Sample records for regression analysis identified

  1. Regression: The Apple Does Not Fall Far From the Tree.

    PubMed

    Vetter, Thomas R; Schober, Patrick

    2018-05-15

    Researchers and clinicians are frequently interested in either: (1) assessing whether there is a relationship or association between 2 or more variables and quantifying this association; or (2) determining whether 1 or more variables can predict another variable. The strength of such an association is mainly described by the correlation. However, regression analysis and regression models can be used not only to identify whether there is a significant relationship or association between variables but also to generate estimations of such a predictive relationship between variables. This basic statistical tutorial discusses the fundamental concepts and techniques related to the most common types of regression analysis and modeling, including simple linear regression, multiple regression, logistic regression, ordinal regression, and Poisson regression, as well as the common yet often underrecognized phenomenon of regression toward the mean. The various types of regression analysis are powerful statistical techniques, which when appropriately applied, can allow for the valid interpretation of complex, multifactorial data. Regression analysis and models can assess whether there is a relationship or association between 2 or more observed variables and estimate the strength of this association, as well as determine whether 1 or more variables can predict another variable. Regression is thus being applied more commonly in anesthesia, perioperative, critical care, and pain research. However, it is crucial to note that regression can identify plausible risk factors; it does not prove causation (a definitive cause and effect relationship). The results of a regression analysis instead identify independent (predictor) variable(s) associated with the dependent (outcome) variable. As with other statistical methods, applying regression requires that certain assumptions be met, which can be tested with specific diagnostics.

  2. Regression Analysis of Physician Distribution to Identify Areas of Need: Some Preliminary Findings.

    ERIC Educational Resources Information Center

    Morgan, Bruce B.; And Others

    A regression analysis was conducted of factors that help to explain the variance in physician distribution and which identify those factors that influence the maldistribution of physicians. Models were developed for different geographic areas to determine the most appropriate unit of analysis for the Western Missouri Area Health Education Center…

  3. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies

    PubMed Central

    Vatcheva, Kristina P.; Lee, MinJae; McCormick, Joseph B.; Rahbar, Mohammad H.

    2016-01-01

    The adverse impact of ignoring multicollinearity on findings and data interpretation in regression analysis is very well documented in the statistical literature. The failure to identify and report multicollinearity could result in misleading interpretations of the results. A review of epidemiological literature in PubMed from January 2004 to December 2013, illustrated the need for a greater attention to identifying and minimizing the effect of multicollinearity in analysis of data from epidemiologic studies. We used simulated datasets and real life data from the Cameron County Hispanic Cohort to demonstrate the adverse effects of multicollinearity in the regression analysis and encourage researchers to consider the diagnostic for multicollinearity as one of the steps in regression analysis. PMID:27274911

  4. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies.

    PubMed

    Vatcheva, Kristina P; Lee, MinJae; McCormick, Joseph B; Rahbar, Mohammad H

    2016-04-01

    The adverse impact of ignoring multicollinearity on findings and data interpretation in regression analysis is very well documented in the statistical literature. The failure to identify and report multicollinearity could result in misleading interpretations of the results. A review of epidemiological literature in PubMed from January 2004 to December 2013, illustrated the need for a greater attention to identifying and minimizing the effect of multicollinearity in analysis of data from epidemiologic studies. We used simulated datasets and real life data from the Cameron County Hispanic Cohort to demonstrate the adverse effects of multicollinearity in the regression analysis and encourage researchers to consider the diagnostic for multicollinearity as one of the steps in regression analysis.

  5. Stepwise versus Hierarchical Regression: Pros and Cons

    ERIC Educational Resources Information Center

    Lewis, Mitzi

    2007-01-01

    Multiple regression is commonly used in social and behavioral data analysis. In multiple regression contexts, researchers are very often interested in determining the "best" predictors in the analysis. This focus may stem from a need to identify those predictors that are supportive of theory. Alternatively, the researcher may simply be interested…

  6. A retrospective analysis to identify the factors affecting infection in patients undergoing chemotherapy.

    PubMed

    Park, Ji Hyun; Kim, Hyeon-Young; Lee, Hanna; Yun, Eun Kyoung

    2015-12-01

    This study compares the performance of the logistic regression and decision tree analysis methods for assessing the risk factors for infection in cancer patients undergoing chemotherapy. The subjects were 732 cancer patients who were receiving chemotherapy at K university hospital in Seoul, Korea. The data were collected between March 2011 and February 2013 and were processed for descriptive analysis, logistic regression and decision tree analysis using the IBM SPSS Statistics 19 and Modeler 15.1 programs. The most common risk factors for infection in cancer patients receiving chemotherapy were identified as alkylating agents, vinca alkaloid and underlying diabetes mellitus. The logistic regression explained 66.7% of the variation in the data in terms of sensitivity and 88.9% in terms of specificity. The decision tree analysis accounted for 55.0% of the variation in the data in terms of sensitivity and 89.0% in terms of specificity. As for the overall classification accuracy, the logistic regression explained 88.0% and the decision tree analysis explained 87.2%. The logistic regression analysis showed a higher degree of sensitivity and classification accuracy. Therefore, logistic regression analysis is concluded to be the more effective and useful method for establishing an infection prediction model for patients undergoing chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Evaluating the utility of companion animal tick surveillance practices for monitoring spread and occurrence of human Lyme disease in West Virginia, 2014-2016.

    PubMed

    Hendricks, Brian; Mark-Carew, Miguella; Conley, Jamison

    2017-11-13

    Domestic dogs and cats are potentially effective sentinel populations for monitoring occurrence and spread of Lyme disease. Few studies have evaluated the public health utility of sentinel programmes using geo-analytic approaches. Confirmed Lyme disease cases diagnosed by physicians and ticks submitted by veterinarians to the West Virginia State Health Department were obtained for 2014-2016. Ticks were identified to species, and only Ixodes scapularis were incorporated in the analysis. Separate ordinary least squares (OLS) and spatial lag regression models were conducted to estimate the association between average numbers of Ix. scapularis collected on pets and human Lyme disease incidence. Regression residuals were visualised using Local Moran's I as a diagnostic tool to identify spatial dependence. Statistically significant associations were identified between average numbers of Ix. scapularis collected from dogs and human Lyme disease in the OLS (β=20.7, P<0.001) and spatial lag (β=12.0, P=0.002) regression. No significant associations were identified for cats in either regression model. Statistically significant (P≤0.05) spatial dependence was identified in all regression models. Local Moran's I maps produced for spatial lag regression residuals indicated a decrease in model over- and under-estimation, but identified a higher number of statistically significant outliers than OLS regression. Results support previous conclusions that dogs are effective sentinel populations for monitoring risk of human exposure to Lyme disease. Findings reinforce the utility of spatial analysis of surveillance data, and highlight West Virginia's unique position within the eastern United States in regards to Lyme disease occurrence.

  8. Criteria for the use of regression analysis for remote sensing of sediment and pollutants

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Kuo, C. Y.; Lecroy, S. R. (Principal Investigator)

    1982-01-01

    Data analysis procedures for quantification of water quality parameters that are already identified and are known to exist within the water body are considered. The liner multiple-regression technique was examined as a procedure for defining and calibrating data analysis algorithms for such instruments as spectrometers and multispectral scanners.

  9. Using Refined Regression Analysis To Assess The Ecological Services Of Restored Wetlands

    EPA Science Inventory

    A hierarchical approach to regression analysis of wetland water treatment was conducted to determine which factors are the most appropriate for characterizing wetlands of differing structure and function. We used this approach in an effort to identify the types and characteristi...

  10. Independent Prognostic Factors for Acute Organophosphorus Pesticide Poisoning.

    PubMed

    Tang, Weidong; Ruan, Feng; Chen, Qi; Chen, Suping; Shao, Xuebo; Gao, Jianbo; Zhang, Mao

    2016-07-01

    Acute organophosphorus pesticide poisoning (AOPP) is becoming a significant problem and a potential cause of human mortality because of the abuse of organophosphate compounds. This study aims to determine the independent prognostic factors of AOPP by using multivariate logistic regression analysis. The clinical data for 71 subjects with AOPP admitted to our hospital were retrospectively analyzed. This information included the Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, admission blood cholinesterase levels, 6-h post-admission blood cholinesterase levels, cholinesterase activity, blood pH, and other factors. Univariate analysis and multivariate logistic regression analyses were conducted to identify all prognostic factors and independent prognostic factors, respectively. A receiver operating characteristic curve was plotted to analyze the testing power of independent prognostic factors. Twelve of 71 subjects died. Admission blood lactate levels, 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, blood pH, and APACHE II scores were identified as prognostic factors for AOPP according to the univariate analysis, whereas only 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, and blood pH were independent prognostic factors identified by multivariate logistic regression analysis. The receiver operating characteristic analysis suggested that post-admission 6-h lactate clearance rates were of moderate diagnostic value. High 6-h post-admission blood lactate levels, low blood pH, and low post-admission 6-h lactate clearance rates were independent prognostic factors identified by multivariate logistic regression analysis. Copyright © 2016 by Daedalus Enterprises.

  11. Propensity score estimation: machine learning and classification methods as alternatives to logistic regression

    PubMed Central

    Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson

    2010-01-01

    Summary Objective Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this Review was to assess machine learning alternatives to logistic regression which may accomplish the same goals but with fewer assumptions or greater accuracy. Study Design and Setting We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. Results We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (CART), and meta-classifiers (in particular, boosting). Conclusion While the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and to a lesser extent decision trees (particularly CART) appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. PMID:20630332

  12. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression.

    PubMed

    Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson

    2010-08-01

    Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this review was to assess machine learning alternatives to logistic regression, which may accomplish the same goals but with fewer assumptions or greater accuracy. We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (classification and regression trees [CART]), and meta-classifiers (in particular, boosting). Although the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and, to a lesser extent, decision trees (particularly CART), appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  13. Multiple Linear Regression Analysis of Factors Affecting Real Property Price Index From Case Study Research In Istanbul/Turkey

    NASA Astrophysics Data System (ADS)

    Denli, H. H.; Koc, Z.

    2015-12-01

    Estimation of real properties depending on standards is difficult to apply in time and location. Regression analysis construct mathematical models which describe or explain relationships that may exist between variables. The problem of identifying price differences of properties to obtain a price index can be converted into a regression problem, and standard techniques of regression analysis can be used to estimate the index. Considering regression analysis for real estate valuation, which are presented in real marketing process with its current characteristics and quantifiers, the method will help us to find the effective factors or variables in the formation of the value. In this study, prices of housing for sale in Zeytinburnu, a district in Istanbul, are associated with its characteristics to find a price index, based on information received from a real estate web page. The associated variables used for the analysis are age, size in m2, number of floors having the house, floor number of the estate and number of rooms. The price of the estate represents the dependent variable, whereas the rest are independent variables. Prices from 60 real estates have been used for the analysis. Same price valued locations have been found and plotted on the map and equivalence curves have been drawn identifying the same valued zones as lines.

  14. Identifying predictive features in drug response using machine learning: opportunities and challenges.

    PubMed

    Vidyasagar, Mathukumalli

    2015-01-01

    This article reviews several techniques from machine learning that can be used to study the problem of identifying a small number of features, from among tens of thousands of measured features, that can accurately predict a drug response. Prediction problems are divided into two categories: sparse classification and sparse regression. In classification, the clinical parameter to be predicted is binary, whereas in regression, the parameter is a real number. Well-known methods for both classes of problems are briefly discussed. These include the SVM (support vector machine) for classification and various algorithms such as ridge regression, LASSO (least absolute shrinkage and selection operator), and EN (elastic net) for regression. In addition, several well-established methods that do not directly fall into machine learning theory are also reviewed, including neural networks, PAM (pattern analysis for microarrays), SAM (significance analysis for microarrays), GSEA (gene set enrichment analysis), and k-means clustering. Several references indicative of the application of these methods to cancer biology are discussed.

  15. What Satisfies Students?: Mining Student-Opinion Data with Regression and Decision Tree Analysis

    ERIC Educational Resources Information Center

    Thomas, Emily H.; Galambos, Nora

    2004-01-01

    To investigate how students' characteristics and experiences affect satisfaction, this study uses regression and decision tree analysis with the CHAID algorithm to analyze student-opinion data. A data mining approach identifies the specific aspects of students' university experience that most influence three measures of general satisfaction. The…

  16. The Impact of Letter Grades on Student Effort, Course Selection, and Major Choice: A Regression-Discontinuity Analysis

    ERIC Educational Resources Information Center

    Main, Joyce B.; Ost, Ben

    2014-01-01

    The authors apply a regression-discontinuity design to identify the causal impact of letter grades on student effort within a course, subsequent credit hours taken, and the probability of majoring in economics. Their methodology addresses key issues in identifying the causal impact of letter grades: correlation with unobservable factors, such as…

  17. Isolating the Effects of Training Using Simple Regression Analysis: An Example of the Procedure.

    ERIC Educational Resources Information Center

    Waugh, C. Keith

    This paper provides a case example of simple regression analysis, a forecasting procedure used to isolate the effects of training from an identified extraneous variable. This case example focuses on results of a three-day sales training program to improve bank loan officers' knowledge, skill-level, and attitude regarding solicitation and sale of…

  18. Catching up with Harvard: Results from Regression Analysis of World Universities League Tables

    ERIC Educational Resources Information Center

    Li, Mei; Shankar, Sriram; Tang, Kam Ki

    2011-01-01

    This paper uses regression analysis to test if the universities performing less well according to Shanghai Jiao Tong University's world universities league tables are able to catch up with the top performers, and to identify national and institutional factors that could affect this catching up process. We have constructed a dataset of 461…

  19. What Satisfies Students? Mining Student-Opinion Data with Regression and Decision-Tree Analysis. AIR 2002 Forum Paper.

    ERIC Educational Resources Information Center

    Thomas, Emily H.; Galambos, Nora

    To investigate how students' characteristics and experiences affect satisfaction, this study used regression and decision-tree analysis with the CHAID algorithm to analyze student opinion data from a sample of 1,783 college students. A data-mining approach identifies the specific aspects of students' university experience that most influence three…

  20. Identification of extremely premature infants at high risk of rehospitalization.

    PubMed

    Ambalavanan, Namasivayam; Carlo, Waldemar A; McDonald, Scott A; Yao, Qing; Das, Abhik; Higgins, Rosemary D

    2011-11-01

    Extremely low birth weight infants often require rehospitalization during infancy. Our objective was to identify at the time of discharge which extremely low birth weight infants are at higher risk for rehospitalization. Data from extremely low birth weight infants in Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network centers from 2002-2005 were analyzed. The primary outcome was rehospitalization by the 18- to 22-month follow-up, and secondary outcome was rehospitalization for respiratory causes in the first year. Using variables and odds ratios identified by stepwise logistic regression, scoring systems were developed with scores proportional to odds ratios. Classification and regression-tree analysis was performed by recursive partitioning and automatic selection of optimal cutoff points of variables. A total of 3787 infants were evaluated (mean ± SD birth weight: 787 ± 136 g; gestational age: 26 ± 2 weeks; 48% male, 42% black). Forty-five percent of the infants were rehospitalized by 18 to 22 months; 14.7% were rehospitalized for respiratory causes in the first year. Both regression models (area under the curve: 0.63) and classification and regression-tree models (mean misclassification rate: 40%-42%) were moderately accurate. Predictors for the primary outcome by regression were shunt surgery for hydrocephalus, hospital stay of >120 days for pulmonary reasons, necrotizing enterocolitis stage II or higher or spontaneous gastrointestinal perforation, higher fraction of inspired oxygen at 36 weeks, and male gender. By classification and regression-tree analysis, infants with hospital stays of >120 days for pulmonary reasons had a 66% rehospitalization rate compared with 42% without such a stay. The scoring systems and classification and regression-tree analysis models identified infants at higher risk of rehospitalization and might assist planning for care after discharge.

  1. Identification of Extremely Premature Infants at High Risk of Rehospitalization

    PubMed Central

    Carlo, Waldemar A.; McDonald, Scott A.; Yao, Qing; Das, Abhik; Higgins, Rosemary D.

    2011-01-01

    OBJECTIVE: Extremely low birth weight infants often require rehospitalization during infancy. Our objective was to identify at the time of discharge which extremely low birth weight infants are at higher risk for rehospitalization. METHODS: Data from extremely low birth weight infants in Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network centers from 2002–2005 were analyzed. The primary outcome was rehospitalization by the 18- to 22-month follow-up, and secondary outcome was rehospitalization for respiratory causes in the first year. Using variables and odds ratios identified by stepwise logistic regression, scoring systems were developed with scores proportional to odds ratios. Classification and regression-tree analysis was performed by recursive partitioning and automatic selection of optimal cutoff points of variables. RESULTS: A total of 3787 infants were evaluated (mean ± SD birth weight: 787 ± 136 g; gestational age: 26 ± 2 weeks; 48% male, 42% black). Forty-five percent of the infants were rehospitalized by 18 to 22 months; 14.7% were rehospitalized for respiratory causes in the first year. Both regression models (area under the curve: 0.63) and classification and regression-tree models (mean misclassification rate: 40%–42%) were moderately accurate. Predictors for the primary outcome by regression were shunt surgery for hydrocephalus, hospital stay of >120 days for pulmonary reasons, necrotizing enterocolitis stage II or higher or spontaneous gastrointestinal perforation, higher fraction of inspired oxygen at 36 weeks, and male gender. By classification and regression-tree analysis, infants with hospital stays of >120 days for pulmonary reasons had a 66% rehospitalization rate compared with 42% without such a stay. CONCLUSIONS: The scoring systems and classification and regression-tree analysis models identified infants at higher risk of rehospitalization and might assist planning for care after discharge. PMID:22007016

  2. Latent profile analysis of regression-based norms demonstrates relationship of compounding MS symptom burden and negative work events.

    PubMed

    Frndak, Seth E; Smerbeck, Audrey M; Irwin, Lauren N; Drake, Allison S; Kordovski, Victoria M; Kunker, Katrina A; Khan, Anjum L; Benedict, Ralph H B

    2016-10-01

    We endeavored to clarify how distinct co-occurring symptoms relate to the presence of negative work events in employed multiple sclerosis (MS) patients. Latent profile analysis (LPA) was utilized to elucidate common disability patterns by isolating patient subpopulations. Samples of 272 employed MS patients and 209 healthy controls (HC) were administered neuroperformance tests of ambulation, hand dexterity, processing speed, and memory. Regression-based norms were created from the HC sample. LPA identified latent profiles using the regression-based z-scores. Finally, multinomial logistic regression tested for negative work event differences among the latent profiles. Four profiles were identified via LPA: a common profile (55%) characterized by slightly below average performance in all domains, a broadly low-performing profile (18%), a poor motor abilities profile with average cognition (17%), and a generally high-functioning profile (9%). Multinomial regression analysis revealed that the uniformly low-performing profile demonstrated a higher likelihood of reported negative work events. Employed MS patients with co-occurring motor, memory and processing speed impairments were most likely to report a negative work event, classifying them as uniquely at risk for job loss.

  3. Comparative study of contrast-enhanced ultrasound qualitative and quantitative analysis for identifying benign and malignant breast tumor lumps.

    PubMed

    Liu, Jian; Gao, Yun-Hua; Li, Ding-Dong; Gao, Yan-Chun; Hou, Ling-Mi; Xie, Ting

    2014-01-01

    To compare the value of contrast-enhanced ultrasound (CEUS) qualitative and quantitative analysis in the identification of breast tumor lumps. Qualitative and quantitative indicators of CEUS for 73 cases of breast tumor lumps were retrospectively analyzed by univariate and multivariate approaches. Logistic regression was applied and ROC curves were drawn for evaluation and comparison. The CEUS qualitative indicator-generated regression equation contained three indicators, namely enhanced homogeneity, diameter line expansion and peak intensity grading, which demonstrated prediction accuracy for benign and malignant breast tumor lumps of 91.8%; the quantitative indicator-generated regression equation only contained one indicator, namely the relative peak intensity, and its prediction accuracy was 61.5%. The corresponding areas under the ROC curve for qualitative and quantitative analyses were 91.3% and 75.7%, respectively, which exhibited a statistically significant difference by the Z test (P<0.05). The ability of CEUS qualitative analysis to identify breast tumor lumps is better than with quantitative analysis.

  4. Population heterogeneity in the salience of multiple risk factors for adolescent delinquency.

    PubMed

    Lanza, Stephanie T; Cooper, Brittany R; Bray, Bethany C

    2014-03-01

    To present mixture regression analysis as an alternative to more standard regression analysis for predicting adolescent delinquency. We demonstrate how mixture regression analysis allows for the identification of population subgroups defined by the salience of multiple risk factors. We identified population subgroups (i.e., latent classes) of individuals based on their coefficients in a regression model predicting adolescent delinquency from eight previously established risk indices drawn from the community, school, family, peer, and individual levels. The study included N = 37,763 10th-grade adolescents who participated in the Communities That Care Youth Survey. Standard, zero-inflated, and mixture Poisson and negative binomial regression models were considered. Standard and mixture negative binomial regression models were selected as optimal. The five-class regression model was interpreted based on the class-specific regression coefficients, indicating that risk factors had varying salience across classes of adolescents. Standard regression showed that all risk factors were significantly associated with delinquency. Mixture regression provided more nuanced information, suggesting a unique set of risk factors that were salient for different subgroups of adolescents. Implications for the design of subgroup-specific interventions are discussed. Copyright © 2014 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  5. To Leave or Not to Leave? A Regression Discontinuity Analysis of the Impact of Failing the High School Exit Exam

    ERIC Educational Resources Information Center

    Ou, Dongshu

    2010-01-01

    The high school exit exam (HSEE) is rapidly becoming a standardized assessment procedure for educational accountability in the United States. I use a unique, state-specific dataset to identify the effects of failing the HSEE on the likelihood of dropping out of high school based on a regression discontinuity design. The analysis shows that…

  6. Which Measurement of Blood Pressure Is More Associated With Albuminuria in Patients With Type 2 Diabetes: Central Blood Pressure or Peripheral Blood Pressure?

    PubMed

    Kitagawa, Noriyuki; Okada, Hiroshi; Tanaka, Muhei; Hashimoto, Yoshitaka; Kimura, Toshihiro; Nakano, Koji; Yamazaki, Masahiro; Hasegawa, Goji; Nakamura, Naoto; Fukui, Michiaki

    2016-08-01

    The aim of this study was to investigate whether central systolic blood pressure (SBP) was associated with albuminuria, defined as urinary albumin excretion (UAE) ≥30 mg/g creatinine, and, if so, whether the relationship of central SBP with albuminuria was stronger than that of peripheral SBP in patients with type 2 diabetes. The authors performed a cross-sectional study in 294 outpatients with type 2 diabetes. The relationship between peripheral SBP or central SBP and UAE using regression analysis was evaluated, and the odds ratios of peripheral SBP or central SBP were calculated to identify albuminuria using logistic regression model. Moreover, the area under the receiver operating characteristic curve (AUC) of central SBP was compared with that of peripheral SBP to identify albuminuria. Multiple regression analysis demonstrated that peripheral SBP (β=0.255, P<.0001) or central SBP (r=0.227, P<.0001) was associated with UAE. Multiple logistic regression analysis demonstrated that peripheral SBP (odds ratio, 1.029; 95% confidence interval, 1.016-1.043) or central SBP (odds ratio, 1.022; 95% confidence interval, 1.011-1.034) was associated with an increased odds of albuminuria. In addition, AUC of peripheral SBP was significantly greater than that of central SBP to identify albuminuria (P=0.035). Peripheral SBP is superior to central SBP in identifying albuminuria, although both peripheral and central SBP are associated with UAE in patients with type 2 diabetes. © 2016 Wiley Periodicals, Inc.

  7. The process and utility of classification and regression tree methodology in nursing research

    PubMed Central

    Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda

    2014-01-01

    Aim This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Background Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Design Discussion paper. Data sources English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984–2013. Discussion Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Implications for Nursing Research Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Conclusion Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. PMID:24237048

  8. The process and utility of classification and regression tree methodology in nursing research.

    PubMed

    Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda

    2014-06-01

    This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Discussion paper. English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984-2013. Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. © 2013 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  9. Correlative and multivariate analysis of increased radon concentration in underground laboratory.

    PubMed

    Maletić, Dimitrije M; Udovičić, Vladimir I; Banjanac, Radomir M; Joković, Dejan R; Dragić, Aleksandar L; Veselinović, Nikola B; Filipović, Jelena

    2014-11-01

    The results of analysis using correlative and multivariate methods, as developed for data analysis in high-energy physics and implemented in the Toolkit for Multivariate Analysis software package, of the relations of the variation of increased radon concentration with climate variables in shallow underground laboratory is presented. Multivariate regression analysis identified a number of multivariate methods which can give a good evaluation of increased radon concentrations based on climate variables. The use of the multivariate regression methods will enable the investigation of the relations of specific climate variable with increased radon concentrations by analysis of regression methods resulting in 'mapped' underlying functional behaviour of radon concentrations depending on a wide spectrum of climate variables. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Drivers of wetland conversion: a global meta-analysis.

    PubMed

    van Asselen, Sanneke; Verburg, Peter H; Vermaat, Jan E; Janse, Jan H

    2013-01-01

    Meta-analysis of case studies has become an important tool for synthesizing case study findings in land change. Meta-analyses of deforestation, urbanization, desertification and change in shifting cultivation systems have been published. This present study adds to this literature, with an analysis of the proximate causes and underlying forces of wetland conversion at a global scale using two complementary approaches of systematic review. Firstly, a meta-analysis of 105 case-study papers describing wetland conversion was performed, showing that different combinations of multiple-factor proximate causes, and underlying forces, drive wetland conversion. Agricultural development has been the main proximate cause of wetland conversion, and economic growth and population density are the most frequently identified underlying forces. Secondly, to add a more quantitative component to the study, a logistic meta-regression analysis was performed to estimate the likelihood of wetland conversion worldwide, using globally-consistent biophysical and socioeconomic location factor maps. Significant factors explaining wetland conversion, in order of importance, are market influence, total wetland area (lower conversion probability), mean annual temperature and cropland or built-up area. The regression analyses results support the outcomes of the meta-analysis of the processes of conversion mentioned in the individual case studies. In other meta-analyses of land change, similar factors (e.g., agricultural development, population growth, market/economic factors) are also identified as important causes of various types of land change (e.g., deforestation, desertification). Meta-analysis helps to identify commonalities across the various local case studies and identify which variables may lead to individual cases to behave differently. The meta-regression provides maps indicating the likelihood of wetland conversion worldwide based on the location factors that have determined historic conversions.

  11. Drivers of Wetland Conversion: a Global Meta-Analysis

    PubMed Central

    van Asselen, Sanneke; Verburg, Peter H.; Vermaat, Jan E.; Janse, Jan H.

    2013-01-01

    Meta-analysis of case studies has become an important tool for synthesizing case study findings in land change. Meta-analyses of deforestation, urbanization, desertification and change in shifting cultivation systems have been published. This present study adds to this literature, with an analysis of the proximate causes and underlying forces of wetland conversion at a global scale using two complementary approaches of systematic review. Firstly, a meta-analysis of 105 case-study papers describing wetland conversion was performed, showing that different combinations of multiple-factor proximate causes, and underlying forces, drive wetland conversion. Agricultural development has been the main proximate cause of wetland conversion, and economic growth and population density are the most frequently identified underlying forces. Secondly, to add a more quantitative component to the study, a logistic meta-regression analysis was performed to estimate the likelihood of wetland conversion worldwide, using globally-consistent biophysical and socioeconomic location factor maps. Significant factors explaining wetland conversion, in order of importance, are market influence, total wetland area (lower conversion probability), mean annual temperature and cropland or built-up area. The regression analyses results support the outcomes of the meta-analysis of the processes of conversion mentioned in the individual case studies. In other meta-analyses of land change, similar factors (e.g., agricultural development, population growth, market/economic factors) are also identified as important causes of various types of land change (e.g., deforestation, desertification). Meta-analysis helps to identify commonalities across the various local case studies and identify which variables may lead to individual cases to behave differently. The meta-regression provides maps indicating the likelihood of wetland conversion worldwide based on the location factors that have determined historic conversions. PMID:24282580

  12. Identifying the Factors That Influence Change in SEBD Using Logistic Regression Analysis

    ERIC Educational Resources Information Center

    Camilleri, Liberato; Cefai, Carmel

    2013-01-01

    Multiple linear regression and ANOVA models are widely used in applications since they provide effective statistical tools for assessing the relationship between a continuous dependent variable and several predictors. However these models rely heavily on linearity and normality assumptions and they do not accommodate categorical dependent…

  13. Moderation analysis using a two-level regression model.

    PubMed

    Yuan, Ke-Hai; Cheng, Ying; Maxwell, Scott

    2014-10-01

    Moderation analysis is widely used in social and behavioral research. The most commonly used model for moderation analysis is moderated multiple regression (MMR) in which the explanatory variables of the regression model include product terms, and the model is typically estimated by least squares (LS). This paper argues for a two-level regression model in which the regression coefficients of a criterion variable on predictors are further regressed on moderator variables. An algorithm for estimating the parameters of the two-level model by normal-distribution-based maximum likelihood (NML) is developed. Formulas for the standard errors (SEs) of the parameter estimates are provided and studied. Results indicate that, when heteroscedasticity exists, NML with the two-level model gives more efficient and more accurate parameter estimates than the LS analysis of the MMR model. When error variances are homoscedastic, NML with the two-level model leads to essentially the same results as LS with the MMR model. Most importantly, the two-level regression model permits estimating the percentage of variance of each regression coefficient that is due to moderator variables. When applied to data from General Social Surveys 1991, NML with the two-level model identified a significant moderation effect of race on the regression of job prestige on years of education while LS with the MMR model did not. An R package is also developed and documented to facilitate the application of the two-level model.

  14. New insights into old methods for identifying causal rare variants.

    PubMed

    Wang, Haitian; Huang, Chien-Hsun; Lo, Shaw-Hwa; Zheng, Tian; Hu, Inchi

    2011-11-29

    The advance of high-throughput next-generation sequencing technology makes possible the analysis of rare variants. However, the investigation of rare variants in unrelated-individuals data sets faces the challenge of low power, and most methods circumvent the difficulty by using various collapsing procedures based on genes, pathways, or gene clusters. We suggest a new way to identify causal rare variants using the F-statistic and sliced inverse regression. The procedure is tested on the data set provided by the Genetic Analysis Workshop 17 (GAW17). After preliminary data reduction, we ranked markers according to their F-statistic values. Top-ranked markers were then subjected to sliced inverse regression, and those with higher absolute coefficients in the most significant sliced inverse regression direction were selected. The procedure yields good false discovery rates for the GAW17 data and thus is a promising method for future study on rare variants.

  15. Fall-related self-efficacy, not balance and mobility performance, is related to accidental falls in chronic stroke survivors with low bone mineral density

    PubMed Central

    Pang, Marco Y.C.; Eng, Janice J.

    2011-01-01

    Introduction Chronic stroke survivors with low bone mineral density (BMD) are particularly prone to fragility fractures. The purpose of this study was to identify the determinants of balance, mobility and falls in this sub-group of stroke patients. Methods Thirty nine chronic stroke survivors with low hip BMD (T-score <-1.0) were studied. Each subject was evaluated for: balance, mobility, leg muscle strength, spasticity, and falls-related self-efficacy. Any falls in the past 12 months were also recorded. Multiple regression analysis was used to identify the determinants of balance and mobility performance whereas logistic regression was used to identify the determinants of falls. Results Multiple regression analysis revealed that after adjusting for basic demographics, falls-related self-efficacy remained independently associated with balance/mobility performance (R2=0.494, P<0.001). Logistic regression showed that falls-related self-efficacy, but not balance and mobility performance, was a significant determinant of falls (odds ratio: 0.18, P=0.04). Conclusions Falls-related self-efficacy, but not mobility and balance performance, was the most important determinant of accidental falls. This psychological factor should not be overlooked in the prevention of fragility fractures among chronic stroke survivors with low hip BMD. PMID:18097709

  16. Risk factors for pedicled flap necrosis in hand soft tissue reconstruction: a multivariate logistic regression analysis.

    PubMed

    Gong, Xu; Cui, Jianli; Jiang, Ziping; Lu, Laijin; Li, Xiucun

    2018-03-01

    Few clinical retrospective studies have reported the risk factors of pedicled flap necrosis in hand soft tissue reconstruction. The aim of this study was to identify non-technical risk factors associated with pedicled flap perioperative necrosis in hand soft tissue reconstruction via a multivariate logistic regression analysis. For patients with hand soft tissue reconstruction, we carefully reviewed hospital records and identified 163 patients who met the inclusion criteria. The characteristics of these patients, flap transfer procedures and postoperative complications were recorded. Eleven predictors were identified. The correlations between pedicled flap necrosis and risk factors were analysed using a logistic regression model. Of 163 skin flaps, 125 flaps survived completely without any complications. The pedicled flap necrosis rate in hands was 11.04%, which included partial flap necrosis (7.36%) and total flap necrosis (3.68%). Soft tissue defects in fingers were noted in 68.10% of all cases. The logistic regression analysis indicated that the soft tissue defect site (P = 0.046, odds ratio (OR) = 0.079, confidence interval (CI) (0.006, 0.959)), flap size (P = 0.020, OR = 1.024, CI (1.004, 1.045)) and postoperative wound infection (P < 0.001, OR = 17.407, CI (3.821, 79.303)) were statistically significant risk factors for pedicled flap necrosis of the hand. Soft tissue defect site, flap size and postoperative wound infection were risk factors associated with pedicled flap necrosis in hand soft tissue defect reconstruction. © 2017 Royal Australasian College of Surgeons.

  17. Early Home Activities and Oral Language Skills in Middle Childhood: A Quantile Analysis

    ERIC Educational Resources Information Center

    Law, James; Rush, Robert; King, Tom; Westrupp, Elizabeth; Reilly, Sheena

    2018-01-01

    Oral language development is a key outcome of elementary school, and it is important to identify factors that predict it most effectively. Commonly researchers use ordinary least squares regression with conclusions restricted to average performance conditional on relevant covariates. Quantile regression offers a more sophisticated alternative.…

  18. Identifying maternal and infant factors associated with newborn size in rural Bangladesh by partial least squares (PLS) regression analysis

    PubMed Central

    Rahman, Md. Jahanur; Shamim, Abu Ahmed; Klemm, Rolf D. W.; Labrique, Alain B.; Rashid, Mahbubur; Christian, Parul; West, Keith P.

    2017-01-01

    Birth weight, length and circumferences of the head, chest and arm are key measures of newborn size and health in developing countries. We assessed maternal socio-demographic factors associated with multiple measures of newborn size in a large rural population in Bangladesh using partial least squares (PLS) regression method. PLS regression, combining features from principal component analysis and multiple linear regression, is a multivariate technique with an ability to handle multicollinearity while simultaneously handling multiple dependent variables. We analyzed maternal and infant data from singletons (n = 14,506) born during a double-masked, cluster-randomized, placebo-controlled maternal vitamin A or β-carotene supplementation trial in rural northwest Bangladesh. PLS regression results identified numerous maternal factors (parity, age, early pregnancy MUAC, living standard index, years of education, number of antenatal care visits, preterm delivery and infant sex) significantly (p<0.001) associated with newborn size. Among them, preterm delivery had the largest negative influence on newborn size (Standardized β = -0.29 − -0.19; p<0.001). Scatter plots of the scores of first two PLS components also revealed an interaction between newborn sex and preterm delivery on birth size. PLS regression was found to be more parsimonious than both ordinary least squares regression and principal component regression. It also provided more stable estimates than the ordinary least squares regression and provided the effect measure of the covariates with greater accuracy as it accounts for the correlation among the covariates and outcomes. Therefore, PLS regression is recommended when either there are multiple outcome measurements in the same study, or the covariates are correlated, or both situations exist in a dataset. PMID:29261760

  19. Identifying maternal and infant factors associated with newborn size in rural Bangladesh by partial least squares (PLS) regression analysis.

    PubMed

    Kabir, Alamgir; Rahman, Md Jahanur; Shamim, Abu Ahmed; Klemm, Rolf D W; Labrique, Alain B; Rashid, Mahbubur; Christian, Parul; West, Keith P

    2017-01-01

    Birth weight, length and circumferences of the head, chest and arm are key measures of newborn size and health in developing countries. We assessed maternal socio-demographic factors associated with multiple measures of newborn size in a large rural population in Bangladesh using partial least squares (PLS) regression method. PLS regression, combining features from principal component analysis and multiple linear regression, is a multivariate technique with an ability to handle multicollinearity while simultaneously handling multiple dependent variables. We analyzed maternal and infant data from singletons (n = 14,506) born during a double-masked, cluster-randomized, placebo-controlled maternal vitamin A or β-carotene supplementation trial in rural northwest Bangladesh. PLS regression results identified numerous maternal factors (parity, age, early pregnancy MUAC, living standard index, years of education, number of antenatal care visits, preterm delivery and infant sex) significantly (p<0.001) associated with newborn size. Among them, preterm delivery had the largest negative influence on newborn size (Standardized β = -0.29 - -0.19; p<0.001). Scatter plots of the scores of first two PLS components also revealed an interaction between newborn sex and preterm delivery on birth size. PLS regression was found to be more parsimonious than both ordinary least squares regression and principal component regression. It also provided more stable estimates than the ordinary least squares regression and provided the effect measure of the covariates with greater accuracy as it accounts for the correlation among the covariates and outcomes. Therefore, PLS regression is recommended when either there are multiple outcome measurements in the same study, or the covariates are correlated, or both situations exist in a dataset.

  20. Discriminating between adaptive and carcinogenic liver hypertrophy in rat studies using logistic ridge regression analysis of toxicogenomic data: The mode of action and predictive models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shujie; Kawamoto, Taisuke; Morita, Osamu

    Chemical exposure often results in liver hypertrophy in animal tests, characterized by increased liver weight, hepatocellular hypertrophy, and/or cell proliferation. While most of these changes are considered adaptive responses, there is concern that they may be associated with carcinogenesis. In this study, we have employed a toxicogenomic approach using a logistic ridge regression model to identify genes responsible for liver hypertrophy and hypertrophic hepatocarcinogenesis and to develop a predictive model for assessing hypertrophy-inducing compounds. Logistic regression models have previously been used in the quantification of epidemiological risk factors. DNA microarray data from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System weremore » used to identify hypertrophy-related genes that are expressed differently in hypertrophy induced by carcinogens and non-carcinogens. Data were collected for 134 chemicals (72 non-hypertrophy-inducing chemicals, 27 hypertrophy-inducing non-carcinogenic chemicals, and 15 hypertrophy-inducing carcinogenic compounds). After applying logistic ridge regression analysis, 35 genes for liver hypertrophy (e.g., Acot1 and Abcc3) and 13 genes for hypertrophic hepatocarcinogenesis (e.g., Asns and Gpx2) were selected. The predictive models built using these genes were 94.8% and 82.7% accurate, respectively. Pathway analysis of the genes indicates that, aside from a xenobiotic metabolism-related pathway as an adaptive response for liver hypertrophy, amino acid biosynthesis and oxidative responses appear to be involved in hypertrophic hepatocarcinogenesis. Early detection and toxicogenomic characterization of liver hypertrophy using our models may be useful for predicting carcinogenesis. In addition, the identified genes provide novel insight into discrimination between adverse hypertrophy associated with carcinogenesis and adaptive hypertrophy in risk assessment. - Highlights: • Hypertrophy (H) and hypertrophic carcinogenesis (C) were studied by toxicogenomics. • Important genes for H and C were selected by logistic ridge regression analysis. • Amino acid biosynthesis and oxidative responses may be involved in C. • Predictive models for H and C provided 94.8% and 82.7% accuracy, respectively. • The identified genes could be useful for assessment of liver hypertrophy.« less

  1. Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friddle, Carl J; Koga, Teiichiro; Rubin, Edward M.

    2000-03-15

    While cardiac hypertrophy has been the subject of intensive investigation, regression of hypertrophy has been significantly less studied, precluding large-scale analysis of the relationship between these processes. In the present study, using pharmacological models of hypertrophy in mice, expression profiling was performed with fragments of more than 3,000 genes to characterize and contrast expression changes during induction and regression of hypertrophy. Administration of angiotensin II and isoproterenol by osmotic minipump produced increases in heart weight (15% and 40% respectively) that returned to pre-induction size following drug withdrawal. From multiple expression analyses of left ventricular RNA isolated at daily time-points duringmore » cardiac hypertrophy and regression, we identified sets of genes whose expression was altered at specific stages of this process. While confirming the participation of 25 genes or pathways previously known to be altered by hypertrophy, a larger set of 30 genes was identified whose expression had not previously been associated with cardiac hypertrophy or regression. Of the 55 genes that showed reproducible changes during the time course of induction and regression, 32 genes were altered only during induction and 8 were altered only during regression. This study identified both known and novel genes whose expression is affected at different stages of cardiac hypertrophy and regression and demonstrates that cardiac remodeling during regression utilizes a set of genes that are distinct from those used during induction of hypertrophy.« less

  2. Predictors of postoperative outcomes of cubital tunnel syndrome treatments using multiple logistic regression analysis.

    PubMed

    Suzuki, Taku; Iwamoto, Takuji; Shizu, Kanae; Suzuki, Katsuji; Yamada, Harumoto; Sato, Kazuki

    2017-05-01

    This retrospective study was designed to investigate prognostic factors for postoperative outcomes for cubital tunnel syndrome (CubTS) using multiple logistic regression analysis with a large number of patients. Eighty-three patients with CubTS who underwent surgeries were enrolled. The following potential prognostic factors for disease severity were selected according to previous reports: sex, age, type of surgery, disease duration, body mass index, cervical lesion, presence of diabetes mellitus, Workers' Compensation status, preoperative severity, and preoperative electrodiagnostic testing. Postoperative severity of disease was assessed 2 years after surgery by Messina's criteria which is an outcome measure specifically for CubTS. Bivariate analysis was performed to select candidate prognostic factors for multiple linear regression analyses. Multiple logistic regression analysis was conducted to identify the association between postoperative severity and selected prognostic factors. Both bivariate and multiple linear regression analysis revealed only preoperative severity as an independent risk factor for poor prognosis, while other factors did not show any significant association. Although conflicting results exist regarding prognosis of CubTS, this study supports evidence from previous studies and concludes early surgical intervention portends the most favorable prognosis. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  3. A comparison of three methods of assessing differential item functioning (DIF) in the Hospital Anxiety Depression Scale: ordinal logistic regression, Rasch analysis and the Mantel chi-square procedure.

    PubMed

    Cameron, Isobel M; Scott, Neil W; Adler, Mats; Reid, Ian C

    2014-12-01

    It is important for clinical practice and research that measurement scales of well-being and quality of life exhibit only minimal differential item functioning (DIF). DIF occurs where different groups of people endorse items in a scale to different extents after being matched by the intended scale attribute. We investigate the equivalence or otherwise of common methods of assessing DIF. Three methods of measuring age- and sex-related DIF (ordinal logistic regression, Rasch analysis and Mantel χ(2) procedure) were applied to Hospital Anxiety Depression Scale (HADS) data pertaining to a sample of 1,068 patients consulting primary care practitioners. Three items were flagged by all three approaches as having either age- or sex-related DIF with a consistent direction of effect; a further three items identified did not meet stricter criteria for important DIF using at least one method. When applying strict criteria for significant DIF, ordinal logistic regression was slightly less sensitive. Ordinal logistic regression, Rasch analysis and contingency table methods yielded consistent results when identifying DIF in the HADS depression and HADS anxiety scales. Regardless of methods applied, investigators should use a combination of statistical significance, magnitude of the DIF effect and investigator judgement when interpreting the results.

  4. Application of least median of squared orthogonal distance (LMD) and LMD-based reweighted least squares (RLS) methods on the stock-recruitment relationship

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Jun; Liu, Qun

    1999-03-01

    Analysis of stock-recruitment (SR) data is most often done by fitting various SR relationship curves to the data. Fish population dynamics data often have stochastic variations and measurement errors, which usually result in a biased regression analysis. This paper presents a robust regression method, least median of squared orthogonal distance (LMD), which is insensitive to abnormal values in the dependent and independent variables in a regression analysis. Outliers that have significantly different variance from the rest of the data can be identified in a residual analysis. Then, the least squares (LS) method is applied to the SR data with defined outliers being down weighted. The application of LMD and LMD-based Reweighted Least Squares (RLS) method to simulated and real fisheries SR data is explored.

  5. Serum eotaxin-1 is increased in extremely-low-birth-weight infants with bronchopulmonary dysplasia or death.

    PubMed

    Kandasamy, Jegen; Roane, Claire; Szalai, Alexander; Ambalavanan, Namasivayam

    2015-11-01

    Early systemic inflammation in extremely-low-birth-weight (ELBW) infants is associated with an increased risk of bronchopulmonary dysplasia (BPD). Our objective was to identify circulating biomarkers and develop prediction models for BPD/death soon after birth. Blood samples from postnatal day 1 were analyzed for C-reactive protein (CRP) by enzyme-linked immunosorbent assay and for 39 cytokines/chemokines by a multiplex assay in 152 ELBW infants. The primary outcome was physiologic BPD or death by 36 wk. CRP, cytokines, and clinical variables available at ≤24 h were used for forward stepwise regression and Classification and Regression Tree (CART) analysis to identify predictors of BPD/death. Overall, 24% developed BPD and 35% died or developed BPD. Regression analysis identified birth weight and eotaxin (CCL11) as the two most significant variables. CART identified FiO2 at 24 h (11% BPD/death if FiO2 ≤28%, 49% if >28%) and eotaxin in infants with FiO2 > 28% (29% BPD/death if eotaxin was ≤84 pg/ml; 65% if >84) as variables most associated with outcome. Eotaxin measured on the day of birth is useful for identifying ELBW infants at risk of BPD/death. Further investigation is required to determine if eotaxin is involved in lung injury and pathogenesis of BPD.

  6. Animal models of maternal high fat diet exposure and effects on metabolism in offspring: a meta-regression analysis.

    PubMed

    Ribaroff, G A; Wastnedge, E; Drake, A J; Sharpe, R M; Chambers, T J G

    2017-06-01

    Animal models of maternal high fat diet (HFD) demonstrate perturbed offspring metabolism although the effects differ markedly between models. We assessed studies investigating metabolic parameters in the offspring of HFD fed mothers to identify factors explaining these inter-study differences. A total of 171 papers were identified, which provided data from 6047 offspring. Data were extracted regarding body weight, adiposity, glucose homeostasis and lipidaemia. Information regarding the macronutrient content of diet, species, time point of exposure and gestational weight gain were collected and utilized in meta-regression models to explore predictive factors. Publication bias was assessed using Egger's regression test. Maternal HFD exposure did not affect offspring birthweight but increased weaning weight, final bodyweight, adiposity, triglyceridaemia, cholesterolaemia and insulinaemia in both female and male offspring. Hyperglycaemia was found in female offspring only. Meta-regression analysis identified lactational HFD exposure as a key moderator. The fat content of the diet did not correlate with any outcomes. There was evidence of significant publication bias for all outcomes except birthweight. Maternal HFD exposure was associated with perturbed metabolism in offspring but between studies was not accounted for by dietary constituents, species, strain or maternal gestational weight gain. Specific weaknesses in experimental design predispose many of the results to bias. © 2017 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of World Obesity Federation.

  7. Methods for identifying SNP interactions: a review on variations of Logic Regression, Random Forest and Bayesian logistic regression.

    PubMed

    Chen, Carla Chia-Ming; Schwender, Holger; Keith, Jonathan; Nunkesser, Robin; Mengersen, Kerrie; Macrossan, Paula

    2011-01-01

    Due to advancements in computational ability, enhanced technology and a reduction in the price of genotyping, more data are being generated for understanding genetic associations with diseases and disorders. However, with the availability of large data sets comes the inherent challenges of new methods of statistical analysis and modeling. Considering a complex phenotype may be the effect of a combination of multiple loci, various statistical methods have been developed for identifying genetic epistasis effects. Among these methods, logic regression (LR) is an intriguing approach incorporating tree-like structures. Various methods have built on the original LR to improve different aspects of the model. In this study, we review four variations of LR, namely Logic Feature Selection, Monte Carlo Logic Regression, Genetic Programming for Association Studies, and Modified Logic Regression-Gene Expression Programming, and investigate the performance of each method using simulated and real genotype data. We contrast these with another tree-like approach, namely Random Forests, and a Bayesian logistic regression with stochastic search variable selection.

  8. Regression Model Term Selection for the Analysis of Strain-Gage Balance Calibration Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert Manfred; Volden, Thomas R.

    2010-01-01

    The paper discusses the selection of regression model terms for the analysis of wind tunnel strain-gage balance calibration data. Different function class combinations are presented that may be used to analyze calibration data using either a non-iterative or an iterative method. The role of the intercept term in a regression model of calibration data is reviewed. In addition, useful algorithms and metrics originating from linear algebra and statistics are recommended that will help an analyst (i) to identify and avoid both linear and near-linear dependencies between regression model terms and (ii) to make sure that the selected regression model of the calibration data uses only statistically significant terms. Three different tests are suggested that may be used to objectively assess the predictive capability of the final regression model of the calibration data. These tests use both the original data points and regression model independent confirmation points. Finally, data from a simplified manual calibration of the Ames MK40 balance is used to illustrate the application of some of the metrics and tests to a realistic calibration data set.

  9. Serum Irisin Predicts Mortality Risk in Acute Heart Failure Patients.

    PubMed

    Shen, Shutong; Gao, Rongrong; Bei, Yihua; Li, Jin; Zhang, Haifeng; Zhou, Yanli; Yao, Wenming; Xu, Dongjie; Zhou, Fang; Jin, Mengchao; Wei, Siqi; Wang, Kai; Xu, Xuejuan; Li, Yongqin; Xiao, Junjie; Li, Xinli

    2017-01-01

    Irisin is a peptide hormone cleaved from a plasma membrane protein fibronectin type III domain containing protein 5 (FNDC5). Emerging studies have indicated association between serum irisin and many major chronic diseases including cardiovascular diseases. However, the role of serum irisin as a predictor for mortality risk in acute heart failure (AHF) patients is not clear. AHF patients were enrolled and serum was collected at the admission and all patients were followed up for 1 year. Enzyme-linked immunosorbent assay was used to measure serum irisin levels. To explore predictors for AHF mortality, the univariate and multivariate logistic regression analysis, and receiver-operator characteristic (ROC) curve analysis were used. To determine the role of serum irisin levels in predicting survival, Kaplan-Meier survival analysis was used. In this study, 161 AHF patients were enrolled and serum irisin level was found to be significantly higher in patients deceased in 1-year follow-up. The univariate logistic regression analysis identified 18 variables associated with all-cause mortality in AHF patients, while the multivariate logistic regression analysis identified 2 variables namely blood urea nitrogen and serum irisin. ROC curve analysis indicated that blood urea nitrogen and the most commonly used biomarker, NT-pro-BNP, displayed poor prognostic value for AHF (AUCs ≤ 0.700) compared to serum irisin (AUC = 0.753). Kaplan-Meier survival analysis demonstrated that AHF patients with higher serum irisin had significantly higher mortality (P<0.001). Collectively, our study identified serum irisin as a predictive biomarker for 1-year all-cause mortality in AHF patients though large multicenter studies are highly needed. © 2017 The Author(s). Published by S. Karger AG, Basel.

  10. Applying Recursive Sensitivity Analysis to Multi-Criteria Decision Models to Reduce Bias in Defense Cyber Engineering Analysis

    DTIC Science & Technology

    2015-10-28

    techniques such as regression analysis, correlation, and multicollinearity assessment to identify the change and error on the input to the model...between many of the independent or predictor variables, the issue of multicollinearity may arise [18]. VII. SUMMARY Accurate decisions concerning

  11. Detecting Outliers in Factor Analysis Using the Forward Search Algorithm

    ERIC Educational Resources Information Center

    Mavridis, Dimitris; Moustaki, Irini

    2008-01-01

    In this article we extend and implement the forward search algorithm for identifying atypical subjects/observations in factor analysis models. The forward search has been mainly developed for detecting aberrant observations in regression models (Atkinson, 1994) and in multivariate methods such as cluster and discriminant analysis (Atkinson, Riani,…

  12. Buying a Better Air Force

    DTIC Science & Technology

    2006-03-01

    identify if an explanatory variable may have been omitted due to model misspecification ( Ramsey , 1979). The RESET test resulted in failure to...Prob > F 0.0094 This model was also regressed using Huber-White estimators. Again, the Ramsey RESET test was done to ensure relevant...Aircraft. Annapolis, MD: Naval Institute Press, 2004. Ramsey , J. B. “ Tests for Specification Errors in Classical Least-Squares Regression Analysis

  13. Risk Factors of Falls in Community-Dwelling Older Adults: Logistic Regression Tree Analysis

    ERIC Educational Resources Information Center

    Yamashita, Takashi; Noe, Douglas A.; Bailer, A. John

    2012-01-01

    Purpose of the Study: A novel logistic regression tree-based method was applied to identify fall risk factors and possible interaction effects of those risk factors. Design and Methods: A nationally representative sample of American older adults aged 65 years and older (N = 9,592) in the Health and Retirement Study 2004 and 2006 modules was used.…

  14. Individual risk factors for deep infection and compromised fracture healing after intramedullary nailing of tibial shaft fractures: a single centre experience of 480 patients.

    PubMed

    Metsemakers, W-J; Handojo, K; Reynders, P; Sermon, A; Vanderschot, P; Nijs, S

    2015-04-01

    Despite modern advances in the treatment of tibial shaft fractures, complications including nonunion, malunion, and infection remain relatively frequent. A better understanding of these injuries and its complications could lead to prevention rather than treatment strategies. A retrospective study was performed to identify risk factors for deep infection and compromised fracture healing after intramedullary nailing (IMN) of tibial shaft fractures. Between January 2000 and January 2012, 480 consecutive patients with 486 tibial shaft fractures were enrolled in the study. Statistical analysis was performed to determine predictors of deep infection and compromised fracture healing. Compromised fracture healing was subdivided in delayed union and nonunion. The following independent variables were selected for analysis: age, sex, smoking, obesity, diabetes, American Society of Anaesthesiologists (ASA) classification, polytrauma, fracture type, open fractures, Gustilo type, primary external fixation (EF), time to nailing (TTN) and reaming. As primary statistical evaluation we performed a univariate analysis, followed by a multiple logistic regression model. Univariate regression analysis revealed similar risk factors for delayed union and nonunion, including fracture type, open fractures and Gustilo type. Factors affecting the occurrence of deep infection in this model were primary EF, a prolonged TTN, open fractures and Gustilo type. Multiple logistic regression analysis revealed polytrauma as the single risk factor for nonunion. With respect to delayed union, no risk factors could be identified. In the same statistical model, deep infection was correlated with primary EF. The purpose of this study was to evaluate risk factors of poor outcome after IMN of tibial shaft fractures. The univariate regression analysis showed that the nature of complications after tibial shaft nailing could be multifactorial. This was not confirmed in a multiple logistic regression model, which only revealed polytrauma and primary EF as risk factors for nonunion and deep infection, respectively. Future strategies should focus on prevention in high-risk populations such as polytrauma patients treated with EF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Bias in logistic regression due to imperfect diagnostic test results and practical correction approaches.

    PubMed

    Valle, Denis; Lima, Joanna M Tucker; Millar, Justin; Amratia, Punam; Haque, Ubydul

    2015-11-04

    Logistic regression is a statistical model widely used in cross-sectional and cohort studies to identify and quantify the effects of potential disease risk factors. However, the impact of imperfect tests on adjusted odds ratios (and thus on the identification of risk factors) is under-appreciated. The purpose of this article is to draw attention to the problem associated with modelling imperfect diagnostic tests, and propose simple Bayesian models to adequately address this issue. A systematic literature review was conducted to determine the proportion of malaria studies that appropriately accounted for false-negatives/false-positives in a logistic regression setting. Inference from the standard logistic regression was also compared with that from three proposed Bayesian models using simulations and malaria data from the western Brazilian Amazon. A systematic literature review suggests that malaria epidemiologists are largely unaware of the problem of using logistic regression to model imperfect diagnostic test results. Simulation results reveal that statistical inference can be substantially improved when using the proposed Bayesian models versus the standard logistic regression. Finally, analysis of original malaria data with one of the proposed Bayesian models reveals that microscopy sensitivity is strongly influenced by how long people have lived in the study region, and an important risk factor (i.e., participation in forest extractivism) is identified that would have been missed by standard logistic regression. Given the numerous diagnostic methods employed by malaria researchers and the ubiquitous use of logistic regression to model the results of these diagnostic tests, this paper provides critical guidelines to improve data analysis practice in the presence of misclassification error. Easy-to-use code that can be readily adapted to WinBUGS is provided, enabling straightforward implementation of the proposed Bayesian models.

  16. "Mad or bad?": burden on caregivers of patients with personality disorders.

    PubMed

    Bauer, Rita; Döring, Antje; Schmidt, Tanja; Spießl, Hermann

    2012-12-01

    The burden on caregivers of patients with personality disorders is often greatly underestimated or completely disregarded. Possibilities for caregiver support have rarely been assessed. Thirty interviews were conducted with caregivers of such patients to assess illness-related burden. Responses were analyzed with a mixed method of qualitative and quantitative analysis in a sequential design. Patient and caregiver data, including sociodemographic and disease-related variables, were evaluated with regression analysis and regression trees. Caregiver statements (n = 404) were summarized into 44 global statements. The most frequent global statements were worries about the burden on other family members (70.0%), poor cooperation with clinical centers and other institutions (60.0%), financial burden (56.7%), worry about the patient's future (53.3%), and dissatisfaction with the patient's treatment and rehabilitation (53.3%). Linear regression and regression tree analysis identified predictors for more burdened caregivers. Caregivers of patients with personality disorders experience a variety of burdens, some disorder specific. Yet these caregivers often receive little attention or support.

  17. Construction of a pathological risk model of occult lymph node metastases for prognostication by semi-automated image analysis of tumor budding in early-stage oral squamous cell carcinoma

    PubMed Central

    Pedersen, Nicklas Juel; Jensen, David Hebbelstrup; Lelkaitis, Giedrius; Kiss, Katalin; Charabi, Birgitte; Specht, Lena; von Buchwald, Christian

    2017-01-01

    It is challenging to identify at diagnosis those patients with early oral squamous cell carcinoma (OSCC), who have a poor prognosis and those that have a high risk of harboring occult lymph node metastases. The aim of this study was to develop a standardized and objective digital scoring method to evaluate the predictive value of tumor budding. We developed a semi-automated image-analysis algorithm, Digital Tumor Bud Count (DTBC), to evaluate tumor budding. The algorithm was tested in 222 consecutive patients with early-stage OSCC and major endpoints were overall (OS) and progression free survival (PFS). We subsequently constructed and cross-validated a binary logistic regression model and evaluated its clinical utility by decision curve analysis. A high DTBC was an independent predictor of both poor OS and PFS in a multivariate Cox regression model. The logistic regression model was able to identify patients with occult lymph node metastases with an area under the curve (AUC) of 0.83 (95% CI: 0.78–0.89, P <0.001) and a 10-fold cross-validated AUC of 0.79. Compared to other known histopathological risk factors, the DTBC had a higher diagnostic accuracy. The proposed, novel risk model could be used as a guide to identify patients who would benefit from an up-front neck dissection. PMID:28212555

  18. Using Dual Regression to Investigate Network Shape and Amplitude in Functional Connectivity Analyses

    PubMed Central

    Nickerson, Lisa D.; Smith, Stephen M.; Öngür, Döst; Beckmann, Christian F.

    2017-01-01

    Independent Component Analysis (ICA) is one of the most popular techniques for the analysis of resting state FMRI data because it has several advantageous properties when compared with other techniques. Most notably, in contrast to a conventional seed-based correlation analysis, it is model-free and multivariate, thus switching the focus from evaluating the functional connectivity of single brain regions identified a priori to evaluating brain connectivity in terms of all brain resting state networks (RSNs) that simultaneously engage in oscillatory activity. Furthermore, typical seed-based analysis characterizes RSNs in terms of spatially distributed patterns of correlation (typically by means of simple Pearson's coefficients) and thereby confounds together amplitude information of oscillatory activity and noise. ICA and other regression techniques, on the other hand, retain magnitude information and therefore can be sensitive to both changes in the spatially distributed nature of correlations (differences in the spatial pattern or “shape”) as well as the amplitude of the network activity. Furthermore, motion can mimic amplitude effects so it is crucial to use a technique that retains such information to ensure that connectivity differences are accurately localized. In this work, we investigate the dual regression approach that is frequently applied with group ICA to assess group differences in resting state functional connectivity of brain networks. We show how ignoring amplitude effects and how excessive motion corrupts connectivity maps and results in spurious connectivity differences. We also show how to implement the dual regression to retain amplitude information and how to use dual regression outputs to identify potential motion effects. Two key findings are that using a technique that retains magnitude information, e.g., dual regression, and using strict motion criteria are crucial for controlling both network amplitude and motion-related amplitude effects, respectively, in resting state connectivity analyses. We illustrate these concepts using realistic simulated resting state FMRI data and in vivo data acquired in healthy subjects and patients with bipolar disorder and schizophrenia. PMID:28348512

  19. Psychosocial risk and protective factors for depression in the dialysis population: a systematic review and meta-regression analysis.

    PubMed

    Chan, Ramony; Steel, Zachary; Brooks, Robert; Heung, Tracy; Erlich, Jonathan; Chow, Josephine; Suranyi, Michael

    2011-11-01

    Research into the association between psychosocial factors and depression in End-Stage Renal Disease (ESRD) has expanded considerably in recent years identifying a range of factors that may act as important risk and protective factors of depression for this population. The present study provides the first systematic review and meta-analysis of this body of research. Published studies reporting associations between any psychosocial factor and depression were identified and retrieved from Medline, Embase, and PsycINFO, by applying optimised search strategies. Mean effect sizes were calculated for the associations across five psychosocial constructs (social support, personality attributes, cognitive appraisal, coping process, stress/stressor). Multiple hierarchical meta-regression analysis was applied to examine the moderating effects of methodological and substantive factors on the strength of the observed associations. 57 studies covering 58 independent samples with 5956 participants were identified, resulting in 246 effect sizes of the association between a range of psychosocial factors and depression. The overall mean effect size (Pearsons correlation coefficient) of the association between psychosocial factor and depression was 0.36. The effect sizes between the five psychosocial constructs and depression ranged from medium (0.27) to large levels (0.46) with personality attributes (0.46) and cognitive appraisal (0.46) having the largest effect sizes. In the meta-regression analyses, identified demographic (gender, age, location of study) and treatment (type of dialysis) characteristics moderated the strength of the associations with depression. The current analysis documents a moderate to large association between the presence of psychosocial risk factors and depression in ESRD. 2011. Published by Elsevier Inc. All rights reserved.

  20. Bootstrap investigation of the stability of a Cox regression model.

    PubMed

    Altman, D G; Andersen, P K

    1989-07-01

    We describe a bootstrap investigation of the stability of a Cox proportional hazards regression model resulting from the analysis of a clinical trial of azathioprine versus placebo in patients with primary biliary cirrhosis. We have considered stability to refer both to the choice of variables included in the model and, more importantly, to the predictive ability of the model. In stepwise Cox regression analyses of 100 bootstrap samples using 17 candidate variables, the most frequently selected variables were those selected in the original analysis, and no other important variable was identified. Thus there was no reason to doubt the model obtained in the original analysis. For each patient in the trial, bootstrap confidence intervals were constructed for the estimated probability of surviving two years. It is shown graphically that these intervals are markedly wider than those obtained from the original model.

  1. A Survey of UML Based Regression Testing

    NASA Astrophysics Data System (ADS)

    Fahad, Muhammad; Nadeem, Aamer

    Regression testing is the process of ensuring software quality by analyzing whether changed parts behave as intended, and unchanged parts are not affected by the modifications. Since it is a costly process, a lot of techniques are proposed in the research literature that suggest testers how to build regression test suite from existing test suite with minimum cost. In this paper, we discuss the advantages and drawbacks of using UML diagrams for regression testing and analyze that UML model helps in identifying changes for regression test selection effectively. We survey the existing UML based regression testing techniques and provide an analysis matrix to give a quick insight into prominent features of the literature work. We discuss the open research issues like managing and reducing the size of regression test suite, prioritization of the test cases that would be helpful during strict schedule and resources that remain to be addressed for UML based regression testing.

  2. Successful Indicators Study (SIS) Methodology Report: Deviant Case Analysis Pilot.

    ERIC Educational Resources Information Center

    Bailey, Jerry; Hafner, Anne

    A deviant case analysis pilot study analyzed California local education agency data to determine the usefulness of regression analysis in predicting change in achievement from 1984 to 1989 and identified outliers or districts that show greater achievement changes than would be expected given changed demographic conditions. This report on the…

  3. Detection of outliers in the response and explanatory variables of the simple circular regression model

    NASA Astrophysics Data System (ADS)

    Mahmood, Ehab A.; Rana, Sohel; Hussin, Abdul Ghapor; Midi, Habshah

    2016-06-01

    The circular regression model may contain one or more data points which appear to be peculiar or inconsistent with the main part of the model. This may be occur due to recording errors, sudden short events, sampling under abnormal conditions etc. The existence of these data points "outliers" in the data set cause lot of problems in the research results and the conclusions. Therefore, we should identify them before applying statistical analysis. In this article, we aim to propose a statistic to identify outliers in the both of the response and explanatory variables of the simple circular regression model. Our proposed statistic is robust circular distance RCDxy and it is justified by the three robust measurements such as proportion of detection outliers, masking and swamping rates.

  4. Discriminating between adaptive and carcinogenic liver hypertrophy in rat studies using logistic ridge regression analysis of toxicogenomic data: The mode of action and predictive models.

    PubMed

    Liu, Shujie; Kawamoto, Taisuke; Morita, Osamu; Yoshinari, Kouichi; Honda, Hiroshi

    2017-03-01

    Chemical exposure often results in liver hypertrophy in animal tests, characterized by increased liver weight, hepatocellular hypertrophy, and/or cell proliferation. While most of these changes are considered adaptive responses, there is concern that they may be associated with carcinogenesis. In this study, we have employed a toxicogenomic approach using a logistic ridge regression model to identify genes responsible for liver hypertrophy and hypertrophic hepatocarcinogenesis and to develop a predictive model for assessing hypertrophy-inducing compounds. Logistic regression models have previously been used in the quantification of epidemiological risk factors. DNA microarray data from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System were used to identify hypertrophy-related genes that are expressed differently in hypertrophy induced by carcinogens and non-carcinogens. Data were collected for 134 chemicals (72 non-hypertrophy-inducing chemicals, 27 hypertrophy-inducing non-carcinogenic chemicals, and 15 hypertrophy-inducing carcinogenic compounds). After applying logistic ridge regression analysis, 35 genes for liver hypertrophy (e.g., Acot1 and Abcc3) and 13 genes for hypertrophic hepatocarcinogenesis (e.g., Asns and Gpx2) were selected. The predictive models built using these genes were 94.8% and 82.7% accurate, respectively. Pathway analysis of the genes indicates that, aside from a xenobiotic metabolism-related pathway as an adaptive response for liver hypertrophy, amino acid biosynthesis and oxidative responses appear to be involved in hypertrophic hepatocarcinogenesis. Early detection and toxicogenomic characterization of liver hypertrophy using our models may be useful for predicting carcinogenesis. In addition, the identified genes provide novel insight into discrimination between adverse hypertrophy associated with carcinogenesis and adaptive hypertrophy in risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Detection of crossover time scales in multifractal detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Ge, Erjia; Leung, Yee

    2013-04-01

    Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.

  6. Stepwise Distributed Open Innovation Contests for Software Development: Acceleration of Genome-Wide Association Analysis

    PubMed Central

    Hill, Andrew; Loh, Po-Ru; Bharadwaj, Ragu B.; Pons, Pascal; Shang, Jingbo; Guinan, Eva; Lakhani, Karim; Kilty, Iain

    2017-01-01

    Abstract Background: The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets. Results: Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in <6 months by providing rapid access to highly skilled programmers with specialized, difficult-to-find skill sets. Through a crowd-based contest a combination of computational, numeric, and algorithmic approaches was identified that accelerated the logistic regression in PLINK 1.07 by 18- to 45-fold. Combining contest-derived logistic regression code with coarse-grained parallelization, multithreading, and associated changes to data initialization code further developed through distributed innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project. Conclusions: Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics. PMID:28327993

  7. Stepwise Distributed Open Innovation Contests for Software Development: Acceleration of Genome-Wide Association Analysis.

    PubMed

    Hill, Andrew; Loh, Po-Ru; Bharadwaj, Ragu B; Pons, Pascal; Shang, Jingbo; Guinan, Eva; Lakhani, Karim; Kilty, Iain; Jelinsky, Scott A

    2017-05-01

    The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets. Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in <6 months by providing rapid access to highly skilled programmers with specialized, difficult-to-find skill sets. Through a crowd-based contest a combination of computational, numeric, and algorithmic approaches was identified that accelerated the logistic regression in PLINK 1.07 by 18- to 45-fold. Combining contest-derived logistic regression code with coarse-grained parallelization, multithreading, and associated changes to data initialization code further developed through distributed innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project. Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics. © The Author 2017. Published by Oxford University Press.

  8. A tandem regression-outlier analysis of a ligand cellular system for key structural modifications around ligand binding.

    PubMed

    Lin, Ying-Ting

    2013-04-30

    A tandem technique of hard equipment is often used for the chemical analysis of a single cell to first isolate and then detect the wanted identities. The first part is the separation of wanted chemicals from the bulk of a cell; the second part is the actual detection of the important identities. To identify the key structural modifications around ligand binding, the present study aims to develop a counterpart of tandem technique for cheminformatics. A statistical regression and its outliers act as a computational technique for separation. A PPARγ (peroxisome proliferator-activated receptor gamma) agonist cellular system was subjected to such an investigation. Results show that this tandem regression-outlier analysis, or the prioritization of the context equations tagged with features of the outliers, is an effective regression technique of cheminformatics to detect key structural modifications, as well as their tendency of impact to ligand binding. The key structural modifications around ligand binding are effectively extracted or characterized out of cellular reactions. This is because molecular binding is the paramount factor in such ligand cellular system and key structural modifications around ligand binding are expected to create outliers. Therefore, such outliers can be captured by this tandem regression-outlier analysis.

