. We computed standard regression techniques to examine the relationship between life stress and atherosclerosis as well as path analysis with hypothesized paths from stress to atherosclerosis through unhealthy lifestyle. Our outcome was sub-clinical atherosclerosis measured as presence of coronary artery calcification (CAC). A logistic regression adjusted for potential confounding variables along with the unhealthy lifestyle characteristics of smoking, excessive alcohol use, high caloric intake, sedentary lifestyle, and obesity yielded no significant relationship between chronic life stress (OR 0.93, 95% CI 0.80-1.08) and CAC. However, significant indirect pathways between chronic life stress and CAC through smoking (p = .007), and sedentary lifestyle (p = .03) and caloric intake (.002) through obesity were found. These results suggest that life stress is related to atherosclerosis once paths of unhealthy coping behaviors are considered.
Maintenance Operations in Mission Oriented Protective Posture Level IV (MOPPIV)
1987-10-01
Repair FADAC Printed Circuit Board ............. 6 3. Data Analysis Techniques ............................. 6 a. Multiple Linear Regression... ANALYSIS /DISCUSSION ............................... 12 1. Exa-ple of Regression Analysis ..................... 12 S2. Regression results for all tasks...6 * TABLE 9. Task Grouping for Analysis ........................ 7 "TABXLE 10. Remove/Replace H60A3 Power Pack................. 8 TABLE
Bidirectional relationship between renal function and periodontal disease in older Japanese women.
Yoshihara, Akihiro; Iwasaki, Masanori; Miyazaki, Hideo; Nakamura, Kazutoshi
2016-09-01
The purpose of this study was to evaluate the reciprocal effects of chronic kidney disease (CKD) and periodontal disease. A total of 332 postmenopausal never smoking women were enrolled, and their serum high-sensitivity C-reactive protein, serum osteocalcin and serum cystatin C levels were measured. Poor renal function was defined as serum cystatin C > 0.91 mg/l. Periodontal disease markers, including clinical attachment level and the periodontal inflamed surface area (PISA), were also evaluated. Logistic regression analysis was conducted to evaluate the relationships between renal function and periodontal disease markers, serum osteocalcin level and hsCRP level. The prevalence-rate ratios (PRRs) on multiple Poisson regression analyses were determined to evaluate the relationships between periodontal disease markers and serum osteocalcin, serum cystatin C and serum hsCRP levels. On logistic regression analysis, PISA was significantly associated with serum cystatin C level. The odds ratio for serum cystatin C level was 2.44 (p = 0.011). The PRR between serum cystatin C level and periodontal disease markers such as number of sites with clinical attachment level ≥6 mm was significantly positive (3.12, p < 0.001). Similar tendencies were shown for serum osteocalcin level. This study suggests that CKD and periodontal disease can have reciprocal effects. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zhai, Liang; Li, Shuang; Zou, Bin; Sang, Huiyong; Fang, Xin; Xu, Shan
2018-05-01
Considering the spatial non-stationary contributions of environment variables to PM2.5 variations, the geographically weighted regression (GWR) modeling method has been using to estimate PM2.5 concentrations widely. However, most of the GWR models in reported studies so far were established based on the screened predictors through pretreatment correlation analysis, and this process might cause the omissions of factors really driving PM2.5 variations. This study therefore developed a best subsets regression (BSR) enhanced principal component analysis-GWR (PCA-GWR) modeling approach to estimate PM2.5 concentration by fully considering all the potential variables' contributions simultaneously. The performance comparison experiment between PCA-GWR and regular GWR was conducted in the Beijing-Tianjin-Hebei (BTH) region over a one-year-period. Results indicated that the PCA-GWR modeling outperforms the regular GWR modeling with obvious higher model fitting- and cross-validation based adjusted R2 and lower RMSE. Meanwhile, the distribution map of PM2.5 concentration from PCA-GWR modeling also clearly depicts more spatial variation details in contrast to the one from regular GWR modeling. It can be concluded that the BSR enhanced PCA-GWR modeling could be a reliable way for effective air pollution concentration estimation in the coming future by involving all the potential predictor variables' contributions to PM2.5 variations.
Hyper-Spectral Image Analysis With Partially Latent Regression and Spatial Markov Dependencies
NASA Astrophysics Data System (ADS)
Deleforge, Antoine; Forbes, Florence; Ba, Sileye; Horaud, Radu
2015-09-01
Hyper-spectral data can be analyzed to recover physical properties at large planetary scales. This involves resolving inverse problems which can be addressed within machine learning, with the advantage that, once a relationship between physical parameters and spectra has been established in a data-driven fashion, the learned relationship can be used to estimate physical parameters for new hyper-spectral observations. Within this framework, we propose a spatially-constrained and partially-latent regression method which maps high-dimensional inputs (hyper-spectral images) onto low-dimensional responses (physical parameters such as the local chemical composition of the soil). The proposed regression model comprises two key features. Firstly, it combines a Gaussian mixture of locally-linear mappings (GLLiM) with a partially-latent response model. While the former makes high-dimensional regression tractable, the latter enables to deal with physical parameters that cannot be observed or, more generally, with data contaminated by experimental artifacts that cannot be explained with noise models. Secondly, spatial constraints are introduced in the model through a Markov random field (MRF) prior which provides a spatial structure to the Gaussian-mixture hidden variables. Experiments conducted on a database composed of remotely sensed observations collected from the Mars planet by the Mars Express orbiter demonstrate the effectiveness of the proposed model.
Association between sociability and diffusion tensor imaging in BALB/cJ mice.
Kim, Sungheon; Pickup, Stephen; Fairless, Andrew H; Ittyerah, Ranjit; Dow, Holly C; Abel, Ted; Brodkin, Edward S; Poptani, Harish
2012-01-01
The purpose of this study was to use high-resolution diffusion tensor imaging (DTI) to investigate the association between DTI metrics and sociability in BALB/c inbred mice. The sociability of prepubescent (30-day-old) BALB/cJ mice was operationally defined as the time that the mice spent sniffing a stimulus mouse in a social choice test. High-resolution ex vivo DTI data on 12 BALB/cJ mouse brains were acquired using a 9.4-T vertical-bore magnet. Regression analysis was conducted to investigate the association between DTI metrics and sociability. Significant positive regression (p < 0.001) between social sniffing time and fractional anisotropy was found in 10 regions located in the thalamic nuclei, zona incerta/substantia nigra, visual/orbital/somatosensory cortices and entorhinal cortex. In addition, significant negative regression (p < 0.001) between social sniffing time and mean diffusivity was found in five areas located in the sensory cortex, motor cortex, external capsule and amygdaloid region. In all regions showing significant regression with either the mean diffusivity or fractional anisotropy, the tertiary eigenvalue correlated negatively with the social sniffing time. This study demonstrates the feasibility of using DTI to detect brain regions associated with sociability in a mouse model system. Copyright © 2011 John Wiley & Sons, Ltd.
Static and moving solid/gas interface modeling in a hybrid rocket engine
NASA Astrophysics Data System (ADS)
Mangeot, Alexandre; William-Louis, Mame; Gillard, Philippe
2018-07-01
A numerical model was developed with CFD-ACE software to study the working condition of an oxygen-nitrogen/polyethylene hybrid rocket combustor. As a first approach, a simplified numerical model is presented. It includes a compressible transient gas phase in which a two-step combustion mechanism is implemented coupled to a radiative model. The solid phase from the fuel grain is a semi-opaque material with its degradation process modeled by an Arrhenius type law. Two versions of the model were tested. The first considers the solid/gas interface with a static grid while the second uses grid deformation during the computation to follow the asymmetrical regression. The numerical results are obtained with two different regression kinetics originating from ThermoGravimetry Analysis and test bench results. In each case, the fuel surface temperature is retrieved within a range of 5% error. However, good results are only found using kinetics from the test bench. The regression rate is found within 0.03 mm s-1 and average combustor pressure and its variation over time have the same intensity than the measurements conducted on the test bench. The simulation that uses grid deformation to follow the regression shows a good stability over a 10 s simulated time simulation.
Rowe, A Shaun; Rinehart, Derrick R; Lezatte, Stephanie; Langdon, J Russell
2018-03-07
The objective of this study was to evaluate and identify the risk factors for developing a new or enlarged intracranial hemorrhage (ICH) after the placement of an external ventricular drain. A single center, nested case-control study of individuals who received an external ventricular drain from June 1, 2011 to June 30, 2014 was conducted at a large academic medical center. A bivariate analysis was conducted to compare those individuals who experienced a post-procedural intracranial hemorrhage to those who did not experience a new bleed. The variables identified as having a p-value less than 0.15 in the bivariate analysis were then evaluated using a multivariate logistic regression model. Twenty-seven of the eighty-one study participants experienced a new or enlarged intracranial hemorrhage after the placement of an external ventricular drain. Of these twenty-seven patients, 6 individuals received an antiplatelet within ninety-six hours of external ventricular drain placement (p = 0.024). The multivariate logistic regression model identified antiplatelet use within 96 h of external ventricular drain insertion as an independent risk factor for post-EVD ICH (OR 13.1; 95% CI 1.95-88.6; p = 0.008). Compared to those study participants who did not receive an antiplatelet within 96 h of external ventricular drain placement, those participants who did receive an antiplatelet were 13.1 times more likely to exhibit a new or enlarged intracranial hemorrhage.
Aggression in Psychiatric Wards: Effect of the Use of a Structured Risk Assessment.
Hvidhjelm, Jacob; Sestoft, Dorte; Skovgaard, Lene Theil; Rasmussen, Kirsten; Almvik, Roger; Bue Bjorner, Jakob
2016-12-01
Health care workers are often exposed to violence and aggression in psychiatric settings. Short-term risk assessments, such as the Brøset Violence Checklist (BVC), are strong predictors of such aggression and may enable staff to take preventive measures against aggression. This study evaluated whether the routine use of the BVC could reduce the frequency of patient aggression. We conducted a study with a semi-random regression discontinuity design in 15 psychiatric wards. Baseline aggression risk was assessed using the Aggression Observation Short Form (AOS) over three months. The BVC was implemented in seven intervention wards, and the risk of aggressive incidents over three months of follow-up was compared with the risk in eight control wards. The analysis was conducted at the ward level because each ward was allocated to the intervention and control groups. At baseline, the risk of aggression varied between wards, from one aggressive incident per patient per 1,000 shifts to 147 aggressive incidents per patient per 1,000 shifts. The regression discontinuity analysis found a 45% reduction in the risk of aggression (Odds Ratio (OR) = 0.55, 95% confidence interval: 0.21-1.43). The study did not find a significant reduction in the risk of aggression after implementing a systematic short-term risk assessment with the BVC. Although our findings suggest that use of the BVC may reduce the risk of aggression, the results need to be confirmed in studies with more statistical power.
Brucker, Debra L.; Stewart, Maureen
2013-01-01
To explore whether the implementation of performance-based contracting (PBC) within the State of Maine’s substance abuse treatment system resulted in improved performance, one descriptive and two empirical analyses were conducted. The first analysis examined utilization and payment structure. The second study was designed to examine whether timeliness of access to outpatient (OP) and intensive outpatient (IOP) substance abuse assessments and treatment, measures that only became available after the implementation of PBC, differed between PBC and non-PBC agencies in the year following implementation of PBC. Using treatment admission records from the state treatment data system (N=9,128), logistic regression models run using generalized equation estimation techniques found no significant difference between PBC agencies and other agencies on timeliness of access to assessments or treatment, for both OP and IOP services. The third analysis, conducted using discharge data from the years prior to and after the implementation of performance-based contracting (N=6,740) for those agencies that became a part of the performance-based contracting system, was designed to assess differences in level of participation, retention, and completion of treatment. Regression models suggest that performance on OP client engagement and retention measures was significantly poorer the year after the implementation of PBC, but that temporal rather than a PBC effects were more significant. No differences were found between years for IOP level of participation or completion of treatment measures. PMID:21249461
NASA Technical Reports Server (NTRS)
Rummler, D. R.
1976-01-01
The results are presented of investigations to apply regression techniques to the development of methodology for creep-rupture data analysis. Regression analysis techniques are applied to the explicit description of the creep behavior of materials for space shuttle thermal protection systems. A regression analysis technique is compared with five parametric methods for analyzing three simulated and twenty real data sets, and a computer program for the evaluation of creep-rupture data is presented.
Resting-state functional magnetic resonance imaging: the impact of regression analysis.
Yeh, Chia-Jung; Tseng, Yu-Sheng; Lin, Yi-Ru; Tsai, Shang-Yueh; Huang, Teng-Yi
2015-01-01
To investigate the impact of regression methods on resting-state functional magnetic resonance imaging (rsfMRI). During rsfMRI preprocessing, regression analysis is considered effective for reducing the interference of physiological noise on the signal time course. However, it is unclear whether the regression method benefits rsfMRI analysis. Twenty volunteers (10 men and 10 women; aged 23.4 ± 1.5 years) participated in the experiments. We used node analysis and functional connectivity mapping to assess the brain default mode network by using five combinations of regression methods. The results show that regressing the global mean plays a major role in the preprocessing steps. When a global regression method is applied, the values of functional connectivity are significantly lower (P ≤ .01) than those calculated without a global regression. This step increases inter-subject variation and produces anticorrelated brain areas. rsfMRI data processed using regression should be interpreted carefully. The significance of the anticorrelated brain areas produced by global signal removal is unclear. Copyright © 2014 by the American Society of Neuroimaging.
Apfel, Christian C; Souza, Kimberly; Portillo, Juan; Dalal, Poorvi; Bergese, Sergio D
2015-01-01
Intravenous (IV) acetaminophen has been shown to reduce postoperative pain and opioid consumption, which may lead to increased patient satisfaction. To determine the effect IV acetaminophen has on patient satisfaction, a pooled analysis from methodologically homogenous studies was conducted. We obtained patient-level data from five randomized, placebo-controlled studies in adults undergoing elective surgery in which patient satisfaction was measured using a 4-point categorical rating scale. The primary endpoint was "excellent" satisfaction and the secondary endpoint was "good" or "excellent" satisfaction at 24 hr after first study drug administration. Bivariate analyses were conducted using the chi-square test and Student's t-test and multivariable analyses were conducted using logistic regression analysis. Patients receiving IV acetaminophen were more than twice as likely as those who received placebo to report "excellent" patient satisfaction ratings (32.3% vs. 15.9%, respectively). Of all variables that remained statistically significant in the multivariable analysis (i.e., type of surgery, duration of anesthesia, last pain rating, and opioid consumption), IV acetaminophen had the strongest positive effect on "excellent" patient satisfaction with an odds ratio of 2.76 (95% CI 1.81-4.23). Results for "excellent" or "good" satisfaction were similar. When given as part of a perioperative analgesic regimen, IV acetaminophen was associated with significantly improved patient satisfaction.
Nonlinear-regression flow model of the Gulf Coast aquifer systems in the south-central United States
Kuiper, L.K.
1994-01-01
A multiple-regression methodology was used to help answer questions concerning model reliability, and to calibrate a time-dependent variable-density ground-water flow model of the gulf coast aquifer systems in the south-central United States. More than 40 regression models with 2 to 31 regressions parameters are used and detailed results are presented for 12 of the models. More than 3,000 values for grid-element volume-averaged head and hydraulic conductivity are used for the regression model observations. Calculated prediction interval half widths, though perhaps inaccurate due to a lack of normality of the residuals, are the smallest for models with only four regression parameters. In addition, the root-mean weighted residual decreases very little with an increase in the number of regression parameters. The various models showed considerable overlap between the prediction inter- vals for shallow head and hydraulic conductivity. Approximate 95-percent prediction interval half widths for volume-averaged freshwater head exceed 108 feet; for volume-averaged base 10 logarithm hydraulic conductivity, they exceed 0.89. All of the models are unreliable for the prediction of head and ground-water flow in the deeper parts of the aquifer systems, including the amount of flow coming from the underlying geopressured zone. Truncating the domain of solution of one model to exclude that part of the system having a ground-water density greater than 1.005 grams per cubic centimeter or to exclude that part of the systems below a depth of 3,000 feet, and setting the density to that of freshwater does not appreciably change the results for head and ground-water flow, except for locations close to the truncation surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viani, Gustavo Arruda; Stefano, Eduardo Jose; Afonso, Sergio Luis
2009-08-01
Purpose: To determine in a meta-analysis whether the outcomes in men with localized prostate cancer treated with high-dose radiotherapy (HDRT) are better than those in men treated with conventional-dose radiotherapy (CDRT), by quantifying the effect of the total dose of radiotherapy on biochemical control (BC). Methods and Materials: The MEDLINE, EMBASE, CANCERLIT, and Cochrane Library databases, as well as the proceedings of annual meetings, were systematically searched to identify randomized, controlled studies comparing HDRT with CDRT for localized prostate cancer. To evaluate the dose-response relationship, we conducted a meta-regression analysis of BC ratios by means of weighted linear regression. Results:more » Seven RCTs with a total patient population of 2812 were identified that met the study criteria. Pooled results from these RCTs showed a significant reduction in the incidence of biochemical failure in those patients with prostate cancer treated with HDRT (p < 0.0001). However, there was no difference in the mortality rate (p = 0.38) and specific prostate cancer mortality rates (p = 0.45) between the groups receiving HDRT and CDRT. However, there were more cases of late Grade >2 gastrointestinal toxicity after HDRT than after CDRT. In the subgroup analysis, patients classified as being at low (p = 0.007), intermediate (p < 0.0001), and high risk (p < 0.0001) of biochemical failure all showed a benefit from HDRT. The meta-regression analysis also detected a linear correlation between the total dose of radiotherapy and biochemical failure (BC = -67.3 + [1.8 x radiotherapy total dose in Gy]; p = 0.04). Conclusions: Our meta-analysis showed that HDRT is superior to CDRT in preventing biochemical failure in low-, intermediate-, and high-risk prostate cancer patients, suggesting that this should be offered as a treatment for all patients, regardless of their risk status.« less
NASA Astrophysics Data System (ADS)
Muller, Sybrand Jacobus; van Niekerk, Adriaan
2016-07-01
Soil salinity often leads to reduced crop yield and quality and can render soils barren. Irrigated areas are particularly at risk due to intensive cultivation and secondary salinization caused by waterlogging. Regular monitoring of salt accumulation in irrigation schemes is needed to keep its negative effects under control. The dynamic spatial and temporal characteristics of remote sensing can provide a cost-effective solution for monitoring salt accumulation at irrigation scheme level. This study evaluated a range of pan-fused SPOT-5 derived features (spectral bands, vegetation indices, image textures and image transformations) for classifying salt-affected areas in two distinctly different irrigation schemes in South Africa, namely Vaalharts and Breede River. The relationship between the input features and electro conductivity measurements were investigated using regression modelling (stepwise linear regression, partial least squares regression, curve fit regression modelling) and supervised classification (maximum likelihood, nearest neighbour, decision tree analysis, support vector machine and random forests). Classification and regression trees and random forest were used to select the most important features for differentiating salt-affected and unaffected areas. The results showed that the regression analyses produced weak models (<0.4 R squared). Better results were achieved using the supervised classifiers, but the algorithms tend to over-estimate salt-affected areas. A key finding was that none of the feature sets or classification algorithms stood out as being superior for monitoring salt accumulation at irrigation scheme level. This was attributed to the large variations in the spectral responses of different crops types at different growing stages, coupled with their individual tolerances to saline conditions.