  9. Quantitative monitoring of sucrose, reducing sugar and total sugar dynamics for phenotyping of water-deficit stress tolerance in rice through spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Das, Bappa; Sahoo, Rabi N.; Pargal, Sourabh; Krishna, Gopal; Verma, Rakesh; Chinnusamy, Viswanathan; Sehgal, Vinay K.; Gupta, Vinod K.; Dash, Sushanta K.; Swain, Padmini

    2018-03-01

    In the present investigation, the changes in sucrose, reducing and total sugar content due to water-deficit stress in rice leaves were modeled using visible, near infrared (VNIR) and shortwave infrared (SWIR) spectroscopy. The objectives of the study were to identify the best vegetation indices and suitable multivariate technique based on precise analysis of hyperspectral data (350 to 2500 nm) and sucrose, reducing sugar and total sugar content measured at different stress levels from 16 different rice genotypes. Spectral data analysis was done to identify suitable spectral indices and models for sucrose estimation. Novel spectral indices in near infrared (NIR) range viz. ratio spectral index (RSI) and normalised difference spectral indices (NDSI) sensitive to sucrose, reducing sugar and total sugar content were identified which were subsequently calibrated and validated. The RSI and NDSI models had R2 values of 0.65, 0.71 and 0.67; RPD values of 1.68, 1.95 and 1.66 for sucrose, reducing sugar and total sugar, respectively for validation dataset. Different multivariate spectral models such as artificial neural network (ANN), multivariate adaptive regression splines (MARS), multiple linear regression (MLR), partial least square regression (PLSR), random forest regression (RFR) and support vector machine regression (SVMR) were also evaluated. The best performing multivariate models for sucrose, reducing sugars and total sugars were found to be, MARS, ANN and MARS, respectively with respect to RPD values of 2.08, 2.44, and 1.93. Results indicated that VNIR and SWIR spectroscopy combined with multivariate calibration can be used as a reliable alternative to conventional methods for measurement of sucrose, reducing sugars and total sugars of rice under water-deficit stress as this technique is fast, economic, and noninvasive.

  10. The Relationship among Leisure Interests, Personality Traits, Affect, and Mood

    ERIC Educational Resources Information Center

    Wilkinson, Todd J.; Hansen, Jo-Ida C.

    2006-01-01

    The present study examined relationships between leisure interests and the Big Five personality traits, positive and negative affect, and moods. Regression analysis identified particular personality but not mood or affect variables as significant predictors of leisure factor scores. Further exploration through factor analysis revealed factor…

  11. Analysis of Sting Balance Calibration Data Using Optimized Regression Models

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert; Bader, Jon B.

    2009-01-01

    Calibration data of a wind tunnel sting balance was processed using a search algorithm that identifies an optimized regression model for the data analysis. The selected sting balance had two moment gages that were mounted forward and aft of the balance moment center. The difference and the sum of the two gage outputs were fitted in the least squares sense using the normal force and the pitching moment at the balance moment center as independent variables. The regression model search algorithm predicted that the difference of the gage outputs should be modeled using the intercept and the normal force. The sum of the two gage outputs, on the other hand, should be modeled using the intercept, the pitching moment, and the square of the pitching moment. Equations of the deflection of a cantilever beam are used to show that the search algorithm s two recommended math models can also be obtained after performing a rigorous theoretical analysis of the deflection of the sting balance under load. The analysis of the sting balance calibration data set is a rare example of a situation when regression models of balance calibration data can directly be derived from first principles of physics and engineering. In addition, it is interesting to see that the search algorithm recommended the same regression models for the data analysis using only a set of statistical quality metrics.

  12. Meta-regression analysis of commensal and pathogenic Escherichia coli survival in soil and water.

    PubMed

    Franz, Eelco; Schijven, Jack; de Roda Husman, Ana Maria; Blaak, Hetty

    2014-06-17

    The extent to which pathogenic and commensal E. coli (respectively PEC and CEC) can survive, and which factors predominantly determine the rate of decline, are crucial issues from a public health point of view. The goal of this study was to provide a quantitative summary of the variability in E. coli survival in soil and water over a broad range of individual studies and to identify the most important sources of variability. To that end, a meta-regression analysis on available literature data was conducted. The considerable variation in reported decline rates indicated that the persistence of E. coli is not easily predictable. The meta-analysis demonstrated that for soil and water, the type of experiment (laboratory or field), the matrix subtype (type of water and soil), and temperature were the main factors included in the regression analysis. A higher average decline rate in soil of PEC compared with CEC was observed. The regression models explained at best 57% of the variation in decline rate in soil and 41% of the variation in decline rate in water. This indicates that additional factors, not included in the current meta-regression analysis, are of importance but rarely reported. More complete reporting of experimental conditions may allow future inference on the global effects of these variables on the decline rate of E. coli.

  13. Identifying Aspects of Parental Involvement that Affect the Academic Achievement of High School Students

    ERIC Educational Resources Information Center

    Roulette-McIntyre, Ovella; Bagaka's, Joshua G.; Drake, Daniel D.

    2005-01-01

    This study identified parental practices that relate positively to high school students' academic performance. Parents of 643 high school students participated in the study. Data analysis, using a multiple linear regression model, shows parent-school connection, student gender, and race are significant predictors of student academic performance.…

  14. Poisson Mixture Regression Models for Heart Disease Prediction.

    PubMed

    Mufudza, Chipo; Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.

  15. Poisson Mixture Regression Models for Heart Disease Prediction

    PubMed Central

    Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611

  16. A new multiple regression model to identify multi-family houses with a high prevalence of sick building symptoms "SBS", within the healthy sustainable house study in Stockholm (3H).

    PubMed

    Engvall, Karin; Hult, M; Corner, R; Lampa, E; Norbäck, D; Emenius, G

    2010-01-01

    The aim was to develop a new model to identify residential buildings with higher frequencies of "SBS" than expected, "risk buildings". In 2005, 481 multi-family buildings with 10,506 dwellings in Stockholm were studied by a new stratified random sampling. A standardised self-administered questionnaire was used to assess "SBS", atopy and personal factors. The response rate was 73%. Statistical analysis was performed by multiple logistic regressions. Dwellers owning their building reported less "SBS" than those renting. There was a strong relationship between socio-economic factors and ownership. The regression model, ended up with high explanatory values for age, gender, atopy and ownership. Applying our model, 9% of all residential buildings in Stockholm were classified as "risk buildings" with the highest proportion in houses built 1961-1975 (26%) and lowest in houses built 1985-1990 (4%). To identify "risk buildings", it is necessary to adjust for ownership and population characteristics.

  17. Genome-wide data reveal novel genes for methotrexate response in a large cohort of juvenile idiopathic arthritis cases.

    PubMed

    Cobb, J; Cule, E; Moncrieffe, H; Hinks, A; Ursu, S; Patrick, F; Kassoumeri, L; Flynn, E; Bulatović, M; Wulffraat, N; van Zelst, B; de Jonge, R; Bohm, M; Dolezalova, P; Hirani, S; Newman, S; Whitworth, P; Southwood, T R; De Iorio, M; Wedderburn, L R; Thomson, W

    2014-08-01

    Clinical response to methotrexate (MTX) treatment for children with juvenile idiopathic arthritis (JIA) displays considerable heterogeneity. Currently, there are no reliable predictors to identify non-responders: earlier identification could lead to a targeted treatment. We genotyped 759 JIA cases from the UK, the Netherlands and Czech Republic. Clinical variables were measured at baseline and 6 months after start of the treatment. In Phase I analysis, samples were analysed for the association with MTX response using ordinal regression of ACR-pedi categories and linear regression of change in clinical variables, and identified 31 genetic regions (P<0.001). Phase II analysis increased SNP density in the most strongly associated regions, identifying 14 regions (P<1 × 10(-5)): three contain genes of particular biological interest (ZMIZ1, TGIF1 and CFTR). These data suggest a role for novel pathways in MTX response and further investigations within associated regions will help to reach our goal of predicting response to MTX in JIA.

  18. Prevalence of vitamin D deficiency and associated factors in women and newborns in the immediate postpartum period

    PubMed Central

    do Prado, Mara Rúbia Maciel Cardoso; Oliveira, Fabiana de Cássia Carvalho; Assis, Karine Franklin; Ribeiro, Sarah Aparecida Vieira; do Prado, Pedro Paulo; Sant'Ana, Luciana Ferreira da Rocha; Priore, Silvia Eloiza; Franceschini, Sylvia do Carmo Castro

    2015-01-01

    Abstract Objective: To assess the prevalence of vitamin D deficiency and its associated factors in women and their newborns in the postpartum period. Methods: This cross-sectional study evaluated vitamin D deficiency/insufficiency in 226 women and their newborns in Viçosa (Minas Gerais, BR) between December 2011 and November 2012. Cord blood and venous maternal blood were collected to evaluate the following biochemical parameters: vitamin D, alkaline phosphatase, calcium, phosphorus and parathyroid hormone. Poisson regression analysis, with a confidence interval of 95%, was applied to assess vitamin D deficiency and its associated factors. Multiple linear regression analysis was performed to identify factors associated with 25(OH)D deficiency in the newborns and women from the study. The criteria for variable inclusion in the multiple linear regression model was the association with the dependent variable in the simple linear regression analysis, considering p<0.20. Significance level was α <5%. Results: From 226 women included, 200 (88.5%) were 20-44 years old; the median age was 28 years. Deficient/insufficient levels of vitamin D were found in 192 (85%) women and in 182 (80.5%) neonates. The maternal 25(OH)D and alkaline phosphatase levels were independently associated with vitamin D deficiency in infants. Conclusions: This study identified a high prevalence of vitamin D deficiency and insufficiency in women and newborns and the association between maternal nutritional status of vitamin D and their infants' vitamin D status. PMID:26100593

  19. Regression analysis for LED color detection of visual-MIMO system

    NASA Astrophysics Data System (ADS)

    Banik, Partha Pratim; Saha, Rappy; Kim, Ki-Doo

    2018-04-01

    Color detection from a light emitting diode (LED) array using a smartphone camera is very difficult in a visual multiple-input multiple-output (visual-MIMO) system. In this paper, we propose a method to determine the LED color using a smartphone camera by applying regression analysis. We employ a multivariate regression model to identify the LED color. After taking a picture of an LED array, we select the LED array region, and detect the LED using an image processing algorithm. We then apply the k-means clustering algorithm to determine the number of potential colors for feature extraction of each LED. Finally, we apply the multivariate regression model to predict the color of the transmitted LEDs. In this paper, we show our results for three types of environmental light condition: room environmental light, low environmental light (560 lux), and strong environmental light (2450 lux). We compare the results of our proposed algorithm from the analysis of training and test R-Square (%) values, percentage of closeness of transmitted and predicted colors, and we also mention about the number of distorted test data points from the analysis of distortion bar graph in CIE1931 color space.

  20. Analysis of regression methods for solar activity forecasting

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A.; Vaughan, W. W.

    1979-01-01

    The paper deals with the potential use of the most recent solar data to project trends in the next few years. Assuming that a mode of solar influence on weather can be identified, advantageous use of that knowledge presumably depends on estimating future solar activity. A frequently used technique for solar cycle predictions is a linear regression procedure along the lines formulated by McNish and Lincoln (1949). The paper presents a sensitivity analysis of the behavior of such regression methods relative to the following aspects: cycle minimum, time into cycle, composition of historical data base, and unnormalized vs. normalized solar cycle data. Comparative solar cycle forecasts for several past cycles are presented as to these aspects of the input data. Implications for the current cycle, No. 21, are also given.

  1. Length bias correction in gene ontology enrichment analysis using logistic regression.

    PubMed

    Mi, Gu; Di, Yanming; Emerson, Sarah; Cumbie, Jason S; Chang, Jeff H

    2012-01-01

    When assessing differential gene expression from RNA sequencing data, commonly used statistical tests tend to have greater power to detect differential expression of genes encoding longer transcripts. This phenomenon, called "length bias", will influence subsequent analyses such as Gene Ontology enrichment analysis. In the presence of length bias, Gene Ontology categories that include longer genes are more likely to be identified as enriched. These categories, however, are not necessarily biologically more relevant. We show that one can effectively adjust for length bias in Gene Ontology analysis by including transcript length as a covariate in a logistic regression model. The logistic regression model makes the statistical issue underlying length bias more transparent: transcript length becomes a confounding factor when it correlates with both the Gene Ontology membership and the significance of the differential expression test. The inclusion of the transcript length as a covariate allows one to investigate the direct correlation between the Gene Ontology membership and the significance of testing differential expression, conditional on the transcript length. We present both real and simulated data examples to show that the logistic regression approach is simple, effective, and flexible.

  2. Development and testing of new candidate psoriatic arthritis screening questionnaires combining optimal questions from existing tools.

    PubMed

    Coates, Laura C; Walsh, Jessica; Haroon, Muhammad; FitzGerald, Oliver; Aslam, Tariq; Al Balushi, Farida; Burden, A D; Burden-Teh, Esther; Caperon, Anna R; Cerio, Rino; Chattopadhyay, Chandrabhusan; Chinoy, Hector; Goodfield, Mark J D; Kay, Lesley; Kelly, Stephen; Kirkham, Bruce W; Lovell, Christopher R; Marzo-Ortega, Helena; McHugh, Neil; Murphy, Ruth; Reynolds, Nick J; Smith, Catherine H; Stewart, Elizabeth J C; Warren, Richard B; Waxman, Robin; Wilson, Hilary E; Helliwell, Philip S

    2014-09-01

    Several questionnaires have been developed to screen for psoriatic arthritis (PsA), but head-to-head studies have found limitations. This study aimed to develop new questionnaires encompassing the most discriminative questions from existing instruments. Data from the CONTEST study, a head-to-head comparison of 3 existing questionnaires, were used to identify items with a Youden index score of ≥0.1. These were combined using 4 approaches: CONTEST (simple additions of questions), CONTESTw (weighting using logistic regression), CONTESTjt (addition of a joint manikin), and CONTESTtree (additional questions identified by classification and regression tree [CART] analysis). These candidate questionnaires were tested in independent data sets. Twelve individual questions with a Youden index score of ≥0.1 were identified, but 4 of these were excluded due to duplication and redundancy. Weighting for 2 of these questions was included in CONTESTw. Receiver operating characteristic (ROC) curve analysis showed that involvement in 6 joint areas on the manikin was predictive of PsA for inclusion in CONTESTjt. CART analysis identified a further 5 questions for inclusion in CONTESTtree. CONTESTtree was not significant on ROC curve analysis and discarded. The other 3 questionnaires were significant in all data sets, although CONTESTw was slightly inferior to the others in the validation data sets. Potential cut points for referral were also discussed. Of 4 candidate questionnaires combining existing discriminatory items to identify PsA in people with psoriasis, 3 were found to be significant on ROC curve analysis. Testing in independent data sets identified 2 questionnaires (CONTEST and CONTESTjt) that should be pursued for further prospective testing. Copyright © 2014 by the American College of Rheumatology.

  3. Optimal Reflectance, Transmittance, and Absorptance Wavebands and Band Ratios for the Estimation of Leaf Chlorophyll Concentration

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Spiering, Bruce A.

    2000-01-01

    The present study utilized regression analysis to identify: wavebands and band ratios within the 400-850 nm range that could be used to estimate total chlorophyll concentration with minimal error; and simple regression models that were most effective in estimating chlorophyll concentrations were measured for two broadleaved species, a broadleaved vine, a needle-leaved conifer, and a representative of the grass family.Overall, reflectance, transmittance, and absorptance corresponded most precisely with chlorophyll concentration at wavelengths near 700 nm, although regressions were strong as well in the 550-625 nm range.

  4. Predictors and causes of unplanned re-operations in outpatient plastic surgery: a multi-institutional analysis of 6749 patients using the 2011 NSQIP database.

    PubMed

    Lim, Seokchun; Jordan, Sumanas W; Jain, Umang; Kim, John Y S

    2014-08-01

    Studies that evaluate the predictors and causes of unplanned re-operation in outpatient plastic surgery. This study retrospectively reviewed the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) and identified all plastic surgery outpatient cases performed in 2011. Multiple logistic regression analysis was utilised to identify independent risk factors and causes of unplanned reoperations. Of the 6749 outpatient plastic surgery cases identified, there were 125 (1.9%) unplanned re-operations (UR). Regression analysis demonstrated that body mass index (BMI, OR = 1.041, 95% CI = 1.019-1.065), preoperative open wound/wound infection (OR = 3.498, 95% CI = 1.593-7.678), American Society of Anesthesiologists (ASA) class 3 (OR = 2.235, 95% CI = 1.048-4.765), and total work relative value units (RVU, OR = 1.014, 95% CI = 1.005-1.024) were significantly predictive of UR. Additionally, the presence of any complication was significantly associated with UR (OR = 15.065, 95% CI = 5.705-39.781). In an era of outcomes-driven medicine, unplanned re-operation is a critical quality indicator for ambulatory plastic surgery facilities. The identified risk factors will aid in surgical planning and risk adjustment.

  5. Systematic genomic identification of colorectal cancer genes delineating advanced from early clinical stage and metastasis

    PubMed Central

    2013-01-01

    Background Colorectal cancer is the third leading cause of cancer deaths in the United States. The initial assessment of colorectal cancer involves clinical staging that takes into account the extent of primary tumor invasion, determining the number of lymph nodes with metastatic cancer and the identification of metastatic sites in other organs. Advanced clinical stage indicates metastatic cancer, either in regional lymph nodes or in distant organs. While the genomic and genetic basis of colorectal cancer has been elucidated to some degree, less is known about the identity of specific cancer genes that are associated with advanced clinical stage and metastasis. Methods We compiled multiple genomic data types (mutations, copy number alterations, gene expression and methylation status) as well as clinical meta-data from The Cancer Genome Atlas (TCGA). We used an elastic-net regularized regression method on the combined genomic data to identify genetic aberrations and their associated cancer genes that are indicators of clinical stage. We ranked candidate genes by their regression coefficient and level of support from multiple assay modalities. Results A fit of the elastic-net regularized regression to 197 samples and integrated analysis of four genomic platforms identified the set of top gene predictors of advanced clinical stage, including: WRN, SYK, DDX5 and ADRA2C. These genetic features were identified robustly in bootstrap resampling analysis. Conclusions We conducted an analysis integrating multiple genomic features including mutations, copy number alterations, gene expression and methylation. This integrated approach in which one considers all of these genomic features performs better than any individual genomic assay. We identified multiple genes that robustly delineate advanced clinical stage, suggesting their possible role in colorectal cancer metastatic progression. PMID:24308539

  6. Identifying Autocorrelation Generated by Various Error Processes in Interrupted Time-Series Regression Designs: A Comparison of AR1 and Portmanteau Tests

    ERIC Educational Resources Information Center

    Huitema, Bradley E.; McKean, Joseph W.

    2007-01-01

    Regression models used in the analysis of interrupted time-series designs assume statistically independent errors. Four methods of evaluating this assumption are the Durbin-Watson (D-W), Huitema-McKean (H-M), Box-Pierce (B-P), and Ljung-Box (L-B) tests. These tests were compared with respect to Type I error and power under a wide variety of error…

  7. Fall-related self-efficacy, not balance and mobility performance, is related to accidental falls in chronic stroke survivors with low bone mineral density.

    PubMed

    Pang, M Y C; Eng, J J

    2008-07-01

    Chronic stroke survivors with low hip bone density are particularly prone to fractures. This study shows that fear of falling is independently associated with falls in this population. Thus, fear of falling should not be overlooked in the prevention of fragility fractures in these patients. Chronic stroke survivors with low bone mineral density (BMD) are particularly prone to fragility fractures. The purpose of this study was to identify the determinants of balance, mobility and falls in this sub-group of stroke patients. Thirty-nine chronic stroke survivors with low hip BMD (T-score <-1.0) were studied. Each subject was evaluated for the following: balance, mobility, leg muscle strength, spasticity, and fall-related self-efficacy. Any falls in the past 12 months were also recorded. Multiple regression analysis was used to identify the determinants of balance and mobility performance, whereas logistic regression was used to identify the determinants of falls. Multiple regression analysis revealed that after adjusting for basic demographics, fall-related self-efficacy remained independently associated with balance/mobility performance (R2 = 0.494, P < 0.001). Logistic regression showed that fall-related self-efficacy, but not balance and mobility performance, was a significant determinant of falls (odds ratio: 0.18, P = 0.04). Fall-related self-efficacy, but not mobility and balance performance, was the most important determinant of accidental falls. This psychological factor should not be overlooked in the prevention of fragility fractures among chronic stroke survivors with low hip BMD.

  8. Practical Guidance for Conducting Mediation Analysis With Multiple Mediators Using Inverse Odds Ratio Weighting

    PubMed Central

    Nguyen, Quynh C.; Osypuk, Theresa L.; Schmidt, Nicole M.; Glymour, M. Maria; Tchetgen Tchetgen, Eric J.

    2015-01-01

    Despite the recent flourishing of mediation analysis techniques, many modern approaches are difficult to implement or applicable to only a restricted range of regression models. This report provides practical guidance for implementing a new technique utilizing inverse odds ratio weighting (IORW) to estimate natural direct and indirect effects for mediation analyses. IORW takes advantage of the odds ratio's invariance property and condenses information on the odds ratio for the relationship between the exposure (treatment) and multiple mediators, conditional on covariates, by regressing exposure on mediators and covariates. The inverse of the covariate-adjusted exposure-mediator odds ratio association is used to weight the primary analytical regression of the outcome on treatment. The treatment coefficient in such a weighted regression estimates the natural direct effect of treatment on the outcome, and indirect effects are identified by subtracting direct effects from total effects. Weighting renders treatment and mediators independent, thereby deactivating indirect pathways of the mediators. This new mediation technique accommodates multiple discrete or continuous mediators. IORW is easily implemented and is appropriate for any standard regression model, including quantile regression and survival analysis. An empirical example is given using data from the Moving to Opportunity (1994–2002) experiment, testing whether neighborhood context mediated the effects of a housing voucher program on obesity. Relevant Stata code (StataCorp LP, College Station, Texas) is provided. PMID:25693776

  9. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis.

    PubMed

    van Smeden, Maarten; de Groot, Joris A H; Moons, Karel G M; Collins, Gary S; Altman, Douglas G; Eijkemans, Marinus J C; Reitsma, Johannes B

    2016-11-24

    Ten events per variable (EPV) is a widely advocated minimal criterion for sample size considerations in logistic regression analysis. Of three previous simulation studies that examined this minimal EPV criterion only one supports the use of a minimum of 10 EPV. In this paper, we examine the reasons for substantial differences between these extensive simulation studies. The current study uses Monte Carlo simulations to evaluate small sample bias, coverage of confidence intervals and mean square error of logit coefficients. Logistic regression models fitted by maximum likelihood and a modified estimation procedure, known as Firth's correction, are compared. The results show that besides EPV, the problems associated with low EPV depend on other factors such as the total sample size. It is also demonstrated that simulation results can be dominated by even a few simulated data sets for which the prediction of the outcome by the covariates is perfect ('separation'). We reveal that different approaches for identifying and handling separation leads to substantially different simulation results. We further show that Firth's correction can be used to improve the accuracy of regression coefficients and alleviate the problems associated with separation. The current evidence supporting EPV rules for binary logistic regression is weak. Given our findings, there is an urgent need for new research to provide guidance for supporting sample size considerations for binary logistic regression analysis.

  10. Improving power and robustness for detecting genetic association with extreme-value sampling design.

    PubMed

    Chen, Hua Yun; Li, Mingyao

    2011-12-01

    Extreme-value sampling design that samples subjects with extremely large or small quantitative trait values is commonly used in genetic association studies. Samples in such designs are often treated as "cases" and "controls" and analyzed using logistic regression. Such a case-control analysis ignores the potential dose-response relationship between the quantitative trait and the underlying trait locus and thus may lead to loss of power in detecting genetic association. An alternative approach to analyzing such data is to model the dose-response relationship by a linear regression model. However, parameter estimation from this model can be biased, which may lead to inflated type I errors. We propose a robust and efficient approach that takes into consideration of both the biased sampling design and the potential dose-response relationship. Extensive simulations demonstrate that the proposed method is more powerful than the traditional logistic regression analysis and is more robust than the linear regression analysis. We applied our method to the analysis of a candidate gene association study on high-density lipoprotein cholesterol (HDL-C) which includes study subjects with extremely high or low HDL-C levels. Using our method, we identified several SNPs showing a stronger evidence of association with HDL-C than the traditional case-control logistic regression analysis. Our results suggest that it is important to appropriately model the quantitative traits and to adjust for the biased sampling when dose-response relationship exists in extreme-value sampling designs. © 2011 Wiley Periodicals, Inc.

  11. An Analysis of Losses to the Southern Commercial Timberland Base

    Treesearch

    Ian A. Munn; David Cleaves

    1998-01-01

    Demographic and physical factors influencing the conversion of commercial timberland iu the south to non-forestry uses between the last two Forest Inventory Analysis (FIA) surveys were investigated. GIS techniques linked Census data and FIA plot level data. Multinomial logit regression identified factors associated with losses to the timberland base. Conversion to...

  12. Job Satisfaction in Mexican Faculty: An Analysis of its Predictor Variables. ASHE Annual Meeting Paper.

    ERIC Educational Resources Information Center

    Galaz-Fontes, Jesus Francisco; Gil-Anton, Manuel

    This study examined overall job satisfaction among college faculty in Mexico. The study used data from a 1992-93 Carnegie International Faculty Survey. Secondary multiple regression analysis identified predictor variables for several faculty subgroups. Results were interpreted by differentiating between work-related and intrinsic factors, as well…

  13. Factors associated with discontinuation of aripiprazole treatment after switching from other antipsychotics in patients with chronic schizophrenia: A prospective observational study.

    PubMed

    Takaesu, Yoshikazu; Kishimoto, Taishiro; Murakoshi, Akiko; Takahashi, Nobutada; Inoue, Yuichi

    2016-02-28

    The purpose of the study was to identify factors associated with discontinuation of aripiprazole after switching from other antipsychotics in patients with schizophrenia in real world clinical settings. From January 2011 to December 2012, a prospective, 48-week open-label study was undertaken. Thirty-eight subjects on antipsychotic monotherapy were switched to aripiprazole. Patients who discontinued aripiprazole were compared to those who continued with regards to demographic characteristics as well as treatment factors. Multiple regression analysis was conducted to identify predictors for aripiprazole discontinuation. Thirteen out of 38 patients (34.2%) discontinued aripiprazole during the follow up period. Nine patients (23.7%) discontinued aripiprazole due to worsening of psychotic symptoms. Multiple logistic regression analysis revealed that only the duration of previous antipsychotic treatment was associated with aripiprazole discontinuation after switching to aripiprazole. The receiver operating curve (ROC) analysis identified that the cut-off length for duration of illness to predict aripiprazole discontinuation was 10.5 years. Longer duration of illness was associated with aripiprazole discontinuation. Greater caution may be required when treating such patients with aripiprazole. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Chordee and Penile Shortening Rather Than Voiding Function Are Associated With Patient Dissatisfaction After Urethroplasty.

    PubMed

    Maciejewski, Conrad C; Haines, Trevor; Rourke, Keith F

    2017-05-01

    To identify factors that predict patient satisfaction after urethroplasty by prospectively examining patient-reported quality of life scores using 3 validated instruments. A 3-part prospective survey consisting of the International Prostate Symptom Score (IPSS), the International Index of Erectile Function (IIEF) score, and a urethroplasty quality of life survey was completed by patients who underwent urethroplasty preoperatively and at 6 months postoperatively. The quality of life score included questions on genitourinary pain, urinary tract infection (UTI), postvoid dribbling, chordee, shortening, overall satisfaction, and overall health. Data were analyzed using descriptive statistics, paired t test, univariate and multivariate logistic regression analyses, and Wilcoxon signed-rank analysis. Patients were enrolled in the study from February 2011 to December 2014, and a total of 94 patients who underwent a total of 102 urethroplasties completed the study. Patients reported statistically significant improvements in IPSS (P < .001). Ordinal linear regression analysis revealed no association between age, IPSS, or IIEF score and patient satisfaction. Wilcoxon signed-rank analysis revealed significant improvements in pain scores (P = .02), UTI (P < .001), perceived overall health (P = .01), and satisfaction (P < .001). Univariate logistic regression identified a length >4 cm and the absence of UTI, pain, shortening, and chordee as predictors of patient satisfaction. Multivariate analysis of quality of life domain scores identified absence of shortening and absence of chordee as independent predictors of patient satisfaction following urethroplasty (P < .01). Patient voiding function and quality of life improve significantly following urethroplasty, but improvement in voiding function is not associated with patient satisfaction. Chordee status and perceived penile shortening impact patient satisfaction, and should be included in patient-reported outcome measures. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Model parameter uncertainty analysis for an annual field-scale P loss model

    NASA Astrophysics Data System (ADS)

    Bolster, Carl H.; Vadas, Peter A.; Boykin, Debbie

    2016-08-01

    Phosphorous (P) fate and transport models are important tools for developing and evaluating conservation practices aimed at reducing P losses from agricultural fields. Because all models are simplifications of complex systems, there will exist an inherent amount of uncertainty associated with their predictions. It is therefore important that efforts be directed at identifying, quantifying, and communicating the different sources of model uncertainties. In this study, we conducted an uncertainty analysis with the Annual P Loss Estimator (APLE) model. Our analysis included calculating parameter uncertainties and confidence and prediction intervals for five internal regression equations in APLE. We also estimated uncertainties of the model input variables based on values reported in the literature. We then predicted P loss for a suite of fields under different management and climatic conditions while accounting for uncertainties in the model parameters and inputs and compared the relative contributions of these two sources of uncertainty to the overall uncertainty associated with predictions of P loss. Both the overall magnitude of the prediction uncertainties and the relative contributions of the two sources of uncertainty varied depending on management practices and field characteristics. This was due to differences in the number of model input variables and the uncertainties in the regression equations associated with each P loss pathway. Inspection of the uncertainties in the five regression equations brought attention to a previously unrecognized limitation with the equation used to partition surface-applied fertilizer P between leaching and runoff losses. As a result, an alternate equation was identified that provided similar predictions with much less uncertainty. Our results demonstrate how a thorough uncertainty and model residual analysis can be used to identify limitations with a model. Such insight can then be used to guide future data collection and model development and evaluation efforts.

  16. HRCT findings of collagen vascular disease-related interstitial pneumonia (CVD-IP): a comparative study among individual underlying diseases.

    PubMed

    Tanaka, N; Kunihiro, Y; Kubo, M; Kawano, R; Oishi, K; Ueda, K; Gondo, T

    2018-05-29

    To identify characteristic high-resolution computed tomography (CT) findings for individual collagen vascular disease (CVD)-related interstitial pneumonias (IPs). The HRCT findings of 187 patients with CVD, including 55 patients with rheumatoid arthritis (RA), 50 with systemic sclerosis (SSc), 46 with polymyositis/dermatomyositis (PM/DM), 15 with mixed connective tissue disease, 11 with primary Sjögren's syndrome, and 10 with systemic lupus erythematosus, were evaluated. Lung parenchymal abnormalities were compared among CVDs using χ 2 test, Kruskal-Wallis test, and multiple logistic regression analysis. A CT-pathology correlation was performed in 23 patients. In RA-IP, honeycombing was identified as the significant indicator based on multiple logistic regression analyses. Traction bronchiectasis (81.8%) was further identified as the most frequent finding based on χ 2 test. In SSc IP, lymph node enlargement and oesophageal dilatation were identified as the indicators based on multiple logistic regression analyses, and ground-glass opacity (GGO) was the most extensive based on Kruskal-Wallis test, which reflects the higher frequency of the pathological nonspecific interstitial pneumonia (NSIP) pattern present in the CT-pathology correlation. In PM/DM IP, airspace consolidation and the absence of honeycombing were identified as the indicators based on multiple logistic regression analyses, and predominance of consolidation over GGO (32.6%) and predominant subpleural distribution of GGO/consolidation (41.3%) were further identified as the most frequent findings based on χ 2 test, which reflects the higher frequency of the pathological NSIP and/or the organising pneumonia patterns present in the CT-pathology correlation. Several characteristic high-resolution CT findings with utility for estimating underlying CVD were identified. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  17. Assessing host-specificity of Escherichia coli using a supervised learning logic-regression-based analysis of single nucleotide polymorphisms in intergenic regions.

    PubMed

    Zhi, Shuai; Li, Qiaozhi; Yasui, Yutaka; Edge, Thomas; Topp, Edward; Neumann, Norman F

    2015-11-01

    Host specificity in E. coli is widely debated. Herein, we used supervised learning logic-regression-based analysis of intergenic DNA sequence variability in E. coli in an attempt to identify single nucleotide polymorphism (SNP) biomarkers of E. coli that are associated with natural selection and evolution toward host specificity. Seven-hundred and eighty strains of E. coli were isolated from 15 different animal hosts. We utilized logic regression for analyzing DNA sequence data of three intergenic regions (flanked by the genes uspC-flhDC, csgBAC-csgDEFG, and asnS-ompF) to identify genetic biomarkers that could potentially discriminate E. coli based on host sources. Across 15 different animal hosts, logic regression successfully discriminated E. coli based on animal host source with relatively high specificity (i.e., among the samples of the non-target animal host, the proportion that correctly did not have the host-specific marker pattern) and sensitivity (i.e., among the samples from a given animal host, the proportion that correctly had the host-specific marker pattern), even after fivefold cross validation. Permutation tests confirmed that for most animals, host specific intergenic biomarkers identified by logic regression in E. coli were significantly associated with animal host source. The highest level of biomarker sensitivity was observed in deer isolates, with 82% of all deer E. coli isolates displaying a unique SNP pattern that was 98% specific to deer. Fifty-three percent of human isolates displayed a unique biomarker pattern that was 98% specific to humans. Twenty-nine percent of cattle isolates displayed a unique biomarker that was 97% specific to cattle. Interestingly, even within a related host group (i.e., Family: Canidae [domestic dogs and coyotes]), highly specific SNP biomarkers (98% and 99% specificity for dog and coyotes, respectively) were observed, with 21% of dog E. coli isolates displaying a unique dog biomarker and 61% of coyote isolates displaying a unique coyote biomarker. Application of a supervised learning method, such as logic regression, to DNA sequence analysis at certain intergenic regions demonstrates that some E. coli strains may evolve to become host-specific. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Effect of partition board color on mood and autonomic nervous function.

    PubMed

    Sakuragi, Sokichi; Sugiyama, Yoshiki

    2011-12-01

    The purpose of this study was to evaluate the effects of the presence or absence (control) of a partition board and its color (red, yellow, blue) on subjective mood ratings and changes in autonomic nervous system indicators induced by a video game task. The increase in the mean Profile of Mood States (POMS) Fatigue score and mean Oppressive feeling rating after the task was lowest with the blue partition board. Multiple-regression analysis identified oppressive feeling and error scores on the second half of the task as statistically significant contributors to Fatigue. While explanatory variables were limited to the physiological indices, multiple-regression analysis identified a significant contribution of autonomic reactivity (assessed by heart rate variability) to Fatigue. These results suggest that a blue partition board would reduce task-induced subjective fatigue, in part by lowering the oppressive feeling of being enclosed during the task, possibly by increasing autonomic reactivity.

  19. Online Patient Education for Chronic Disease Management: Consumer Perspectives.

    PubMed

    Win, Khin Than; Hassan, Naffisah Mohd; Oinas-Kukkonen, Harri; Probst, Yasmine

    2016-04-01

    Patient education plays an important role in chronic disease management. The aim of this study is to identify patients' preferences in regard to the design features of effective online patient education (OPE) and the benefits. A review of the existing literature was conducted in order to identify the benefits of OPE and its essential design features. These design features were empirically tested by conducting survey with patients and caregivers. Reliability analysis, construct validity and regression analysis were performed for data analysis. The results identified patient-tailored information, interactivity, content credibility, clear presentation of content, use of multimedia and interpretability as the essential design features of online patient education websites for chronic disease management.

  20. Proteomic analysis of early-stage embryos: implications for egg quality in hapuku (Polyprion oxygeneios).

    PubMed

    Kohn, Yair Y; Symonds, Jane E; Kleffmann, Torsten; Nakagawa, Shinichi; Lagisz, Malgorzata; Lokman, P Mark

    2015-12-01

    In order to develop biomarkers that may help predict the egg quality of captive hapuku (Polyprion oxygeneios) and provide potential avenues for its manipulation, the present study (1) sequenced the proteome of early-stage embryos using isobaric tag for relative and absolute quantification analysis, and (2) aimed to establish the predictive value of the abundance of identified proteins with regard to egg quality through regression analysis. Egg quality was determined for eight different egg batches by blastomere symmetry scores. In total, 121 proteins were identified and assigned to one of nine major groups according to their function/pathway. A mixed-effects model analysis revealed a decrease in relative protein abundance that correlated with (decreasing) egg quality in one major group (heat-shock proteins). No differences were found in the other protein groups. Linear regression analysis, performed for each identified protein separately, revealed seven proteins that showed a significant decrease in relative abundance with reduced blastomere symmetry: two correlates that have been named in other studies (vitellogenin, heat-shock protein-70) and a further five new candidate proteins (78 kDa glucose-regulated protein, elongation factor-2, GTP-binding nuclear protein Ran, iduronate 2-sulfatase and 6-phosphogluconate dehydrogenase). Notwithstanding issues associated with multiple statistical testing, we conclude that these proteins, and especially iduronate 2-sulfatase and the generic heat-shock protein group, could serve as biomarkers of egg quality in hapuku.

  1. Risk factors for highly pathogenic avian influenza in commercial layer chicken farms in bangladesh during 2011.

    PubMed

    Osmani, M G; Thornton, R N; Dhand, N K; Hoque, M A; Milon, Sk M A; Kalam, M A; Hossain, M; Yamage, M

    2014-12-01

    A case-control study conducted during 2011 involved 90 randomly selected commercial layer farms infected with highly pathogenic avian influenza type A subtype H5N1 (HPAI) and 175 control farms randomly selected from within 5 km of infected farms. A questionnaire was designed to obtain information about potential risk factors for contracting HPAI and was administered to farm owners or managers. Logistic regression analyses were conducted to identify significant risk factors. A total of 20 of 43 risk factors for contracting HPAI were identified after univariable logistic regression analysis. A multivariable logistic regression model was derived by forward stepwise selection. Both unmatched and matched analyses were performed. The key risk factors identified were numbers of staff, frequency of veterinary visits, presence of village chickens roaming on the farm and staff trading birds. Aggregating these findings with those from other studies resulted in a list of 16 key risk factors identified in Bangladesh. Most of these related to biosecurity. It is considered feasible for Bangladesh to achieve a very low incidence of HPAI. Using the cumulative list of risk factors to enhance biosecurity pertaining to commercial farms would facilitate this objective. © 2013 Blackwell Verlag GmbH.

  2. Neurophysiological correlates of depressive symptoms in young adults: A quantitative EEG study.

    PubMed

    Lee, Poh Foong; Kan, Donica Pei Xin; Croarkin, Paul; Phang, Cheng Kar; Doruk, Deniz

    2018-01-01

    There is an unmet need for practical and reliable biomarkers for mood disorders in young adults. Identifying the brain activity associated with the early signs of depressive disorders could have important diagnostic and therapeutic implications. In this study we sought to investigate the EEG characteristics in young adults with newly identified depressive symptoms. Based on the initial screening, a total of 100 participants (n = 50 euthymic, n = 50 depressive) underwent 32-channel EEG acquisition. Simple logistic regression and C-statistic were used to explore if EEG power could be used to discriminate between the groups. The strongest EEG predictors of mood using multivariate logistic regression models. Simple logistic regression analysis with subsequent C-statistics revealed that only high-alpha and beta power originating from the left central cortex (C3) have a reliable discriminative value (ROC curve >0.7 (70%)) for differentiating the depressive group from the euthymic group. Multivariate regression analysis showed that the single most significant predictor of group (depressive vs. euthymic) is the high-alpha power over C3 (p = 0.03). The present findings suggest that EEG is a useful tool in the identification of neurophysiological correlates of depressive symptoms in young adults with no previous psychiatric history. Our results could guide future studies investigating the early neurophysiological changes and surrogate outcomes in depression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Classification and regression tree analysis of acute-on-chronic hepatitis B liver failure: Seeing the forest for the trees.

    PubMed

    Shi, K-Q; Zhou, Y-Y; Yan, H-D; Li, H; Wu, F-L; Xie, Y-Y; Braddock, M; Lin, X-Y; Zheng, M-H

    2017-02-01

    At present, there is no ideal model for predicting the short-term outcome of patients with acute-on-chronic hepatitis B liver failure (ACHBLF). This study aimed to establish and validate a prognostic model by using the classification and regression tree (CART) analysis. A total of 1047 patients from two separate medical centres with suspected ACHBLF were screened in the study, which were recognized as derivation cohort and validation cohort, respectively. CART analysis was applied to predict the 3-month mortality of patients with ACHBLF. The accuracy of the CART model was tested using the area under the receiver operating characteristic curve, which was compared with the model for end-stage liver disease (MELD) score and a new logistic regression model. CART analysis identified four variables as prognostic factors of ACHBLF: total bilirubin, age, serum sodium and INR, and three distinct risk groups: low risk (4.2%), intermediate risk (30.2%-53.2%) and high risk (81.4%-96.9%). The new logistic regression model was constructed with four independent factors, including age, total bilirubin, serum sodium and prothrombin activity by multivariate logistic regression analysis. The performances of the CART model (0.896), similar to the logistic regression model (0.914, P=.382), exceeded that of MELD score (0.667, P<.001). The results were confirmed in the validation cohort. We have developed and validated a novel CART model superior to MELD for predicting three-month mortality of patients with ACHBLF. Thus, the CART model could facilitate medical decision-making and provide clinicians with a validated practical bedside tool for ACHBLF risk stratification. © 2016 John Wiley & Sons Ltd.

  4. [Prevalence of vitamin D deficiency and associated factors in women and newborns in the immediate postpartum period].

    PubMed

    do Prado, Mara Rúbia Maciel Cardoso; Oliveira, Fabiana de Cássia Carvalho; Assis, Karine Franklin; Ribeiro, Sarah Aparecida Vieira; do Prado Junior, Pedro Paulo; Sant'Ana, Luciana Ferreira da Rocha; Priore, Silvia Eloiza; Franceschini, Sylvia do Carmo Castro

    2015-01-01

    To assess the prevalence of vitamin D deficiency and its associated factors in women and their newborns in the postpartum period. This cross-sectional study evaluated vitamin D deficiency/insufficiency in 226 women and their newborns in Viçosa (Minas Gerais, BR) between December 2011 and November 2012. Cord blood and venous maternal blood were collected to evaluate the following biochemical parameters: vitamin D, alkaline phosphatase, calcium, phosphorus and parathyroid hormone. Poisson regression analysis, with a confidence interval of 95% was applied to assess vitamin D deficiency and its associated factors. Multiple linear regression analysis was performed to identify factors associated with 25(OH)D deficiency in the newborns and women from the study. The criteria for variable inclusion in the multiple linear regression model was the association with the dependent variable in the simple linear regression analysis, considering p<0.20. Significance level was α<5%. From 226 women included, 200 (88.5%) were 20 to 44 years old; the median age was 28 years. Deficient/insufficient levels of vitamin D were found in 192 (85%) women and in 182 (80.5%) neonates. The maternal 25(OH)D and alkaline phosphatase levels were independently associated with vitamin D deficiency in infants. This study identified a high prevalence of vitamin D deficiency and insufficiency in women and newborns and the association between maternal nutritional status of vitamin D and their infants' vitamin D status. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  5. Multiple Regression Analysis of mRNA-miRNA Associations in Colorectal Cancer Pathway

    PubMed Central

    Wang, Fengfeng; Wong, S. C. Cesar; Chan, Lawrence W. C.; Cho, William C. S.; Yip, S. P.; Yung, Benjamin Y. M.

    2014-01-01

    Background. MicroRNA (miRNA) is a short and endogenous RNA molecule that regulates posttranscriptional gene expression. It is an important factor for tumorigenesis of colorectal cancer (CRC), and a potential biomarker for diagnosis, prognosis, and therapy of CRC. Our objective is to identify the related miRNAs and their associations with genes frequently involved in CRC microsatellite instability (MSI) and chromosomal instability (CIN) signaling pathways. Results. A regression model was adopted to identify the significantly associated miRNAs targeting a set of candidate genes frequently involved in colorectal cancer MSI and CIN pathways. Multiple linear regression analysis was used to construct the model and find the significant mRNA-miRNA associations. We identified three significantly associated mRNA-miRNA pairs: BCL2 was positively associated with miR-16 and SMAD4 was positively associated with miR-567 in the CRC tissue, while MSH6 was positively associated with miR-142-5p in the normal tissue. As for the whole model, BCL2 and SMAD4 models were not significant, and MSH6 model was significant. The significant associations were different in the normal and the CRC tissues. Conclusion. Our results have laid down a solid foundation in exploration of novel CRC mechanisms, and identification of miRNA roles as oncomirs or tumor suppressor mirs in CRC. PMID:24895601

  6. Exploring the social determinants of mental health service use using intersectionality theory and CART analysis.

    PubMed

    Cairney, John; Veldhuizen, Scott; Vigod, Simone; Streiner, David L; Wade, Terrance J; Kurdyak, Paul

    2014-02-01

    Fewer than half of individuals with a mental disorder seek formal care in a given year. Much research has been conducted on the factors that influence service use in this population, but the methods generally used cannot easily identify the complex interactions that are thought to exist. In this paper, we examine predictors of subsequent service use among respondents to a population health survey who met criteria for a past-year mood, anxiety or substance-related disorder. To determine service use, we use an administrative database including all physician consultations in the period of interest. To identify predictors, we use classification tree (CART) analysis, a data mining technique with the ability to identify unsuspected interactions. We compare results to those from logistic regression models. We identify 1213 individuals with past-year disorder. In the year after the survey, 24% (n=312) of these had a mental health-related physician consultation. Logistic regression revealed that age, sex and marital status predicted service use. CART analysis yielded a set of rules based on age, sex, marital status and income adequacy, with marital status playing a role among men and by income adequacy important among women. CART analysis proved moderately effective overall, with agreement of 60%, sensitivity of 82% and specificity of 53%. Results highlight the potential of data-mining techniques to uncover complex interactions, and offer support to the view that the intersection of multiple statuses influence health and behaviour in ways that are difficult to identify with conventional statistics. The disadvantages of these methods are also discussed.

  7. Partial Least Squares Regression Models for the Analysis of Kinase Signaling.

    PubMed

    Bourgeois, Danielle L; Kreeger, Pamela K

    2017-01-01

    Partial least squares regression (PLSR) is a data-driven modeling approach that can be used to analyze multivariate relationships between kinase networks and cellular decisions or patient outcomes. In PLSR, a linear model relating an X matrix of dependent variables and a Y matrix of independent variables is generated by extracting the factors with the strongest covariation. While the identified relationship is correlative, PLSR models can be used to generate quantitative predictions for new conditions or perturbations to the network, allowing for mechanisms to be identified. This chapter will provide a brief explanation of PLSR and provide an instructive example to demonstrate the use of PLSR to analyze kinase signaling.

  8. Use of Case History Data for the Development of Equations in Predicting High Risk, Reading Disabled Students.

    ERIC Educational Resources Information Center

    Stratton, Beverly D.; And Others

    Demographic data on 92 subjects identified as having reading problems were used to develop equations useful in identifying high risk, reading disabled students. Multiple linear regression analysis of the data indicated that reading disability (1) had a significant positive relationship with birth order and number of siblings; (2) had a positive…

  9. Effect of duration of denervation on outcomes of ansa-recurrent laryngeal nerve reinnervation.

    PubMed

    Li, Meng; Chen, Shicai; Wang, Wei; Chen, Donghui; Zhu, Minhui; Liu, Fei; Zhang, Caiyun; Li, Yan; Zheng, Hongliang

    2014-08-01

    To investigate the efficacy of laryngeal reinnervation with ansa cervicalis among unilateral vocal fold paralysis (UVFP) patients with different denervation durations. We retrospectively reviewed 349 consecutive UVFP cases of delayed ansa cervicalis to the recurrent laryngeal nerve (RLN) anastomosis. Potential influencing factors were analyzed in multivariable logistic regression analysis. Stratification analysis performed was aimed at one of the identified significant variables: denervation duration. Videostroboscopy, perceptual evaluation, acoustic analysis, maximum phonation time (MPT), and laryngeal electromyography (EMG) were performed preoperatively and postoperatively. Gender, age, preoperative EMG status and denervation duration were analyzed in multivariable logistic regression analysis. Stratification analysis was performed on denervation duration, which was divided into three groups according to the interval between RLN injury and reinnervation: group A, 6 to 12 months; group B, 12 to 24 months; and group C, > 24 months. Age, preoperative EMG, and denervation duration were identified as significant variables in multivariable logistic regression analysis. Stratification analysis on denervation duration showed significant differences between group A and C and between group B and C (P < 0.05)-but showed no significant difference between group A and B (P > 0.05) with regard to parameters overall grade, jitter, shimmer, noise-to-harmonics ratio, MPT, and postoperative EMG. In addition, videostroboscopic and laryngeal EMG data, perceptual and acoustic parameters, and MPT values were significantly improved postoperatively in each denervation duration group (P < 0.01). Although delayed laryngeal reinnervation is proved valid for UVFP, surgical outcome is better if the procedure is performed within 2 years after nerve injury than that over 2 years. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  10. Managing Complexity in Evidence Analysis: A Worked Example in Pediatric Weight Management.

    PubMed

    Parrott, James Scott; Henry, Beverly; Thompson, Kyle L; Ziegler, Jane; Handu, Deepa

    2018-05-02

    Nutrition interventions are often complex and multicomponent. Typical approaches to meta-analyses that focus on individual causal relationships to provide guideline recommendations are not sufficient to capture this complexity. The objective of this study is to describe the method of meta-analysis used for the Pediatric Weight Management (PWM) Guidelines update and provide a worked example that can be applied in other areas of dietetics practice. The effects of PWM interventions were examined for body mass index (BMI), body mass index z-score (BMIZ), and waist circumference at four different time periods. For intervention-level effects, intervention types were identified empirically using multiple correspondence analysis paired with cluster analysis. Pooled effects of identified types were examined using random effects meta-analysis models. Differences in effects among types were examined using meta-regression. Context-level effects are examined using qualitative comparative analysis. Three distinct types (or families) of PWM interventions were identified: medical nutrition, behavioral, and missing components. Medical nutrition and behavioral types showed statistically significant improvements in BMIZ across all time points. Results were less consistent for BMI and waist circumference, although four distinct patterns of weight status change were identified. These varied by intervention type as well as outcome measure. Meta-regression indicated statistically significant differences between the medical nutrition and behavioral types vs the missing component type for both BMIZ and BMI, although the pattern varied by time period and intervention type. Qualitative comparative analysis identified distinct configurations of context characteristics at each time point that were consistent with positive outcomes among the intervention types. Although analysis of individual causal relationships is invaluable, this approach is inadequate to capture the complexity of dietetics practice. An alternative approach that integrates intervention-level with context-level meta-analyses may provide deeper understanding in the development of practice guidelines. Copyright © 2018 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  11. A retrospective analysis of the role of proton pump inhibitors in colorectal cancer disease survival

    PubMed Central

    Graham, C.; Orr, C.; Bricks, C.S.; Hopman, W.M.; Hammad, N.; Ramjeesingh, R.

    2016-01-01

    Background Proton pump inhibitors (ppis) are a commonly used medication. A limited number of studies have identified a weak-to-moderate association between ppi use and colorectal cancer (crc) risk, but none to date have identified an effect of ppi use on crc survival. We therefore postulated that an association between ppi use and crc survival might potentially exist. Methods We performed a retrospective chart review of 1304 crc patients diagnosed from January 2005 to December 2011 and treated at the Cancer Centre of Southeastern Ontario. Kaplan–Meier analysis and Cox proportional hazards regression models were used to evaluate overall survival (os). Results We identified 117 patients (9.0%) who were taking ppis at the time of oncology consult. Those taking a ppi were also more often taking asa or statins (or both) and had a statistically significantly increased rate of cardiac disease. No identifiable difference in tumour characteristics was evident in the two groups, including tumour location, differentiation, lymph node status, and stage. Univariate analysis identified a statistically nonsignificant difference in survival, with those taking a ppi experiencing lesser 1-year (82.1% vs. 86.7%, p = 0.161), 2-year (70.1% vs. 76.8%, p = 0.111), and 5-year os (55.2% vs. 62.9%, p = 0.165). When controlling for patient demographics and tumour characteristics, multivariate Cox regression analysis identified a statistically significant effect of ppi in our patient population (hazard ratio: 1.343; 95% confidence interval: 1.011 to 1.785; p = 0.042). Conclusions Our results suggest a potential adverse effect of ppi use on os in crc patients. These results need further evaluation in prospective analyses. PMID:28050148

  12. A Comparison of Rule-based Analysis with Regression Methods in Understanding the Risk Factors for Study Withdrawal in a Pediatric Study.

    PubMed

    Haghighi, Mona; Johnson, Suzanne Bennett; Qian, Xiaoning; Lynch, Kristian F; Vehik, Kendra; Huang, Shuai

    2016-08-26

    Regression models are extensively used in many epidemiological studies to understand the linkage between specific outcomes of interest and their risk factors. However, regression models in general examine the average effects of the risk factors and ignore subgroups with different risk profiles. As a result, interventions are often geared towards the average member of the population, without consideration of the special health needs of different subgroups within the population. This paper demonstrates the value of using rule-based analysis methods that can identify subgroups with heterogeneous risk profiles in a population without imposing assumptions on the subgroups or method. The rules define the risk pattern of subsets of individuals by not only considering the interactions between the risk factors but also their ranges. We compared the rule-based analysis results with the results from a logistic regression model in The Environmental Determinants of Diabetes in the Young (TEDDY) study. Both methods detected a similar suite of risk factors, but the rule-based analysis was superior at detecting multiple interactions between the risk factors that characterize the subgroups. A further investigation of the particular characteristics of each subgroup may detect the special health needs of the subgroup and lead to tailored interventions.

  13. Analysis of source regions and meteorological factors for the variability of spring PM10 concentrations in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Jangho; Kim, Kwang-Yul

    2018-02-01

    CSEOF analysis is applied for the springtime (March, April, May) daily PM10 concentrations measured at 23 Ministry of Environment stations in Seoul, Korea for the period of 2003-2012. Six meteorological variables at 12 pressure levels are also acquired from the ERA Interim reanalysis datasets. CSEOF analysis is conducted for each meteorological variable over East Asia. Regression analysis is conducted in CSEOF space between the PM10 concentrations and individual meteorological variables to identify associated atmospheric conditions for each CSEOF mode. By adding the regressed loading vectors with the mean meteorological fields, the daily atmospheric conditions are obtained for the first five CSEOF modes. Then, HYSPLIT model is run with the atmospheric conditions for each CSEOF mode in order to back trace the air parcels and dust reaching Seoul. The K-means clustering algorithm is applied to identify major source regions for each CSEOF mode of the PM10 concentrations in Seoul. Three main source regions identified based on the mean fields are: (1) northern Taklamakan Desert (NTD), (2) Gobi Desert and (GD), and (3) East China industrial area (ECI). The main source regions for the mean meteorological fields are consistent with those of previous study; 41% of the source locations are located in GD followed by ECI (37%) and NTD (21%). Back trajectory calculations based on CSEOF analysis of meteorological variables identify distinct source characteristics associated with each CSEOF mode and greatly facilitate the interpretation of the PM10 variability in Seoul in terms of transportation route and meteorological conditions including the source area.

  14. Practical application of cure mixture model for long-term censored survivor data from a withdrawal clinical trial of patients with major depressive disorder.

    PubMed

    Arano, Ichiro; Sugimoto, Tomoyuki; Hamasaki, Toshimitsu; Ohno, Yuko

    2010-04-23

    Survival analysis methods such as the Kaplan-Meier method, log-rank test, and Cox proportional hazards regression (Cox regression) are commonly used to analyze data from randomized withdrawal studies in patients with major depressive disorder. However, unfortunately, such common methods may be inappropriate when a long-term censored relapse-free time appears in data as the methods assume that if complete follow-up were possible for all individuals, each would eventually experience the event of interest. In this paper, to analyse data including such a long-term censored relapse-free time, we discuss a semi-parametric cure regression (Cox cure regression), which combines a logistic formulation for the probability of occurrence of an event with a Cox proportional hazards specification for the time of occurrence of the event. In specifying the treatment's effect on disease-free survival, we consider the fraction of long-term survivors and the risks associated with a relapse of the disease. In addition, we develop a tree-based method for the time to event data to identify groups of patients with differing prognoses (cure survival CART). Although analysis methods typically adapt the log-rank statistic for recursive partitioning procedures, the method applied here used a likelihood ratio (LR) test statistic from a fitting of cure survival regression assuming exponential and Weibull distributions for the latency time of relapse. The method is illustrated using data from a sertraline randomized withdrawal study in patients with major depressive disorder. We concluded that Cox cure regression reveals facts on who may be cured, and how the treatment and other factors effect on the cured incidence and on the relapse time of uncured patients, and that cure survival CART output provides easily understandable and interpretable information, useful both in identifying groups of patients with differing prognoses and in utilizing Cox cure regression models leading to meaningful interpretations.

  15. Impact of hyperglycemia on outcomes of patients with Pseudomonas aeruginosa bacteremia.

    PubMed

    Patel, Twisha S; Cottreau, Jessica M; Hirsch, Elizabeth B; Tam, Vincent H

    2016-02-01

    Bacteremia caused by Pseudomonas aeruginosa is associated with significant morbidity and mortality. In other bacterial infections, hyperglycemia has been identified as a risk factor for mortality in nondiabetic patients. The objective of this study was to determine the impact of early hyperglycemia on outcomes in diabetic and nondiabetic patients with P. aeruginosa bacteremia. A retrospective cohort study was performed in adult patients (≥18 years old) with P. aeruginosa bacteremia. Patients received at least 1 drug empirically to which the isolate was susceptible in vitro. Classification and regression tree analysis was used to determine the threshold breakpoint for average blood glucose concentration within 48 hours of positive blood culture (BG48). Logistic regression was used to explore independent risk factors for 30-day mortality. A total of 176 bacteremia episodes were identified; patients in 66 episodes were diabetic. Diabetic patients had higher BG48 (165.2±64.8 mg/dL versus 123.7±31.5 mg/dL, P<0.001) and lower 30-day mortality (10.7% versus 22.7%, P=0.046) than nondiabetic patients. Multivariate regression revealed 30-day mortality in nondiabetic patients was associated with Acute Physiology and Chronic Health Evaluation II score (odds ratio [OR] 1.1; 95% confidence interval [CI] 1.0-1.2) and BG48 >168 mg/dL (OR 6.3; 95% CI 1.7-23.3). However, blood glucose concentration was not identified as an independent risk factor for mortality in diabetic patients by multivariate regression analysis. Hyperglycemia did not appear to affect outcomes in diabetic patients, whereas nondiabetic patients had a higher risk of mortality from P. aeruginosa bacteremia. Prospective studies evaluating the impact of glycemic control in these patients are needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Investigating bias in squared regression structure coefficients

    PubMed Central

    Nimon, Kim F.; Zientek, Linda R.; Thompson, Bruce

    2015-01-01

    The importance of structure coefficients and analogs of regression weights for analysis within the general linear model (GLM) has been well-documented. The purpose of this study was to investigate bias in squared structure coefficients in the context of multiple regression and to determine if a formula that had been shown to correct for bias in squared Pearson correlation coefficients and coefficients of determination could be used to correct for bias in squared regression structure coefficients. Using data from a Monte Carlo simulation, this study found that squared regression structure coefficients corrected with Pratt's formula produced less biased estimates and might be more accurate and stable estimates of population squared regression structure coefficients than estimates with no such corrections. While our findings are in line with prior literature that identified multicollinearity as a predictor of bias in squared regression structure coefficients but not coefficients of determination, the findings from this study are unique in that the level of predictive power, number of predictors, and sample size were also observed to contribute bias in squared regression structure coefficients. PMID:26217273

  17. Design, innovation, and rural creative places: Are the arts the cherry on top, or the secret sauce?

    PubMed

    Wojan, Timothy R; Nichols, Bonnie

    2018-01-01

    Creative class theory explains the positive relationship between the arts and commercial innovation as the mutual attraction of artists and other creative workers by an unobserved creative milieu. This study explores alternative theories for rural settings, by analyzing establishment-level survey data combined with data on the local arts scene. The study identifies the local contextual factors associated with a strong design orientation, and estimates the impact that a strong design orientation has on the local economy. Data on innovation and design come from a nationally representative sample of establishments in tradable industries. Latent class analysis allows identifying unobserved subpopulations comprised of establishments with different design and innovation orientations. Logistic regression allows estimating the association between an establishment's design orientation and local contextual factors. A quantile instrumental variable regression allows assessing the robustness of the logistic regression results with respect to endogeneity. An estimate of design orientation at the local level derived from the survey is used to examine variation in economic performance during the period of recovery from the Great Recession (2010-2014). Three distinct innovation (substantive, nominal, and non-innovators) and design orientations (design-integrated, "design last finish," and no systematic approach to design) are identified. Innovation- and design-intensive establishments were identified in both rural and urban areas. Rural design-integrated establishments tended to locate in counties with more highly educated workforces and containing at least one performing arts organization. A quantile instrumental variable regression confirmed that the logistic regression result is robust to endogeneity concerns. Finally, rural areas characterized by design-integrated establishments experienced faster growth in wages relative to rural areas characterized by establishments using no systematic approach to design.

  18. Design, innovation, and rural creative places: Are the arts the cherry on top, or the secret sauce?

    PubMed Central

    Nichols, Bonnie

    2018-01-01

    Objective Creative class theory explains the positive relationship between the arts and commercial innovation as the mutual attraction of artists and other creative workers by an unobserved creative milieu. This study explores alternative theories for rural settings, by analyzing establishment-level survey data combined with data on the local arts scene. The study identifies the local contextual factors associated with a strong design orientation, and estimates the impact that a strong design orientation has on the local economy. Method Data on innovation and design come from a nationally representative sample of establishments in tradable industries. Latent class analysis allows identifying unobserved subpopulations comprised of establishments with different design and innovation orientations. Logistic regression allows estimating the association between an establishment’s design orientation and local contextual factors. A quantile instrumental variable regression allows assessing the robustness of the logistic regression results with respect to endogeneity. An estimate of design orientation at the local level derived from the survey is used to examine variation in economic performance during the period of recovery from the Great Recession (2010–2014). Results Three distinct innovation (substantive, nominal, and non-innovators) and design orientations (design-integrated, “design last finish,” and no systematic approach to design) are identified. Innovation- and design-intensive establishments were identified in both rural and urban areas. Rural design-integrated establishments tended to locate in counties with more highly educated workforces and containing at least one performing arts organization. A quantile instrumental variable regression confirmed that the logistic regression result is robust to endogeneity concerns. Finally, rural areas characterized by design-integrated establishments experienced faster growth in wages relative to rural areas characterized by establishments using no systematic approach to design. PMID:29489884

  19. A regression approach to the mapping of bio-physical characteristics of surface sediment using in situ and airborne hyperspectral acquisitions

    NASA Astrophysics Data System (ADS)

    Ibrahim, Elsy; Kim, Wonkook; Crawford, Melba; Monbaliu, Jaak

    2017-02-01

    Remote sensing has been successfully utilized to distinguish and quantify sediment properties in the intertidal environment. Classification approaches of imagery are popular and powerful yet can lead to site- and case-specific results. Such specificity creates challenges for temporal studies. Thus, this paper investigates the use of regression models to quantify sediment properties instead of classifying them. Two regression approaches, namely multiple regression (MR) and support vector regression (SVR), are used in this study for the retrieval of bio-physical variables of intertidal surface sediment of the IJzermonding, a Belgian nature reserve. In the regression analysis, mud content, chlorophyll a concentration, organic matter content, and soil moisture are estimated using radiometric variables of two airborne sensors, namely airborne hyperspectral sensor (AHS) and airborne prism experiment (APEX) and and using field hyperspectral acquisitions by analytical spectral device (ASD). The performance of the two regression approaches is best for the estimation of moisture content. SVR attains the highest accuracy without feature reduction while MR achieves good results when feature reduction is carried out. Sediment property maps are successfully obtained using the models and hyperspectral imagery where SVR used with all bands achieves the best performance. The study also involves the extraction of weights identifying the contribution of each band of the images in the quantification of each sediment property when MR and principal component analysis are used.

  20. Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression

    NASA Astrophysics Data System (ADS)

    Chu, Hone-Jay; Kong, Shish-Jeng; Chang, Chih-Hua

    2018-03-01

    The turbidity (TB) of a water body varies with time and space. Water quality is traditionally estimated via linear regression based on satellite images. However, estimating and mapping water quality require a spatio-temporal nonstationary model, while TB mapping necessitates the use of geographically and temporally weighted regression (GTWR) and geographically weighted regression (GWR) models, both of which are more precise than linear regression. Given the temporal nonstationary models for mapping water quality, GTWR offers the best option for estimating regional water quality. Compared with GWR, GTWR provides highly reliable information for water quality mapping, boasts a relatively high goodness of fit, improves the explanation of variance from 44% to 87%, and shows a sufficient space-time explanatory power. The seasonal patterns of TB and the main spatial patterns of TB variability can be identified using the estimated TB maps from GTWR and by conducting an empirical orthogonal function (EOF) analysis.

  1. Selenium Exposure and Cancer Risk: an Updated Meta-analysis and Meta-regression

    PubMed Central

    Cai, Xianlei; Wang, Chen; Yu, Wanqi; Fan, Wenjie; Wang, Shan; Shen, Ning; Wu, Pengcheng; Li, Xiuyang; Wang, Fudi

    2016-01-01

    The objective of this study was to investigate the associations between selenium exposure and cancer risk. We identified 69 studies and applied meta-analysis, meta-regression and dose-response analysis to obtain available evidence. The results indicated that high selenium exposure had a protective effect on cancer risk (pooled OR = 0.78; 95%CI: 0.73–0.83). The results of linear and nonlinear dose-response analysis indicated that high serum/plasma selenium and toenail selenium had the efficacy on cancer prevention. However, we did not find a protective efficacy of selenium supplement. High selenium exposure may have different effects on specific types of cancer. It decreased the risk of breast cancer, lung cancer, esophageal cancer, gastric cancer, and prostate cancer, but it was not associated with colorectal cancer, bladder cancer, and skin cancer. PMID:26786590

  2. Development and Validation of the Work-Related Well-Being Index: Analysis of the Federal Employee Viewpoint Survey.

    PubMed

    Eaton, Jennifer L; Mohr, David C; Hodgson, Michael J; McPhaul, Kathleen M

    2018-02-01

    To describe development and validation of the work-related well-being (WRWB) index. Principal components analysis was performed using Federal Employee Viewpoint Survey (FEVS) data (N = 392,752) to extract variables representing worker well-being constructs. Confirmatory factor analysis was performed to verify factor structure. To validate the WRWB index, we used multiple regression analysis to examine relationships with burnout associated outcomes. Principal Components Analysis identified three positive psychology constructs: "Work Positivity", "Co-worker Relationships", and "Work Mastery". An 11 item index explaining 63.5% of variance was achieved. The structural equation model provided a very good fit to the data. Higher WRWB scores were positively associated with all three employee experience measures examined in regression models. The new WRWB index shows promise as a valid and widely accessible instrument to assess worker well-being.

  3. [On the effectiveness of the homeopathic remedy Arnica montana].

    PubMed

    Lüdtke, Rainer; Hacke, Daniela

    2005-11-01

    Arnica montana is a homeopathic remedy often prescribed after traumata and injuries. To assess whether Arnica is effective beyond placebo and to identify factors which support or contradict this effectiveness. All prospective, controlled trials on the effectiveness of homeopathic Arnica were included. Overall effectiveness was assessed by meta-analysis and meta-regression techniques. 68 comparisons from 49 clinical trials show a significant effectiveness of Arnica in traumatic injuries in random effects meta-analysis (odds ratio [OR], 0.36; 95% confidence interval [CI], 0.24-0.55), but not in meta-regression models (OR, 0.37; CI, 0.11-1.24). We found no evidence for publication bias. Studies from Medline-listed journals and high-quality studies are less likely to report positive results (p = 0.0006 and p = 0.0167). The hypothesis that homeopathic Arnica is effective could neither be proved nor rejected. All trials were highly heterogeneous, meta-regression does not help to explain this heterogeneity substantially.

  4. Techniques for detecting effects of urban and rural land-use practices on stream-water chemistry in selected watersheds in Texas, Minnesota,and Illinois

    USGS Publications Warehouse

    Walker, J.F.

    1993-01-01

    Selected statistical techniques were applied to three urban watersheds in Texas and Minnesota and three rural watersheds in Illinois. For the urban watersheds, single- and paired-site data-collection strategies were considered. The paired-site strategy was much more effective than the singlesite strategy for detecting changes. Analysis of storm load regression residuals demonstrated the potential utility of regressions for variability reduction. For the rural watersheds, none of the selected techniques were effective at identifying changes, primarily due to a small degree of management-practice implementation, potential errors introduced through the estimation of storm load, and small sample sizes. A Monte Carlo sensitivity analysis was used to determine the percent change in water chemistry that could be detected for each watershed. In most instances, the use of regressions improved the ability to detect changes.

  5. Forecasting urban water demand: A meta-regression analysis.

    PubMed

    Sebri, Maamar

    2016-12-01

    Water managers and planners require accurate water demand forecasts over the short-, medium- and long-term for many purposes. These range from assessing water supply needs over spatial and temporal patterns to optimizing future investments and planning future allocations across competing sectors. This study surveys the empirical literature on the urban water demand forecasting using the meta-analytical approach. Specifically, using more than 600 estimates, a meta-regression analysis is conducted to identify explanations of cross-studies variation in accuracy of urban water demand forecasting. Our study finds that accuracy depends significantly on study characteristics, including demand periodicity, modeling method, forecasting horizon, model specification and sample size. The meta-regression results remain robust to different estimators employed as well as to a series of sensitivity checks performed. The importance of these findings lies in the conclusions and implications drawn out for regulators and policymakers and for academics alike. Copyright © 2016. Published by Elsevier Ltd.

  6. Modeling time-to-event (survival) data using classification tree analysis.

    PubMed

    Linden, Ariel; Yarnold, Paul R

    2017-12-01

    Time to the occurrence of an event is often studied in health research. Survival analysis differs from other designs in that follow-up times for individuals who do not experience the event by the end of the study (called censored) are accounted for in the analysis. Cox regression is the standard method for analysing censored data, but the assumptions required of these models are easily violated. In this paper, we introduce classification tree analysis (CTA) as a flexible alternative for modelling censored data. Classification tree analysis is a "decision-tree"-like classification model that provides parsimonious, transparent (ie, easy to visually display and interpret) decision rules that maximize predictive accuracy, derives exact P values via permutation tests, and evaluates model cross-generalizability. Using empirical data, we identify all statistically valid, reproducible, longitudinally consistent, and cross-generalizable CTA survival models and then compare their predictive accuracy to estimates derived via Cox regression and an unadjusted naïve model. Model performance is assessed using integrated Brier scores and a comparison between estimated survival curves. The Cox regression model best predicts average incidence of the outcome over time, whereas CTA survival models best predict either relatively high, or low, incidence of the outcome over time. Classification tree analysis survival models offer many advantages over Cox regression, such as explicit maximization of predictive accuracy, parsimony, statistical robustness, and transparency. Therefore, researchers interested in accurate prognoses and clear decision rules should consider developing models using the CTA-survival framework. © 2017 John Wiley & Sons, Ltd.

  7. Poor methodological quality and reporting standards of systematic reviews in burn care management.

    PubMed

    Wasiak, Jason; Tyack, Zephanie; Ware, Robert; Goodwin, Nicholas; Faggion, Clovis M

    2017-10-01

    The methodological and reporting quality of burn-specific systematic reviews has not been established. The aim of this study was to evaluate the methodological quality of systematic reviews in burn care management. Computerised searches were performed in Ovid MEDLINE, Ovid EMBASE and The Cochrane Library through to February 2016 for systematic reviews relevant to burn care using medical subject and free-text terms such as 'burn', 'systematic review' or 'meta-analysis'. Additional studies were identified by hand-searching five discipline-specific journals. Two authors independently screened papers, extracted and evaluated methodological quality using the 11-item A Measurement Tool to Assess Systematic Reviews (AMSTAR) tool and reporting quality using the 27-item Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. Characteristics of systematic reviews associated with methodological and reporting quality were identified. Descriptive statistics and linear regression identified features associated with improved methodological quality. A total of 60 systematic reviews met the inclusion criteria. Six of the 11 AMSTAR items reporting on 'a priori' design, duplicate study selection, grey literature, included/excluded studies, publication bias and conflict of interest were reported in less than 50% of the systematic reviews. Of the 27 items listed for PRISMA, 13 items reporting on introduction, methods, results and the discussion were addressed in less than 50% of systematic reviews. Multivariable analyses showed that systematic reviews associated with higher methodological or reporting quality incorporated a meta-analysis (AMSTAR regression coefficient 2.1; 95% CI: 1.1, 3.1; PRISMA regression coefficient 6·3; 95% CI: 3·8, 8·7) were published in the Cochrane library (AMSTAR regression coefficient 2·9; 95% CI: 1·6, 4·2; PRISMA regression coefficient 6·1; 95% CI: 3·1, 9·2) and included a randomised control trial (AMSTAR regression coefficient 1·4; 95%CI: 0·4, 2·4; PRISMA regression coefficient 3·4; 95% CI: 0·9, 5·8). The methodological and reporting quality of systematic reviews in burn care requires further improvement with stricter adherence by authors to the PRISMA checklist and AMSTAR tool. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  8. The perception of the relationship between environment and health according to data from Italian Behavioural Risk Factor Surveillance System (PASSI).

    PubMed

    Sampaolo, Letizia; Tommaso, Giulia; Gherardi, Bianca; Carrozzi, Giuliano; Freni Sterrantino, Anna; Ottone, Marta; Goldoni, Carlo Alberto; Bertozzi, Nicoletta; Scaringi, Meri; Bolognesi, Lara; Masocco, Maria; Salmaso, Stefania; Lauriola, Paolo

    2017-01-01

    "OBJECTIVES: to identify groups of people in relation to the perception of environmental risk and to assess the main characteristics using data collected in the environmental module of the surveillance network Italian Behavioral Risk Factor Surveillance System (PASSI). perceptive profiles were identified using a latent class analysis; later they were included as outcome in multinomial logistic regression models to assess the association between environmental risk perception and demographic, health, socio-economic and behavioural variables. the latent class analysis allowed to split the sample in "worried", "indifferent", and "positive" people. The multinomial logistic regression model showed that the "worried" profile typically includes people of Italian nationality, living in highly urbanized areas, with a high level of education, and with economic difficulties; they pay special attention to their own health and fitness, but they have a negative perception of their own psychophysical state. the application of advanced statistical analysis enable to appraise PASSI data in order to characterize the perception of environmental risk, making the planning of interventions related to risk communication possible. ".

  9. K-12 System Reforms across Studies: The Significance of Change, Meta-Analysis, and Logistics Regression

    ERIC Educational Resources Information Center

    Almutairi, Mashal

    2013-01-01

    The main purpose of this research was to survey the literature about the U.S. education system and synthesize the important conclusions that could be identified as the main features of the education system in general as they relate to student achievement. The criteria were set and the meta-analysis procedures were carefully followed. This process…

  10. Factors Influencing Cecal Intubation Time during Retrograde Approach Single-Balloon Enteroscopy

    PubMed Central

    Chen, Peng-Jen; Shih, Yu-Lueng; Huang, Hsin-Hung; Hsieh, Tsai-Yuan

    2014-01-01

    Background and Aim. The predisposing factors for prolonged cecal intubation time (CIT) during colonoscopy have been well identified. However, the factors influencing CIT during retrograde SBE have not been addressed. The aim of this study was to determine the factors influencing CIT during retrograde SBE. Methods. We investigated patients who underwent retrograde SBE at a medical center from January 2011 to March 2014. The medical charts and SBE reports were reviewed. The patients' characteristics and procedure-associated data were recorded. These data were analyzed with univariate analysis as well as multivariate logistic regression analysis to identify the possible predisposing factors. Results. We enrolled 66 patients into this study. The median CIT was 17.4 minutes. With univariate analysis, there was no statistical difference in age, sex, BMI, or history of abdominal surgery, except for bowel preparation (P = 0.021). Multivariate logistic regression analysis showed that inadequate bowel preparation (odds ratio 30.2, 95% confidence interval 4.63–196.54; P < 0.001) was the independent predisposing factors for prolonged CIT during retrograde SBE. Conclusions. For experienced endoscopist, inadequate bowel preparation was the independent predisposing factor for prolonged CIT during retrograde SBE. PMID:25505904

  11. Association between developmental defects of enamel and dental caries: A systematic review and meta-analysis.

    PubMed

    Vargas-Ferreira, F; Salas, M M S; Nascimento, G G; Tarquinio, S B C; Faggion, C M; Peres, M A; Thomson, W M; Demarco, F F

    2015-06-01

    Dental caries is the main problem oral health and it is not well established in the literature if the enamel defects are a risk factor for its development. Studies have reported a potential association between developmental defects enamel (DDE) and dental caries occurrence. We investigated the association between DDE and caries in permanent dentition of children and teenagers. A systematic review was carried out using four databases (Pubmed, Web of Science, Embase, and Science Direct), which were searched from their earliest records until December 31, 2014. Population-based studies assessing differences in dental caries experience according to the presence of enamel defects (and their types) were included. PRISMA guidelines for reporting systematic reviews were followed. Meta-analysis was performed to assess the pooled effect, and meta-regression was carried out to identify heterogeneity sources. From the 2558 initially identified papers, nine studies fulfilled all inclusion criteria after checking the titles, abstracts, references, and complete reading. Seven of them were included in the meta-analysis with random model. A positive association between enamel defects and dental caries was identified; meta-analysis showed that individuals with DDE had higher pooled odds of having dental caries experience [OR 2.21 (95% CI 1.3; 3.54)]. Meta-regression analysis demonstrated that adjustment for sociodemographic factors, countries' socioeconomic status, and bias (quality of studies) explained the high heterogeneity observed. A higher chance of dental caries should be expected among individuals with enamel defects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Age, Body Mass Index, and Frequency of Sexual Activity are Independent Predictors of Testosterone Deficiency in Men With Erectile Dysfunction.

    PubMed

    Pagano, Matthew J; De Fazio, Adam; Levy, Alison; RoyChoudhury, Arindam; Stahl, Peter J

    2016-04-01

    To identify clinical predictors of testosterone deficiency (TD) in men with erectile dysfunction (ED), thereby identifying subgroups that are most likely to benefit from targeted testosterone screening. Retrospective review was conducted on 498 men evaluated for ED between January 2013 and July 2014. Testing for TD by early morning serum measurement was offered to all eligible men. Patients with history of prostate cancer or testosterone replacement were excluded. Univariable linear regression was conducted to analyze 19 clinical variables for associations with serum total testosterone (TT), calculated free testosterone (cFT), and TD (T <300 ng/dL or cFT <6.5 ng/dL). Variables significant on univariable analysis were included in multiple regression models. A total of 225 men met inclusion criteria. Lower TT levels were associated with greater body mass index (BMI), less frequent sexual activity, and absence of clinical depression on multiple regression analysis. TT decreased by 49.5 ng/dL for each 5-point increase in BMI. BMI and age were the only independent predictors of cFT levels on multivariable analysis. Overall, 62 subjects (27.6%) met criteria for TD. Older age, greater BMI, and less frequent sexual activity were the only independent predictors of TD on multiple regression. We observed a 2.2-fold increase in the odds of TD for every 5-point increase in BMI, and a 1.8-fold increase for every 10 year increase in age. Men with ED and elevated BMI, advanced age, or infrequent sexual activity appear to be at high risk of TD, and such patients represent excellent potential candidates for targeted testosterone screening. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio

    USGS Publications Warehouse

    Koltun, G.F.; Roberts, J.W.

    1990-01-01

    Multiple-regression equations are presented for estimating flood-peak discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at ungaged sites on rural, unregulated streams in Ohio. The average standard errors of prediction for the equations range from 33.4% to 41.4%. Peak discharge estimates determined by log-Pearson Type III analysis using data collected through the 1987 water year are reported for 275 streamflow-gaging stations. Ordinary least-squares multiple-regression techniques were used to divide the State into three regions and to identify a set of basin characteristics that help explain station-to- station variation in the log-Pearson estimates. Contributing drainage area, main-channel slope, and storage area were identified as suitable explanatory variables. Generalized least-square procedures, which include historical flow data and account for differences in the variance of flows at different gaging stations, spatial correlation among gaging station records, and variable lengths of station record were used to estimate the regression parameters. Weighted peak-discharge estimates computed as a function of the log-Pearson Type III and regression estimates are reported for each station. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site located on the same stream. Limitations and shortcomings cited in an earlier report on the magnitude and frequency of floods in Ohio are addressed in this study. Geographic bias is no longer evident for the Maumee River basin of northwestern Ohio. No bias is found to be associated with the forested-area characteristic for the range used in the regression analysis (0.0 to 99.0%), nor is this characteristic significant in explaining peak discharges. Surface-mined area likewise is not significant in explaining peak discharges, and the regression equations are not biased when applied to basins having approximately 30% or less surface-mined area. Analyses of residuals indicate that the equations tend to overestimate flood-peak discharges for basins having approximately 30% or more surface-mined area. (USGS)

  14. Factors influencing the postoperative use of analgesics in dogs and cats by Canadian veterinarians.

    PubMed

    Dohoo, S E; Dohoo, I R

    1996-09-01

    Four hundred and seventeen Canadian veterinarians were surveyed to determine their postoperative use of analgesics in dogs and cats following 6 categories of surgeries, and their opinion toward pain perception and perceived complications associated with the postoperative use of potent opioid analgesics. Three hundred and seventeen (76%) returned the questionnaire. An analgesic user was defined as a veterinarian who administers analgesics to at least 50% of dogs or 50% of cats following abdominal surgery, excluding ovariohysterectomy. The veterinarians responding exhibited a bimodal distribution of analgesic use, with 49.5% being defined as analgesic users. These veterinarians tended to use analgesics in 100% of animals following abdominal surgery. Veterinarians defined as analgesic nonusers rarely used postoperative analgesics following any abdominal surgery. Pain perception was defined as the average of pain rankings (on a scale of 1 to 10) following abdominal surgery, or the value for dogs or cats if the veterinarian worked with only 1 of the 2 species. Maximum concern about the risks associated with the postoperative use of potent opioid agonists was defined as the highest ranking assigned to any of the 7 risks evaluated in either dogs or cats. Logistic regression analysis identified the pain perception score and the maximum concern regarding the use of potent opioid agonists in the postoperative period as the 2 factors that distinguished analgesic users from analgesic nonusers. This model correctly classified 68% of veterinarians as analgesic users or nonusers. Linear regression analysis identified gender and the presence of an animal health technologist in the practice as the 2 factors that influenced pain perception by veterinarians. Linear regression analysis identified working with an animal health technologist, graduation within the past 10 years, and attendance at continuing education as factors that influenced maximum concern about the postoperative use of opioid agonists.

  15. Kepler AutoRegressive Planet Search

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric

    NASA's Kepler mission is the source of more exoplanets than any other instrument, but the discovery depends on complex statistical analysis procedures embedded in the Kepler pipeline. A particular challenge is mitigating irregular stellar variability without loss of sensitivity to faint periodic planetary transits. This proposal presents a two-stage alternative analysis procedure. First, parametric autoregressive ARFIMA models, commonly used in econometrics, remove most of the stellar variations. Second, a novel matched filter is used to create a periodogram from which transit-like periodicities are identified. This analysis procedure, the Kepler AutoRegressive Planet Search (KARPS), is confirming most of the Kepler Objects of Interest and is expected to identify additional planetary candidates. The proposed research will complete application of the KARPS methodology to the prime Kepler mission light curves of 200,000: stars, and compare the results with Kepler Objects of Interest obtained with the Kepler pipeline. We will then conduct a variety of astronomical studies based on the KARPS results. Important subsamples will be extracted including Habitable Zone planets, hot super-Earths, grazing-transit hot Jupiters, and multi-planet systems. Groundbased spectroscopy of poorly studied candidates will be performed to better characterize the host stars. Studies of stellar variability will then be pursued based on KARPS analysis. The autocorrelation function and nonstationarity measures will be used to identify spotted stars at different stages of autoregressive modeling. Periodic variables with folded light curves inconsistent with planetary transits will be identified; they may be eclipsing or mutually-illuminating binary star systems. Classification of stellar variables with KARPS-derived statistical properties will be attempted. KARPS procedures will then be applied to archived K2 data to identify planetary transits and characterize stellar variability.

  16. Refining adverse drug reaction signals by incorporating interaction variables identified using emergent pattern mining.

    PubMed

    Reps, Jenna M; Aickelin, Uwe; Hubbard, Richard B

    2016-02-01

    To develop a framework for identifying and incorporating candidate confounding interaction terms into a regularised cox regression analysis to refine adverse drug reaction signals obtained via longitudinal observational data. We considered six drug families that are commonly associated with myocardial infarction in observational healthcare data, but where the causal relationship ground truth is known (adverse drug reaction or not). We applied emergent pattern mining to find itemsets of drugs and medical events that are associated with the development of myocardial infarction. These are the candidate confounding interaction terms. We then implemented a cohort study design using regularised cox regression that incorporated and accounted for the candidate confounding interaction terms. The methodology was able to account for signals generated due to confounding and a cox regression with elastic net regularisation correctly ranking the drug families known to be true adverse drug reactions above those that are not. This was not the case without the inclusion of the candidate confounding interaction terms, where confounding leads to a non-adverse drug reaction being ranked highest. The methodology is efficient, can identify high-order confounding interactions and does not require expert input to specify outcome specific confounders, so it can be applied for any outcome of interest to quickly refine its signals. The proposed method shows excellent potential to overcome some forms of confounding and therefore reduce the false positive rate for signal analysis using longitudinal data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Can Predictive Modeling Identify Head and Neck Oncology Patients at Risk for Readmission?

    PubMed

    Manning, Amy M; Casper, Keith A; Peter, Kay St; Wilson, Keith M; Mark, Jonathan R; Collar, Ryan M

    2018-05-01

    Objective Unplanned readmission within 30 days is a contributor to health care costs in the United States. The use of predictive modeling during hospitalization to identify patients at risk for readmission offers a novel approach to quality improvement and cost reduction. Study Design Two-phase study including retrospective analysis of prospectively collected data followed by prospective longitudinal study. Setting Tertiary academic medical center. Subjects and Methods Prospectively collected data for patients undergoing surgical treatment for head and neck cancer from January 2013 to January 2015 were used to build predictive models for readmission within 30 days of discharge using logistic regression, classification and regression tree (CART) analysis, and random forests. One model (logistic regression) was then placed prospectively into the discharge workflow from March 2016 to May 2016 to determine the model's ability to predict which patients would be readmitted within 30 days. Results In total, 174 admissions had descriptive data. Thirty-two were excluded due to incomplete data. Logistic regression, CART, and random forest predictive models were constructed using the remaining 142 admissions. When applied to 106 consecutive prospective head and neck oncology patients at the time of discharge, the logistic regression model predicted readmissions with a specificity of 94%, a sensitivity of 47%, a negative predictive value of 90%, and a positive predictive value of 62% (odds ratio, 14.9; 95% confidence interval, 4.02-55.45). Conclusion Prospectively collected head and neck cancer databases can be used to develop predictive models that can accurately predict which patients will be readmitted. This offers valuable support for quality improvement initiatives and readmission-related cost reduction in head and neck cancer care.

  18. Stature Estimation from Lower Limb Anthropometry using Linear Regression Analysis: A Study on the Malaysian Population.

    PubMed

    Abu Bakar, S N; Aspalilah, A; AbdelNasser, I; Nurliza, A; Hairuliza, M J; Swarhib, M; Das, S; Mohd Nor, F

    2017-01-01

    Stature is one of the characteristics that could be used to identify human, besides age, sex and racial affiliation. This is useful when the body found is either dismembered, mutilated or even decomposed, and helps in narrowing down the missing person's identity. The main aim of the present study was to construct regression functions for stature estimation by using lower limb bones in the Malaysian population. The sample comprised 87 adult individuals (81 males, 6 females) aged between 20 to 79 years. The parameters such as thigh length, lower leg length, leg length, foot length, foot height and foot breadth were measured. They were measured by a ruler and measuring tape. Statistical analysis involved independent t-test to analyse the difference between lower limbs in male and female. The Pearson's correlation test was used to analyse correlations between lower limb parameters and stature, and the linear regressions were used to form equations. The paired t-test was used to compare between actual stature and estimated stature by using the equations formed. Using independent t-test, there was a significant difference (p< 0.05) in the measurement between males and females with regard to leg length, thigh length, lower leg length, foot length and foot breadth. The thigh length, leg length and foot length were observed to have strong correlations with stature with p= 0.75, p= 0.81 and p= 0.69, respectively. Linear regressions were formulated for stature estimation. Paired t-test showed no significant difference between actual stature and estimated stature. It is concluded that regression functions can be used to estimate stature to identify skeletal remains in the Malaysia population.

  19. Methods for estimating annual exceedance probability discharges for streams in Arkansas, based on data through water year 2013

    USGS Publications Warehouse

    Wagner, Daniel M.; Krieger, Joshua D.; Veilleux, Andrea G.

    2016-08-04

    In 2013, the U.S. Geological Survey initiated a study to update regional skew, annual exceedance probability discharges, and regional regression equations used to estimate annual exceedance probability discharges for ungaged locations on streams in the study area with the use of recent geospatial data, new analytical methods, and available annual peak-discharge data through the 2013 water year. An analysis of regional skew using Bayesian weighted least-squares/Bayesian generalized-least squares regression was performed for Arkansas, Louisiana, and parts of Missouri and Oklahoma. The newly developed constant regional skew of -0.17 was used in the computation of annual exceedance probability discharges for 281 streamgages used in the regional regression analysis. Based on analysis of covariance, four flood regions were identified for use in the generation of regional regression models. Thirty-nine basin characteristics were considered as potential explanatory variables, and ordinary least-squares regression techniques were used to determine the optimum combinations of basin characteristics for each of the four regions. Basin characteristics in candidate models were evaluated based on multicollinearity with other basin characteristics (variance inflation factor < 2.5) and statistical significance at the 95-percent confidence level (p ≤ 0.05). Generalized least-squares regression was used to develop the final regression models for each flood region. Average standard errors of prediction of the generalized least-squares models ranged from 32.76 to 59.53 percent, with the largest range in flood region D. Pseudo coefficients of determination of the generalized least-squares models ranged from 90.29 to 97.28 percent, with the largest range also in flood region D. The regional regression equations apply only to locations on streams in Arkansas where annual peak discharges are not substantially affected by regulation, diversion, channelization, backwater, or urbanization. The applicability and accuracy of the regional regression equations depend on the basin characteristics measured for an ungaged location on a stream being within range of those used to develop the equations.

  20. Patient phenotypes associated with outcomes after aneurysmal subarachnoid hemorrhage: a principal component analysis.

    PubMed

    Ibrahim, George M; Morgan, Benjamin R; Macdonald, R Loch

    2014-03-01

    Predictors of outcome after aneurysmal subarachnoid hemorrhage have been determined previously through hypothesis-driven methods that often exclude putative covariates and require a priori knowledge of potential confounders. Here, we apply a data-driven approach, principal component analysis, to identify baseline patient phenotypes that may predict neurological outcomes. Principal component analysis was performed on 120 subjects enrolled in a prospective randomized trial of clazosentan for the prevention of angiographic vasospasm. Correlation matrices were created using a combination of Pearson, polyserial, and polychoric regressions among 46 variables. Scores of significant components (with eigenvalues>1) were included in multivariate logistic regression models with incidence of severe angiographic vasospasm, delayed ischemic neurological deficit, and long-term outcome as outcomes of interest. Sixteen significant principal components accounting for 74.6% of the variance were identified. A single component dominated by the patients' initial hemodynamic status, World Federation of Neurosurgical Societies score, neurological injury, and initial neutrophil/leukocyte counts was significantly associated with poor outcome. Two additional components were associated with angiographic vasospasm, of which one was also associated with delayed ischemic neurological deficit. The first was dominated by the aneurysm-securing procedure, subarachnoid clot clearance, and intracerebral hemorrhage, whereas the second had high contributions from markers of anemia and albumin levels. Principal component analysis, a data-driven approach, identified patient phenotypes that are associated with worse neurological outcomes. Such data reduction methods may provide a better approximation of unique patient phenotypes and may inform clinical care as well as patient recruitment into clinical trials. http://www.clinicaltrials.gov. Unique identifier: NCT00111085.

  1. Substituting values for censored data from Texas, USA, reservoirs inflated and obscured trends in analyses commonly used for water quality target development.

    PubMed

    Grantz, Erin; Haggard, Brian; Scott, J Thad

    2018-06-12

    We calculated four median datasets (chlorophyll a, Chl a; total phosphorus, TP; and transparency) using multiple approaches to handling censored observations, including substituting fractions of the quantification limit (QL; dataset 1 = 1QL, dataset 2 = 0.5QL) and statistical methods for censored datasets (datasets 3-4) for approximately 100 Texas, USA reservoirs. Trend analyses of differences between dataset 1 and 3 medians indicated percent difference increased linearly above thresholds in percent censored data (%Cen). This relationship was extrapolated to estimate medians for site-parameter combinations with %Cen > 80%, which were combined with dataset 3 as dataset 4. Changepoint analysis of Chl a- and transparency-TP relationships indicated threshold differences up to 50% between datasets. Recursive analysis identified secondary thresholds in dataset 4. Threshold differences show that information introduced via substitution or missing due to limitations of statistical methods biased values, underestimated error, and inflated the strength of TP thresholds identified in datasets 1-3. Analysis of covariance identified differences in linear regression models relating transparency-TP between datasets 1, 2, and the more statistically robust datasets 3-4. Study findings identify high-risk scenarios for biased analytical outcomes when using substitution. These include high probability of median overestimation when %Cen > 50-60% for a single QL, or when %Cen is as low 16% for multiple QL's. Changepoint analysis was uniquely vulnerable to substitution effects when using medians from sites with %Cen > 50%. Linear regression analysis was less sensitive to substitution and missing data effects, but differences in model parameters for transparency cannot be discounted and could be magnified by log-transformation of the variables.

  2. Polymorphisms within the FANCA gene associate with premature ovarian failure in Korean women.

    PubMed

    Pyun, Jung-A; Kim, Sunshin; Cha, Dong Hyun; Kwack, KyuBum

    2014-05-01

    This study investigated whether polymorphisms within the Fanconi anemia complementation group A (FANCA) gene contribute to the increased risk of premature ovarian failure (POF) in Korean women. Ninety-eight women with POF and 218 controls participated in this study. Genomic DNA from peripheral blood was isolated, and GoldenGate genotyping assay was used to identify single nucleotide polymorphisms (SNPs) within the FANCA gene. Two significant SNPs (rs1006547 and rs2239359; P < 0.05) were identified by logistic regression analysis, but results were insignificant after Bonferroni correction. Six SNPs formed a linkage disequilibrium block, and three main haplotypes were found. Two of three haplotypes (AAAGAA and GGGAGG) distributed highly in the POF group, whereas the remaining haplotype (GGAAGG) distributed highly in the control group by logistic regression analysis (highest odds ratio, 2.515; 95% CI, 1.515-4.175; P = 0.00036). Our observations suggest that genetic variations in the FANCA gene may increase the risk for POF in Korean women.

  3. Hypomagnesemia predicts postoperative biochemical hypocalcemia after thyroidectomy.

    PubMed

    Luo, Han; Yang, Hongliu; Zhao, Wanjun; Wei, Tao; Su, Anping; Wang, Bin; Zhu, Jingqiang

    2017-05-25

    To investigate the role of magnesium in biochemical and symptomatic hypocalcemia, a retrospective study was conducted. Less-than-total thyroidectomy patients were excluded from the final analysis. Identified the risk factors of biochemical and symptomatic hypocalcemia, and investigated the correlation by logistic regression and correlation test respectively. A total of 304 patients were included in the final analysis. General incidence of hypomagnesemia was 23.36%. Logistic regression showed that gender (female) (OR = 2.238, p = 0.015) and postoperative hypomagnesemia (OR = 2.010, p = 0.017) were independent risk factors for biochemical hypocalcemia. Both Pearson and partial correlation tests indicated there was indeed significant relation between calcium and magnesium. However, relative decreasing of iPTH (>70%) (6.691, p < 0.001) and hypocalcemia (2.222, p = 0.046) were identified as risk factors of symptomatic hypocalcemia. The difference remained significant even in normoparathyroidism patients. Postoperative hypomagnesemia was independent risk factor of biochemical hypocalcemia. Relative decline of iPTH was predominating in predicting symptomatic hypocalcemia.

  4. Risk Factors for Developing Scoliosis in Cerebral Palsy: A Cross-Sectional Descriptive Study.

    PubMed

    Bertoncelli, Carlo M; Solla, Federico; Loughenbury, Peter R; Tsirikos, Athanasios I; Bertoncelli, Domenico; Rampal, Virginie

    2017-06-01

    This study aims to identify the risk factors leading to the development of severe scoliosis among children with cerebral palsy. A cross-sectional descriptive study of 70 children (aged 12-18 years) with severe spastic and/or dystonic cerebral palsy treated in a single specialist unit is described. Statistical analysis included Fisher exact test and logistic regression analysis to identify risk factors. Severe scoliosis is more likely to occur in patients with intractable epilepsy ( P = .008), poor gross motor functional assessment scores ( P = .018), limb spasticity ( P = .045), a history of previous hip surgery ( P = .048), and nonambulatory patients ( P = .013). Logistic regression model confirms the major risk factors are previous hip surgery ( P = .001), moderate to severe epilepsy ( P = .007), and female gender ( P = .03). History of previous hip surgery, intractable epilepsy, and female gender are predictors of developing severe scoliosis in children with cerebral palsy. This knowledge should aid in the early diagnosis of scoliosis and timely referral to specialist services.

  5. Atmospheric concentrations, sources and gas-particle partitioning of PAHs in Beijing after the 29th Olympic Games.

    PubMed

    Ma, Wan-Li; Sun, De-Zhi; Shen, Wei-Guo; Yang, Meng; Qi, Hong; Liu, Li-Yan; Shen, Ji-Min; Li, Yi-Fan

    2011-07-01

    A comprehensive sampling campaign was carried out to study atmospheric concentration of polycyclic aromatic hydrocarbons (PAHs) in Beijing and to evaluate the effectiveness of source control strategies in reducing PAHs pollution after the 29th Olympic Games. The sub-cooled liquid vapor pressure (logP(L)(o))-based model and octanol-air partition coefficient (K(oa))-based model were applied based on each seasonal dateset. Regression analysis among log K(P), logP(L)(o) and log K(oa) exhibited high significant correlations for four seasons. Source factors were identified by principle component analysis and contributions were further estimated by multiple linear regression. Pyrogenic sources and coke oven emission were identified as major sources for both the non-heating and heating seasons. As compared with literatures, the mean PAH concentrations before and after the 29th Olympic Games were reduced by more than 60%, indicating that the source control measures were effective for reducing PAHs pollution in Beijing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. On approaches to analyze the sensitivity of simulated hydrologic fluxes to model parameters in the community land model

    DOE PAGES

    Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; ...

    2015-12-04

    Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalizedmore » linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.« less

  7. Novel risk score of contrast-induced nephropathy after percutaneous coronary intervention.

    PubMed

    Ji, Ling; Su, XiaoFeng; Qin, Wei; Mi, XuHua; Liu, Fei; Tang, XiaoHong; Li, Zi; Yang, LiChuan

    2015-08-01

    Contrast-induced nephropathy (CIN) post-percutaneous coronary intervention (PCI) is a major cause of acute kidney injury. In this study, we established a comprehensive risk score model to assess risk of CIN after PCI procedure, which could be easily used in a clinical environment. A total of 805 PCI patients, divided into analysis cohort (70%) and validation cohort (30%), were enrolled retrospectively in this study. Risk factors for CIN were identified using univariate analysis and multivariate logistic regression in the analysis cohort. Risk score model was developed based on multiple regression coefficients. Sensitivity and specificity of the new risk score system was validated in the validation cohort. Comparisons between the new risk score model and previous reported models were applied. The incidence of post-PCI CIN in the analysis cohort (n = 565) was 12%. Considerably high CIN incidence (50%) was observed in patients with chronic kidney disease (CKD). Age >75, body mass index (BMI) >25, myoglobin level, cardiac function level, hypoalbuminaemia, history of chronic kidney disease (CKD), Intra-aortic balloon pump (IABP) and peripheral vascular disease (PVD) were identified as independent risk factors of post-PCI CIN. A novel risk score model was established using multivariate regression coefficients, which showed highest sensitivity and specificity (0.917, 95%CI 0.877-0.957) compared with previous models. A new post-PCI CIN risk score model was developed based on a retrospective study of 805 patients. Application of this model might be helpful to predict CIN in patients undergoing PCI procedure. © 2015 Asian Pacific Society of Nephrology.

  8. Binary Logistic Regression Analysis in Assessment and Identifying Factors That Influence Students' Academic Achievement: The Case of College of Natural and Computational Science, Wolaita Sodo University, Ethiopia

    ERIC Educational Resources Information Center

    Zewude, Bereket Tessema; Ashine, Kidus Meskele

    2016-01-01

    An attempt has been made to assess and identify the major variables that influence student academic achievement at college of natural and computational science of Wolaita Sodo University in Ethiopia. Study time, peer influence, securing first choice of department, arranging study time outside class, amount of money received from family, good life…

  9. Exhaled volatile organic compounds in individuals with a history of high altitude pulmonary edema and varying hypoxia-induced responses.

    PubMed

    Figueroa, Jennifer A; Mansoor, Jim K; Allen, Roblee P; Davis, Cristina E; Walby, William F; Aksenov, Alexander A; Zhao, Weixiang; Lewis, William R; Schelegle, Edward S

    2015-04-20

    With ascent to altitude, certain individuals are susceptible to high altitude pulmonary edema (HAPE), which in turn can cause disability and even death. The ability to identify individuals at risk of HAPE prior to ascent is poor. The present study examined the profile of volatile organic compounds (VOC) in exhaled breath condensate (EBC) and pulmonary artery systolic pressures (PASP) before and after exposure to normobaric hypoxia (12% O2) in healthy males with and without a history of HAPE (Hx HAPE, n = 5; Control, n = 11). In addition, hypoxic ventilatory response (HVR), and PASP response to normoxic exercise were also measured. Auto-regression/partial least square regression of whole gas chromatography/mass spectrometry (GC/MS) data and binary logistic regression (BLR) of individual GC peaks and physiologic parameters resulted in models that separate individual subjects into their groups with variable success. The result of BLR analysis highlights HVR, PASP response to hypoxia and the amount of benzyl alcohol and dimethylbenzaldehyde dimethyl in expired breath as markers of HAPE history. These findings indicate the utility of EBC VOC analysis to discriminate between individuals with and without a history of HAPE and identified potential novel biomarkers that correlated with physiological responses to hypoxia.

  10. Marital status integration and suicide: A meta-analysis and meta-regression.

    PubMed

    Kyung-Sook, Woo; SangSoo, Shin; Sangjin, Shin; Young-Jeon, Shin

    2018-01-01

    Marital status is an index of the phenomenon of social integration within social structures and has long been identified as an important predictor suicide. However, previous meta-analyses have focused only on a particular marital status, or not sufficiently explored moderators. A meta-analysis of observational studies was conducted to explore the relationships between marital status and suicide and to understand the important moderating factors in this association. Electronic databases were searched to identify studies conducted between January 1, 2000 and June 30, 2016. We performed a meta-analysis, subgroup analysis, and meta-regression of 170 suicide risk estimates from 36 publications. Using random effects model with adjustment for covariates, the study found that the suicide risk for non-married versus married was OR = 1.92 (95% CI: 1.75-2.12). The suicide risk was higher for non-married individuals aged <65 years than for those aged ≥65 years, and higher for men than for women. According to the results of stratified analysis by gender, non-married men exhibited a greater risk of suicide than their married counterparts in all sub-analyses, but women aged 65 years or older showed no significant association between marital status and suicide. The suicide risk in divorced individuals was higher than for non-married individuals in both men and women. The meta-regression showed that gender, age, and sample size affected between-study variation. The results of the study indicated that non-married individuals have an aggregate higher suicide risk than married ones. In addition, gender and age were confirmed as important moderating factors in the relationship between marital status and suicide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Development and Validation of the Work-Related Well-Being Index: Analysis of the Federal Employee Viewpoint Survey (FEVS).

    PubMed

    Eaton, Jennifer L; Mohr, David C; Hodgson, Michael J; McPhaul, Kathleen M

    2017-10-11

    To describe development and validation of the Work-Related Well-Being (WRWB) Index. Principal Components Analysis was performed using Federal Employee Viewpoint Survey (FEVS) data (N = 392,752) to extract variables representing worker well-being constructs. Confirmatory factor analysis was performed to verify factor structure. To validate the WRWB index, we used multiple regression analysis to examine relationships with burnout associated outcomes. PCA identified three positive psychology constructs: "Work Positivity", "Co-worker Relationships", and "Work Mastery". An 11 item index explaining 63.5% of variance was achieved. The structural equation model provided a very good fit to the data. Higher WRWB scores were positively associated with all 3 employee experience measures examined in regression models. The new WRWB index shows promise as a valid and widely accessible instrument to assess worker well-being.

  12. Practical guidance for conducting mediation analysis with multiple mediators using inverse odds ratio weighting.

    PubMed

    Nguyen, Quynh C; Osypuk, Theresa L; Schmidt, Nicole M; Glymour, M Maria; Tchetgen Tchetgen, Eric J

    2015-03-01

    Despite the recent flourishing of mediation analysis techniques, many modern approaches are difficult to implement or applicable to only a restricted range of regression models. This report provides practical guidance for implementing a new technique utilizing inverse odds ratio weighting (IORW) to estimate natural direct and indirect effects for mediation analyses. IORW takes advantage of the odds ratio's invariance property and condenses information on the odds ratio for the relationship between the exposure (treatment) and multiple mediators, conditional on covariates, by regressing exposure on mediators and covariates. The inverse of the covariate-adjusted exposure-mediator odds ratio association is used to weight the primary analytical regression of the outcome on treatment. The treatment coefficient in such a weighted regression estimates the natural direct effect of treatment on the outcome, and indirect effects are identified by subtracting direct effects from total effects. Weighting renders treatment and mediators independent, thereby deactivating indirect pathways of the mediators. This new mediation technique accommodates multiple discrete or continuous mediators. IORW is easily implemented and is appropriate for any standard regression model, including quantile regression and survival analysis. An empirical example is given using data from the Moving to Opportunity (1994-2002) experiment, testing whether neighborhood context mediated the effects of a housing voucher program on obesity. Relevant Stata code (StataCorp LP, College Station, Texas) is provided. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Something old, something new, something borrowed, something blue: a framework for the marriage of health econometrics and cost-effectiveness analysis.

    PubMed

    Hoch, Jeffrey S; Briggs, Andrew H; Willan, Andrew R

    2002-07-01

    Economic evaluation is often seen as a branch of health economics divorced from mainstream econometric techniques. Instead, it is perceived as relying on statistical methods for clinical trials. Furthermore, the statistic of interest in cost-effectiveness analysis, the incremental cost-effectiveness ratio is not amenable to regression-based methods, hence the traditional reliance on comparing aggregate measures across the arms of a clinical trial. In this paper, we explore the potential for health economists undertaking cost-effectiveness analysis to exploit the plethora of established econometric techniques through the use of the net-benefit framework - a recently suggested reformulation of the cost-effectiveness problem that avoids the reliance on cost-effectiveness ratios and their associated statistical problems. This allows the formulation of the cost-effectiveness problem within a standard regression type framework. We provide an example with empirical data to illustrate how a regression type framework can enhance the net-benefit method. We go on to suggest that practical advantages of the net-benefit regression approach include being able to use established econometric techniques, adjust for imperfect randomisation, and identify important subgroups in order to estimate the marginal cost-effectiveness of an intervention. Copyright 2002 John Wiley & Sons, Ltd.

  14. Specific factors for prenatal lead exposure in the border area of China.

    PubMed

    Kawata, Kimiko; Li, Yan; Liu, Hao; Zhang, Xiao Qin; Ushijima, Hiroshi

    2006-07-01

    The objectives of this study are to examine the prevalence of increased blood lead concentrations in mothers and their umbilical cords, and to identify risk factors for prenatal lead exposure in Kunming city, Yunnan province, China. The study was conducted at two obstetrics departments, and 100 peripartum women were enrolled. The mean blood lead concentrations of the mothers and the umbilical cords were 67.3microg/l and 53.1microg/l, respectively. In multiple linear regression analysis, maternal occupational exposure, maternal consumption of homemade dehydrated vegetables and maternal habitation period in Kunming city were significantly associated with an increase of umbilical cord blood lead concentration. In addition, logistic regression analysis was used to assess the association of umbilical cord blood lead concentrations that possibly have adverse effects on brain development of newborns with each potential risk factor. Maternal frequent use of tableware with color patterns inside was significantly associated with higher cord blood lead concentration in addition to the three items in the multiple linear regression analysis. These points should be considered as specific recommendations for maternal and fetal lead exposure in this city.

  15. How Does Physical Activity Intervention Improve Self-Esteem and Self-Concept in Children and Adolescents? Evidence from a Meta-Analysis.

    PubMed

    Liu, Mingli; Wu, Lang; Ming, Qingsen

    2015-01-01

    To perform a systematic review and meta-analysis for the effects of physical activity intervention on self-esteem and self-concept in children and adolescents, and to identify moderator variables by meta-regression. A meta-analysis and meta-regression. Relevant studies were identified through a comprehensive search of electronic databases. Study inclusion criteria were: (1) intervention should be supervised physical activity, (2) reported sufficient data to estimate pooled effect sizes of physical activity intervention on self-esteem or self-concept, (3) participants' ages ranged from 3 to 20 years, and (4) a control or comparison group was included. For each study, study design, intervention design and participant characteristics were extracted. R software (version 3.1.3) and Stata (version 12.0) were used to synthesize effect sizes and perform moderation analyses for determining moderators. Twenty-five randomized controlled trial (RCT) studies and 13 non-randomized controlled trial (non-RCT) studies including a total of 2991 cases were identified. Significant positive effects were found in RCTs for intervention of physical activity alone on general self outcomes (Hedges' g = 0.29, 95% confidence interval [CI]: 0.14 to 0.45; p = 0.001), self-concept (Hedges' g = 0.49, 95%CI: 0.10 to 0.88, p = 0.014) and self-worth (Hedges' g = 0.31, 95%CI: 0.13 to 0.49, p = 0.005). There was no significant effect of intervention of physical activity alone on any outcomes in non-RCTs, as well as in studies with intervention of physical activity combined with other strategies. Meta-regression analysis revealed that higher treatment effects were associated with setting of intervention in RCTs (β = 0.31, 95%CI: 0.07 to 0.55, p = 0.013). Intervention of physical activity alone is associated with increased self-concept and self-worth in children and adolescents. And there is a stronger association with school-based and gymnasium-based intervention compared with other settings.

  16. Multinomial Logistic Regression Predicted Probability Map To Visualize The Influence Of Socio-Economic Factors On Breast Cancer Occurrence in Southern Karnataka

    NASA Astrophysics Data System (ADS)

    Madhu, B.; Ashok, N. C.; Balasubramanian, S.

    2014-11-01

    Multinomial logistic regression analysis was used to develop statistical model that can predict the probability of breast cancer in Southern Karnataka using the breast cancer occurrence data during 2007-2011. Independent socio-economic variables describing the breast cancer occurrence like age, education, occupation, parity, type of family, health insurance coverage, residential locality and socioeconomic status of each case was obtained. The models were developed as follows: i) Spatial visualization of the Urban- rural distribution of breast cancer cases that were obtained from the Bharat Hospital and Institute of Oncology. ii) Socio-economic risk factors describing the breast cancer occurrences were complied for each case. These data were then analysed using multinomial logistic regression analysis in a SPSS statistical software and relations between the occurrence of breast cancer across the socio-economic status and the influence of other socio-economic variables were evaluated and multinomial logistic regression models were constructed. iii) the model that best predicted the occurrence of breast cancer were identified. This multivariate logistic regression model has been entered into a geographic information system and maps showing the predicted probability of breast cancer occurrence in Southern Karnataka was created. This study demonstrates that Multinomial logistic regression is a valuable tool for developing models that predict the probability of breast cancer Occurrence in Southern Karnataka.

  17. Excitation wavelength selection for quantitative analysis of carotenoids in tomatoes using Raman spectroscopy.

    PubMed

    Hara, Risa; Ishigaki, Mika; Kitahama, Yasutaka; Ozaki, Yukihiro; Genkawa, Takuma

    2018-08-30

    The difference in Raman spectra for different excitation wavelengths (532 nm, 785 nm, and 1064 nm) was investigated to identify an appropriate wavelength for the quantitative analysis of carotenoids in tomatoes. For the 532 nm-excited Raman spectra, the intensity of the peak assigned to the carotenoid has no correlation with carotenoid concentration, and the peak shift reflects carotenoid composition changing from lycopene to β-carotene and lutein. Thus, 532 nm-excited Raman spectra are useful for the qualitative analysis of carotenoids. For the 785 nm- and 1064 nm-excited Raman spectra, the peak intensity of the carotenoid showed good correlation with carotenoid concentration; thus, regression models for carotenoid concentration were developed using these Raman spectra and partial least squares regression. A regression model designed using the 785 nm-excited Raman spectra showed a better result than the 532 nm- and 1064 nm-excited Raman spectra. Therefore, it can be concluded that 785 nm is the most suitable excitation wavelength for the quantitative analysis of carotenoid concentration in tomatoes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Identifying the readiness of patients in implementing telemedicine in northern Louisiana for an oncology practice.

    PubMed

    Gurupur, Varadraj; Shettian, Kruparaj; Xu, Peixin; Hines, Scott; Desselles, Mitzi; Dhawan, Manish; Wan, Thomas Th; Raffenaud, Amanda; Anderson, Lindsey

    2017-09-01

    This study identified the readiness factors that may create challenges in the use of telemedicine among patients in northern Louisiana with cancer. To identify these readiness factors, the team of investigators developed 19 survey questions that were provided to the patients or to their caregivers. The team collected responses from 147 respondents from rural and urban residential backgrounds. These responses were used to identify the individuals' readiness for utilising telemedicine through factor analysis, Cronbach's alpha reliability test, analysis of variance and ordinary least squares regression. The analysis results indicated that the favourable factor (positive readiness item) had a mean value of 3.47, whereas the unfavourable factor (negative readiness item) had a mean value of 2.76. Cronbach's alpha reliability test provided an alpha value of 0.79. Overall, our study indicated a positive attitude towards the use of telemedicine in northern Louisiana.

  19. Second hip fractures at Chiang Mai University Hospital.

    PubMed

    Wongtriratanachai, Prasit; Chiewchantanakit, Siripong; Vaseenon, Tanawat; Rojanasthien, Sattaya; Leerapun, Taninnit

    2015-02-01

    Hip fractures are a major public health problem. Patients who have suffered a hip fracture have an increased risk of a subsequent hip fracture. This study examines the incidence ofsecondhip fractures and attempts to identify underlying risk factors. To examine the incidence ofsecond hip fractures in osteoporotic patients at Chiang Mai University Hospital and to identify risk factors related to second hip fractures. A retrospective review was conducted of all low-energy mechanism hip fracture patients admitted during 2008 and 2009. Analysis of second hip fractures was conducted using survival analysis and logistic regression analysis. A total of 191 patients were observed for 391.68 person-years (mean 2.05 person-years per patient). Among that group, nine second hip fractures were identified, an overall incidence rate of 0.023 second fractures per person-year. Second hip fractures tended to occur within the first year following an initial hip fracture. There were no significant differences related to either gender or comorbid medical conditions. Logistic regression analysis revealed that increased risk of a second hip fracture was associated with age (highest between 80 to 89 years) and patients who were not treated for osteoporosis following their initial fracture. The incidence of second hip fractures at Chiang Mai University Hospital was 0.023 per person-year Careful follow-up of older patients, especially those over 80, and treatment ofosteoporosis with bisphosphonate plus vitamin D and calcium supplements was correlated with a reduction in the incidence of second hip fractures.

  20. Evaluation of an inpatient fall risk screening tool to identify the most critical fall risk factors in inpatients.

    PubMed

    Hou, Wen-Hsuan; Kang, Chun-Mei; Ho, Mu-Hsing; Kuo, Jessie Ming-Chuan; Chen, Hsiao-Lien; Chang, Wen-Yin

    2017-03-01

    To evaluate the accuracy of the inpatient fall risk screening tool and to identify the most critical fall risk factors in inpatients. Variations exist in several screening tools applied in acute care hospitals for examining risk factors for falls and identifying high-risk inpatients. Secondary data analysis. A subset of inpatient data for the period from June 2011-June 2014 was extracted from the nursing information system and adverse event reporting system of an 818-bed teaching medical centre in Taipei. Data were analysed using descriptive statistics, receiver operating characteristic curve analysis and logistic regression analysis. During the study period, 205 fallers and 37,232 nonfallers were identified. The results revealed that the inpatient fall risk screening tool (cut-off point of ≥3) had a low sensitivity level (60%), satisfactory specificity (87%), a positive predictive value of 2·0% and a negative predictive value of 99%. The receiver operating characteristic curve analysis revealed an area under the curve of 0·805 (sensitivity, 71·8%; specificity, 78%). To increase the sensitivity values, the Youden index suggests at least 1·5 points to be the most suitable cut-off point for the inpatient fall risk screening tool. Multivariate logistic regression analysis revealed a considerably increased fall risk in patients with impaired balance and impaired elimination. The fall risk factor was also significantly associated with days of hospital stay and with admission to surgical wards. The findings can raise awareness about the two most critical risk factors for falls among future clinical nurses and other healthcare professionals and thus facilitate the development of fall prevention interventions. This study highlights the needs for redefining the cut-off points of the inpatient fall risk screening tool to effectively identify inpatients at a high risk of falls. Furthermore, inpatients with impaired balance and impaired elimination should be closely monitored by nurses to prevent falling during hospitalisations. © 2016 John Wiley & Sons Ltd.

  1. Moral distress and burnout syndrome: are there relationships between these phenomena in nursing workers?

    PubMed

    Dalmolin, Graziele de Lima; Lunardi, Valéria Lerch; Lunardi, Guilherme Lerch; Barlem, Edison Luiz Devos; Silveira, Rosemary Silva da

    2014-01-01

    to identify relationships between moral distress and Burnout in the professional performance from the perceptions of the experiences of nursing workers. this is a survey type study with 375 nursing workers working in three different hospitals of southern Rio Grande do Sul, with the application of adaptations of the Moral Distress Scale and the Maslach Burnout Inventory, validated and standardized for use in Brazil. Data validation occurred through factor analysis and Cronbach's alpha. For the data analysis bivariate analysis using Pearson's correlation and multivariate analysis using multiple regression were performed. the existence of a weak correlation between moral distress and Burnout was verified. A possible positive correlation between Burnout and therapeutic obstinacy, and a negative correlation between professional fulfillment and moral distress were identified. the need was identified for further studies that include mediating and moderating variables that may explain more clearly the models studied.

  2. Moral distress and Burnout syndrome: are there relationships between these phenomena in nursing workers?1

    PubMed Central

    Dalmolin, Graziele de Lima; Lunardi, Valéria Lerch; Lunardi, Guilherme Lerch; Barlem, Edison Luiz Devos; da Silveira, Rosemary Silva

    2014-01-01

    Objective to identify relationships between moral distress and Burnout in the professional performance from the perceptions of the experiences of nursing workers. Methods this is a survey type study with 375 nursing workers working in three different hospitals of southern Rio Grande do Sul, with the application of adaptations of the Moral Distress Scale and the Maslach Burnout Inventory, validated and standardized for use in Brazil. Data validation occurred through factor analysis and Cronbach's alpha. For the data analysis bivariate analysis using Pearson's correlation and multivariate analysis using multiple regression were performed. Results the existence of a weak correlation between moral distress and Burnout was verified. A possible positive correlation between Burnout and therapeutic obstinacy, and a negative correlation between professional fulfillment and moral distress were identified. Conclusion the need was identified for further studies that include mediating and moderating variables that may explain more clearly the models studied. PMID:24553701

  3. Managing more than the mean: Using quantile regression to identify factors related to large elk groups

    USGS Publications Warehouse

    Brennan, Angela K.; Cross, Paul C.; Creely, Scott

    2015-01-01

    Synthesis and applications. Our analysis of elk group size distributions using quantile regression suggests that private land, irrigation, open habitat, elk density and wolf abundance can affect large elk group sizes. Thus, to manage larger groups by removal or dispersal of individuals, we recommend incentivizing hunting on private land (particularly if irrigated) during the regular and late hunting seasons, promoting tolerance of wolves on private land (if elk aggregate in these areas to avoid wolves) and creating more winter range and varied habitats. Relationships to the variables of interest also differed by quantile, highlighting the importance of using quantile regression to examine response variables more completely to uncover relationships important to conservation and management.

  4. Prediction of early postoperative infections in pediatric liver transplantation by logistic regression

    NASA Astrophysics Data System (ADS)

    Uzunova, Yordanka; Prodanova, Krasimira; Spassov, Lubomir

    2016-12-01

    Orthotopic liver transplantation (OLT) is the only curative treatment for end-stage liver disease. Early diagnosis and treatment of infections after OLT are usually associated with improved outcomes. This study's objective is to identify reliable factors that can predict postoperative infectious morbidity. 27 children were included in the analysis. They underwent liver transplantation in our department. The correlation between two parameters (the level of blood glucose at 5th postoperative day and the duration of the anhepatic phase) and postoperative infections was analyzed, using univariate analysis. In this analysis, an independent predictive factor was derived which adequately identifies patients at risk of infectious complications after a liver transplantation.

  5. Systematic analysis of factors associated with progression and regression of ulcerative colitis in 918 patients.

    PubMed

    Safroneeva, E; Vavricka, S; Fournier, N; Seibold, F; Mottet, C; Nydegger, A; Ezri, J; Straumann, A; Rogler, G; Schoepfer, A M

    2015-09-01

    Studies that systematically assess change in ulcerative colitis (UC) extent over time in adult patients are scarce. To assess changes in disease extent over time and to evaluate clinical parameters associated with this change. Data from the Swiss IBD cohort study were analysed. We used logistic regression modelling to identify factors associated with a change in disease extent. A total of 918 UC patients (45.3% females) were included. At diagnosis, UC patients presented with the following disease extent: proctitis [199 patients (21.7%)], left-sided colitis [338 patients (36.8%)] and extensive colitis/pancolitis [381 (41.5%)]. During a median disease duration of 9 [4-16] years, progression and regression was documented in 145 patients (15.8%) and 149 patients (16.2%) respectively. In addition, 624 patients (68.0%) had a stable disease extent. The following factors were identified to be associated with disease progression: treatment with systemic glucocorticoids [odds ratio (OR) 1.704, P = 0.025] and calcineurin inhibitors (OR: 2.716, P = 0.005). No specific factors were found to be associated with disease regression. Over a median disease duration of 9 [4-16] years, about two-thirds of UC patients maintained the initial disease extent; the remaining one-third had experienced either progression or regression of the disease extent. © 2015 John Wiley & Sons Ltd.

  6. Comparing lagged linear correlation, lagged regression, Granger causality, and vector autoregression for uncovering associations in EHR data.

    PubMed

    Levine, Matthew E; Albers, David J; Hripcsak, George

    2016-01-01

    Time series analysis methods have been shown to reveal clinical and biological associations in data collected in the electronic health record. We wish to develop reliable high-throughput methods for identifying adverse drug effects that are easy to implement and produce readily interpretable results. To move toward this goal, we used univariate and multivariate lagged regression models to investigate associations between twenty pairs of drug orders and laboratory measurements. Multivariate lagged regression models exhibited higher sensitivity and specificity than univariate lagged regression in the 20 examples, and incorporating autoregressive terms for labs and drugs produced more robust signals in cases of known associations among the 20 example pairings. Moreover, including inpatient admission terms in the model attenuated the signals for some cases of unlikely associations, demonstrating how multivariate lagged regression models' explicit handling of context-based variables can provide a simple way to probe for health-care processes that confound analyses of EHR data.

  7. Risk profiles for weight gain among postmenopausal women: A classification and regression tree analysis approach

    USDA-ARS?s Scientific Manuscript database

    Risk factors for obesity and weight gain are typically evaluated individually while "adjusting for" the influence of other confounding factors, and few studies, if any, have created risk profiles by clustering risk factors. We identified subgroups of postmenopausal women homogeneous in their cluster...

  8. Modeling enterococcus densities measured by quantitative polymerase chain reaction and membrane filtration using environmental conditions at four Great Lakes beaches

    EPA Science Inventory

    Data collected by the US Environmental Protection Agency (EPA) during the summer months of 2003 and 2004 at four US Great Lakes beaches were analyzed using regression analysis to identify relationships between meteorological, physical water characteristics, and beach characterist...

  9. A Study of the Relationship between Kindergarten Nonverbal Ability and Third-Grade Reading Achievement

    ERIC Educational Resources Information Center

    Wills, Aaron J.

    2012-01-01

    Increased scrutiny of educational proficiency targets has intensified the urgency for educators to identify measurements that indicate students' likelihood of eventual achievement in reading. This regression analysis explored the relationship between nonverbal ability in kindergarten as measured by the Naglieri Nonverbal Ability Test (NNAT) and…

  10. Religiosity and Authoritarianism as Predictors of Attitude toward the Disabled: A Regression Analysis.

    ERIC Educational Resources Information Center

    Tunick, Roy H.; And Others

    1979-01-01

    This study identifies predictors and correlates of attitudes toward the disabled. Authoritarianism, church attendance, religious orthodoxy, age, and education were significantly related to these attitudes of people in a Rocky Mountain Community. Significant predictors of the criterion were authoritarianism, religiosity, and age. Recommendations…

  11. Rural Economic Development: What Makes Rural Communities Grow?

    ERIC Educational Resources Information Center

    Aldrich, Lorna; Kusmin, Lorin

    This report identifies local factors that foster rural economic growth. A review of the literature revealed potential indicators of county economic growth, and those indicators were then tested against data for nonmetro counties during the 1980s using multiple regression analysis. The principal variables examined included demographic and labor…

  12. Pesticides in Urban Multiunit Dwellings: Hazard IdentificationUsing Classification and Regression Tree (CART) Analysis

    EPA Science Inventory

    Many units in public housing or other low-income urban dwellings may have elevated pesticide residues, given recurring infestation, but it would be logistically and economically infeasible to sample a large number of units to identify highly exposed households to design interven...

  13. Factors Influencing New York Doctoral Graduate Student Satisfaction: A Quantitative Multiple Regression Analysis

    ERIC Educational Resources Information Center

    Nwenyi, Sabina E.

    2013-01-01

    Higher education administrators face challenges in providing a welcoming environment for doctoral students in higher education institutions. Administrators need to identify factors influencing satisfaction of this group of students to provide a supportive environment, reduce attrition rates, and promote persistence. The purpose of this…

  14. Role of Social Performance in Predicting Learning Problems: Prediction of Risk Using Logistic Regression Analysis

    ERIC Educational Resources Information Center

    Del Prette, Zilda Aparecida Pereira; Prette, Almir Del; De Oliveira, Lael Almeida; Gresham, Frank M.; Vance, Michael J.

    2012-01-01

    Social skills are specific behaviors that individuals exhibit in order to successfully complete social tasks whereas social competence represents judgments by significant others that these social tasks have been successfully accomplished. The present investigation identified the best sociobehavioral predictors obtained from different raters…

  15. Meta-Analysis: An Introduction Using Regression Models

    ERIC Educational Resources Information Center

    Rhodes, William

    2012-01-01

    Research synthesis of evaluation findings is a multistep process. An investigator identifies a research question, acquires the relevant literature, codes findings from that literature, and analyzes the coded data to estimate the average treatment effect and its distribution in a population of interest. The process of estimating the average…

  16. Estimating Information Processing in a Memory System: The Utility of Meta-analytic Methods for Genetics.

    PubMed

    Yildizoglu, Tugce; Weislogel, Jan-Marek; Mohammad, Farhan; Chan, Edwin S-Y; Assam, Pryseley N; Claridge-Chang, Adam

    2015-12-01

    Genetic studies in Drosophila reveal that olfactory memory relies on a brain structure called the mushroom body. The mainstream view is that each of the three lobes of the mushroom body play specialized roles in short-term aversive olfactory memory, but a number of studies have made divergent conclusions based on their varying experimental findings. Like many fields, neurogenetics uses null hypothesis significance testing for data analysis. Critics of significance testing claim that this method promotes discrepancies by using arbitrary thresholds (α) to apply reject/accept dichotomies to continuous data, which is not reflective of the biological reality of quantitative phenotypes. We explored using estimation statistics, an alternative data analysis framework, to examine published fly short-term memory data. Systematic review was used to identify behavioral experiments examining the physiological basis of olfactory memory and meta-analytic approaches were applied to assess the role of lobular specialization. Multivariate meta-regression models revealed that short-term memory lobular specialization is not supported by the data; it identified the cellular extent of a transgenic driver as the major predictor of its effect on short-term memory. These findings demonstrate that effect sizes, meta-analysis, meta-regression, hierarchical models and estimation methods in general can be successfully harnessed to identify knowledge gaps, synthesize divergent results, accommodate heterogeneous experimental design and quantify genetic mechanisms.

  17. Do antipsychotics lead to cognitive impairment in dementia? A meta-analysis of randomised placebo-controlled trials.

    PubMed

    Wolf, Alexander; Leucht, Stefan; Pajonk, Frank-Gerald

    2017-04-01

    Behavioural and psychological symptoms in dementia (BPSD) are common and often treated with antipsychotics, which are known to have small efficacy and to cause many side effects. One potential side effect might be cognitive decline. We searched MEDLINE, Scopus, CENTRAL and www.ClincalStudyResult.org for randomized, double-blind, placebo-controlled trials using antipsychotics for treating BPSD and evaluated cognitive functioning. The studies identified were summarized in a meta-analysis with the standardized mean difference (SMD, Hedges's g) as the effect size. Meta-regression was additionally performed to identify associated factors. Ten studies provided data on the course of cognitive functioning. The random effects model of the pooled analysis showed a not significant effect (SMD = -0.065, 95 % CI -0.186 to 0.057, I 2  = 41 %). Meta-regression revealed a significant correlation between cognitive impairment and treatment duration (R 2  = 0.78, p < 0.02) as well as baseline MMSE (R 2  = 0.92, p < 0.005). These correlations depend on only two out of ten studies and should interpret cautiously.

  18. Analysis of cerebrovascular disease mortality trends in Andalusia (1980-2014).

    PubMed

    Cayuela, A; Cayuela, L; Rodríguez-Domínguez, S; González, A; Moniche, F

    2017-03-15

    In recent decades, mortality rates for cerebrovascular diseases (CVD) have decreased significantly in many countries. This study analyses recent tendencies in CVD mortality rates in Andalusia (1980-2014) to identify any changes in previously observed sex and age trends. CVD mortality and population data were obtained from Spain's National Statistics Institute database. We calculated age-specific and age-standardised mortality rates using the direct method (European standard population). Joinpoint regression analysis was used to estimate the annual percentage change in rates and identify significant changes in mortality trends. We also estimated rate ratios between Andalusia and Spain. Standardised rates for both males and females showed 3 periods in joinpoint regression analysis: an initial period of significant decline (1980-1997), a period of rate stabilisation (1997-2003), and another period of significant decline (2003-2014). Between 1997 and 2003, age-standardised rates stabilised in Andalusia but continued to decrease in Spain as a whole. This increased in the gap between CVD mortality rates in Andalusia and Spain for both sexes and most age groups. Copyright © 2017 The Author(s). Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Modeling brook trout presence and absence from landscape variables using four different analytical methods

    USGS Publications Warehouse

    Steen, Paul J.; Passino-Reader, Dora R.; Wiley, Michael J.

    2006-01-01

    As a part of the Great Lakes Regional Aquatic Gap Analysis Project, we evaluated methodologies for modeling associations between fish species and habitat characteristics at a landscape scale. To do this, we created brook trout Salvelinus fontinalis presence and absence models based on four different techniques: multiple linear regression, logistic regression, neural networks, and classification trees. The models were tested in two ways: by application to an independent validation database and cross-validation using the training data, and by visual comparison of statewide distribution maps with historically recorded occurrences from the Michigan Fish Atlas. Although differences in the accuracy of our models were slight, the logistic regression model predicted with the least error, followed by multiple regression, then classification trees, then the neural networks. These models will provide natural resource managers a way to identify habitats requiring protection for the conservation of fish species.

  20. Fatigue design of a cellular phone folder using regression model-based multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Kim, Young Gyun; Lee, Jongsoo

    2016-08-01

    In a folding cellular phone, the folding device is repeatedly opened and closed by the user, which eventually results in fatigue damage, particularly to the front of the folder. Hence, it is important to improve the safety and endurance of the folder while also reducing its weight. This article presents an optimal design for the folder front that maximizes its fatigue endurance while minimizing its thickness. Design data for analysis and optimization were obtained experimentally using a test jig. Multi-objective optimization was carried out using a nonlinear regression model. Three regression methods were employed: back-propagation neural networks, logistic regression and support vector machines. The AdaBoost ensemble technique was also used to improve the approximation. Two-objective Pareto-optimal solutions were identified using the non-dominated sorting genetic algorithm (NSGA-II). Finally, a numerically optimized solution was validated against experimental product data, in terms of both fatigue endurance and thickness index.

  1. Sparse modeling of spatial environmental variables associated with asthma

    PubMed Central

    Chang, Timothy S.; Gangnon, Ronald E.; Page, C. David; Buckingham, William R.; Tandias, Aman; Cowan, Kelly J.; Tomasallo, Carrie D.; Arndt, Brian G.; Hanrahan, Lawrence P.; Guilbert, Theresa W.

    2014-01-01

    Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin’s Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5–50 years over a three-year period. Each patient’s home address was geocoded to one of 3,456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin’s geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. PMID:25533437

  2. Sparse modeling of spatial environmental variables associated with asthma.

    PubMed

    Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W

    2015-02-01

    Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Risk of hemorrhagic transformation after ischemic stroke in patients with antiphospholipid antibody syndrome.

    PubMed

    Mehta, Tapan; Hussain, Mohammed; Sheth, Khushboo; Ding, Yuchuan; McCullough, Louise D

    2017-06-01

    Several rheumatologic conditions including systemic lupus erythematosus, antiphospholipid antibody (APS) syndrome, rheumatoid arthritis, and scleroderma are known risk factors for stroke. The risk of hemorrhagic transformation after an acute ischemic stroke (AIS) in these patients is not known. We queried the Nationwide Inpatient Sample (NIS) data between 2010 and 2012 with ICD 9 diagnostic codes for AIS. The primary outcome was the development of hemorrhagic transformation. Multivariate predictors for hemorrhagic transformation were identified with a logistic regression model. Using SAS 9.2, Survey procedures were used to accommodate for hierarchical two stage cluster design of NIS. APS (OR 2.57, 95% CI 1.14-5.81, p = 0.0228) independently predicted risk of hemorrhagic transformation in multivariate regression analysis. Similarly, in multivariate regression models for the outcome variables of total charges of the hospitalization and length of stay (LOS), patients with APS had the highest charges ($56,286, p = 0.0228) and LOS (3.87 days, p = 0.0164) compared to other co-variates. Univariate analysis showed increased mortality in the APS compared to the non-APS group (11.68% vs. 7.16%, p = 0.0024). APS is an independent risk factor for hemorrhagic transformation in both thrombolytic and non-thrombolytic treated patients. APS is also associated with longer length and cost of hospital stay. Further research is warranted to identify the unique risk factors in these patients to identify strategies to reduce the risk of hemorrhagic transformation in this subgroup of the population.

  4. Serum Albumin and Disease Severity of Non-Cystic Fibrosis Bronchiectasis.

    PubMed

    Lee, Seung Jun; Kim, Hyo-Jung; Kim, Ju-Young; Ju, Sunmi; Lim, Sujin; Yoo, Jung Wan; Nam, Sung-Jin; Lee, Gi Dong; Cho, Hyun Seop; Kim, Rock Bum; Cho, Yu Ji; Jeong, Yi Yeong; Kim, Ho Cheol; Lee, Jong Deog

    2017-08-01

    A clinical classification system has been developed to define the severity and predict the prognosis of subjects with non-cystic fibrosis (CF) bronchiectasis. We aimed to identify laboratory parameters that are correlated with the bronchiectasis severity index (BSI) and FACED score. The medical records of 107 subjects with non-CF bronchiectasis for whom BSI and FACED scores could be calculated were retrospectively reviewed. The correlations between the laboratory parameters and BSI or FACED score were assessed, and multiple-linear regression analysis was performed to identify variables independently associated with BSI and FACED score. An additional subgroup analysis was performed according to sex. Among all of the enrolled subjects, 49 (45.8%) were male and 58 (54.2%) were female. The mean BSI and FACED scores were 9.43 ± 3.81 and 1.92 ± 1.59, respectively. The serum albumin level (r = -0.49), bilirubin level (r = -0.31), C-reactive protein level (r = 0.22), hemoglobin level (r = -0.2), and platelet/lymphocyte ratio (r = 0.31) were significantly correlated with BSI. Meanwhile, serum albumin (r = -0.37) and bilirubin level (r = -0.25) showed a significant correlation with the FACED score. Multiple-linear regression analysis showed that the serum bilirubin level was independently associated with BSI, and the serum albumin level was independently associated with both scoring systems. Subgroup analysis revealed that the level of uric acid was also a significant variable independently associated with the BSI in male bronchiectasis subjects. Several laboratory variables were identified as possible prognostic factors for non-CF bronchiectasis. Among them, the serum albumin level exhibited the strongest correlation and was identified as an independent variable associated with the BSI and FACED scores. Copyright © 2017 by Daedalus Enterprises.

  5. Chi-squared Automatic Interaction Detection Decision Tree Analysis of Risk Factors for Infant Anemia in Beijing, China

    PubMed Central

    Ye, Fang; Chen, Zhi-Hua; Chen, Jie; Liu, Fang; Zhang, Yong; Fan, Qin-Ying; Wang, Lin

    2016-01-01

    Background: In the past decades, studies on infant anemia have mainly focused on rural areas of China. With the increasing heterogeneity of population in recent years, available information on infant anemia is inconclusive in large cities of China, especially with comparison between native residents and floating population. This population-based cross-sectional study was implemented to determine the anemic status of infants as well as the risk factors in a representative downtown area of Beijing. Methods: As useful methods to build a predictive model, Chi-squared automatic interaction detection (CHAID) decision tree analysis and logistic regression analysis were introduced to explore risk factors of infant anemia. A total of 1091 infants aged 6–12 months together with their parents/caregivers living at Heping Avenue Subdistrict of Beijing were surveyed from January 1, 2013 to December 31, 2014. Results: The prevalence of anemia was 12.60% with a range of 3.47%–40.00% in different subgroup characteristics. The CHAID decision tree model has demonstrated multilevel interaction among risk factors through stepwise pathways to detect anemia. Besides the three predictors identified by logistic regression model including maternal anemia during pregnancy, exclusive breastfeeding in the first 6 months, and floating population, CHAID decision tree analysis also identified the fourth risk factor, the maternal educational level, with higher overall classification accuracy and larger area below the receiver operating characteristic curve. Conclusions: The infant anemic status in metropolis is complex and should be carefully considered by the basic health care practitioners. CHAID decision tree analysis has demonstrated a better performance in hierarchical analysis of population with great heterogeneity. Risk factors identified by this study might be meaningful in the early detection and prompt treatment of infant anemia in large cities. PMID:27174328

  6. Chi-squared Automatic Interaction Detection Decision Tree Analysis of Risk Factors for Infant Anemia in Beijing, China.

    PubMed

    Ye, Fang; Chen, Zhi-Hua; Chen, Jie; Liu, Fang; Zhang, Yong; Fan, Qin-Ying; Wang, Lin

    2016-05-20

    In the past decades, studies on infant anemia have mainly focused on rural areas of China. With the increasing heterogeneity of population in recent years, available information on infant anemia is inconclusive in large cities of China, especially with comparison between native residents and floating population. This population-based cross-sectional study was implemented to determine the anemic status of infants as well as the risk factors in a representative downtown area of Beijing. As useful methods to build a predictive model, Chi-squared automatic interaction detection (CHAID) decision tree analysis and logistic regression analysis were introduced to explore risk factors of infant anemia. A total of 1091 infants aged 6-12 months together with their parents/caregivers living at Heping Avenue Subdistrict of Beijing were surveyed from January 1, 2013 to December 31, 2014. The prevalence of anemia was 12.60% with a range of 3.47%-40.00% in different subgroup characteristics. The CHAID decision tree model has demonstrated multilevel interaction among risk factors through stepwise pathways to detect anemia. Besides the three predictors identified by logistic regression model including maternal anemia during pregnancy, exclusive breastfeeding in the first 6 months, and floating population, CHAID decision tree analysis also identified the fourth risk factor, the maternal educational level, with higher overall classification accuracy and larger area below the receiver operating characteristic curve. The infant anemic status in metropolis is complex and should be carefully considered by the basic health care practitioners. CHAID decision tree analysis has demonstrated a better performance in hierarchical analysis of population with great heterogeneity. Risk factors identified by this study might be meaningful in the early detection and prompt treatment of infant anemia in large cities.