Analysis of physiological signals for recognition of boredom, pain, and surprise emotions.
Jang, Eun-Hye; Park, Byoung-Jun; Park, Mi-Sook; Kim, Sang-Hyeob; Sohn, Jin-Hun
2015-06-18
The aim of the study was to examine the differences of boredom, pain, and surprise. In addition to that, it was conducted to propose approaches for emotion recognition based on physiological signals. Three emotions, boredom, pain, and surprise, are induced through the presentation of emotional stimuli and electrocardiography (ECG), electrodermal activity (EDA), skin temperature (SKT), and photoplethysmography (PPG) as physiological signals are measured to collect a dataset from 217 participants when experiencing the emotions. Twenty-seven physiological features are extracted from the signals to classify the three emotions. The discriminant function analysis (DFA) as a statistical method, and five machine learning algorithms (linear discriminant analysis (LDA), classification and regression trees (CART), self-organizing map (SOM), Naïve Bayes algorithm, and support vector machine (SVM)) are used for classifying the emotions. The result shows that the difference of physiological responses among emotions is significant in heart rate (HR), skin conductance level (SCL), skin conductance response (SCR), mean skin temperature (meanSKT), blood volume pulse (BVP), and pulse transit time (PTT), and the highest recognition accuracy of 84.7% is obtained by using DFA. This study demonstrates the differences of boredom, pain, and surprise and the best emotion recognizer for the classification of the three emotions by using physiological signals.
Sloan, Robert A; Kim, Youngdeok; Sahasranaman, Aarti; Müller-Riemenschneider, Falk; Biddle, Stuart J H; Finkelstein, Eric A
2018-03-22
A recent meta-analysis surmised pedometers were a useful panacea to independently reduce sedentary time (ST). To further test and expand on this deduction, we analyzed the ability of a consumer-wearable activity tracker to reduce ST and prolonged sedentary bouts (PSB). We originally conducted a 12-month randomized control trial where 800 employees from 13 organizations were assigned to control, activity tracker, or one of two activity tracker plus incentive groups designed to increase step count. The primary outcome was accelerometer measured moderate-to-vigorous physical activity. We conducted a secondary analysis on accelerometer measured daily ST and PSB bouts. A general linear mixed model was used to examine changes in ST and prolonged sedentary bouts, followed by between-group pairwise comparisons. Regression analyses were conducted to examine the association of changes in step counts with ST and PSB. The changes in ST and PSB were not statistically significant and not different between the groups (P < 0.05). Increases in step counts were concomitantly associated with decreases in ST and PSB, regardless of intervention (P < 0.05). Caution should be taken when considering consumer-wearable activity trackers as a means to reduce sedentary behavior. Trial registration NCT01855776 Registered: August 8, 2012.
Association Between Dietary Intake and Function in Amyotrophic Lateral Sclerosis
Nieves, Jeri W.; Gennings, Chris; Factor-Litvak, Pam; Hupf, Jonathan; Singleton, Jessica; Sharf, Valerie; Oskarsson, Björn; Fernandes Filho, J. Americo M.; Sorenson, Eric J.; D’Amico, Emanuele; Goetz, Ray; Mitsumoto, Hiroshi
2017-01-01
IMPORTANCE There is growing interest in the role of nutrition in the pathogenesis and progression of amyotrophic lateral sclerosis (ALS). OBJECTIVE To evaluate the associations between nutrients, individually and in groups, and ALS function and respiratory function at diagnosis. DESIGN, SETTING, AND PARTICIPANTS A cross-sectional baseline analysis of the Amyotrophic Lateral Sclerosis Multicenter Cohort Study of Oxidative Stress study was conducted from March 14, 2008, to February 27, 2013, at 16 ALS clinics throughout the United States among 302 patients with ALS symptom duration of 18 months or less. EXPOSURES Nutrient intake, measured using a modified Block Food Frequency Questionnaire (FFQ). MAIN OUTCOMES AND MEASURES Amyotrophic lateral sclerosis function, measured using the ALS Functional Rating Scale–Revised (ALSFRS-R), and respiratory function, measured using percentage of predicted forced vital capacity (FVC). RESULTS Baseline data were available on 302 patients with ALS (median age, 63.2 years [interquartile range, 55.5–68.0 years]; 178 men and 124 women). Regression analysis of nutrients found that higher intakes of antioxidants and carotenes from vegetables were associated with higher ALSFRS-R scores or percentage FVC. Empirically weighted indices using the weighted quantile sum regression method of “good” micronutrients and “good” food groups were positively associated with ALSFRS-R scores (β [SE], 2.7 [0.69] and 2.9 [0.9], respectively) and percentage FVC (β [SE], 12.1 [2.8] and 11.5 [3.4], respectively) (all P < .001). Positive and significant associations with ALSFRS-R scores (β [SE], 1.5 [0.61]; P = .02) and percentage FVC (β [SE], 5.2 [2.2]; P = .02) for selected vitamins were found in exploratory analyses. CONCLUSIONS AND RELEVANCE Antioxidants, carotenes, fruits, and vegetables were associated with higher ALS function at baseline by regression of nutrient indices and weighted quantile sum regression analysis. We also demonstrated the usefulness of the weighted quantile sum regression method in the evaluation of diet. Those responsible for nutritional care of the patient with ALS should consider promoting fruit and vegetable intake since they are high in antioxidants and carotenes. PMID:27775751
Reed, Margot O.; Jakubovski, Ewgeni; Johnson, Jessica A.
2017-01-01
Abstract Objective: To explore predictors of 8-year school-based behavioral outcomes in attention-deficit/hyperactivity disorder (ADHD). Methods: We examined potential baseline predictors of school-based behavioral outcomes in children who completed the 8-year follow-up in the multimodal treatment study of children with ADHD. Stepwise logistic regression and receiver operating characteristic (ROC) analysis identified baseline predictors that were associated with a higher risk of truancy, school discipline, and in-school fights. Results: Stepwise regression analysis explained between 8.1% (in-school fights) and 12.0% (school discipline) of the total variance in school-based behavioral outcomes. Logistic regression identified several baseline characteristics that were associated with school-based behavioral difficulties 8 years later, including being male (associated with truancy and school discipline), African American (school discipline, in-school fights), increased conduct disorder (CD) symptoms (truancy), decreased affection from parents (school discipline), ADHD severity (in-school fights), and study site (truancy and school discipline). ROC analyses identified the most discriminative predictors of truancy, school discipline, and in-school fights, which were Aggression and Conduct Problem Scale Total score, family income, and race, respectively. Conclusions: A modest, but nontrivial portion of school-based behavioral outcomes, was predicted by baseline childhood characteristics. Exploratory analyses identified modifiable (lack of paternal involvement, lower parental knowledge of behavioral principles, and parental use of physical punishment), somewhat modifiable (income and having comorbid CD), and nonmodifiable (African American and male) factors that were associated with school-based behavioral difficulties. Future research should confirm that the associations between earlier specific parenting behaviors and poor subsequent school-based behavioral outcomes are, indeed, causally related and independent cooccurring childhood psychopathology. Future research might target increasing paternal involvement and parental knowledge of behavioral principles and reducing use of physical punishment to improve school-based behavioral outcomes in children with ADHD. PMID:28253029
Reed, Margot O; Jakubovski, Ewgeni; Johnson, Jessica A; Bloch, Michael H
2017-05-01
To explore predictors of 8-year school-based behavioral outcomes in attention-deficit/hyperactivity disorder (ADHD). We examined potential baseline predictors of school-based behavioral outcomes in children who completed the 8-year follow-up in the multimodal treatment study of children with ADHD. Stepwise logistic regression and receiver operating characteristic (ROC) analysis identified baseline predictors that were associated with a higher risk of truancy, school discipline, and in-school fights. Stepwise regression analysis explained between 8.1% (in-school fights) and 12.0% (school discipline) of the total variance in school-based behavioral outcomes. Logistic regression identified several baseline characteristics that were associated with school-based behavioral difficulties 8 years later, including being male (associated with truancy and school discipline), African American (school discipline, in-school fights), increased conduct disorder (CD) symptoms (truancy), decreased affection from parents (school discipline), ADHD severity (in-school fights), and study site (truancy and school discipline). ROC analyses identified the most discriminative predictors of truancy, school discipline, and in-school fights, which were Aggression and Conduct Problem Scale Total score, family income, and race, respectively. A modest, but nontrivial portion of school-based behavioral outcomes, was predicted by baseline childhood characteristics. Exploratory analyses identified modifiable (lack of paternal involvement, lower parental knowledge of behavioral principles, and parental use of physical punishment), somewhat modifiable (income and having comorbid CD), and nonmodifiable (African American and male) factors that were associated with school-based behavioral difficulties. Future research should confirm that the associations between earlier specific parenting behaviors and poor subsequent school-based behavioral outcomes are, indeed, causally related and independent cooccurring childhood psychopathology. Future research might target increasing paternal involvement and parental knowledge of behavioral principles and reducing use of physical punishment to improve school-based behavioral outcomes in children with ADHD.
Standards for Standardized Logistic Regression Coefficients
ERIC Educational Resources Information Center
Menard, Scott
2011-01-01
Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…
The Statistical Analysis Techniques to Support the NGNP Fuel Performance Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bihn T. Pham; Jeffrey J. Einerson
2010-06-01
This paper describes the development and application of statistical analysis techniques to support the AGR experimental program on NGNP fuel performance. The experiments conducted in the Idaho National Laboratory’s Advanced Test Reactor employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule. The tests are instrumented with thermocouples embedded in graphite blocks and the target quantity (fuel/graphite temperature) is regulated by the He-Ne gas mixture that fills the gap volume. Three techniques for statistical analysis, namely control charting, correlation analysis, and regression analysis, are implemented in the SAS-based NGNP Data Management and Analysis System (NDMAS) for automatedmore » processing and qualification of the AGR measured data. The NDMAS also stores daily neutronic (power) and thermal (heat transfer) code simulation results along with the measurement data, allowing for their combined use and comparative scrutiny. The ultimate objective of this work includes (a) a multi-faceted system for data monitoring and data accuracy testing, (b) identification of possible modes of diagnostics deterioration and changes in experimental conditions, (c) qualification of data for use in code validation, and (d) identification and use of data trends to support effective control of test conditions with respect to the test target. Analysis results and examples given in the paper show the three statistical analysis techniques providing a complementary capability to warn of thermocouple failures. It also suggests that the regression analysis models relating calculated fuel temperatures and thermocouple readings can enable online regulation of experimental parameters (i.e. gas mixture content), to effectively maintain the target quantity (fuel temperature) within a given range.« less
Linear regression analysis: part 14 of a series on evaluation of scientific publications.
Schneider, Astrid; Hommel, Gerhard; Blettner, Maria
2010-11-01
Regression analysis is an important statistical method for the analysis of medical data. It enables the identification and characterization of relationships among multiple factors. It also enables the identification of prognostically relevant risk factors and the calculation of risk scores for individual prognostication. This article is based on selected textbooks of statistics, a selective review of the literature, and our own experience. After a brief introduction of the uni- and multivariable regression models, illustrative examples are given to explain what the important considerations are before a regression analysis is performed, and how the results should be interpreted. The reader should then be able to judge whether the method has been used correctly and interpret the results appropriately. The performance and interpretation of linear regression analysis are subject to a variety of pitfalls, which are discussed here in detail. The reader is made aware of common errors of interpretation through practical examples. Both the opportunities for applying linear regression analysis and its limitations are presented.
An improved multiple linear regression and data analysis computer program package
NASA Technical Reports Server (NTRS)
Sidik, S. M.
1972-01-01
NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.
Guo, L W; Liu, S Z; Zhang, M; Chen, Q; Zhang, S K; Sun, X B
2017-12-10
Objective: To investigate the effect of fried food intake on the pathogenesis of esophageal cancer and precancerous lesions. Methods: From 2005 to 2013, all the residents aged 40-69 years from 11 counties (cities) where cancer screening of upper gastrointestinal cancer had been conducted in rural areas of Henan province, were recruited as the subjects of study. Information on demography and lifestyle was collected. The residents under study were screened with iodine staining endoscopic examination and biopsy samples were diagnosed pathologically, under standardized criteria. Subjects with high risk were divided into the groups based on their different pathological degrees. Multivariate ordinal logistic regression analysis was used to analyze the relationship between the frequency of fried food intake and esophageal cancer and precancerous lesions. Results: A total number of 8 792 cases with normal esophagus, 3 680 with mild hyperplasia, 972 with moderate hyperplasia, 413 with severe hyperplasia carcinoma in situ, and 336 cases of esophageal cancer were recruited. Results from multivariate logistic regression analysis showed that, when compared with those who did not eat fried food, the intake of fried food (<2 times/week: OR =1.60, 95% CI : 1.40-1.83; ≥2 times/week: OR =2.58, 95% CI : 1.98-3.37) appeared a risk factor for both esophageal cancer or precancerous lesions after adjustment for age, sex, marital status, educational level, body mass index, smoking and alcohol intake. Conclusion: The intake of fried food appeared a risk factor for both esophageal cancer and precancerous lesions.
Derouin, F.; Garin, Y. J.; Buffard, C.; Berthelot, F.; Petithory, J. C.
1994-01-01
A collaborative study conducted by the French National Agency for Quality Control in Parasitology (CNQP) and various manufacturers of ELISA kits, represented by the Association of Laboratory Reagent Manufacturers (SFRL) compared the toxoplasmosis IgG antibody titres obtained with different ELISA-IgG kits and determined the relationships between the titres obtained by these techniques and the titre defined in international units (IU). Fifty-one serum samples with toxoplasmosis antibody titres ranging from 0 to 900 IU were tested in two successive studies with 16 ELISA-IgG kits. For the negative sera, false-positive reactions were observed with one kit. For the positive sera, the titres observed in ELISA were generally higher than those expressed in IU. Above 250 IU, the very wide variability of the titres found with the different ELISA kits renders any comparative analysis impossible. For titres below 250 IU, the results are sufficiently homogeneous to permit the use of regression analysis to study how the results for each ELISA kit compare with the mean results for the other kits. The slope of the line of regression shows a tendency to over-titration or under-titration compared with the results of the other manufacturers; the ordinate at the origin reflects the positivity threshold of the reaction and can be used to assess the risk of a lack of sensitivity (high threshold) or of specificity (threshold too low). On the whole, the trends revealed for a given manufacturer are constant from one study to the other. Within this range of titres, regression analysis also reveals the general tendency of ELISA kits to overestimate the titres by comparison with immunofluorescence.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8205645
2011-01-01
Background Although prostate cancer-related incidence and mortality have declined recently, striking racial/ethnic differences persist in the United States. Visualizing and modelling temporal trends of prostate cancer late-stage incidence, and how they vary according to geographic locations and race, should help explaining such disparities. Joinpoint regression is increasingly used to identify the timing and extent of changes in time series of health outcomes. Yet, most analyses of temporal trends are aspatial and conducted at the national level or for a single cancer registry. Methods Time series (1981-2007) of annual proportions of prostate cancer late-stage cases were analyzed for non-Hispanic Whites and non-Hispanic Blacks in each county of Florida. Noise in the data was first filtered by binomial kriging and results were modelled using joinpoint regression. A similar analysis was also conducted at the state level and for groups of metropolitan and non-metropolitan counties. Significant racial differences were detected using tests of parallelism and coincidence of time trends. A new disparity statistic was introduced to measure spatial and temporal changes in the frequency of racial disparities. Results State-level percentage of late-stage diagnosis decreased 50% since 1981; a decline that accelerated in the 90's when Prostate Specific Antigen (PSA) screening was introduced. Analysis at the metropolitan and non-metropolitan levels revealed that the frequency of late-stage diagnosis increased recently in urban areas, and this trend was significant for white males. The annual rate of decrease in late-stage diagnosis and the onset years for significant declines varied greatly among counties and racial groups. Most counties with non-significant average annual percent change (AAPC) were located in the Florida Panhandle for white males, whereas they clustered in South-eastern Florida for black males. The new disparity statistic indicated that the spatial extent of racial disparities reached a peak in 1990 because of an early decline in frequency of late-stage diagnosis observed for black males. Conclusions Analyzing temporal trends in cancer incidence and mortality rates outside a spatial framework is unsatisfactory, since it leads one to overlook significant geographical variation which can potentially generate new insights about the impact of various interventions. Differences observed among nested geographies in Florida show how the modifiable areal unit problem (MAUP) also impacts the analysis of temporal changes. PMID:22142274
Goovaerts, Pierre; Xiao, Hong
2011-12-05
Although prostate cancer-related incidence and mortality have declined recently, striking racial/ethnic differences persist in the United States. Visualizing and modelling temporal trends of prostate cancer late-stage incidence, and how they vary according to geographic locations and race, should help explaining such disparities. Joinpoint regression is increasingly used to identify the timing and extent of changes in time series of health outcomes. Yet, most analyses of temporal trends are aspatial and conducted at the national level or for a single cancer registry. Time series (1981-2007) of annual proportions of prostate cancer late-stage cases were analyzed for non-Hispanic Whites and non-Hispanic Blacks in each county of Florida. Noise in the data was first filtered by binomial kriging and results were modelled using joinpoint regression. A similar analysis was also conducted at the state level and for groups of metropolitan and non-metropolitan counties. Significant racial differences were detected using tests of parallelism and coincidence of time trends. A new disparity statistic was introduced to measure spatial and temporal changes in the frequency of racial disparities. State-level percentage of late-stage diagnosis decreased 50% since 1981; a decline that accelerated in the 90's when Prostate Specific Antigen (PSA) screening was introduced. Analysis at the metropolitan and non-metropolitan levels revealed that the frequency of late-stage diagnosis increased recently in urban areas, and this trend was significant for white males. The annual rate of decrease in late-stage diagnosis and the onset years for significant declines varied greatly among counties and racial groups. Most counties with non-significant average annual percent change (AAPC) were located in the Florida Panhandle for white males, whereas they clustered in South-eastern Florida for black males. The new disparity statistic indicated that the spatial extent of racial disparities reached a peak in 1990 because of an early decline in frequency of late-stage diagnosis observed for black males. Analyzing temporal trends in cancer incidence and mortality rates outside a spatial framework is unsatisfactory, since it leads one to overlook significant geographical variation which can potentially generate new insights about the impact of various interventions. Differences observed among nested geographies in Florida show how the modifiable areal unit problem (MAUP) also impacts the analysis of temporal changes.
ACUTE LOWER RESPIRATORY INFECTION IN GUARANI INDIGENOUS CHILDREN, BRAZIL.