  7. Comparison of Linear and Non-linear Regression Analysis to Determine Pulmonary Pressure in Hyperthyroidism.

    PubMed

    Scarneciu, Camelia C; Sangeorzan, Livia; Rus, Horatiu; Scarneciu, Vlad D; Varciu, Mihai S; Andreescu, Oana; Scarneciu, Ioan

    2017-01-01

    This study aimed at assessing the incidence of pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple model showing the complex functional relation between pulmonary hypertension in hyperthyroidism and the factors causing it. The 53 hyperthyroid patients (H-group) were evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary hypertension the statistical method of comparing the values of arithmetical means is used. The functional relation between the two random variables (PAPs and each of the factors determining it within our research study) can be expressed by linear or non-linear function. By applying the linear regression method described by a first-degree equation the line of regression (linear model) has been determined; by applying the non-linear regression method described by a second degree equation, a parabola-type curve of regression (non-linear or polynomial model) has been determined. We made the comparison and the validation of these two models by calculating the determination coefficient (criterion 1), the comparison of residuals (criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). From the H-group, 47% have pulmonary hypertension completely reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac output; new factors identified in this study- pretreatment period, age, systolic blood pressure. According to the four criteria and to the clinical judgment, we consider that the polynomial model (graphically parabola- type) is better than the linear one. The better model showing the functional relation between the pulmonary hypertension in hyperthyroidism and the factors identified in this study is given by a polynomial equation of second degree where the parabola is its graphical representation.

  8. Health behavior change counseling in surgery for degenerative lumbar spinal stenosis. Part II: patient activation mediates the effects of health behavior change counseling on rehabilitation engagement.

    PubMed

    Skolasky, Richard L; Maggard, Anica M; Li, David; Riley, Lee H; Wegener, Stephen T

    2015-07-01

    To determine the effect of health behavior change counseling (HBCC) on patient activation and the influence of patient activation on rehabilitation engagement, and to identify common barriers to engagement among individuals undergoing surgery for degenerative lumbar spinal stenosis. Prospective clinical trial. Academic medical center. Consecutive lumbar spine surgery patients (N=122) defined in our companion article (Part I) were assigned to a control group (did not receive HBCC, n=59) or HBCC group (received HBCC, n=63). Brief motivational interviewing-based HBCC versus control (significance, P<.05). We assessed patient activation before and after intervention. Rehabilitation engagement was assessed using the physical therapist-reported Hopkins Rehabilitation Engagement Rating Scale and by a ratio of self-reported physical therapy and home exercise completion. Common barriers to rehabilitation engagement were identified through thematic analysis. Patient activation predicted engagement (standardized regression weight, .682; P<.001). Postintervention patient activation was predicted by baseline patient activation (standardized regression weight, .808; P<.001) and receipt of HBCC (standardized regression weight, .444; P<.001). The effect of HBCC on rehabilitation engagement was mediated by patient activation (standardized regression weight, .079; P=.395). One-third of the HBCC group did not show improvement compared with the control group. Thematic analysis identified 3 common barriers to engagement: (1) low self-efficacy because of lack of knowledge and support (62%); (2) anxiety related to fear of movement (57%); and (3) concern about pain management (48%). The influence of HBCC on rehabilitation engagement was mediated by patient activation. Despite improvements in patient activation, one-third of patients reported low rehabilitation engagement. Addressing these barriers should lead to greater improvements in rehabilitation engagement. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  9. Impacts of land use and population density on seasonal surface water quality using a modified geographically weighted regression.

    PubMed

    Chen, Qiang; Mei, Kun; Dahlgren, Randy A; Wang, Ting; Gong, Jian; Zhang, Minghua

    2016-12-01

    As an important regulator of pollutants in overland flow and interflow, land use has become an essential research component for determining the relationships between surface water quality and pollution sources. This study investigated the use of ordinary least squares (OLS) and geographically weighted regression (GWR) models to identify the impact of land use and population density on surface water quality in the Wen-Rui Tang River watershed of eastern China. A manual variable excluding-selecting method was explored to resolve multicollinearity issues. Standard regression coefficient analysis coupled with cluster analysis was introduced to determine which variable had the greatest influence on water quality. Results showed that: (1) Impact of land use on water quality varied with spatial and seasonal scales. Both positive and negative effects for certain land-use indicators were found in different subcatchments. (2) Urban land was the dominant factor influencing N, P and chemical oxygen demand (COD) in highly urbanized regions, but the relationship was weak as the pollutants were mainly from point sources. Agricultural land was the primary factor influencing N and P in suburban and rural areas; the relationship was strong as the pollutants were mainly from agricultural surface runoff. Subcatchments located in suburban areas were identified with urban land as the primary influencing factor during the wet season while agricultural land was identified as a more prevalent influencing factor during the dry season. (3) Adjusted R 2 values in OLS models using the manual variable excluding-selecting method averaged 14.3% higher than using stepwise multiple linear regressions. However, the corresponding GWR models had adjusted R 2 ~59.2% higher than the optimal OLS models, confirming that GWR models demonstrated better prediction accuracy. Based on our findings, water resource protection policies should consider site-specific land-use conditions within each watershed to optimize mitigation strategies for contrasting land-use characteristics and seasonal variations. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A study of home deaths in Japan from 1951 to 2002

    PubMed Central

    Yang, Limin; Sakamoto, Naoko; Marui, Eiji

    2006-01-01

    Background Several surveys in Japan have indicated that most terminally ill Japanese patients would prefer to die at home or in a homelike setting. However, there is a great disparity between this stated preference and the reality, since most Japanese die in hospital. We report here national changes in home deaths in Japan over the last 5 decades. Using prefecture data, we also examined the factors in the medical service associated with home death in Japan. Methods Published data on place of death was obtained from the vital statistics compiled by the Ministry of Health, Labor and Welfare of Japan. We analyzed trends of home deaths from 1951 to 2002, and describe the changes in the proportion of home deaths by region, sex, age, and cause of death. Joinpoint regression analysis was used for trend analysis. Logistic regression analysis was performed to identify secular trends in home deaths, and the impact of age, sex, year of deaths and cause of deaths on home death. We also examined the association between home death and medical service factors by multiple regression analysis, using home death rate by prefectures in 2002 as a dependent variable. Results A significant decrease in the percentage of patients dying at home was observed in the results of joinpoint regression analysis. Older patients and males were more likely to die at home. Patients who died from cancer were less likely to die at home. The results of multiple regression analysis indicated that home death was related to the number of beds in hospital, ratio of daily occupied beds in general hospital, the number of families in which the elderly were living alone, and dwelling rooms. Conclusion The pattern of the place of death has not only been determined by social and demographic characteristics of the decedent, but also associated with the medical service in the community. PMID:16524485

  11. Test data analysis for concentrating photovoltaic arrays

    NASA Astrophysics Data System (ADS)

    Maish, A. B.; Cannon, J. E.

    A test data analysis approach for use with steady state efficiency measurements taken on concentrating photovoltaic arrays is presented. The analysis procedures can be used to identify based and erroneous data. The steps involved in analyzing the test data are screening the data, developing coefficients for the performance equation, analyzing statistics to ensure adequacy of the regression fit to the data, and plotting the data. In addition, this paper analyzes the sources and magnitudes of precision and bias errors that affect measurement accuracy are analyzed.

  12. Collaborative Chronic Care Models for Mental Health Conditions: Cumulative Meta-Analysis and Meta-Regression to Guide Future Research and Implementation

    PubMed Central

    Grogan-Kaylor, Andrew; Perron, Brian E.; Kilbourne, Amy M.; Woltmann, Emily; Bauer, Mark S.

    2013-01-01

    Objective Prior meta-analysis indicates that collaborative chronic care models (CCMs) improve mental and physical health outcomes for individuals with mental disorders. This study aimed to investigate the stability of evidence over time and identify patient and intervention factors associated with CCM effects in order to facilitate implementation and sustainability of CCMs in clinical practice. Method We reviewed 53 CCM trials that analyzed depression, mental quality of life (QOL), or physical QOL outcomes. Cumulative meta-analysis and meta-regression were supplemented by descriptive investigations across and within trials. Results Most trials targeted depression in the primary care setting, and cumulative meta-analysis indicated that effect sizes favoring CCM quickly achieved significance for depression outcomes, and more recently achieved significance for mental and physical QOL. Four of six CCM elements (patient self-management support, clinical information systems, system redesign, and provider decision support) were common among reviewed trials, while two elements (healthcare organization support and linkages to community resources) were rare. No single CCM element was statistically associated with the success of the model. Similarly, meta-regression did not identify specific factors associated with CCM effectiveness. Nonetheless, results within individual trials suggest that increased illness severity predicts CCM outcomes. Conclusions Significant CCM trials have been derived primarily from four original CCM elements. Nonetheless, implementing and sustaining this established model will require healthcare organization support. While CCMs have typically been tested as population-based interventions, evidence supports stepped care application to more severely ill individuals. Future priorities include developing implementation strategies to support adoption and sustainability of the model in clinical settings while maximizing fit of this multi-component framework to local contextual factors. PMID:23938600

  13. Integrative eQTL analysis of tumor and host omics data in individuals with bladder cancer.

    PubMed

    Pineda, Silvia; Van Steen, Kristel; Malats, Núria

    2017-09-01

    Integrative analyses of several omics data are emerging. The data are usually generated from the same source material (i.e., tumor sample) representing one level of regulation. However, integrating different regulatory levels (i.e., blood) with those from tumor may also reveal important knowledge about the human genetic architecture. To model this multilevel structure, an integrative-expression quantitative trait loci (eQTL) analysis applying two-stage regression (2SR) was proposed. This approach first regressed tumor gene expression levels with tumor markers and the adjusted residuals from the previous model were then regressed with the germline genotypes measured in blood. Previously, we demonstrated that penalized regression methods in combination with a permutation-based MaxT method (Global-LASSO) is a promising tool to fix some of the challenges that high-throughput omics data analysis imposes. Here, we assessed whether Global-LASSO can also be applied when tumor and blood omics data are integrated. We further compared our strategy with two 2SR-approaches, one using multiple linear regression (2SR-MLR) and other using LASSO (2SR-LASSO). We applied the three models to integrate genomic, epigenomic, and transcriptomic data from tumor tissue with blood germline genotypes from 181 individuals with bladder cancer included in the TCGA Consortium. Global-LASSO provided a larger list of eQTLs than the 2SR methods, identified a previously reported eQTLs in prostate stem cell antigen (PSCA), and provided further clues on the complexity of APBEC3B loci, with a minimal false-positive rate not achieved by 2SR-MLR. It also represents an important contribution for omics integrative analysis because it is easy to apply and adaptable to any type of data. © 2017 WILEY PERIODICALS, INC.

  14. Utility-Based Instruments for People with Dementia: A Systematic Review and Meta-Regression Analysis.

    PubMed

    Li, Li; Nguyen, Kim-Huong; Comans, Tracy; Scuffham, Paul

    2018-04-01

    Several utility-based instruments have been applied in cost-utility analysis to assess health state values for people with dementia. Nevertheless, concerns and uncertainty regarding their performance for people with dementia have been raised. To assess the performance of available utility-based instruments for people with dementia by comparing their psychometric properties and to explore factors that cause variations in the reported health state values generated from those instruments by conducting meta-regression analyses. A literature search was conducted and psychometric properties were synthesized to demonstrate the overall performance of each instrument. When available, health state values and variables such as the type of instrument and cognitive impairment levels were extracted from each article. A meta-regression analysis was undertaken and available covariates were included in the models. A total of 64 studies providing preference-based values were identified and included. The EuroQol five-dimension questionnaire demonstrated the best combination of feasibility, reliability, and validity. Meta-regression analyses suggested that significant differences exist between instruments, type of respondents, and mode of administration and the variations in estimated utility values had influences on incremental quality-adjusted life-year calculation. This review finds that the EuroQol five-dimension questionnaire is the most valid utility-based instrument for people with dementia, but should be replaced by others under certain circumstances. Although no utility estimates were reported in the article, the meta-regression analyses that examined variations in utility estimates produced by different instruments impact on cost-utility analysis, potentially altering the decision-making process in some circumstances. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  15. Optimizing the time-frame for the definition of bleeding-related death after acute variceal bleeding in cirrhosis.

    PubMed

    Merkel, C; Gatta, A; Bellumat, A; Bolognesi, M; Borsato, L; Caregaro, L; Cavallarin, G; Cielo, R; Cristina, P; Cucci, E; Donada, C; Donadon, V; Enzo, E; Martin, R; Mazzaro, C; Sacerdoti, D; Torboli, P

    1996-01-01

    To identify the best time-frame for defining bleeding-related death after variceal bleeding in patients with cirrhosis. Prospective long-term evaluation of a cohort of 155 patients admitted with variceal bleeding. Eight medical departments in seven hospitals in north-eastern Italy. Non-linear regression analysis of a hazard curve for death, and Cox's multiple regression analyses using different zero-time points. Cumulative hazard plots gave two slopes, the first corresponding to the risk of death from acute bleeding, the second a baseline risk of death. The first 30 days were outside the confidence limits of the regression curve for the baseline risk of death. Using Cox's regression analysis, the significant predictors of overall mortality risk were balanced between factors related to severity of bleeding and those related to severity of liver disease. If only deaths occurring after 30 days were considered, only predictors related to the severity of liver disease were found to be of importance. Thirty days after bleeding is considered to be a reasonable time-frame for the definition of bleeding-related death in patients with cirrhosis and variceal bleeding.

  16. Prevalence of treponema species detected in endodontic infections: systematic review and meta-regression analysis.

    PubMed

    Leite, Fábio R M; Nascimento, Gustavo G; Demarco, Flávio F; Gomes, Brenda P F A; Pucci, Cesar R; Martinho, Frederico C

    2015-05-01

    This systematic review and meta-regression analysis aimed to calculate a combined prevalence estimate and evaluate the prevalence of different Treponema species in primary and secondary endodontic infections, including symptomatic and asymptomatic cases. The MEDLINE/PubMed, Embase, Scielo, Web of Knowledge, and Scopus databases were searched without starting date restriction up to and including March 2014. Only reports in English were included. The selected literature was reviewed by 2 authors and classified as suitable or not to be included in this review. Lists were compared, and, in case of disagreements, decisions were made after a discussion based on inclusion and exclusion criteria. A pooled prevalence of Treponema species in endodontic infections was estimated. Additionally, a meta-regression analysis was performed. Among the 265 articles identified in the initial search, only 51 were included in the final analysis. The studies were classified into 2 different groups according to the type of endodontic infection and whether it was an exclusively primary/secondary study (n = 36) or a primary/secondary comparison (n = 15). The pooled prevalence of Treponema species was 41.5% (95% confidence interval, 35.9-47.0). In the multivariate model of meta-regression analysis, primary endodontic infections (P < .001), acute apical abscess, symptomatic apical periodontitis (P < .001), and concomitant presence of 2 or more species (P = .028) explained the heterogeneity regarding the prevalence rates of Treponema species. Our findings suggest that Treponema species are important pathogens involved in endodontic infections, particularly in cases of primary and acute infections. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.

    PubMed

    Zhang, Futao; Xie, Dan; Liang, Meimei; Xiong, Momiao

    2016-04-01

    To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes.

  18. Identifying the critical success factors in the coverage of low vision services using the classification analysis and regression tree methodology.

    PubMed

    Chiang, Peggy Pei-Chia; Xie, Jing; Keeffe, Jill Elizabeth

    2011-04-25

    To identify the critical success factors (CSF) associated with coverage of low vision services. Data were collected from a survey distributed to Vision 2020 contacts, government, and non-government organizations (NGOs) in 195 countries. The Classification and Regression Tree Analysis (CART) was used to identify the critical success factors of low vision service coverage. Independent variables were sourced from the survey: policies, epidemiology, provision of services, equipment and infrastructure, barriers to services, human resources, and monitoring and evaluation. Socioeconomic and demographic independent variables: health expenditure, population statistics, development status, and human resources in general, were sourced from the World Health Organization (WHO), World Bank, and the United Nations (UN). The findings identified that having >50% of children obtaining devices when prescribed (χ(2) = 44; P < 0.000), multidisciplinary care (χ(2) = 14.54; P = 0.002), >3 rehabilitation workers per 10 million of population (χ(2) = 4.50; P = 0.034), higher percentage of population urbanized (χ(2) = 14.54; P = 0.002), a level of private investment (χ(2) = 14.55; P = 0.015), and being fully funded by government (χ(2) = 6.02; P = 0.014), are critical success factors associated with coverage of low vision services. This study identified the most important predictors for countries with better low vision coverage. The CART is a useful and suitable methodology in survey research and is a novel way to simplify a complex global public health issue in eye care.

  19. Using air/water/sediment temperature contrasts to identify groundwater seepage locations in small streams

    NASA Astrophysics Data System (ADS)

    Karan, S.; Sebok, E.; Engesgaard, P. K.

    2016-12-01

    For identifying groundwater seepage locations in small streams within a headwater catchment, we present a method expanding on the linear regression of air and stream temperatures. Thus, by measuring the temperatures in dual-depth; in the stream column and at the streambed-water interface (SWI), we apply metrics from linear regression analysis of temperatures between air/stream and air/SWI (linear regression slope, intercept and coefficient of determination), and the daily mean temperatures (temperature variance and the average difference between the minimum and maximum daily temperatures). Our study show that using metrics from single-depth stream temperature measurements only are not sufficient to identify substantial groundwater seepage locations within a headwater stream. Conversely, comparing the metrics from dual-depth temperatures show significant differences so that at groundwater seepage locations, temperatures at the SWI, merely explain 43-75 % of the variation opposed to ≥91 % at the corresponding stream column temperatures. The figure showing a box-plot of the variation in daily mean temperature depict that at several locations there is great variation in the range the upper and lower loggers due to groundwater seepage. In general, the linear regression show that at these locations at the SWI, the slopes (<0.25) and intercepts (>6.5oC) are substantially lower and higher, while the mean diel amplitudes (<0.98oC) are decreased compared to remaining locations. The dual-depth approach was applied in a post-glacial fluvial setting, where metrics analyses overall corresponded to field measurements of groundwater fluxes deduced from vertical streambed temperatures and stream flow accretions. Thus, we propose a method reliably identifying groundwater seepage locations along streambed in such settings.

  20. Higher-Than-Conventional Radiation Doses in Localized Prostate Cancer Treatment: A Meta-analysis of Randomized, Controlled Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viani, Gustavo Arruda; Stefano, Eduardo Jose; Afonso, Sergio Luis

    2009-08-01

    Purpose: To determine in a meta-analysis whether the outcomes in men with localized prostate cancer treated with high-dose radiotherapy (HDRT) are better than those in men treated with conventional-dose radiotherapy (CDRT), by quantifying the effect of the total dose of radiotherapy on biochemical control (BC). Methods and Materials: The MEDLINE, EMBASE, CANCERLIT, and Cochrane Library databases, as well as the proceedings of annual meetings, were systematically searched to identify randomized, controlled studies comparing HDRT with CDRT for localized prostate cancer. To evaluate the dose-response relationship, we conducted a meta-regression analysis of BC ratios by means of weighted linear regression. Results:more » Seven RCTs with a total patient population of 2812 were identified that met the study criteria. Pooled results from these RCTs showed a significant reduction in the incidence of biochemical failure in those patients with prostate cancer treated with HDRT (p < 0.0001). However, there was no difference in the mortality rate (p = 0.38) and specific prostate cancer mortality rates (p = 0.45) between the groups receiving HDRT and CDRT. However, there were more cases of late Grade >2 gastrointestinal toxicity after HDRT than after CDRT. In the subgroup analysis, patients classified as being at low (p = 0.007), intermediate (p < 0.0001), and high risk (p < 0.0001) of biochemical failure all showed a benefit from HDRT. The meta-regression analysis also detected a linear correlation between the total dose of radiotherapy and biochemical failure (BC = -67.3 + [1.8 x radiotherapy total dose in Gy]; p = 0.04). Conclusions: Our meta-analysis showed that HDRT is superior to CDRT in preventing biochemical failure in low-, intermediate-, and high-risk prostate cancer patients, suggesting that this should be offered as a treatment for all patients, regardless of their risk status.« less

  1. Spatiotemporal Bayesian analysis of Lyme disease in New York state, 1990-2000.

    PubMed

    Chen, Haiyan; Stratton, Howard H; Caraco, Thomas B; White, Dennis J

    2006-07-01

    Mapping ordinarily increases our understanding of nontrivial spatial and temporal heterogeneities in disease rates. However, the large number of parameters required by the corresponding statistical models often complicates detailed analysis. This study investigates the feasibility of a fully Bayesian hierarchical regression approach to the problem and identifies how it outperforms two more popular methods: crude rate estimates (CRE) and empirical Bayes standardization (EBS). In particular, we apply a fully Bayesian approach to the spatiotemporal analysis of Lyme disease incidence in New York state for the period 1990-2000. These results are compared with those obtained by CRE and EBS in Chen et al. (2005). We show that the fully Bayesian regression model not only gives more reliable estimates of disease rates than the other two approaches but also allows for tractable models that can accommodate more numerous sources of variation and unknown parameters.

  2. Utility of correlation techniques in gravity and magnetic interpretation

    NASA Technical Reports Server (NTRS)

    Chandler, V. W.; Koski, J. S.; Braice, L. W.; Hinze, W. J.

    1977-01-01

    Internal correspondence uses Poisson's Theorem in a moving-window linear regression analysis between the anomalous first vertical derivative of gravity and total magnetic field reduced to the pole. The regression parameters provide critical information on source characteristics. The correlation coefficient indicates the strength of the relation between magnetics and gravity. Slope value gives delta j/delta sigma estimates of the anomalous source. The intercept furnishes information on anomaly interference. Cluster analysis consists of the classification of subsets of data into groups of similarity based on correlation of selected characteristics of the anomalies. Model studies are used to illustrate implementation and interpretation procedures of these methods, particularly internal correspondence. Analysis of the results of applying these methods to data from the midcontinent and a transcontinental profile shows they can be useful in identifying crustal provinces, providing information on horizontal and vertical variations of physical properties over province size zones, validating long wavelength anomalies, and isolating geomagnetic field removal problems.

  3. Mangrove canopy density analysis using Sentinel-2A imagery satellite data

    NASA Astrophysics Data System (ADS)

    Wachid, M. N.; Hapsara, R. P.; Cahyo, R. D.; Wahyu, G. N.; Syarif, A. M.; Umarhadi, D. A.; Fitriani, A. N.; Ramadhanningrum, D. P.; Widyatmanti, W.

    2017-06-01

    Teluk Jor has alluvium surface sediment that came from volcanic materials. Sea wave that relatively calm and the closed beach shape support the existence of mangrove forest at Teluk Jor. Sentinel-2A imagery has a good spatial and spectral resolution for mangrove density study. The regression between samples and the NDVI values of Sentinel-2A used to analyze the mangrove canopy density. Mangrove canopy density was identified using field survey with transect method. The regression analysis shows field data and NDVI value has correlation R=0.7739 and coefficient of determination R2=0.5989. The result of the analysis shows area of low density 397,900 m2, moderate density 336,200 m2, the high density has 110,300 m2 and very high density has 500 m2. This research also found that mangrove genus in Teluk Jor consists of Rhizopora, Ceriops, Aegiceras and Sonneratia.

  4. Influence of Health Behaviors and Occupational Stress on Prediabetic State among Male Office Workers.

    PubMed

    Ryu, Hosihn; Moon, Jihyeon; Jung, Jiyeon

    2018-06-14

    This study examined the influence of health behaviors and occupational stress on the prediabetic state of male office workers, and identified related risks and influencing factors. The study used a cross-sectional design and performed an integrative analysis on data from regular health checkups, health questionnaires, and a health behavior-related survey of employees of a company, using Spearman’s correlation coefficients and multiple logistic regression analysis. The results showed significant relationships of prediabetic state with health behaviors and occupational stress. Among health behaviors, a diet without vegetables and fruits (Odds Ratio (OR) = 3.74, 95% Confidence Interval (CI) = 1.93⁻7.66) was associated with a high risk of prediabetic state. In the subscales on occupational stress, organizational system in the 4th quartile (OR = 4.83, 95% CI = 2.40⁻9.70) was significantly associated with an increased likelihood of prediabetic state. To identify influencing factors of prediabetic state, the multiple logistic regression was performed using regression models. The results showed that dietary habits (β = 1.20, p = 0.002), total occupational stress score (β = 1.33, p = 0.024), and organizational system (β = 1.13, p = 0.009) were significant influencing factors. The present findings indicate that active interventions are needed at workplace for the systematic and comprehensive management of health behaviors and occupational stress that influence prediabetic state of office workers.

  5. BAYESIAN LARGE-SCALE MULTIPLE REGRESSION WITH SUMMARY STATISTICS FROM GENOME-WIDE ASSOCIATION STUDIES1

    PubMed Central

    Zhu, Xiang; Stephens, Matthew

    2017-01-01

    Bayesian methods for large-scale multiple regression provide attractive approaches to the analysis of genome-wide association studies (GWAS). For example, they can estimate heritability of complex traits, allowing for both polygenic and sparse models; and by incorporating external genomic data into the priors, they can increase power and yield new biological insights. However, these methods require access to individual genotypes and phenotypes, which are often not easily available. Here we provide a framework for performing these analyses without individual-level data. Specifically, we introduce a “Regression with Summary Statistics” (RSS) likelihood, which relates the multiple regression coefficients to univariate regression results that are often easily available. The RSS likelihood requires estimates of correlations among covariates (SNPs), which also can be obtained from public databases. We perform Bayesian multiple regression analysis by combining the RSS likelihood with previously proposed prior distributions, sampling posteriors by Markov chain Monte Carlo. In a wide range of simulations RSS performs similarly to analyses using the individual data, both for estimating heritability and detecting associations. We apply RSS to a GWAS of human height that contains 253,288 individuals typed at 1.06 million SNPs, for which analyses of individual-level data are practically impossible. Estimates of heritability (52%) are consistent with, but more precise, than previous results using subsets of these data. We also identify many previously unreported loci that show evidence for association with height in our analyses. Software is available at https://github.com/stephenslab/rss. PMID:29399241

  6. Fusing Data Mining, Machine Learning and Traditional Statistics to Detect Biomarkers Associated with Depression

    PubMed Central

    Dipnall, Joanna F.

    2016-01-01

    Background Atheoretical large-scale data mining techniques using machine learning algorithms have promise in the analysis of large epidemiological datasets. This study illustrates the use of a hybrid methodology for variable selection that took account of missing data and complex survey design to identify key biomarkers associated with depression from a large epidemiological study. Methods The study used a three-step methodology amalgamating multiple imputation, a machine learning boosted regression algorithm and logistic regression, to identify key biomarkers associated with depression in the National Health and Nutrition Examination Study (2009–2010). Depression was measured using the Patient Health Questionnaire-9 and 67 biomarkers were analysed. Covariates in this study included gender, age, race, smoking, food security, Poverty Income Ratio, Body Mass Index, physical activity, alcohol use, medical conditions and medications. The final imputed weighted multiple logistic regression model included possible confounders and moderators. Results After the creation of 20 imputation data sets from multiple chained regression sequences, machine learning boosted regression initially identified 21 biomarkers associated with depression. Using traditional logistic regression methods, including controlling for possible confounders and moderators, a final set of three biomarkers were selected. The final three biomarkers from the novel hybrid variable selection methodology were red cell distribution width (OR 1.15; 95% CI 1.01, 1.30), serum glucose (OR 1.01; 95% CI 1.00, 1.01) and total bilirubin (OR 0.12; 95% CI 0.05, 0.28). Significant interactions were found between total bilirubin with Mexican American/Hispanic group (p = 0.016), and current smokers (p<0.001). Conclusion The systematic use of a hybrid methodology for variable selection, fusing data mining techniques using a machine learning algorithm with traditional statistical modelling, accounted for missing data and complex survey sampling methodology and was demonstrated to be a useful tool for detecting three biomarkers associated with depression for future hypothesis generation: red cell distribution width, serum glucose and total bilirubin. PMID:26848571

  7. Fusing Data Mining, Machine Learning and Traditional Statistics to Detect Biomarkers Associated with Depression.

    PubMed

    Dipnall, Joanna F; Pasco, Julie A; Berk, Michael; Williams, Lana J; Dodd, Seetal; Jacka, Felice N; Meyer, Denny

    2016-01-01

    Atheoretical large-scale data mining techniques using machine learning algorithms have promise in the analysis of large epidemiological datasets. This study illustrates the use of a hybrid methodology for variable selection that took account of missing data and complex survey design to identify key biomarkers associated with depression from a large epidemiological study. The study used a three-step methodology amalgamating multiple imputation, a machine learning boosted regression algorithm and logistic regression, to identify key biomarkers associated with depression in the National Health and Nutrition Examination Study (2009-2010). Depression was measured using the Patient Health Questionnaire-9 and 67 biomarkers were analysed. Covariates in this study included gender, age, race, smoking, food security, Poverty Income Ratio, Body Mass Index, physical activity, alcohol use, medical conditions and medications. The final imputed weighted multiple logistic regression model included possible confounders and moderators. After the creation of 20 imputation data sets from multiple chained regression sequences, machine learning boosted regression initially identified 21 biomarkers associated with depression. Using traditional logistic regression methods, including controlling for possible confounders and moderators, a final set of three biomarkers were selected. The final three biomarkers from the novel hybrid variable selection methodology were red cell distribution width (OR 1.15; 95% CI 1.01, 1.30), serum glucose (OR 1.01; 95% CI 1.00, 1.01) and total bilirubin (OR 0.12; 95% CI 0.05, 0.28). Significant interactions were found between total bilirubin with Mexican American/Hispanic group (p = 0.016), and current smokers (p<0.001). The systematic use of a hybrid methodology for variable selection, fusing data mining techniques using a machine learning algorithm with traditional statistical modelling, accounted for missing data and complex survey sampling methodology and was demonstrated to be a useful tool for detecting three biomarkers associated with depression for future hypothesis generation: red cell distribution width, serum glucose and total bilirubin.

  8. Multivariate logistic regression analysis of postoperative complications and risk model establishment of gastrectomy for gastric cancer: A single-center cohort report.

    PubMed

    Zhou, Jinzhe; Zhou, Yanbing; Cao, Shougen; Li, Shikuan; Wang, Hao; Niu, Zhaojian; Chen, Dong; Wang, Dongsheng; Lv, Liang; Zhang, Jian; Li, Yu; Jiao, Xuelong; Tan, Xiaojie; Zhang, Jianli; Wang, Haibo; Zhang, Bingyuan; Lu, Yun; Sun, Zhenqing

    2016-01-01

    Reporting of surgical complications is common, but few provide information about the severity and estimate risk factors of complications. If have, but lack of specificity. We retrospectively analyzed data on 2795 gastric cancer patients underwent surgical procedure at the Affiliated Hospital of Qingdao University between June 2007 and June 2012, established multivariate logistic regression model to predictive risk factors related to the postoperative complications according to the Clavien-Dindo classification system. Twenty-four out of 86 variables were identified statistically significant in univariate logistic regression analysis, 11 significant variables entered multivariate analysis were employed to produce the risk model. Liver cirrhosis, diabetes mellitus, Child classification, invasion of neighboring organs, combined resection, introperative transfusion, Billroth II anastomosis of reconstruction, malnutrition, surgical volume of surgeons, operating time and age were independent risk factors for postoperative complications after gastrectomy. Based on logistic regression equation, p=Exp∑BiXi / (1+Exp∑BiXi), multivariate logistic regression predictive model that calculated the risk of postoperative morbidity was developed, p = 1/(1 + e((4.810-1.287X1-0.504X2-0.500X3-0.474X4-0.405X5-0.318X6-0.316X7-0.305X8-0.278X9-0.255X10-0.138X11))). The accuracy, sensitivity and specificity of the model to predict the postoperative complications were 86.7%, 76.2% and 88.6%, respectively. This risk model based on Clavien-Dindo grading severity of complications system and logistic regression analysis can predict severe morbidity specific to an individual patient's risk factors, estimate patients' risks and benefits of gastric surgery as an accurate decision-making tool and may serve as a template for the development of risk models for other surgical groups.

  9. Time series regression-based pairs trading in the Korean equities market

    NASA Astrophysics Data System (ADS)

    Kim, Saejoon; Heo, Jun

    2017-07-01

    Pairs trading is an instance of statistical arbitrage that relies on heavy quantitative data analysis to profit by capitalising low-risk trading opportunities provided by anomalies of related assets. A key element in pairs trading is the rule by which open and close trading triggers are defined. This paper investigates the use of time series regression to define the rule which has previously been identified with fixed threshold-based approaches. Empirical results indicate that our approach may yield significantly increased excess returns compared to ones obtained by previous approaches on large capitalisation stocks in the Korean equities market.

  10. Growth and inactivation of Salmonella at low refrigerated storage temperatures and thermal inactivation on raw chicken meat and laboratory media: mixed effect meta-analysis.

    PubMed

    Smadi, Hanan; Sargeant, Jan M; Shannon, Harry S; Raina, Parminder

    2012-12-01

    Growth and inactivation regression equations were developed to describe the effects of temperature on Salmonella concentration on chicken meat for refrigerated temperatures (⩽10°C) and for thermal treatment temperatures (55-70°C). The main objectives were: (i) to compare Salmonella growth/inactivation in chicken meat versus laboratory media; (ii) to create regression equations to estimate Salmonella growth in chicken meat that can be used in quantitative risk assessment (QRA) modeling; and (iii) to create regression equations to estimate D-values needed to inactivate Salmonella in chicken meat. A systematic approach was used to identify the articles, critically appraise them, and pool outcomes across studies. Growth represented in density (Log10CFU/g) and D-values (min) as a function of temperature were modeled using hierarchical mixed effects regression models. The current meta-analysis analysis found a significant difference (P⩽0.05) between the two matrices - chicken meat and laboratory media - for both growth at refrigerated temperatures and inactivation by thermal treatment. Growth and inactivation were significantly influenced by temperature after controlling for other variables; however, no consistent pattern in growth was found. Validation of growth and inactivation equations against data not used in their development is needed. Copyright © 2012 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  11. Hybrid ICA-Regression: Automatic Identification and Removal of Ocular Artifacts from Electroencephalographic Signals.

    PubMed

    Mannan, Malik M Naeem; Jeong, Myung Y; Kamran, Muhammad A

    2016-01-01

    Electroencephalography (EEG) is a portable brain-imaging technique with the advantage of high-temporal resolution that can be used to record electrical activity of the brain. However, it is difficult to analyze EEG signals due to the contamination of ocular artifacts, and which potentially results in misleading conclusions. Also, it is a proven fact that the contamination of ocular artifacts cause to reduce the classification accuracy of a brain-computer interface (BCI). It is therefore very important to remove/reduce these artifacts before the analysis of EEG signals for applications like BCI. In this paper, a hybrid framework that combines independent component analysis (ICA), regression and high-order statistics has been proposed to identify and eliminate artifactual activities from EEG data. We used simulated, experimental and standard EEG signals to evaluate and analyze the effectiveness of the proposed method. Results demonstrate that the proposed method can effectively remove ocular artifacts as well as it can preserve the neuronal signals present in EEG data. A comparison with four methods from literature namely ICA, regression analysis, wavelet-ICA (wICA), and regression-ICA (REGICA) confirms the significantly enhanced performance and effectiveness of the proposed method for removal of ocular activities from EEG, in terms of lower mean square error and mean absolute error values and higher mutual information between reconstructed and original EEG.

  12. Hybrid ICA—Regression: Automatic Identification and Removal of Ocular Artifacts from Electroencephalographic Signals

    PubMed Central

    Mannan, Malik M. Naeem; Jeong, Myung Y.; Kamran, Muhammad A.

    2016-01-01

    Electroencephalography (EEG) is a portable brain-imaging technique with the advantage of high-temporal resolution that can be used to record electrical activity of the brain. However, it is difficult to analyze EEG signals due to the contamination of ocular artifacts, and which potentially results in misleading conclusions. Also, it is a proven fact that the contamination of ocular artifacts cause to reduce the classification accuracy of a brain-computer interface (BCI). It is therefore very important to remove/reduce these artifacts before the analysis of EEG signals for applications like BCI. In this paper, a hybrid framework that combines independent component analysis (ICA), regression and high-order statistics has been proposed to identify and eliminate artifactual activities from EEG data. We used simulated, experimental and standard EEG signals to evaluate and analyze the effectiveness of the proposed method. Results demonstrate that the proposed method can effectively remove ocular artifacts as well as it can preserve the neuronal signals present in EEG data. A comparison with four methods from literature namely ICA, regression analysis, wavelet-ICA (wICA), and regression-ICA (REGICA) confirms the significantly enhanced performance and effectiveness of the proposed method for removal of ocular activities from EEG, in terms of lower mean square error and mean absolute error values and higher mutual information between reconstructed and original EEG. PMID:27199714

  13. Folded concave penalized learning in identifying multimodal MRI marker for Parkinson’s disease

    PubMed Central

    Liu, Hongcheng; Du, Guangwei; Zhang, Lijun; Lewis, Mechelle M.; Wang, Xue; Yao, Tao; Li, Runze; Huang, Xuemei

    2016-01-01

    Background Brain MRI holds promise to gauge different aspects of Parkinson’s disease (PD)-related pathological changes. Its analysis, however, is hindered by the high-dimensional nature of the data. New method This study introduces folded concave penalized (FCP) sparse logistic regression to identify biomarkers for PD from a large number of potential factors. The proposed statistical procedures target the challenges of high-dimensionality with limited data samples acquired. The maximization problem associated with the sparse logistic regression model is solved by local linear approximation. The proposed procedures then are applied to the empirical analysis of multimodal MRI data. Results From 45 features, the proposed approach identified 15 MRI markers and the UPSIT, which are known to be clinically relevant to PD. By combining the MRI and clinical markers, we can enhance substantially the specificity and sensitivity of the model, as indicated by the ROC curves. Comparison to existing methods We compare the folded concave penalized learning scheme with both the Lasso penalized scheme and the principle component analysis-based feature selection (PCA) in the Parkinson’s biomarker identification problem that takes into account both the clinical features and MRI markers. The folded concave penalty method demonstrates a substantially better clinical potential than both the Lasso and PCA in terms of specificity and sensitivity. Conclusions For the first time, we applied the FCP learning method to MRI biomarker discovery in PD. The proposed approach successfully identified MRI markers that are clinically relevant. Combining these biomarkers with clinical features can substantially enhance performance. PMID:27102045

  14. Quantitative appraisal of the Amyloid Imaging Taskforce appropriate use criteria for amyloid-PET.

    PubMed

    Altomare, Daniele; Ferrari, Clarissa; Festari, Cristina; Guerra, Ugo Paolo; Muscio, Cristina; Padovani, Alessandro; Frisoni, Giovanni B; Boccardi, Marina

    2018-04-18

    We test the hypothesis that amyloid-PET prescriptions, considered appropriate based on the Amyloid Imaging Taskforce (AIT) criteria, lead to greater clinical utility than AIT-inappropriate prescriptions. We compared the clinical utility between patients who underwent amyloid-PET appropriately or inappropriately and among the subgroups of patients defined by the AIT criteria. Finally, we performed logistic regressions to identify variables associated with clinical utility. We identified 171 AIT-appropriate and 67 AIT-inappropriate patients. AIT-appropriate and AIT-inappropriate cases did not differ in any outcomes of clinical utility (P > .05). Subgroup analysis denoted both expected and unexpected results. The logistic regressions outlined the primary role of clinical picture and clinical or neuropsychological profile in identifying patients benefitting from amyloid-PET. Contrary to our hypothesis, also AIT-inappropriate prescriptions were associated with clinical utility. Clinical or neuropsychological variables, not taken into account by the AIT criteria, may help further refine criteria for appropriateness. Copyright © 2018. Published by Elsevier Inc.

  15. Identifying Nanoscale Structure-Function Relationships Using Multimodal Atomic Force Microscopy, Dimensionality Reduction, and Regression Techniques.

    PubMed

    Kong, Jessica; Giridharagopal, Rajiv; Harrison, Jeffrey S; Ginger, David S

    2018-05-31

    Correlating nanoscale chemical specificity with operational physics is a long-standing goal of functional scanning probe microscopy (SPM). We employ a data analytic approach combining multiple microscopy modes, using compositional information in infrared vibrational excitation maps acquired via photoinduced force microscopy (PiFM) with electrical information from conductive atomic force microscopy. We study a model polymer blend comprising insulating poly(methyl methacrylate) (PMMA) and semiconducting poly(3-hexylthiophene) (P3HT). We show that PiFM spectra are different from FTIR spectra, but can still be used to identify local composition. We use principal component analysis to extract statistically significant principal components and principal component regression to predict local current and identify local polymer composition. In doing so, we observe evidence of semiconducting P3HT within PMMA aggregates. These methods are generalizable to correlated SPM data and provide a meaningful technique for extracting complex compositional information that are impossible to measure from any one technique.

  16. Building a computer program to support children, parents, and distraction during healthcare procedures.

    PubMed

    Hanrahan, Kirsten; McCarthy, Ann Marie; Kleiber, Charmaine; Ataman, Kaan; Street, W Nick; Zimmerman, M Bridget; Ersig, Anne L

    2012-10-01

    This secondary data analysis used data mining methods to develop predictive models of child risk for distress during a healthcare procedure. Data used came from a study that predicted factors associated with children's responses to an intravenous catheter insertion while parents provided distraction coaching. From the 255 items used in the primary study, 44 predictive items were identified through automatic feature selection and used to build support vector machine regression models. Models were validated using multiple cross-validation tests and by comparing variables identified as explanatory in the traditional versus support vector machine regression. Rule-based approaches were applied to the model outputs to identify overall risk for distress. A decision tree was then applied to evidence-based instructions for tailoring distraction to characteristics and preferences of the parent and child. The resulting decision support computer application, titled Children, Parents and Distraction, is being used in research. Future use will support practitioners in deciding the level and type of distraction intervention needed by a child undergoing a healthcare procedure.

  17. Network structure and travel time perception.

    PubMed

    Parthasarathi, Pavithra; Levinson, David; Hochmair, Hartwig

    2013-01-01

    The purpose of this research is to test the systematic variation in the perception of travel time among travelers and relate the variation to the underlying street network structure. Travel survey data from the Twin Cities metropolitan area (which includes the cities of Minneapolis and St. Paul) is used for the analysis. Travelers are classified into two groups based on the ratio of perceived and estimated commute travel time. The measures of network structure are estimated using the street network along the identified commute route. T-test comparisons are conducted to identify statistically significant differences in estimated network measures between the two traveler groups. The combined effect of these estimated network measures on travel time is then analyzed using regression models. The results from the t-test and regression analyses confirm the influence of the underlying network structure on the perception of travel time.

  18. On Becoming Trauma-Informed: Role of the Adverse Childhood Experiences Survey in Tertiary Child and Adolescent Mental Health Services and the Association with Standard Measures of Impairment and Severity.

    PubMed

    Rahman, Abdul; Perri, Andrea; Deegan, Avril; Kuntz, Jennifer; Cawthorpe, David

    2018-01-01

    There is a movement toward trauma-informed, trauma-focused psychiatric treatment. To examine Adverse Childhood Experiences (ACE) survey items by sex and by total scores by sex vs clinical measures of impairment to examine the clinical utility of the ACE survey as an index of trauma in a child and adolescent mental health care setting. Descriptive, polychoric factor analysis and regression analyses were employed to analyze cross-sectional ACE surveys (N = 2833) and registration-linked data using past admissions (N = 10,400) collected from November 2016 to March 2017 related to clinical data (28 independent variables), taking into account multicollinearity. Distinct ACE items emerged for males, females, and those with self-identified sex and for ACE total scores in regression analysis. In hierarchical regression analysis, the final models consisting of standard clinical measures and demographic and system variables (eg, repeated admissions) were associated with substantial ACE total score variance for females (44%) and males (38%). Inadequate sample size foreclosed on developing a reduced multivariable model for the self-identified sex group. The ACE scores relate to independent clinical measures and system and demographic variables. There are implications for clinical practice. For example, a child presenting with anxiety and a high ACE score likely requires treatment that is different from a child presenting with anxiety and an ACE score of zero. The ACE survey score is an important index of presenting clinical status that guides patient care planning and intervention in the progress toward a trauma-focused system of care.

  19. DTI measures identify mild and moderate TBI cases among patients with complex health problems: A receiver operating characteristic analysis of U.S. veterans.

    PubMed

    Main, Keith L; Soman, Salil; Pestilli, Franco; Furst, Ansgar; Noda, Art; Hernandez, Beatriz; Kong, Jennifer; Cheng, Jauhtai; Fairchild, Jennifer K; Taylor, Joy; Yesavage, Jerome; Wesson Ashford, J; Kraemer, Helena; Adamson, Maheen M

    2017-01-01

    Standard MRI methods are often inadequate for identifying mild traumatic brain injury (TBI). Advances in diffusion tensor imaging now provide potential biomarkers of TBI among white matter fascicles (tracts). However, it is still unclear which tracts are most pertinent to TBI diagnosis. This study ranked fiber tracts on their ability to discriminate patients with and without TBI. We acquired diffusion tensor imaging data from military veterans admitted to a polytrauma clinic (Overall n  = 109; Age: M  = 47.2, SD  = 11.3; Male: 88%; TBI: 67%). TBI diagnosis was based on self-report and neurological examination. Fiber tractography analysis produced 20 fiber tracts per patient. Each tract yielded four clinically relevant measures (fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity). We applied receiver operating characteristic (ROC) analyses to identify the most diagnostic tract for each measure. The analyses produced an optimal cutpoint for each tract. We then used kappa coefficients to rate the agreement of each cutpoint with the neurologist's diagnosis. The tract with the highest kappa was most diagnostic. As a check on the ROC results, we performed a stepwise logistic regression on each measure using all 20 tracts as predictors. We also bootstrapped the ROC analyses to compute the 95% confidence intervals for sensitivity, specificity, and the highest kappa coefficients. The ROC analyses identified two fiber tracts as most diagnostic of TBI: the left cingulum (LCG) and the left inferior fronto-occipital fasciculus (LIF). Like ROC, logistic regression identified LCG as most predictive for the FA measure but identified the right anterior thalamic tract (RAT) for the MD, RD, and AD measures. These findings are potentially relevant to the development of TBI biomarkers. Our methods also demonstrate how ROC analysis may be used to identify clinically relevant variables in the TBI population.

  20. A novel approach to identify genes that determine grain protein deviation in cereals.

    PubMed

    Mosleth, Ellen F; Wan, Yongfang; Lysenko, Artem; Chope, Gemma A; Penson, Simon P; Shewry, Peter R; Hawkesford, Malcolm J

    2015-06-01

    Grain yield and protein content were determined for six wheat cultivars grown over 3 years at multiple sites and at multiple nitrogen (N) fertilizer inputs. Although grain protein content was negatively correlated with yield, some grain samples had higher protein contents than expected based on their yields, a trait referred to as grain protein deviation (GPD). We used novel statistical approaches to identify gene transcripts significantly related to GPD across environments. The yield and protein content were initially adjusted for nitrogen fertilizer inputs and then adjusted for yield (to remove the negative correlation with protein content), resulting in a parameter termed corrected GPD. Significant genetic variation in corrected GPD was observed for six cultivars grown over a range of environmental conditions (a total of 584 samples). Gene transcript profiles were determined in a subset of 161 samples of developing grain to identify transcripts contributing to GPD. Principal component analysis (PCA), analysis of variance (ANOVA) and means of scores regression (MSR) were used to identify individual principal components (PCs) correlating with GPD alone. Scores of the selected PCs, which were significantly related to GPD and protein content but not to the yield and significantly affected by cultivar, were identified as reflecting a multivariate pattern of gene expression related to genetic variation in GPD. Transcripts with consistent variation along the selected PCs were identified by an approach hereby called one-block means of scores regression (one-block MSR). © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Influence of storage conditions on the stability of monomeric anthocyanins studied by reversed-phase high-performance liquid chromatography.

    PubMed

    Morais, Helena; Ramos, Cristina; Forgács, Esther; Cserháti, Tibor; Oliviera, José

    2002-04-25

    The effect of light, storage time and temperature on the decomposition rate of monomeric anthocyanin pigments extracted from skins of grape (Vitis vinifera var. Red globe) was determined by reversed-phase high-performance liquid chromatography (RP-HPLC). The impact of various storage conditions on the pigment stability was assessed by stepwise regression analysis. RP-HPLC separated well the five anthocyanins identified and proved the presence of other unidentified pigments at lower concentrations. Stepwise regression analysis confirmed that the overall decomposition rate of monomeric anthocyanins, peonidin-3-glucoside and malvidin-3-glucoside significantly depended on the time and temperature of storage, the effect of storage time being the most important. The presence or absence of light exerted a negligible impact on the decomposition rate.

  2. Using decision tree analysis to identify risk factors for relapse to smoking

    PubMed Central

    Piper, Megan E.; Loh, Wei-Yin; Smith, Stevens S.; Japuntich, Sandra J.; Baker, Timothy B.

    2010-01-01

    This research used classification tree analysis and logistic regression models to identify risk factors related to short- and long-term abstinence. Baseline and cessation outcome data from two smoking cessation trials, conducted from 2001 to 2002, in two Midwestern urban areas, were analyzed. There were 928 participants (53.1% women, 81.8% white) with complete data. Both analyses suggest that relapse risk is produced by interactions of risk factors and that early and late cessation outcomes reflect different vulnerability factors. The results illustrate the dynamic nature of relapse risk and suggest the importance of efficient modeling of interactions in relapse prediction. PMID:20397871

  3. Impact of Preadmission Variables on USMLE Step 1 and Step 2 Performance

    ERIC Educational Resources Information Center

    Kleshinski, James; Khuder, Sadik A.; Shapiro, Joseph I.; Gold, Jeffrey P.

    2009-01-01

    Purpose: To examine the predictive ability of preadmission variables on United States Medical Licensing Examinations (USMLE) step 1 and step 2 performance, incorporating the use of a neural network model. Method: Preadmission data were collected on matriculants from 1998 to 2004. Linear regression analysis was first used to identify predictors of…

  4. Factors Associated with Participation in Employment for High School Leavers with Autism

    ERIC Educational Resources Information Center

    Chiang, Hsu-Min; Cheung, Ying Kuen; Li, Huacheng; Tsai, Luke Y.

    2013-01-01

    This study aimed to identify the factors associated with participation in employment for high school leavers with autism. A secondary data analysis of the National Longitudinal Transition Study 2 (NLTS2) data was performed. Potential factors were assessed using a weighted multivariate logistic regression. This study found that annual household…

  5. To Dream the Impossible Dream: College Graduation in Four Years

    ERIC Educational Resources Information Center

    Raikes, Mark H.; Berling, Victoria L.; Davis, Jody M.

    2012-01-01

    The cost of higher education continues to climb, while calls for increased institutional accountability and the value of a "four-year degree" are ever present. This research sought to identify factors by which consumers might predict four-year graduation rates at institutions within the CCCU. A hierarchical multiple regression analysis of data…

  6. Discerning Reported Suicide Attempts within a Youthful Offender Population

    ERIC Educational Resources Information Center

    Mallett, Christopher; De Rigne, Lea A.; Quinn, Linda; Stoddard-Dare, Patricia

    2012-01-01

    With suicide being the third leading cause of death among young people, early identification of risk is critical, particularly for those involved with the juvenile courts. In this study of court-involved youth (N = 433) in two Midwest counties, logistic regression analysis identified some expected and unexpected findings of important demographic,…

  7. Salary Equity Studies: The State of the Art. ASHE Annual Meeting 1982 Paper.

    ERIC Educational Resources Information Center

    Hengstler, Dennis D.; And Others

    The strengths and weaknesses of various methodologies in conducting salary equity studies are examined. Particular attention is paid to the problems of identifying appropriate matches in the paired-comparison approach and to the sample, predictor and decision-rule problems associated with the regression analysis approach. In addition, highlights…

  8. Efficacy Trade-Offs in Individuals' Support for Climate Change Policies

    ERIC Educational Resources Information Center

    Rosentrater, Lynn D.; Saelensminde, Ingrid; Ekström, Frida; Böhm, Gisela; Bostrom, Ann; Hanss, Daniel; O'Connor, Robert E.

    2013-01-01

    Using survey data, the authors developed an architecture of climate change beliefs in Norway and their correlation with support for policies aimed at reducing greenhouse gas emissions. A strong majority of respondents believe that anthropogenic climate change is occurring and identify carbon dioxide emissions as a cause. Regression analysis shows…

  9. Frequency and clinical predictors of coronary artery disease in chronic renal failure renal transplant candidates.

    PubMed

    de Albuquerque Seixas, Emerson; Carmello, Beatriz Leone; Kojima, Christiane Akemi; Contti, Mariana Moraes; Modeli de Andrade, Luiz Gustavo; Maiello, José Roberto; Almeida, Fernando Antonio; Martin, Luis Cuadrado

    2015-05-01

    Cardiovascular diseases are major causes of mortality in chronic renal failure patients before and after renal transplantation. Among them, coronary disease presents a particular risk; however, risk predictors have been used to diagnose coronary heart disease. This study evaluated the frequency and importance of clinical predictors of coronary artery disease in chronic renal failure patients undergoing dialysis who were renal transplant candidates, and assessed a previously developed scoring system. Coronary angiographies conducted between March 2008 and April 2013 from 99 candidates for renal transplantation from two transplant centers in São Paulo state were analyzed for associations between significant coronary artery diseases (≥70% stenosis in one or more epicardial coronary arteries or ≥50% in the left main coronary artery) and clinical parameters. Univariate logistic regression analysis identified diabetes, angina, and/or previous infarction, clinical peripheral arterial disease and dyslipidemia as predictors of coronary artery disease. Multiple logistic regression analysis identified only diabetes and angina and/or previous infarction as independent predictors. The results corroborate previous studies demonstrating the importance of these factors when selecting patients for coronary angiography in clinical pretransplant evaluation.

  10. Logistic Regression and Path Analysis Method to Analyze Factors influencing Students’ Achievement

    NASA Astrophysics Data System (ADS)

    Noeryanti, N.; Suryowati, K.; Setyawan, Y.; Aulia, R. R.

    2018-04-01

    Students' academic achievement cannot be separated from the influence of two factors namely internal and external factors. The first factors of the student (internal factors) consist of intelligence (X1), health (X2), interest (X3), and motivation of students (X4). The external factors consist of family environment (X5), school environment (X6), and society environment (X7). The objects of this research are eighth grade students of the school year 2016/2017 at SMPN 1 Jiwan Madiun sampled by using simple random sampling. Primary data are obtained by distributing questionnaires. The method used in this study is binary logistic regression analysis that aims to identify internal and external factors that affect student’s achievement and how the trends of them. Path Analysis was used to determine the factors that influence directly, indirectly or totally on student’s achievement. Based on the results of binary logistic regression, variables that affect student’s achievement are interest and motivation. And based on the results obtained by path analysis, factors that have a direct impact on student’s achievement are students’ interest (59%) and students’ motivation (27%). While the factors that have indirect influences on students’ achievement, are family environment (97%) and school environment (37).

  11. An Attempt at Quantifying Factors that Affect Efficiency in the Management of Solid Waste Produced by Commercial Businesses in the City of Tshwane, South Africa

    PubMed Central

    Worku, Yohannes; Muchie, Mammo

    2012-01-01

    Objective. The objective was to investigate factors that affect the efficient management of solid waste produced by commercial businesses operating in the city of Pretoria, South Africa. Methods. Data was gathered from 1,034 businesses. Efficiency in solid waste management was assessed by using a structural time-based model designed for evaluating efficiency as a function of the length of time required to manage waste. Data analysis was performed using statistical procedures such as frequency tables, Pearson's chi-square tests of association, and binary logistic regression analysis. Odds ratios estimated from logistic regression analysis were used for identifying key factors that affect efficiency in the proper disposal of waste. Results. The study showed that 857 of the 1,034 businesses selected for the study (83%) were found to be efficient enough with regards to the proper collection and disposal of solid waste. Based on odds ratios estimated from binary logistic regression analysis, efficiency in the proper management of solid waste was significantly influenced by 4 predictor variables. These 4 influential predictor variables are lack of adherence to waste management regulations, wrong perception, failure to provide customers with enough trash cans, and operation of businesses by employed managers, in a decreasing order of importance. PMID:23209483

  12. Identification of molecular markers associated with mite resistance in coconut (Cocos nucifera L.).

    PubMed

    Shalini, K V; Manjunatha, S; Lebrun, P; Berger, A; Baudouin, L; Pirany, N; Ranganath, R M; Prasad, D Theertha

    2007-01-01

    Coconut mite (Aceria guerreronis 'Keifer') has become a major threat to Indian coconut (Coçcos nucifera L.) cultivators and the processing industry. Chemical and biological control measures have proved to be costly, ineffective, and ecologically undesirable. Planting mite-resistant coconut cultivars is the most effective method of preventing yield loss and should form a major component of any integrated pest management stratagem. Coconut genotypes, and mite-resistant and -susceptible accessions were collected from different parts of South India. Thirty-two simple sequence repeat (SSR) and 7 RAPD primers were used for molecular analyses. In single-marker analysis, 9 SSR and 4 RAPD markers associated with mite resistance were identified. In stepwise multiple regression analysis of SSRs, a combination of 6 markers showed 100% association with mite infestation. Stepwise multiple regression analysis for RAPD data revealed that a combination of 3 markers accounted for 83.86% of mite resistance in the selected materials. Combined stepwise multiple regression analysis of RAPD and SSR data showed that a combination of 5 markers explained 100% of the association with mite resistance in coconut. Markers associated with mite resistance are important in coconut breeding programs and will facilitate the selection of mite-resistant plants at an early stage as well as mother plants for breeding programs.

  13. Applications of modern statistical methods to analysis of data in physical science

    NASA Astrophysics Data System (ADS)

    Wicker, James Eric

    Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance structures. We then use this new algorithm in a genetic algorithm based Expectation-Maximization process that can accurately calculate parameters describing complex clusters in a mixture model routine. Using the accuracy of this GEM algorithm, we assign information scores to cluster calculations in order to best identify the number of mixture components in a multivariate data set. We will showcase how these algorithms can be used to process multivariate data from astronomical observations.

  14. A Systematic Review and Meta-Regression Analysis of Lung Cancer Risk and Inorganic Arsenic in Drinking Water.

    PubMed

    Lamm, Steven H; Ferdosi, Hamid; Dissen, Elisabeth K; Li, Ji; Ahn, Jaeil

    2015-12-07

    High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1-1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100-150 µg/L arsenic.

  15. Spatial analysis of relative humidity during ungauged periods in a mountainous region

    NASA Astrophysics Data System (ADS)

    Um, Myoung-Jin; Kim, Yeonjoo

    2017-08-01

    Although atmospheric humidity influences environmental and agricultural conditions, thereby influencing plant growth, human health, and air pollution, efforts to develop spatial maps of atmospheric humidity using statistical approaches have thus far been limited. This study therefore aims to develop statistical approaches for inferring the spatial distribution of relative humidity (RH) for a mountainous island, for which data are not uniformly available across the region. A multiple regression analysis based on various mathematical models was used to identify the optimal model for estimating monthly RH by incorporating not only temperature but also location and elevation. Based on the regression analysis, we extended the monthly RH data from weather stations to cover the ungauged periods when no RH observations were available. Then, two different types of station-based data, the observational data and the data extended via the regression model, were used to form grid-based data with a resolution of 100 m. The grid-based data that used the extended station-based data captured the increasing RH trend along an elevation gradient. Furthermore, annual RH values averaged over the regions were examined. Decreasing temporal trends were found in most cases, with magnitudes varying based on the season and region.

  16. Application of logistic regression to case-control association studies involving two causative loci.

    PubMed

    North, Bernard V; Curtis, David; Sham, Pak C

    2005-01-01

    Models in which two susceptibility loci jointly influence the risk of developing disease can be explored using logistic regression analysis. Comparison of likelihoods of models incorporating different sets of disease model parameters allows inferences to be drawn regarding the nature of the joint effect of the loci. We have simulated case-control samples generated assuming different two-locus models and then analysed them using logistic regression. We show that this method is practicable and that, for the models we have used, it can be expected to allow useful inferences to be drawn from sample sizes consisting of hundreds of subjects. Interactions between loci can be explored, but interactive effects do not exactly correspond with classical definitions of epistasis. We have particularly examined the issue of the extent to which it is helpful to utilise information from a previously identified locus when investigating a second, unknown locus. We show that for some models conditional analysis can have substantially greater power while for others unconditional analysis can be more powerful. Hence we conclude that in general both conditional and unconditional analyses should be performed when searching for additional loci.

  17. Contributions of sociodemographic factors to criminal behavior

    PubMed Central

    Mundia, Lawrence; Matzin, Rohani; Mahalle, Salwa; Hamid, Malai Hayati; Osman, Ratna Suriani

    2016-01-01

    We explored the extent to which prisoner sociodemographic variables (age, education, marital status, employment, and whether their parents were married or not) influenced offending in 64 randomly selected Brunei inmates, comprising both sexes. A quantitative field survey design ideal for the type of participants used in a prison context was employed to investigate the problem. Hierarchical multiple regression analysis with backward elimination identified prisoner marital status and age groups as significantly related to offending. Furthermore, hierarchical multinomial logistic regression analysis with backward elimination indicated that prisoners’ age, primary level education, marital status, employment status, and parental marital status as significantly related to stealing offenses with high odds ratios. All 29 nonrecidivists were false negatives and predicted to reoffend upon release. Similarly, all 33 recidivists were projected to reoffend after release. Hierarchical binary logistic regression analysis revealed age groups (24–29 years and 30–35 years), employed prisoner, and primary level education as variables with high likelihood trends for reoffending. The results suggested that prisoner interventions (educational, counseling, and psychotherapy) in Brunei should treat not only antisocial personality, psychopathy, and mental health problems but also sociodemographic factors. The study generated offending patterns, trends, and norms that may inform subsequent investigations on Brunei prisoners. PMID:27382342

  18. A Systematic Review and Meta-Regression Analysis of Lung Cancer Risk and Inorganic Arsenic in Drinking Water

    PubMed Central

    Lamm, Steven H.; Ferdosi, Hamid; Dissen, Elisabeth K.; Li, Ji; Ahn, Jaeil

    2015-01-01

    High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1–1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100–150 µg/L arsenic. PMID:26690190

  19. To Identify the Important Soil Properties Affecting Dinoseb Adsorption with Statistical Analysis

    PubMed Central

    Guan, Yiqing; Wei, Jianhui; Zhang, Danrong; Zu, Mingjuan; Zhang, Liru

    2013-01-01

    Investigating the influences of soil characteristic factors on dinoseb adsorption parameter with different statistical methods would be valuable to explicitly figure out the extent of these influences. The correlation coefficients and the direct, indirect effects of soil characteristic factors on dinoseb adsorption parameter were analyzed through bivariate correlation analysis, and path analysis. With stepwise regression analysis the factors which had little influence on the adsorption parameter were excluded. Results indicate that pH and CEC had moderate relationship and lower direct effect on dinoseb adsorption parameter due to the multicollinearity with other soil factors, and organic carbon and clay contents were found to be the most significant soil factors which affect the dinoseb adsorption process. A regression is thereby set up to explore the relationship between the dinoseb adsorption parameter and the two soil factors: the soil organic carbon and clay contents. A 92% of the variation of dinoseb sorption coefficient could be attributed to the variation of the soil organic carbon and clay contents. PMID:23737715

  20. The impact of pneumatic tube system on routine laboratory parameters: a systematic review and meta-analysis.

    PubMed

    Kapoula, Georgia V; Kontou, Panagiota I; Bagos, Pantelis G

    2017-10-26

    Pneumatic tube system (PTS) is a widely used method of transporting blood samples in hospitals. The aim of this study was to evaluate the effects of the PTS transport in certain routine laboratory parameters as it has been implicated with hemolysis. A systematic review and a meta-analysis were conducted. PubMed and Scopus databases were searched (up until November 2016) to identify prospective studies evaluating the impact of PTS transport in hematological, biochemical and coagulation measurements. The random-effects model was used in the meta-analysis utilizing the mean difference (MD). Heterogeneity was quantitatively assessed using the Cohran's Q and the I2 index. Subgroup analysis, meta-regression analysis, sensitivity analysis, cumulative meta-analysis and assessment of publication bias were performed for all outcomes. From a total of 282 studies identified by the searching procedure, 24 were finally included in the meta-analysis. The meta-analysis yielded statistically significant results for potassium (K) [MD=0.04 mmol/L; 95% confidence interval (CI)=0.015-0.065; p=0.002], lactate dehydrogenase (LDH) (MD=10.343 U/L; 95% CI=6.132-14.554; p<10-4) and aspartate aminotransferase (AST) (MD=1.023 IU/L; 95% CI=0.344-1.702; p=0.003). Subgroup analysis and random-effects meta-regression analysis according to the speed and distance of the samples traveled via the PTS revealed that there is relation between the rate and the distance of PTS with the measurements of K, LDH, white blood cells and red blood cells. This meta-analysis suggests that PTS may be associated with alterations in K, LDH and AST measurements. Although these findings may not have any significant clinical effect on laboratory results, it is wise that each hospital validates their PTS.

  1. Factors predicting weight-bearing asymmetry 1month after unilateral total knee arthroplasty: a cross-sectional study.

    PubMed

    Christiansen, Cory L; Bade, Michael J; Weitzenkamp, David A; Stevens-Lapsley, Jennifer E

    2013-03-01

    Factors predicting weight-bearing asymmetry (WBA) after unilateral total knee arthroplasty (TKA) are not known. However, identifying modifiable and non-modifiable predictors of WBA is needed to optimize rehabilitation, especially since WBA is negatively correlated to poor functional performance. The purpose of this study was to identify factors predictive of WBA during sit-stand transitions for people 1month following unilateral TKA. Fifty-nine people were tested preoperatively and 1month following unilateral TKA for WBA using average vertical ground reaction force under each foot during the Five Times Sit-to-Stand Test. Candidate variables tested in the regression analysis represented physical impairments (strength, muscle activation, pain, and motion), demographics, anthropometrics, and movement compensations. WBA, measured as the ratio of surgical/non-surgical limb vertical ground reaction force, was 0.69 (0.18) (mean (SD)) 1month after TKA. Regression analysis identified preoperative WBA (β=0.40), quadriceps strength ratio (β=0.31), and hamstrings strength ratio (β=0.19) as factors predictive of WBA 1month after TKA (R(2)=0.30). Greater amounts of WBA 1month after TKA are predicted by modifiable factors including habitual movement pattern and asymmetry in quadriceps and hamstrings strength. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Community-Based Management of Child Malnutrition in Zambia: HIV/AIDS Infection and Other Risk Factors on Child Survival.

    PubMed

    Moramarco, Stefania; Amerio, Giulia; Ciarlantini, Clarice; Chipoma, Jean Kasengele; Simpungwe, Matilda Kakungu; Nielsen-Saines, Karin; Palombi, Leonardo; Buonomo, Ersilia

    2016-07-01

    (1) BACKGROUND: Supplementary feeding programs (SFPs) are effective in the community-based treatment of moderate acute malnutrition (MAM) and prevention of severe acute malnutrition (SAM); (2) METHODS: A retrospective study was conducted on a sample of 1266 Zambian malnourished children assisted from 2012 to 2014 in the Rainbow Project SFPs. Nutritional status was evaluated according to WHO/Unicef methodology. We performed univariate and multivariate Cox proportional risk regression to identify the main predictors of mortality. In addition, a time-to event analysis was performed to identify predictors of failure and time to cure events; (3) RESULTS: The analysis included 858 malnourished children (19 months ± 9.4; 49.9% males). Program outcomes met international standards with a better performance for MAM compared to SAM. Cox regression identified SAM (3.8; 2.1-6.8), HIV infection (3.1; 1.7-5.5), and WAZ <-3 (3.1; 1.6-5.7) as predictors of death. Time to event showed 80% of children recovered by SAM/MAM at 24 weeks. (4) CONCLUSIONS: Preventing deterioration of malnutrition, coupled to early detection of HIV/AIDS with adequate antiretroviral treatment, and extending the duration of feeding supplementation, could be crucial elements for ensuring full recovery and improve child survival in malnourished Zambian children.

  3. Flight display dynamics and compensatory head movements in pilots.

    PubMed

    Beer, Jeremy; Freeman, David

    2007-06-01

    Experiments measured the optokinetic cervical reflex (OKCR), wherein the banking pilot aligns the head with the horizon. In a synthetic cockpit, the flight display was manipulated to test whether changing the visual reference frame would alter OKCR. Eight subjects (five rated pilots) flew a route in simulated visual meteorological conditions that required them to bank the aircraft frequently. Pilots' head tilt was characterized using both the conventional method of regressing against simultaneous aircraft bank, and also an event-based analysis, which identified head movements before, during, and after each turn. Three display configurations were compared to determine whether pilots' orientation would ever migrate from the horizon to the aircraft symbol. The first was a conventional "Inside-Out" condition. A "Frequency-Separated" condition combined Inside-Out horizon geometry with Outside-In dynamics for the aircraft symbol, which depicted joystick bank inputs. In the "Outside-In" condition, the aircraft symbol rolled against a static horizon. Regressions identified an interaction (p < 0.001) between display condition and aircraft bank: head tilt followed horizon tilt in Inside-Out and Frequency-Separated conditions, while remaining mostly level in the Outside-In condition. The event-based analysis identified anticipatory head movements in Inside-Out and Frequency-Separated conditions: 95% CI indicated that before each turn, head tilt favored the direction of the imminent bank. While the conventional analysis confirmed that the horizon comprises a primary spatial reference, the finer-grained event-based analysis indicated that pilots' reference can migrate at least temporarily to the vehicle, and that OKCR can be preceded by anticipatory head movements in the opposite direction.