Souza, Patricia Gomes de; Cardoso, Andrey Moreira; Sant'Anna, Clemax Couto; March, Maria de Fátima Bazhuni Pombo
2018-03-29
To describe the clinical profile and treatment of Brazilian Guarani indigenous children aged less than five years hospitalized for acute lower respiratory infection (ALRI), living in villages in the states from Rio de Janeiro to Rio Grande do Sul. Of the 234 children, 23 were excluded (incomplete data). The analysis was conducted in 211 children. Data were extracted from charts by a form. Based on record of wheezing and x-ray findings, ALRI was classified as bacterial, viral and viral-bacterial. A bivariate analysis was conducted using multinomial regression. Median age was 11 months. From the total sample, the ALRI cases were classified as viral (40.8%), bacterial (35.1%) and viral-bacterial (24.1%). It was verified that 53.1% of hospitalizations did not have clinical-radiological-laboratorial evidence to justify them. In the multinomial regression analysis, the comparison of bacterial and viral-bacterial showed the likelihood of having a cough was 3.1 times higher in the former (95%CI 1.11-8.70), whereas having chest retractions was 61.0% lower (OR 0.39, 95%CI 0.16-0.92). Comparing viral with viral-bacterial, the likelihood of being male was 2.2 times higher in the viral (95%CI 1.05-4.69), and of having tachypnea 58.0% lower (OR 0.42, 95%CI 0.19-0.92). Higher proportion of viral processes was identified, as well as viral-bacterial co-infections. Coughing was a symptom indicative of bacterial infection, whereas chest retractions and tachypnea showed viral-bacterial ALRI. Part of the resolution of non-severe ALRI still occurs at hospital level; therefore, we concluded that health services need to implement their programs in order to improve indigenous primary care.
Environmental Risk Factors in Han and Uyghur Children with Dyslexia: A Comparative Study.
Zhao, Hua; Zhang, Baoping; Chen, Yun; Zhou, Xiang; Zuo, Pengxiang
2016-01-01
Several studies have been conducted to explore risk factors for dyslexia. However, most studies examining dyslexia have been skewed toward Western countries, and few have considered two nationalities simultaneously. This study focused on differences in dyslexia prevalence and potential environmental risk factors between Han and Uyghur children. A cross-sectional study was conducted in Kashgar and Aksu, cities in Xinjiang province, China. A two-stage sampling strategy was used to recruit 2,854 students in grades 3-6 from 5 primary schools in 5 districts; 2,348 valid student questionnaires were included in the analysis. Dyslexia checklists for Chinese and Uyghur children and pupil rating scales were used to identify children with dyslexia. Questions related to the home literacy environment and reading ability were used to evaluate potential environmental risk factors. Single factor analysis and multivariate logistic regression were used to examine prevalence and risk factors for dyslexia. Dyslexia prevalence differed significantly between Han (3.9%) and Uyghur (7.0%) children (P < 0.05), and the boy-to-girl diagnosis ratio was almost 2:1. Multiple logistic regression analysis showed that ethnic differences in dyslexia prevalence between Han and Uyghur children could have occurred because of factors such as mother's occupation (P = 0.02, OR = 0.04, 95% CI = 0.01-0.68) and the frequency with which parents told stories (P = 0.00, OR = 4.50, 95% CI = 1.67-12.11). The prevalence of dyslexia was high in all children, particularly those in the Uyghur group. Environmental factors could have been responsible for some of the differences observed. The results contribute to the early identification and management of dyslexia in children from these two groups and research examining developmental dyslexia and differences in racial genetics.
Olumide, Adesola O; Owoaje, Eme T
2015-01-01
This study examined the association between young age and poor road safety practices of commercial motorcyclists in Oyo state, Nigeria. A cross-sectional study of 371 commercial motorcyclists selected via a multistage sampling technique was conducted. Information on sociodemographic characteristics and road safety practices (possession of a valid license, helmet use, number of passengers carried per trip, and compliance with 10 selected traffic signs) was obtained with the aid of an interviewer-administered questionnaire. Individual road safety practice items were scored and a total score was obtained giving minimum and maximum obtainable scores of 0 and 35. Respondents with scores ≤ 17.5 (i.e., less than or equal to half of the maximum obtainable score of 35) were categorized as having poor road safety practices. Descriptive statistics, chi-square, and multiple logistic regression tests were conducted. Selected sociodemographic and occupation-related factors were controlled for in the logistic regression analysis. All respondents were male, 80.1% had been riding for commercial purposes for less than 5 years, and 73.0% had other jobs in addition to commercial riding. Road safety practices were generally poor; that is, 84.4% of commercial riders were categorized as having poor road safety practices. Almost all (98.6%) respondents aged < 25 years compared to 84.3% of those aged 25 to <35 years and 76.8% of those ≥35 years had poor road safety practices. This difference was statistically significant. Following logistic regression, younger age (<25 years) remained predictive of poor road safety practices. Motorcyclists aged < 25 years had about 16 times higher odds of having poor road safety practices compared to those aged 35 years and more (odds ratio = 15.72, 95% confidence interval, 1.82-135.91). Most studies conduct only bivariate analysis to test the association between age and road practices of commercial motorcyclists; however, we investigated the influence of potential confounding variables using multivariate analysis. Our findings confirmed young age as a predictor of poor road safety practices among our sample of commercial motorcyclists and emphasizes the need for road safety programs to target this category of riders. The current minimum age for obtaining a rider's license in Nigeria is 18 years; our findings suggest that it might be beneficial to increase the age at which riders in our study area can obtain a commercial rider's license to above 25 years.
Moreno-Peral, Patricia; Conejo-Cerón, Sonia; Rubio-Valera, Maria; Fernández, Anna; Navas-Campaña, Desirée; Rodríguez-Morejón, Alberto; Motrico, Emma; Rigabert, Alina; Luna, Juan de Dios; Martín-Pérez, Carlos; Rodríguez-Bayón, Antonina; Ballesta-Rodríguez, María Isabel; Luciano, Juan Vicente; Bellón, Juan Ángel
2017-10-01
To our knowledge, no systematic reviews or meta-analyses have been conducted to assess the effectiveness of preventive psychological and/or educational interventions for anxiety in varied populations. To evaluate the effectiveness of preventive psychological and/or educational interventions for anxiety in varied population types. A systematic review and meta-analysis was conducted based on literature searches of MEDLINE, PsycINFO, Web of Science, EMBASE, OpenGrey, Cochrane Central Register of Controlled Trials, and other sources from inception to March 7, 2017. A search was performed of randomized clinical trials assessing the effectiveness of preventive psychological and/or educational interventions for anxiety in varying populations free of anxiety at baseline as measured using validated instruments. There was no setting or language restriction. Eligibility criteria assessment was conducted by 2 of us. Data extraction and assessment of risk of bias (Cochrane Collaboration's tool) were performed by 2 of us. Pooled standardized mean differences (SMDs) were calculated using random-effect models. Heterogeneity was explored by random-effects meta-regression. Incidence of new cases of anxiety disorders or reduction of anxiety symptoms as measured by validated instruments. Of the 3273 abstracts reviewed, 131 were selected for full-text review, and 29 met the inclusion criteria, representing 10 430 patients from 11 countries on 4 continents. Meta-analysis calculations were based on 36 comparisons. The pooled SMD was -0.31 (95% CI, -0.40 to -0.21; P < .001) and heterogeneity was substantial (I2 = 61.1%; 95% CI, 44% to 73%). There was evidence of publication bias, but the effect size barely varied after adjustment (SMD, -0.27; 95% CI, -0.37 to -0.17; P < .001). Sensitivity analyses confirmed the robustness of effect size results. A meta-regression including 5 variables explained 99.6% of between-study variability, revealing an association between higher SMD, waiting list (comparator) (β = -0.33 [95% CI, -0.55 to -0.11]; P = .005) and a lower sample size (lg) (β = 0.15 [95% CI, 0.06 to 0.23]; P = .001). No association was observed with risk of bias, family physician providing intervention, and use of standardized interviews as outcomes. Psychological and/or educational interventions had a small but statistically significant benefit for anxiety prevention in all populations evaluated. Although more studies with larger samples and active comparators are needed, these findings suggest that anxiety prevention programs should be further developed and implemented.
2017-01-01
Purpose This study is aimed at identifying the relationships between medical school students’ academic burnout, empathy, and calling, and determining whether their calling has a mediating effect on the relationship between academic burnout and empathy. Methods A mixed method study was conducted. One hundred twenty-seven medical students completed a survey. Scales measuring academic burnout, medical students’ empathy, and calling were utilized. For statistical analysis, correlation analysis, descriptive statistics analysis, and hierarchical multiple regression analyses were conducted. For qualitative approach, eight medical students participated in a focus group interview. Results The study found that empathy has a statistically significant, negative correlation with academic burnout, while having a significant, positive correlation with calling. Sense of calling proved to be an effective mediator of the relationship between academic burnout and empathy. Conclusion This result demonstrates that calling is a key variable that mediates the relationship between medical students’ academic burnout and empathy. As such, this study provides baseline data for an education that could improve medical students’ empathy skills. PMID:28870019
Persson, Monica S M; Fu, Yu; Bhattacharya, Archan; Goh, Siew-Li; van Middelkoop, Marienke; Bierma-Zeinstra, Sita M A; Walsh, David; Doherty, Michael; Zhang, Weiya
2016-09-29
Pain is the most troubling issue to patients with osteoarthritis (OA), yet current pharmacological treatments offer only small-to-moderate pain reduction. Current guidelines therefore emphasise the need to identify predictors of treatment response. In line with these recommendations, an individual patient data (IPD) meta-analysis will be conducted. The study aims to investigate the relative treatment effects of topical non-steroidal anti-inflammatory drugs (NSAIDs) and topical capsaicin in OA and to identify patient-level predictors of treatment response. IPD will be collected from randomised controlled trials (RCTs) of topical NSAIDs and capsaicin in OA. Multilevel regression modelling will be conducted to determine predictors for the specific and the overall treatment effect. Through the identification of treatment responders, this IPD meta-analysis may improve the current understanding of the pain mechanisms in OA and guide clinical decision-making. Identifying and prescribing the treatment most likely to be beneficial for an individual with OA will improve the efficiency of patient management. CRD42016035254.
von Eye, Alexander; Mun, Eun Young; Bogat, G Anne
2008-03-01
This article reviews the premises of configural frequency analysis (CFA), including methods of choosing significance tests and base models, as well as protecting alpha, and discusses why CFA is a useful approach when conducting longitudinal person-oriented research. CFA operates at the manifest variable level. Longitudinal CFA seeks to identify those temporal patterns that stand out as more frequent (CFA types) or less frequent (CFA antitypes) than expected with reference to a base model. A base model that has been used frequently in CFA applications, prediction CFA, and a new base model, auto-association CFA, are discussed for analysis of cross-classifications of longitudinal data. The former base model takes the associations among predictors and among criteria into account. The latter takes the auto-associations among repeatedly observed variables into account. Application examples of each are given using data from a longitudinal study of domestic violence. It is demonstrated that CFA results are not redundant with results from log-linear modeling or multinomial regression and that, of these approaches, CFA shows particular utility when conducting person-oriented research.
HOMAIE RAD, Enayatollah; RASHIDIAN, Arash; ARAB, Mohamad; SOURI, Ali
2017-01-01
The main aim of this study was to estimate the effects of poor health and low income on early retirement. For this purpose systematic review and meta-analysis were conducted. Web of Science, PUBMED and Scopus databases were searched systematically. Finally 17 surveys were added in meta-analysis. These studies were conducted in 13 countries. At the end a Meta regression was done to show the effects of welfare system type on effect sizes of poor health and low income. The results of this study showed that poor health had effect on the risk of early retirement. (Poor health pooled effect sizes: 1.279 CI: (1.15 1.41), low income pooled effect sizes: 1.042 CI: (0.92 1.17), (poor health pooled marginal effects: 0.046 CI: (−0.03 0.12), low income pooled marginal effects: −0.002 CI: (−0.003 0.000). The results of this study showed that association between poor health and early retirement was stronger in comparison with low income and early retirement. PMID:28484145
Meader, Nicholas; Semaan, Salaam; Halton, Marie; Bhatti, Henna; Chan, Melissa; Llewellyn, Alexis; Des Jarlais, Don C
2013-07-01
This systematic review and meta-analysis examines the effectiveness of multisession psychosocial interventions compared with educational interventions and minimal interventions in reducing sexual risk in people who use drugs (51 studies; 19,209 participants). We conducted comprehensive searches (MEDLINE, EMBASE, CINAHL, Cochrane Central Register of Controlled Trials and PsychINFO 1998-2012). Outcomes (unprotected sex, condom use, or a composite outcome) were extracted by two authors and synthesised using meta-analysis. Subgroup analyses and meta-regression were conducted to explore heterogeneity. Multisession psychosocial interventions had modest additional benefits compared to educational interventions (K = 46; OR 0.86; 95% CI 0.77, 0.96), and large positive effects compared to minimal interventions (K = 7; OR 0.60; 95% CI 0.46, 0.78). Comparison with previous meta-analyses suggested limited progress in recent years in developing more effective interventions. Multisession psychosocial and educational interventions provided similar modest sexual risk reduction justifying offering educational interventions in settings with limited exposure to sexual risk reduction interventions, messages, and resources.
Homaie Rad, Enayatollah; Rashidian, Arash; Arab, Mohamad; Souri, Ali
2017-08-08
The main aim of this study was to estimate the effects of poor health and low income on early retirement. For this purpose systematic review and meta-analysis were conducted. Web of Science, PUBMED and Scopus databases were searched systematically. Finally 17 surveys were added in meta-analysis. These studies were conducted in 13 countries. At the end a Meta regression was done to show the effects of welfare system type on effect sizes of poor health and low income. The results of this study showed that poor health had effect on the risk of early retirement. (Poor health pooled effect sizes: 1.279 CI: (1.15 1.41), low income pooled effect sizes: 1.042 CI: (0.92 1.17), (poor health pooled marginal effects: 0.046 CI: (-0.03 0.12), low income pooled marginal effects: -0.002 CI: (-0.003 0.000). The results of this study showed that association between poor health and early retirement was stronger in comparison with low income and early retirement.
Promoting Influenza Vaccination to Restaurant Employees.
Graves, Meredith C; Harris, Jeffrey R; Hannon, Peggy A; Hammerback, Kristen; Parrish, Amanda T; Ahmed, Faruque; Zhou, Chuan; Allen, Claire L
2016-09-01
To evaluate an evidence-based workplace approach to increasing adult influenza vaccination levels applied in the restaurant setting We implemented an intervention and conducted a pre/post analysis to determine effect on vaccination. Eleven Seattle-area restaurants. Restaurants with 25+ employees speaking English or Spanish and over 18 years. Restaurants received influenza vaccination promotion materials, assistance arranging on-site vaccination events, and free influenza vaccinations for employees. Pre/post employee surveys of vaccination status with direct observation and employer interviews to evaluate implementation. We conducted descriptive analysis of employee survey data and performed qualitative analysis of implementation data. To assess intervention effect, we used a mixed-effects logistic regression model with a restaurant-specific random effect. Vaccination levels increased from 26% to 46% (adjusted odds ratio 2.33, 95% confidence interval 1.69, 3.22), with 428 employees surveyed preintervention, 305 surveyed postintervention, and response rates of 73% and 55%, respectively. The intervention was effective across subgroups, but there were restaurant-level differences. An access-based workplace intervention can increase influenza vaccination levels in restaurant employees, but restaurant-level factors may influence success. © 2016 by American Journal of Health Promotion, Inc.
Brown, Heather; D'Amico, Francesco; Knapp, Martin; Orrell, Martin; Rehill, Amritpal; Vale, Luke; Robinson, Louise
2018-03-12
Identify if cost-effectiveness of Maintenance Cognitive Simulation Therapy (MCST) differs by type of living arrangement and cognitive ability of the person with dementia. Next, a value of information analysis is performed to inform decisions about future research. Incremental cost-effectiveness analysis applying seemingly unrelated regressions using data from a multicentre RCT of MCST versus treatment as usual in a population which had already received 7 weeks of CST for dementia (ISRCTN: 26286067). The findings from the cost-effectiveness analysis are used to inform a value of information analysis. The results are dependent upon how quality adjusted life years (QALYs) are measured. MCST might be cost-effective compared to standard treatment for those who live alone and those with higher levels of cognitive functioning. If a further RCT was to be conducted for this sub-group of the population, value of information analysis suggests a total sample of 48 complete cases for both sub-groups would be required for a two-arm trial. The expected net gain of conducting this future research is £920 million. Preliminary results suggest that MCST may be most cost-efficient for people with dementia who live alone and/or who have higher cognition. Future research in this area is needed.
[A SAS marco program for batch processing of univariate Cox regression analysis for great database].
Yang, Rendong; Xiong, Jie; Peng, Yangqin; Peng, Xiaoning; Zeng, Xiaomin
2015-02-01
To realize batch processing of univariate Cox regression analysis for great database by SAS marco program. We wrote a SAS macro program, which can filter, integrate, and export P values to Excel by SAS9.2. The program was used for screening survival correlated RNA molecules of ovarian cancer. A SAS marco program could finish the batch processing of univariate Cox regression analysis, the selection and export of the results. The SAS macro program has potential applications in reducing the workload of statistical analysis and providing a basis for batch processing of univariate Cox regression analysis.
Exact Analysis of Squared Cross-Validity Coefficient in Predictive Regression Models
ERIC Educational Resources Information Center
Shieh, Gwowen
2009-01-01
In regression analysis, the notion of population validity is of theoretical interest for describing the usefulness of the underlying regression model, whereas the presumably more important concept of population cross-validity represents the predictive effectiveness for the regression equation in future research. It appears that the inference…
USDA-ARS?s Scientific Manuscript database
Selective principal component regression analysis (SPCR) uses a subset of the original image bands for principal component transformation and regression. For optimal band selection before the transformation, this paper used genetic algorithms (GA). In this case, the GA process used the regression co...
Hu, Weiping; Niu, Guodong; Li, Hongbo; Gao, Hanyuan; Kang, Rudian; Chen, Xiaoqing; Lin, Ling
2016-11-22
Renal damage is the major cause of SLE associated mortality, and IFIT1expression was elevated in SLE cases in accordance of previous studies. Therefore, we conducted an animal study to identify the role of IFIT1 expression in renal pathological changes.18 female MRL/lpr mice and same number of female BALB/c mice were enrolled in present study. Quantitative analysis of urine protein, Complement C3 and C4, and anti-ds DNA antibody were conducted. HE and PAS staining and TEM analysis were employed to observe the pathological changes in renal tissue. Significant elevation on urine protein and anti-dsDNA and reduction on Complement C3 and C4 were observed in MRL/lpr mice when comparing the controls in same age. Staining and TEM analysis observed several pathological changes in glomerulus among MRL/lpr mice, including cellular enlargement, basement membrane thickening, and increased cellularcasts. The linear regression analysis found the optical density of IFIT1 was inversely associated with F-actin, Nephrin, and Podocin, but not Synatopodin. In summary, IFIT1 expression is associated with podocytes damage, and capable of suppressing some proteins essential to glomerular filtration.
How much do hazard mitigation plans cost? An analysis of federal grant data.
Jackman, Andrea M; Beruvides, Mario G
2013-01-01
Under the Disaster Mitigation Act of 2000 and Federal Emergency Management Agency's subsequent Interim Final Rule, the requirement was placed on local governments to author and gain approval for a Hazard Mitigation Plan (HMP) for the areas under their jurisdiction. Low completion percentages for HMPs--less than one-third of eligible governments--were found by an analysis conducted 3 years after the final deadline for the aforementioned legislation took place. Follow-up studies showed little improvement at 5 and 8 years after the deadline. It was hypothesized that the cost of a HMP is a significant factor in determining whether or not a plan is completed. A study was conducted using Boolean Matrix Analysis methods to determine what, if any, characteristics of a certain community will most influence the cost of a HMP. The frequency of natural hazards experienced by the planning area, the number of jurisdictions participating in the HMEP, the population, and population density were found to significantly affect cost. These variables were used in a regression analysis to determine their predictive power for cost. It was found that along with two interaction terms, the variables explain approximately half the variation in HMP cost.
Takagi, Daisuke; Ikeda, Ken'ichi; Kawachi, Ichiro
2012-11-01
Crime is an important determinant of public health outcomes, including quality of life, mental well-being, and health behavior. A body of research has documented the association between community social capital and crime victimization. The association between social capital and crime victimization has been examined at multiple levels of spatial aggregation, ranging from entire countries, to states, metropolitan areas, counties, and neighborhoods. In multilevel analysis, the spatial boundaries at level 2 are most often drawn from administrative boundaries (e.g., Census tracts in the U.S.). One problem with adopting administrative definitions of neighborhoods is that it ignores spatial spillover. We conducted a study of social capital and crime victimization in one ward of Tokyo city, using a spatial Durbin model with an inverse-distance weighting matrix that assigned each respondent a unique level of "exposure" to social capital based on all other residents' perceptions. The study is based on a postal questionnaire sent to 20-69 years old residents of Arakawa Ward, Tokyo. The response rate was 43.7%. We examined the contextual influence of generalized trust, perceptions of reciprocity, two types of social network variables, as well as two principal components of social capital (constructed from the above four variables). Our outcome measure was self-reported crime victimization in the last five years. In the spatial Durbin model, we found that neighborhood generalized trust, reciprocity, supportive networks and two principal components of social capital were each inversely associated with crime victimization. By contrast, a multilevel regression performed with the same data (using administrative neighborhood boundaries) found generally null associations between neighborhood social capital and crime. Spatial regression methods may be more appropriate for investigating the contextual influence of social capital in homogeneous cultural settings such as Japan. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nagano, Hirohiko; Iwata, Hiroki
2017-03-01
Alaska wildfires may play an important role in nitrogen (N) dry deposition in Alaskan boreal forests. Here we used annual N dry deposition data measured by CASTNET at Denali National Park (DEN417) during 1999-2013, to evaluate the relationships between wildfire extent and N dry deposition in Alaska. We established six potential factors for multiple regression analysis, including burned area within 100 km of DEN417 (BA100km) and in other distant parts of Alaska (BAAK), the sum of indexes of North Atlantic Oscillation and Arctic Oscillation (OI), number of days with negative OI (OIday), precipitation (PRCP), and number of days with PRCP (PRCPday). Multiple regression analysis was conducted for both time scales, annual (using only annual values of factors) and six-month (using annual values of BAAK and BA100km, and fire and non-fire seasons' values of other four factors) time scales. Together, BAAK, BA100km, and OIday, along with PRCPday in the case of the six-month scale, explained more than 92% of the interannual variation in N dry deposition. The influence of BA100km on N dry deposition was ten-fold greater than from BAAK; the qualitative contribution was almost zero, however, due to the small BA100km. BAAK was the leading explanatory factor, with a 15 ± 14% contribution. We further calculated N dry deposition during 1950-2013 using the obtained regression equation and long-term records for the factors. The N dry deposition calculated for 1950-2013 revealed that an increased occurrence of wildfires during the 2000s led to the maximum N dry deposition exhibited during this decade. As a result, the effect of BAAK on N dry deposition remains sufficiently large, even when large possible uncertainties (>40%) in the measurement of N dry deposition are taken into account for the multiple regression analysis.
Lin, Ching-Yih; Lee, Ying-En; Tian, Yu-Feng; Sun, Ding-Ping; Sheu, Ming-Jen; Lin, Chen-Yi; Li, Chien-Feng; Lee, Sung-Wei; Lin, Li-Ching; Chang, I-Wei; Wang, Chieh-Tien; He, Hong-Lin
2017-01-01
Background: Numerous transmembrane receptor tyrosine kinase pathways have been found to play an important role in tumor progression in some cancers. This study was aimed to evaluate the clinical impact of Eph receptor A4 (EphA4) in patients with rectal cancer treated with neoadjuvant concurrent chemoradiotherapy (CCRT) combined with mesorectal excision, with special emphasis on tumor regression. Methods: Analysis of the publicly available expression profiling dataset of rectal cancer disclosed that EphA4 was the top-ranking, significantly upregulated, transmembrane receptor tyrosine kinase pathway-associated gene in the non-responders to CCRT, compared with the responders. Immunohistochemical study was conducted to assess the EphA4 expression in pre-treatment biopsy specimens from 172 rectal cancer patients without distant metastasis. The relationships between EphA4 expression and various clinicopathological factors or survival were statistically analyzed. Results: EphA4 expression was significantly associated with vascular invasion ( P =0.015), post-treatment depth of tumor invasion ( P =0.006), pre-treatment and post-treatment lymph node metastasis ( P =0.004 and P =0.011, respectively). More importantly, high EphA4 expression was significantly predictive for lesser degree of tumor regression after CCRT ( P =0.031). At univariate analysis, high EphA4 expression was a negative prognosticator for disease-specific survival ( P =0.0009) and metastasis-free survival ( P =0.0001). At multivariate analysis, high expression of EphA4 still served as an independent adverse prognostic factor for disease-specific survival (HR, 2.528; 95% CI, 1.131-5.651; P =0.024) and metastasis-free survival (HR, 3.908; 95% CI, 1.590-9.601; P =0.003). Conclusion: High expression of EphA4 predicted lesser degree of tumor regression after CCRT and served as an independent negative prognostic factor in patients with rectal cancer.
Locomotive syndrome is associated not only with physical capacity but also degree of depression.
Ikemoto, Tatsunori; Inoue, Masayuki; Nakata, Masatoshi; Miyagawa, Hirofumi; Shimo, Kazuhiro; Wakabayashi, Toshiko; Arai, Young-Chang P; Ushida, Takahiro
2016-05-01
Reports of locomotive syndrome (LS) have recently been increasing. Although physical performance measures for LS have been well investigated to date, studies including psychiatric assessment are still scarce. Hence, the aim of this study was to investigate both physical and mental parameters in relation to presence and severity of LS using a 25-question geriatric locomotive function scale (GLFS-25) questionnaire. 150 elderly people aged over 60 years who were members of our physical-fitness center and displayed well-being were enrolled in this study. Firstly, using the previously determined GLFS-25 cutoff value (=16 points), subjects were divided into two groups accordingly: an LS and non-LS group in order to compare each parameter (age, grip strength, timed-up-and-go test (TUG), one-leg standing with eye open, back muscle and leg muscle strength, degree of depression and cognitive impairment) between the groups using the Mann-Whitney U-test followed by multiple logistic regression analysis. Secondly, a multiple linear regression was conducted to determine which variables showed the strongest correlation with severity of LS. We confirmed 110 people for non-LS (73%) and 40 people for LS using the GLFS-25 cutoff value. Comparative analysis between LS and non-LS revealed significant differences in parameters in age, grip strength, TUG, one-leg standing, back muscle strength and degree of depression (p < 0.006, after Bonferroni correction). Multiple logistic regression revealed that functional decline in grip strength, TUG and one-leg standing and degree of depression were significantly associated with LS. On the other hand, we observed that the significant contributors towards the GLFS-25 score were TUG and degree of depression in multiple linear regression analysis. The results indicate that LS is associated with not only the capacity of physical performance but also the degree of depression although most participants fell under the criteria of LS. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Soccer and sexual health education: a promising approach for reducing adolescent births in Haiti.
Kaplan, Kathryn C; Lewis, Judy; Gebrian, Bette; Theall, Katherine
2015-05-01
To explore the effect of an innovative, integrative program in female sexual reproductive health (SRH) and soccer (or fútbol, in Haitian Creole) in rural Haiti by measuring the rate of births among program participants 15-19 years old and their nonparticipant peers. A retrospective cohort study using 2006-2009 data from the computerized data-tracking system of the Haitian Health Foundation (HHF), a U.S.-based nongovernmental organization serving urban and rural populations in Haiti, was used to assess births among girls 15-19 years old who participated in HHF's GenNext program, a combination education-soccer program for youth, based on SRH classes HHF nurses and community workers had been conducting in Haiti for mothers, fathers, and youth; girl-centered health screenings; and an all-female summer soccer league, during 2006-2009 (n = 4 251). Bivariate and multiple logistic regression analyses were carried out to assess differences in the rate of births among program participants according to their level of participation (SRH component only ("EDU") versus both the SRH and soccer components ("SO") compared to their village peers who did not participate. Hazard ratios (HRs) of birth rates were estimated using Cox regression analysis of childbearing data for the three different groups. In the multiple logistic regression analysis, only the girls in the "EDU" group had significantly fewer births than the nonparticipants after adjusting for confounders (odds ratio = 0.535; 95% confidence interval (CI) = 0.304, 0.940). The Cox regression analysis demonstrated that those in the EDU group (HR = 0.893; 95% CI = 0.802, 0.994) and to a greater degree those in the SO group (HR = 0.631; 95% CI = 0.558, 0.714) were significantly protected against childbearing between the ages of 15 and 19 years. HHF's GenNext program demonstrates the effectiveness of utilizing nurse educators, community mobilization, and youth participation in sports, education, and structured youth groups to promote and sustain health for adolescent girls and young women.
Kapoula, Georgia V; Kontou, Panagiota I; Bagos, Pantelis G
2017-10-26
Pneumatic tube system (PTS) is a widely used method of transporting blood samples in hospitals. The aim of this study was to evaluate the effects of the PTS transport in certain routine laboratory parameters as it has been implicated with hemolysis. A systematic review and a meta-analysis were conducted. PubMed and Scopus databases were searched (up until November 2016) to identify prospective studies evaluating the impact of PTS transport in hematological, biochemical and coagulation measurements. The random-effects model was used in the meta-analysis utilizing the mean difference (MD). Heterogeneity was quantitatively assessed using the Cohran's Q and the I2 index. Subgroup analysis, meta-regression analysis, sensitivity analysis, cumulative meta-analysis and assessment of publication bias were performed for all outcomes. From a total of 282 studies identified by the searching procedure, 24 were finally included in the meta-analysis. The meta-analysis yielded statistically significant results for potassium (K) [MD=0.04 mmol/L; 95% confidence interval (CI)=0.015-0.065; p=0.002], lactate dehydrogenase (LDH) (MD=10.343 U/L; 95% CI=6.132-14.554; p<10-4) and aspartate aminotransferase (AST) (MD=1.023 IU/L; 95% CI=0.344-1.702; p=0.003). Subgroup analysis and random-effects meta-regression analysis according to the speed and distance of the samples traveled via the PTS revealed that there is relation between the rate and the distance of PTS with the measurements of K, LDH, white blood cells and red blood cells. This meta-analysis suggests that PTS may be associated with alterations in K, LDH and AST measurements. Although these findings may not have any significant clinical effect on laboratory results, it is wise that each hospital validates their PTS.
Development of a User Interface for a Regression Analysis Software Tool
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert Manfred; Volden, Thomas R.
2010-01-01
An easy-to -use user interface was implemented in a highly automated regression analysis tool. The user interface was developed from the start to run on computers that use the Windows, Macintosh, Linux, or UNIX operating system. Many user interface features were specifically designed such that a novice or inexperienced user can apply the regression analysis tool with confidence. Therefore, the user interface s design minimizes interactive input from the user. In addition, reasonable default combinations are assigned to those analysis settings that influence the outcome of the regression analysis. These default combinations will lead to a successful regression analysis result for most experimental data sets. The user interface comes in two versions. The text user interface version is used for the ongoing development of the regression analysis tool. The official release of the regression analysis tool, on the other hand, has a graphical user interface that is more efficient to use. This graphical user interface displays all input file names, output file names, and analysis settings for a specific software application mode on a single screen which makes it easier to generate reliable analysis results and to perform input parameter studies. An object-oriented approach was used for the development of the graphical user interface. This choice keeps future software maintenance costs to a reasonable limit. Examples of both the text user interface and graphical user interface are discussed in order to illustrate the user interface s overall design approach.
Regression Analysis and the Sociological Imagination
ERIC Educational Resources Information Center
De Maio, Fernando
2014-01-01
Regression analysis is an important aspect of most introductory statistics courses in sociology but is often presented in contexts divorced from the central concerns that bring students into the discipline. Consequently, we present five lesson ideas that emerge from a regression analysis of income inequality and mortality in the USA and Canada.
Folta, Sara C; Bell, Rick; Economos, Christina; Landers, Stewart; Goldberg, Jeanne P
2006-01-01
The purpose of this study was to test the utility of the Theory of Reasoned Action (TRA) in explaining young elementary school children's intention to consume legumes. A survey was conducted with children in an urban, multicultural community in Massachusetts. A total of 336 children participated. Logistic regression analysis was used to assess the strength of the relationship between attitude and subjective norm and intention. Although attitude was significantly associated with intention, the pseudo-R2 for the regression model that included only the TRA constructs was extremely low (.01). Adding demographic factors and preference improved the model's predictive ability, but attitude was no longer significant. The results of this study do not provide support for the predictive utility of the TRA with young elementary school children for this behavior, when demographic factors are accounted for. Hedonic factors, rather than reasoned judgments, may help drive children's intentions.
Computational Visual Stress Level Analysis of Calcareous Algae Exposed to Sedimentation
Nilssen, Ingunn; Eide, Ingvar; de Oliveira Figueiredo, Marcia Abreu; de Souza Tâmega, Frederico Tapajós; Nattkemper, Tim W.
2016-01-01
This paper presents a machine learning based approach for analyses of photos collected from laboratory experiments conducted to assess the potential impact of water-based drill cuttings on deep-water rhodolith-forming calcareous algae. This pilot study uses imaging technology to quantify and monitor the stress levels of the calcareous algae Mesophyllum engelhartii (Foslie) Adey caused by various degrees of light exposure, flow intensity and amount of sediment. A machine learning based algorithm was applied to assess the temporal variation of the calcareous algae size (∼ mass) and color automatically. Measured size and color were correlated to the photosynthetic efficiency (maximum quantum yield of charge separation in photosystem II, ΦPSIImax) and degree of sediment coverage using multivariate regression. The multivariate regression showed correlations between time and calcareous algae sizes, as well as correlations between fluorescence and calcareous algae colors. PMID:27285611
Network Structure and Travel Time Perception
Parthasarathi, Pavithra; Levinson, David; Hochmair, Hartwig
2013-01-01
The purpose of this research is to test the systematic variation in the perception of travel time among travelers and relate the variation to the underlying street network structure. Travel survey data from the Twin Cities metropolitan area (which includes the cities of Minneapolis and St. Paul) is used for the analysis. Travelers are classified into two groups based on the ratio of perceived and estimated commute travel time. The measures of network structure are estimated using the street network along the identified commute route. T-test comparisons are conducted to identify statistically significant differences in estimated network measures between the two traveler groups. The combined effect of these estimated network measures on travel time is then analyzed using regression models. The results from the t-test and regression analyses confirm the influence of the underlying network structure on the perception of travel time. PMID:24204932
Influence of salinity and temperature on acute toxicity of cadmium to Mysidopsis bahia molenock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voyer, R.A.; Modica, G.
1990-01-01
Acute toxicity tests were conducted to compare estimates of toxicity, as modified by salinity and temperature, based on response surface techniques with those derived using conventional test methods, and to compare effect of a single episodic exposure to cadmium as a function of salinity with that of continuous exposure. Regression analysis indicated that mortality following continuous 96-hr exposure is related to linear and quadratic effects of salinity and cadmium at 20 C, and to the linear and quadratic effects of cadmium only at 25C. LC50s decreased with increases in temperature and decreases in salinity. Based on the regression model developed,more » 96-hr LC50s ranged from 15.5 to 28.0 micro Cd/L at 10 and 30% salinities, respectively, at 25C; and from 47 to 85 microgram Cd/L at these salinities at 20C.« less
A surrogate model for thermal characteristics of stratospheric airship
NASA Astrophysics Data System (ADS)
Zhao, Da; Liu, Dongxu; Zhu, Ming
2018-06-01
A simple and accurate surrogate model is extremely needed to reduce the analysis complexity of thermal characteristics for a stratospheric airship. In this paper, a surrogate model based on the Least Squares Support Vector Regression (LSSVR) is proposed. The Gravitational Search Algorithm (GSA) is used to optimize hyper parameters. A novel framework consisting of a preprocessing classifier and two regression models is designed to train the surrogate model. Various temperature datasets of the airship envelope and the internal gas are obtained by a three-dimensional transient model for thermal characteristics. Using these thermal datasets, two-factor and multi-factor surrogate models are trained and several comparison simulations are conducted. Results illustrate that the surrogate models based on LSSVR-GSA have good fitting and generalization abilities. The pre-treated classification strategy proposed in this paper plays a significant role in improving the accuracy of the surrogate model.
NASA Astrophysics Data System (ADS)
Kiram, J. J.; Sulaiman, J.; Swanto, S.; Din, W. A.
2015-10-01
This study aims to construct a mathematical model of the relationship between a student's Language Learning Strategy usage and English Language proficiency. Fifty-six pre-university students of University Malaysia Sabah participated in this study. A self-report questionnaire called the Strategy Inventory for Language Learning was administered to them to measure their language learning strategy preferences before they sat for the Malaysian University English Test (MUET), the results of which were utilised to measure their English language proficiency. We attempted the model assessment specific to Multiple Linear Regression Analysis subject to variable selection using Stepwise regression. We conducted various assessments to the model obtained, including the Global F-test, Root Mean Square Error and R-squared. The model obtained suggests that not all language learning strategies should be included in the model in an attempt to predict Language Proficiency.
Methods for trend analysis: Examples with problem/failure data
NASA Technical Reports Server (NTRS)
Church, Curtis K.