  4. Risk Factors for Venous Thromboembolism After Spine Surgery

    PubMed Central

    Tominaga, Hiroyuki; Setoguchi, Takao; Tanabe, Fumito; Kawamura, Ichiro; Tsuneyoshi, Yasuhiro; Kawabata, Naoya; Nagano, Satoshi; Abematsu, Masahiko; Yamamoto, Takuya; Yone, Kazunori; Komiya, Setsuro

    2015-01-01

    Abstract The efficacy and safety of chemical prophylaxis to prevent the development of deep venous thrombosis (DVT) or pulmonary embolism (PE) following spine surgery are controversial because of the possibility of epidural hematoma formation. Postoperative venous thromboembolism (VTE) after spine surgery occurs at a frequency similar to that seen after joint operations, so it is important to identify the risk factors for VTE formation following spine surgery. We therefore retrospectively studied data from patients who had undergone spinal surgery and developed postoperative VTE to identify those risk factors. We conducted a retrospective clinical study with logistic regression analysis of a group of 80 patients who had undergone spine surgery at our institution from June 2012 to August 2013. All patients had been screened by ultrasonography for DVT in the lower extremities. Parameters of the patients with VTE were compared with those without VTE using the Mann–Whitney U-test and Fisher exact probability test. Logistic regression analysis was used to analyze the risk factors associated with VTE. A value of P < 0.05 was used to denote statistical significance. The prevalence of VTE was 25.0% (20/80 patients). One patient had sensed some incongruity in the chest area, but the vital signs of all patients were stable. VTEs had developed in the pulmonary artery in one patient, in the superficial femoral vein in one patient, in the popliteal vein in two patients, and in the soleal vein in 18 patients. The Mann–Whitney U-test and Fisher exact probability test showed that, except for preoperative walking disability, none of the parameters showed a significant difference between patients with and without VTE. Risk factors identified in the multivariate logistic regression analysis were preoperative walking disability and age. The prevalence of VTE after spine surgery was relatively high. The most important risk factor for developing postoperative VTE was preoperative walking disability. Gait training during the early postoperative period is required to prevent VTE. PMID:25654385

  5. Parental education predicts change in intelligence quotient after childhood epilepsy surgery.

    PubMed

    Meekes, Joost; van Schooneveld, Monique M J; Braams, Olga B; Jennekens-Schinkel, Aag; van Rijen, Peter C; Hendriks, Marc P H; Braun, Kees P J; van Nieuwenhuizen, Onno

    2015-04-01

    To know whether change in the intelligence quotient (IQ) of children who undergo epilepsy surgery is associated with the educational level of their parents. Retrospective analysis of data obtained from a cohort of children who underwent epilepsy surgery between January 1996 and September 2010. We performed simple and multiple regression analyses to identify predictors associated with IQ change after surgery. In addition to parental education, six variables previously demonstrated to be associated with IQ change after surgery were included as predictors: age at surgery, duration of epilepsy, etiology, presurgical IQ, reduction of antiepileptic drugs, and seizure freedom. We used delta IQ (IQ 2 years after surgery minus IQ shortly before surgery) as the primary outcome variable, but also performed analyses with pre- and postsurgical IQ as outcome variables to support our findings. To validate the results we performed simple regression analysis with parental education as the predictor in specific subgroups. The sample for regression analysis included 118 children (60 male; median age at surgery 9.73 years). Parental education was significantly associated with delta IQ in simple regression analysis (p = 0.004), and also contributed significantly to postsurgical IQ in multiple regression analysis (p = 0.008). Additional analyses demonstrated that parental education made a unique contribution to prediction of delta IQ, that is, it could not be replaced by the illness-related variables. Subgroup analyses confirmed the association of parental education with IQ change after surgery for most groups. Children whose parents had higher education demonstrate on average a greater increase in IQ after surgery and a higher postsurgical--but not presurgical--IQ than children whose parents completed at most lower secondary education. Parental education--and perhaps other environmental variables--should be considered in the prognosis of cognitive function after childhood epilepsy surgery. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  6. Poisson Regression Analysis of Illness and Injury Surveillance Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frome E.L., Watkins J.P., Ellis E.D.

    2012-12-12

    The Department of Energy (DOE) uses illness and injury surveillance to monitor morbidity and assess the overall health of the work force. Data collected from each participating site include health events and a roster file with demographic information. The source data files are maintained in a relational data base, and are used to obtain stratified tables of health event counts and person time at risk that serve as the starting point for Poisson regression analysis. The explanatory variables that define these tables are age, gender, occupational group, and time. Typical response variables of interest are the number of absences duemore » to illness or injury, i.e., the response variable is a count. Poisson regression methods are used to describe the effect of the explanatory variables on the health event rates using a log-linear main effects model. Results of fitting the main effects model are summarized in a tabular and graphical form and interpretation of model parameters is provided. An analysis of deviance table is used to evaluate the importance of each of the explanatory variables on the event rate of interest and to determine if interaction terms should be considered in the analysis. Although Poisson regression methods are widely used in the analysis of count data, there are situations in which over-dispersion occurs. This could be due to lack-of-fit of the regression model, extra-Poisson variation, or both. A score test statistic and regression diagnostics are used to identify over-dispersion. A quasi-likelihood method of moments procedure is used to evaluate and adjust for extra-Poisson variation when necessary. Two examples are presented using respiratory disease absence rates at two DOE sites to illustrate the methods and interpretation of the results. In the first example the Poisson main effects model is adequate. In the second example the score test indicates considerable over-dispersion and a more detailed analysis attributes the over-dispersion to extra-Poisson variation. The R open source software environment for statistical computing and graphics is used for analysis. Additional details about R and the data that were used in this report are provided in an Appendix. Information on how to obtain R and utility functions that can be used to duplicate results in this report are provided.« less

  7. Correlates of county-level nonviral sexually transmitted infection hot spots in the US: application of hot spot analysis and spatial logistic regression.

    PubMed

    Chang, Brian A; Pearson, William S; Owusu-Edusei, Kwame

    2017-04-01

    We used a combination of hot spot analysis (HSA) and spatial regression to examine county-level hot spot correlates for the most commonly reported nonviral sexually transmitted infections (STIs) in the 48 contiguous states in the United States (US). We obtained reported county-level total case rates of chlamydia, gonorrhea, and primary and secondary (P&S) syphilis in all counties in the 48 contiguous states from national surveillance data and computed temporally smoothed rates using 2008-2012 data. Covariates were obtained from county-level multiyear (2008-2012) American Community Surveys from the US census. We conducted HSA to identify hot spot counties for all three STIs. We then applied spatial logistic regression with the spatial error model to determine the association between the identified hot spots and the covariates. HSA indicated that ≥84% of hot spots for each STI were in the South. Spatial regression results indicated that, a 10-unit increase in the percentage of Black non-Hispanics was associated with ≈42% (P < 0.01) [≈22% (P < 0.01), for Hispanics] increase in the odds of being a hot spot county for chlamydia and gonorrhea, and ≈27% (P < 0.01) [≈11% (P < 0.01) for Hispanics] for P&S syphilis. Compared with the other regions (West, Midwest, and Northeast), counties in the South were 6.5 (P < 0.01; chlamydia), 9.6 (P < 0.01; gonorrhea), and 4.7 (P < 0.01; P&S syphilis) times more likely to be hot spots. Our study provides important information on hot spot clusters of nonviral STIs in the entire United States, including associations between hot spot counties and sociodemographic factors. Published by Elsevier Inc.

  8. Principal component regression analysis with SPSS.

    PubMed

    Liu, R X; Kuang, J; Gong, Q; Hou, X L

    2003-06-01

    The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.

  9. Potential for Bias When Estimating Critical Windows for Air Pollution in Children's Health.

    PubMed

    Wilson, Ander; Chiu, Yueh-Hsiu Mathilda; Hsu, Hsiao-Hsien Leon; Wright, Robert O; Wright, Rosalind J; Coull, Brent A

    2017-12-01

    Evidence supports an association between maternal exposure to air pollution during pregnancy and children's health outcomes. Recent interest has focused on identifying critical windows of vulnerability. An analysis based on a distributed lag model (DLM) can yield estimates of a critical window that are different from those from an analysis that regresses the outcome on each of the 3 trimester-average exposures (TAEs). Using a simulation study, we assessed bias in estimates of critical windows obtained using 3 regression approaches: 1) 3 separate models to estimate the association with each of the 3 TAEs; 2) a single model to jointly estimate the association between the outcome and all 3 TAEs; and 3) a DLM. We used weekly fine-particulate-matter exposure data for 238 births in a birth cohort in and around Boston, Massachusetts, and a simulated outcome and time-varying exposure effect. Estimates using separate models for each TAE were biased and identified incorrect windows. This bias arose from seasonal trends in particulate matter that induced correlation between TAEs. Including all TAEs in a single model reduced bias. DLM produced unbiased estimates and added flexibility to identify windows. Analysis of body mass index z score and fat mass in the same cohort highlighted inconsistent estimates from the 3 methods. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Prognostic Factors for Neurologic Outcome in Patients with Carotid Artery Stenting

    PubMed Central

    Hung, Chi-Sheng; Lin, Mao-Shin; Chen, Ying-Hsien; Huang, Ching-Chang; Li, Hung-Yuan; Kao, Hsien-Li

    2016-01-01

    Background Carotid artery stenting (CAS) is a valid treatment for patients with carotid artery stenosis. The long-term outcome and prognostic factors in Asian population after CAS are not clear. This study aimed to identify the prognostic factors among Asian patients who have undergone CAS. Methods We retrospectively analyzed 246 patients with CAS. Annual carotid duplex ultrasound was used to identify restenosis. Peri-procedural complications, restenosis, neurologic outcomes, and mortality were recorded. Cox regression analyses were used to identify prognostic factors. Results The mean follow-up time was 49.2 months. Procedural success was achieved in 237 patients (98.3%), and protection devices were used in 208 patients (84.5%). Within 30 days of CAS, 13 (4.3% per procedure) peri-procedural complications occurred. During the follow-up period, 24 (9.7%) patients developed restenosis, and 37 (15.0%) developed ischemic strokes. In a multiple logistic regression analysis, head and neck radiotherapy [hazard ratio (HR) = 9.9, 95% confidence interval (CI), 3.38-29.1, p < .001], stent diameter (HR = 0.72, 95% CI, 0.58-0.89, p = .003), and predilatation (HR = 3.08 95% CI, 1.21-7.81, p = .018) were independent predictors for restenosis. In Cox regression analysis, hypercholesterolemia (HR = 0.25, 95% CI, 0.07-0.94, p = .04), head and neck radiotherapy (HR = 6.2, 95% CI, 1.8-21.3, p = .004), and restenosis (HR = 3.6, 95% CI, 1.1-11.18, p = .04) were predictors for recurrent ipsilateral ischemic stroke. Conclusions CAS provides reliable long-term results in Asian patients with carotid stenosis. Restenosis is associated with an increased rate of recurrent stroke and should be monitored carefully following CAS. PMID:27122951

  11. Genome wide association study (GWAS) for grain yield in rice cultivated under water deficit.

    PubMed

    Pantalião, Gabriel Feresin; Narciso, Marcelo; Guimarães, Cléber; Castro, Adriano; Colombari, José Manoel; Breseghello, Flavio; Rodrigues, Luana; Vianello, Rosana Pereira; Borba, Tereza Oliveira; Brondani, Claudio

    2016-12-01

    The identification of rice drought tolerant materials is crucial for the development of best performing cultivars for the upland cultivation system. This study aimed to identify markers and candidate genes associated with drought tolerance by Genome Wide Association Study analysis, in order to develop tools for use in rice breeding programs. This analysis was made with 175 upland rice accessions (Oryza sativa), evaluated in experiments with and without water restriction, and 150,325 SNPs. Thirteen SNP markers associated with yield under drought conditions were identified. Through stepwise regression analysis, eight SNP markers were selected and validated in silico, and when tested by PCR, two out of the eight SNP markers were able to identify a group of rice genotypes with higher productivity under drought. These results are encouraging for deriving markers for the routine analysis of marker assisted selection. From the drought experiment, including the genes inherited in linkage blocks, 50 genes were identified, from which 30 were annotated, and 10 were previously related to drought and/or abiotic stress tolerance, such as the transcription factors WRKY and Apetala2, and protein kinases.

  12. Evaluating Spatial Variability in Sediment and Phosphorus Concentration-Discharge Relationships Using Bayesian Inference and Self-Organizing Maps

    NASA Astrophysics Data System (ADS)

    Underwood, Kristen L.; Rizzo, Donna M.; Schroth, Andrew W.; Dewoolkar, Mandar M.

    2017-12-01

    Given the variable biogeochemical, physical, and hydrological processes driving fluvial sediment and nutrient export, the water science and management communities need data-driven methods to identify regions prone to production and transport under variable hydrometeorological conditions. We use Bayesian analysis to segment concentration-discharge linear regression models for total suspended solids (TSS) and particulate and dissolved phosphorus (PP, DP) using 22 years of monitoring data from 18 Lake Champlain watersheds. Bayesian inference was leveraged to estimate segmented regression model parameters and identify threshold position. The identified threshold positions demonstrated a considerable range below and above the median discharge—which has been used previously as the default breakpoint in segmented regression models to discern differences between pre and post-threshold export regimes. We then applied a Self-Organizing Map (SOM), which partitioned the watersheds into clusters of TSS, PP, and DP export regimes using watershed characteristics, as well as Bayesian regression intercepts and slopes. A SOM defined two clusters of high-flux basins, one where PP flux was predominantly episodic and hydrologically driven; and another in which the sediment and nutrient sourcing and mobilization were more bimodal, resulting from both hydrologic processes at post-threshold discharges and reactive processes (e.g., nutrient cycling or lateral/vertical exchanges of fine sediment) at prethreshold discharges. A separate DP SOM defined two high-flux clusters exhibiting a bimodal concentration-discharge response, but driven by differing land use. Our novel framework shows promise as a tool with broad management application that provides insights into landscape drivers of riverine solute and sediment export.

  13. Detection of epistatic effects with logic regression and a classical linear regression model.

    PubMed

    Malina, Magdalena; Ickstadt, Katja; Schwender, Holger; Posch, Martin; Bogdan, Małgorzata

    2014-02-01

    To locate multiple interacting quantitative trait loci (QTL) influencing a trait of interest within experimental populations, usually methods as the Cockerham's model are applied. Within this framework, interactions are understood as the part of the joined effect of several genes which cannot be explained as the sum of their additive effects. However, if a change in the phenotype (as disease) is caused by Boolean combinations of genotypes of several QTLs, this Cockerham's approach is often not capable to identify them properly. To detect such interactions more efficiently, we propose a logic regression framework. Even though with the logic regression approach a larger number of models has to be considered (requiring more stringent multiple testing correction) the efficient representation of higher order logic interactions in logic regression models leads to a significant increase of power to detect such interactions as compared to a Cockerham's approach. The increase in power is demonstrated analytically for a simple two-way interaction model and illustrated in more complex settings with simulation study and real data analysis.

  14. Neutrophil/lymphocyte ratio and platelet/lymphocyte ratio in mood disorders: A meta-analysis.

    PubMed

    Mazza, Mario Gennaro; Lucchi, Sara; Tringali, Agnese Grazia Maria; Rossetti, Aurora; Botti, Eugenia Rossana; Clerici, Massimo

    2018-06-08

    The immune and inflammatory system is involved in the etiology of mood disorders. Neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR) and monocyte/lymphocyte ratio (MLR) are inexpensive and reproducible biomarkers of inflammation. This is the first meta-analysis exploring the role of NLR and PLR in mood disorder. We identified 11 studies according to our inclusion criteria from the main Electronic Databases. Meta-analyses were carried out generating pooled standardized mean differences (SMDs) between index and healthy controls (HC). Heterogeneity was estimated. Relevant sensitivity and meta-regression analyses were conducted. Subjects with bipolar disorder (BD) had higher NLR and PLR as compared with HC (respectively SMD = 0.672; p < 0.001; I 2  = 82.4% and SMD = 0.425; p = 0.048; I 2  = 86.53%). Heterogeneity-based sensitivity analyses confirmed these findings. Subgroup analysis evidenced an influence of bipolar phase on the overall estimate whit studies including subjects in manic and any bipolar phase showing a significantly higher NLR and PLR as compared with HC whereas the effect was not significant among studies including only euthymic bipolar subjects. Meta-regression showed that age and sex influenced the relationship between BD and NLR but not the relationship between BD and PLR. Meta-analysis was not carried out for MLR because our search identified only one study when comparing BD to HC, and only one study when comparing MDD to HC. Subjects with major depressive disorder (MDD) had higher NLR as compared with HC (SMD = 0.670; p = 0.028; I 2  = 89.931%). Heterogeneity-based sensitivity analyses and meta-regression confirmed these findings. Our meta-analysis supports the hypothesis that an inflammatory activation occurs in mood disorders and NLR and PLR may be useful to detect this activation. More researches including comparison of NLR, PLR and MLR between different bipolar phases and between BD and MDD are needed. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Predictors of exercise capacity following exercise-based rehabilitation in patients with coronary heart disease and heart failure: A meta-regression analysis.

    PubMed

    Uddin, Jamal; Zwisler, Ann-Dorthe; Lewinter, Christian; Moniruzzaman, Mohammad; Lund, Ken; Tang, Lars H; Taylor, Rod S

    2016-05-01

    The aim of this study was to undertake a comprehensive assessment of the patient, intervention and trial-level factors that may predict exercise capacity following exercise-based rehabilitation in patients with coronary heart disease and heart failure. Meta-analysis and meta-regression analysis. Randomized controlled trials of exercise-based rehabilitation were identified from three published systematic reviews. Exercise capacity was pooled across trials using random effects meta-analysis, and meta-regression used to examine the association between exercise capacity and a range of patient (e.g. age), intervention (e.g. exercise frequency) and trial (e.g. risk of bias) factors. 55 trials (61 exercise-control comparisons, 7553 patients) were included. Following exercise-based rehabilitation compared to control, overall exercise capacity was on average 0.95 (95% CI: 0.76-1.41) standard deviation units higher, and in trials reporting maximum oxygen uptake (VO2max) was 3.3 ml/kg.min(-1) (95% CI: 2.6-4.0) higher. There was evidence of a high level of statistical heterogeneity across trials (I(2) statistic > 50%). In multivariable meta-regression analysis, only exercise intervention intensity was found to be significantly associated with VO2max (P = 0.04); those trials with the highest average exercise intensity had the largest mean post-rehabilitation VO2max compared to control. We found considerable heterogeneity across randomized controlled trials in the magnitude of improvement in exercise capacity following exercise-based rehabilitation compared to control among patients with coronary heart disease or heart failure. Whilst higher exercise intensities were associated with a greater level of post-rehabilitation exercise capacity, there was no strong evidence to support other intervention, patient or trial factors to be predictive. © The European Society of Cardiology 2015.

  16. Using regression analysis to predict emergency patient volume at the Indianapolis 500 mile race.

    PubMed

    Bowdish, G E; Cordell, W H; Bock, H C; Vukov, L F

    1992-10-01

    Emergency physicians often plan and provide on-site medical care for mass gatherings. Most of the mass gathering literature is descriptive. Only a few studies have looked at factors such as crowd size, event characteristics, or weather in predicting numbers and types of patients at mass gatherings. We used regression analysis to relate patient volume on Race Day at the Indianapolis Motor Speedway to weather conditions and race characteristics. Race Day weather data for the years 1983 to 1989 were obtained from the National Oceanic and Atmospheric Administration. Data regarding patients treated on 1983 to 1989 Race Days were obtained from the facility hospital (Hannah Emergency Medical Center) data base. Regression analysis was performed using weather factors and race characteristics as independent variables and number of patients seen as the dependent variable. Data from 1990 were used to test the validity of the model. There was a significant relationship between dew point (which is calculated from temperature and humidity) and patient load (P less than .01). Dew point, however, failed to predict patient load during the 1990 race. No relationships could be established between humidity, sunshine, wind, or race characteristics and number of patients. Although higher dew point was associated with higher patient load during the 1983 to 1989 races, dew point was a poor predictor of patient load during the 1990 race. Regression analysis may be useful in identifying relationships between event characteristics and patient load but is probably inadequate to explain the complexities of crowd behavior and too simplified to use as a prediction tool.

  17. Risk Factors for Child Malnutrition in Bangladesh: A Multilevel Analysis of a Nationwide Population-Based Survey.

    PubMed

    Chowdhury, Mohammad Rocky Khan; Rahman, Mohammad Shafiur; Khan, Mohammad Mubarak Hossain; Mondal, Mohammad Nazrul Islam; Rahman, Mohammad Mosiur; Billah, Baki

    2016-05-01

    To identify the prevalence and risk factors of child malnutrition in Bangladesh. Data was extracted from the Bangladesh Demographic Health Survey (2011). The outcome measures were stunting, wasting, and underweight. χ(2) analysis was performed to find the association of outcome variables with selected factors. Multilevel logistic regression models with a random intercept at each of the household and community levels were used to identify the risk factors of stunting, wasting, and underweight. From the 2011 survey, 7568 children less than 5 years of age were included in the current analysis. The overall prevalence of stunting, wasting, and underweight was 41.3% (95% CI 39.0-42.9). The χ(2) test and multilevel logistic regression analysis showed that the variables age, sex, mother's body mass index, mother's educational status, father's educational status, place of residence, socioeconomic status, community status, religion, region of residence, and food security are significant factors of child malnutrition. Children with poor socioeconomic and community status were at higher risk of malnutrition. Children from food insecure families were more likely to be malnourished. Significant community- and household-level variations were found. The prevalence of child malnutrition is still high in Bangladesh, and the risk was assessed at several multilevel factors. Therefore, prevention of malnutrition should be given top priority as a major public health intervention. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. How Does Physical Activity Intervention Improve Self-Esteem and Self-Concept in Children and Adolescents? Evidence from a Meta-Analysis

    PubMed Central

    Liu, Mingli; Wu, Lang; Ming, Qingsen

    2015-01-01

    Objective To perform a systematic review and meta-analysis for the effects of physical activity intervention on self-esteem and self-concept in children and adolescents, and to identify moderator variables by meta-regression. Design A meta-analysis and meta-regression. Method Relevant studies were identified through a comprehensive search of electronic databases. Study inclusion criteria were: (1) intervention should be supervised physical activity, (2) reported sufficient data to estimate pooled effect sizes of physical activity intervention on self-esteem or self-concept, (3) participants’ ages ranged from 3 to 20 years, and (4) a control or comparison group was included. For each study, study design, intervention design and participant characteristics were extracted. R software (version 3.1.3) and Stata (version 12.0) were used to synthesize effect sizes and perform moderation analyses for determining moderators. Results Twenty-five randomized controlled trial (RCT) studies and 13 non-randomized controlled trial (non-RCT) studies including a total of 2991 cases were identified. Significant positive effects were found in RCTs for intervention of physical activity alone on general self outcomes (Hedges’ g = 0.29, 95% confidence interval [CI]: 0.14 to 0.45; p = 0.001), self-concept (Hedges’ g = 0.49, 95%CI: 0.10 to 0.88, p = 0.014) and self-worth (Hedges’ g = 0.31, 95%CI: 0.13 to 0.49, p = 0.005). There was no significant effect of intervention of physical activity alone on any outcomes in non-RCTs, as well as in studies with intervention of physical activity combined with other strategies. Meta-regression analysis revealed that higher treatment effects were associated with setting of intervention in RCTs (β = 0.31, 95%CI: 0.07 to 0.55, p = 0.013). Conclusion Intervention of physical activity alone is associated with increased self-concept and self-worth in children and adolescents. And there is a stronger association with school-based and gymnasium-based intervention compared with other settings. PMID:26241879

  19. Partial least squares based identification of Duchenne muscular dystrophy specific genes.

    PubMed

    An, Hui-bo; Zheng, Hua-cheng; Zhang, Li; Ma, Lin; Liu, Zheng-yan

    2013-11-01

    Large-scale parallel gene expression analysis has provided a greater ease for investigating the underlying mechanisms of Duchenne muscular dystrophy (DMD). Previous studies typically implemented variance/regression analysis, which would be fundamentally flawed when unaccounted sources of variability in the arrays existed. Here we aim to identify genes that contribute to the pathology of DMD using partial least squares (PLS) based analysis. We carried out PLS-based analysis with two datasets downloaded from the Gene Expression Omnibus (GEO) database to identify genes contributing to the pathology of DMD. Except for the genes related to inflammation, muscle regeneration and extracellular matrix (ECM) modeling, we found some genes with high fold change, which have not been identified by previous studies, such as SRPX, GPNMB, SAT1, and LYZ. In addition, downregulation of the fatty acid metabolism pathway was found, which may be related to the progressive muscle wasting process. Our results provide a better understanding for the downstream mechanisms of DMD.

  20. Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia

    NASA Astrophysics Data System (ADS)

    Pradhan, Biswajeet

    2010-05-01

    This paper presents the results of the cross-validation of a multivariate logistic regression model using remote sensing data and GIS for landslide hazard analysis on the Penang, Cameron, and Selangor areas in Malaysia. Landslide locations in the study areas were identified by interpreting aerial photographs and satellite images, supported by field surveys. SPOT 5 and Landsat TM satellite imagery were used to map landcover and vegetation index, respectively. Maps of topography, soil type, lineaments and land cover were constructed from the spatial datasets. Ten factors which influence landslide occurrence, i.e., slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, soil type, landcover, rainfall precipitation, and normalized difference vegetation index (ndvi), were extracted from the spatial database and the logistic regression coefficient of each factor was computed. Then the landslide hazard was analysed using the multivariate logistic regression coefficients derived not only from the data for the respective area but also using the logistic regression coefficients calculated from each of the other two areas (nine hazard maps in all) as a cross-validation of the model. For verification of the model, the results of the analyses were then compared with the field-verified landslide locations. Among the three cases of the application of logistic regression coefficient in the same study area, the case of Selangor based on the Selangor logistic regression coefficients showed the highest accuracy (94%), where as Penang based on the Penang coefficients showed the lowest accuracy (86%). Similarly, among the six cases from the cross application of logistic regression coefficient in other two areas, the case of Selangor based on logistic coefficient of Cameron showed highest (90%) prediction accuracy where as the case of Penang based on the Selangor logistic regression coefficients showed the lowest accuracy (79%). Qualitatively, the cross application model yields reasonable results which can be used for preliminary landslide hazard mapping.

  1. Toward the International Classification of Functioning, Disability and Health (ICF) Rehabilitation Set: A Minimal Generic Set of Domains for Rehabilitation as a Health Strategy.

    PubMed

    Prodinger, Birgit; Cieza, Alarcos; Oberhauser, Cornelia; Bickenbach, Jerome; Üstün, Tevfik Bedirhan; Chatterji, Somnath; Stucki, Gerold

    2016-06-01

    To develop a comprehensive set of the International Classification of Functioning, Disability and Health (ICF) categories as a minimal standard for reporting and assessing functioning and disability in clinical populations along the continuum of care. The specific aims were to specify the domains of functioning recommended for an ICF Rehabilitation Set and to identify a minimal set of environmental factors (EFs) to be used alongside the ICF Rehabilitation Set when describing disability across individuals and populations with various health conditions. Secondary analysis of existing data sets using regression methods (Random Forests and Group Lasso regression) and expert consultations. Along the continuum of care, including acute, early postacute, and long-term and community rehabilitation settings. Persons (N=9863) with various health conditions participated in primary studies. The number of respondents for whom the dependent variable data were available and used in this analysis was 9264. Not applicable. For regression analyses, self-reported general health was used as a dependent variable. The ICF categories from the functioning component and the EF component were used as independent variables for the development of the ICF Rehabilitation Set and the minimal set of EFs, respectively. Thirty ICF categories to be complemented with 12 EFs were identified as relevant to the identified ICF sets. The ICF Rehabilitation Set constitutes of 9 ICF categories from the component body functions and 21 from the component activities and participation. The minimal set of EFs contains 12 categories spanning all chapters of the EF component of the ICF. The identified sets proposed serve as minimal generic sets of aspects of functioning in clinical populations for reporting data within and across heath conditions, time, clinical settings including rehabilitation, and countries. These sets present a reference framework for harmonizing existing information on disability across general and clinical populations. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. Predictors of Long-Term School-Based Behavioral Outcomes in the Multimodal Treatment Study of Children with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Reed, Margot O.; Jakubovski, Ewgeni; Johnson, Jessica A.

    2017-01-01

    Abstract Objective: To explore predictors of 8-year school-based behavioral outcomes in attention-deficit/hyperactivity disorder (ADHD). Methods: We examined potential baseline predictors of school-based behavioral outcomes in children who completed the 8-year follow-up in the multimodal treatment study of children with ADHD. Stepwise logistic regression and receiver operating characteristic (ROC) analysis identified baseline predictors that were associated with a higher risk of truancy, school discipline, and in-school fights. Results: Stepwise regression analysis explained between 8.1% (in-school fights) and 12.0% (school discipline) of the total variance in school-based behavioral outcomes. Logistic regression identified several baseline characteristics that were associated with school-based behavioral difficulties 8 years later, including being male (associated with truancy and school discipline), African American (school discipline, in-school fights), increased conduct disorder (CD) symptoms (truancy), decreased affection from parents (school discipline), ADHD severity (in-school fights), and study site (truancy and school discipline). ROC analyses identified the most discriminative predictors of truancy, school discipline, and in-school fights, which were Aggression and Conduct Problem Scale Total score, family income, and race, respectively. Conclusions: A modest, but nontrivial portion of school-based behavioral outcomes, was predicted by baseline childhood characteristics. Exploratory analyses identified modifiable (lack of paternal involvement, lower parental knowledge of behavioral principles, and parental use of physical punishment), somewhat modifiable (income and having comorbid CD), and nonmodifiable (African American and male) factors that were associated with school-based behavioral difficulties. Future research should confirm that the associations between earlier specific parenting behaviors and poor subsequent school-based behavioral outcomes are, indeed, causally related and independent cooccurring childhood psychopathology. Future research might target increasing paternal involvement and parental knowledge of behavioral principles and reducing use of physical punishment to improve school-based behavioral outcomes in children with ADHD. PMID:28253029

  3. Predictors of Long-Term School-Based Behavioral Outcomes in the Multimodal Treatment Study of Children with Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Reed, Margot O; Jakubovski, Ewgeni; Johnson, Jessica A; Bloch, Michael H

    2017-05-01

    To explore predictors of 8-year school-based behavioral outcomes in attention-deficit/hyperactivity disorder (ADHD). We examined potential baseline predictors of school-based behavioral outcomes in children who completed the 8-year follow-up in the multimodal treatment study of children with ADHD. Stepwise logistic regression and receiver operating characteristic (ROC) analysis identified baseline predictors that were associated with a higher risk of truancy, school discipline, and in-school fights. Stepwise regression analysis explained between 8.1% (in-school fights) and 12.0% (school discipline) of the total variance in school-based behavioral outcomes. Logistic regression identified several baseline characteristics that were associated with school-based behavioral difficulties 8 years later, including being male (associated with truancy and school discipline), African American (school discipline, in-school fights), increased conduct disorder (CD) symptoms (truancy), decreased affection from parents (school discipline), ADHD severity (in-school fights), and study site (truancy and school discipline). ROC analyses identified the most discriminative predictors of truancy, school discipline, and in-school fights, which were Aggression and Conduct Problem Scale Total score, family income, and race, respectively. A modest, but nontrivial portion of school-based behavioral outcomes, was predicted by baseline childhood characteristics. Exploratory analyses identified modifiable (lack of paternal involvement, lower parental knowledge of behavioral principles, and parental use of physical punishment), somewhat modifiable (income and having comorbid CD), and nonmodifiable (African American and male) factors that were associated with school-based behavioral difficulties. Future research should confirm that the associations between earlier specific parenting behaviors and poor subsequent school-based behavioral outcomes are, indeed, causally related and independent cooccurring childhood psychopathology. Future research might target increasing paternal involvement and parental knowledge of behavioral principles and reducing use of physical punishment to improve school-based behavioral outcomes in children with ADHD.

  4. Quantitative analysis of titanium-induced artifacts and correlated factors during micro-CT scanning.

    PubMed

    Li, Jun Yuan; Pow, Edmond Ho Nang; Zheng, Li Wu; Ma, Li; Kwong, Dora Lai Wan; Cheung, Lim Kwong

    2014-04-01

    To investigate the impact of cover screw, resin embedment, and implant angulation on artifact of microcomputed tomography (micro-CT) scanning for implant. A total of twelve implants were randomly divided into 4 groups: (i) implant only; (ii) implant with cover screw; (iii) implant with resin embedment; and (iv) implants with cover screw and resin embedment. Implants angulation at 0°, 45°, and 90° were scanned by micro-CT. Images were assessed, and the ratio of artifact volume to total volume (AV/TV) was calculated. A multiple regression analysis in stepwise model was used to determine the significance of different factors. One-way ANOVA was performed to identify which combination of factors could minimize the artifact. In the regression analysis, implant angulation was identified as the best predictor for artifact among the factors (P < 0.001). Resin embedment also had significant effect on artifact volume (P = 0.028), while cover screw had not (P > 0.05). Non-embedded implants with the axis parallel to X-ray source of micro-CT produced minimal artifact. Implant angulation and resin embedment affected the artifact volume of micro-CT scanning for implant, while cover screw did not. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. The Counseling Opportunity Structure: Examining Correlates of Four-Year College-Going Rates

    ERIC Educational Resources Information Center

    Engberg, Mark E.; Gilbert, Aliza J.

    2014-01-01

    This study examines the relationships between the normative and resource dimensions of a high school counseling department and four-year college-going rates. Utilizing data from the High School Longitudinal Study of 2009 (HSLS: 09), we employ multiple regression and latent class analysis to identify salient factors related to the college-going…

  6. Which Variables Associated with Data-Driven Instruction Are Believed to Best Predict Urban Student Achievement?

    ERIC Educational Resources Information Center

    Greer, Wil

    2013-01-01

    This study identified the variables associated with data-driven instruction (DDI) that are perceived to best predict student achievement. Of the DDI variables discussed in the literature, 51 of them had a sufficient enough research base to warrant statistical analysis. Of them, 26 were statistically significant. Multiple regression and an…

  7. Finding and Developing Moderators and Directional Keys by Regression Analysis.

    ERIC Educational Resources Information Center

    Kokosh, John

    A procedure for rapid screening of variables as potential moderators is presented and discussed. A moderator is defined as any variable which can be used to identify differentially predictable persons; or defined statistically by stating that if a predictor and a moderator are each divided into three or more categories and used as independent…

  8. Faculty Salary Equity: Issues in Regression Model Selection. AIR 1992 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Moore, Nelle

    This paper discusses the determination of college faculty salary inequity and identifies the areas in which human judgment must be used in order to conduct a statistical analysis of salary equity. In addition, it provides some informed guidelines for making those judgments. The paper provides a framework for selecting salary equity models, based…

  9. Past-Year Sexual Inactivity among Older Married Persons and Their Partners

    ERIC Educational Resources Information Center

    Karraker, Amelia; DeLamater, John

    2013-01-01

    Family scholars have focused on the onset of sexual activity early in the life course, but little is known about the cessation of sexual activity in relationships in later life. We use event-history analysis techniques and logistic regression to identify the correlates of sexual inactivity among older married men and women. We analyze data for…

  10. Knowledge and Community: The Effect of a First-Year Seminar on Student Persistence

    ERIC Educational Resources Information Center

    Pittendrigh, Adele; Borkowski, John; Swinford, Steven; Plumb, Carolyn

    2016-01-01

    This study explores the effects of an academic seminar on the persistence of first-year college students, including effects on students most at risk of dropping out. A secondary interest was demonstrating the utility of using classification and regression tree analysis to identify relevant predictors of student persistence. The results of the…

  11. Psychosocial Correlates of AUDIT-C Hazardous Drinking Risk Status: Implications for Screening and Brief Intervention in College Settings

    ERIC Educational Resources Information Center

    Wahesh, Edward; Lewis, Todd F.

    2015-01-01

    The current study identified psychosocial variables associated with AUDIT-C hazardous drinking risk status for male and female college students. Logistic regression analysis revealed that AUDIT-C risk status was associated with alcohol-related negative consequences, injunctive norms, and descriptive norms for both male and female participants.…

  12. Using Performance Data Gathered at Several Stages of Achievement in Predicting Subsequent Performance.

    ERIC Educational Resources Information Center

    Owen, Steven V.; Feldhusen, John F.

    This study compares the effectiveness of three models of multivariate prediction for academic success in identifying the criterion variance of achievement in nursing education. The first model involves the use of an optimum set of predictors and one equation derived from a regression analysis on first semester grade average in predicting the…

  13. A Multivariate Analysis of Personality, Values and Expectations as Correlates of Career Aspirations of Final Year Medical Students

    ERIC Educational Resources Information Center

    Rogers, Mary E.; Searle, Judy; Creed, Peter A.; Ng, Shu-Kay

    2010-01-01

    This study reports on the career intentions of 179 final year medical students who completed an online survey that included measures of personality, values, professional and lifestyle expectations, and well-being. Logistic regression analyses identified the determinants of preferred medical specialty, practice location and hours of work.…

  14. Spatial Bayesian Latent Factor Regression Modeling of Coordinate-based Meta-analysis Data

    PubMed Central

    Montagna, Silvia; Wager, Tor; Barrett, Lisa Feldman; Johnson, Timothy D.; Nichols, Thomas E.

    2017-01-01

    Summary Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the paper are available for Coordinate-Based Meta-Analysis (CBMA). Neuroimaging meta-analysis is used to 1) identify areas of consistent activation; and 2) build a predictive model of task type or cognitive process for new studies (reverse inference). To simultaneously address these aims, we propose a Bayesian point process hierarchical model for CBMA. We model the foci from each study as a doubly stochastic Poisson process, where the study-specific log intensity function is characterised as a linear combination of a high-dimensional basis set. A sparse representation of the intensities is guaranteed through latent factor modeling of the basis coefficients. Within our framework, it is also possible to account for the effect of study-level covariates (meta-regression), significantly expanding the capabilities of the current neuroimaging meta-analysis methods available. We apply our methodology to synthetic data and neuroimaging meta-analysis datasets. PMID:28498564

  15. Application of principal component analysis (PCA) as a sensory assessment tool for fermented food products.

    PubMed

    Ghosh, Debasree; Chattopadhyay, Parimal

    2012-06-01

    The objective of the work was to use the method of quantitative descriptive analysis (QDA) to describe the sensory attributes of the fermented food products prepared with the incorporation of lactic cultures. Panellists were selected and trained to evaluate various attributes specially color and appearance, body texture, flavor, overall acceptability and acidity of the fermented food products like cow milk curd and soymilk curd, idli, sauerkraut and probiotic ice cream. Principal component analysis (PCA) identified the six significant principal components that accounted for more than 90% of the variance in the sensory attribute data. Overall product quality was modelled as a function of principal components using multiple least squares regression (R (2) = 0.8). The result from PCA was statistically analyzed by analysis of variance (ANOVA). These findings demonstrate the utility of quantitative descriptive analysis for identifying and measuring the fermented food product attributes that are important for consumer acceptability.

  16. Network Structure and Travel Time Perception

    PubMed Central

    Parthasarathi, Pavithra; Levinson, David; Hochmair, Hartwig

    2013-01-01

    The purpose of this research is to test the systematic variation in the perception of travel time among travelers and relate the variation to the underlying street network structure. Travel survey data from the Twin Cities metropolitan area (which includes the cities of Minneapolis and St. Paul) is used for the analysis. Travelers are classified into two groups based on the ratio of perceived and estimated commute travel time. The measures of network structure are estimated using the street network along the identified commute route. T-test comparisons are conducted to identify statistically significant differences in estimated network measures between the two traveler groups. The combined effect of these estimated network measures on travel time is then analyzed using regression models. The results from the t-test and regression analyses confirm the influence of the underlying network structure on the perception of travel time. PMID:24204932

  17. Analysis of reciprocal creatinine plots by two-phase linear regression.

    PubMed

    Rowe, P A; Richardson, R E; Burton, P R; Morgan, A G; Burden, R P

    1989-01-01

    The progression of renal diseases is often monitored by the serial measurement of plasma creatinine. The slope of the linear relation that is frequently found between the reciprocal of creatinine concentration and time delineates the rate of change in renal function. Minor changes in slope, perhaps indicating response to therapeutic intervention, can be difficult to identify and yet be of clinical importance. We describe the application of two-phase linear regression to identify and characterise changes in slope using a microcomputer. The method fits two intersecting lines to the data by computing a least-squares estimate of the position of the slope change and its 95% confidence limits. This avoids the potential bias of fixing the change at a preconceived time corresponding with an alteration in treatment. The program then evaluates the statistical and clinical significance of the slope change and produces a graphical output to aid interpretation.

  18. Eye regression in blind Astyanax cavefish may facilitate the evolution of an adaptive behavior and its sensory receptors.

    PubMed

    Borowsky, Richard

    2013-07-11

    The forces driving the evolutionary loss or simplification of traits such as vision and pigmentation in cave animals are still debated. Three alternative hypotheses are direct selection against the trait, genetic drift, and indirect selection due to antagonistic pleiotropy. Recent work establishes that Astyanax cavefish exhibit vibration attraction behavior (VAB), a presumed behavioral adaptation to finding food in the dark not exhibited by surface fish. Genetic analysis revealed two regions in the genome with quantitative trait loci (QTL) for both VAB and eye size. These observations were interpreted as genetic evidence that selection for VAB indirectly drove eye regression through antagonistic pleiotropy and, further, that this is a general mechanism to account for regressive evolution. These conclusions are unsupported by the data; the analysis fails to establish pleiotropy and ignores the numerous other QTL that map to, and potentially interact, in the same regions. It is likely that all three forces drive evolutionary change. We will be able to distinguish among them in individual cases only when we have identified the causative alleles and characterized their effects.

  19. Regression Analysis by Example. 5th Edition

    ERIC Educational Resources Information Center

    Chatterjee, Samprit; Hadi, Ali S.

    2012-01-01

    Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. "Regression Analysis by Example, Fifth Edition" has been expanded and thoroughly…

  20. Approximate median regression for complex survey data with skewed response.

    PubMed

    Fraser, Raphael André; Lipsitz, Stuart R; Sinha, Debajyoti; Fitzmaurice, Garrett M; Pan, Yi

    2016-12-01

    The ready availability of public-use data from various large national complex surveys has immense potential for the assessment of population characteristics using regression models. Complex surveys can be used to identify risk factors for important diseases such as cancer. Existing statistical methods based on estimating equations and/or utilizing resampling methods are often not valid with survey data due to complex survey design features. That is, stratification, multistage sampling, and weighting. In this article, we accommodate these design features in the analysis of highly skewed response variables arising from large complex surveys. Specifically, we propose a double-transform-both-sides (DTBS)'based estimating equations approach to estimate the median regression parameters of the highly skewed response; the DTBS approach applies the same Box-Cox type transformation twice to both the outcome and regression function. The usual sandwich variance estimate can be used in our approach, whereas a resampling approach would be needed for a pseudo-likelihood based on minimizing absolute deviations (MAD). Furthermore, the approach is relatively robust to the true underlying distribution, and has much smaller mean square error than a MAD approach. The method is motivated by an analysis of laboratory data on urinary iodine (UI) concentration from the National Health and Nutrition Examination Survey. © 2016, The International Biometric Society.

  1. Non-ignorable missingness in logistic regression.

    PubMed

    Wang, Joanna J J; Bartlett, Mark; Ryan, Louise

    2017-08-30

    Nonresponses and missing data are common in observational studies. Ignoring or inadequately handling missing data may lead to biased parameter estimation, incorrect standard errors and, as a consequence, incorrect statistical inference and conclusions. We present a strategy for modelling non-ignorable missingness where the probability of nonresponse depends on the outcome. Using a simple case of logistic regression, we quantify the bias in regression estimates and show the observed likelihood is non-identifiable under non-ignorable missing data mechanism. We then adopt a selection model factorisation of the joint distribution as the basis for a sensitivity analysis to study changes in estimated parameters and the robustness of study conclusions against different assumptions. A Bayesian framework for model estimation is used as it provides a flexible approach for incorporating different missing data assumptions and conducting sensitivity analysis. Using simulated data, we explore the performance of the Bayesian selection model in correcting for bias in a logistic regression. We then implement our strategy using survey data from the 45 and Up Study to investigate factors associated with worsening health from the baseline to follow-up survey. Our findings have practical implications for the use of the 45 and Up Study data to answer important research questions relating to health and quality-of-life. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Approximate Median Regression for Complex Survey Data with Skewed Response

    PubMed Central

    Fraser, Raphael André; Lipsitz, Stuart R.; Sinha, Debajyoti; Fitzmaurice, Garrett M.; Pan, Yi

    2016-01-01

    Summary The ready availability of public-use data from various large national complex surveys has immense potential for the assessment of population characteristics using regression models. Complex surveys can be used to identify risk factors for important diseases such as cancer. Existing statistical methods based on estimating equations and/or utilizing resampling methods are often not valid with survey data due to complex survey design features. That is, stratification, multistage sampling and weighting. In this paper, we accommodate these design features in the analysis of highly skewed response variables arising from large complex surveys. Specifically, we propose a double-transform-both-sides (DTBS) based estimating equations approach to estimate the median regression parameters of the highly skewed response; the DTBS approach applies the same Box-Cox type transformation twice to both the outcome and regression function. The usual sandwich variance estimate can be used in our approach, whereas a resampling approach would be needed for a pseudo-likelihood based on minimizing absolute deviations (MAD). Furthermore, the approach is relatively robust to the true underlying distribution, and has much smaller mean square error than a MAD approach. The method is motivated by an analysis of laboratory data on urinary iodine (UI) concentration from the National Health and Nutrition Examination Survey. PMID:27062562

  3. Investigating risk factors and possible infectious aetiologies of mummified fetuses on a large piggery in Australia.

    PubMed

    Dron, N; Hernández-Jover, M; Doyle, R E; Holyoake, P K

    2014-12-01

    To investigate risk factors and potential infectious aetiologies of an increased mummification rate (>2%) identified over time on a 1200-sow farrow-to-finish farm in Australia. Association of potential non-infectious risk factors and the mummification rate was investigated using 15 years of breeding herd data (40,940 litters) and logistic regression analysis. Samples from a limited number of mummified fetuses were taken to identify potential infectious aetiologies (porcine parvovirus, Leptospira pomona, porcine circovirus type 2, Bungowannah virus and enterovirus). Logistic regression analysis suggested that the mummification rate was significantly associated with sow breed and parity, year and total born and stillborn piglets per litter. The mummification rate was lower (P < 0.001) in Landrace (3.4%) and Large White (2.6%) sows than in Duroc sows (4.9%). Gilts (2.9%) had a lower (P < 0.001) mummification rate than older sows. The mummification rate increased with total born litter size and decreased with the number of stillborn piglets (P < 0.001). A clustering effect within individual sows was identified, indicating that some sows with mummified fetuses in a litter were more likely to have repeated mummifications in subsequent litters. No infectious agents were identified in the samples taken. Results from this study suggest that the increased mummification rate identified over time on this farm is likely to be a non-infectious multifactorial problem predisposing the occurrence of mummification. Further research is required to better understand the pathophysiology of mummification and the role that different non-infectious factors play in the occurrence of mummified fetuses. © 2014 Australian Veterinary Association.

  4. A Multiomics Approach to Identify Genes Associated with Childhood Asthma Risk and Morbidity.

    PubMed

    Forno, Erick; Wang, Ting; Yan, Qi; Brehm, John; Acosta-Perez, Edna; Colon-Semidey, Angel; Alvarez, Maria; Boutaoui, Nadia; Cloutier, Michelle M; Alcorn, John F; Canino, Glorisa; Chen, Wei; Celedón, Juan C

    2017-10-01

    Childhood asthma is a complex disease. In this study, we aim to identify genes associated with childhood asthma through a multiomics "vertical" approach that integrates multiple analytical steps using linear and logistic regression models. In a case-control study of childhood asthma in Puerto Ricans (n = 1,127), we used adjusted linear or logistic regression models to evaluate associations between several analytical steps of omics data, including genome-wide (GW) genotype data, GW methylation, GW expression profiling, cytokine levels, asthma-intermediate phenotypes, and asthma status. At each point, only the top genes/single-nucleotide polymorphisms/probes/cytokines were carried forward for subsequent analysis. In step 1, asthma modified the gene expression-protein level association for 1,645 genes; pathway analysis showed an enrichment of these genes in the cytokine signaling system (n = 269 genes). In steps 2-3, expression levels of 40 genes were associated with intermediate phenotypes (asthma onset age, forced expiratory volume in 1 second, exacerbations, eosinophil counts, and skin test reactivity); of those, methylation of seven genes was also associated with asthma. Of these seven candidate genes, IL5RA was also significant in analytical steps 4-8. We then measured plasma IL-5 receptor α levels, which were associated with asthma age of onset and moderate-severe exacerbations. In addition, in silico database analysis showed that several of our identified IL5RA single-nucleotide polymorphisms are associated with transcription factors related to asthma and atopy. This approach integrates several analytical steps and is able to identify biologically relevant asthma-related genes, such as IL5RA. It differs from other methods that rely on complex statistical models with various assumptions.

  5. Spontaneous passage of ureteral stones in patients with indwelling ureteral stents.

    PubMed

    Baumgarten, Lee; Desai, Anuj; Shipman, Scott; Eun, Daniel D; Pontari, Michel A; Mydlo, Jack H; Reese, Adam C

    2017-10-01

    To determine rates of spontaneous ureteral stone passage in patients with indwelling ureteral stents, and to identify factors associated with the spontaneous passage of stones while a ureteral stent is in place. From our institutional database, we identified patients who underwent ureteroscopic procedures for stone disease between January 1, 2013 and March 1, 2015. We compared the rates of spontaneous stone passage between patients who had previously undergone ureteral stent placement and those who had not. In patients with indwelling stents, multivariate logistic regression was performed to identify factors associated with spontaneous stone passage. A total of 194 patients met inclusion criteria. Spontaneous stone passage rates were similar in the stented (17/119, 14%) and non-stented (15/75, 20%) groups (p = 0.30). In bivariate analysis of stented patients, smaller stone size (p < 0.001) and distal stone location (p = 0.01) were significantly associated with spontaneous stone passage. Multivariate logistic regression analysis of stented patients showed that only small stone size was significantly associated with the likelihood of stone passage (p = 0.01), whereas stent duration, stone location, and stone laterality were not. A small, but clinically significant percentage of ureteral stones pass spontaneously with a ureteral stent in place. Small stone size is associated with an increased likelihood of spontaneous passage in patients with indwelling stents. These findings may help to identify patients who can potentially avoid additional surgical procedures for definitive stone removal after ureteral stent placement.

  6. Reporting quality of statistical methods in surgical observational studies: protocol for systematic review.

    PubMed

    Wu, Robert; Glen, Peter; Ramsay, Tim; Martel, Guillaume

    2014-06-28

    Observational studies dominate the surgical literature. Statistical adjustment is an important strategy to account for confounders in observational studies. Research has shown that published articles are often poor in statistical quality, which may jeopardize their conclusions. The Statistical Analyses and Methods in the Published Literature (SAMPL) guidelines have been published to help establish standards for statistical reporting.This study will seek to determine whether the quality of statistical adjustment and the reporting of these methods are adequate in surgical observational studies. We hypothesize that incomplete reporting will be found in all surgical observational studies, and that the quality and reporting of these methods will be of lower quality in surgical journals when compared with medical journals. Finally, this work will seek to identify predictors of high-quality reporting. This work will examine the top five general surgical and medical journals, based on a 5-year impact factor (2007-2012). All observational studies investigating an intervention related to an essential component area of general surgery (defined by the American Board of Surgery), with an exposure, outcome, and comparator, will be included in this systematic review. Essential elements related to statistical reporting and quality were extracted from the SAMPL guidelines and include domains such as intent of analysis, primary analysis, multiple comparisons, numbers and descriptive statistics, association and correlation analyses, linear regression, logistic regression, Cox proportional hazard analysis, analysis of variance, survival analysis, propensity analysis, and independent and correlated analyses. Each article will be scored as a proportion based on fulfilling criteria in relevant analyses used in the study. A logistic regression model will be built to identify variables associated with high-quality reporting. A comparison will be made between the scores of surgical observational studies published in medical versus surgical journals. Secondary outcomes will pertain to individual domains of analysis. Sensitivity analyses will be conducted. This study will explore the reporting and quality of statistical analyses in surgical observational studies published in the most referenced surgical and medical journals in 2013 and examine whether variables (including the type of journal) can predict high-quality reporting.

  7. Predicted effect size of lisdexamfetamine treatment of attention deficit/hyperactivity disorder (ADHD) in European adults: Estimates based on indirect analysis using a systematic review and meta-regression analysis.

    PubMed

    Fridman, M; Hodgkins, P S; Kahle, J S; Erder, M H

    2015-06-01

    There are few approved therapies for adults with attention-deficit/hyperactivity disorder (ADHD) in Europe. Lisdexamfetamine (LDX) is an effective treatment for ADHD; however, no clinical trials examining the efficacy of LDX specifically in European adults have been conducted. Therefore, to estimate the efficacy of LDX in European adults we performed a meta-regression of existing clinical data. A systematic review identified US- and Europe-based randomized efficacy trials of LDX, atomoxetine (ATX), or osmotic-release oral system methylphenidate (OROS-MPH) in children/adolescents and adults. A meta-regression model was then fitted to the published/calculated effect sizes (Cohen's d) using medication, geographical location, and age group as predictors. The LDX effect size in European adults was extrapolated from the fitted model. Sensitivity analyses performed included using adult-only studies and adding studies with placebo designs other than a standard pill-placebo design. Twenty-two of 2832 identified articles met inclusion criteria. The model-estimated effect size of LDX for European adults was 1.070 (95% confidence interval: 0.738, 1.401), larger than the 0.8 threshold for large effect sizes. The overall model fit was adequate (80%) and stable in the sensitivity analyses. This model predicts that LDX may have a large treatment effect size in European adults with ADHD. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Intraurban Differences in the Use of Ambulatory Health Services in a Large Brazilian City

    PubMed Central

    Lima-Costa, Maria Fernanda; Proietti, Fernando Augusto; Cesar, Cibele C.; Macinko, James

    2010-01-01

    A major goal of health systems is to reduce inequities in access to services, that is, to ensure that health care is provided based on health needs rather than social or economic factors. This study aims to identify the determinants of health services utilization among adults in a large Brazilian city and intraurban disparities in health care use. We combine household survey data with census-derived classification of social vulnerability of each household’s census tract. The dependent variable was utilization of physician services in the prior 12 months, and the independent variables included predisposing factors, health needs, enabling factors, and context. Prevalence ratios and 95% confidence intervals were estimated by the Hurdle regression model, which combined Poisson regression analysis of factors associated with any doctor visits (dichotomous variable) and zero-truncated negative binomial regression for the analysis of factors associated with the number of visits among those who had at least one. Results indicate that the use of health services was greater among women and increased with age, and was determined primarily by health needs and whether the individual had a regular doctor, even among those living in areas of the city with the worst socio-environmental indicators. The experience of Belo Horizonte may have implications for other world cities, particularly in the development and use of a comprehensive index to identify populations at risk and in order to guide expansion of primary health care services as a means of enhancing equity in health. PMID:21104332

  9. Tailored interventions to overcome identified barriers to change: effects on professional practice and health care outcomes

    PubMed Central

    Baker, Richard; Camosso-Stefinovic, Janette; Gillies, Clare; Shaw, Elizabeth J; Cheater, Francine; Flottorp, Signe; Robertson, Noelle

    2014-01-01

    Background In the previous version of this review, the effectiveness of interventions tailored to barriers to change was found to be uncertain. Objectives To assess the effectiveness of interventions tailored to address identified barriers to change on professional practice or patient outcomes. Search methods For this update, in addition to the EPOC Register and pending files, we searched the following databases without language restrictions, from inception until August 2007: MEDLINE, EMBASE, CINAHL, BNI and HMIC. We searched the National Research Register to November 2007. We undertook further searches to October 2009 to identify potentially eligible published or ongoing trials. Selection criteria Randomised controlled trials (RCTs) of interventions tailored to address prospectively identified barriers to change that reported objectively measured professional practice or healthcare outcomes in which at least one group received an intervention designed to address prospectively identified barriers to change. Data collection and analysis Two reviewers independently assessed quality and extracted data. We undertook quantitative and qualitative analyses. The quantitative analyses had two elements. We carried out a meta-regression to compare interventions tailored to address identified barriers to change with either no interventions or an intervention(s) not tailored to the barriers.We carried out heterogeneity analyses to investigate sources of differences in the effectiveness of interventions. These included the effects of: risk of bias, concealment of allocation, rigour of barrier analysis, use of theory, complexity of interventions, and the reported presence of administrative constraints. Main results We included 26 studies comparing an intervention tailored to address identified barriers to change to no intervention or an intervention(s) not tailored to the barriers. The effect sizes of these studies varied both across and within studies. Twelve studies provided enough data to be included in the quantitative analysis. A meta-regression model was fitted adjusting for baseline odds by fitting it as a covariate, to obtain the pooled odds ratio of 1.54 (95% CI, 1.16 to 2.01) from Bayesian analysis and 1.52 (95% CI, 1.27 to 1.82, P < 0.001) from classical analysis. The heterogeneity analyses found that no study attributes investigated were significantly associated with effectiveness of the interventions. Authors’ conclusions Interventions tailored to prospectively identified barriers are more likely to improve professional practice than no intervention or dissemination of guidelines. However, the methods used to identify barriers and tailor interventions to address them need further development. Research is required to determine the effectiveness of tailored interventions in comparison with other interventions. PMID:20238340

  10. Depressive Symptoms in College Women: Examining the Cumulative Effect of Childhood and Adulthood Domestic Violence.

    PubMed

    Al-Modallal, Hanan

    2016-10-01

    The purpose of this study was to examine the cumulative effect of childhood and adulthood violence on depressive symptoms in a sample of Jordanian college women. Snowball sampling technique was used to recruit the participants. The participants were heterosexual college-aged women between the ages of 18 and 25. The participants were asked about their experiences of childhood violence (including physical violence, sexual violence, psychological violence, and witnessing parental violence), partner violence (including physical partner violence and sexual partner violence), experiences of depressive symptoms, and about other demographic and familial factors as possible predictors for their complaints of depressive symptoms. Multiple linear regression analysis was implemented to identify demographic- and violence-related predictors of their complainants of depressive symptoms. Logistic regression analysis was further performed to identify possible type(s) of violence associated with the increased risk of depressive symptoms. The prevalence of depressive symptoms in this sample was 47.4%. For the violence experience, witnessing parental violence was the most common during childhood, experienced by 40 (41.2%) women, and physical partner violence was the most common in adulthood, experienced by 35 (36.1%) women. Results of logistic regression analysis indicated that experiencing two types of violence (regardless of the time of occurrence) was significant in predicting depressive symptoms (odds ratio [OR] = 3.45, p < .05). Among college women's demographic characteristics, marital status (single vs. engaged), mothers' level of education, income, and smoking were significant in predicting depressive symptoms. Assessment of physical violence and depressive symptoms including the cumulative impact of longer periods of violence on depressive symptoms is recommended to be explored in future studies. © The Author(s) 2015.

  11. On Becoming Trauma-Informed: Role of the Adverse Childhood Experiences Survey in Tertiary Child and Adolescent Mental Health Services and the Association with Standard Measures of Impairment and Severity

    PubMed Central

    Rahman, Abdul; Perri, Andrea; Deegan, Avril; Kuntz, Jennifer; Cawthorpe, David

    2018-01-01

    Context There is a movement toward trauma-informed, trauma-focused psychiatric treatment. Objective To examine Adverse Childhood Experiences (ACE) survey items by sex and by total scores by sex vs clinical measures of impairment to examine the clinical utility of the ACE survey as an index of trauma in a child and adolescent mental health care setting. Design Descriptive, polychoric factor analysis and regression analyses were employed to analyze cross-sectional ACE surveys (N = 2833) and registration-linked data using past admissions (N = 10,400) collected from November 2016 to March 2017 related to clinical data (28 independent variables), taking into account multicollinearity. Results Distinct ACE items emerged for males, females, and those with self-identified sex and for ACE total scores in regression analysis. In hierarchical regression analysis, the final models consisting of standard clinical measures and demographic and system variables (eg, repeated admissions) were associated with substantial ACE total score variance for females (44%) and males (38%). Inadequate sample size foreclosed on developing a reduced multivariable model for the self-identified sex group. Conclusion The ACE scores relate to independent clinical measures and system and demographic variables. There are implications for clinical practice. For example, a child presenting with anxiety and a high ACE score likely requires treatment that is different from a child presenting with anxiety and an ACE score of zero. The ACE survey score is an important index of presenting clinical status that guides patient care planning and intervention in the progress toward a trauma-focused system of care. PMID:29401055

  12. Study Heterogeneity and Estimation of Prevalence of Primary Aldosteronism: A Systematic Review and Meta-Regression Analysis.

    PubMed

    Käyser, Sabine C; Dekkers, Tanja; Groenewoud, Hans J; van der Wilt, Gert Jan; Carel Bakx, J; van der Wel, Mark C; Hermus, Ad R; Lenders, Jacques W; Deinum, Jaap

    2016-07-01

    For health care planning and allocation of resources, realistic estimation of the prevalence of primary aldosteronism is necessary. Reported prevalences of primary aldosteronism are highly variable, possibly due to study heterogeneity. Our objective was to identify and explain heterogeneity in studies that aimed to establish the prevalence of primary aldosteronism in hypertensive patients. PubMed, EMBASE, Web of Science, Cochrane Library, and reference lists from January 1, 1990, to January 31, 2015, were used as data sources. Description of an adult hypertensive patient population with confirmed diagnosis of primary aldosteronism was included in this study. Dual extraction and quality assessment were the forms of data extraction. Thirty-nine studies provided data on 42 510 patients (nine studies, 5896 patients from primary care). Prevalence estimates varied from 3.2% to 12.7% in primary care and from 1% to 29.8% in referral centers. Heterogeneity was too high to establish point estimates (I(2) = 57.6% in primary care; 97.1% in referral centers). Meta-regression analysis showed higher prevalences in studies 1) published after 2000, 2) from Australia, 3) aimed at assessing prevalence of secondary hypertension, 4) that were retrospective, 5) that selected consecutive patients, and 6) not using a screening test. All studies had minor or major flaws. This study demonstrates that it is pointless to claim low or high prevalence of primary aldosteronism based on published reports. Because of the significant impact of a diagnosis of primary aldosteronism on health care resources and the necessary facilities, our findings urge for a prevalence study whose design takes into account the factors identified in the meta-regression analysis.

  13. Vitamin D insufficiency and subclinical atherosclerosis in non-diabetic males living with HIV.

    PubMed

    Portilla, Joaquín; Moreno-Pérez, Oscar; Serna-Candel, Carmen; Escoín, Corina; Alfayate, Rocio; Reus, Sergio; Merino, Esperanza; Boix, Vicente; Giner, Livia; Sánchez-Payá, José; Picó, Antonio

    2014-01-01

    Vitamin D insufficiency (VDI) has been associated with increased cardiovascular risk in the non-HIV population. This study evaluates the relationship among serum 25-hydroxyvitamin D [25(OH)D] levels, cardiovascular risk factors, adipokines, antiviral therapy (ART) and subclinical atherosclerosis in HIV-infected males. A cross-sectional study in ambulatory care was made in non-diabetic patients living with HIV. VDI was defined as 25(OH)D serum levels <75 nmol/L. Fasting lipids, glucose, inflammatory markers (tumour necrosis factor-α, interleukin-6, high-sensitivity C-reactive protein) and endothelial markers (plasminogen activator inhibitor-1, or PAI-I) were measured. The common carotid artery intima-media thickness (C-IMT) was determined. A multivariate logistic regression analysis was made to identify factors associated with the presence of VDI, while multivariate linear regression analysis was used to identify factors associated with common C-IMT. Eighty-nine patients were included (age 42 ± 8 years), 18.9% were in CDC (US Centers for Disease Control and Prevention) stage C and 75 were on ART. VDI was associated with ART exposure, sedentary lifestyle, higher triglycerides levels and PAI-I. In univariate analysis, VDI was associated with greater common C-IMT. The multivariate linear regression model, adjusted by confounding factors, revealed an independent association between common C-IMT and patient age, time of exposure to protease inhibitors (PIs) and impaired fasting glucose (IFG). In contrast, there were no independent associations between common C-IMT and VDI or inflammatory and endothelial markers. VDI was not independently associated with subclinical atherosclerosis in non-diabetic males living with HIV. Older age, a longer exposure to PIs, and IFG were independent factors associated with common C-IMT in this population.

  14. Cardiovascular risk from water arsenic exposure in Vietnam: Application of systematic review and meta-regression analysis in chemical health risk assessment.

    PubMed

    Phung, Dung; Connell, Des; Rutherford, Shannon; Chu, Cordia

    2017-06-01

    A systematic review (SR) and meta-analysis cannot provide the endpoint answer for a chemical risk assessment (CRA). The objective of this study was to apply SR and meta-regression (MR) analysis to address this limitation using a case study in cardiovascular risk from arsenic exposure in Vietnam. Published studies were searched from PubMed using the keywords of arsenic exposure and cardiovascular diseases (CVD). Random-effects meta-regression was applied to model the linear relationship between arsenic concentration in water and risk of CVD, and then the no-observable-adverse-effect level (NOAEL) were identified from the regression function. The probabilistic risk assessment (PRA) technique was applied to characterize risk of CVD due to arsenic exposure by estimating the overlapping coefficient between dose-response and exposure distribution curves. The risks were evaluated for groundwater, treated and drinking water. A total of 8 high quality studies for dose-response and 12 studies for exposure data were included for final analyses. The results of MR suggested a NOAEL of 50 μg/L and a guideline of 5 μg/L for arsenic in water which valued as a half of NOAEL and guidelines recommended from previous studies and authorities. The results of PRA indicated that the observed exposure level with exceeding CVD risk was 52% for groundwater, 24% for treated water, and 10% for drinking water in Vietnam, respectively. The study found that systematic review and meta-regression can be considered as an ideal method to chemical risk assessment due to its advantages to bring the answer for the endpoint question of a CRA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Using mixed treatment comparisons and meta-regression to perform indirect comparisons to estimate the efficacy of biologic treatments in rheumatoid arthritis.

    PubMed

    Nixon, R M; Bansback, N; Brennan, A

    2007-03-15

    Mixed treatment comparison (MTC) is a generalization of meta-analysis. Instead of the same treatment for a disease being tested in a number of studies, a number of different interventions are considered. Meta-regression is also a generalization of meta-analysis where an attempt is made to explain the heterogeneity between the treatment effects in the studies by regressing on study-level covariables. Our focus is where there are several different treatments considered in a number of randomized controlled trials in a specific disease, the same treatment can be applied in several arms within a study, and where differences in efficacy can be explained by differences in the study settings. We develop methods for simultaneously comparing several treatments and adjusting for study-level covariables by combining ideas from MTC and meta-regression. We use a case study from rheumatoid arthritis. We identified relevant trials of biologic verses standard therapy or placebo and extracted the doses, comparators and patient baseline characteristics. Efficacy is measured using the log odds ratio of achieving six-month ACR50 responder status. A random-effects meta-regression model is fitted which adjusts the log odds ratio for study-level prognostic factors. A different random-effect distribution on the log odds ratios is allowed for each different treatment. The odds ratio is found as a function of the prognostic factors for each treatment. The apparent differences in the randomized trials between tumour necrosis factor alpha (TNF- alpha) antagonists are explained by differences in prognostic factors and the analysis suggests that these drugs as a class are not different from each other. Copyright (c) 2006 John Wiley & Sons, Ltd.

  16. Automatic Classification of Users’ Health Information Need Context: Logistic Regression Analysis of Mouse-Click and Eye-Tracker Data

    PubMed Central

    Pian, Wenjing; Khoo, Christopher SG

    2017-01-01

    Background Users searching for health information on the Internet may be searching for their own health issue, searching for someone else’s health issue, or browsing with no particular health issue in mind. Previous research has found that these three categories of users focus on different types of health information. However, most health information websites provide static content for all users. If the three types of user health information need contexts can be identified by the Web application, the search results or information offered to the user can be customized to increase its relevance or usefulness to the user. Objective The aim of this study was to investigate the possibility of identifying the three user health information contexts (searching for self, searching for others, or browsing with no particular health issue in mind) using just hyperlink clicking behavior; using eye-tracking information; and using a combination of eye-tracking, demographic, and urgency information. Predictive models are developed using multinomial logistic regression. Methods A total of 74 participants (39 females and 35 males) who were mainly staff and students of a university were asked to browse a health discussion forum, Healthboards.com. An eye tracker recorded their examining (eye fixation) and skimming (quick eye movement) behaviors on 2 types of screens: summary result screen displaying a list of post headers, and detailed post screen. The following three types of predictive models were developed using logistic regression analysis: model 1 used only the time spent in scanning the summary result screen and reading the detailed post screen, which can be determined from the user’s mouse clicks; model 2 used the examining and skimming durations on each screen, recorded by an eye tracker; and model 3 added user demographic and urgency information to model 2. Results An analysis of variance (ANOVA) analysis found that users’ browsing durations were significantly different for the three health information contexts (P<.001). The logistic regression model 3 was able to predict the user’s type of health information context with a 10-fold cross validation mean accuracy of 84% (62/74), followed by model 2 at 73% (54/74) and model 1 at 71% (52/78). In addition, correlation analysis found that particular browsing durations were highly correlated with users’ age, education level, and the urgency of their information need. Conclusions A user’s type of health information need context (ie, searching for self, for others, or with no health issue in mind) can be identified with reasonable accuracy using just user mouse clicks that can easily be detected by Web applications. Higher accuracy can be obtained using Google glass or future computing devices with eye tracking function. PMID:29269342

  17. [Gender difference in risk factors for depression in community-dwelling elders].

    PubMed

    Kim, Chul-Gyu; Park, Seungmi

    2012-02-01

    This study was conducted to compare the degree of depression between men and women and to identify factors influencing their depression. Participants in this cross-sectional descriptive study were 263 persons over 65 years old (men: 103, women: 160). Data were collected through face to face interviews using questionnaires and were done in two urban areas in 2010. Research instruments utilized in this study were SGDS, MMSE-K, SRH, FILE, sleep pattern scale, family and friend support scale, and social support scale. Multivariate regression analysis was performed to identify factors influencing depression in elders. The proportions of participants with depression were significantly different between men and women (52.4% vs. 67.5%). Regression model for depression in elderly men significantly accounted for 54%; disease stress (32%), economic stress (10%), perceived health status (4%), and family support, educational level, age, and hypertension. Regression model for depression in elderly women significantly accounted for 47%; disease stress (25%), perceived social loneliness (8%), friend support (5%), family stress (4%), and sleep satisfaction, and family support. Results demonstrate that depression is an important health problem for elders, and show gender differences for factors influencing depression. These results could be used in the developing depression prevention programs.

  18. Use of a pretest strategy for physical therapist assistant programs to predict success rate on the national physical therapy exam.

    PubMed

    Sloas, Stacey B; Keith, Becky; Whitehead, Malcolm T

    2013-01-01

    This study investigated a pretest strategy that identified physical therapist assistant (PTA) students who were at risk of failure on the National Physical Therapy Examination (NPTE). Program assessment data from five cohorts of PTA students (2005-2009) were used to develop a stepwise multiple regression formula that predicted first-time NPTE licensure scores. Data used included the Nelson-Denny Reading Test, grades from eight core courses, grade point average upon admission to the program, and scores from three mock NPTE exams given during the program. Pearson correlation coefficients were calculated between each of the 15 variables and NPTE scores. Stepwise multiple regression analysis was performed using data collected at the ends of the first, second, and third (final) semesters of the program. Data from the class of 2010 were then used to validate the formula. The end-of-program formula accounted for the greatest variance (57%) in predicted scores. Those students scoring below a predicted scaled score of 620 were identified to be at risk of failure of the licensure exam. These students were counseled, and a remedial plan was developed based on regression predictions prior to them sitting for the licensure exam.