1989-01-01
Statistics are emphasized as an important role in quality control and reliability. Consequently, Trend Analysis Techniques recommended a variety of statistical methodologies that could be applied to time series data. The major goal of the working handbook, using data from the MSFC Problem Assessment System, is to illustrate some of the techniques in the NASA standard, some different techniques, and to notice patterns of data. Techniques for trend estimation used are: regression (exponential, power, reciprocal, straight line) and Kendall's rank correlation coefficient. The important details of a statistical strategy for estimating a trend component are covered in the examples. However, careful analysis and interpretation is necessary because of small samples and frequent zero problem reports in a given time period. Further investigations to deal with these issues are being conducted.
Athanasopoulos, Leonidas V; Dritsas, Athanasios; Doll, Helen A; Cokkinos, Dennis V
2010-08-01
This study was conducted to explain the variance in quality of life (QoL) and activity capacity of patients with congestive heart failure from pathophysiological changes as estimated by laboratory data. Peak oxygen consumption (peak VO2) and ventilation (VE)/carbon dioxide output (VCO2) slope derived from cardiopulmonary exercise testing, plasma N-terminal prohormone of B-type natriuretic peptide (NT-proBNP), and echocardiographic markers [left atrium (LA), left ventricular ejection fraction (LVEF)] were measured in 62 patients with congestive heart failure, who also completed the Minnesota Living with Heart Failure Questionnaire and the Specific Activity Questionnaire. All regression models were adjusted for age and sex. On linear regression analysis, peak VO2 with P value less than 0.001, VE/VCO2 slope with P value less than 0.01, LVEF with P value less than 0.001, LA with P=0.001, and logNT-proBNP with P value less than 0.01 were found to be associated with QoL. On stepwise multiple linear regression, peak VO2 and LVEF continued to be predictive, accounting for 40% of the variability in Minnesota Living with Heart Failure Questionnaire score. On linear regression analysis, peak VO2 with P value less than 0.001, VE/VCO2 slope with P value less than 0.001, LVEF with P value less than 0.05, LA with P value less than 0.001, and logNT-proBNP with P value less than 0.001 were found to be associated with activity capacity. On stepwise multiple linear regression, peak VO2 and LA continued to be predictive, accounting for 53% of the variability in Specific Activity Questionnaire score. Peak VO2 is independently associated both with QoL and activity capacity. In addition to peak VO2, LVEF is independently associated with QoL, and LA with activity capacity.
Effects of Buffer Size and Shape on Associations between the Built Environment and Energy Balance
Berrigan, David; Hart, Jaime E.; Hipp, J. Aaron; Hoehner, Christine M.; Kerr, Jacqueline; Major, Jacqueline M.; Oka, Masayoshi; Laden, Francine
2014-01-01
Uncertainty in the relevant spatial context may drive heterogeneity in findings on the built environment and energy balance. To estimate the effect of this uncertainty, we conducted a sensitivity analysis defining intersection and business densities and counts within different buffer sizes and shapes on associations with self-reported walking and body mass index. Linear regression results indicated that the scale and shape of buffers influenced study results and may partly explain the inconsistent findings in the built environment and energy balance literature. PMID:24607875
Multivariate Regression Analysis and Slaughter Livestock,
AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY
Zhang, Dan; Yang, Yang; Sun, Yaoyao; Wu, Menglian; Xie, Hui; Wang, Kefang; Zhang, Jie; Jia, Jihui; Su, Yonggang
Chinese rural elderly are at higher risk of committing suicide. However, little is known about the suicidal ideation (SI) of institutional elderly residents in rural China. 250 participants aged 60 or above living in Chinese rural nursing homes were recruited. Data were collected on subjects' SI, social-demographic characters, physical illness and psychological factors. Univariate comparisons and path analysis were conducted then. 19.5% (40/205) of the participants reported a current SI. Hopelessness and depression had significant direct impacts on SI, and self-esteem and loneliness can impact SI through the mediating of depression and hopelessness. Visiting frequency of children, number of physical illnesses and social activities can also affect SI through the mediating of loneliness or self-esteem. As the first study on path analysis of SI of rural institutional elderly, the findings are significant. All these factors in our model should be considered when interventions are being conducted. Copyright © 2017 Elsevier Inc. All rights reserved.
Critical Success Factors of Internet Shopping: The Case of Japan
NASA Astrophysics Data System (ADS)
Atchariyachanvanich, Kanokwan; Okada, Hitoshi; Sonehara, Noboru
This paper presents the results from a study conducted on the effect of differing factors on a customer's attitude towards using Internet shopping in Japan. The research model used was an extended version of the consumers' acceptance of virtual stores model with the addition of a new factor, need specificity, and a grouping of critical success factors based on their customer-centric and website-centric viewpoints sources. It examines how differences in the individual characteristics of customers affect the actual use of Internet shopping. According to an online questionnaire filled out by 1,215 online customers used to conduct a multiple regression analysis and a structural equation modeling analysis, the participant's gender, education level, innovativeness, net-orientation, and need specificity, which are the factors for the customer-centric viewpoints, have a positive impact on the actual use of Internet shopping. The implication also shows that Japanese online customers do not worry about the quality of service of Internet shopping, a factor in the website-centric viewpoint, as significantly as offline customers do.
Risk factors for autistic regression: results of an ambispective cohort study.
Zhang, Ying; Xu, Qiong; Liu, Jing; Li, She-chang; Xu, Xiu
2012-08-01
A subgroup of children diagnosed with autism experience developmental regression featured by a loss of previously acquired abilities. The pathogeny of autistic regression is unknown, although many risk factors likely exist. To better characterize autistic regression and investigate the association between autistic regression and potential influencing factors in Chinese autistic children, we conducted an ambispective study with a cohort of 170 autistic subjects. Analyses by multiple logistic regression showed significant correlations between autistic regression and febrile seizures (OR = 3.53, 95% CI = 1.17-10.65, P = .025), as well as with a family history of neuropsychiatric disorders (OR = 3.62, 95% CI = 1.35-9.71, P = .011). This study suggests that febrile seizures and family history of neuropsychiatric disorders are correlated with autistic regression.
Flora, David B.; LaBrish, Cathy; Chalmers, R. Philip
2011-01-01
We provide a basic review of the data screening and assumption testing issues relevant to exploratory and confirmatory factor analysis along with practical advice for conducting analyses that are sensitive to these concerns. Historically, factor analysis was developed for explaining the relationships among many continuous test scores, which led to the expression of the common factor model as a multivariate linear regression model with observed, continuous variables serving as dependent variables, and unobserved factors as the independent, explanatory variables. Thus, we begin our paper with a review of the assumptions for the common factor model and data screening issues as they pertain to the factor analysis of continuous observed variables. In particular, we describe how principles from regression diagnostics also apply to factor analysis. Next, because modern applications of factor analysis frequently involve the analysis of the individual items from a single test or questionnaire, an important focus of this paper is the factor analysis of items. Although the traditional linear factor model is well-suited to the analysis of continuously distributed variables, commonly used item types, including Likert-type items, almost always produce dichotomous or ordered categorical variables. We describe how relationships among such items are often not well described by product-moment correlations, which has clear ramifications for the traditional linear factor analysis. An alternative, non-linear factor analysis using polychoric correlations has become more readily available to applied researchers and thus more popular. Consequently, we also review the assumptions and data-screening issues involved in this method. Throughout the paper, we demonstrate these procedures using an historic data set of nine cognitive ability variables. PMID:22403561
Chang, Brian A; Pearson, William S; Owusu-Edusei, Kwame
2017-04-01
We used a combination of hot spot analysis (HSA) and spatial regression to examine county-level hot spot correlates for the most commonly reported nonviral sexually transmitted infections (STIs) in the 48 contiguous states in the United States (US). We obtained reported county-level total case rates of chlamydia, gonorrhea, and primary and secondary (P&S) syphilis in all counties in the 48 contiguous states from national surveillance data and computed temporally smoothed rates using 2008-2012 data. Covariates were obtained from county-level multiyear (2008-2012) American Community Surveys from the US census. We conducted HSA to identify hot spot counties for all three STIs. We then applied spatial logistic regression with the spatial error model to determine the association between the identified hot spots and the covariates. HSA indicated that ≥84% of hot spots for each STI were in the South. Spatial regression results indicated that, a 10-unit increase in the percentage of Black non-Hispanics was associated with ≈42% (P < 0.01) [≈22% (P < 0.01), for Hispanics] increase in the odds of being a hot spot county for chlamydia and gonorrhea, and ≈27% (P < 0.01) [≈11% (P < 0.01) for Hispanics] for P&S syphilis. Compared with the other regions (West, Midwest, and Northeast), counties in the South were 6.5 (P < 0.01; chlamydia), 9.6 (P < 0.01; gonorrhea), and 4.7 (P < 0.01; P&S syphilis) times more likely to be hot spots. Our study provides important information on hot spot clusters of nonviral STIs in the entire United States, including associations between hot spot counties and sociodemographic factors. Published by Elsevier Inc.
van der Meer, D; Hoekstra, P J; van Donkelaar, M; Bralten, J; Oosterlaan, J; Heslenfeld, D; Faraone, S V; Franke, B; Buitelaar, J K; Hartman, C A
2017-01-01
Identifying genetic variants contributing to attention-deficit/hyperactivity disorder (ADHD) is complicated by the involvement of numerous common genetic variants with small effects, interacting with each other as well as with environmental factors, such as stress exposure. Random forest regression is well suited to explore this complexity, as it allows for the analysis of many predictors simultaneously, taking into account any higher-order interactions among them. Using random forest regression, we predicted ADHD severity, measured by Conners’ Parent Rating Scales, from 686 adolescents and young adults (of which 281 were diagnosed with ADHD). The analysis included 17 374 single-nucleotide polymorphisms (SNPs) across 29 genes previously linked to hypothalamic–pituitary–adrenal (HPA) axis activity, together with information on exposure to 24 individual long-term difficulties or stressful life events. The model explained 12.5% of variance in ADHD severity. The most important SNP, which also showed the strongest interaction with stress exposure, was located in a region regulating the expression of telomerase reverse transcriptase (TERT). Other high-ranking SNPs were found in or near NPSR1, ESR1, GABRA6, PER3, NR3C2 and DRD4. Chronic stressors were more influential than single, severe, life events. Top hits were partly shared with conduct problems. We conclude that random forest regression may be used to investigate how multiple genetic and environmental factors jointly contribute to ADHD. It is able to implicate novel SNPs of interest, interacting with stress exposure, and may explain inconsistent findings in ADHD genetics. This exploratory approach may be best combined with more hypothesis-driven research; top predictors and their interactions with one another should be replicated in independent samples. PMID:28585928
NASA Astrophysics Data System (ADS)
Alp, E.; Yücel, Ö.; Özcan, Z.
2014-12-01
Turkey has been making many legal arrangements for sustainable water management during the harmonization process with the European Union. In order to make cost effective and efficient decisions, monitoring network in Turkey has been expanding. However, due to time and budget constraints, desired number of monitoring campaigns can not be carried. Hence, in this study, independent parameters that can be measured easily and quickly are used to estimate water quality parameters in Lake Mogan and Eymir using linear regression. Nonpoint sources are one of the major pollutant components in Eymir and Mogan lakes. In this paper, a correlation between easily measurable parameters, DO, temperature, electrical conductivity, pH, precipitation and dependent variables, TN, TP, COD, Chl-a, TSS, Total Coliform is investigated. Simple regression analysis is performed for each season in Eymir and Mogan lakes by using SPSS Statistical program using the water quality data collected between 2006-2012. Regression analysis demonstrated significant linear relationship between measured and simulated concentrations for TN (R2=0.86), TP (R2=0.85), TSS (R2=0.91), Chl-a (R2=0.94), COD (R2=0.99), T. Coliform (R2=0.97) which are the best results in each season for Eymir and Mogan Lakes. The overall results of this study shows that by using easily measurable parameters even in ungauged situation the water quality of lakes can be predicted. Moreover, the outputs obtained from the regression equations can be used as an input for water quality models such as phosphorus budget model which is used to calculate the required reduction in the external phosphorus load to Lake Mogan to meet the water quality standards.
Inami, Satoshi; Moridaira, Hiroshi; Takeuchi, Daisaku; Shiba, Yo; Nohara, Yutaka; Taneichi, Hiroshi
2016-11-01
Adult spinal deformity (ASD) classification showing that ideal pelvic incidence minus lumbar lordosis (PI-LL) value is within 10° has been received widely. But no study has focused on the optimum level of PI-LL value that reflects wide variety in PI among patients. This study was conducted to determine the optimum PI-LL value specific to an individual's PI in postoperative ASD patients. 48 postoperative ASD patients were recruited. Spino-pelvic parameters and Oswestry Disability Index (ODI) were measured at the final follow-up. Factors associated with good clinical results were determined by stepwise multiple regression model using the ODI. The patients with ODI under the 75th percentile cutoff were designated into the "good" health related quality of life (HRQOL) group. In this group, the relationship between the PI-LL and PI was assessed by regression analysis. Multiple regression analysis revealed PI-LL as significant parameters associated with ODI. Thirty-six patients with an ODI <22 points (75th percentile cutoff) were categorized into a good HRQOL group, and linear regression models demonstrated the following equation: PI-LL = 0.41PI-11.12 (r = 0.45, P = 0.0059). On the basis of this equation, in the patients with a PI = 50°, the PI-LL is 9°. Whereas in those with a PI = 30°, the optimum PI-LL is calculated to be as low as 1°. In those with a PI = 80°, PI-LL is estimated at 22°. Consequently, an optimum PI-LL is inconsistent in that it depends on the individual PI.
[Relational database for urinary stone ambulatory consultation. Assessment of initial outcomes].
Sáenz Medina, J; Páez Borda, A; Crespo Martinez, L; Gómez Dos Santos, V; Barrado, C; Durán Poveda, M
2010-05-01
To create a relational database for monitoring lithiasic patients. We describe the architectural details and the initial results of the statistical analysis. Microsoft Access 2002 was used as template. Four different tables were constructed to gather demographic data (table 1), clinical and laboratory findings (table 2), stone features (table 3) and therapeutic approach (table 4). For a reliability analysis of the database the number of correctly stored data was gathered. To evaluate the performance of the database, a prospective analysis was conducted, from May 2004 to August 2009, on 171 stone free patients after treatment (EWSL, surgery or medical) from a total of 511 patients stored in the database. Lithiasic status (stone free or stone relapse) was used as primary end point, while demographic factors (age, gender), lithiasic history, upper urinary tract alterations and characteristics of the stone (side, location, composition and size) were considered as predictive factors. An univariate analysis was conducted initially by chi square test and supplemented by Kaplan Meier estimates for time to stone recurrence. A multiple Cox proportional hazards regression model was generated to jointly assess the prognostic value of the demographic factors and the predictive value of stones characteristics. For the reliability analysis 22,084 data were available corresponding to 702 consultations on 511 patients. Analysis of data showed a recurrence rate of 85.4% (146/171, median time to recurrence 608 days, range 70-1758). In the univariate and multivariate analysis, none of the factors under consideration had a significant effect on recurrence rate (p=ns). The relational database is useful for monitoring patients with urolithiasis. It allows easy control and update, as well as data storage for later use. The analysis conducted for its evaluation showed no influence of demographic factors and stone features on stone recurrence.
Lin, Yi Hung; Tu, Yu Kang; Lu, Chun Tai; Chung, Wen Chen; Huang, Chiung Fang; Huang, Mao Suan; Lu, Hsein Kun
2014-01-01
Repigmentation variably occurs with different treatment methods in patients with gingival pigmentation. A systemic review was conducted of various treatment modalities for eliminating melanin pigmentation of the gingiva, comprising bur abrasion, scalpel surgery, cryosurgery, electrosurgery, gingival grafts, and laser techniques, to compare the recurrence rates (Rrs) of these treatment procedures. Electronic databases, including PubMed, Web of Science, Google, and Medline were comprehensively searched, and manual searches were conducted for studies published from January 1951 to June 2013. After applying inclusion and exclusion criteria, the final list of articles was reviewed in depth to achieve the objectives of this review. A Poisson regression was used to analyze the outcome of depigmentation using the various treatment methods. The systematic review was based on case reports mainly. In total, 61 eligible publications met the defined criteria. The various therapeutic procedures showed variable clinical results with a wide range of Rrs. A random-effects Poisson regression showed that cryosurgery (Rr = 0.32%), electrosurgery (Rr = 0.74%), and laser depigmentation (Rr = 1.16%) yielded superior result, whereas bur abrasion yielded the highest Rr (8.89%). Within the limit of the sampling level, the present evidence-based results show that cryosurgery exhibits the optimal predictability for depigmentation of the gingiva among all procedures examined, followed by electrosurgery and laser techniques. It is possible to treat melanin pigmentation of the gingiva with various methods and prevent repigmentation. Among those treatment modalities, cryosurgery, electrosurgery, and laser surgery appear to be the best choices for treating gingival pigmentation. © 2014 Wiley Periodicals, Inc.
Barry, Adam E; Chaney, Beth; Chaney, J Don
2011-08-01
Truancy and alcohol use are quality indicators of academic achievement and success. However, there remains a paucity of substantive research articulating the impact these deviant behaviors have on an adolescent's educational aspirations. The purpose of this study is to assess whether recent alcohol use and truancy impact students' educational aspirations among a nationally representative sample of US high school seniors. This study conducted a secondary data analysis of the Monitoring the Future project data, 2006. Logistic regression was conducted to assess how alcohol use and truancy affected educational aspirations. Subsequent interaction effects were assessed in the final multivariable model. Demographic variables such as age, sex, race, and father and mother's educational level were included as covariates in the regression model. Results indicate that as students engage in increased alcohol use and/or truancy, educational aspirations decrease. Thus, students who indicated a desire to attend a 4-year college/university were less likely to engage in high-risk drinking behavior and/or truancy. Moreover, in testing the interaction between truancy and alcohol use, as it relates to educational aspirations, the logistic regression model found both of these independent variables to be statistically significant predictors of the likelihood students would attend a 4-year college/university. To ensure that adolescents further their education and maximize their potential life opportunities, school and public health officials should initiate efforts to reduce alcohol consumption and truancy among students. Furthermore, future research should examine the risk and protective factors that may influence one's educational aspirations. © 2011, American School Health Association.
[Obesity in Brazilian women: association with parity and socioeconomic status].
Ferreira, Regicely Aline Brandão; Benicio, Maria Helena D'Aquino
2015-05-01
To determine the influence of reproductive history on the prevalence of obesity in Brazilian women and the possible modifying effect of socioeconomic variables on the association between parity and excess weight. A retrospective analysis of complex sample data collected as part of the 2006 Brazilian National Survey on Demography and Health, which included a group representative of women of childbearing age in Brazil was conducted. The study included 11 961 women aged 20 to 49 years. The association between the study factor (parity) and the outcome of interest (obesity) was tested using logistic regression analysis. The adjusted effect of parity on obesity was assessed in a multiple regression model containing control variables: age, family purchasing power, as defined by the Brazilian Association of Research Enterprises (ABEP), schooling, and health care. Significance level was set at below 0.05. The prevalence of obesity in the study population was 18.6%. The effect of parity on obesity was significant (P for trend < 0.001). Unadjusted analysis showed a positive association of obesity with parity and age. Family purchase power had a significant odds ratio for obesity only in the unadjusted analysis. In the adjusted model, this variable did not explain obesity. The present findings suggest that parity has an influence on obesity in Brazilian women of childbearing age, with higher prevalence in women vs. without children.
Kesari, Shreekant; Bhunia, Gouri Sankar; Kumar, Vijay; Jeyaram, Algarswamy; Ranjan, Alok; Das, Pradeep
2011-08-01
In visceral leishmaniasis, phlebotomine vectors are targets for control measures. Understanding the ecosystem of the vectors is a prerequisite for creating these control measures. This study endeavours to delineate the suitable locations of Phlebotomus argentipes with relation to environmental characteristics between endemic and non-endemic districts in India. A cross-sectional survey was conducted on 25 villages in each district. Environmental data were obtained through remote sensing images and vector density was measured using a CDC light trap. Simple linear regression analysis was used to measure the association between climatic parameters and vector density. Using factor analysis, the relationship between land cover classes and P. argentipes density among the villages in both districts was investigated. The results of the regression analysis indicated that indoor temperature and relative humidity are the best predictors for P. argentipes distribution. Factor analysis confirmed breeding preferences for P. argentipes by landscape element. Minimum Normalised Difference Vegetation Index, marshy land and orchard/settlement produced high loading in an endemic region, whereas water bodies and dense forest were preferred in non-endemic sites. Soil properties between the two districts were studied and indicated that soil pH and moisture content is higher in endemic sites compared to non-endemic sites. The present study should be utilised to make critical decisions for vector surveillance and controlling Kala-azar disease vectors.
Sagoe, Dominic; Pallesen, Ståle; Dlova, Ncoza C; Lartey, Margaret; Ezzedine, Khaled; Dadzie, Ophelia
2018-06-11
To estimate and investigate the global lifetime prevalence and correlates of skin bleaching. A meta-analysis and meta-regression analysis was performed based on a systematic and comprehensive literature search conducted in Google Scholar, ISI Web of Science, ProQuest, PsycNET, PubMed, and other relevant websites and reference lists. A total of 68 studies (67,665 participants) providing original data on the lifetime prevalence of skin bleaching were included. Publication bias was corrected using the trim and fill procedure. The pooled (imputed) lifetime prevalence of skin bleaching was 27.7% (95% CI: 19.6-37.5, I 2 = 99.6, P < 0.01). The highest significant prevalences were associated with: males (28.0%), topical corticosteroid use (51.8%), Africa (27.1%), persons aged ≤30 years (55.9%), individuals with only primary school education (31.6%), urban or semiurban residents (74.9%), patients (21.3%), data from 2010-2017 (26.8%), dermatological evaluation and testing-based assessment (24.9%), random sampling methods (29.2%), and moderate quality studies (32.3%). The proportion of females in study samples was significantly related to skin bleaching prevalence. Despite some limitations, our results indicate that the practice of skin bleaching is a serious global public health issue that should be addressed through appropriate public health interventions. © 2018 The International Society of Dermatology.
Analysis of association of clinical aspects and IL1B tagSNPs with severe preeclampsia.
Leme Galvão, Larissa Paes; Menezes, Filipe Emanuel; Mendonca, Caio; Barreto, Ikaro; Alvim-Pereira, Claudia; Alvim-Pereira, Fabiano; Gurgel, Ricardo
2016-01-01
This study investigates the association between IL1B genotypes using a tag SNP (single polymorphism) approach, maternal and environmental factors in Brazilian women with severe preeclampsia. A case-control study with a total of 456 patients (169 preeclamptic women and 287 controls) was conducted in the two reference maternity hospitals of Sergipe state, Northeast Brazil. A questionnaire was administered and DNA was extracted to genotype the population for four tag SNPs of the IL1Beta: rs 1143643, rs 1143633, rs 1143634 and rs 1143630. Haplotype association analysis and p-values were calculated using the THESIAS test. Odds ratio (OR) estimation, confidence interval (CI) and multivariate logistic regression were performed. High pregestational body mass index (pre-BMI), first gestation, cesarean section, more than six medical visits, low level of consciousness on admission and TC and TT genotype in rs1143630 of IL1Beta showed association with the preeclamptic group in univariate analysis. After multivariate logistic regression pre-BMI, first gestation and low level of consciousness on admission remained associated. We identified an association between clinical variables and preeclampsia. Univariate analysis suggested that inflammatory process-related genes, such as IL1B, may be involved and should be targeted in further studies. The identification of the genetic background involved in preeclampsia host response modulation is mandatory in order to understand the preeclampsia process.
RAWS II: A MULTIPLE REGRESSION ANALYSIS PROGRAM,
This memorandum gives instructions for the use and operation of a revised version of RAWS, a multiple regression analysis program. The program...of preprocessed data, the directed retention of variable, listing of the matrix of the normal equations and its inverse, and the bypassing of the regression analysis to provide the input variable statistics only. (Author)
Gao, Jinghong; Chen, Xiaojun; Woodward, Alistair; Liu, Xiaobo; Wu, Haixia; Lu, Yaogui; Li, Liping; Liu, Qiyong
2016-01-01
Few studies examined the associations of meteorological factors with road traffic injuries (RTIs). The purpose of the present study was to quantify the contributions of meteorological factors to RTI cases treated at a tertiary level hospital in Shantou city, China. A time-series diagram was employed to illustrate the time trends and seasonal variation of RTIs, and correlation analysis and multiple linear regression analysis were conducted to investigate the relationships between meteorological parameters and RTIs. RTIs followed a seasonal pattern as more cases occurred during summer and winter months. RTIs are positively correlated with temperature and sunshine duration, while negatively associated with wind speed. Temperature, sunshine hour and wind speed were included in the final linear model with regression coefficients of 0.65 (t = 2.36, P = 0.019), 2.23 (t = 2.72, P = 0.007) and −27.66 (t = −5.67, P < 0.001), respectively, accounting for 19.93% of the total variation of RTI cases. The findings can help us better understand the associations between meteorological factors and RTIs, and with potential contributions to the development and implementation of regional level evidence-based weather-responsive traffic management system in the future. PMID:27853316
Andrewin, Aisha N.; Rodriguez-Llanes, Jose M.; Guha-Sapir, Debarati
2015-01-01
Floods and storms are climate-related hazards posing high mortality risk to Caribbean Community (CARICOM) nations. However risk factors for their lethality remain untested. We conducted an ecological study investigating risk factors for flood and storm lethality in CARICOM nations for the period 1980–2012. Lethality - deaths versus no deaths per disaster event- was the outcome. We examined biophysical and social vulnerability proxies and a decadal effect as predictors. We developed our regression model via multivariate analysis using a generalized logistic regression model with quasi-binomial distribution; removal of multi-collinear variables and backward elimination. Robustness was checked through subset analysis. We found significant positive associations between lethality, percentage of total land dedicated to agriculture (odds ratio [OR] 1.032; 95% CI: 1.013–1.053) and percentage urban population (OR 1.029, 95% CI 1.003–1.057). Deaths were more likely in the 2000–2012 period versus 1980–1989 (OR 3.708, 95% CI 1.615–8.737). Robustness checks revealed similar coefficients and directions of association. Population health in CARICOM nations is being increasingly impacted by climate-related disasters connected to increasing urbanization and land use patterns. Our findings support the evidence base for setting sustainable development goals (SDG). PMID:26153115
Development and evaluation of an electromagnetic hypersensitivity questionnaire for Japanese people
Tokiya, Mikiko; Mizuki, Masami; Miyata, Mikio; Kanatani, Kumiko T.; Takagi, Airi; Tsurikisawa, Naomi; Kame, Setsuko; Katoh, Takahiko; Tsujiuchi, Takuya; Kumano, Hiroaki
2016-01-01
The purpose of the present study was to evaluate the validity and reliability of a Japanese version of an electromagnetic hypersensitivity (EHS) questionnaire, originally developed by Eltiti et al. in the United Kingdom. Using this Japanese EHS questionnaire, surveys were conducted on 1306 controls and 127 self‐selected EHS subjects in Japan. Principal component analysis of controls revealed eight principal symptom groups, namely, nervous, skin‐related, head‐related, auditory and vestibular, musculoskeletal, allergy‐related, sensory, and heart/chest‐related. The reliability of the Japanese EHS questionnaire was confirmed by high to moderate intraclass correlation coefficients in a test–retest analysis, and high Cronbach's α coefficients (0.853–0.953) from each subscale. A comparison of scores of each subscale between self‐selected EHS subjects and age‐ and sex‐matched controls using bivariate logistic regression analysis, Mann–Whitney U‐ and χ 2 tests, verified the validity of the questionnaire. This study demonstrated that the Japanese EHS questionnaire is reliable and valid, and can be used for surveillance of EHS individuals in Japan. Furthermore, based on multiple logistic regression and receiver operating characteristic analyses, we propose specific preliminary criteria for screening EHS individuals in Japan. Bioelectromagnetics. 37:353–372, 2016. © 2016 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc. PMID:27324106
Coffee agroforestry for sustainability of Upper Sekampung Watershed management
NASA Astrophysics Data System (ADS)
Fitriani; Arifin, Bustanul; Zakaria, Wan Abbas; Hanung Ismono, R.
2018-03-01
The main objective of watershed management is to ensure the optimal hydrological and natural resource use for ecological, social and economic importance. One important adaptive management step in dealing with the risk of damage to forest ecosystems is the practice of agroforestry coffee. This study aimed to (1) assess the farmer's response to ecological service responsibility and (2) analyze the Sekampung watersheds management by providing environmental services. The research location was Air Naningan sub-district, Tanggamus, Lampung Province, Indonesia. The research was conducted from July until November 2016. Stratification random sampling based on the pattern of ownership of land rights is used to determine the respondents. Data were analyzed using descriptive statistics and logistic regression analysis. Based on the analysis, it was concluded that coffee farmers' participation in the practice of coffee agroforestry in the form of 38% shade plants and multiple cropping (62%). The logistic regression analysis indicated that the variables of experience and status of land ownership, and incentive-size plans were able to explain variations in the willingness of coffee growers to follow the scheme of providing environmental services. The existence of farmer with partnership and CBFM scheme on different land tenure on upper Sekampung has a strategic position to minimize the deforestation and recovery watersheds destruction.
Xu, Wenjian; Zheng, Lijun; Xu, Yin; Zheng, Yong
2017-02-17
Social attitudes toward male homosexuality in China so far are still not optimistic. Sexual minorities in China have reported high levels of internalized homophobia. This Internet-based study examined the associations among internalized homophobia, mental health, sexual behaviors, and outness among 435 gay/bisexual men in Southwest China from 2014 to 2015. Latent profile analysis, confirmatory factor analysis, univariate logistic regression, and separate multivariate logistic regression analyses were conducted. This descriptive study found the Internalized Homophobia Scale to be suitable for use in China. The sample demonstrated a high prevalence of internalized homophobia. Latent profile analysis suggested a 2-class solution as optimal, and a high level of internalized homophobia was significantly associated with greater psychological distress (Wald = 6.49, AOR = 1.66), transactional sex during the previous 6 months (Wald = 5.23, AOR = 2.77), more sexual compulsions (Wald = 14.05, AOR = 2.12), and the concealment of sexual identity from others (Wald = 30.70, AOR = 0.30) and parents (Wald = 6.72, AOR = 0.49). These findings contribute to our understanding of internalized homophobia in China, and highlight the need to decrease gay-related psychological stress/distress and improve public health services.
Perneczky, R; Drzezga, A; Diehl-Schmid, J; Schmid, G; Wohlschläger, A; Kars, S; Grimmer, T; Wagenpfeil, S; Monsch, A; Kurz, A
2006-09-01
Functional imaging studies report that higher education is associated with more severe pathology in patients with Alzheimer's disease, controlling for disease severity. Therefore, schooling seems to provide brain reserve against neurodegeneration. To provide further evidence for brain reserve in a large sample, using a sensitive technique for the indirect assessment of brain abnormality (18F-fluoro-deoxy-glucose-positron emission tomography (FDG-PET)), a comprehensive measure of global cognitive impairment to control for disease severity (total score of the Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Battery) and an approach unbiased by predefined regions of interest for the statistical analysis (statistical parametric mapping (SPM)). 93 patients with mild Alzheimer's disease and 16 healthy controls underwent 18F-FDG-PET imaging of the brain. A linear regression analysis with education as independent and glucose utilisation as dependent variables, adjusted for global cognitive status and demographic variables, was conducted in SPM2. The regression analysis showed a marked inverse association between years of schooling and glucose metabolism in the posterior temporo-occipital association cortex and the precuneus in the left hemisphere. In line with previous reports, the findings suggest that education is associated with brain reserve and that people with higher education can cope with brain damage for a longer time.
A Skew-t space-varying regression model for the spectral analysis of resting state brain activity.
Ismail, Salimah; Sun, Wenqi; Nathoo, Farouk S; Babul, Arif; Moiseev, Alexader; Beg, Mirza Faisal; Virji-Babul, Naznin
2013-08-01
It is known that in many neurological disorders such as Down syndrome, main brain rhythms shift their frequencies slightly, and characterizing the spatial distribution of these shifts is of interest. This article reports on the development of a Skew-t mixed model for the spatial analysis of resting state brain activity in healthy controls and individuals with Down syndrome. Time series of oscillatory brain activity are recorded using magnetoencephalography, and spectral summaries are examined at multiple sensor locations across the scalp. We focus on the mean frequency of the power spectral density, and use space-varying regression to examine associations with age, gender and Down syndrome across several scalp regions. Spatial smoothing priors are incorporated based on a multivariate Markov random field, and the markedly non-Gaussian nature of the spectral response variable is accommodated by the use of a Skew-t distribution. A range of models representing different assumptions on the association structure and response distribution are examined, and we conduct model selection using the deviance information criterion. (1) Our analysis suggests region-specific differences between healthy controls and individuals with Down syndrome, particularly in the left and right temporal regions, and produces smoothed maps indicating the scalp topography of the estimated differences.
The impact of hyperglycemia on survival in glioblastoma: A systematic review and meta-analysis.
Lu, Victor M; Goyal, Anshit; Vaughan, Lachlin S; McDonald, Kerrie L
2018-07-01
In the management of glioblastoma (GBM), there is a considerable predisposition to hyperglycemia due to significant integration of corticosteroid therapy to treat predictable clinical sequelae following diagnosis and treatment. The aim of this study was to quantify effect of hyperglycemia during the management of GBM on overall survival (OS). Searches of seven electronic databases from inception to January 2018 were conducted following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. There were 1475 articles identified for screening. Prognostic hazard ratios (HRs) derived from multivariate regression analysis were extracted, and analyzed using meta-analysis of proportions and linear regression. Six observational studies reporting prognostic HRs in 10 cohorts were included. They described 1481 GBM diagnoses, all surveyed for hyperglycemia during management. Hyperglycemia was found to confer a statistically significant poorer OS outcome (HR, 1.671; p < 0.001). This trend and its significance was not modified by study year, size or proportion of pre-diagnostic diabetes mellitus. Hyperglycemia in GBM is an independent poor prognostic factor for OS. Heterogeneity in clinical course limits inter-study comparability. Future, prospective, randomized studies will validate the findings of this study, and ascertain the potential benefit of more rigorous monitoring for hyperglycemia and glycemic control. Copyright © 2018 Elsevier B.V. All rights reserved.
Relationship between Urbanization and Cancer Incidence in Iran Using Quantile Regression.
Momenyan, Somayeh; Sadeghifar, Majid; Sarvi, Fatemeh; Khodadost, Mahmoud; Mosavi-Jarrahi, Alireza; Ghaffari, Mohammad Ebrahim; Sekhavati, Eghbal
2016-01-01
Quantile regression is an efficient method for predicting and estimating the relationship between explanatory variables and percentile points of the response distribution, particularly for extreme percentiles of the distribution. To study the relationship between urbanization and cancer morbidity, we here applied quantile regression. This cross-sectional study was conducted for 9 cancers in 345 cities in 2007 in Iran. Data were obtained from the Ministry of Health and Medical Education and the relationship between urbanization and cancer morbidity was investigated using quantile regression and least square regression. Fitting models were compared using AIC criteria. R (3.0.1) software and the Quantreg package were used for statistical analysis. With the quantile regression model all percentiles for breast, colorectal, prostate, lung and pancreas cancers demonstrated increasing incidence rate with urbanization. The maximum increase for breast cancer was in the 90th percentile (β=0.13, p-value<0.001), for colorectal cancer was in the 75th percentile (β=0.048, p-value<0.001), for prostate cancer the 95th percentile (β=0.55, p-value<0.001), for lung cancer was in 95th percentile (β=0.52, p-value=0.006), for pancreas cancer was in 10th percentile (β=0.011, p-value<0.001). For gastric, esophageal and skin cancers, with increasing urbanization, the incidence rate was decreased. The maximum decrease for gastric cancer was in the 90th percentile(β=0.003, p-value<0.001), for esophageal cancer the 95th (β=0.04, p-value=0.4) and for skin cancer also the 95th (β=0.145, p-value=0.071). The AIC showed that for upper percentiles, the fitting of quantile regression was better than least square regression. According to the results of this study, the significant impact of urbanization on cancer morbidity requirs more effort and planning by policymakers and administrators in order to reduce risk factors such as pollution in urban areas and ensure proper nutrition recommendations are made.
Wang, D Z; Wang, C; Shen, C F; Zhang, Y; Zhang, H; Song, G D; Xue, X D; Xu, Z L; Zhang, S; Jiang, G H
2017-05-10
We described the time trend of acute myocardial infarction (AMI) from 1999 to 2013 in Tianjin incidence rate with Cochran-Armitage trend (CAT) test and linear regression analysis, and the results were compared. Based on actual population, CAT test had much stronger statistical power than linear regression analysis for both overall incidence trend and age specific incidence trend (Cochran-Armitage trend P value
Rutherford, Adam D.; Munafò, Marcus R.