  19. Determining Cutoff Point of Ensemble Trees Based on Sample Size in Predicting Clinical Dose with DNA Microarray Data.

    PubMed

    Yılmaz Isıkhan, Selen; Karabulut, Erdem; Alpar, Celal Reha

    2016-01-01

    Background/Aim . Evaluating the success of dose prediction based on genetic or clinical data has substantially advanced recently. The aim of this study is to predict various clinical dose values from DNA gene expression datasets using data mining techniques. Materials and Methods . Eleven real gene expression datasets containing dose values were included. First, important genes for dose prediction were selected using iterative sure independence screening. Then, the performances of regression trees (RTs), support vector regression (SVR), RT bagging, SVR bagging, and RT boosting were examined. Results . The results demonstrated that a regression-based feature selection method substantially reduced the number of irrelevant genes from raw datasets. Overall, the best prediction performance in nine of 11 datasets was achieved using SVR; the second most accurate performance was provided using a gradient-boosting machine (GBM). Conclusion . Analysis of various dose values based on microarray gene expression data identified common genes found in our study and the referenced studies. According to our findings, SVR and GBM can be good predictors of dose-gene datasets. Another result of the study was to identify the sample size of n = 25 as a cutoff point for RT bagging to outperform a single RT.

  20. Severity of mental illness as a result of multiple childhood adversities: US National Epidemiologic Survey.

    PubMed

    Curran, Emma; Adamson, Gary; Stringer, Maurice; Rosato, Michael; Leavey, Gerard

    2016-05-01

    To examine patterns of childhood adversity, their long-term consequences and the combined effect of different childhood adversity patterns as predictors of subsequent psychopathology. Secondary analysis of data from the US National Epidemiologic Survey on alcohol and related conditions. Using latent class analysis to identify childhood adversity profiles; and using multinomial logistic regression to validate and further explore these profiles with a range of associated demographic and household characteristics. Finally, confirmatory factor analysis substantiated initial latent class analysis findings by investigating a range of mental health diagnoses. Latent class analysis generated a three-class model of childhood adversity in which 60 % of participants were allocated to a low adversity class; 14 % to a global adversities class (reporting exposures for all the derived latent classes); and 26 % to a domestic emotional and physical abuse class (exposed to a range of childhood adversities). Confirmatory Factor analysis defined an internalising-externalising spectrum to represent lifetime reporting patterns of mental health disorders. Using logistic regression, both adversity groups showed specific gender and race/ethnicity differences, related family discord and increased psychopathology. We identified underlying patterns in the exposure to childhood adversity and associated mental health. These findings are informative in their description of the configuration of adversities, rather than focusing solely on the cumulative aspect of experience. Amelioration of longer-term negative consequences requires early identification of psychopathology risk factors that can inform protective and preventive interventions. This study highlights the utility of screening for childhood adversities when individuals present with symptoms of psychiatric disorders.

  1. Magnitude and Frequency of Rural Floods in the Southeastern United States, through 2006: Volume 2, North Carolina

    USGS Publications Warehouse

    Weaver, J. Curtis; Feaster, Toby D.; Gotvald, Anthony J.

    2009-01-01

    Reliable estimates of the magnitude and frequency of floods are required for the economical and safe design of transportation and water-conveyance structures. A multistate approach was used to update methods for estimating the magnitude and frequency of floods in rural, ungaged basins in North Carolina, South Carolina, and Georgia that are not substantially affected by regulation, tidal fluctuations, or urban development. In North Carolina, annual peak-flow data available through September 2006 were available for 584 sites; 402 of these sites had a total of 10 or more years of systematic record that is required for at-site, flood-frequency analysis. Following data reviews and the computation of 20 physical and climatic basin characteristics for each station as well as at-site flood-frequency statistics, annual peak-flow data were identified for 363 sites in North Carolina suitable for use in this analysis. Among these 363 sites, 19 sites had records that could be divided into unregulated and regulated/ channelized annual peak discharges, which means peak-flow records were identified for a total of 382 cases in North Carolina. Considering the 382 cases, at-site flood-frequency statistics are provided for 333 unregulated cases (also used for the regression database) and 49 regulated/channelized cases. The flood-frequency statistics for the 333 unregulated sites were combined with data for sites from South Carolina, Georgia, and adjacent parts of Alabama, Florida, Tennessee, and Virginia to create a database of 943 sites considered for use in the regional regression analysis. Flood-frequency statistics were computed by fitting logarithms (base 10) of the annual peak flows to a log-Pearson Type III distribution. As part of the computation process, a new generalized skew coefficient was developed by using a Bayesian generalized least-squares regression model. Exploratory regression analyses using ordinary least-squares regression completed on the initial database of 943 sites resulted in defining five hydrologic regions for North Carolina, South Carolina, and Georgia. Stations with drainage areas less than 1 square mile were removed from the database, and a procedure to examine for basin redundancy (based on drainage area and periods of record) also resulted in the removal of some stations from the regression database. Flood-frequency estimates and basin characteristics for 828 gaged stations were combined to form the final database that was used in the regional regression analysis. Regional regression analysis, using generalized least-squares regression, was used to develop a set of predictive equations that can be used for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent chance exceedance flows for rural ungaged, basins in North Carolina, South Carolina, and Georgia. The final predictive equations are all functions of drainage area and the percentage of drainage basin within each of the five hydrologic regions. Average errors of prediction for these regression equations range from 34.0 to 47.7 percent. Discharge estimates determined from the systematic records for the current study are, on average, larger in magnitude than those from a previous study for the highest percent chance exceedances (50 and 20 percent) and tend to be smaller than those from the previous study for the lower percent chance exceedances when all sites are considered as a group. For example, mean differences for sites in the Piedmont hydrologic region range from positive 0.5 percent for the 50-percent chance exceedance flow to negative 4.6 percent for the 0.2-percent chance exceedance flow when stations are grouped by hydrologic region. Similarly for the same hydrologic region, median differences range from positive 0.9 percent for the 50-percent chance exceedance flow to negative 7.1 percent for the 0.2-percent chance exceedance flow. However, mean and median percentage differences between the estimates from the previous and curre

  2. [Job Satisfaction of Young Professionals in Health Care].

    PubMed

    Ulrich, Gert; Homberg, Angelika; Karstens, Sven; Goetz, Katja; Mahler, Cornelia

    2017-05-29

    Background Job satisfaction in health care is currently important in view of workforce shortage in the health care area. The purpose of this study was to evaluate job satisfaction in young health professionals and to identify factors possibly influencing overall job satisfaction. Methods About one year after graduating from vocational training, a total of 579 graduates from various health care professions [Nursing (N), Nursing and Geriatric Nursing; Therapy (TP), Physical therapy and Logopaedics; Diagnostics (D), Diagnostic Radiography and Biomedical Science], were invited to participate in an online-survey. Job satisfaction was assessed with the 10-item Warr-Cook-Wall (WCW) job satisfaction questionnaire. Descriptive analysis of the WCW was performed, and the impact of various factors on job satisfaction was determined by stepwise linear regression analysis. Results In total, 189 graduates (N, n=121; TP, n=32; D, n=36) were included in data analysis (32.6% response rate). Overall job satisfaction in all young professionals was 4.9±1.6 (mean±SD) and was slightly higher in TP (5.4±1.4) compared with N (4.7±1.6) and D (5.0±1.5), respectively. Highest satisfaction was identified with "colleagues" and lowest satisfaction with "income" was identified in all professional groups. Colleagues and fellow workers showed the highest score of association regarding overall job satisfaction in regression analysis. Conclusions As a whole, our data suggest good to very good satisfaction in various WCW items of job satisfaction. "Colleagues" were shown to have a high impact on job satisfaction. To improve the attractiveness of job profiles in health care, the presented results may provide a valuable input regarding workforce shortage. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Lipidomics study of plasma phospholipid metabolism in early type 2 diabetes rats with ancient prescription Huang-Qi-San intervention by UPLC/Q-TOF-MS and correlation coefficient.

    PubMed

    Wu, Xia; Zhu, Jian-Cheng; Zhang, Yu; Li, Wei-Min; Rong, Xiang-Lu; Feng, Yi-Fan

    2016-08-25

    Potential impact of lipid research has been increasingly realized both in disease treatment and prevention. An effective metabolomics approach based on ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) along with multivariate statistic analysis has been applied for investigating the dynamic change of plasma phospholipids compositions in early type 2 diabetic rats after the treatment of an ancient prescription of Chinese Medicine Huang-Qi-San. The exported UPLC/Q-TOF-MS data of plasma samples were subjected to SIMCA-P and processed by bioMark, mixOmics, Rcomdr packages with R software. A clear score plots of plasma sample groups, including normal control group (NC), model group (MC), positive medicine control group (Flu) and Huang-Qi-San group (HQS), were achieved by principal-components analysis (PCA), partial least-squares discriminant analysis (PLS-DA) and orthogonal partial least-squares discriminant analysis (OPLS-DA). Biomarkers were screened out using student T test, principal component regression (PCR), partial least-squares regression (PLS) and important variable method (variable influence on projection, VIP). Structures of metabolites were identified and metabolic pathways were deduced by correlation coefficient. The relationship between compounds was explained by the correlation coefficient diagram, and the metabolic differences between similar compounds were illustrated. Based on KEGG database, the biological significances of identified biomarkers were described. The correlation coefficient was firstly applied to identify the structure and deduce the metabolic pathways of phospholipids metabolites, and the study provided a new methodological cue for further understanding the molecular mechanisms of metabolites in the process of regulating Huang-Qi-San for treating early type 2 diabetes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Building information for systematic improvement of the prevention of hospital-acquired pressure ulcers with statistical process control charts and regression.

    PubMed

    Padula, William V; Mishra, Manish K; Weaver, Christopher D; Yilmaz, Taygan; Splaine, Mark E

    2012-06-01

    To demonstrate complementary results of regression and statistical process control (SPC) chart analyses for hospital-acquired pressure ulcers (HAPUs), and identify possible links between changes and opportunities for improvement between hospital microsystems and macrosystems. Ordinary least squares and panel data regression of retrospective hospital billing data, and SPC charts of prospective patient records for a US tertiary-care facility (2004-2007). A prospective cohort of hospital inpatients at risk for HAPUs was the study population. There were 337 HAPU incidences hospital wide among 43 844 inpatients. A probit regression model predicted the correlation of age, gender and length of stay on HAPU incidence (pseudo R(2)=0.096). Panel data analysis determined that for each additional day in the hospital, there was a 0.28% increase in the likelihood of HAPU incidence. A p-chart of HAPU incidence showed a mean incidence rate of 1.17% remaining in statistical control. A t-chart showed the average time between events for the last 25 HAPUs was 13.25 days. There was one 57-day period between two incidences during the observation period. A p-chart addressing Braden scale assessments showed that 40.5% of all patients were risk stratified for HAPUs upon admission. SPC charts complement standard regression analysis. SPC amplifies patient outcomes at the microsystem level and is useful for guiding quality improvement. Macrosystems should monitor effective quality improvement initiatives in microsystems and aid the spread of successful initiatives to other microsystems, followed by system-wide analysis with regression. Although HAPU incidence in this study is below the national mean, there is still room to improve HAPU incidence in this hospital setting since 0% incidence is theoretically achievable. Further assessment of pressure ulcer incidence could illustrate improvement in the quality of care and prevent HAPUs.

  5. Quantile regression and clustering analysis of standardized precipitation index in the Tarim River Basin, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Xia, Jun; Zhang, Yongyong; Han, Jian; Wu, Xia

    2017-11-01

    Because drought is a very common and widespread natural disaster, it has attracted a great deal of academic interest. Based on 12-month time scale standardized precipitation indices (SPI12) calculated from precipitation data recorded between 1960 and 2015 at 22 weather stations in the Tarim River Basin (TRB), this study aims to identify the trends of SPI and drought duration, severity, and frequency at various quantiles and to perform cluster analysis of drought events in the TRB. The results indicated that (1) both precipitation and temperature at most stations in the TRB exhibited significant positive trends during 1960-2015; (2) multiple scales of SPIs changed significantly around 1986; (3) based on quantile regression analysis of temporal drought changes, the positive SPI slopes indicated less severe and less frequent droughts at lower quantiles, but clear variation was detected in the drought frequency; and (4) significantly different trends were found in drought frequency probably between severe droughts and drought frequency.

  6. Evaluation of SLAR and thematic mapper MSS data for forest cover mapping using computer-aided analysis techniques

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M. (Principal Investigator)

    1979-01-01

    The spatial characteristics of the data were evaluated. A program was developed to reduce the spatial distortions resulting from variable viewing distance, and geometrically adjusted data sets were generated. The potential need for some level of radiometric adjustment was evidenced by an along track band of high reflectance across different cover types in the Varian imagery. A multiple regression analysis was employed to explore the viewing angle effect on measured reflectance. Areas in the data set which appeared to have no across track stratification of cover type were identified. A program was developed which computed the average reflectance by column for each channel, over all of the scan lines in the designated areas. A regression analysis was then run using the first, second, and third degree polynomials, for each channel. An atmospheric effect as a component of the viewing angle source of variance is discussed. Cover type maps were completed and training and test field selection was initiated.

  7. Serum magnesium but not calcium was associated with hemorrhagic transformation in stroke overall and stroke subtypes: a case-control study in China.

    PubMed

    Tan, Ge; Yuan, Ruozhen; Wei, ChenChen; Xu, Mangmang; Liu, Ming

    2018-05-26

    Association between serum calcium and magnesium versus hemorrhagic transformation (HT) remains to be identified. A total of 1212 non-thrombolysis patients with serum calcium and magnesium collected within 24 h from stroke onset were enrolled. Backward stepwise multivariate logistic regression analysis was conducted to investigate association between calcium and magnesium versus HT. Calcium and magnesium were entered into logistic regression analysis in two models, separately: model 1, as continuous variable (per 1-mmol/L increase), and model 2, as four-categorized variable (being collapsed into quartiles). HT occurred in 140 patients (11.6%). Serum calcium was slightly lower in patients with HT than in patient without HT (P = 0.273). But serum magnesium was significantly lower in patients with HT than in patients without HT (P = 0.007). In logistic regression analysis, calcium displayed no association with HT. Magnesium, as either continuous or four-categorized variable, was independently and inversely associated with HT in stroke overall and stroke of large-artery atherosclerosis (LAA). The results demonstrated that serum calcium had no association with HT in patients without thrombolysis after acute ischemic stroke. Serum magnesium in low level was independently associated with increasing HT in stroke overall and particularly in stroke of LAA.

  8. Regarding to the Variance Analysis of Regression Equation of the Surface Roughness obtained by End Milling process of 7136 Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    POP, A. B.; ȚÎȚU, M. A.

    2016-11-01

    In the metal cutting process, surface quality is intrinsically related to the cutting parameters and to the cutting tool geometry. At the same time, metal cutting processes are closely related to the machining costs. The purpose of this paper is to reduce manufacturing costs and processing time. A study was made, based on the mathematical modelling of the average of the absolute value deviation (Ra) resulting from the end milling process on 7136 aluminium alloy, depending on cutting process parameters. The novel element brought by this paper is the 7136 aluminium alloy type, chosen to conduct the experiments, which is a material developed and patented by Universal Alloy Corporation. This aluminium alloy is used in the aircraft industry to make parts from extruded profiles, and it has not been studied for the proposed research direction. Based on this research, a mathematical model of surface roughness Ra was established according to the cutting parameters studied in a set experimental field. A regression analysis was performed, which identified the quantitative relationships between cutting parameters and the surface roughness. Using the variance analysis ANOVA, the degree of confidence for the achieved results by the regression equation was determined, and the suitability of this equation at every point of the experimental field.

  9. Midupper arm circumference and weight-for-length z scores have different associations with body composition: evidence from a cohort of Ethiopian infants.

    PubMed

    Grijalva-Eternod, Carlos S; Wells, Jonathan C K; Girma, Tsinuel; Kæstel, Pernille; Admassu, Bitiya; Friis, Henrik; Andersen, Gregers S

    2015-09-01

    A midupper arm circumference (MUAC) <115 mm and weight-for-height z score (WHZ) or weight-for-length z score (WLZ) less than -3, all of which are recommended to identify severe wasting in children, often identify different children. The reasons behind this poor agreement are not well understood. We investigated the association between these 2 anthropometric indexes and body composition to help understand why they identify different children as wasted. We analyzed weight, length, MUAC, fat-mass (FM), and fat-free mass (FFM) data from 2470 measurements from 595 healthy Ethiopian infants obtained at birth and at 1.5, 2.5, 3.5, 4.5, and 6 mo of age. We derived WLZs by using 2006 WHO growth standards. We derived length-adjusted FM and FFM values as unexplained residuals after regressing each FM and FFM against length. We used a correlation analysis to assess associations between length, FFM, and FM (adjusted and nonadjusted for length) and the MUAC and WLZ and a multivariable regression analysis to assess the independent variability of length and length-adjusted FM and FFM with either the MUAC or the WLZ as the outcome. At all ages, length showed consistently strong positive correlations with the MUAC but not with the WLZ. Adjustment for length reduced observed correlation coefficients of FM and FFM with the MUAC but increased those for the WLZ. At all ages, both length-adjusted FM and FFM showed an independent association with the WLZ and MUAC with higher regression coefficients for the WLZ. Conversely, length showed greater regression coefficients for the MUAC. At all ages, the MUAC was shown to be more influenced than was the WLZ by the FM variability relative to the FFM variability. The MUAC and WLZ have different associations with body composition, and length influences these associations differently. Our results suggest that the WLZ is a good marker of tissue masses independent of length. The MUAC acts more as a composite index of poor growth indexing jointly tissue masses and length. This trial was registered at www.controlled-trials.com as ISRCTN46718296. © 2015 American Society for Nutrition.

  10. Identifying and quantifying secondhand smoke in multiunit homes with tobacco smoke odor complaints

    NASA Astrophysics Data System (ADS)

    Dacunto, Philip J.; Cheng, Kai-Chung; Acevedo-Bolton, Viviana; Klepeis, Neil E.; Repace, James L.; Ott, Wayne R.; Hildemann, Lynn M.

    2013-06-01

    Accurate identification and quantification of the secondhand tobacco smoke (SHS) that drifts between multiunit homes (MUHs) is essential for assessing resident exposure and health risk. We collected 24 gaseous and particle measurements over 6-9 day monitoring periods in five nonsmoking MUHs with reported SHS intrusion problems. Nicotine tracer sampling showed evidence of SHS intrusion in all five homes during the monitoring period; logistic regression and chemical mass balance (CMB) analysis enabled identification and quantification of some of the precise periods of SHS entry. Logistic regression models identified SHS in eight periods when residents complained of SHS odor, and CMB provided estimates of SHS magnitude in six of these eight periods. Both approaches properly identified or apportioned all six cooking periods used as no-SHS controls. Finally, both approaches enabled identification and/or apportionment of suspected SHS in five additional periods when residents did not report smelling smoke. The time resolution of this methodology goes beyond sampling methods involving single tracers (such as nicotine), enabling the precise identification of the magnitude and duration of SHS intrusion, which is essential for accurate assessment of human exposure.

  11. Building a Computer Program to Support Children, Parents, and Distraction during Healthcare Procedures

    PubMed Central

    McCarthy, Ann Marie; Kleiber, Charmaine; Ataman, Kaan; Street, W. Nick; Zimmerman, M. Bridget; Ersig, Anne L.

    2012-01-01

    This secondary data analysis used data mining methods to develop predictive models of child risk for distress during a healthcare procedure. Data used came from a study that predicted factors associated with children’s responses to an intravenous catheter insertion while parents provided distraction coaching. From the 255 items used in the primary study, 44 predictive items were identified through automatic feature selection and used to build support vector machine regression models. Models were validated using multiple cross-validation tests and by comparing variables identified as explanatory in the traditional versus support vector machine regression. Rule-based approaches were applied to the model outputs to identify overall risk for distress. A decision tree was then applied to evidence-based instructions for tailoring distraction to characteristics and preferences of the parent and child. The resulting decision support computer application, the Children, Parents and Distraction (CPaD), is being used in research. Future use will support practitioners in deciding the level and type of distraction intervention needed by a child undergoing a healthcare procedure. PMID:22805121

  12. Predictors of Outcomes for African Americans in a Rehabilitation State Agency: Implications for National Policy and Practice

    ERIC Educational Resources Information Center

    Balcazar, Fabricio E.; Oberoi, Ashmeet K.; Suarez-Balcazar, Yolanda; Alvarado, Francisco

    2012-01-01

    A review of vocational rehabilitation (VR) data from a Midwestern state was conducted to identify predictors of rehabilitation outcomes for African American consumers. The database included 37,404 African Americans who were referred or self-referred over a period of five years. Logistic regression analysis indicated that except for age and…

  13. Temporal Progression of Visual Injury from Blast Exposure

    DTIC Science & Technology

    2017-09-01

    seen throughout the duration of the study. To correlate experimental blast exposures in rodents to human blast exposures, a computational parametric...software (JMP 10.0, Cary,NC). Descriptive and univariate analyses will first be performed to identify the occurrence of delayed visual system...later). The biostatistician evaluating the retrospective data has completed the descriptive analysis and is working on the multiple regression. Table

  14. Spatial and temporal drivers of wildfire occurrence in the context of rural development in northern Wisconsin, USA

    Treesearch

    Brian R Miranda; Brian R Sturtevant; Susan I Stewart; Roger B. Hammer

    2012-01-01

    Most drivers underlying wildfire are dynamic, but at different spatial and temporal scales. We quantified temporal and spatial trends in wildfire patterns over two spatial extents in northern Wisconsin to identify drivers and their change through time. We used spatial point pattern analysis to quantify the spatial pattern of wildfire occurrences, and linear regression...

  15. What, Who, or Where? Rejoinder to "Identifying Research Topic Development in Business and Management Education Research Using Legitimation Code Theory"

    ERIC Educational Resources Information Center

    Harzing, Anne-Wil

    2016-01-01

    This brief commentary investigates whether article topic, author profile, or journal rank significantly influence an article's citation levels. Anne-Wil Harzing's regression analysis shows that, when all factors are taken into account at the same time, it is "what" is published (topic) and "who" has published it (author) that…

  16. Can we "predict" long-term outcome for ambulatory transcutaneous electrical nerve stimulation in patients with chronic pain?

    PubMed

    Köke, Albère J; Smeets, Rob J E M; Perez, Roberto S; Kessels, Alphons; Winkens, Bjorn; van Kleef, Maarten; Patijn, Jacob

    2015-03-01

    Evidence for effectiveness of transcutaneous electrical nerve stimulation (TENS) is still inconclusive. As heterogeneity of chronic pain patients might be an important factor for this lack of efficacy, identifying factors for a successful long-term outcome is of great importance. A prospective study was performed to identify variables with potential predictive value for 2 outcome measures on long term (6 months); (1) continuation of TENS, and (2) a minimally clinical important pain reduction of ≥ 33%. At baseline, a set of risk factors including pain-related variables, psychological factors, and disability was measured. In a multiple logistic regression analysis, higher patient's expectations, neuropathic pain, no severe pain (< 80 mm visual analogue scale [VAS]) were independently related to long-term continuation of TENS. For the outcome "minimally clinical important pain reduction," the multiple logistic regression analysis indicated that no multisited pain (> 2 pain locations) and intermittent pain were positively and independently associated with a minimally clinical important pain reduction of ≥ 33%. The results showed that factors associated with a successful outcome in the long term are dependent on definition of successful outcome. © 2014 World Institute of Pain.

  17. A Meta-analysis on Resting State High-frequency Heart Rate Variability in Bulimia Nervosa.

    PubMed

    Peschel, Stephanie K V; Feeling, Nicole R; Vögele, Claus; Kaess, Michael; Thayer, Julian F; Koenig, Julian

    2016-09-01

    Autonomic nervous system function is altered in eating disorders. We aimed to quantify differences in resting state vagal activity, indexed by high-frequency heart rate variability comparing patients with bulimia nervosa (BN) and healthy controls. A systematic search of the literature to identify studies eligible for inclusion and meta-analytical methods were applied. Meta-regression was used to identify potential covariates. Eight studies reporting measures of resting high-frequency heart rate variability in individuals with BN (n = 137) and controls (n = 190) were included. Random-effects meta-analysis revealed a sizeable main effect (Z = 2.22, p = .03; Hedge's g = 0.52, 95% CI [0.06;0.98]) indicating higher resting state vagal activity in individuals with BN. Meta-regression showed that body mass index and medication intake are significant covariates. Findings suggest higher vagal activity in BN at rest, particularly in unmedicated samples with lower body mass index. Potential mechanisms underlying these findings and implications for routine clinical care are discussed. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.

  18. Factors That Influence Mandatory Child Abuse Reporting Attitudes of Pediatric Nurses in Korea.

    PubMed

    Lee, In Sook; Kim, Kyoung Ja

    This study aimed to identify knowledge of child abuse, awareness of child abuse reporting, factors that influence attitudes toward mandatory reporting, and professionalism among a sample of pediatric nurses in Korea. One hundred sixteen pediatric nurses working at two university hospitals in Korea took part in the study and completed self-administered questionnaires. The data were analyzed using descriptive statistics, t tests, analysis of variance, Pearson correlation coefficients, and hierarchical regression analysis. Knowledge of child abuse, awareness of child abuse reporting, and attitudes toward mandatory reporting were low. Regarding nursing professionalism, social perceptions had the lowest mean score and nursing autonomy had the highest mean score. Attitudes toward mandatory reporting significantly correlated with professionalism. In the hierarchical regression model, the influences of nursing autonomy and intentions to report child abuse on attitudes toward mandatory reporting were statistically significant (F = 2.176, p = .013), explaining 32% of the variation in attitudes toward mandatory reporting. The results of this study could be used to improve systems and policies addressing child abuse and to further develop reporting procedures for identifying children at risk of abuse, to ensure their protection as a professional responsibility.

  19. The relationship between coping styles and benefit finding of Chinese cancer patients: The mediating role of distress.

    PubMed

    Liu, Zhunzhun; Zhang, Lanfeng; Cao, Yuerong; Xia, Wenkai; Zhang, Liying

    2018-06-01

    To identify the relationship of medical coping styles and benefit finding in Chinese early-stage cancer patients by preliminary pilot study. Three hundred and fifty one cancer patients were recruited from the Affiliated Jiangyin Hospital of Southeast University medical college and the Nantong Tumor Hospital in this study. Measurements were Chinese Benefit Finding Scale, Medical Coping Modes Questionnaire- Chinese version and Distress Thermometer. Regression analysis and pathway analysis were employed to identify the correlation of medical coping styles and benefit finding, and the mediating role of distress. Hierarchical regression analyses showed that confrontation coping style explained 24% of the variance in benefit finding, controlling for demographics and medical variables. While confrontation and resignation coping styles explained 10% and 6% of variance in distress separately. Pathway analyses implied that distress was found to mediate the effect of confrontation coping style on benefit finding in our study. Our study suggested an indirect association between medical coping styles and benefit finding, and a negative correlation of distress to medical coping styles and benefit finding. These results indicated that medical coping styles could influence benefit finding through distress. Copyright © 2018. Published by Elsevier Ltd.

  20. [Breast feeding and systemic blood pressure in infants].

    PubMed

    Hernández-González, Martha A; Díaz-De-León, Luz V; Guízar-Mendoza, Juan M; Amador-Licona, Norma; Cipriano-González, Marisol; Díaz-Pérez, Raúl; Murillo-Ortiz, Blanca O; De-la-Roca-Chiapas, José María; Solorio-Meza, Sergio Eduardo

    2012-01-01

    Blood pressure levels in childhood influence these levels in adulthood, and breastfeeding has been considered such as a cardioprotective. We evaluated the association between blood pressure levels and feeding type in a group of infants. We conducted a comparative cross-sectional study in term infants with appropriate weight at birth, to compare blood pressure levels in those children with exclusively breastfeeding, mixed-feeding and formula feeding. The comparison of groups was performed using ANOVA and multiple regression analysis was used to identify variables associated with mean arterial blood pressure levels. A p value < 0.05 was considered significant. We included 20 men and 24 women per group. Infant Formula Feeding had higher current weight and weight gain compared with the other two groups (p < 0.05). Systolic, diastolic and mean blood pressure levels, as well as respiratory and heart rate were higher in the groups of exclusively formula feeding and mixed-feeding than in those with exclusively breastfeeding (p < 0.05). Multiple regression analysis identified that variables associated with mean blood pressure levels were current body mass index, weight gain and formula feeding. Infants in breastfeeding show lower blood pressure, BMI and weight gain.

  1. [Methods of a posteriori identification of food patterns in Brazilian children: a systematic review].

    PubMed

    Carvalho, Carolina Abreu de; Fonsêca, Poliana Cristina de Almeida; Nobre, Luciana Neri; Priore, Silvia Eloiza; Franceschini, Sylvia do Carmo Castro

    2016-01-01

    The objective of this study is to provide guidance for identifying dietary patterns using the a posteriori approach, and analyze the methodological aspects of the studies conducted in Brazil that identified the dietary patterns of children. Articles were selected from the Latin American and Caribbean Literature on Health Sciences, Scientific Electronic Library Online and Pubmed databases. The key words were: Dietary pattern; Food pattern; Principal Components Analysis; Factor analysis; Cluster analysis; Reduced rank regression. We included studies that identified dietary patterns of children using the a posteriori approach. Seven studies published between 2007 and 2014 were selected, six of which were cross-sectional and one cohort, Five studies used the food frequency questionnaire for dietary assessment; one used a 24-hour dietary recall and the other a food list. The method of exploratory approach used in most publications was principal components factor analysis, followed by cluster analysis. The sample size of the studies ranged from 232 to 4231, the values of the Kaiser-Meyer-Olkin test from 0.524 to 0.873, and Cronbach's alpha from 0.51 to 0.69. Few Brazilian studies identified dietary patterns of children using the a posteriori approach and principal components factor analysis was the technique most used.

  2. Emotional Distress as a Predictor of Work-Related Musculoskeletal Disorders in Malaysian Nursing Professionals.

    PubMed

    Amin, Nur Azma; Quek, Kia Fatt; Oxley, Jennifer Anne; Noah, Rahim; Nordin, Rusli

    2018-04-01

    Emotional distress is becoming a great concern and is more common in both developed and developing countries. It is associated with several disease conditions. To determine the prevalence of self-perceived emotional distress and its relation to work-related musculoskeletal disorders (WRMSDs) in nurses. A self-administered questionnaire survey was carried out on 660 female nurses working in public hospitals in the Klang Valley, Malaysia. The validated Malay version of the standardized Nordic musculoskeletal questionnaire (M-SNMQ) was used to identify the annual prevalence of WRMSDs; perceived emotional distress was assessed using the validated Malay short version, depression, anxiety, and stress (M-DASS) instrument. In addition, socio-demographic and occupational profiles of the participants were considered. Factors associated with WRMSDs were identified using logistic regression analysis. A total of 376 nurses completed the survey (response rate 83.3%). 73.1% of the nursing staffs experienced WRMSDs in at least one anatomical site 12 months prior to the study. 75% of nurses expressed emotional distress. Of these, over half also reported anxiety and stress. Multiple logistic regression analysis showed that stress and anxiety significantly increased the risk of WRMSDs by approximately twofold. There were significant associations between emotional distress and WRMSDs. Future longitudinal studies are therefore needed to investigate and identify the sources of emotional distress (non-occupational and occupational) to be used to establish preventive strategies to reduce the risk of WRMSDs.

  3. High energy injury is a risk factor for preoperative venous thromboembolism in the patients with hip fractures: A prospective observational study.

    PubMed

    Park, Jin Sup; Jang, Jae Hoon; Park, Ki Young; Moon, Nam Hoon

    2018-06-01

    The purpose of this study was to identify the incidence of preoperative venous thromboembolism (VTE), and determine if high energy hip fracture affects preoperative VTE occurrence. Three-hundred nine patients (244 low and 61 high energy injuries) treated between March 2015 and March 2017 were included in this study. Indirect multidetector computed tomographic venography for the detection of preoperative VTE was performed at admission. The incidence of preoperative VTE was compared between high and low energy injury hip fractures. Logistic regression analysis was used to identify independent risk factors for preoperative VTE. The overall incidence of preoperative VTE was 18.4% (56 of 305 patients). Preoperative VTE was identified in 17 (27.9%) and 39 (16.0%) patients in the high and low energy injury groups, respectively (p = 0.034). Multivariate logistic regression analysis showed that high energy injury, history of VTE, and myeloproliferative disease were significant predictive factors of preoperative VTE (OR = 2.451; 95% CI = 1.227-4.896, OR = 11.174; 95% CI = 3.500-35.673, OR = 6.936; 95% CI = 1.641-29.321, respectively) CONCLUSION: Because high energy hip fracture is significantly associated with preoperative VTE occurrence, preoperative evaluation and proper thromboprophylaxis should be performed for patients with a high-energy hip fracture. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Incidence and risk factors of acute kidney injury after esophageal cancer surgery: A nested case-control study.

    PubMed

    Wang, Wen; Wang, Tong; Feng, Xiaoshuang; Sun, Li

    2017-03-01

    Acute kidney injury (AKI) has been increasingly recognized as a common and serious postoperative complication. Although many studies have been conducted to investigate postoperative AKI after thoracic surgery, little is known about AKI after esophageal surgery. Thus, we conducted this study to determine the incidence and identify risk factors of postoperative AKI after esophageal cancer surgery. A retrospective nested case-control study of patients undergoing elective esophageal cancer surgery between July 2013 and July 2016 in a single tertiary specialized cancer hospital was performed. The primary outcome was development of AKI. Conditional logistic regression analysis was performed to identify independent risk factors for AKI. Of 2094 patients, 51 (2.4%) developed postoperative AKI after esophageal cancer surgery. In multivariate conditional logistic regression analysis, four risk factors for AKI after esophageal surgery for cancer were identified: preoperative serum creatinine level (OR 1.040; 95% CI 1.012-1.069), duration of surgery (OR 1.009; 95% CI 1.005-1.014), smoking history (OR 3.029; 95% CI 1.092-8.399) and hypertension (OR 6.422; 95% CI 2.736-15.070). Postoperative AKI occurred in 2.4% of patients after esophageal surgery for cancer. Preoperative serum creatinine level, duration of surgery, smoking history and hypertension were independent risk factors for postoperative AKI. Copyright © 2017 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  5. On identifying relationships between the flood scaling exponent and basin attributes.

    PubMed

    Medhi, Hemanta; Tripathi, Shivam

    2015-07-01

    Floods are known to exhibit self-similarity and follow scaling laws that form the basis of regional flood frequency analysis. However, the relationship between basin attributes and the scaling behavior of floods is still not fully understood. Identifying these relationships is essential for drawing connections between hydrological processes in a basin and the flood response of the basin. The existing studies mostly rely on simulation models to draw these connections. This paper proposes a new methodology that draws connections between basin attributes and the flood scaling exponents by using observed data. In the proposed methodology, region-of-influence approach is used to delineate homogeneous regions for each gaging station. Ordinary least squares regression is then applied to estimate flood scaling exponents for each homogeneous region, and finally stepwise regression is used to identify basin attributes that affect flood scaling exponents. The effectiveness of the proposed methodology is tested by applying it to data from river basins in the United States. The results suggest that flood scaling exponent is small for regions having (i) large abstractions from precipitation in the form of large soil moisture storages and high evapotranspiration losses, and (ii) large fractions of overland flow compared to base flow, i.e., regions having fast-responding basins. Analysis of simple scaling and multiscaling of floods showed evidence of simple scaling for regions in which the snowfall dominates the total precipitation.

  6. Distribution and Determinants of 90-Day Payments for Multilevel Posterior Lumbar Fusion: A Medicare Analysis.

    PubMed

    Jain, Nikhil; Phillips, Frank M; Khan, Safdar N

    2018-04-01

    A retrospective, economic analysis. The objective of this article is to analyze the distribution of 90-day payments, sources of variation, and reimbursement for complications and readmissions for primary ≥3-level posterior lumbar fusion (PLF) from Medicare data. A secondary objective was to identify risk factors for complications. Bundled payments represent a single payment system to cover all costs associated with a single episode of care, typically over 90 days. The dollar amount spent on different health service providers and the variation in payments for ≥3-level PLF have not been analyzed from a bundled perspective. Administrative claims data were used to study 90-day Medicare (2005-2012) reimbursements for primary ≥3-level PLF for deformity and degenerative conditions of the lumbar spine. Distribution of payments, sources of variation, and reimbursements for managing complications were studied using linear regression models. Risk factors for complications were studied by stepwise multiple-variable logistic regression analysis. Hospital payments comprised 73.8% share of total 90-day payment. Adjusted analysis identified several factors for variation in index hospital payments. The average 90-day Medicare payment for all multilevel PLFs without complications was $35,878 per patient. The additional average cost of treating complications with/without revision surgery within 90 days period ranged from $17,284 to $68,963. A 90-day bundle for ≥3-level PLF with readmission ranges from $88,648 (3 levels) to $117,215 (8+ levels). Rates and risk factors for complications were also identified. The average 90-day payment per patient from Medicare was $35,878 with several factors such as levels of surgery, comorbidities, and development of complications influencing the cost. The study also identifies the risks and costs associated with complications and readmissions and emphasize the significant effect these would have on bundled payments (additional burden of up to 192% the cost of an average uncomplicated procedure over 90 days). Level 3.

  7. Quantitative naturalistic methods for detecting change points in psychotherapy research: an illustration with alliance ruptures.

    PubMed

    Eubanks-Carter, Catherine; Gorman, Bernard S; Muran, J Christopher

    2012-01-01

    Analysis of change points in psychotherapy process could increase our understanding of mechanisms of change. In particular, naturalistic change point detection methods that identify turning points or breakpoints in time series data could enhance our ability to identify and study alliance ruptures and resolutions. This paper presents four categories of statistical methods for detecting change points in psychotherapy process: criterion-based methods, control chart methods, partitioning methods, and regression methods. Each method's utility for identifying shifts in the alliance is illustrated using a case example from the Beth Israel Psychotherapy Research program. Advantages and disadvantages of the various methods are discussed.

  8. A Review of the Study Designs and Statistical Methods Used in the Determination of Predictors of All-Cause Mortality in HIV-Infected Cohorts: 2002–2011

    PubMed Central

    Otwombe, Kennedy N.; Petzold, Max; Martinson, Neil; Chirwa, Tobias

    2014-01-01

    Background Research in the predictors of all-cause mortality in HIV-infected people has widely been reported in literature. Making an informed decision requires understanding the methods used. Objectives We present a review on study designs, statistical methods and their appropriateness in original articles reporting on predictors of all-cause mortality in HIV-infected people between January 2002 and December 2011. Statistical methods were compared between 2002–2006 and 2007–2011. Time-to-event analysis techniques were considered appropriate. Data Sources Pubmed/Medline. Study Eligibility Criteria Original English-language articles were abstracted. Letters to the editor, editorials, reviews, systematic reviews, meta-analysis, case reports and any other ineligible articles were excluded. Results A total of 189 studies were identified (n = 91 in 2002–2006 and n = 98 in 2007–2011) out of which 130 (69%) were prospective and 56 (30%) were retrospective. One hundred and eighty-two (96%) studies described their sample using descriptive statistics while 32 (17%) made comparisons using t-tests. Kaplan-Meier methods for time-to-event analysis were commonly used in the earlier period (n = 69, 76% vs. n = 53, 54%, p = 0.002). Predictors of mortality in the two periods were commonly determined using Cox regression analysis (n = 67, 75% vs. n = 63, 64%, p = 0.12). Only 7 (4%) used advanced survival analysis methods of Cox regression analysis with frailty in which 6 (3%) were used in the later period. Thirty-two (17%) used logistic regression while 8 (4%) used other methods. There were significantly more articles from the first period using appropriate methods compared to the second (n = 80, 88% vs. n = 69, 70%, p-value = 0.003). Conclusion Descriptive statistics and survival analysis techniques remain the most common methods of analysis in publications on predictors of all-cause mortality in HIV-infected cohorts while prospective research designs are favoured. Sophisticated techniques of time-dependent Cox regression and Cox regression with frailty are scarce. This motivates for more training in the use of advanced time-to-event methods. PMID:24498313

  9. Is Susceptibility to Prenatal Methylmercury Exposure from Fish Consumption Non-Homogeneous? Tree-Structured Analysis for the Seychelles Child Development Study

    PubMed Central

    Huang, Li-Shan; Myers, Gary J.; Davidson, Philip W.; Cox, Christopher; Xiao, Fenyuan; Thurston, Sally W.; Cernichiari, Elsa; Shamlaye, Conrad F.; Sloane-Reeves, Jean; Georger, Lesley; Clarkson, Thomas W.

    2007-01-01

    Studies of the association between prenatal methylmercury exposure from maternal fish consumption during pregnancy and neurodevelopmental test scores in the Seychelles Child Development Study have found no consistent pattern of associations through age nine years. The analyses for the most recent nine-year data examined the population effects of prenatal exposure, but did not address the possibility of non-homogeneous susceptibility. This paper presents a regression tree approach: covariate effects are treated nonlinearly and non-additively and non-homogeneous effects of prenatal methylmercury exposure are permitted among the covariate clusters identified by the regression tree. The approach allows us to address whether children in the lower or higher ends of the developmental spectrum differ in susceptibility to subtle exposure effects. Of twenty-one endpoints available at age nine years, we chose the Weschler Full Scale IQ and its associated covariates to construct the regression tree. The prenatal mercury effect in each of the nine resulting clusters was assessed linearly and non-homogeneously. In addition we reanalyzed five other nine-year endpoints that in the linear analysis has a two-tailed p-value <0.2 for the effect of prenatal exposure. In this analysis, motor proficiency and activity level improved significantly with increasing MeHg for 53% of the children who had an average home environment. Motor proficiency significantly decreased with increasing prenatal MeHg exposure in 7% of the children whose home environment was below average. The regression tree results support previous analyses of outcomes in this cohort. However, this analysis raises the intriguing possibility that an effect may be non-homogeneous among children with different backgrounds and IQ levels. PMID:17942158

  10. Is susceptibility to prenatal methylmercury exposure from fish consumption non-homogeneous? Tree-structured analysis for the Seychelles Child Development Study.

    PubMed

    Huang, Li-Shan; Myers, Gary J; Davidson, Philip W; Cox, Christopher; Xiao, Fenyuan; Thurston, Sally W; Cernichiari, Elsa; Shamlaye, Conrad F; Sloane-Reeves, Jean; Georger, Lesley; Clarkson, Thomas W

    2007-11-01

    Studies of the association between prenatal methylmercury exposure from maternal fish consumption during pregnancy and neurodevelopmental test scores in the Seychelles Child Development Study have found no consistent pattern of associations through age 9 years. The analyses for the most recent 9-year data examined the population effects of prenatal exposure, but did not address the possibility of non-homogeneous susceptibility. This paper presents a regression tree approach: covariate effects are treated non-linearly and non-additively and non-homogeneous effects of prenatal methylmercury exposure are permitted among the covariate clusters identified by the regression tree. The approach allows us to address whether children in the lower or higher ends of the developmental spectrum differ in susceptibility to subtle exposure effects. Of 21 endpoints available at age 9 years, we chose the Weschler Full Scale IQ and its associated covariates to construct the regression tree. The prenatal mercury effect in each of the nine resulting clusters was assessed linearly and non-homogeneously. In addition we reanalyzed five other 9-year endpoints that in the linear analysis had a two-tailed p-value <0.2 for the effect of prenatal exposure. In this analysis, motor proficiency and activity level improved significantly with increasing MeHg for 53% of the children who had an average home environment. Motor proficiency significantly decreased with increasing prenatal MeHg exposure in 7% of the children whose home environment was below average. The regression tree results support previous analyses of outcomes in this cohort. However, this analysis raises the intriguing possibility that an effect may be non-homogeneous among children with different backgrounds and IQ levels.

  11. Primary Surgery vs Radiotherapy for Early Stage Oral Cavity Cancer.

    PubMed

    Ellis, Mark A; Graboyes, Evan M; Wahlquist, Amy E; Neskey, David M; Kaczmar, John M; Schopper, Heather K; Sharma, Anand K; Morgan, Patrick F; Nguyen, Shaun A; Day, Terry A

    2018-04-01

    Objective The goal of this study is to determine the effect of primary surgery vs radiotherapy (RT) on overall survival (OS) in patients with early stage oral cavity squamous cell carcinoma (OCSCC). In addition, this study attempts to identify factors associated with receiving primary RT. Study Design Retrospective cohort study. Setting National Cancer Database (NCDB, 2004-2013). Subjects and Methods Reviewing the NCDB from 2004 to 2013, patients with early stage I to II OCSCC were identified. Kaplan-Meier estimates of survival, Cox regression analysis, and propensity score matching were used to examine differences in OS between primary surgery and primary RT. Multivariable logistic regression analysis was performed to identify factors associated with primary RT. Results Of the 20,779 patients included in the study, 95.4% (19,823 patients) underwent primary surgery and 4.6% (956 patients) underwent primary RT. After adjusting for covariates, primary RT was associated with an increased risk of mortality (adjusted hazard ratio [aHR], 1.97; 99% confidence interval [CI], 1.74-2.22). On multivariable analysis, factors associated with primary RT included age ≥70 years, black race, Medicaid or Medicare insurance, no insurance, oral cavity subsite other than tongue, clinical stage II disease, low-volume treatment facilities, and earlier treatment year. Conclusion Primary RT for early stage OCSCC is associated with increased mortality. Approximately 5% of patients receive primary RT; however, this percentage is decreasing. Patients at highest risk for receiving primary RT include those who are elderly, black, with public insurance, and treated at low-volume facilities.

  12. A Multicenter Analysis of Factors Associated With Apixaban-Related Bleeding in Hospitalized Patients With End-Stage Renal Disease on Hemodialysis.

    PubMed

    Steuber, Taylor D; Shiltz, Dane L; Cairns, Alex C; Ding, Qian; Binger, Katie J; Courtney, Julia R

    2017-11-01

    In 2014, the United States Food and Drug Administration approved a labeling change for apixaban to include recommendations for patients with severe renal impairment and patients with end-stage renal disease (ESRD) on hemodialysis (HD), though these recommendations are largely based on pharmacokinetic and pharmacodynamic data. Identify variables associated with bleeding events in hospitalized patients with ESRD on HD receiving apixaban. This retrospective, multicenter cohort study evaluated hospitalized patients with ESRD on HD receiving apixaban from January 1, 2013, through March 31, 2016. Correlational analysis and logistic regression were completed to identify factors associated with bleeding. A total of 114 adults were included in the analysis. The median length of stay (LOS) was 6.2 (interquartile range = 3.8-11.9) days and bleeding events occurred in a total of 17 patients (15%). A weak correlation was identified for higher cumulative apixaban exposure, increased number of HD sessions while receiving apixaban, and increased hospital LOS ( P < 0.05; correlation coefficient < 0.40). When controlling for confounders, logistic regression revealed that composite bleeding events were independently increased by continuation of outpatient apixaban (odds ratio = 13.07; 95% CI = 1.54-110.54; P = 0.018), increased total daily dose of apixaban (odds ratio = 1.72; 95% CI = 1.20 to 2.48; P = 0.003), and total HD sessions while receiving apixaban (odds ratio = 2.04; 95% CI = 1.06-3.92; P = 0.033). The association between these factors and increased bleeding should prompt concern for long-term anticoagulation with apixaban in patients with ESRD receiving chronic HD.

  13. Construction and analysis of a modular model of caspase activation in apoptosis

    PubMed Central

    Harrington, Heather A; Ho, Kenneth L; Ghosh, Samik; Tung, KC

    2008-01-01

    Background A key physiological mechanism employed by multicellular organisms is apoptosis, or programmed cell death. Apoptosis is triggered by the activation of caspases in response to both extracellular (extrinsic) and intracellular (intrinsic) signals. The extrinsic and intrinsic pathways are characterized by the formation of the death-inducing signaling complex (DISC) and the apoptosome, respectively; both the DISC and the apoptosome are oligomers with complex formation dynamics. Additionally, the extrinsic and intrinsic pathways are coupled through the mitochondrial apoptosis-induced channel via the Bcl-2 family of proteins. Results A model of caspase activation is constructed and analyzed. The apoptosis signaling network is simplified through modularization methodologies and equilibrium abstractions for three functional modules. The mathematical model is composed of a system of ordinary differential equations which is numerically solved. Multiple linear regression analysis investigates the role of each module and reduced models are constructed to identify key contributions of the extrinsic and intrinsic pathways in triggering apoptosis for different cell lines. Conclusion Through linear regression techniques, we identified the feedbacks, dissociation of complexes, and negative regulators as the key components in apoptosis. The analysis and reduced models for our model formulation reveal that the chosen cell lines predominately exhibit strong extrinsic caspase, typical of type I cell, behavior. Furthermore, under the simplified model framework, the selected cells lines exhibit different modes by which caspase activation may occur. Finally the proposed modularized model of apoptosis may generalize behavior for additional cells and tissues, specifically identifying and predicting components responsible for the transition from type I to type II cell behavior. PMID:19077196

  14. Reported gum disease as a cardiovascular risk factor in adults with intellectual disabilities.

    PubMed

    Hsieh, K; Murthy, S; Heller, T; Rimmer, J H; Yen, G

    2018-03-01

    Several risk factors for cardiovascular disease (CVD) have been identified among adults with intellectual disabilities (ID). Periodontitis has been reported to increase the risk of developing a CVD in the general population. Given that individuals with ID have been reported to have a higher prevalence of poor oral health than the general population, the purpose of this study was to determine whether adults with ID with informant reported gum disease present greater reported CVD than those who do not have reported gum disease and whether gum disease can be considered a risk factor for CVD. Using baseline data from the Longitudinal Health and Intellectual Disability Study from which informant survey data were collected, 128 participants with reported gum disease and 1252 subjects without reported gum disease were identified. A series of univariate logistic regressions was conducted to identify potential confounding factors for a multiple logistic regression. The series of univariate logistic regressions identified age, Down syndrome, hypercholesterolemia, hypertension, reported gum disease, daily consumption of fruits and vegetables and the addition of table salt as significant risk factors for reported CVD. When the significant factors from the univariate logistic regression were included in the multiple logistic analysis, reported gum disease remained as an independent risk factor for reported CVD after adjusting for the remaining risk factors. Compared with the adults with ID without reported gum disease, adults in the gum disease group demonstrated a significantly higher prevalence of reported CVD (19.5% vs. 9.7%; P = .001). After controlling for other risk factors, reported gum disease among adults with ID may be associated with a higher risk of CVD. However, further research that also includes clinical indices of periodontal disease and CVD for this population is needed to determine if there is a causal relationship between gum disease and CVD. © 2017 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  15. The use of segmented regression in analysing interrupted time series studies: an example in pre-hospital ambulance care.

    PubMed

    Taljaard, Monica; McKenzie, Joanne E; Ramsay, Craig R; Grimshaw, Jeremy M

    2014-06-19

    An interrupted time series design is a powerful quasi-experimental approach for evaluating effects of interventions introduced at a specific point in time. To utilize the strength of this design, a modification to standard regression analysis, such as segmented regression, is required. In segmented regression analysis, the change in intercept and/or slope from pre- to post-intervention is estimated and used to test causal hypotheses about the intervention. We illustrate segmented regression using data from a previously published study that evaluated the effectiveness of a collaborative intervention to improve quality in pre-hospital ambulance care for acute myocardial infarction (AMI) and stroke. In the original analysis, a standard regression model was used with time as a continuous variable. We contrast the results from this standard regression analysis with those from segmented regression analysis. We discuss the limitations of the former and advantages of the latter, as well as the challenges of using segmented regression in analysing complex quality improvement interventions. Based on the estimated change in intercept and slope from pre- to post-intervention using segmented regression, we found insufficient evidence of a statistically significant effect on quality of care for stroke, although potential clinically important effects for AMI cannot be ruled out. Segmented regression analysis is the recommended approach for analysing data from an interrupted time series study. Several modifications to the basic segmented regression analysis approach are available to deal with challenges arising in the evaluation of complex quality improvement interventions.

  16. Standardized Regression Coefficients as Indices of Effect Sizes in Meta-Analysis

    ERIC Educational Resources Information Center

    Kim, Rae Seon

    2011-01-01

    When conducting a meta-analysis, it is common to find many collected studies that report regression analyses, because multiple regression analysis is widely used in many fields. Meta-analysis uses effect sizes drawn from individual studies as a means of synthesizing a collection of results. However, indices of effect size from regression analyses…

  17. Logistic Regression in the Identification of Hazards in Construction

    NASA Astrophysics Data System (ADS)

    Drozd, Wojciech

    2017-10-01

    The construction site and its elements create circumstances that are conducive to the formation of risks to safety during the execution of works. Analysis indicates the critical importance of these factors in the set of characteristics that describe the causes of accidents in the construction industry. This article attempts to analyse the characteristics related to the construction site, in order to indicate their importance in defining the circumstances of accidents at work. The study includes sites inspected in 2014 - 2016 by the employees of the District Labour Inspectorate in Krakow (Poland). The analysed set of detailed (disaggregated) data includes both quantitative and qualitative characteristics. The substantive task focused on classification modelling in the identification of hazards in construction and identifying those of the analysed characteristics that are important in an accident. In terms of methodology, resource data analysis using statistical classifiers, in the form of logistic regression, was the method used.

  18. Self-reported mental health among US military personnel prior and subsequent to the terrorist attacks of September 11, 2001.

    PubMed

    Smith, Tyler C; Smith, Besa; Corbeil, Thomas E; Riddle, James R; Ryan, Margaret A K

    2004-08-01

    There is much concern over the potential for short- and long-term adverse mental health effects caused by the terrorist attacks on September 11, 2001. This analysis used data from the Millennium Cohort Study to identify subgroups of US military members who enrolled in the cohort and reported their mental health status before the traumatic events of September 11 and soon after September 11. While adjusting for confounding, multivariable logistic regression, analysis of variance, and multivariate ordinal, or polychotomous logistic regression were used to compare 18 self-reported mental health measures in US military members who enrolled in the cohort before September 11, 2001 with those military personnel who enrolled after September 11, 2001. In contrast to studies of other populations, military respondents reported fewer mental health problems in the months immediately after September 11, 2001.

  19. Cancer prevalence and education by cancer site: logistic regression analysis.

    PubMed

    Johnson, Stephanie; Corsten, Martin J; McDonald, James T; Gupta, Michael

    2010-10-01

    Previously, using the American National Health Interview Survey (NHIS) and a logistic regression analysis, we found that upper aerodigestive tract (UADT) cancer is correlated with low socioeconomic status (SES). The objective of this study was to determine if this correlation between low SES and cancer prevalence exists for other cancers. We again used the NHIS and employed education level as our main measure of SES. We controlled for potentially confounding factors, including smoking status and alcohol consumption. We found that only two cancer subsites shared the pattern of increased prevalence with low education level and decreased prevalence with high education level: UADT cancer and cervical cancer. UADT cancer and cervical cancer were the only two cancers identified that had a link between prevalence and lower education level. This raises the possibility that an associated risk factor for the two cancers is causing the relationship between lower education level and prevalence.

  20. Prediction of performance on the RCMP physical ability requirement evaluation.

    PubMed

    Stanish, H I; Wood, T M; Campagna, P

    1999-08-01

    The Royal Canadian Mounted Police use the Physical Ability Requirement Evaluation (PARE) for screening applicants. The purposes of this investigation were to identify those field tests of physical fitness that were associated with PARE performance and determine which most accurately classified successful and unsuccessful PARE performers. The participants were 27 female and 21 male volunteers. Testing included measures of aerobic power, anaerobic power, agility, muscular strength, muscular endurance, and body composition. Multiple regression analysis revealed a three-variable model for males (70-lb bench press, standing long jump, and agility) explaining 79% of the variability in PARE time, whereas a one-variable model (agility) explained 43% of the variability for females. Analysis of the classification accuracy of the males' data was prohibited because 91% of the males passed the PARE. Classification accuracy of the females' data, using logistic regression, produced a two-variable model (agility, 1.5-mile endurance run) with 93% overall classification accuracy.

  1. Polymer surface functionalities that control human embryoid body cell adhesion revealed by high throughput surface characterization of combinatorial material microarrays

    PubMed Central

    Yang, Jing; Mei, Ying; Hook, Andrew L.; Taylor, Michael; Urquhart, Andrew J.; Bogatyrev, Said R.; Langer, Robert; Anderson, Daniel G.; Davies, Martyn C.; Alexander, Morgan R.

    2010-01-01

    High throughput materials discovery using combinatorial polymer microarrays to screen for new biomaterials with new and improved function is established as a powerful strategy. Here we combine this screening approach with high throughput surface characterisation (HT-SC) to identify surface structure-function relationships. We explore how this combination can help to identify surface chemical moieties that control protein adsorption and subsequent cellular response. The adhesion of human embryoid body (hEB) cells to a large number (496) of different acrylate polymers synthesized in a microarray format is screened using a high throughput procedure. To determine the role of the polymer surface properties on hEB cell adhesion, detailed HT-SC of these acrylate polymers is carried out using time of flight secondary ion mass spectrometry (ToF SIMS), x-ray photoelectron spectroscopy (XPS), pico litre drop sessile water contact angle (WCA) measurement and atomic force microscopy (AFM). A structure-function relationship is identified between the ToF SIMS analysis of the surface chemistry after a fibronectin (Fn) pre-conditioning step and the cell adhesion to each spot using the multivariate analysis technique partial least squares (PLS) regression. Secondary ions indicative of the adsorbed Fn correlate with increased cell adhesion whereas glycol and other functionalities from the polymers are identified that reduce cell adhesion. Furthermore, a strong relationship between the ToF SIMS spectra of bare polymers and the cell adhesion to each spot is identified using PLS regression. This identifies a role for both the surface chemistry of the bare polymer and the pre-adsorbed Fn, as-represented in the ToF SIMS spectra, in controlling cellular adhesion. In contrast, no relationship is found between cell adhesion and wettability, surface roughness, elemental or functional surface composition. The correlation between ToF SIMS data of the surfaces and the cell adhesion demonstrates the ability of identifying surface moieties that control protein adsorption and subsequent cell adhesion using ToF SIMS and multivariate analysis. PMID:20832108

  2. SigEMD: A powerful method for differential gene expression analysis in single-cell RNA sequencing data.

    PubMed

    Wang, Tianyu; Nabavi, Sheida

    2018-04-24

    Differential gene expression analysis is one of the significant efforts in single cell RNA sequencing (scRNAseq) analysis to discover the specific changes in expression levels of individual cell types. Since scRNAseq exhibits multimodality, large amounts of zero counts, and sparsity, it is different from the traditional bulk RNA sequencing (RNAseq) data. The new challenges of scRNAseq data promote the development of new methods for identifying differentially expressed (DE) genes. In this study, we proposed a new method, SigEMD, that combines a data imputation approach, a logistic regression model and a nonparametric method based on the Earth Mover's Distance, to precisely and efficiently identify DE genes in scRNAseq data. The regression model and data imputation are used to reduce the impact of large amounts of zero counts, and the nonparametric method is used to improve the sensitivity of detecting DE genes from multimodal scRNAseq data. By additionally employing gene interaction network information to adjust the final states of DE genes, we further reduce the false positives of calling DE genes. We used simulated datasets and real datasets to evaluate the detection accuracy of the proposed method and to compare its performance with those of other differential expression analysis methods. Results indicate that the proposed method has an overall powerful performance in terms of precision in detection, sensitivity, and specificity. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Mortality prediction of head Abbreviated Injury Score and Glasgow Coma Scale: analysis of 7,764 head injuries.

    PubMed

    Demetriades, Demetrios; Kuncir, Eric; Murray, James; Velmahos, George C; Rhee, Peter; Chan, Linda

    2004-08-01

    We assessed the prognostic value and limitations of Glasgow Coma Scale (GCS) and head Abbreviated Injury Score (AIS) and correlated head AIS with GCS. We studied 7,764 patients with head injuries. Bivariate analysis was performed to examine the relationship of GCS, head AIS, age, gender, and mechanism of injury with mortality. Stepwise logistic regression analysis was used to identify the independent risk factors associated with mortality. The overall mortality in the group of head injury patients with no other major extracranial injuries and no hypotension on admission was 9.3%. Logistic regression analysis identified head AIS, GCS, age, and mechanism of injury as significant independent risk factors of death. The prognostic value of GCS and head AIS was significantly affected by the mechanism of injury and the age of the patient. Patients with similar GCS or head AIS but different mechanisms of injury or ages had significantly different outcomes. The adjusted odds ratio of death in penetrating trauma was 5.2 (3.9, 7.0), p < 0.0001, and in the age group > or = 55 years the adjusted odds ratio was 3.4 (2.6, 4.6), p < 0.0001. There was no correlation between head AIS and GCS (correlation coefficient -0.31). Mechanism of injury and age have a major effect in the predictive value of GCS and head AIS. There is no good correlation between GCS and head AIS.

  4. An appraisal of convergence failures in the application of logistic regression model in published manuscripts.

    PubMed

    Yusuf, O B; Bamgboye, E A; Afolabi, R F; Shodimu, M A

    2014-09-01

    Logistic regression model is widely used in health research for description and predictive purposes. Unfortunately, most researchers are sometimes not aware that the underlying principles of the techniques have failed when the algorithm for maximum likelihood does not converge. Young researchers particularly postgraduate students may not know why separation problem whether quasi or complete occurs, how to identify it and how to fix it. This study was designed to critically evaluate convergence issues in articles that employed logistic regression analysis published in an African Journal of Medicine and medical sciences between 2004 and 2013. Problems of quasi or complete separation were described and were illustrated with the National Demographic and Health Survey dataset. A critical evaluation of articles that employed logistic regression was conducted. A total of 581 articles was reviewed, of which 40 (6.9%) used binary logistic regression. Twenty-four (60.0%) stated the use of logistic regression model in the methodology while none of the articles assessed model fit. Only 3 (12.5%) properly described the procedures. Of the 40 that used the logistic regression model, the problem of convergence occurred in 6 (15.0%) of the articles. Logistic regression tends to be poorly reported in studies published between 2004 and 2013. Our findings showed that the procedure may not be well understood by researchers since very few described the process in their reports and may be totally unaware of the problem of convergence or how to deal with it.

  5. Chicken barn climate and hazardous volatile compounds control using simple linear regression and PID

    NASA Astrophysics Data System (ADS)

    Abdullah, A. H.; Bakar, M. A. A.; Shukor, S. A. A.; Saad, F. S. A.; Kamis, M. S.; Mustafa, M. H.; Khalid, N. S.

    2016-07-01

    The hazardous volatile compounds from chicken manure in chicken barn are potentially to be a health threat to the farm animals and workers. Ammonia (NH3) and hydrogen sulphide (H2S) produced in chicken barn are influenced by climate changes. The Electronic Nose (e-nose) is used for the barn's air, temperature and humidity data sampling. Simple Linear Regression is used to identify the correlation between temperature-humidity, humidity-ammonia and ammonia-hydrogen sulphide. MATLAB Simulink software was used for the sample data analysis using PID controller. Results shows that the performance of PID controller using the Ziegler-Nichols technique can improve the system controller to control climate in chicken barn.

  6. [Associated factors in newborns with intrauterine growth retardation].

    PubMed

    Thompson-Chagoyán, Oscar C; Vega-Franco, Leopoldo

    2008-01-01

    To identify the risk factors implicated in the intrauterine growth retardation (IUGR) of neonates born in a social security institution. Case controls design study in 376 neonates: 188 with IUGR (weight < 10 percentile) and 188 without IUGR. When they born, information about 30 variables of risk for IUGR were obtained from mothers. Risk analysis and logistical regression (stepwise) were used. Odds ratios were significant for 12 of the variables. The model obtains by stepwise regression included: weight gain at pregnancy, prenatal care attendance, toxemia, chocolate ingestion, father's weight, and the environmental house. Must of the variables included in the model are related to socioeconomic disadvantages related to the risk of RCIU in the population.

  7. Cutpoints for Low Appendicular Lean Mass That Identify Older Adults With Clinically Significant Weakness

    PubMed Central

    Peters, Katherine W.; Shardell, Michelle D.; McLean, Robert R.; Dam, Thuy-Tien L.; Kenny, Anne M.; Fragala, Maren S.; Harris, Tamara B.; Kiel, Douglas P.; Guralnik, Jack M.; Ferrucci, Luigi; Kritchevsky, Stephen B.; Vassileva, Maria T.; Studenski, Stephanie A.; Alley, Dawn E.

    2014-01-01

    Background. Low lean mass is potentially clinically important in older persons, but criteria have not been empirically validated. As part of the FNIH (Foundation for the National Institutes of Health) Sarcopenia Project, this analysis sought to identify cutpoints in lean mass by dual-energy x-ray absorptiometry that discriminate the presence or absence of weakness (defined in a previous report in the series as grip strength <26kg in men and <16kg in women). Methods. In pooled cross-sectional data stratified by sex (7,582 men and 3,688 women), classification and regression tree (CART) analysis was used to derive cutpoints for appendicular lean body mass (ALM) that best discriminated the presence or absence of weakness. Mixed-effects logistic regression was used to quantify the strength of the association between lean mass category and weakness. Results. In primary analyses, CART models identified cutpoints for low lean mass (ALM <19.75kg in men and <15.02kg in women). Sensitivity analyses using ALM divided by body mass index (BMI: ALMBMI) identified a secondary definition (ALMBMI <0.789 in men and ALMBMI <0.512 in women). As expected, after accounting for study and age, low lean mass (compared with higher lean mass) was associated with weakness by both the primary (men, odds ratio [OR]: 6.9 [95% CI: 5.4, 8.9]; women, OR: 3.6 [95% CI: 2.9, 4.3]) and secondary definitions (men, OR: 4.3 [95% CI: 3.4, 5.5]; women, OR: 2.2 [95% CI: 1.8, 2.8]). Conclusions. ALM cutpoints derived from a large, diverse sample of older adults identified lean mass thresholds below which older adults had a higher likelihood of weakness. PMID:24737559

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Register, Steven; Takita, Cristiane; Reis, Isildinha

    To identify anatomic and treatment characteristics that correlate with organ-at-risk (OAR) sparing with deep inspiration breath-hold (DIBH) technique to guide patient selection for this technique. Anatomic and treatment characteristics and radiation doses to OARs were compared between free-breathing and DIBH plans. Linear regression analysis was used to identify factors independently predicting for cardiac sparing. We identified 64 patients: 44 with intact breast and 20 postmastectomy. For changes measured directly on treatment planning scans, DIBH plans decreased heart-chest wall length (6.5 vs 5.0 cm, p < 0.001), and increased lung volume (1074.4 vs 1881.3 cm{sup 3}, p < 0.001), and formore » changes measured after fields are set, they decreased maximum heart depth (1.1 vs 0.3 cm, p < 0.001) and heart volume in field (HVIF) (9.1 vs 0.9 cm{sup 3}, p < 0.001). DIBH reduced the mean heart dose (3.4 vs 1.8 Gy, p < 0.001) and lung V{sub 20} (19.6% vs 15.3%, p < 0.001). Regression analysis found that only change in HVIF independently predicted for cardiac sparing. We identified patients in the bottom quartile of the dosimetric benefits seen with DIBH and categorized the cause of this “minimal benefit.” Overall, 29% of patients satisfied these criteria for minimal benefit with DIBH and the most common cause was favorable baseline anatomy. Only the reduction in HVIF predicted for reductions in mean heart dose; no specific anatomic surrogate for the dosimetric benefits of DIBH technique could be identified. Most patients have significant dosimetric benefit with DIBH, and this technique should be planned and evaluated for all patients receiving left-sided breast/chest wall radiation.« less

  9. Identifying patients with cost-related medication non-adherence: a big-data approach.

    PubMed

    Zhang, James X; Meltzer, David O

    2016-08-01

    Millions of Americans encounter access barriers to medication due to cost; however, to date, there is no effective screening tool that identifies patients at risk of cost-related medication non-adherence (CRN). By utilizing a big-data approach to combining the survey data and electronic health records (EHRs), this study aimed to develop a method of identifying patients at risk of CRN. CRN data were collected by surveying patients about CRN behaviors in the past 3 months. By matching the dates of patients' receipt of monthly Social Security (SS) payments and the dates of prescription orders for 559 Medicare beneficiaries who were primary SS claimants at high risk of hospitalization in an urban academic medical center, this study identified patients who ordered their outpatient prescription within 2 days of receipt of monthly SS payments in 2014. The predictive power of this information on CRN was assessed using multivariate logistic regression analysis. Among the 559 Medicare patients at high risk of hospitalization, 137 (25%) reported CRN. Among those with CRN, 96 (70%) had ordered prescriptions on receipt of SS payments one or more times in 2014. The area under the Receiver Operating Curve was 0.70 using the predictive model in multivariate logistic regression analysis. With a new approach to combining the survey data and EHR data, patients' behavior in delaying filling of prescription until funds from SS checks become available can be measured, providing some predictive value for cost-related medication non-adherence. The big-data approach is a valuable tool to identify patients at risk of CRN and can be further expanded to the general population and sub-populations, providing a meaningful risk-stratification for CRN and facilitating physician-patient communication to reduce CRN.

  10. Spatial analysis of land use and shallow groundwater vulnerability in the watershed adjacent to Assateague Island National Seashore, Maryland and Virginia, USA

    USGS Publications Warehouse

    LaMotte, A.E.; Greene, E.A.

    2007-01-01

    Spatial relations between land use and groundwater quality in the watershed adjacent to Assateague Island National Seashore, Maryland and Virginia, USA were analyzed by the use of two spatial models. One model used a logit analysis and the other was based on geostatistics. The models were developed and compared on the basis of existing concentrations of nitrate as nitrogen in samples from 529 domestic wells. The models were applied to produce spatial probability maps that show areas in the watershed where concentrations of nitrate in groundwater are likely to exceed a predetermined management threshold value. Maps of the watershed generated by logistic regression and probability kriging analysis showing where the probability of nitrate concentrations would exceed 3 mg/L (>0.50) compared favorably. Logistic regression was less dependent on the spatial distribution of sampled wells, and identified an additional high probability area within the watershed that was missed by probability kriging. The spatial probability maps could be used to determine the natural or anthropogenic factors that best explain the occurrence and distribution of elevated concentrations of nitrate (or other constituents) in shallow groundwater. This information can be used by local land-use planners, ecologists, and managers to protect water supplies and identify land-use planning solutions and monitoring programs in vulnerable areas. ?? 2006 Springer-Verlag.