2016-01-01
There is increasing public and scientific concern regarding the long-term behavioural effects of video game use in children, but currently little consensus as to the nature of any such relationships. We investigated the relationship between video game use in children, degree of violence in games, and measures of depression and a 6-level banded measure of conduct disorder. Data from the Avon Longitudinal Study of Parents and Children were used. A 3-level measure of game use at age 8/9 years was developed, taking into account degree of violence based on game genre. Associations with conduct disorder and depression, measured at age 15, were investigated using ordinal logistic regression, adjusted for a number of potential confounders. Shoot-em-up games were associated with conduct disorder bands, and with a binary measure of conduct disorder, although the strength of evidence for these associations was weak. A sensitivity analysis comparing those who play competitive games to those who play shoot-em-ups found weak evidence supporting the hypothesis that it is violence rather than competitiveness that is associated with conduct disorder. However this analysis was underpowered, and we cannot rule out the possibility that increasing levels of competition in games may be just as likely to account for the observed associations as violent content. Overall game exposure as indicated by number of games in a household was not related to conduct disorder, nor was any association found between shoot-em-up video game use and depression. PMID:26820149
Etchells, Peter J; Gage, Suzanne H; Rutherford, Adam D; Munafò, Marcus R
2016-01-01
There is increasing public and scientific concern regarding the long-term behavioural effects of video game use in children, but currently little consensus as to the nature of any such relationships. We investigated the relationship between video game use in children, degree of violence in games, and measures of depression and a 6-level banded measure of conduct disorder. Data from the Avon Longitudinal Study of Parents and Children were used. A 3-level measure of game use at age 8/9 years was developed, taking into account degree of violence based on game genre. Associations with conduct disorder and depression, measured at age 15, were investigated using ordinal logistic regression, adjusted for a number of potential confounders. Shoot-em-up games were associated with conduct disorder bands, and with a binary measure of conduct disorder, although the strength of evidence for these associations was weak. A sensitivity analysis comparing those who play competitive games to those who play shoot-em-ups found weak evidence supporting the hypothesis that it is violence rather than competitiveness that is associated with conduct disorder. However this analysis was underpowered, and we cannot rule out the possibility that increasing levels of competition in games may be just as likely to account for the observed associations as violent content. Overall game exposure as indicated by number of games in a household was not related to conduct disorder, nor was any association found between shoot-em-up video game use and depression.
Hoffmann-Eßer, Wiebke; Siering, Ulrich; Neugebauer, Edmund A M; Brockhaus, Anne Catharina; Lampert, Ulrike; Eikermann, Michaela
2017-01-01
The Appraisal of Guidelines for Research & Evaluation (AGREE) II instrument is the most commonly used guideline appraisal tool. It includes 23 appraisal criteria (items) organized within 6 domains and 2 overall assessments (1. overall guideline quality; 2. recommendation for use). The aim of this systematic review was twofold. Firstly, to investigate how often AGREE II users conduct the 2 overall assessments. Secondly, to investigate the influence of the 6 domain scores on each of the 2 overall assessments. A systematic bibliographic search was conducted for publications reporting guideline appraisals with AGREE II. The impact of the 6 domain scores on the overall assessment of guideline quality was examined using a multiple linear regression model. Their impact on the recommendation for use (possible answers: "yes", "yes, with modifications", "no") was examined using a multinomial regression model. 118 relevant publications including 1453 guidelines were identified. 77.1% of the publications reported results for at least one overall assessment, but only 32.2% reported results for both overall assessments. The results of the regression analyses showed a statistically significant influence of all domains on overall guideline quality, with Domain 3 (rigour of development) having the strongest influence. For the recommendation for use, the results showed a significant influence of Domains 3 to 5 ("yes" vs. "no") and Domains 3 and 5 ("yes, with modifications" vs. "no"). The 2 overall assessments of AGREE II are underreported by guideline assessors. Domains 3 and 5 have the strongest influence on the results of the 2 overall assessments, while the other domains have a varying influence. Within a normative approach, our findings could be used as guidance for weighting individual domains in AGREE II to make the overall assessments more objective. Alternatively, a stronger content analysis of the individual domains could clarify their importance in terms of guideline quality. Moreover, AGREE II should require users to transparently present how they conducted the assessments.
Haile, Zelalem T; Chertok, Ilana R Azulay; Teweldeberhan, Asli K
2013-06-01
Although the effectiveness of tetanus toxoid (TT) immunization during pregnancy in preventing maternal and neonatal tetanus is well established, in many developing countries, TT immunization programs are underutilized. The objective of this study was to examine factors associated with sufficient TT immunization among postpartum women in Kenya. Population based secondary data analysis was conducted using de-identified data from the 2008-2009 Kenyan Demographic and Health Survey (KDHS) for 1,370 female participants who had a live birth during or within 12 months of the cross-sectional survey. Chi-square test and independent sample t test were conducted to assess bivariate associations and a multivariable logistic regression analysis was conducted to examine associations before and after adjustment for demographic, socioeconomic, cultural, and access to care factors. The main factors contributing to having been sufficiently immunized against tetanus were lower birth order, higher household wealth index, women's employment, making joint health-related decisions with a partner, and higher number of antenatal care visits. Implications for health care providers and other professionals involved in development of strategies and interventions aimed at improving immunization rates are discussed.
Stability Estimation of ABWR on the Basis of Noise Analysis
NASA Astrophysics Data System (ADS)
Furuya, Masahiro; Fukahori, Takanori; Mizokami, Shinya; Yokoya, Jun
In order to investigate the stability of a nuclear reactor core with an oxide mixture of uranium and plutonium (MOX) fuel installed, channel stability and regional stability tests were conducted with the SIRIUS-F facility. The SIRIUS-F facility was designed and constructed to provide a highly accurate simulation of thermal-hydraulic (channel) instabilities and coupled thermalhydraulics-neutronics instabilities of the Advanced Boiling Water Reactors (ABWRs). A real-time simulation was performed by modal point kinetics of reactor neutronics and fuel-rod thermal conduction on the basis of a measured void fraction in a reactor core section of the facility. A time series analysis was performed to calculate decay ratio and resonance frequency from a dominant pole of a transfer function by applying auto regressive (AR) methods to the time-series of the core inlet flow rate. Experiments were conducted with the SIRIUS-F facility, which simulates ABWR with MOX fuel installed. The variations in the decay ratio and resonance frequency among the five common AR methods are within 0.03 and 0.01 Hz, respectively. In this system, the appropriate decay ratio and resonance frequency can be estimated on the basis of the Yule-Walker method with the model order of 30.
A pilot study to examine the relationship between boredom and spirituality in cancer patients.
Inman, Alice; Kirsh, Kenneth L; Passik, Steven D
2003-06-01
Spirituality has been neglected when assessing the well-being of cancer patients. Traditionally, researchers have focused on areas such as physical, social, and emotional functioning. However, there is a potential for spirituality to have a large impact on quality of life in patients with cancer. The current study was conducted to investigate the relationship between spirituality and boredom, constraint, social contact, and depression. A total of 100 oncology patients completed several assessment instruments, including the Purposelessness, Under-stimulation, and Boredom (PUB) Scale, Functional Assessment of Cancer Therapy Scale-Anemia, Brief Zung Self-Rating Depression Scale (BZSDS), Cancer Behavior Inventory, Systems of Belief Inventory, and Eastern Cooperative Oncology Group Performance Status Scale. The average age of the sample was 62.37 years (SD = 13.43) and was comprised of 60 women (60%) and 40 men (40%). A regression analysis conducted to explore the impact of the variables on quality of life found only the BZSDS (R2 delta = .650, F = 180.392, p < .001) and the PUB Scale (R2 delta = .077, F = 26.885, p < .001) were significant predictors of quality of life. Another set of regression analyses were conducted to explore whether spirituality had a mediating effect on this relationship, but the mediated model was not supported. We conclude that spirituality and boredom are difficult concepts to define, operationalize, and measure, but crucial to our understanding of quality of life in advanced cancer. More research is needed to clarify the nature of the interrelationships between these important concepts.
The antagonistic effect between STAT1 and Survivin and its clinical significance in gastric cancer.
Deng, Hao; Zhen, Hongyan; Fu, Zhengqi; Huang, Xuan; Zhou, Hongyan; Liu, Lijiang
2012-01-01
In previous studies, we observed that STAT1 and Survivin correlated negatively with gastric cancer tissues, and that the functions of the IFN-γ-STAT1 pathway and Survivin in gastric cancer are the same as those reported for other types of cancer. In this study, the SGC7901 gastric cancer cell line and 83 gastric cancer specimens were used to confirm the relationship between STAT1 and Survivin, as well as the clinical significance of this relationship in gastric cancer. IFN-γ and STAT1 and Survivin antisense oligonucleotides (ASONs) were used to knock down the expression in SGC7901 cells. The protein expression of STAT1 and Survivin was tested by immunocytochemical and image analysis methods. A gastric cancer tissue microarray was prepared and tested by immunohistochemical methods. Data were analyzed by the Spearman's rank correlation analysis, the χ(2) test and Cox's multivariate regression analysis. Upon knockdown of IFN-γ, STAT1 and Survivin expression by ASON in the SGC7901 cell line, an antagonistic effect was observed between STAT1 and Survivin. In gastric cancer tissues, STAT1 showed a negative correlation with depth of invasion (p<0.05) in gastric cancer tissues exhibiting a negative Survivin protein expression. Furthermore, in tissues exhibiting a negative STAT1 protein expression, Survivin correlated negatively with N stage (p<0.05). Pathological and molecular markers were used to conduct Cox's multivariate regression analysis, and depth of invasion and N stage were found to be prognostic factors (p<0.05). On the other hand, in tissues exhibiting a negative Survivin protein expression, Cox's multivariate regression analysis revealed that the differentiation type and STAT1 protein expression were prognostic factors (p<0.05). There is an antagonistic effect between STAT1 and Survivin in gastric cancer, and this antagonistic effect is of clinical significance in gastric cancer.
Neutrophil/lymphocyte ratio and platelet/lymphocyte ratio in mood disorders: A meta-analysis.
Mazza, Mario Gennaro; Lucchi, Sara; Tringali, Agnese Grazia Maria; Rossetti, Aurora; Botti, Eugenia Rossana; Clerici, Massimo
2018-06-08
The immune and inflammatory system is involved in the etiology of mood disorders. Neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR) and monocyte/lymphocyte ratio (MLR) are inexpensive and reproducible biomarkers of inflammation. This is the first meta-analysis exploring the role of NLR and PLR in mood disorder. We identified 11 studies according to our inclusion criteria from the main Electronic Databases. Meta-analyses were carried out generating pooled standardized mean differences (SMDs) between index and healthy controls (HC). Heterogeneity was estimated. Relevant sensitivity and meta-regression analyses were conducted. Subjects with bipolar disorder (BD) had higher NLR and PLR as compared with HC (respectively SMD = 0.672; p < 0.001; I 2 = 82.4% and SMD = 0.425; p = 0.048; I 2 = 86.53%). Heterogeneity-based sensitivity analyses confirmed these findings. Subgroup analysis evidenced an influence of bipolar phase on the overall estimate whit studies including subjects in manic and any bipolar phase showing a significantly higher NLR and PLR as compared with HC whereas the effect was not significant among studies including only euthymic bipolar subjects. Meta-regression showed that age and sex influenced the relationship between BD and NLR but not the relationship between BD and PLR. Meta-analysis was not carried out for MLR because our search identified only one study when comparing BD to HC, and only one study when comparing MDD to HC. Subjects with major depressive disorder (MDD) had higher NLR as compared with HC (SMD = 0.670; p = 0.028; I 2 = 89.931%). Heterogeneity-based sensitivity analyses and meta-regression confirmed these findings. Our meta-analysis supports the hypothesis that an inflammatory activation occurs in mood disorders and NLR and PLR may be useful to detect this activation. More researches including comparison of NLR, PLR and MLR between different bipolar phases and between BD and MDD are needed. Copyright © 2018 Elsevier Inc. All rights reserved.
A primer for biomedical scientists on how to execute model II linear regression analysis.
Ludbrook, John
2012-04-01
1. There are two very different ways of executing linear regression analysis. One is Model I, when the x-values are fixed by the experimenter. The other is Model II, in which the x-values are free to vary and are subject to error. 2. I have received numerous complaints from biomedical scientists that they have great difficulty in executing Model II linear regression analysis. This may explain the results of a Google Scholar search, which showed that the authors of articles in journals of physiology, pharmacology and biochemistry rarely use Model II regression analysis. 3. I repeat my previous arguments in favour of using least products linear regression analysis for Model II regressions. I review three methods for executing ordinary least products (OLP) and weighted least products (WLP) regression analysis: (i) scientific calculator and/or computer spreadsheet; (ii) specific purpose computer programs; and (iii) general purpose computer programs. 4. Using a scientific calculator and/or computer spreadsheet, it is easy to obtain correct values for OLP slope and intercept, but the corresponding 95% confidence intervals (CI) are inaccurate. 5. Using specific purpose computer programs, the freeware computer program smatr gives the correct OLP regression coefficients and obtains 95% CI by bootstrapping. In addition, smatr can be used to compare the slopes of OLP lines. 6. When using general purpose computer programs, I recommend the commercial programs systat and Statistica for those who regularly undertake linear regression analysis and I give step-by-step instructions in the Supplementary Information as to how to use loss functions. © 2011 The Author. Clinical and Experimental Pharmacology and Physiology. © 2011 Blackwell Publishing Asia Pty Ltd.
Water quality parameter measurement using spectral signatures
NASA Technical Reports Server (NTRS)
White, P. E.
1973-01-01
Regression analysis is applied to the problem of measuring water quality parameters from remote sensing spectral signature data. The equations necessary to perform regression analysis are presented and methods of testing the strength and reliability of a regression are described. An efficient algorithm for selecting an optimal subset of the independent variables available for a regression is also presented.
Young, Ian; Waddell, Lisa; Harding, Shannon; Greig, Judy; Mascarenhas, Mariola; Sivaramalingam, Bhairavi; Pham, Mai T; Papadopoulos, Andrew
2015-08-26
Foodborne illness has a large public health and economic burden worldwide, and many cases are associated with food handled and prepared at home. Educational interventions are necessary to improve consumer food safety practices and reduce the associated burden of foodborne illness. We conducted a systematic review and targeted meta-analyses to investigate the effectiveness of food safety education interventions for consumers. Relevant articles were identified through a preliminary scoping review that included: a comprehensive search in 10 bibliographic databases with verification; relevance screening of abstracts; and extraction of article characteristics. Experimental studies conducted in developed countries were prioritized for risk-of-bias assessment and data extraction. Meta-analysis was conducted on data subgroups stratified by key study design-intervention-population-outcome categories and subgroups were assessed for their quality of evidence. Meta-regression was conducted where appropriate to identify possible sources of between-trial heterogeneity. We identified 79 relevant studies: 17 randomized controlled trials (RCTs); 12 non-randomized controlled trials (NRTs); and 50 uncontrolled before-and-after studies. Several studies did not provide sufficient details on key design features (e.g. blinding), with some high risk-of-bias ratings due to incomplete outcome data and selective reporting. We identified a moderate to high confidence in results from two large RCTs investigating community- and school-based educational training interventions on behaviour outcomes in children and youth (median standardized mean difference [SMD] = 0.20, range: 0.05, 0.35); in two small RCTs evaluating video and written instructional messaging on behavioural intentions in adults (SMD = 0.36, 95% confidence interval [CI]: 0.02, 0.69); and in two NRT studies for university-based education on attitudes of students and staff (SMD = 0.26, 95% CI: 0.10, 0.43). Uncontrolled before-and-after study outcomes were very heterogeneous and we have little confidence that the meta-analysis results reflect the true effect. Some variation in outcomes was explained in meta-regression models, including a dose effect for behaviour outcomes in RCTs. In controlled trials, food safety education interventions showed significant effects in some contexts; however, many outcomes were very heterogeneous and do not provide a strong quality of evidence to support decision-making. Future research in this area is needed using more robust experimental designs to build on interventions shown to be effective in uncontrolled before-and-after studies.
Gimelfarb, A.; Willis, J. H.
1994-01-01
An experiment was conducted to investigate the offspring-parent regression for three quantitative traits (weight, abdominal bristles and wing length) in Drosophila melanogaster. Linear and polynomial models were fitted for the regressions of a character in offspring on both parents. It is demonstrated that responses by the characters to selection predicted by the nonlinear regressions may differ substantially from those predicted by the linear regressions. This is true even, and especially, if selection is weak. The realized heritability for a character under selection is shown to be determined not only by the offspring-parent regression but also by the distribution of the character and by the form and strength of selection. PMID:7828818
Zorrilla-Vaca, Andrés; Healy, Ryan Jacob; Silva-Medina, Melissa M
2017-05-01
The association between cerebrovascular accidents (CVA) and weather has been described across several studies showing multiple conflicting results. In this paper, we aim to conduct a meta-analysis to further clarify this association, as well as to find the potential sources of heterogeneity. PubMed, EMBASE, and Google Scholar were searched from inception through 2015, for articles analyzing the correlation between the incidence of CVA and temperature. A pooled effect size (ES) was estimated using random effects model and expressed as absolute values. Subgroup analyses by type of CVA were also performed. Heterogeneity and influence of covariates-including geographic latitude of the study site, male percentage, average temperature, and time interval-were assessed by meta-regression analysis. Twenty-six articles underwent full data extraction and scoring. A total of 19,736 subjects with CVA from 12 different countries were included and grouped as ischemic strokes (IS; n = 14,199), intracerebral hemorrhages (ICH; n = 3798), and subarachnoid hemorrhages (SAH; n = 1739). Lower ambient temperature was significantly associated with increase in incidence of overall CVA when using unadjusted (pooled ES = 0.23, P < 0.001) and adjusted data (pooled ES = 0.03, P = 0.003). Subgroup analyses showed that lower temperature has higher impact on the incidence of ICH (pooled ES = 0.34, P < 0.001), than that of IS (pooled ES = 0.22, P < 0.001) and SAH (pooled ES = 0.11, P = 0.012). In meta-regression analysis, the geographic latitude of the study site was the most influencing factor on this association (Z-score = 8.68). Synthesis of the existing data provides evidence supporting that a lower ambient temperature increases the incidence of CVA. Further population-based studies conducted at negative latitudes are needed to clarify the influence of this factor.
Li, Feiming; Gimpel, John R; Arenson, Ethan; Song, Hao; Bates, Bruce P; Ludwin, Fredric
2014-04-01
Few studies have investigated how well scores from the Comprehensive Osteopathic Medical Licensing Examination-USA (COMLEX-USA) series predict resident outcomes, such as performance on board certification examinations. To determine how well COMLEX-USA predicts performance on the American Osteopathic Board of Emergency Medicine (AOBEM) Part I certification examination. The target study population was first-time examinees who took AOBEM Part I in 2011 and 2012 with matched performances on COMLEX-USA Level 1, Level 2-Cognitive Evaluation (CE), and Level 3. Pearson correlations were computed between AOBEM Part I first-attempt scores and COMLEX-USA performances to measure the association between these examinations. Stepwise linear regression analysis was conducted to predict AOBEM Part I scores by the 3 COMLEX-USA scores. An independent t test was conducted to compare mean COMLEX-USA performances between candidates who passed and who failed AOBEM Part I, and a stepwise logistic regression analysis was used to predict the log-odds of passing AOBEM Part I on the basis of COMLEX-USA scores. Scores from AOBEM Part I had the highest correlation with COMLEX-USA Level 3 scores (.57) and slightly lower correlation with COMLEX-USA Level 2-CE scores (.53). The lowest correlation was between AOBEM Part I and COMLEX-USA Level 1 scores (.47). According to the stepwise regression model, COMLEX-USA Level 1 and Level 2-CE scores, which residency programs often use as selection criteria, together explained 30% of variance in AOBEM Part I scores. Adding Level 3 scores explained 37% of variance. The independent t test indicated that the 397 examinees passing AOBEM Part I performed significantly better than the 54 examinees failing AOBEM Part I in all 3 COMLEX-USA levels (P<.001 for all 3 levels). The logistic regression model showed that COMLEX-USA Level 1 and Level 3 scores predicted the log-odds of passing AOBEM Part I (P=.03 and P<.001, respectively). The present study empirically supported the predictive and discriminant validities of the COMLEX-USA series in relation to the AOBEM Part I certification examination. Although residency programs may use COMLEX-USA Level 1 and Level 2-CE scores as partial criteria in selecting residents, Level 3 scores, though typically not available at the time of application, are actually the most statistically related to performances on AOBEM Part I.
Krishan, Kewal; Kanchan, Tanuj; Sharma, Abhilasha
2012-05-01
Estimation of stature is an important parameter in identification of human remains in forensic examinations. The present study is aimed to compare the reliability and accuracy of stature estimation and to demonstrate the variability in estimated stature and actual stature using multiplication factor and regression analysis methods. The study is based on a sample of 246 subjects (123 males and 123 females) from North India aged between 17 and 20 years. Four anthropometric measurements; hand length, hand breadth, foot length and foot breadth taken on the left side in each subject were included in the study. Stature was measured using standard anthropometric techniques. Multiplication factors were calculated and linear regression models were derived for estimation of stature from hand and foot dimensions. Derived multiplication factors and regression formula were applied to the hand and foot measurements in the study sample. The estimated stature from the multiplication factors and regression analysis was compared with the actual stature to find the error in estimated stature. The results indicate that the range of error in estimation of stature from regression analysis method is less than that of multiplication factor method thus, confirming that the regression analysis method is better than multiplication factor analysis in stature estimation. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Handling nonnormality and variance heterogeneity for quantitative sublethal toxicity tests.
Ritz, Christian; Van der Vliet, Leana
2009-09-01
The advantages of using regression-based techniques to derive endpoints from environmental toxicity data are clear, and slowly, this superior analytical technique is gaining acceptance. As use of regression-based analysis becomes more widespread, some of the associated nuances and potential problems come into sharper focus. Looking at data sets that cover a broad spectrum of standard test species, we noticed that some model fits to data failed to meet two key assumptions-variance homogeneity and normality-that are necessary for correct statistical analysis via regression-based techniques. Failure to meet these assumptions often is caused by reduced variance at the concentrations showing severe adverse effects. Although commonly used with linear regression analysis, transformation of the response variable only is not appropriate when fitting data using nonlinear regression techniques. Through analysis of sample data sets, including Lemna minor, Eisenia andrei (terrestrial earthworm), and algae, we show that both the so-called Box-Cox transformation and use of the Poisson distribution can help to correct variance heterogeneity and nonnormality and so allow nonlinear regression analysis to be implemented. Both the Box-Cox transformation and the Poisson distribution can be readily implemented into existing protocols for statistical analysis. By correcting for nonnormality and variance heterogeneity, these two statistical tools can be used to encourage the transition to regression-based analysis and the depreciation of less-desirable and less-flexible analytical techniques, such as linear interpolation.
Siegrist, Michael; Connor, Melanie; Keller, Carmen
2012-08-01
In 2005, Swiss citizens endorsed a moratorium on gene technology, resulting in the prohibition of the commercial cultivation of genetically modified crops and the growth of genetically modified animals until 2013. However, scientific research was not affected by this moratorium, and in 2008, GMO field experiments were conducted that allowed us to examine the factors that influence their acceptance by the public. In this study, trust and confidence items were analyzed using principal component analysis. The analysis revealed the following three factors: "economy/health and environment" (value similarity based trust), "trust and honesty of industry and scientists" (value similarity based trust), and "competence" (confidence). The results of a regression analysis showed that all the three factors significantly influenced the acceptance of GM field experiments. Furthermore, risk communication scholars have suggested that fairness also plays an important role in the acceptance of environmental hazards. We, therefore, included measures for outcome fairness and procedural fairness in our model. However, the impact of fairness may be moderated by moral conviction. That is, fairness may be significant for people for whom GMO is not an important issue, but not for people for whom GMO is an important issue. The regression analysis showed that, in addition to the trust and confidence factors, moral conviction, outcome fairness, and procedural fairness were significant predictors. The results suggest that the influence of procedural fairness is even stronger for persons having high moral convictions compared with persons having low moral convictions. © 2012 Society for Risk Analysis.
Imai, Chisato; Hashizume, Masahiro
2015-03-01
Time series analysis is suitable for investigations of relatively direct and short-term effects of exposures on outcomes. In environmental epidemiology studies, this method has been one of the standard approaches to assess impacts of environmental factors on acute non-infectious diseases (e.g. cardiovascular deaths), with conventionally generalized linear or additive models (GLM and GAM). However, the same analysis practices are often observed with infectious diseases despite of the substantial differences from non-infectious diseases that may result in analytical challenges. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, systematic review was conducted to elucidate important issues in assessing the associations between environmental factors and infectious diseases using time series analysis with GLM and GAM. Published studies on the associations between weather factors and malaria, cholera, dengue, and influenza were targeted. Our review raised issues regarding the estimation of susceptible population and exposure lag times, the adequacy of seasonal adjustments, the presence of strong autocorrelations, and the lack of a smaller observation time unit of outcomes (i.e. daily data). These concerns may be attributable to features specific to infectious diseases, such as transmission among individuals and complicated causal mechanisms. The consequence of not taking adequate measures to address these issues is distortion of the appropriate risk quantifications of exposures factors. Future studies should pay careful attention to details and examine alternative models or methods that improve studies using time series regression analysis for environmental determinants of infectious diseases.
The status of diabetes control in Kurdistan province, west of Iran.
Esmailnasab, Nader; Afkhamzadeh, Abdorrahim; Roshani, Daem; Moradi, Ghobad
2013-09-17
Based on some estimation more than two million peoples in Iran are affected by Type 2 diabetes. The present study was designed to evaluate the status of diabetes control among Type 2 diabetes patients in Kurdistan, west of Iran and its associated factors. In our cross sectional study conducted in 2010, 411 Type 2 diabetes patients were randomly recruited from Sanandaj, Capital of Kurdistan. Chi square test was used in univariate analysis to address the association between HgAlc and FBS status and other variables. The significant results from Univariate analysis were entered in multivariate analysis and multinomial logistic regression model. In 38% of patients, FBS was in normal range (70-130) and in 47% HgA1c was <7% which is normal range for HgA1c. In univariate analysis, FBS level was associated with educational levels (P=0.001), referral style (P=0.001), referral time (P=0.009), and insulin injection (P=0.016). In addition, HgA1c had a relationship with sex (P=0.023), age (P=0.035), education (P=0.001), referral style (P=0.001), and insulin injection (P=0.008). After using multinomial logistic regression for significant results of univariate analysis, it was found that FBS was significantly associated with referral style. In addition HgA1c was significantly associated with referral style and Insulin injection. Although some of patients were under the coverage of specialized cares, but their diabetes were not properly controlled.
Using Robust Standard Errors to Combine Multiple Regression Estimates with Meta-Analysis
ERIC Educational Resources Information Center
Williams, Ryan T.
2012-01-01
Combining multiple regression estimates with meta-analysis has continued to be a difficult task. A variety of methods have been proposed and used to combine multiple regression slope estimates with meta-analysis, however, most of these methods have serious methodological and practical limitations. The purpose of this study was to explore the use…
A Quality Assessment Tool for Non-Specialist Users of Regression Analysis
ERIC Educational Resources Information Center
Argyrous, George
2015-01-01
This paper illustrates the use of a quality assessment tool for regression analysis. It is designed for non-specialist "consumers" of evidence, such as policy makers. The tool provides a series of questions such consumers of evidence can ask to interrogate regression analysis, and is illustrated with reference to a recent study published…
Park, Ji Hyun; Kim, Hyeon-Young; Lee, Hanna; Yun, Eun Kyoung
2015-12-01
This study compares the performance of the logistic regression and decision tree analysis methods for assessing the risk factors for infection in cancer patients undergoing chemotherapy. The subjects were 732 cancer patients who were receiving chemotherapy at K university hospital in Seoul, Korea. The data were collected between March 2011 and February 2013 and were processed for descriptive analysis, logistic regression and decision tree analysis using the IBM SPSS Statistics 19 and Modeler 15.1 programs. The most common risk factors for infection in cancer patients receiving chemotherapy were identified as alkylating agents, vinca alkaloid and underlying diabetes mellitus. The logistic regression explained 66.7% of the variation in the data in terms of sensitivity and 88.9% in terms of specificity. The decision tree analysis accounted for 55.0% of the variation in the data in terms of sensitivity and 89.0% in terms of specificity. As for the overall classification accuracy, the logistic regression explained 88.0% and the decision tree analysis explained 87.2%. The logistic regression analysis showed a higher degree of sensitivity and classification accuracy. Therefore, logistic regression analysis is concluded to be the more effective and useful method for establishing an infection prediction model for patients undergoing chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kanamori, Shogo; Castro, Marcia C; Sow, Seydou; Matsuno, Rui; Cissokho, Alioune; Jimba, Masamine
2016-01-01
The 5S method is a lean management tool for workplace organization, with 5S being an abbreviation for five Japanese words that translate to English as Sort, Set in Order, Shine, Standardize, and Sustain. In Senegal, the 5S intervention program was implemented in 10 health centers in two regions between 2011 and 2014. To identify the impact of the 5S intervention program on the satisfaction of clients (patients and caretakers) who visited the health centers. A standardized 5S intervention protocol was implemented in the health centers using a quasi-experimental separate pre-post samples design (four intervention and three control health facilities). A questionnaire with 10 five-point Likert items was used to measure client satisfaction. Linear regression analysis was conducted to identify the intervention's effect on the client satisfaction scores, represented by an equally weighted average of the 10 Likert items (Cronbach's alpha=0.83). Additional regression analyses were conducted to identify the intervention's effect on the scores of each Likert item. Backward stepwise linear regression ( n= 1,928) indicated a statistically significant effect of the 5S intervention, represented by an increase of 0.19 points in the client satisfaction scores in the intervention group, 6 to 8 months after the intervention ( p= 0.014). Additional regression analyses showed significant score increases of 0.44 ( p= 0.002), 0.14 ( p= 0.002), 0.06 ( p= 0.019), and 0.17 ( p= 0.044) points on four items, which, respectively were healthcare staff members' communication, explanations about illnesses or cases, and consultation duration, and clients' overall satisfaction. The 5S has the potential to improve client satisfaction at resource-poor health facilities and could therefore be recommended as a strategic option for improving the quality of healthcare service in low- and middle-income countries. To explore more effective intervention modalities, further studies need to address the mechanisms by which 5S leads to attitude changes in healthcare staff.
Zarb, Francis; McEntee, Mark F; Rainford, Louise
2015-06-01
To evaluate visual grading characteristics (VGC) and ordinal regression analysis during head CT optimisation as a potential alternative to visual grading assessment (VGA), traditionally employed to score anatomical visualisation. Patient images (n = 66) were obtained using current and optimised imaging protocols from two CT suites: a 16-slice scanner at the national Maltese centre for trauma and a 64-slice scanner in a private centre. Local resident radiologists (n = 6) performed VGA followed by VGC and ordinal regression analysis. VGC alone indicated that optimised protocols had similar image quality as current protocols. Ordinal logistic regression analysis provided an in-depth evaluation, criterion by criterion allowing the selective implementation of the protocols. The local radiology review panel supported the implementation of optimised protocols for brain CT examinations (including trauma) in one centre, achieving radiation dose reductions ranging from 24 % to 36 %. In the second centre a 29 % reduction in radiation dose was achieved for follow-up cases. The combined use of VGC and ordinal logistic regression analysis led to clinical decisions being taken on the implementation of the optimised protocols. This improved method of image quality analysis provided the evidence to support imaging protocol optimisation, resulting in significant radiation dose savings. • There is need for scientifically based image quality evaluation during CT optimisation. • VGC and ordinal regression analysis in combination led to better informed clinical decisions. • VGC and ordinal regression analysis led to dose reductions without compromising diagnostic efficacy.
REGRESSION ANALYSIS OF SEA-SURFACE-TEMPERATURE PATTERNS FOR THE NORTH PACIFIC OCEAN.
SEA WATER, *SURFACE TEMPERATURE, *OCEANOGRAPHIC DATA, PACIFIC OCEAN, REGRESSION ANALYSIS , STATISTICAL ANALYSIS, UNDERWATER EQUIPMENT, DETECTION, UNDERWATER COMMUNICATIONS, DISTRIBUTION, THERMAL PROPERTIES, COMPUTERS.
Musuku, Adrien; Tan, Aimin; Awaiye, Kayode; Trabelsi, Fethi
2013-09-01
Linear calibration is usually performed using eight to ten calibration concentration levels in regulated LC-MS bioanalysis because a minimum of six are specified in regulatory guidelines. However, we have previously reported that two-concentration linear calibration is as reliable as or even better than using multiple concentrations. The purpose of this research is to compare two-concentration with multiple-concentration linear calibration through retrospective data analysis of multiple bioanalytical projects that were conducted in an independent regulated bioanalytical laboratory. A total of 12 bioanalytical projects were randomly selected: two validations and two studies for each of the three most commonly used types of sample extraction methods (protein precipitation, liquid-liquid extraction, solid-phase extraction). When the existing data were retrospectively linearly regressed using only the lowest and the highest concentration levels, no extra batch failure/QC rejection was observed and the differences in accuracy and precision between the original multi-concentration regression and the new two-concentration linear regression are negligible. Specifically, the differences in overall mean apparent bias (square root of mean individual bias squares) are within the ranges of -0.3% to 0.7% and 0.1-0.7% for the validations and studies, respectively. The differences in mean QC concentrations are within the ranges of -0.6% to 1.8% and -0.8% to 2.5% for the validations and studies, respectively. The differences in %CV are within the ranges of -0.7% to 0.9% and -0.3% to 0.6% for the validations and studies, respectively. The average differences in study sample concentrations are within the range of -0.8% to 2.3%. With two-concentration linear regression, an average of 13% of time and cost could have been saved for each batch together with 53% of saving in the lead-in for each project (the preparation of working standard solutions, spiking, and aliquoting). Furthermore, examples are given as how to evaluate the linearity over the entire concentration range when only two concentration levels are used for linear regression. To conclude, two-concentration linear regression is accurate and robust enough for routine use in regulated LC-MS bioanalysis and it significantly saves time and cost as well. Copyright © 2013 Elsevier B.V. All rights reserved.
Ker, Katharine; Prieto-Merino, David; Sprigg, Nikola; Mahmood, Abda; Bath, Philip; Kang Law, Zhe; Flaherty, Katie; Roberts, Ian
2017-01-01
Introduction : The Antifibrinolytic Trialists Collaboration aims to increase knowledge about the effectiveness and safety of antifibrinolytic treatment by conducting individual patient data (IPD) meta-analyses of randomised trials. This article presents the statistical analysis plan for an IPD meta-analysis of the effects of antifibrinolytics for acute intracranial haemorrhage. Methods : The protocol for the IPD meta-analysis has been registered with PROSPERO (CRD42016052155). We will conduct an individual patient data meta-analysis of randomised controlled trials with 1000 patients or more assessing the effects of antifibrinolytics in acute intracranial haemorrhage. We will assess the effect on two co-primary outcomes: 1) death in hospital at end of trial follow-up, and 2) death in hospital or dependency at end of trial follow-up. The co-primary outcomes will be limited to patients treated within three hours of injury or stroke onset. We will report treatment effects using odds ratios and 95% confidence intervals. We use logistic regression models to examine how the effect of antifibrinolytics vary by time to treatment, severity of intracranial bleeding, and age. We will also examine the effect of antifibrinolytics on secondary outcomes including death, dependency, vascular occlusive events, seizures, and neurological outcomes. Secondary outcomes will be assessed in all patients irrespective of time of treatment. All analyses will be conducted on an intention-to-treat basis. Conclusions : This IPD meta-analysis will examine important clinical questions about the effects of antifibrinolytic treatment in patients with intracranial haemorrhage that cannot be answered using aggregate data. With IPD we can examine how effects vary by time to treatment, bleeding severity, and age, to gain better understanding of the balance of benefit and harms on which to base recommendations for practice.
The process and utility of classification and regression tree methodology in nursing research
Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda
2014-01-01
Aim This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Background Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Design Discussion paper. Data sources English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984–2013. Discussion Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Implications for Nursing Research Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Conclusion Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. PMID:24237048
The process and utility of classification and regression tree methodology in nursing research.
Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda
2014-06-01
This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Discussion paper. English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984-2013. Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. © 2013 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.
Hoch, Jeffrey S; Dewa, Carolyn S
2014-04-01
Economic evaluations commonly accompany trials of new treatments or interventions; however, regression methods and their corresponding advantages for the analysis of cost-effectiveness data are not well known. To illustrate regression-based economic evaluation, we present a case study investigating the cost-effectiveness of a collaborative mental health care program for people receiving short-term disability benefits for psychiatric disorders. We implement net benefit regression to illustrate its strengths and limitations. Net benefit regression offers a simple option for cost-effectiveness analyses of person-level data. By placing economic evaluation in a regression framework, regression-based techniques can facilitate the analysis and provide simple solutions to commonly encountered challenges. Economic evaluations of person-level data (eg, from a clinical trial) should use net benefit regression to facilitate analysis and enhance results.
Burnout does not help predict depression among French school teachers.
Bianchi, Renzo; Schonfeld, Irvin Sam; Laurent, Eric
2015-11-01
Burnout has been viewed as a phase in the development of depression. However, supportive research is scarce. We examined whether burnout predicted depression among French school teachers. We conducted a 2-wave, 21-month study involving 627 teachers (73% female) working in French primary and secondary schools. Burnout was assessed with the Maslach Burnout Inventory and depression with the 9-item depression module of the Patient Health Questionnaire (PHQ-9). The PHQ-9 grades depressive symptom severity and provides a provisional diagnosis of major depression. Depression was treated both as a continuous and categorical variable using linear and logistic regression analyses. We controlled for gender, age, and length of employment. Controlling for baseline depressive symptoms, linear regression analysis showed that burnout symptoms at time 1 (T1) did not predict depressive symptoms at time 2 (T2). Baseline depressive symptoms accounted for about 88% of the association between T1 burnout and T2 depressive symptoms. Only baseline depressive symptoms predicted depressive symptoms at follow-up. Similarly, logistic regression analysis revealed that burnout symptoms at T1 did not predict incident cases of major depression at T2 when depressive symptoms at T1 were included in the predictive model. Only baseline depressive symptoms predicted cases of major depression at follow-up. This study does not support the view that burnout is a phase in the development of depression. Assessing burnout symptoms in addition to "classical" depressive symptoms may not always improve our ability to predict future depression.