  11. A multilateral modelling of Youth Soccer Performance Index (YSPI)

    NASA Astrophysics Data System (ADS)

    Bisyri Husin Musawi Maliki, Ahmad; Razali Abdullah, Mohamad; Juahir, Hafizan; Abdullah, Farhana; Ain Shahirah Abdullah, Nurul; Muazu Musa, Rabiu; Musliha Mat-Rasid, Siti; Adnan, Aleesha; Azura Kosni, Norlaila; Muhamad, Wan Siti Amalina Wan; Afiqah Mohamad Nasir, Nur

    2018-04-01

    This study aims to identify the most dominant factors that influencing performance of soccer player and to predict group performance for soccer players. A total of 184 of youth soccer players from Malaysia sport school and six soccer academy encompasses as respondence of the study. Exploratory factor analysis (EFA) and Confirmatory factor analysis (CFA) were computed to identify the most dominant factors whereas reducing the initial 26 parameters with recommended >0.5 of factor loading. Meanwhile, prediction of the soccer performance was predicted by regression model. CFA revealed that sit and reach, vertical jump, VO2max, age, weight, height, sitting height, calf circumference (cc), medial upper arm circumference (muac), maturation, bicep, triceps, subscapular, suprailiac, 5M, 10M, and 20M speed were the most dominant factors. Further index analysis forming Youth Soccer Performance Index (YSPI) resulting by categorizing three groups namely, high, moderate, and low. The regression model for this study was significant set as p < 0.001 and R2 is 0.8222 which explained that the model contributed a total of 82% prediction ability to predict the whole set of the variables. The significant parameters in contributing prediction of YSPI are discussed. As a conclusion, the precision of the prediction models by integrating a multilateral factor reflecting for predicting potential soccer player and hopefully can create a competitive soccer games.

  12. High Prevalence of Vitamin D Deficiency among Iranian Population: A Systematic Review and Meta-Analysis

    PubMed Central

    Tabrizi, Reza; Moosazadeh, Mahmood; Akbari, Maryam; Dabbaghmanesh, Mohammad Hossein; Mohamadkhani, Minoo; Asemi, Zatollah; Heydari, Seyed Taghi; Akbari, Mojtaba; Lankarani, Kamran B

    2018-01-01

    Background The prevention and correction of vitamin D deficiency requires a precise depiction of the current situation and identification of risk factors in each region. The present study attempted to determine these entities using a systematic review and meta-analysis in Iran. Methods Articles published online in Persian and English between 2000 and November 1, 2016, were reviewed. This was carried out using national databases such as SID, IranMedex, Magiran, and IranDoc and international databases such as PubMed, Google Scholar, and Scopus. The heterogeneity index among the studies was determined using the Cochran (Q) and I2 test. Based on the heterogeneity results, the random-effect model was applied to estimate the prevalence of vitamin D deficiency. In addition, meta-regression analysis was used to determine heterogeneity-suspected factors, and the Egger test was applied to identify publication bias. Results The meta-analysis of 48 studies identified 18531 individuals with vitamin D deficiency. According to the random-effect model, the prevalence of vitamin D deficiency among male, female, and pregnant women was estimated to be 45.64% (95% CI: 29.63 to 61.65), 61.90% (95% CI: 48.85 to 74.96), and 60.45% (95% CI: 23.73 to 97.16), respectively. The results of the meta-regression analysis indicated that the prevalence of vitamin D deficiency was significantly different in various geographical regions (β=4.4; P=0.023). Conclusion The results obtained showed a significant prevalence of vitamin D deficiency among the Iranian population, a condition to be addressed by appropriate planning. PMID:29749981

  13. Decision tree analysis to stratify risk of de novo non-melanoma skin cancer following liver transplantation.

    PubMed

    Tanaka, Tomohiro; Voigt, Michael D

    2018-03-01

    Non-melanoma skin cancer (NMSC) is the most common de novo malignancy in liver transplant (LT) recipients; it behaves more aggressively and it increases mortality. We used decision tree analysis to develop a tool to stratify and quantify risk of NMSC in LT recipients. We performed Cox regression analysis to identify which predictive variables to enter into the decision tree analysis. Data were from the Organ Procurement Transplant Network (OPTN) STAR files of September 2016 (n = 102984). NMSC developed in 4556 of the 105984 recipients, a mean of 5.6 years after transplant. The 5/10/20-year rates of NMSC were 2.9/6.3/13.5%, respectively. Cox regression identified male gender, Caucasian race, age, body mass index (BMI) at LT, and sirolimus use as key predictive or protective factors for NMSC. These factors were entered into a decision tree analysis. The final tree stratified non-Caucasians as low risk (0.8%), and Caucasian males > 47 years, BMI < 40 who did not receive sirolimus, as high risk (7.3% cumulative incidence of NMSC). The predictions in the derivation set were almost identical to those in the validation set (r 2  = 0.971, p < 0.0001). Cumulative incidence of NMSC in low, moderate and high risk groups at 5/10/20 year was 0.5/1.2/3.3, 2.1/4.8/11.7 and 5.6/11.6/23.1% (p < 0.0001). The decision tree model accurately stratifies the risk of developing NMSC in the long-term after LT.

  14. Using Dominance Analysis to Determine Predictor Importance in Logistic Regression

    ERIC Educational Resources Information Center

    Azen, Razia; Traxel, Nicole

    2009-01-01

    This article proposes an extension of dominance analysis that allows researchers to determine the relative importance of predictors in logistic regression models. Criteria for choosing logistic regression R[superscript 2] analogues were determined and measures were selected that can be used to perform dominance analysis in logistic regression. A…

  15. Optimal Timing for Elective Early Primary Repair of Tetralogy of Fallot: Analysis of Intermediate Term Outcomes.

    PubMed

    Cunningham, Michael E A; Donofrio, Mary T; Peer, Syed Murfad; Zurakowski, David; Jonas, Richard A; Sinha, Pranava

    2017-03-01

    We have previously demonstrated that early primary repair of tetralogy of Fallot with pulmonary stenosis (TOF) can be safely performed without increase in hospital resource utilization or compromise to surgical technical performance scores (TPS). We sought to identify the optimal timing for elective early primary repair of TOF with respect to intermediate-term reintervention. Retrospective review of all patients with TOF undergoing elective primary repair between September 2004 and December 2013 was performed. Patients were stratified into reintervention group or no reintervention group. Multivariable Cox regression analysis identified independent predictors of reintervention. Youden's J-index in receiver operating characteristic analysis identified optimal age cutoff predictive of reintervention. Kaplan-Meier analysis with the log-rank test compared reintervention rates stratified by age and TPS. A total of 129 patients with median (interquartile range) age and weight of 78 days (56 to 111) and 5 kg (4.1 to 5.7), respectively, underwent primary repair. After a median (interquartile range) follow-up of 2.3 years (0.1 to 4.6), 18 patients (14%) required a total of 22 reinterventions. Youden's J-index revealed significantly lower risk of intermediate-term reintervention when repaired after 55 days of age (8% for >55 days old versus 31% for ≤55 days of age). Multivariable Cox regression identified age 55 days and younger (hazard ratio [HR] 4.5, 95% confidence interval [CI] 1.6 to 12.8, p = 0.004), valve sparing repair (HR 15.3, 95% CI 1.8 to 128.5, p < 0.001), residual right ventricular outflow tract (RVOT) gradient (HR 1.11, 95% CI 1.1 to 1.2, p < 0.001), and inadequate TPS (HR 21.5, 95% CI 7.4 to 63, p < 0.001) as independent predictors of overall intermediate-term reintervention. Elective repair in patients greater than 55 days of age, irrespective of size of the patient, can be safely performed without any increase in reintervention rates. Both residual peak RVOT gradient and TPS are effective in identifying patients at increased risk of reintervention. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Analysis of a database to predict the result of allergy testing in vivo in patients with chronic nasal symptoms.

    PubMed

    Lacagnina, Valerio; Leto-Barone, Maria S; La Piana, Simona; Seidita, Aurelio; Pingitore, Giuseppe; Di Lorenzo, Gabriele

    2014-01-01

    This article uses the logistic regression model for diagnostic decision making in patients with chronic nasal symptoms. We studied the ability of the logistic regression model, obtained by the evaluation of a database, to detect patients with positive allergy skin-prick test (SPT) and patients with negative SPT. The model developed was validated using the data set obtained from another medical institution. The analysis was performed using a database obtained from a questionnaire administered to the patients with nasal symptoms containing personal data, clinical data, and results of allergy testing (SPT). All variables found to be significantly different between patients with positive and negative SPT (p < 0.05) were selected for the logistic regression models and were analyzed with backward stepwise logistic regression, evaluated with area under the curve of the receiver operating characteristic curve. A second set of patients from another institution was used to prove the model. The accuracy of the model in identifying, over the second set, both patients whose SPT will be positive and negative was high. The model detected 96% of patients with nasal symptoms and positive SPT and classified 94% of those with negative SPT. This study is preliminary to the creation of a software that could help the primary care doctors in a diagnostic decision making process (need of allergy testing) in patients complaining of chronic nasal symptoms.

  17. Subgroup identification of early preterm birth (ePTB): informing a future prospective enrichment clinical trial design.

    PubMed

    Zhang, Chuanwu; Garrard, Lili; Keighley, John; Carlson, Susan; Gajewski, Byron

    2017-01-10

    Despite the widely recognized association between the severity of early preterm birth (ePTB) and its related severe diseases, little is known about the potential risk factors of ePTB and the sub-population with high risk of ePTB. Moreover, motivated by a future confirmatory clinical trial to identify whether supplementing pregnant women with docosahexaenoic acid (DHA) has a different effect on the risk subgroup population or not in terms of ePTB prevalence, this study aims to identify potential risk subgroups and risk factors for ePTB, defined as babies born less than 34 weeks of gestation. The analysis data (N = 3,994,872) were obtained from CDC and NCHS' 2014 Natality public data file. The sample was split into independent training and validation cohorts for model generation and model assessment, respectively. Logistic regression and CART models were used to examine potential ePTB risk predictors and their interactions, including mothers' age, nativity, race, Hispanic origin, marital status, education, pre-pregnancy smoking status, pre-pregnancy BMI, pre-pregnancy diabetes status, pre-pregnancy hypertension status, previous preterm birth status, infertility treatment usage status, fertility enhancing drug usage status, and delivery payment source. Both logistic regression models with either 14 or 10 ePTB risk factors produced the same C-index (0.646) based on the training cohort. The C-index of the logistic regression model based on 10 predictors was 0.645 for the validation cohort. Both C-indexes indicated a good discrimination and acceptable model fit. The CART model identified preterm birth history and race as the most important risk factors, and revealed that the subgroup with a preterm birth history and a race designation as Black had the highest risk for ePTB. The c-index and misclassification rate were 0.579 and 0.034 for the training cohort, and 0.578 and 0.034 for the validation cohort, respectively. This study revealed 14 maternal characteristic variables that reliably identified risk for ePTB through either logistic regression model and/or a CART model. Moreover, both models efficiently identify risk subgroups for further enrichment clinical trial design.

  18. Extramural vascular invasion and response to neoadjuvant chemoradiotherapy in rectal cancer: Influence of the CpG island methylator phenotype

    PubMed Central

    Williamson, Jeremy Stuart; Jones, Huw Geraint; Williams, Namor; Griffiths, Anthony Paul; Jenkins, Gareth; Beynon, John; Harris, Dean Anthony

    2017-01-01

    AIM To identify whether CpG island methylator phenotype (CIMP) is predictive of response to neoadjuvant chemoradiotherapy (NACRT) and outcomes in rectal cancer. METHODS Patients undergoing NACRT and surgical resection for rectal cancer in a tertiary referral centre between 2002-2011 were identified. Pre-treatment tumour biopsies were analysed for CIMP status (high, intermediate or low) using methylation specific PCR. KRAS and BRAF status were also determined using pyrosequencing analysis. Clinical information was extracted from case records and cancer services databases. Response to radiotherapy was measured by tumour regression scores determined upon histological examination of the resected specimen. The relationship between these molecular features, response to NACRT and oncological outcomes were analysed. RESULTS There were 160 patients analysed with a median follow-up time of 46.4 mo. Twenty-one (13%) patients demonstrated high levels of CIMP methylation (CIMP-H) and this was significantly associated with increased risk of extramural vascular invasion (EMVI) compared with CIMP-L [8/21 (38%) vs 15/99 (15%), P = 0.028]. CIMP status was not related to tumour regression after radiotherapy or survival, however EMVI was significantly associated with adverse survival (P < 0.001). Intermediate CIMP status was significantly associated with KRAS mutation (P = 0.01). There were 14 (9%) patients with a pathological complete response (pCR) compared to 116 (73%) patients having no or minimal regression after neoadjuvant chemoradiotherapy. Those patients with pCR had median survival of 106 mo compared to 65.8 mo with minimal regression, although this was not statistically significant (P = 0.26). Binary logistic regression analysis of the relationship between EMVI and other prognostic features revealed, EMVI positivity was associated with poor overall survival, advanced “T” stage and CIMP-H but not nodal status, age, sex, KRAS mutation status and presence of local or systemic recurrence. CONCLUSION We report a novel association of pre-treatment characterisation of CIMP-H with EMVI status which has prognostic implications and is not readily detectable on pre-treatment histological examination. PMID:28567185

  19. Extramural vascular invasion and response to neoadjuvant chemoradiotherapy in rectal cancer: Influence of the CpG island methylator phenotype.

    PubMed

    Williamson, Jeremy Stuart; Jones, Huw Geraint; Williams, Namor; Griffiths, Anthony Paul; Jenkins, Gareth; Beynon, John; Harris, Dean Anthony

    2017-05-15

    To identify whether CpG island methylator phenotype (CIMP) is predictive of response to neoadjuvant chemoradiotherapy (NACRT) and outcomes in rectal cancer. Patients undergoing NACRT and surgical resection for rectal cancer in a tertiary referral centre between 2002-2011 were identified. Pre-treatment tumour biopsies were analysed for CIMP status (high, intermediate or low) using methylation specific PCR. KRAS and BRAF status were also determined using pyrosequencing analysis. Clinical information was extracted from case records and cancer services databases. Response to radiotherapy was measured by tumour regression scores determined upon histological examination of the resected specimen. The relationship between these molecular features, response to NACRT and oncological outcomes were analysed. There were 160 patients analysed with a median follow-up time of 46.4 mo. Twenty-one (13%) patients demonstrated high levels of CIMP methylation (CIMP-H) and this was significantly associated with increased risk of extramural vascular invasion (EMVI) compared with CIMP-L [8/21 (38%) vs 15/99 (15%), P = 0.028]. CIMP status was not related to tumour regression after radiotherapy or survival, however EMVI was significantly associated with adverse survival ( P < 0.001). Intermediate CIMP status was significantly associated with KRAS mutation ( P = 0.01). There were 14 (9%) patients with a pathological complete response (pCR) compared to 116 (73%) patients having no or minimal regression after neoadjuvant chemoradiotherapy. Those patients with pCR had median survival of 106 mo compared to 65.8 mo with minimal regression, although this was not statistically significant ( P = 0.26). Binary logistic regression analysis of the relationship between EMVI and other prognostic features revealed, EMVI positivity was associated with poor overall survival, advanced "T" stage and CIMP-H but not nodal status, age, sex, KRAS mutation status and presence of local or systemic recurrence. We report a novel association of pre-treatment characterisation of CIMP-H with EMVI status which has prognostic implications and is not readily detectable on pre-treatment histological examination.

  20. Spatial Bayesian latent factor regression modeling of coordinate-based meta-analysis data.

    PubMed

    Montagna, Silvia; Wager, Tor; Barrett, Lisa Feldman; Johnson, Timothy D; Nichols, Thomas E

    2018-03-01

    Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the article are available for Coordinate-Based Meta-Analysis (CBMA). Neuroimaging meta-analysis is used to (i) identify areas of consistent activation; and (ii) build a predictive model of task type or cognitive process for new studies (reverse inference). To simultaneously address these aims, we propose a Bayesian point process hierarchical model for CBMA. We model the foci from each study as a doubly stochastic Poisson process, where the study-specific log intensity function is characterized as a linear combination of a high-dimensional basis set. A sparse representation of the intensities is guaranteed through latent factor modeling of the basis coefficients. Within our framework, it is also possible to account for the effect of study-level covariates (meta-regression), significantly expanding the capabilities of the current neuroimaging meta-analysis methods available. We apply our methodology to synthetic data and neuroimaging meta-analysis datasets. © 2017, The International Biometric Society.

  1. Environmental Regulations and Changes in Petroleum Refining Operations (Short-Term Energy Outlook Supplement June 1998)

    EIA Publications

    1998-01-01

    Changes in domestic refining operations are identified and related to the summer Reid vapor pressure (RVP) restrictions and oxygenate blending requirements. This analysis uses published Energy Information Administration survey data and linear regression equations from the Short-Term Integrated Forecasting System (STIFS). The STIFS model is used for producing forecasts appearing in the Short-Term Energy Outlook.

  2. Predictors of Academic Success in Language Arts Literacy and Math on State Assessments in New Jersey Charter Schools

    ERIC Educational Resources Information Center

    Jerue, Gary A.

    2013-01-01

    There are a limited number of studies that examine the predictors of academic success in charter schools (Lawton, 2009). This study utilized a multiple regression analysis to identify the best predictors of academic success in language arts literacy (LAL) and math on state assessments in New Jersey charter schools. This study included four student…

  3. Household Size and Water Availability as Demographic Predictors of Maternal and Child Mortality in Delta State: Implications for Health Education

    ERIC Educational Resources Information Center

    Ogbe, Joseph O.

    2010-01-01

    The purpose of this study was to stimulate action to address and identify maternal, child and community needs towards the improvement in health of pregnant women, children and communities. Four null hypotheses were generated from the research questions while multiple regression analysis was used to analyse the data. The study found that household…

  4. A Developmental Model of Cross-Cultural Competence at the Tactical Level

    DTIC Science & Technology

    2010-11-01

    components of 3C and describe how 3C develops in Soldiers. Five components of 3C were identified: Cultural Maturity , Cognitive Flexibility, Cultural...a result of the data analysis: Cultural Maturity , Cognitive Flexibility, Cultural Knowledge, Cultural Acuity, and Interpersonal Skills. These five...create regressions in the 3C development process. In short, KSAAs mature interdependently and simultaneously. Thus, development and transitions across

  5. Risk Factors for Drug Abuse among Nepalese Samples Selected from a Town of Eastern Nepal

    ERIC Educational Resources Information Center

    Niraula, Surya Raj; Chhetry, Devendra Bahadur; Singh, Girish Kumar; Nagesh, S.; Shyangwa, Pramod Mohan

    2009-01-01

    The study focuses on the serious issue related to the adolescents' and adults' behavior and health. It aims to identify the risk factors for drug abuse from samples taken from a town of Eastern Nepal. This is a matched case-control study. The conditional logistic regression method was adopted for data analysis. The diagnosis cut off was determined…

  6. Evaluation of landsat imagery for detecting ice storm damage in upland forests of Eastern Kentucky

    Treesearch

    Henry W. McNab; Tracy Roof; Jeffrey F. Lewis; David L. Loftis

    2007-01-01

    Two categories of forest canopy damage (none to light vs. moderate to heavy) resulting from a 2003 ice storm in eastern Kentucky could be identified on readily available Landsat Thematic Mapper imagery using change detection techniques to evaluate the ratio of spectral bands 4 and 5. Regression analysis was used to evaluate several model formulations based on the...

  7. Finding the Perfect Match: Factors That Influence Family Medicine Residency Selection.

    PubMed

    Wright, Katherine M; Ryan, Elizabeth R; Gatta, John L; Anderson, Lauren; Clements, Deborah S

    2016-04-01

    Residency program selection is a significant experience for emerging physicians, yet there is limited information about how applicants narrow their list of potential programs. This study examines factors that influence residency program selection among medical students interested in family medicine at the time of application. Medical students with an expressed interest in family medicine were invited to participate in a 37-item, online survey. Students were asked to rate factors that may impact residency selection on a 6-point Likert scale in addition to three open-ended qualitative questions. Mean values were calculated for each survey item and were used to determine a rank order for selection criteria. Logistic regression analysis was performed to identify factors that predict a strong interest in urban, suburban, and rural residency programs. Logistic regression was also used to identify factors that predict a strong interest in academic health center-based residencies, community-based residencies, and community-based residencies with an academic affiliation. A total of 705 medical students from 32 states across the country completed the survey. Location, work/life balance, and program structure (curriculum, schedule) were rated the most important factors for residency selection. Logistic regression analysis was used to refine our understanding of how each factor relates to specific types of residencies. These findings have implications for how to best advise students in selecting a residency, as well as marketing residencies to the right candidates. Refining the recruitment process will ensure a better fit between applicants and potential programs. Limited recruitment resources may be better utilized by focusing on targeted dissemination strategies.

  8. Identification of Key Beliefs Explaining Male Circumcision Motivation Among Adolescent Boys in Zimbabwe: Targets for Behavior Change Communication.

    PubMed

    Kasprzyk, Danuta; Tshimanga, Mufuta; Hamilton, Deven T; Gorn, Gerald J; Montaño, Daniel E

    2018-02-01

    Male circumcision (MC) significantly reduces HIV acquisition among men, leading WHO/UNAIDS to recommend high HIV and low MC prevalence countries circumcise 80% of adolescents and men age 15-49. Despite significant investment to increase MC capacity only 27% of the goal has been achieved in Zimbabwe. To increase adoption, research to create evidence-based messages is greatly needed. The Integrated Behavioral Model (IBM) was used to investigate factors affecting MC motivation among adolescents. Based on qualitative elicitation study results a survey was designed and administered to a representative sample of 802 adolescent boys aged 13-17 in two urban and two rural areas in Zimbabwe. Multiple regression analysis found all six IBM constructs (2 attitude, 2 social influence, 2 personal agency) significantly explained MC intention (R 2  = 0.55). Stepwise regression analysis of beliefs underlying each IBM belief-based construct found 9 behavioral, 6 injunctive norm, 2 descriptive norm, 5 efficacy, and 8 control beliefs significantly explained MC intention. A final stepwise regression of all the significant IBM construct beliefs identified 12 key beliefs best explaining intention. Similar analyses were carried out with subgroups of adolescents by urban-rural and age. Different sets of behavioral, normative, efficacy, and control beliefs were significant for each sub-group. This study demonstrates the application of theory-driven research to identify evidence-based targets for the design of effective MC messages for interventions to increase adolescents' motivation. Incorporating these findings into communication campaigns is likely to improve demand for MC.

  9. Association of the FGA and SLC6A4 genes with autistic spectrum disorder in a Korean population.

    PubMed

    Ro, Myungja; Won, Seongsik; Kang, Hyunjun; Kim, Su-Yeon; Lee, Seung Ku; Nam, Min; Bang, Hee Jung; Yang, Jae Won; Choi, Kyung-Sik; Kim, Su Kang; Chung, Joo-Ho; Kwack, Kyubum

    2013-01-01

    Autism spectrum disorder (ASD) is a neurobiological disorder characterized by distinctive impairments in cognitive function, language, and behavior. Linkage and population studies suggest a genetic association between solute carrier family 6 member 4 (SLC6A4) variants and ASD. Logistic regression was used to identify associations between single-nucleotide polymorphisms (SNPs) and ASD with 3 alternative models (additive, dominant, and recessive). Linear regression analysis was performed to determine the influence of SNPs on Childhood Autism Rating Scale (CARS) scores as a quantitative phenotype. In the present study, we examined the associations of SNPs in the SLC6A4 gene and the fibrinogen alpha chain (FGA) gene. Logistic regression analysis showed a significant association between the risk of ASD and rs2070025 and rs2070011 in the FGA gene. The gene-gene interaction between SLC6A4 and FGA was not significantly associated with ASD susceptibility. However, polymorphisms in both SLC6A4 and the FGA gene significantly affected the symptoms of ASD. Our findings indicate that FGA and SLC6A4 gene interactions may contribute to the phenotypes of ASD rather than the incidence of ASD. © 2013 S. Karger AG, Basel.

  10. Improved spatial regression analysis of diffusion tensor imaging for lesion detection during longitudinal progression of multiple sclerosis in individual subjects

    NASA Astrophysics Data System (ADS)

    Liu, Bilan; Qiu, Xing; Zhu, Tong; Tian, Wei; Hu, Rui; Ekholm, Sven; Schifitto, Giovanni; Zhong, Jianhui

    2016-03-01

    Subject-specific longitudinal DTI study is vital for investigation of pathological changes of lesions and disease evolution. Spatial Regression Analysis of Diffusion tensor imaging (SPREAD) is a non-parametric permutation-based statistical framework that combines spatial regression and resampling techniques to achieve effective detection of localized longitudinal diffusion changes within the whole brain at individual level without a priori hypotheses. However, boundary blurring and dislocation limit its sensitivity, especially towards detecting lesions of irregular shapes. In the present study, we propose an improved SPREAD (dubbed improved SPREAD, or iSPREAD) method by incorporating a three-dimensional (3D) nonlinear anisotropic diffusion filtering method, which provides edge-preserving image smoothing through a nonlinear scale space approach. The statistical inference based on iSPREAD was evaluated and compared with the original SPREAD method using both simulated and in vivo human brain data. Results demonstrated that the sensitivity and accuracy of the SPREAD method has been improved substantially by adapting nonlinear anisotropic filtering. iSPREAD identifies subject-specific longitudinal changes in the brain with improved sensitivity, accuracy, and enhanced statistical power, especially when the spatial correlation is heterogeneous among neighboring image pixels in DTI.

  11. Quantitative Analysis of {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography Identifies Novel Prognostic Imaging Biomarkers in Locally Advanced Pancreatic Cancer Patients Treated With Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yi; Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo; Song, Jie

    Purpose: To identify prognostic biomarkers in pancreatic cancer using high-throughput quantitative image analysis. Methods and Materials: In this institutional review board–approved study, we retrospectively analyzed images and outcomes for 139 locally advanced pancreatic cancer patients treated with stereotactic body radiation therapy (SBRT). The overall population was split into a training cohort (n=90) and a validation cohort (n=49) according to the time of treatment. We extracted quantitative imaging characteristics from pre-SBRT {sup 18}F-fluorodeoxyglucose positron emission tomography, including statistical, morphologic, and texture features. A Cox proportional hazard regression model was built to predict overall survival (OS) in the training cohort using 162more » robust image features. To avoid over-fitting, we applied the elastic net to obtain a sparse set of image features, whose linear combination constitutes a prognostic imaging signature. Univariate and multivariate Cox regression analyses were used to evaluate the association with OS, and concordance index (CI) was used to evaluate the survival prediction accuracy. Results: The prognostic imaging signature included 7 features characterizing different tumor phenotypes, including shape, intensity, and texture. On the validation cohort, univariate analysis showed that this prognostic signature was significantly associated with OS (P=.002, hazard ratio 2.74), which improved upon conventional imaging predictors including tumor volume, maximum standardized uptake value, and total legion glycolysis (P=.018-.028, hazard ratio 1.51-1.57). On multivariate analysis, the proposed signature was the only significant prognostic index (P=.037, hazard ratio 3.72) when adjusted for conventional imaging and clinical factors (P=.123-.870, hazard ratio 0.53-1.30). In terms of CI, the proposed signature scored 0.66 and was significantly better than competing prognostic indices (CI 0.48-0.64, Wilcoxon rank sum test P<1e-6). Conclusion: Quantitative analysis identified novel {sup 18}F-fluorodeoxyglucose positron emission tomography image features that showed improved prognostic value over conventional imaging metrics. If validated in large, prospective cohorts, the new prognostic signature might be used to identify patients for individualized risk-adaptive therapy.« less

  12. Pediatric Irritable Bowel Syndrome Patient and Parental Characteristics Differ by Care Management Type.

    PubMed

    Hollier, John M; Czyzewski, Danita I; Self, Mariella M; Weidler, Erica M; Smith, E O'Brian; Shulman, Robert J

    2017-03-01

    This study evaluates whether certain patient or parental characteristics are associated with gastroenterology (GI) referral versus primary pediatrics care for pediatric irritable bowel syndrome (IBS). A retrospective clinical trial sample of patients meeting pediatric Rome III IBS criteria was assembled from a single metropolitan health care system. Baseline socioeconomic status (SES) and clinical symptom measures were gathered. Various instruments measured participant and parental psychosocial traits. Study outcomes were stratified by GI referral versus primary pediatrics care. Two separate analyses of SES measures and GI clinical symptoms and psychosocial measures identified key factors by univariate and multiple logistic regression analyses. For each analysis, identified factors were placed in unadjusted and adjusted multivariate logistic regression models to assess their impact in predicting GI referral. Of the 239 participants, 152 were referred to pediatric GI, and 87 were managed in primary pediatrics care. Of the SES and clinical symptom factors, child self-assessment of abdominal pain duration and lower percentage of people living in poverty were the strongest predictors of GI referral. Among the psychosocial measures, parental assessment of their child's functional disability was the sole predictor of GI referral. In multivariate logistic regression models, all selected factors continued to predict GI referral in each model. Socioeconomic environment, clinical symptoms, and functional disability are associated with GI referral. Future interventions designed to ameliorate the effect of these identified factors could reduce unnecessary specialty consultations and health care overutilization for IBS.

  13. Healthcare Expenditures Associated with Depression Among Individuals with Osteoarthritis: Post-Regression Linear Decomposition Approach.

    PubMed

    Agarwal, Parul; Sambamoorthi, Usha

    2015-12-01

    Depression is common among individuals with osteoarthritis and leads to increased healthcare burden. The objective of this study was to examine excess total healthcare expenditures associated with depression among individuals with osteoarthritis in the US. Adults with self-reported osteoarthritis (n = 1881) were identified using data from the 2010 Medical Expenditure Panel Survey (MEPS). Among those with osteoarthritis, chi-square tests and ordinary least square regressions (OLS) were used to examine differences in healthcare expenditures between those with and without depression. Post-regression linear decomposition technique was used to estimate the relative contribution of different constructs of the Anderson's behavioral model, i.e., predisposing, enabling, need, personal healthcare practices, and external environment factors, to the excess expenditures associated with depression among individuals with osteoarthritis. All analysis accounted for the complex survey design of MEPS. Depression coexisted among 20.6 % of adults with osteoarthritis. The average total healthcare expenditures were $13,684 among adults with depression compared to $9284 among those without depression. Multivariable OLS regression revealed that adults with depression had 38.8 % higher healthcare expenditures (p < 0.001) compared to those without depression. Post-regression linear decomposition analysis indicated that 50 % of differences in expenditures among adults with and without depression can be explained by differences in need factors. Among individuals with coexisting osteoarthritis and depression, excess healthcare expenditures associated with depression were mainly due to comorbid anxiety, chronic conditions and poor health status. These expenditures may potentially be reduced by providing timely intervention for need factors or by providing care under a collaborative care model.

  14. Identification and functional analysis of risk-related microRNAs for the prognosis of patients with bladder urothelial carcinoma.

    PubMed

    Gao, Ji; Li, Hongyan; Liu, Lei; Song, Lide; Lv, Yanting; Han, Yuping

    2017-12-01

    The aim of the present study was to investigate risk-related microRNAs (miRs) for bladder urothelial carcinoma (BUC) prognosis. Clinical and microRNA expression data downloaded from the Cancer Genome Atlas were utilized for survival analysis. Risk factor estimation was performed using Cox's proportional regression analysis. A microRNA-regulated target gene network was constructed and presented using Cytoscape. In addition, the Database for Annotation, Visualization and Integrated Discovery was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment, followed by protein-protein interaction (PPI) network analysis. Finally, the K-clique method was applied to analyze sub-pathways. A total of 16 significant microRNAs, including hsa-miR-3622a and hsa-miR-29a, were identified (P<0.05). Following Cox's proportional regression analysis, hsa-miR-29a was screened as a prognostic marker of BUC risk (P=0.0449). A regulation network of hsa-miR-29a comprising 417 target genes was constructed. These target genes were primarily enriched in GO terms, including collagen fibril organization, extracellular matrix (ECM) organization and pathways, such as focal adhesion (P<0.05). A PPI network including 197 genes and 510 interactions, was constructed. The top 21 genes in the network module were enriched in GO terms, including collagen fibril organization and pathways, such as ECM receptor interaction (P<0.05). Finally, 4 sub-pathways of cysteine and methionine metabolism, including paths 00270_4, 00270_1, 00270_2 and 00270_5, were obtained (P<0.01) and identified to be enriched through DNA (cytosine-5)-methyltransferase ( DNMT)3A, DNMT3B , methionine adenosyltransferase 2α ( MAT2A ) and spermine synthase ( SMS ). The identified microRNAs, particularly hsa-miR-29a and its 4 associated target genes DNMT3A, DNMT3B, MAT2A and SMS , may participate in the prognostic risk mechanism of BUC.

  15. Technical Assistance and Changes in Nutrition and Physical Activity Practices in the National Early Care and Education Learning Collaboratives Project, 2015-2016.

    PubMed

    Chiappone, Alethea; Smith, Teresa M; Estabrooks, Paul A; Rasmussen, Cristy Geno; Blaser, Casey; Yaroch, Amy L

    2018-04-26

    The National Early Care and Education Learning Collaboratives Project (ECELC) aims to improve best practices in early care and education (ECE) programs in topic areas of the Nutrition and Physical Activity Self-Assessment in Child Care (NAP SACC). Technical assistance is a component of the ECELC, yet its effect on outcomes is unclear. Beyond dose and duration of technical assistance, limited research exists on characteristics of technical assistance that contribute to outcomes. The objective of this study was to identify and describe technical assistance characteristics and explore associations with NAP SACC outcomes. We collected data from 10 collaboratives comprising 84 ECE programs in 2 states in 2015-2016. The objective of technical assistance was to support programs in improving best practices. Technical assistance was provided to programs via on-site, telephone, or email and was tailored to program needs. We used a mixed-methods design to examine associations between technical assistance and NAP SACC outcomes. We used multiple regression analysis to assess quantitative data and qualitative comparative analysis to determine necessary and sufficient technical assistance conditions supporting NAP SACC outcomes. We also conducted a document review to describe technical assistance that referred conditions identified by the qualitative comparative analysis. Regression analyses detected an inverse relationship between changes in NAP SACC scores and hours of technical assistance. No clear pattern emerged in the qualitative comparative analysis, leaving no necessary and sufficient conditions. However, the qualitative comparative analysis identified feedback as a potentially important component of technical assistance, whereas resource sharing and frequent email were characteristics that seemed to reduce the likelihood of improved outcomes. Email and resource sharing were considered primarily general information rather than tailored technical assistance. Technical assistance may be used in programs and made adaptable to program needs. The inclusion and evaluation of technical assistance, especially tailored approaches, is warranted for environmental interventions, including ECE settings.

  16. Meta-analysis identifies a MECOM gene as a novel predisposing factor of osteoporotic fracture

    PubMed Central

    Hwang, Joo-Yeon; Lee, Seung Hun; Go, Min Jin; Kim, Beom-Jun; Kou, Ikuyo; Ikegawa, Shiro; Guo, Yan; Deng, Hong-Wen; Raychaudhuri, Soumya; Kim, Young Jin; Oh, Ji Hee; Kim, Youngdoe; Moon, Sanghoon; Kim, Dong-Joon; Koo, Heejo; Cha, My-Jung; Lee, Min Hye; Yun, Ji Young; Yoo, Hye-Sook; Kang, Young-Ah; Cho, Eun-Hee; Kim, Sang-Wook; Oh, Ki Won; Kang, Moo II; Son, Ho Young; Kim, Shin-Yoon; Kim, Ghi Su; Han, Bok-Ghee; Cho, Yoon Shin; Cho, Myeong-Chan; Lee, Jong-Young; Koh, Jung-Min

    2014-01-01

    Background Osteoporotic fracture (OF) as a clinical endpoint is a major complication of osteoporosis. To screen for OF susceptibility genes, we performed a genome-wide association study and carried out de novo replication analysis of an East Asian population. Methods Association was tested using a logistic regression analysis. A meta-analysis was performed on the combined results using effect size and standard errors estimated for each study. Results In a combined meta-analysis of a discovery cohort (288 cases and 1139 controls), three hospital based sets in replication stage I (462 cases and 1745 controls), and an independent ethnic group in replication stage II (369 cases and 560 for controls), we identified a new locus associated with OF (rs784288 in the MECOM gene) that showed genome-wide significance (p=3.59×10−8; OR 1.39). RNA interference revealed that a MECOM knockdown suppresses osteoclastogenesis. Conclusions Our findings provide new insights into the genetic architecture underlying OF in East Asians. PMID:23349225

  17. Utility of an Abbreviated Dizziness Questionnaire to Differentiate between Causes of Vertigo and Guide Appropriate Referral: A Multicenter Prospective Blinded Study

    PubMed Central

    Roland, Lauren T.; Kallogjeri, Dorina; Sinks, Belinda C.; Rauch, Steven D.; Shepard, Neil T.; White, Judith A.; Goebel, Joel A.

    2015-01-01

    Objective Test performance of a focused dizziness questionnaire’s ability to discriminate between peripheral and non-peripheral causes of vertigo. Study Design Prospective multi-center Setting Four academic centers with experienced balance specialists Patients New dizzy patients Interventions A 32-question survey was given to participants. Balance specialists were blinded and a diagnosis was established for all participating patients within 6 months. Main outcomes Multinomial logistic regression was used to evaluate questionnaire performance in predicting final diagnosis and differentiating between peripheral and non-peripheral vertigo. Univariate and multivariable stepwise logistic regression were used to identify questions as significant predictors of the ultimate diagnosis. C-index was used to evaluate performance and discriminative power of the multivariable models. Results 437 patients participated in the study. Eight participants without confirmed diagnoses were excluded and 429 were included in the analysis. Multinomial regression revealed that the model had good overall predictive accuracy of 78.5% for the final diagnosis and 75.5% for differentiating between peripheral and non-peripheral vertigo. Univariate logistic regression identified significant predictors of three main categories of vertigo: peripheral, central and other. Predictors were entered into forward stepwise multivariable logistic regression. The discriminative power of the final models for peripheral, central and other causes were considered good as measured by c-indices of 0.75, 0.7 and 0.78, respectively. Conclusions This multicenter study demonstrates a focused dizziness questionnaire can accurately predict diagnosis for patients with chronic/relapsing dizziness referred to outpatient clinics. Additionally, this survey has significant capability to differentiate peripheral from non-peripheral causes of vertigo and may, in the future, serve as a screening tool for specialty referral. Clinical utility of this questionnaire to guide specialty referral is discussed. PMID:26485598

  18. Influential factors of red-light running at signalized intersection and prediction using a rare events logistic regression model.

    PubMed

    Ren, Yilong; Wang, Yunpeng; Wu, Xinkai; Yu, Guizhen; Ding, Chuan

    2016-10-01

    Red light running (RLR) has become a major safety concern at signalized intersection. To prevent RLR related crashes, it is critical to identify the factors that significantly impact the drivers' behaviors of RLR, and to predict potential RLR in real time. In this research, 9-month's RLR events extracted from high-resolution traffic data collected by loop detectors from three signalized intersections were applied to identify the factors that significantly affect RLR behaviors. The data analysis indicated that occupancy time, time gap, used yellow time, time left to yellow start, whether the preceding vehicle runs through the intersection during yellow, and whether there is a vehicle passing through the intersection on the adjacent lane were significantly factors for RLR behaviors. Furthermore, due to the rare events nature of RLR, a modified rare events logistic regression model was developed for RLR prediction. The rare events logistic regression method has been applied in many fields for rare events studies and shows impressive performance, but so far none of previous research has applied this method to study RLR. The results showed that the rare events logistic regression model performed significantly better than the standard logistic regression model. More importantly, the proposed RLR prediction method is purely based on loop detector data collected from a single advance loop detector located 400 feet away from stop-bar. This brings great potential for future field applications of the proposed method since loops have been widely implemented in many intersections and can collect data in real time. This research is expected to contribute to the improvement of intersection safety significantly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Utility of an Abbreviated Dizziness Questionnaire to Differentiate Between Causes of Vertigo and Guide Appropriate Referral: A Multicenter Prospective Blinded Study.

    PubMed

    Roland, Lauren T; Kallogjeri, Dorina; Sinks, Belinda C; Rauch, Steven D; Shepard, Neil T; White, Judith A; Goebel, Joel A

    2015-12-01

    Test performance of a focused dizziness questionnaire's ability to discriminate between peripheral and nonperipheral causes of vertigo. Prospective multicenter. Four academic centers with experienced balance specialists. New dizzy patients. A 32-question survey was given to participants. Balance specialists were blinded and a diagnosis was established for all participating patients within 6 months. Multinomial logistic regression was used to evaluate questionnaire performance in predicting final diagnosis and differentiating between peripheral and nonperipheral vertigo. Univariate and multivariable stepwise logistic regression were used to identify questions as significant predictors of the ultimate diagnosis. C-index was used to evaluate performance and discriminative power of the multivariable models. In total, 437 patients participated in the study. Eight participants without confirmed diagnoses were excluded and 429 were included in the analysis. Multinomial regression revealed that the model had good overall predictive accuracy of 78.5% for the final diagnosis and 75.5% for differentiating between peripheral and nonperipheral vertigo. Univariate logistic regression identified significant predictors of three main categories of vertigo: peripheral, central, and other. Predictors were entered into forward stepwise multivariable logistic regression. The discriminative power of the final models for peripheral, central, and other causes was considered good as measured by c-indices of 0.75, 0.7, and 0.78, respectively. This multicenter study demonstrates a focused dizziness questionnaire can accurately predict diagnosis for patients with chronic/relapsing dizziness referred to outpatient clinics. Additionally, this survey has significant capability to differentiate peripheral from nonperipheral causes of vertigo and may, in the future, serve as a screening tool for specialty referral. Clinical utility of this questionnaire to guide specialty referral is discussed.

  20. Predictors of in-hospital mortality amongst octogenarians undergoing emergency general surgery: a retrospective cohort study.

    PubMed

    Wilson, Iain; Paul Barrett, Michael; Sinha, Ashish; Chan, Shirley

    2014-11-01

    Elderly patients are often judged to be fit for emergency surgery based on age alone. This study identified risk factors predictive of in-hospital mortality amongst octogenarians undergoing emergency general surgery. A retrospective review of octogenarians undergoing emergency general surgery over 3 years was performed. Parametric survival analysis using Cox multivariate regression model was used to identify risk factors predictive of in-hospital mortality. Hazard ratios (HR) and corresponding 95% confidence interval were calculated. Seventy-three patients with a median age of 84 years were identified. Twenty-eight (38%) patients died post-operatively. Multivariate analysis identified ASA grade (ASA 5 HR 23.4 95% CI 2.38-230, p = 0.007) and chronic obstructive pulmonary disease (COPD) (HR 3.35 95% CI 1.15-9.69, p = 0.026) to be the only significant predictors of in-hospital mortality. Identification of high risk surgical patients should be based on physiological fitness for surgery rather than chronological age. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  1. A General Bayesian Network Approach to Analyzing Online Game Item Values and Its Influence on Consumer Satisfaction and Purchase Intention

    NASA Astrophysics Data System (ADS)

    Lee, Kun Chang; Park, Bong-Won

    Many online game users purchase game items with which to play free-to-play games. Because of a lack of research into which there is no specified framework for categorizing the values of game items, this study proposes four types of online game item values based on an analysis of literature regarding online game characteristics. It then proposes to investigate how online game users perceive satisfaction and purchase intention from the proposed four types of online game item values. Though regression analysis has been used frequently to answer this kind of research question, we propose a new approach, a General Bayesian Network (GBN), which can be performed in an understandable way without sacrificing predictive accuracy. Conventional techniques, such as regression analysis, do not provide significant explanation for this kind of problem because they are fixed to a linear structure and are limited in explaining why customers are likely to purchase game items and if they are satisfied with their purchases. In contrast, the proposed GBN provides a flexible underlying structure based on questionnaire survey data and offers robust decision support on this kind of research question by identifying its causal relationships. To illustrate the validity of GBN in solving the research question in this study, 327 valid questionnaires were analyzed using GBN with what-if and goal-seeking approaches. The experimental results were promising and meaningful in comparison with regression analysis results.

  2. Correlates of health-related quality of life in children with drug resistant epilepsy.

    PubMed

    Conway, Lauryn; Smith, Mary Lou; Ferro, Mark A; Speechley, Kathy N; Connoly, Mary B; Snead, O Carter; Widjaja, Elysa

    2016-08-01

    Health-related quality of life (HRQL) is compromised in children with epilepsy. The current study aimed to identify correlates of HRQL in children with drug resistant epilepsy. Data came from 115 children enrolled in the Impact of Pediatric Epilepsy Surgery on Health-Related Quality of Life Study (PEPSQOL), a multicenter prospective cohort study. Individual, clinical, and family factors were evaluated. HRQL was measured using the Quality of Life in Childhood Epilepsy Questionnaire (QOLCE), a parent-rated epilepsy-specific instrument, with composite scores ranging from 0 to 100. A series of univariable linear regression analyses were conducted to identify significant associations with HRQL, followed by a multivariable regression analysis. Children had a mean age of 11.85 ± 3.81 years and 65 (56.5%) were male. The mean composite QOLCE score was 60.18 ± 16.69. Child age, sex, age at seizure onset, duration of epilepsy, caregiver age, caregiver education, and income were not significantly associated with HRQL. Univariable regression analyses revealed that a higher number of anti-seizure medications (p = 0.020), lower IQ (p = 0.002), greater seizure frequency (p = 0.048), caregiver unemployment (p = 0.010), higher caregiver depressive and anxiety symptoms (p < 0.001 for both), poorer family adaptation, fewer family resources, and a greater number of family demands (p < 0.001 for all) were associated with lower HRQL. Multivariable regression analysis showed that lower child IQ (β = 0.20, p = 0.004), fewer family resources (β = 0.43, p = 0.012), and caregiver unemployment (β = 6.53, p = 0.018) were associated with diminished HRQL in children. The results emphasize the importance of child cognition and family variables in the HRQL of children with drug-resistant epilepsy. The findings speak to the importance of offering comprehensive care to children and their families to address the nonmedical features that impact on HRQL. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  3. Systematic review of statistical approaches to quantify, or correct for, measurement error in a continuous exposure in nutritional epidemiology.

    PubMed

    Bennett, Derrick A; Landry, Denise; Little, Julian; Minelli, Cosetta

    2017-09-19

    Several statistical approaches have been proposed to assess and correct for exposure measurement error. We aimed to provide a critical overview of the most common approaches used in nutritional epidemiology. MEDLINE, EMBASE, BIOSIS and CINAHL were searched for reports published in English up to May 2016 in order to ascertain studies that described methods aimed to quantify and/or correct for measurement error for a continuous exposure in nutritional epidemiology using a calibration study. We identified 126 studies, 43 of which described statistical methods and 83 that applied any of these methods to a real dataset. The statistical approaches in the eligible studies were grouped into: a) approaches to quantify the relationship between different dietary assessment instruments and "true intake", which were mostly based on correlation analysis and the method of triads; b) approaches to adjust point and interval estimates of diet-disease associations for measurement error, mostly based on regression calibration analysis and its extensions. Two approaches (multiple imputation and moment reconstruction) were identified that can deal with differential measurement error. For regression calibration, the most common approach to correct for measurement error used in nutritional epidemiology, it is crucial to ensure that its assumptions and requirements are fully met. Analyses that investigate the impact of departures from the classical measurement error model on regression calibration estimates can be helpful to researchers in interpreting their findings. With regard to the possible use of alternative methods when regression calibration is not appropriate, the choice of method should depend on the measurement error model assumed, the availability of suitable calibration study data and the potential for bias due to violation of the classical measurement error model assumptions. On the basis of this review, we provide some practical advice for the use of methods to assess and adjust for measurement error in nutritional epidemiology.

  4. Efficacy of Statin Therapy in Inducing Coronary Plaque Regression in Patients with Low Baseline Cholesterol Levels

    PubMed Central

    Nozue, Tsuyoshi; Yamamoto, Shingo; Tohyama, Shinichi; Fukui, Kazuki; Umezawa, Shigeo; Onishi, Yuko; Kunishima, Tomoyuki; Sato, Akira; Miyake, Shogo; Morino, Yoshihiro; Yamauchi, Takao; Muramatsu, Toshiya; Hibi, Kiyoshi; Terashima, Mitsuyasu; Suzuki, Hiroshi; Michishita, Ichiro

    2016-01-01

    Aim: The efficacy of statin therapy in inducing coronary plaque regression may depend on baseline cholesterol levels. We aimed to determine the efficacy of statin therapy in inducing coronary plaque regression in statin-naïve patients with low cholesterol levels using serial intravascular ultrasound (IVUS) data from the treatment with statin on atheroma regression evaluated by virtual histology IVUS (TRUTH) study. Methods: The TRUTH study is a prospective, multicenter trial, comparing the efficacies of pitavastatin and pravastatin in coronary plaque regression in 164 patients. All patients were statin-naïve and received statin therapy only after study enrollment. The primary endpoint was the observation of coronary plaque progression, despite statin therapy. Results: Serial IVUS data, at baseline and after an 8-month follow-up, were available for 119 patients. The patients were divided into three groups based on non-high-density lipoprotein cholesterol (HDL-C) levels—low: ≤ 140 mg/dl, n = 38; moderate: 141–169 mg/dl, n = 42; and high: ≥ 170 mg/dl, n = 39. Coronary plaque progression was noted in the low cholesterol group, whereas plaque regression was noted in the moderate and high cholesterol groups [%Δplaque volume: 2.3 ± 7.4 vs. − 2.7 ± 10.7 vs. − 3.2 ± 7.5, p = 0.004 (analysis of variance)]. After adjusting for all variables, a low non-HDLC level (≤ 140 mg/dl) was identified as an independent predictor of coronary plaque progression [odds ratio, 3.7; 95% confidence interval, 1.5–9.1, p = 0.004]. Conclusion: Serial IVUS data analysis indicated that statin therapy was less effective in inducing coronary plaque regression in patients with low cholesterol levels but more effective in those with high cholesterol levels at baseline. University Hospital Medical Information Network (UMIN) (UMIN ID: C000000311). PMID:27040362

  5. The influence of intrinsic and extrinsic job values on turnover intention among continuing care assistants in Nova Scotia.

    PubMed

    Dill, Donna M; Keefe, Janice M; McGrath, Daniel S

    2012-01-01

    This article examines the influence that intrinsic and extrinsic job values have on the turnover intention of continuing care assistants (CCAs) who work either in home care or facility-based care in Nova Scotia (n = 188). Factor analysis of job values identified three latent job values structures: "compensation and commitment," "flexibility and opportunity," and "positive work relationships." Using binary logistic regression, we examined the predictive utility of these factors on two indices of turnover intention. Regression results indicate that, in general, job values constructs did not significantly predict turnover intention when controlling for demographics and job characteristics. However, a trend was found for the "positive work relationships" factor in predicting consideration of changing employers. In addition, CCAs who work in facility-based care were significantly more likely to have considered leaving their current employer. With projected increases in the demand for these workers in both home and continuing care, more attention is needed to identify and address factors to reduce turnover intention.

  6. Evaluation of the Nutritional Changes Caused by Huanglongbing (HLB) to Citrus Plants Using Laser-Induced Breakdown Spectroscopy.

    PubMed

    Ranulfi, Anielle Coelho; Romano, Renan Arnon; Bebeachibuli Magalhães, Aida; Ferreira, Ednaldo José; Ribeiro Villas-Boas, Paulino; Marcondes Bastos Pereira Milori, Débora

    2017-07-01

    Huanglongbing (HLB) is the most recent and destructive bacterial disease of citrus and has no cure yet. A promising alternative to conventional methods is to use laser-induced breakdown spectroscopy (LIBS), a multi-elemental analytical technique, to identify the nutritional changes provoked by the disease to the citrus leaves and associate the mineral composition profile with its health status. The leaves were collected from adult citrus trees and identified by visual inspection as healthy, HLB-symptomatic, and HLB-asymptomatic. Laser-induced breakdown spectroscopy measurements were done in fresh leaves without sample preparation. Nutritional variations were evaluated using statistical tools, such as Student's t-test and analysis of variance applied to LIBS spectra, and the largest were found for Ca, Mg, and K. Considering the nutritional profile changes, a classifier induced by classification via regression combined with partial least squares regression was built resulting in an accuracy of 73% for distinguishing the three categories of leaves.

  7. Efficient logistic regression designs under an imperfect population identifier.

    PubMed

    Albert, Paul S; Liu, Aiyi; Nansel, Tonja

    2014-03-01

    Motivated by actual study designs, this article considers efficient logistic regression designs where the population is identified with a binary test that is subject to diagnostic error. We consider the case where the imperfect test is obtained on all participants, while the gold standard test is measured on a small chosen subsample. Under maximum-likelihood estimation, we evaluate the optimal design in terms of sample selection as well as verification. We show that there may be substantial efficiency gains by choosing a small percentage of individuals who test negative on the imperfect test for inclusion in the sample (e.g., verifying 90% test-positive cases). We also show that a two-stage design may be a good practical alternative to a fixed design in some situations. Under optimal and nearly optimal designs, we compare maximum-likelihood and semi-parametric efficient estimators under correct and misspecified models with simulations. The methodology is illustrated with an analysis from a diabetes behavioral intervention trial. © 2013, The International Biometric Society.

  8. Sparse multivariate factor analysis regression models and its applications to integrative genomics analysis.

    PubMed

    Zhou, Yan; Wang, Pei; Wang, Xianlong; Zhu, Ji; Song, Peter X-K

    2017-01-01

    The multivariate regression model is a useful tool to explore complex associations between two kinds of molecular markers, which enables the understanding of the biological pathways underlying disease etiology. For a set of correlated response variables, accounting for such dependency can increase statistical power. Motivated by integrative genomic data analyses, we propose a new methodology-sparse multivariate factor analysis regression model (smFARM), in which correlations of response variables are assumed to follow a factor analysis model with latent factors. This proposed method not only allows us to address the challenge that the number of association parameters is larger than the sample size, but also to adjust for unobserved genetic and/or nongenetic factors that potentially conceal the underlying response-predictor associations. The proposed smFARM is implemented by the EM algorithm and the blockwise coordinate descent algorithm. The proposed methodology is evaluated and compared to the existing methods through extensive simulation studies. Our results show that accounting for latent factors through the proposed smFARM can improve sensitivity of signal detection and accuracy of sparse association map estimation. We illustrate smFARM by two integrative genomics analysis examples, a breast cancer dataset, and an ovarian cancer dataset, to assess the relationship between DNA copy numbers and gene expression arrays to understand genetic regulatory patterns relevant to the disease. We identify two trans-hub regions: one in cytoband 17q12 whose amplification influences the RNA expression levels of important breast cancer genes, and the other in cytoband 9q21.32-33, which is associated with chemoresistance in ovarian cancer. © 2016 WILEY PERIODICALS, INC.

  9. MAGMA: Generalized Gene-Set Analysis of GWAS Data

    PubMed Central

    de Leeuw, Christiaan A.; Mooij, Joris M.; Heskes, Tom; Posthuma, Danielle

    2015-01-01

    By aggregating data for complex traits in a biologically meaningful way, gene and gene-set analysis constitute a valuable addition to single-marker analysis. However, although various methods for gene and gene-set analysis currently exist, they generally suffer from a number of issues. Statistical power for most methods is strongly affected by linkage disequilibrium between markers, multi-marker associations are often hard to detect, and the reliance on permutation to compute p-values tends to make the analysis computationally very expensive. To address these issues we have developed MAGMA, a novel tool for gene and gene-set analysis. The gene analysis is based on a multiple regression model, to provide better statistical performance. The gene-set analysis is built as a separate layer around the gene analysis for additional flexibility. This gene-set analysis also uses a regression structure to allow generalization to analysis of continuous properties of genes and simultaneous analysis of multiple gene sets and other gene properties. Simulations and an analysis of Crohn’s Disease data are used to evaluate the performance of MAGMA and to compare it to a number of other gene and gene-set analysis tools. The results show that MAGMA has significantly more power than other tools for both the gene and the gene-set analysis, identifying more genes and gene sets associated with Crohn’s Disease while maintaining a correct type 1 error rate. Moreover, the MAGMA analysis of the Crohn’s Disease data was found to be considerably faster as well. PMID:25885710

  10. MAGMA: generalized gene-set analysis of GWAS data.

    PubMed

    de Leeuw, Christiaan A; Mooij, Joris M; Heskes, Tom; Posthuma, Danielle

    2015-04-01

    By aggregating data for complex traits in a biologically meaningful way, gene and gene-set analysis constitute a valuable addition to single-marker analysis. However, although various methods for gene and gene-set analysis currently exist, they generally suffer from a number of issues. Statistical power for most methods is strongly affected by linkage disequilibrium between markers, multi-marker associations are often hard to detect, and the reliance on permutation to compute p-values tends to make the analysis computationally very expensive. To address these issues we have developed MAGMA, a novel tool for gene and gene-set analysis. The gene analysis is based on a multiple regression model, to provide better statistical performance. The gene-set analysis is built as a separate layer around the gene analysis for additional flexibility. This gene-set analysis also uses a regression structure to allow generalization to analysis of continuous properties of genes and simultaneous analysis of multiple gene sets and other gene properties. Simulations and an analysis of Crohn's Disease data are used to evaluate the performance of MAGMA and to compare it to a number of other gene and gene-set analysis tools. The results show that MAGMA has significantly more power than other tools for both the gene and the gene-set analysis, identifying more genes and gene sets associated with Crohn's Disease while maintaining a correct type 1 error rate. Moreover, the MAGMA analysis of the Crohn's Disease data was found to be considerably faster as well.

  11. Identifying the ideal profile of French yogurts for different clusters of consumers.

    PubMed

    Masson, M; Saint-Eve, A; Delarue, J; Blumenthal, D

    2016-05-01

    Identifying the sensory properties that affect consumer preferences for food products is an important feature of product development. Different methods, such as external preference mapping or partial least squares regression, are used to establish relationships between sensory data and consumer preferences and to identify sensory attributes that drive consumer preferences, by highlighting optimum products. Plain French yogurts were evaluated by a sensory profiling method performed by 12 trained judges. In parallel, 180 consumers were asked to score their overall liking and complete a cognitive restraint questionnaire. After hierarchical cluster analysis on the liking scores, preference mapping using a quadratic regression model was performed. Five clusters of consumers were identified as a function of different preference patterns. Contrary to our expectations, fat levels were not discriminating. For each cluster, the results of preference mapping enabled the identification of optimum products. A comparison of the 5 sensory profiles revealed numerous differences between key sensory attributes. For example, one consumer cluster had a strong preference for products perceived as very thick, grainy, but with a less flowing texture, less sticky, whey presence and color, in contrast to other clusters. In addition, each segment of consumers was characterized according to the results of the cognitive restraint questionnaire. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Centre of pressure patterns in the golf swing: individual-based analysis.

    PubMed

    Ball, Kevin; Best, Russell

    2012-06-01

    Weight transfer has been identified as important in group-based analyses. The aim of this study was to extend this work by examining the importance of weight transfer in the golf swing on an individual basis. Five professional and amateur golfers performed 50 swings with the driver, hitting a ball into a net. The golfer's centre of pressure position and velocity, parallel with the line of shot, were measured by two force plates at eight swing events that were identified from high-speed video. The relationships between these parameters and club head velocity at ball contact were examined using regression statistics. The results did support the use of group-based analysis, with all golfers returning significant relationships. However, results were also individual-specific, with golfers returning different combinations of significant factors. Furthermore, factors not identified in group-based analysis were significant on an individual basis. The most consistent relationship was a larger weight transfer range associated with a larger club head velocity (p < 0.05). All golfers also returned at least one significant relationship with rate of weight transfer at swing events (p < 0.01). Individual-based analysis should form part of performance-based biomechanical analysis of sporting skills.

  13. Comparison of 3 Methods for Identifying Dietary Patterns Associated With Risk of Disease

    PubMed Central

    DiBello, Julia R.; Kraft, Peter; McGarvey, Stephen T.; Goldberg, Robert; Campos, Hannia

    2008-01-01

    Reduced rank regression and partial least-squares regression (PLS) are proposed alternatives to principal component analysis (PCA). Using all 3 methods, the authors derived dietary patterns in Costa Rican data collected on 3,574 cases and controls in 1994–2004 and related the resulting patterns to risk of first incident myocardial infarction. Four dietary patterns associated with myocardial infarction were identified. Factor 1, characterized by high intakes of lean chicken, vegetables, fruit, and polyunsaturated oil, was generated by all 3 dietary pattern methods and was associated with a significantly decreased adjusted risk of myocardial infarction (28%–46%, depending on the method used). PCA and PLS also each yielded a pattern associated with a significantly decreased risk of myocardial infarction (31% and 23%, respectively); this pattern was characterized by moderate intake of alcohol and polyunsaturated oil and low intake of high-fat dairy products. The fourth factor derived from PCA was significantly associated with a 38% increased risk of myocardial infarction and was characterized by high intakes of coffee and palm oil. Contrary to previous studies, the authors found PCA and PLS to produce more patterns associated with cardiovascular disease than reduced rank regression. The most effective method for deriving dietary patterns related to disease may vary depending on the study goals. PMID:18945692

  14. Representational change and strategy use in children's number line estimation during the first years of primary school.

    PubMed

    White, Sonia L J; Szűcs, Dénes

    2012-01-04

    The objective of this study was to scrutinize number line estimation behaviors displayed by children in mathematics classrooms during the first three years of schooling. We extend existing research by not only mapping potential logarithmic-linear shifts but also provide a new perspective by studying in detail the estimation strategies of individual target digits within a number range familiar to children. Typically developing children (n = 67) from Years 1-3 completed a number-to-position numerical estimation task (0-20 number line). Estimation behaviors were first analyzed via logarithmic and linear regression modeling. Subsequently, using an analysis of variance we compared the estimation accuracy of each digit, thus identifying target digits that were estimated with the assistance of arithmetic strategy. Our results further confirm a developmental logarithmic-linear shift when utilizing regression modeling; however, uniquely we have identified that children employ variable strategies when completing numerical estimation, with levels of strategy advancing with development. In terms of the existing cognitive research, this strategy factor highlights the limitations of any regression modeling approach, or alternatively, it could underpin the developmental time course of the logarithmic-linear shift. Future studies need to systematically investigate this relationship and also consider the implications for educational practice.

  15. Representational change and strategy use in children's number line estimation during the first years of primary school

    PubMed Central

    2012-01-01

    Background The objective of this study was to scrutinize number line estimation behaviors displayed by children in mathematics classrooms during the first three years of schooling. We extend existing research by not only mapping potential logarithmic-linear shifts but also provide a new perspective by studying in detail the estimation strategies of individual target digits within a number range familiar to children. Methods Typically developing children (n = 67) from Years 1-3 completed a number-to-position numerical estimation task (0-20 number line). Estimation behaviors were first analyzed via logarithmic and linear regression modeling. Subsequently, using an analysis of variance we compared the estimation accuracy of each digit, thus identifying target digits that were estimated with the assistance of arithmetic strategy. Results Our results further confirm a developmental logarithmic-linear shift when utilizing regression modeling; however, uniquely we have identified that children employ variable strategies when completing numerical estimation, with levels of strategy advancing with development. Conclusion In terms of the existing cognitive research, this strategy factor highlights the limitations of any regression modeling approach, or alternatively, it could underpin the developmental time course of the logarithmic-linear shift. Future studies need to systematically investigate this relationship and also consider the implications for educational practice. PMID:22217191

  16. Family and school environmental predictors of sleep bruxism in children.

    PubMed

    Rossi, Debora; Manfredini, Daniele

    2013-01-01

    To identify potential predictors of self-reported sleep bruxism (SB) within children's family and school environments. A total of 65 primary school children (55.4% males, mean age 9.3 ± 1.9 years) were administered a 10-item questionnaire investigating the prevalence of self-reported SB as well as nine family and school-related potential bruxism predictors. Regression analyses were performed to assess the correlation between the potential predictors and SB. A positive answer to the self-reported SB item was endorsed by 18.8% of subjects, with no sex differences. Multiple variable regression analysis identified a final model showing that having divorced parents and not falling asleep easily were the only two weak predictors of self-reported SB. The percentage of explained variance for SB by the final multiple regression model was 13.3% (Nagelkerke's R² = 0.133). While having a high specificity and a good negative predictive value, the model showed unacceptable sensitivity and positive predictive values. The resulting accuracy to predict the presence of self-reported SB was 73.8%. The present investigation suggested that, among family and school-related matters, having divorced parents and not falling asleep easily were two predictors, even if weak, of a child's self-report of SB.

  17. Multicollinearity in spatial genetics: separating the wheat from the chaff using commonality analyses.

    PubMed

    Prunier, J G; Colyn, M; Legendre, X; Nimon, K F; Flamand, M C

    2015-01-01

    Direct gradient analyses in spatial genetics provide unique opportunities to describe the inherent complexity of genetic variation in wildlife species and are the object of many methodological developments. However, multicollinearity among explanatory variables is a systemic issue in multivariate regression analyses and is likely to cause serious difficulties in properly interpreting results of direct gradient analyses, with the risk of erroneous conclusions, misdirected research and inefficient or counterproductive conservation measures. Using simulated data sets along with linear and logistic regressions on distance matrices, we illustrate how commonality analysis (CA), a detailed variance-partitioning procedure that was recently introduced in the field of ecology, can be used to deal with nonindependence among spatial predictors. By decomposing model fit indices into unique and common (or shared) variance components, CA allows identifying the location and magnitude of multicollinearity, revealing spurious correlations and thus thoroughly improving the interpretation of multivariate regressions. Despite a few inherent limitations, especially in the case of resistance model optimization, this review highlights the great potential of CA to account for complex multicollinearity patterns in spatial genetics and identifies future applications and lines of research. We strongly urge spatial geneticists to systematically investigate commonalities when performing direct gradient analyses. © 2014 John Wiley & Sons Ltd.

  18. Biostatistics Series Module 10: Brief Overview of Multivariate Methods.

    PubMed

    Hazra, Avijit; Gogtay, Nithya

    2017-01-01

    Multivariate analysis refers to statistical techniques that simultaneously look at three or more variables in relation to the subjects under investigation with the aim of identifying or clarifying the relationships between them. These techniques have been broadly classified as dependence techniques, which explore the relationship between one or more dependent variables and their independent predictors, and interdependence techniques, that make no such distinction but treat all variables equally in a search for underlying relationships. Multiple linear regression models a situation where a single numerical dependent variable is to be predicted from multiple numerical independent variables. Logistic regression is used when the outcome variable is dichotomous in nature. The log-linear technique models count type of data and can be used to analyze cross-tabulations where more than two variables are included. Analysis of covariance is an extension of analysis of variance (ANOVA), in which an additional independent variable of interest, the covariate, is brought into the analysis. It tries to examine whether a difference persists after "controlling" for the effect of the covariate that can impact the numerical dependent variable of interest. Multivariate analysis of variance (MANOVA) is a multivariate extension of ANOVA used when multiple numerical dependent variables have to be incorporated in the analysis. Interdependence techniques are more commonly applied to psychometrics, social sciences and market research. Exploratory factor analysis and principal component analysis are related techniques that seek to extract from a larger number of metric variables, a smaller number of composite factors or components, which are linearly related to the original variables. Cluster analysis aims to identify, in a large number of cases, relatively homogeneous groups called clusters, without prior information about the groups. The calculation intensive nature of multivariate analysis has so far precluded most researchers from using these techniques routinely. The situation is now changing with wider availability, and increasing sophistication of statistical software and researchers should no longer shy away from exploring the applications of multivariate methods to real-life data sets.

  19. Identification by random forest method of HLA class I amino acid substitutions associated with lower survival at day 100 in unrelated donor hematopoietic cell transplantation.

    PubMed

    Marino, S R; Lin, S; Maiers, M; Haagenson, M; Spellman, S; Klein, J P; Binkowski, T A; Lee, S J; van Besien, K

    2012-02-01

    The identification of important amino acid substitutions associated with low survival in hematopoietic cell transplantation (HCT) is hampered by the large number of observed substitutions compared with the small number of patients available for analysis. Random forest analysis is designed to address these limitations. We studied 2107 HCT recipients with good or intermediate risk hematological malignancies to identify HLA class I amino acid substitutions associated with reduced survival at day 100 post transplant. Random forest analysis and traditional univariate and multivariate analyses were used. Random forest analysis identified amino acid substitutions in 33 positions that were associated with reduced 100 day survival, including HLA-A 9, 43, 62, 63, 76, 77, 95, 97, 114, 116, 152, 156, 166 and 167; HLA-B 97, 109, 116 and 156; and HLA-C 6, 9, 11, 14, 21, 66, 77, 80, 95, 97, 99, 116, 156, 163 and 173. In all 13 had been previously reported by other investigators using classical biostatistical approaches. Using the same data set, traditional multivariate logistic regression identified only five amino acid substitutions associated with lower day 100 survival. Random forest analysis is a novel statistical methodology for analysis of HLA mismatching and outcome studies, capable of identifying important amino acid substitutions missed by other methods.

  20. A simple approach to power and sample size calculations in logistic regression and Cox regression models.

    PubMed

    Vaeth, Michael; Skovlund, Eva

    2004-06-15

    For a given regression problem it is possible to identify a suitably defined equivalent two-sample problem such that the power or sample size obtained for the two-sample problem also applies to the regression problem. For a standard linear regression model the equivalent two-sample problem is easily identified, but for generalized linear models and for Cox regression models the situation is more complicated. An approximately equivalent two-sample problem may, however, also be identified here. In particular, we show that for logistic regression and Cox regression models the equivalent two-sample problem is obtained by selecting two equally sized samples for which the parameters differ by a value equal to the slope times twice the standard deviation of the independent variable and further requiring that the overall expected number of events is unchanged. In a simulation study we examine the validity of this approach to power calculations in logistic regression and Cox regression models. Several different covariate distributions are considered for selected values of the overall response probability and a range of alternatives. For the Cox regression model we consider both constant and non-constant hazard rates. The results show that in general the approach is remarkably accurate even in relatively small samples. Some discrepancies are, however, found in small samples with few events and a highly skewed covariate distribution. Comparison with results based on alternative methods for logistic regression models with a single continuous covariate indicates that the proposed method is at least as good as its competitors. The method is easy to implement and therefore provides a simple way to extend the range of problems that can be covered by the usual formulas for power and sample size determination. Copyright 2004 John Wiley & Sons, Ltd.

  1. Delineating chalk sand distribution of Ekofisk formation using probabilistic neural network (PNN) and stepwise regression (SWR): Case study Danish North Sea field

    NASA Astrophysics Data System (ADS)

    Haris, A.; Nafian, M.; Riyanto, A.

    2017-07-01

    Danish North Sea Fields consist of several formations (Ekofisk, Tor, and Cromer Knoll) that was started from the age of Paleocene to Miocene. In this study, the integration of seismic and well log data set is carried out to determine the chalk sand distribution in the Danish North Sea field. The integration of seismic and well log data set is performed by using the seismic inversion analysis and seismic multi-attribute. The seismic inversion algorithm, which is used to derive acoustic impedance (AI), is model-based technique. The derived AI is then used as external attributes for the input of multi-attribute analysis. Moreover, the multi-attribute analysis is used to generate the linear and non-linear transformation of among well log properties. In the case of the linear model, selected transformation is conducted by weighting step-wise linear regression (SWR), while for the non-linear model is performed by using probabilistic neural networks (PNN). The estimated porosity, which is resulted by PNN shows better suited to the well log data compared with the results of SWR. This result can be understood since PNN perform non-linear regression so that the relationship between the attribute data and predicted log data can be optimized. The distribution of chalk sand has been successfully identified and characterized by porosity value ranging from 23% up to 30%.

  2. Using Spatial Multiple Regression to Identify Intrinsic Connectivity Networks Involved in Working Memory Performance

    PubMed Central

    Gordon, Evan M.; Stollstorff, Melanie; Vaidya, Chandan J.

    2012-01-01

    Many researchers have noted that the functional architecture of the human brain is relatively invariant during task performance and the resting state. Indeed, intrinsic connectivity networks (ICNs) revealed by resting-state functional connectivity analyses are spatially similar to regions activated during cognitive tasks. This suggests that patterns of task-related activation in individual subjects may result from the engagement of one or more of these ICNs; however, this has not been tested. We used a novel analysis, spatial multiple regression, to test whether the patterns of activation during an N-back working memory task could be well described by a linear combination of ICNs delineated using Independent Components Analysis at rest. We found that across subjects, the cingulo-opercular Set Maintenance ICN, as well as right and left Frontoparietal Control ICNs, were reliably activated during working memory, while Default Mode and Visual ICNs were reliably deactivated. Further, involvement of Set Maintenance, Frontoparietal Control, and Dorsal Attention ICNs was sensitive to varying working memory load. Finally, the degree of left Frontoparietal Control network activation predicted response speed, while activation in both left Frontoparietal Control and Dorsal Attention networks predicted task accuracy. These results suggest that a close relationship between resting-state networks and task-evoked activation is functionally relevant for behavior, and that spatial multiple regression analysis is a suitable method for revealing that relationship. PMID:21761505

  3. A points-based algorithm for prognosticating clinical outcome of Chiari malformation Type I with syringomyelia: results from a predictive model analysis of 82 surgically managed adult patients.

    PubMed

    Thakar, Sumit; Sivaraju, Laxminadh; Jacob, Kuruthukulangara S; Arun, Aditya Atal; Aryan, Saritha; Mohan, Dilip; Sai Kiran, Narayanam Anantha; Hegde, Alangar S

    2018-01-01

    OBJECTIVE Although various predictors of postoperative outcome have been previously identified in patients with Chiari malformation Type I (CMI) with syringomyelia, there is no known algorithm for predicting a multifactorial outcome measure in this widely studied disorder. Using one of the largest preoperative variable arrays used so far in CMI research, the authors attempted to generate a formula for predicting postoperative outcome. METHODS Data from the clinical records of 82 symptomatic adult patients with CMI and altered hindbrain CSF flow who were managed with foramen magnum decompression, C-1 laminectomy, and duraplasty over an 8-year period were collected and analyzed. Various preoperative clinical and radiological variables in the 57 patients who formed the study cohort were assessed in a bivariate analysis to determine their ability to predict clinical outcome (as measured on the Chicago Chiari Outcome Scale [CCOS]) and the resolution of syrinx at the last follow-up. The variables that were significant in the bivariate analysis were further analyzed in a multiple linear regression analysis. Different regression models were tested, and the model with the best prediction of CCOS was identified and internally validated in a subcohort of 25 patients. RESULTS There was no correlation between CCOS score and syrinx resolution (p = 0.24) at a mean ± SD follow-up of 40.29 ± 10.36 months. Multiple linear regression analysis revealed that the presence of gait instability, obex position, and the M-line-fourth ventricle vertex (FVV) distance correlated with CCOS score, while the presence of motor deficits was associated with poor syrinx resolution (p ≤ 0.05). The algorithm generated from the regression model demonstrated good diagnostic accuracy (area under curve 0.81), with a score of more than 128 points demonstrating 100% specificity for clinical improvement (CCOS score of 11 or greater). The model had excellent reliability (κ = 0.85) and was validated with fair accuracy in the validation cohort (area under the curve 0.75). CONCLUSIONS The presence of gait imbalance and motor deficits independently predict worse clinical and radiological outcomes, respectively, after decompressive surgery for CMI with altered hindbrain CSF flow. Caudal displacement of the obex and a shorter M-line-FVV distance correlated with good CCOS scores, indicating that patients with a greater degree of hindbrain pathology respond better to surgery. The proposed points-based algorithm has good predictive value for postoperative multifactorial outcome in these patients.

  4. Automatic Classification of Users' Health Information Need Context: Logistic Regression Analysis of Mouse-Click and Eye-Tracker Data.

    PubMed

    Pian, Wenjing; Khoo, Christopher Sg; Chi, Jianxing

    2017-12-21

    Users searching for health information on the Internet may be searching for their own health issue, searching for someone else's health issue, or browsing with no particular health issue in mind. Previous research has found that these three categories of users focus on different types of health information. However, most health information websites provide static content for all users. If the three types of user health information need contexts can be identified by the Web application, the search results or information offered to the user can be customized to increase its relevance or usefulness to the user. The aim of this study was to investigate the possibility of identifying the three user health information contexts (searching for self, searching for others, or browsing with no particular health issue in mind) using just hyperlink clicking behavior; using eye-tracking information; and using a combination of eye-tracking, demographic, and urgency information. Predictive models are developed using multinomial logistic regression. A total of 74 participants (39 females and 35 males) who were mainly staff and students of a university were asked to browse a health discussion forum, Healthboards.com. An eye tracker recorded their examining (eye fixation) and skimming (quick eye movement) behaviors on 2 types of screens: summary result screen displaying a list of post headers, and detailed post screen. The following three types of predictive models were developed using logistic regression analysis: model 1 used only the time spent in scanning the summary result screen and reading the detailed post screen, which can be determined from the user's mouse clicks; model 2 used the examining and skimming durations on each screen, recorded by an eye tracker; and model 3 added user demographic and urgency information to model 2. An analysis of variance (ANOVA) analysis found that users' browsing durations were significantly different for the three health information contexts (P<.001). The logistic regression model 3 was able to predict the user's type of health information context with a 10-fold cross validation mean accuracy of 84% (62/74), followed by model 2 at 73% (54/74) and model 1 at 71% (52/78). In addition, correlation analysis found that particular browsing durations were highly correlated with users' age, education level, and the urgency of their information need. A user's type of health information need context (ie, searching for self, for others, or with no health issue in mind) can be identified with reasonable accuracy using just user mouse clicks that can easily be detected by Web applications. Higher accuracy can be obtained using Google glass or future computing devices with eye tracking function. ©Wenjing Pian, Christopher SG Khoo, Jianxing Chi. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 21.12.2017.

  5. Safety training priorities

    NASA Astrophysics Data System (ADS)

    Thompson, N. A.; Ruck, H. W.

    1984-04-01

    The Air Force is interested in identifying potentially hazardous tasks and prevention of accidents. This effort proposes four methods for determining safety training priorities for job tasks in three enlisted specialties. These methods can be used to design training aimed at avoiding loss of people, time, materials, and money associated with on-the-job accidents. Job tasks performed by airmen were measured using task and job factor ratings. Combining accident reports and job inventories, subject-matter experts identified tasks associated with accidents over a 3-year period. Applying correlational, multiple regression, and cost-benefit analysis, four methods were developed for ordering hazardous tasks to determine safety training priorities.

  6. Spouse Psychological Well-Being: A Keystone to Military Family Health

    PubMed Central

    Green, Sara; Nurius, Paula S.; Lester, Patricia

    2013-01-01

    Understanding predictors of military spouse psychosocial vulnerability informs efforts to assess, identify, and support at-risk spouses and families. In this analysis we test the effects of family stress and strain on military spouse psychological health, using a sample of female civilian spouses (n=161). Regression findings confirm expectations of the significant contribution of family stressors, strain, and resources in explaining variation in spouses' psychological health, controlling for deployment and socioeconomic factors. Identifying the effects of family stress on military spouse psychological health supports the need for family-centered interventions and prevention programs. PMID:24415897

  7. Applied Multiple Linear Regression: A General Research Strategy

    ERIC Educational Resources Information Center

    Smith, Brandon B.

    1969-01-01

    Illustrates some of the basic concepts and procedures for using regression analysis in experimental design, analysis of variance, analysis of covariance, and curvilinear regression. Applications to evaluation of instruction and vocational education programs are illustrated. (GR)

  8. Socioeconomic Factors Associated with Post-Mastectomy Immediate Reconstruction in a Contemporary Cohort of Breast Cancer Survivors.

    PubMed

    Schumacher, Jessica R; Taylor, Lauren J; Tucholka, Jennifer L; Poore, Samuel; Eggen, Amanda; Steiman, Jennifer; Wilke, Lee G; Greenberg, Caprice C; Neuman, Heather B

    2017-10-01

    Post-mastectomy reconstruction is a critical component of high-quality breast cancer care. Prior studies demonstrate socioeconomic disparity in receipt of reconstruction. Our objective was to evaluate trends in receipt of immediate reconstruction and examine socioeconomic factors associated with reconstruction in a contemporary cohort. Using the National Cancer Database, we identified women <75 years of age with stage 0-1 breast cancer treated with mastectomy (n = 297,121). Trends in immediate reconstruction rates (2004-2013) for the overall cohort and stratified by socioeconomic factors were examined using Join-point regression analysis, and annual percentage change (APC) was calculated. We then restricted our sample to a contemporary cohort (2010-2013, n = 145,577). Multivariable logistic regression identified socioeconomic factors associated with immediate reconstruction. Average adjusted predicted probabilities of receiving reconstruction were calculated. Immediate reconstruction rates increased from 27 to 48%. Although absolute rates of reconstruction for each stratification group increased, similar APCs across strata led to persistent gaps in receipt of reconstruction. On multivariable logistic regression using our contemporary cohort, race, income, education, and insurance type were all strongly associated with immediate reconstruction. Patients with the lowest predicted probability of receiving reconstruction were patients with Medicaid who lived in areas with the lowest rates of high-school graduation (Black 42.4% [95% CI 40.5-44.3], White 45.7% [95% CI 43.9-47.4]). Although reconstruction rates have increased dramatically over the past decade, lower rates persist for disadvantaged patients. Understanding how socioeconomic factors influence receipt of reconstruction, and identifying modifiable factors, are critical next steps towards identifying interventions to reduce disparities in breast cancer surgical care.

  9. Drinking Patterns and Victimization among Male and Female Students in Mexico

    PubMed Central

    Strunin, Lee; Díaz-Martínez, L. Rosa; Díaz-Martínez, Alejandro; Heeren, Timothy; Winter, Michael; Kuranz, Seth; Hernández–Ávila, Carlos A.; Fernández-Varela, Héctor; Solís-Torres, Cuauhtémoc

    2015-01-01

    Aims: The purpose of this study is to estimate the prevalence of alcohol use and alcohol-related consequences, identify drinking profiles using latent profile analysis (LPA), and investigate associations between profiles and violent victimization among young people in Mexico. Methods: LPA identified profiles of drinking behavior in a survey of entering first year university students. Multinomial and logistic regression examined associations between drinking patterns, socio-demographic variables and violent victimization. Results: The LPA identified five profiles of behaviors and consequences among the 22,224 current, former and never drinkers: Non/Infrequent-No Consequences, Occasional-Few Consequences, Regular-Some Consequences, Heavy-Many Consequences and Excessive-Many Consequences drinkers. The Occasional-Few Consequences profile comprised the largest, and the Excessive-Many Consequences profile the smallest, group of drinkers. Multinomial regression showed males and older students more likely to be Heavy or Excessive-Many Consequences drinkers. Living alone was associated with higher odds, and higher maternal education with lower odds, of being a Non/Infrequent-No Consequences drinker. Heavier drinking profiles were more likely to experience violent victimization adverse consequences. Logistic regression showed male and female Heavy and Excessive-Many Consequences drinkers had the highest odds, and Non/Infrequent drinkers the lowest odds, of experiencing any victimization. Conclusion: Findings suggest changes in male and female drinking behavior and a continuation of the established pattern of infrequent but high consumption among Mexican youths. Both male and female Heavy and Excessive-Many Consequences drinkers were at elevated risk for experiencing victimization. Identifying cultural gender norms about drinking including drinker expectations and drinking context that contribute to these patterns can inform prevention efforts. PMID:25534933

  10. Patient Stratification Using Electronic Health Records from a Chronic Disease Management Program.

    PubMed

    Chen, Robert; Sun, Jimeng; Dittus, Robert S; Fabbri, Daniel; Kirby, Jacqueline; Laffer, Cheryl L; McNaughton, Candace D; Malin, Bradley

    2016-01-04

    The goal of this study is to devise a machine learning framework to assist care coordination programs in prognostic stratification to design and deliver personalized care plans and to allocate financial and medical resources effectively. This study is based on a de-identified cohort of 2,521 hypertension patients from a chronic care coordination program at the Vanderbilt University Medical Center. Patients were modeled as vectors of features derived from electronic health records (EHRs) over a six-year period. We applied a stepwise regression to identify risk factors associated with a decrease in mean arterial pressure of at least 2 mmHg after program enrollment. The resulting features were subsequently validated via a logistic regression classifier. Finally, risk factors were applied to group the patients through model-based clustering. We identified a set of predictive features that consisted of a mix of demographic, medication, and diagnostic concepts. Logistic regression over these features yielded an area under the ROC curve (AUC) of 0.71 (95% CI: [0.67, 0.76]). Based on these features, four clinically meaningful groups are identified through clustering - two of which represented patients with more severe disease profiles, while the remaining represented patients with mild disease profiles. Patients with hypertension can exhibit significant variation in their blood pressure control status and responsiveness to therapy. Yet this work shows that a clustering analysis can generate more homogeneous patient groups, which may aid clinicians in designing and implementing customized care programs. The study shows that predictive modeling and clustering using EHR data can be beneficial for providing a systematic, generalized approach for care providers to tailor their management approach based upon patient-level factors.

  11. Do classic blood biomarkers of JSLE identify active lupus nephritis? Evidence from the UK JSLE Cohort Study.

    PubMed

    Smith, E M D; Jorgensen, A L; Beresford, M W

    2017-10-01

    Background Lupus nephritis (LN) affects up to 80% of juvenile-onset systemic lupus erythematosus (JSLE) patients. The value of commonly available biomarkers, such as anti-dsDNA antibodies, complement (C3/C4), ESR and full blood count parameters in the identification of active LN remains uncertain. Methods Participants from the UK JSLE Cohort Study, aged <16 years at diagnosis, were categorized as having active or inactive LN according to the renal domain of the British Isles Lupus Assessment Group score. Classic biomarkers: anti-dsDNA, C3, C4, ESR, CRP, haemoglobin, total white cells, neutrophils, lymphocytes, platelets and immunoglobulins were assessed for their ability to identify active LN using binary logistic regression modeling, with stepAIC function applied to select a final model. Receiver-operating curve analysis was used to assess diagnostic accuracy. Results A total of 370 patients were recruited; 191 (52%) had active LN and 179 (48%) had inactive LN. Binary logistic regression modeling demonstrated a combination of ESR, C3, white cell count, neutrophils, lymphocytes and IgG to be best for the identification of active LN (area under the curve 0.724). Conclusions At best, combining common classic blood biomarkers of lupus activity using multivariate analysis provides a 'fair' ability to identify active LN. Urine biomarkers were not included in these analyses. These results add to the concern that classic blood biomarkers are limited in monitoring discrete JSLE manifestations such as LN.

  12. Intracerebral hemorrhage after external ventricular drain placement: an evaluation of risk factors for post-procedural hemorrhagic complications.

    PubMed

    Rowe, A Shaun; Rinehart, Derrick R; Lezatte, Stephanie; Langdon, J Russell

    2018-03-07

    The objective of this study was to evaluate and identify the risk factors for developing a new or enlarged intracranial hemorrhage (ICH) after the placement of an external ventricular drain. A single center, nested case-control study of individuals who received an external ventricular drain from June 1, 2011 to June 30, 2014 was conducted at a large academic medical center. A bivariate analysis was conducted to compare those individuals who experienced a post-procedural intracranial hemorrhage to those who did not experience a new bleed. The variables identified as having a p-value less than 0.15 in the bivariate analysis were then evaluated using a multivariate logistic regression model. Twenty-seven of the eighty-one study participants experienced a new or enlarged intracranial hemorrhage after the placement of an external ventricular drain. Of these twenty-seven patients, 6 individuals received an antiplatelet within ninety-six hours of external ventricular drain placement (p = 0.024). The multivariate logistic regression model identified antiplatelet use within 96 h of external ventricular drain insertion as an independent risk factor for post-EVD ICH (OR 13.1; 95% CI 1.95-88.6; p = 0.008). Compared to those study participants who did not receive an antiplatelet within 96 h of external ventricular drain placement, those participants who did receive an antiplatelet were 13.1 times more likely to exhibit a new or enlarged intracranial hemorrhage.

  13. Incidence and timing of presentation of necrotizing enterocolitis in preterm infants.

    PubMed

    Yee, Wendy H; Soraisham, Amuchou Singh; Shah, Vibhuti S; Aziz, Khalid; Yoon, Woojin; Lee, Shoo K

    2012-02-01

    To examine the variation in the incidence and to identify the timing of the presentation of necrotizing enterocolitis (NEC) in a cohort of preterm infants within the Canadian Neonatal Network (CNN). This was a population-based cohort of 16 669 infants with gestational age (GA) <33 weeks, admitted to 25 NICUs participating in the CNN between January 1, 2003, and December 31(,) 2008. Variations in NEC incidence among the participating NICUs for the study period were examined. We categorized early-onset NEC as occurring at <14 days of age and late-onset NEC occurring at ≥14 days. Multivariate logistic regression analysis was performed to identify risk factors for early-onset NEC. The overall incidence of NEC was 5.1%, with significant variation in the risk adjusted incidence among the participating NICUs in the CNN. Early-onset NEC occurred at a mean of 7 days compared with 32 days for late-onset NEC. Early-onset NEC infants had lower incidence of respiratory distress syndrome, patent ductus treated with indomethacin, less use of postnatal steroids, and shorter duration of ventilation days. Multivariate logistic regression analysis identified that greater GA and vaginal delivery were associated with increased risk of early-onset NEC. Among infants <33 weeks' gestation, NEC appears to present at mean age of 7 days in more mature infants, whereas onset of NEC is delayed to 32 days of age in smaller, lower GA infants. Further studies are required to understand the etiology of this disease process.

  14. [Assessment of the quality of life of patients with age-related macular degeneration after photodynamic therapy].

    PubMed

    Kyo, Tetsuhiro; Matsumoto, Yoko; Tochigi, Kasumi; Yuzawa, Mitsuko; Yamaguchi, Takuhiro; Komoto, Atsushi; Shimozuma, Kojiro; Fukuhara, Shunichi

    2006-09-01

    To quantify quality of life (QOL) changes in patients who have received a single session of photodynamic therapy (PDT) for subfoveal choroidal neovascularization, secondary to age-related macular degeneration (AMD), and to identify factors that correlate with the QOL changes. The QOL changes in 88 patients with AMD were scored with the 25-Item National Eye Institute Visual Function Questionnaire (VFQ-25) before and 3 months after a single PDT with routine ophthalmologic examinations. We used multiple regression analysis to evaluate VFQ-25 sub-scale scores and ophthalmologic findings in these patients before PDT, to identify impact on the effectiveness of PDT. We also evaluated changes in ophthalmologic findings influencing the QOL score. The sub-scale scores for both 'mental health' (p = 0.02) and 'role limitation' (p = 0.03) improved significantly in all 88 cases, but only 'mental health' improved significantly in 34 cases in which PDT was effective. Multiple regression analysis in all 88 cases revealed that the factors contributing significantly to improvement in 'mental health' were a lower pre-PDT 'mental health' score (p < 0.01) and the presence of fibrous tissue (p = 0.01) before the PDT session. The lower the role limitation before PDT (p < 0.01), the more significant was the improvement in this score. Although no baseline sub-scale score was identified as predicting the effectiveness of a single PDT session, the scores for both 'mental health' and 'role limitation' improved.

  15. Detection of counterfeit brand spirits using 1H NMR fingerprints in comparison to sensory analysis.

    PubMed

    Kuballa, Thomas; Hausler, Thomas; Okaru, Alex O; Neufeld, Maria; Abuga, Kennedy O; Kibwage, Isaac O; Rehm, Jürgen; Luy, Burkhard; Walch, Stephan G; Lachenmeier, Dirk W

    2018-04-15

    Beverage fraud involving counterfeiting of brand spirits is an increasing problem not only due to deception of the consumer but also because it poses health risks e.g. from possible methanol admixture. Suspicious spirit samples from Russia and Kenya were analysed using 1 H nuclear magnetic resonance (NMR) spectroscopy in comparison to authentic products. Using linear regression analysis of spectral integral values, 4 counterfeited samples from Russia and 2 from Kenya were easily identifiable with R 2  < 0.7. Sensory analysis using triangle test methodology confirmed significant taste differences between counterfeited and authentic samples but the assessors were unable to correctly identify the counterfeited product in the majority of cases. An important conclusion is that consumers cannot assumed to be self-responsible when consuming counterfeit alcohol because there is no general ability to organoleptically detect counterfeit alcohol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses.

    PubMed

    Pekey, Hakan; Karakaş, Duran; Bakoğlu, Mithat

    2004-11-01

    Surface water samples were collected from ten previously selected sites of the polluted Dil Deresi stream, during two field surveys, December 2001 and April 2002. All samples were analyzed using ICP-AES, and the concentrations of trace metals (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Pb, Sn and Zn) were determined. The results were compared with national and international water quality guidelines, as well as literature values reported for similar rivers. Factor analysis (FA) and a factor analysis-multiple regression (FA-MR) model were used for source apportionment and estimation of contributions from identified sources to the concentration of each parameter. By a varimax rotated factor analysis, four source types were identified as the paint industry; sewage, crustal and road traffic runoff for trace metals, explaining about 83% of the total variance. FA-MR results showed that predicted concentrations were calculated with uncertainties lower than 15%.

  17. Do Concomitant Cranium and Axis Injuries Predict Worse Outcome? A Trauma Database Quantitative Analysis

    PubMed Central

    Chittiboina, Prashant; Banerjee, Anirban Deep; Nanda, Anil

    2011-01-01

    We performed a trauma database analysis to identify the effect of concomitant cranial injuries on outcome in patients with fractures of the axis. We identified patients with axis fractures over a 14-year period. A binary outcome measure was used. Univariate and multiple logistic regression analysis were performed. There were 259 cases with axis fractures. Closed head injury was noted in 57% and skull base trauma in 14%. Death occurred in 17 cases (6%). Seventy-two percent had good outcome. Presence of abnormal computed tomography head findings, skull base fractures, and visceral injury was significantly associated with poor outcome. Skull base injury in association with fractures of the axis is a significant independent predictor of worse outcomes, irrespective of the severity of the head injury. We propose that presence of concomitant cranial and upper vertebral injuries require careful evaluation in view of the associated poor prognosis. PMID:22470268

  18. Butyryl-cholinesterase is related to muscle mass and strength. A new biomarker to identify elderly subjects at risk of sarcopenia.

    PubMed

    Cacciatore, Francesco; Della-Morte, David; Basile, Claudia; Curcio, Francesco; Liguori, Ilaria; Roselli, Mario; Gargiulo, Gaetano; Galizia, Gianluigi; Bonaduce, Domenico; Abete, Pasquale

    2015-01-01

    To determine the relationship between Butyryl-cholinesterase (α-glycoprotein synthesized in the liver, b-CHE) and muscle mass and strength. Muscle mass by bioimpedentiometer and muscle strength by grip strength were evaluated in 337 elderly subjects (mean age: 76.2 ± 6.7 years) admitted to comprehensive geriatric assessment. b-CHE levels were lower in sarcopenic than in nonsarcopenic elderly subjects (p < 0.01). Linear regression analysis demonstrated that b-CHE is linearly related with grip strength and muscular mass both in men and women (r = 0.45 and r = 0.33, p < 0.01; r = 0.55 and r = 0.39, p < 0.01; respectively). Multivariate analysis confirms this analysis. b-CHE is related to muscle mass and strength in elderly subjects. Thus, b-CHE may be considered to be a fair biomarker for identifying elderly subjects at risk of sarcopenia.

  19. Detection of Parathyroid Autofluorescence Using Near-Infrared Imaging: A Multicenter Analysis of Concordance Between Different Surgeons.

    PubMed

    Kahramangil, Bora; Dip, Fernando; Benmiloud, Fares; Falco, Jorge; de La Fuente, Martin; Verna, Silvina; Rosenthal, Raul; Berber, Eren

    2018-04-01

    Parathyroid glands (PGs) exhibit autofluorescence (AF) when excited by near-infrared laser. This multicenter study aims to analyze how this imaging could facilitate the detection of PGs during thyroidectomy and parathyroidectomy procedures. This was a retrospective Institutional Review Board-approved analysis of prospectively collected data at three centers. Near-infrared fluorescence imaging (NIFI) was used to detect AF from PGs during thyroidectomy and parathyroidectomy procedures. Logistic regression analysis was performed to assess the utility of NIFI to identify PGs and concordance at these centers. Overall, 210 patients underwent total thyroidectomy (n = 95), thyroid lobectomy (n = 41), and parathyroidectomy (n = 74) (n = 70 per center). Using NIFI, AF was detected from 98% of visually identified PGs. Upon initial exploration, 46% of PGs were not visible to the naked eye due to coverage by soft tissue, but AF from these glands could be detected by NIFI without any further dissection. Overall, a median of one PG per patient was detected by NIFI in this fashion before being identified visually (p = nonsignificant between centers). On logistic regression, smaller PGs were more likely to be missed visually, but localized by AF on NIFI (odds ratio with increasing size, 0.91; p = 0.02). In our experience, NIFI facilitated PG identification by detecting their AF, before conventional recognition by the surgeon, in 37-67% of the time. Despite the variability in this rate across centers, there was a concordance in detecting AF from 97 to 99% of the PGs using NIFI. We suggest the incorporation of AF on NIFI alongside conventional visual cues to aid identification of PGs during neck operations.

  20. Does Stone Removal Help Patients with Recurrent Urinary Tract Infections?

    PubMed

    Omar, Mohamed; Abdulwahab-Ahmed, Abdullahi; Chaparala, Hemant; Monga, Manoj

    2015-10-01

    We evaluated the impact of surgical extraction of nonobstructing asymptomatic stones on recurrent urinary tract infections and identified predictors of patients who may be rendered infection-free. We retrospectively reviewed charts to identify patients with recurrent urinary tract infections who underwent surgical stone extraction and were rendered stone-free. Demographic variables as well as procedure, infectious etiology, stone composition and the systemic inflammatory response syndrome rate were also recorded. Patients were divided into 2 groups. Group 1 had no evidence of recurrent infection following surgery while recurrent infection developed in group 2. Univariate analysis was performed using the Wilcoxon signed rank and Fisher exact tests. Logistic regression was used for multivariate analysis. We identified 120 patients with recurrent urinary tract infections and a nonobstructive renal stone. Surgical management included shock wave lithotripsy in 32% of cases, ureteroscopy in 7% and percutaneous nephrolithotomy in 61%. Of the 120 patients 58 (48%) remained infection-free after surgery while 62 (52%) experienced recurrent infection. Factors associated with a higher risk of recurrent infections included type 2 diabetes mellitus (OR 1.73, p = 0.01), hypertension (OR 2.8, p = 0.007) and black ethnicity (OR 13.7, p = 0.009). Escherichia coli infections were more likely to resolve (OR 0.34, p = 0.01). In contrast, Enterococcus infections were more likely to persist (OR 2.5, p = 0.04). On multiple logistic regression analysis only race, hypertension and E. coli infections were significant predictors of infection clearance. Of patients with recurrent urinary tract infections and asymptomatic renal calculi 50% may be rendered infection-free following stone extraction. Patients with risk factors for recurrent infections after surgery should be counseled that stone extraction might not eradicate the infection. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Clinical management provided by board-certificated physiatrists in early rehabilitation is a significant determinant of functional improvement in acute stroke patients: a retrospective analysis of Japan rehabilitation database.

    PubMed

    Kinoshita, Shoji; Kakuda, Wataru; Momosaki, Ryo; Yamada, Naoki; Sugawara, Hidekazu; Watanabe, Shu; Abo, Masahiro

    2015-05-01

    Early rehabilitation for acute stroke patients is widely recommended. We tested the hypothesis that clinical outcome of stroke patients who receive early rehabilitation managed by board-certificated physiatrists (BCP) is generally better than that provided by other medical specialties. Data of stroke patients who underwent early rehabilitation in 19 acute hospitals between January 2005 and December 2013 were collected from the Japan Rehabilitation Database and analyzed retrospectively. Multivariate linear regression analysis using generalized estimating equations method was performed to assess the association between Functional Independence Measure (FIM) effectiveness and management provided by BCP in early rehabilitation. In addition, multivariate logistic regression analysis was also performed to assess the impact of management provided by BCP in acute phase on discharge destination. After setting the inclusion criteria, data of 3838 stroke patients were eligible for analysis. BCP provided early rehabilitation in 814 patients (21.2%). Both the duration of daily exercise time and the frequency of regular conferencing were significantly higher for patients managed by BCP than by other specialties. Although the mortality rate was not different, multivariate regression analysis showed that FIM effectiveness correlated significantly and positively with the management provided by BCP (coefficient, .35; 95% confidence interval [CI], .012-.059; P < .005). In addition, multivariate logistic analysis identified clinical management by BCP as a significant determinant of home discharge (odds ratio, 1.24; 95% CI, 1.08-1.44; P < .005). Our retrospective cohort study demonstrated that clinical management provided by BCP in early rehabilitation can lead to functional recovery of acute stroke. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  2. External Tank Liquid Hydrogen (LH2) Prepress Regression Analysis Independent Review Technical Consultation Report

    NASA Technical Reports Server (NTRS)

    Parsons, Vickie s.

    2009-01-01

    The request to conduct an independent review of regression models, developed for determining the expected Launch Commit Criteria (LCC) External Tank (ET)-04 cycle count for the Space Shuttle ET tanking process, was submitted to the NASA Engineering and Safety Center NESC on September 20, 2005. The NESC team performed an independent review of regression models documented in Prepress Regression Analysis, Tom Clark and Angela Krenn, 10/27/05. This consultation consisted of a peer review by statistical experts of the proposed regression models provided in the Prepress Regression Analysis. This document is the consultation's final report.

  3. Unipedal stance testing in the assessment of peripheral neuropathy.

    PubMed

    Hurvitz, E A; Richardson, J K; Werner, R A

    2001-02-01

    To define further the relation between unipedal stance testing and peripheral neuropathy. Prospective cohort. Electroneuromyography laboratory of a Veterans Affairs medical center and a university hospital. Ninety-two patients referred for lower extremity electrodiagnostic studies. A standardized history and physical examination designed to detect peripheral neuropathy, 3 trials of unipedal stance, and electrodiagnostic studies. Peripheral neuropathy was identified by electrodiagnostic testing in 32%. These subjects had a significantly shorter (p <.001) unipedal stance time (15.7s, longest of 3 trials) than the patients without peripheral neuropathy (37.1s). Abnormal unipedal stance time (<45s) identified peripheral neuropathy with a sensitivity of 83% and a specificity of 71%, whereas a normal unipedal stance time had a negative predictive value of 90%. Abnormal unipedal stance time was associated with an increased risk of having peripheral neuropathy on univariate analysis (odds ratio = 8.8, 95% confidence interval = 2.5--31), and was the only significant predictor of peripheral neuropathy in the regression model. Aspects of the neurologic examination did not add to the regression model compared with abnormal unipedal stance time. Unipedal stance testing is useful in the clinical setting both to identify and to exclude the presence of peripheral neuropathy.

  4. Individual- and Neighbourhood-Level Indicators of Subjective Well-Being in a Small and Poor Eastern Cape Township: The Effect of Health, Social Capital, Marital Status, and Income

    ERIC Educational Resources Information Center

    Cramm, J. M.; Moller, V.; Nieboer, A. P.

    2012-01-01

    Our study used multilevel regression analysis to identify individual- and neighbourhood-level factors that determine individual-level subjective well-being in Rhini, a deprived suburb of Grahamstown in the Eastern Cape province of South Africa. The Townsend index and Gini coefficient were used to investigate whether contextual neighbourhood-level…

  5. Investigation of shift in decay hazard (Scheffer) index values over the period 1969-2008 in the conterminous United States

    Treesearch

    Patricia K. Lebow; Charles G. Carll

    2010-01-01

    A statistical analysis was performed that identified time trends in the Scheffer Index value for 167 locations in the conterminous United States over the period 1969-2008. Year-to-year variation in Index values was found to be larger than year-to-year variation in most other weather parameters. Despite the substantial yearly variation, regression equations, with time (...

  6. Risk factors for the breakdown of perineal laceration repair after vaginal delivery.

    PubMed

    Williams, Meredith K; Chames, Mark C

    2006-09-01

    The purpose of this study was to identify risk factors that are associated with the breakdown of perineal laceration repair in the postpartum period. We conducted a retrospective, case-control study to review perineal laceration repair breakdown in patients who were delivered between September 1995 and February 2005 at the University of Michigan. Bivariate analysis with chi-square test and t-test and stepwise logistic regression analysis were performed. Fifty-nine cases and 118 control deliveries were identified from a total of 14,124 vaginal deliveries. Risk factors were longer second stage of labor (142 vs 87 minutes; P = .001), operative vaginal delivery (odds ratio, 3.6; 95% CI, 1.8-7.3), mediolateral episiotomy (odds ratio, 6.9; 95% CI, 2.6-18.7), third- or fourth-degree laceration (odds ratio, 3.1; 95% CI, 1.5-6.4), and meconium-stained amniotic fluid (odds ratio, 3.0; 95% CI, 1.1-7.9). Previous vaginal delivery was protective (odds ratio, 0.38; 95% CI, 0.18-0.84). Logistic regression showed the most significant factor to be an interaction between operative vaginal delivery and mediolateral episiotomy (odd ratio, 6.36; 95% CI, 2.18-18.57). The most significant events were mediolateral episiotomy, especially in conjunction with operative vaginal delivery, third- and fourth-degree lacerations, and meconium.

  7. Admixture Analysis of Spontaneous Hepatitis C Virus Clearance in Individuals of African-Descent

    PubMed Central

    Wojcik, Genevieve L.; Thio, Chloe L.; Kao, WH Linda; Latanich, Rachel; Goedert, James J.; Mehta, Shruti H.; Kirk, Gregory D.; Peters, Marion G.; Cox, Andrea L.; Kim, Arthur Y.; Chung, Raymond T.; Thomas, David L.; Duggal, Priya

    2015-01-01

    Hepatitis C virus (HCV) infects an estimated 3% of the global population with the majority of individuals (75–85%) failing to clear the virus without treatment, leading to chronic liver disease. Individuals of African-descent have lower rates of clearance compared to individuals of European-descent and this is not fully explained by social and environmental factors. This suggests that differences in genetic background may contribute to this difference in clinical outcome following HCV infection. Using 473 individuals and 792,721 SNPs from a genome-wide association study (GWAS), we estimated local African ancestry across the genome. Using admixture mapping and logistic regression we identified two regions of interest associated with spontaneous clearance of HCV (15q24, 20p12). A genome-wide significant variant was identified on chromosome 15 at the imputed SNP, rs55817928 (P=6.18×10−8) between the genes SCAPER and RCN. Each additional copy of the African ancestral C allele is associated with 2.4 times the odds of spontaneous clearance. Conditional analysis using this SNP in the logistic regression model explained one-third of the local ancestry association. Additionally, signals of selection in this area suggest positive selection due to some ancestral pathogen or environmental pressure in African, but not in European populations. PMID:24622687

  8. Carbon financial markets: A time-frequency analysis of CO2 prices

    NASA Astrophysics Data System (ADS)

    Sousa, Rita; Aguiar-Conraria, Luís; Soares, Maria Joana

    2014-11-01

    We characterize the interrelation of CO2 prices with energy prices (electricity, gas and coal), and with economic activity. Previous studies have relied on time-domain techniques, such as Vector Auto-Regressions. In this study, we use multivariate wavelet analysis, which operates in the time-frequency domain. Wavelet analysis provides convenient tools to distinguish relations at particular frequencies and at particular time horizons. Our empirical approach has the potential to identify relations getting stronger and then disappearing over specific time intervals and frequencies. We are able to examine the coherency of these variables and lead-lag relations at different frequencies for the time periods in focus.

  9. Analyzing Whitebark Pine Distribution in the Northern Rocky Mountains in Support of Grizzly Bear Recovery

    NASA Astrophysics Data System (ADS)

    Lawrence, R.; Landenburger, L.; Jewett, J.

    2007-12-01

    Whitebark pine seeds have long been identified as the most significant vegetative food source for grizzly bears in the Greater Yellowstone Ecosystem (GYE) and, hence, a crucial element of suitable grizzly bear habitat. The overall health and status of whitebark pine in the GYE is currently threatened by mountain pine beetle infestations and the spread of whitepine blister rust. Whitebark pine distribution (presence/absence) was mapped for the GYE using Landsat 7 Enhanced Thematic Mapper (ETM+) imagery and topographic data as part of a long-term inter-agency monitoring program. Logistic regression was compared with classification tree analysis (CTA) with and without boosting. Overall comparative classification accuracies for the central portion of the GYE covering three ETM+ images along a single path ranged from 91.6% using logistic regression to 95.8% with See5's CTA algorithm with the maximum 99 boosts. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales.

  10. High-Dimensional Heteroscedastic Regression with an Application to eQTL Data Analysis

    PubMed Central

    Daye, Z. John; Chen, Jinbo; Li, Hongzhe

    2011-01-01

    Summary We consider the problem of high-dimensional regression under non-constant error variances. Despite being a common phenomenon in biological applications, heteroscedasticity has, so far, been largely ignored in high-dimensional analysis of genomic data sets. We propose a new methodology that allows non-constant error variances for high-dimensional estimation and model selection. Our method incorporates heteroscedasticity by simultaneously modeling both the mean and variance components via a novel doubly regularized approach. Extensive Monte Carlo simulations indicate that our proposed procedure can result in better estimation and variable selection than existing methods when heteroscedasticity arises from the presence of predictors explaining error variances and outliers. Further, we demonstrate the presence of heteroscedasticity in and apply our method to an expression quantitative trait loci (eQTLs) study of 112 yeast segregants. The new procedure can automatically account for heteroscedasticity in identifying the eQTLs that are associated with gene expression variations and lead to smaller prediction errors. These results demonstrate the importance of considering heteroscedasticity in eQTL data analysis. PMID:22547833

  11. Teacher psychological needs, locus of control and engagement.

    PubMed

    Betoret, Fernando Doménech

    2013-01-01

    This study examines the relationships among psychological needs, locus of control and engagement in a sample of 282 Spanish secondary school teachers. Nine teacher needs were identified based on the study of Bess (1977) and on the Self-Determination Theory (Deci & Ryan, 1985, 2000, 2002). Self-report questionnaires were used to measure the construct selected for this study and their interrelationships were examined by conducting hierarchical regression analyses. An analysis of teacher responses using hierarchical regression reveals that psychological needs have significant positive effects on the three engagement dimensions (vigor, dedication and absorption). Furthermore, the results show the moderator role played by locus of control in the relationship between teacher psychological needs and the so-called core of engagement (vigor and dedication). Finally, practical implications are discussed.

  12. Palus Somni - Anomalies in the correlation of Al/Si X-ray fluorescence intensity ratios and broad-spectrum visible albedos. [lunar surface mineralogy

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Andre, C. G.; Adler, I.; Weidner, J.; Podwysocki, M.

    1976-01-01

    The positive correlation between Al/Si X-ray fluorescence intensity ratios determined during the Apollo 15 lunar mission and a broad-spectrum visible albedo of the moon is quantitatively established. Linear regression analysis performed on 246 1 degree geographic cells of X-ray fluorescence intensity and visible albedo data points produced a statistically significant correlation coefficient of .78. Three distinct distributions of data were identified as (1) within one standard deviation of the regression line, (2) greater than one standard deviation below the line, and (3) greater than one standard deviation above the line. The latter two distributions of data were found to occupy distinct geographic areas in the Palus Somni region.

  13. Cross-cultural differences in psychiatric nurses' attitudes to inpatient aggression.

    PubMed

    Jansen, Gerard J; Middel, Berry; Dassen, Theo W N; Reijneveld, Menno S A

    2006-04-01

    Little is currently known about the attitudes of psychiatric nurses toward patient aggression, particularly from an international perspective. Attitudes toward patient aggression of psychiatric nurses from five European countries were investigated using a recently developed and tested attitude scale. Data were collected from a convenience sample of 1,769 student nurses and psychiatric nurses. Regression analysis was performed to identify personal and occupational characteristics of the respondents able to predict their attitude toward aggression. Analysis of variance was used to identify significant differences in attitudes between and among countries. Attitude was predicted by sex, contractual status (full vs. part time), and the type of ward on which subjects worked. With one exception (communicative attitude), attitudes differed across countries. More research on attitude formation is needed to determine which factors account for these differences.

  14. [Two-level logistic modeling analysis on the factors that influence birth in hospitals in poor rural areas of Sichuan province].

    PubMed

    Yu, Chuan; Li, Xiao-song

    2008-11-01

    To identify the determinants of birth in hospitals in the poor rural areas. A questionnaire survey in eight poor counties in Sichuan province was conducted. Multilevel logistic regression analysis was performed to identify the factors that influenced birth in hospitals. Hospitals delivered 61.4% of babies in the selected counties. Education, eligibility to poverty relief, numbers of pre-natal examinations and abnormalities found in pre-natal examinations had a significant impact on birth in hospitals. Education of women and medical relief in the poor rural areas need to be strengthened to increase the proportion of babies delivered in hospitals in the poor rural areas. Systematic management of pregnant women and increased pre-natal examinations could also contribute to hospital delivery of babies.

  15. Dimensions of aberrant driving behaviours in Tunisia: identifying the relation between Driver Behaviour Questionnaire results and accident data.

    PubMed

    Mohamed, Dhibi; Lotfi, Belkacem

    2016-12-01

    In this study, the Manchester Driver Behaviour Questionnaire (DBQ) was used to examine the self-reported driving behaviours of a group of Tunisian drivers (N = 900) and to collect socio-demographic data, driver behaviours and DBQ items. A sample of Tunisian drivers above 18 years was selected. The aim of the present study was to investigate the factorial structure of the DBQ in Tunisia. The principal component analysis identified three factor solutions: inattention errors, dangerous errors and dangerous violations. Logistic regression analysis showed that dangerous errors, dangerous violations and speeding preference factors predicted crash involvement in Tunisia. Speeding is the most common form of aberrant behaviour reported by drivers in the current sample. It remains one of the major road safety concerns.

  16. Learning Through Experience: Influence of Formal and Informal Training on Medical Error Disclosure Skills in Residents.

    PubMed

    Wong, Brian M; Coffey, Maitreya; Nousiainen, Markku T; Brydges, Ryan; McDonald-Blumer, Heather; Atkinson, Adelle; Levinson, Wendy; Stroud, Lynfa

    2017-02-01

    Residents' attitudes toward error disclosure have improved over time. It is unclear whether this has been accompanied by improvements in disclosure skills. To measure the disclosure skills of internal medicine (IM), paediatrics, and orthopaedic surgery residents, and to explore resident perceptions of formal versus informal training in preparing them for disclosure in real-world practice. We assessed residents' error disclosure skills using a structured role play with a standardized patient in 2012-2013. We compared disclosure skills across programs using analysis of variance. We conducted a multiple linear regression, including data from a historical cohort of IM residents from 2005, to investigate the influence of predictor variables on performance: training program, cohort year, and prior disclosure training and experience. We conducted a qualitative descriptive analysis of data from semistructured interviews with residents to explore resident perceptions of formal versus informal disclosure training. In a comparison of disclosure skills for 49 residents, there was no difference in overall performance across specialties (4.1 to 4.4 of 5, P  = .19). In regression analysis, only the current cohort was significantly associated with skill: current residents performed better than a historical cohort of 42 IM residents ( P  < .001). Qualitative analysis identified the importance of both formal (workshops, morbidity and mortality rounds) and informal (role modeling, debriefing) activities in preparation for disclosure in real-world practice. Residents across specialties have similar skills in disclosure of errors. Residents identified role modeling and a strong local patient safety culture as key facilitators for disclosure.

  17. Risk of thromboembolism in women taking ethinylestradiol/drospirenone and other oral contraceptives.

    PubMed

    Seeger, John D; Loughlin, Jeanne; Eng, P Mona; Clifford, C Robin; Cutone, Jennifer; Walker, Alexander M

    2007-09-01

    The oral contraceptive ethinylestradiol 0.03 mg/drospirenone 3 mg contains a progestin component that differs from other oral contraceptives. Case reports and prescription event monitoring suggested that ethinylestradiol/drospirenone might be associated with an elevated risk of thromboembolism. We sought to estimate the association between ethinylestradiol/drospirenone and risk of thromboembolism relative to the association among other oral contraceptives. We identified ethinylestradiol/drospirenone initiators and a twofold larger group of other oral contraceptive initiators between June 2001 and June 2004 within a U.S. health insurer database. The comparison group was selected to have demographic and health care characteristics preceding oral contraceptive initiation that were similar to ethinylestradiol/drospirenone initiators. Thromboembolism during the follow-up of the cohorts was identified through claims for medical services, and only medical record-confirmed cases were included in analyses. The primary (as-matched) analysis used proportional hazards regression, whereas a secondary (as-treated) analysis accounted for changes in oral contraceptives during follow-up using Poisson regression. The 22,429 ethinylestradiol/drospirenone initiators and 44,858 other oral contraceptive initiators were followed for an average of 7.6 months, and there were 18 cases of thromboembolism in ethinylestradiol/drospirenone initiators and 39 in the comparators (rate ratio 0.9, 95% confidence interval 0.5-1.6). More than 9,000 women would need to be prescribed oral contraceptives to observe a difference of one case of thromboembolism. Results of the as-treated analysis were similar to those of the as-matched analysis. Ethinylestradiol/drospirenone initiators and initiators of other oral contraceptives are similarly likely to experience thromboembolism. II.

  18. Spatial Analysis of the Human Immunodeficiency Virus Epidemic among Men Who Have Sex with Men in China, 2006-2015.

    PubMed

    Qin, Qianqian; Guo, Wei; Tang, Weiming; Mahapatra, Tanmay; Wang, Liyan; Zhang, Nanci; Ding, Zhengwei; Cai, Chang; Cui, Yan; Sun, Jiangping

    2017-04-01

    Studies have shown a recent upsurge in human immunodeficiency virus (HIV) burden among men who have sex with men (MSM) in China, especially in urban areas. For intervention planning and resource allocation, spatial analyses of HIV/AIDS case-clusters were required to identify epidemic foci and trends among MSM in China. Information regarding MSM recorded as HIV/AIDS cases during 2006-2015 were extracted from the National Case Reporting System. Demographic trends were determined through Cochran-Armitage trend tests. Distribution of case-clusters was examined using spatial autocorrelation. Spatial-temporal scan was used to detect disease clustering. Spatial correlations between cases and socioenvironmental factors were determined by spatial regression. Between 2006 and 2015, in China, 120 371 HIV/AIDS cases were identified among MSM. Newly identified HIV/AIDS cases among self-reported MSM increased from 487 cases in 2006 to >30 000 cases in 2015. Among those HIV/AIDS cases recorded during 2006-2015, 47.0% were 20-29 years old and 24.9% were aged 30-39 years. Based on clusters of HIV/AIDS cases identified through spatial analysis, the epidemic was concentrated among MSM in large cities. Spatial-temporal clusters contained municipalities, provincial capitals, and main cities such as Beijing, Shanghai, Chongqing, Chengdu, and Guangzhou. Spatial regression analysis showed that sociodemographic indicators such as population density, per capita gross domestic product, and number of county-level medical institutions had statistically significant positive correlations with HIV/AIDS among MSM. Assorted spatial analyses revealed an increasingly concentrated HIV epidemic among young MSM in Chinese cities, calling for targeted health education and intensive interventions at an early age. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  19. Utility of salivary biomarkers for demonstrating acute myocardial infarction.

    PubMed

    Miller, C S; Foley, J D; Floriano, P N; Christodoulides, N; Ebersole, J L; Campbell, C L; Bailey, A L; Rose, B G; Kinane, D F; Novak, M J; McDevitt, J T; Ding, X; Kryscio, R J

    2014-07-01

    The comparative utility of serum and saliva as diagnostic fluids for identifying biomarkers of acute myocardial infarction (AMI) was investigated. The goal was to determine if salivary biomarkers could facilitate a screening diagnosis of AMI, especially in cases of non-ST elevation MI (NSTEMI), since these cases are not readily identified by electrocardiogram (ECG). Serum and unstimulated whole saliva (UWS) collected from 92 AMI patients within 48 hours of chest pain onset and 105 asymptomatic healthy control individuals were assayed for 13 proteins relevant to cardiovascular disease, by Beadlyte technology (Luminex(®)) and enzyme immunoassays. Data were analyzed with concentration cut-points, ECG findings, logistic regression (LR) (adjusted for matching for age, gender, race, smoking, number of teeth, and oral health status), and classification and regression tree (CART) analysis. A sensitivity analysis was conducted by repetition of the CART analysis in 58 cases and 58 controls, each matched by age and gender. Serum biomarkers demonstrated AMI sensitivity and specificity superior to that of saliva, as determined by LR and CART. The predominant discriminators in serum by LR were troponin I (TnI), B-type natriuretic peptide (BNP), and creatine kinase-MB (CK-MB), and TnI and BNP by CART. In saliva, LR identified C-reactive protein (CRP) as the biomarker most predictive of AMI. A combination of smoking tobacco, UWS CRP, CK-MB, sCD40 ligand, gender, and number of teeth identified AMI in the CART decision trees. When ECG findings, salivary biomarkers, and confounders were included, AMI was predicted with 80.0% sensitivity and 100% specificity. These analyses support the potential utility of salivary biomarker measurements used with ECG for the identification of AMI. Thus, saliva-based tests may provide additional diagnostic screening information in the clinical course for patients suspected of having an AMI. © International & American Associations for Dental Research.

  20. Determinants associated with deprivation in multimorbid patients in primary care—A cross-sectional study in Switzerland

    PubMed Central

    Déruaz-Luyet, Anouk; N’Goran, A. Alexandra; Pasquier, Jérôme; Streit, Sven; Neuner-Jehle, Stefan; Zeller, Andreas; Haller, Dagmar M.; Herzig, Lilli; Bodenmann, Patrick

    2017-01-01

    Background Deprivation usually encompasses material, social, and health components. It has been shown to be associated with greater risks of developing chronic health conditions and of worse outcome in multimorbidity. The DipCare questionnaire, an instrument developed and validated in Switzerland for use in primary care, identifies patients subject to potentially higher levels of deprivation. Objectives To identifying determinants of the material, social, and health profiles associated with deprivation in a sample of multimorbid, primary care patients, and thus set priorities in screening for deprivation in this population. Design Secondary analysis from a nationwide cross-sectional study in Switzerland. Participants A random sample of 886 adult patients suffering from at least three chronic health conditions. Main measures The outcomes of interest were the patients’ levels of deprivation as measured using the DipCare questionnaire. Classification And Regression Tree analysis identified the independent variables that separated the examined population into groups with increasing deprivation scores. Finally, a sensitivity analysis (multivariate regression) confirmed the robustness of our results. Key results Being aged under 64 years old was associated with higher overall, material, and health deprivation; being aged over 77 years old was associated with higher social deprivation. Other variables associated with deprivation were the level of education, marital status, and the presence of depression or chronic pain. Conclusion Specific profiles, such as being younger, were associated with higher levels of overall, material, and health deprivation in multimorbid patients. In contrast, patients over 77 years old reported higher levels of social deprivation. Furthermore, chronic pain and depression added to the score for health deprivation. It is important that GPs consider the possibility of deprivation in these multimorbid patients and are able to identify it, both in order to encourage treatment adherence and limit any forgoing of care for financial reasons. PMID:28738070

  1. Combining fibre optic Raman spectroscopy and tactile resonance measurement for tissue characterization

    NASA Astrophysics Data System (ADS)

    Candefjord, Stefan; Nyberg, Morgan; Jalkanen, Ville; Ramser, Kerstin; Lindahl, Olof A.

    2010-12-01

    Tissue characterization is fundamental for identification of pathological conditions. Raman spectroscopy (RS) and tactile resonance measurement (TRM) are two promising techniques that measure biochemical content and stiffness, respectively. They have potential to complement the golden standard--histological analysis. By combining RS and TRM, complementary information about tissue content can be obtained and specific drawbacks can be avoided. The aim of this study was to develop a multivariate approach to compare RS and TRM information. The approach was evaluated on measurements at the same points on porcine abdominal tissue. The measurement points were divided into five groups by multivariate analysis of the RS data. A regression analysis was performed and receiver operating characteristic (ROC) curves were used to compare the RS and TRM data. TRM identified one group efficiently (area under ROC curve 0.99). The RS data showed that the proportion of saturated fat was high in this group. The regression analysis showed that stiffness was mainly determined by the amount of fat and its composition. We concluded that RS provided additional, important information for tissue identification that was not provided by TRM alone. The results are promising for development of a method combining RS and TRM for intraoperative tissue characterization.

  2. Laboratory test variables useful for distinguishing upper from lower gastrointestinal bleeding.

    PubMed

    Tomizawa, Minoru; Shinozaki, Fuminobu; Hasegawa, Rumiko; Shirai, Yoshinori; Motoyoshi, Yasufumi; Sugiyama, Takao; Yamamoto, Shigenori; Ishige, Naoki

    2015-05-28

    To distinguish upper from lower gastrointestinal (GI) bleeding. Patient records between April 2011 and March 2014 were analyzed retrospectively (3296 upper endoscopy, and 1520 colonoscopy). Seventy-six patients had upper GI bleeding (Upper group) and 65 had lower GI bleeding (Lower group). Variables were compared between the groups using one-way analysis of variance. Logistic regression was performed to identify variables significantly associated with the diagnosis of upper vs lower GI bleeding. Receiver-operator characteristic (ROC) analysis was performed to determine the threshold value that could distinguish upper from lower GI bleeding. Hemoglobin (P = 0.023), total protein (P = 0.0002), and lactate dehydrogenase (P = 0.009) were significantly lower in the Upper group than in the Lower group. Blood urea nitrogen (BUN) was higher in the Upper group than in the Lower group (P = 0.0065). Logistic regression analysis revealed that BUN was most strongly associated with the diagnosis of upper vs lower GI bleeding. ROC analysis revealed a threshold BUN value of 21.0 mg/dL, with a specificity of 93.0%. The threshold BUN value for distinguishing upper from lower GI bleeding was 21.0 mg/dL.

  3. Laboratory test variables useful for distinguishing upper from lower gastrointestinal bleeding

    PubMed Central

    Tomizawa, Minoru; Shinozaki, Fuminobu; Hasegawa, Rumiko; Shirai, Yoshinori; Motoyoshi, Yasufumi; Sugiyama, Takao; Yamamoto, Shigenori; Ishige, Naoki

    2015-01-01

    AIM: To distinguish upper from lower gastrointestinal (GI) bleeding. METHODS: Patient records between April 2011 and March 2014 were analyzed retrospectively (3296 upper endoscopy, and 1520 colonoscopy). Seventy-six patients had upper GI bleeding (Upper group) and 65 had lower GI bleeding (Lower group). Variables were compared between the groups using one-way analysis of variance. Logistic regression was performed to identify variables significantly associated with the diagnosis of upper vs lower GI bleeding. Receiver-operator characteristic (ROC) analysis was performed to determine the threshold value that could distinguish upper from lower GI bleeding. RESULTS: Hemoglobin (P = 0.023), total protein (P = 0.0002), and lactate dehydrogenase (P = 0.009) were significantly lower in the Upper group than in the Lower group. Blood urea nitrogen (BUN) was higher in the Upper group than in the Lower group (P = 0.0065). Logistic regression analysis revealed that BUN was most strongly associated with the diagnosis of upper vs lower GI bleeding. ROC analysis revealed a threshold BUN value of 21.0 mg/dL, with a specificity of 93.0%. CONCLUSION: The threshold BUN value for distinguishing upper from lower GI bleeding was 21.0 mg/dL. PMID:26034359

  4. Socioeconomic Factors Are Associated With Readmission After Lobectomy for Early Stage Lung Cancer.

    PubMed

    Medbery, Rachel L; Gillespie, Theresa W; Liu, Yuan; Nickleach, Dana C; Lipscomb, Joseph; Sancheti, Manu S; Pickens, Allan; Force, Seth D; Fernandez, Felix G

    2016-11-01

    Data regarding risk factors for readmissions after surgical resection for lung cancer are limited and largely focus on postoperative outcomes, including complications and hospital length of stay. The current study aims to identify preoperative risk factors for postoperative readmission in early stage lung cancer patients. The National Cancer Data Base was queried for all early stage lung cancer patients with clinical stage T2N0M0 or less who underwent lobectomy in 2010 and 2011. Patients with unplanned readmission within 30 days of hospital discharge were identified. Univariate analysis was utilized to identify preoperative differences between readmitted and not readmitted cohorts; multivariable logistic regression was used to identify risk factors resulting in readmission. In all, 840 of 19,711 patients (4.3%) were readmitted postoperatively. Male patients were more likely to be readmitted than female patients (4.9% versus 3.8%, p < 0.001), as were patients who received surgery at a nonacademic rather than an academic facility (4.6% versus 3.6%; p = 0.001) and had underlying medical comorbidities (Charlson/Deyo score 1+ versus 0; 4.8% versus 3.7%; p < 0.001). Readmitted patients had a longer median hospital length of stay (6 days versus 5; p < 0.001) and were more likely to have undergone a minimally invasive approach (5.1% video-assisted thoracic surgery versus 3.9% open; p < 0.001). In addition to those variables, multivariable logistic regression analysis identified that median household income level, insurance status (government versus private), and geographic residence (metropolitan versus urban versus rural) had significant influence on readmission. The socioeconomic factors identified significantly influence hospital readmission and should be considered during preoperative and postoperative discharge planning for patients with early stage lung cancer. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Peak-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Peak-flow annual exceedance probabilities, also called probability-percent chance flow estimates, and regional regression equations are provided describing the peak-flow characteristics of Virginia streams. Statistical methods are used to evaluate peak-flow data. Analysis of Virginia peak-flow data collected from 1895 through 2007 is summarized. Methods are provided for estimating unregulated peak flow of gaged and ungaged streams. Station peak-flow characteristics identified by fitting the logarithms of annual peak flows to a Log Pearson Type III frequency distribution yield annual exceedance probabilities of 0.5, 0.4292, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 for 476 streamgaging stations. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression model equations for six physiographic regions to estimate regional annual exceedance probabilities at gaged and ungaged sites. Weighted peak-flow values that combine annual exceedance probabilities computed from gaging station data and from regional regression equations provide improved peak-flow estimates. Text, figures, and lists are provided summarizing selected peak-flow sites, delineated physiographic regions, peak-flow estimates, basin characteristics, regional regression model equations, error estimates, definitions, data sources, and candidate regression model equations. This study supersedes previous studies of peak flows in Virginia.

  6. Detecting outliers when fitting data with nonlinear regression – a new method based on robust nonlinear regression and the false discovery rate

    PubMed Central

    Motulsky, Harvey J; Brown, Ronald E

    2006-01-01

    Background Nonlinear regression, like linear regression, assumes that the scatter of data around the ideal curve follows a Gaussian or normal distribution. This assumption leads to the familiar goal of regression: to minimize the sum of the squares of the vertical or Y-value distances between the points and the curve. Outliers can dominate the sum-of-the-squares calculation, and lead to misleading results. However, we know of no practical method for routinely identifying outliers when fitting curves with nonlinear regression. Results We describe a new method for identifying outliers when fitting data with nonlinear regression. We first fit the data using a robust form of nonlinear regression, based on the assumption that scatter follows a Lorentzian distribution. We devised a new adaptive method that gradually becomes more robust as the method proceeds. To define outliers, we adapted the false discovery rate approach to handling multiple comparisons. We then remove the outliers, and analyze the data using ordinary least-squares regression. Because the method combines robust regression and outlier removal, we call it the ROUT method. When analyzing simulated data, where all scatter is Gaussian, our method detects (falsely) one or more outlier in only about 1–3% of experiments. When analyzing data contaminated with one or several outliers, the ROUT method performs well at outlier identification, with an average False Discovery Rate less than 1%. Conclusion Our method, which combines a new method of robust nonlinear regression with a new method of outlier identification, identifies outliers from nonlinear curve fits with reasonable power and few false positives. PMID:16526949

  7. A spatial cluster analysis of tractor overturns in Kentucky from 1960 to 2002

    USGS Publications Warehouse

    Saman, D.M.; Cole, H.P.; Odoi, A.; Myers, M.L.; Carey, D.I.; Westneat, S.C.

    2012-01-01

    Background: Agricultural tractor overturns without rollover protective structures are the leading cause of farm fatalities in the United States. To our knowledge, no studies have incorporated the spatial scan statistic in identifying high-risk areas for tractor overturns. The aim of this study was to determine whether tractor overturns cluster in certain parts of Kentucky and identify factors associated with tractor overturns. Methods: A spatial statistical analysis using Kulldorff's spatial scan statistic was performed to identify county clusters at greatest risk for tractor overturns. A regression analysis was then performed to identify factors associated with tractor overturns. Results: The spatial analysis revealed a cluster of higher than expected tractor overturns in four counties in northern Kentucky (RR = 2.55) and 10 counties in eastern Kentucky (RR = 1.97). Higher rates of tractor overturns were associated with steeper average percent slope of pasture land by county (p = 0.0002) and a greater percent of total tractors with less than 40 horsepower by county (p<0.0001). Conclusions: This study reveals that geographic hotspots of tractor overturns exist in Kentucky and identifies factors associated with overturns. This study provides policymakers a guide to targeted county-level interventions (e.g., roll-over protective structures promotion interventions) with the intention of reducing tractor overturns in the highest risk counties in Kentucky. ?? 2012 Saman et al.

  8. Determining delayed admission to intensive care unit for mechanically ventilated patients in the emergency department.

    PubMed

    Hung, Shih-Chiang; Kung, Chia-Te; Hung, Chih-Wei; Liu, Ber-Ming; Liu, Jien-Wei; Chew, Ghee; Chuang, Hung-Yi; Lee, Wen-Huei; Lee, Tzu-Chi

    2014-08-23

    The adverse effects of delayed admission to the intensive care unit (ICU) have been recognized in previous studies. However, the definitions of delayed admission varies across studies. This study proposed a model to define "delayed admission", and explored the effect of ICU-waiting time on patients' outcome. This retrospective cohort study included non-traumatic adult patients on mechanical ventilation in the emergency department (ED), from July 2009 to June 2010. The primary outcomes measures were 21-ventilator-day mortality and prolonged hospital stays (over 30 days). Models of Cox regression and logistic regression were used for multivariate analysis. The non-delayed ICU-waiting was defined as a period in which the time effect on mortality was not statistically significant in a Cox regression model. To identify a suitable cut-off point between "delayed" and "non-delayed", subsets from the overall data were made based on ICU-waiting time and the hazard ratio of ICU-waiting hour in each subset was iteratively calculated. The cut-off time was then used to evaluate the impact of delayed ICU admission on mortality and prolonged length of hospital stay. The final analysis included 1,242 patients. The time effect on mortality emerged after 4 hours, thus we deduced ICU-waiting time in ED > 4 hours as delayed. By logistic regression analysis, delayed ICU admission affected the outcomes of 21 ventilator-days mortality and prolonged hospital stay, with odds ratio of 1.41 (95% confidence interval, 1.05 to 1.89) and 1.56 (95% confidence interval, 1.07 to 2.27) respectively. For patients on mechanical ventilation at the ED, delayed ICU admission is associated with higher probability of mortality and additional resource expenditure. A benchmark waiting time of no more than 4 hours for ICU admission is recommended.

  9. Selection of higher order regression models in the analysis of multi-factorial transcription data.

    PubMed

    Prazeres da Costa, Olivia; Hoffman, Arthur; Rey, Johannes W; Mansmann, Ulrich; Buch, Thorsten; Tresch, Achim

    2014-01-01

    Many studies examine gene expression data that has been obtained under the influence of multiple factors, such as genetic background, environmental conditions, or exposure to diseases. The interplay of multiple factors may lead to effect modification and confounding. Higher order linear regression models can account for these effects. We present a new methodology for linear model selection and apply it to microarray data of bone marrow-derived macrophages. This experiment investigates the influence of three variable factors: the genetic background of the mice from which the macrophages were obtained, Yersinia enterocolitica infection (two strains, and a mock control), and treatment/non-treatment with interferon-γ. We set up four different linear regression models in a hierarchical order. We introduce the eruption plot as a new practical tool for model selection complementary to global testing. It visually compares the size and significance of effect estimates between two nested models. Using this methodology we were able to select the most appropriate model by keeping only relevant factors showing additional explanatory power. Application to experimental data allowed us to qualify the interaction of factors as either neutral (no interaction), alleviating (co-occurring effects are weaker than expected from the single effects), or aggravating (stronger than expected). We find a biologically meaningful gene cluster of putative C2TA target genes that appear to be co-regulated with MHC class II genes. We introduced the eruption plot as a tool for visual model comparison to identify relevant higher order interactions in the analysis of expression data obtained under the influence of multiple factors. We conclude that model selection in higher order linear regression models should generally be performed for the analysis of multi-factorial microarray data.

  10. Acoustic Radiation Force Impulse Imaging for the Differentiation of Benign and Malignant Lymph Nodes: A Systematic Review and Meta-Analysis.

    PubMed

    Zhang, Peige; Zhang, Li; Zheng, Shaoping; Yu, Cheng; Xie, Mingxing; Lv, Qing

    2016-01-01

    To evaluate the overall performance of acoustic radiation force impulse imaging (ARFI) in differentiating between benign and malignant lymph nodes (LNs) by conducting a meta-analysis. PubMed, Embase, Web of Science, the Cochrane Library and the China National Knowledge Infrastructure were comprehensively searched for potential studies through August 13th, 2016. Studies that investigated the diagnostic power of ARFI for the differential diagnosis of benign and malignant LNs by using virtual touch tissue quantification (VTQ) or virtual touch tissue imaging quantification (VTIQ) were collected. The included articles were published in English or Chinese. Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) was used to evaluate the methodological quality. The pooled sensitivity, specificity, and the area under the summary receiver operating characteristic (SROC) curve (AUC) were calculated by means of a bivariate mixed-effects regression model. Meta-regression analysis was performed to identify the potential sources of between study heterogeneity. Fagan plot analysis was used to explore the clinical utilities. Publication bias was assessed using Deek's funnel plot. Nine studies involving 1084 LNs from 929 patients were identified to analyze in the meta-analysis. The summary sensitivity and specificity of ARFI in detecting malignant LNs were 0.87 (95% confidence interval [CI], 0.83-0.91) and 0.88 (95% CI, 0.82-0.92), respectively. The AUC was 0.93 (95% CI, 0.90-0.95). The pooled DOR was 49.59 (95% CI, 26.11-94.15). Deek's funnel plot revealed no significant publication bias. ARFI is a promising tool for the differentiation of benign and malignant LNs with high sensitivity and specificity.

  11. Acoustic Radiation Force Impulse Imaging for the Differentiation of Benign and Malignant Lymph Nodes: A Systematic Review and Meta-Analysis

    PubMed Central

    Yu, Cheng; Xie, Mingxing; Lv, Qing

    2016-01-01

    Objective To evaluate the overall performance of acoustic radiation force impulse imaging (ARFI) in differentiating between benign and malignant lymph nodes (LNs) by conducting a meta-analysis. Methods PubMed, Embase, Web of Science, the Cochrane Library and the China National Knowledge Infrastructure were comprehensively searched for potential studies through August 13th, 2016. Studies that investigated the diagnostic power of ARFI for the differential diagnosis of benign and malignant LNs by using virtual touch tissue quantification (VTQ) or virtual touch tissue imaging quantification (VTIQ) were collected. The included articles were published in English or Chinese. Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) was used to evaluate the methodological quality. The pooled sensitivity, specificity, and the area under the summary receiver operating characteristic (SROC) curve (AUC) were calculated by means of a bivariate mixed-effects regression model. Meta-regression analysis was performed to identify the potential sources of between study heterogeneity. Fagan plot analysis was used to explore the clinical utilities. Publication bias was assessed using Deek’s funnel plot. Results Nine studies involving 1084 LNs from 929 patients were identified to analyze in the meta-analysis. The summary sensitivity and specificity of ARFI in detecting malignant LNs were 0.87 (95% confidence interval [CI], 0.83–0.91) and 0.88 (95% CI, 0.82–0.92), respectively. The AUC was 0.93 (95% CI, 0.90–0.95). The pooled DOR was 49.59 (95% CI, 26.11–94.15). Deek’s funnel plot revealed no significant publication bias. Conclusion ARFI is a promising tool for the differentiation of benign and malignant LNs with high sensitivity and specificity. PMID:27855188

  12. Metabolic phenotyping of urine for discriminating alcohol-dependent from social drinkers and alcohol-naive subjects.

    PubMed

    Mostafa, Hamza; Amin, Arwa M; Teh, Chin-Hoe; Murugaiyah, Vikneswaran; Arif, Nor Hayati; Ibrahim, Baharudin

    2016-12-01

    Alcohol-dependence (AD) is a ravaging public health and social problem. AD diagnosis depends on questionnaires and some biomarkers, which lack specificity and sensitivity, however, often leading to less precise diagnosis, as well as delaying treatment. This represents a great burden, not only on AD individuals but also on their families. Metabolomics using nuclear magnetic resonance spectroscopy (NMR) can provide novel techniques for the identification of novel biomarkers of AD. These putative biomarkers can facilitate early diagnosis of AD. To identify novel biomarkers able to discriminate between alcohol-dependent, non-AD alcohol drinkers and controls using metabolomics. Urine samples were collected from 30 alcohol-dependent persons who did not yet start AD treatment, 54 social drinkers and 60 controls, who were then analysed using NMR. Data analysis was done using multivariate analysis including principal component analysis (PCA) and orthogonal partial least square-discriminate analysis (OPLS-DA), followed by univariate and multivariate logistic regression to develop the discriminatory model. The reproducibility was done using intraclass correlation coefficient (ICC). The OPLS-DA revealed significant discrimination between AD and other groups with sensitivity 86.21%, specificity 97.25% and accuracy 94.93%. Six biomarkers were significantly associated with AD in the multivariate logistic regression model. These biomarkers were cis-aconitic acid, citric acid, alanine, lactic acid, 1,2-propanediol and 2-hydroxyisovaleric acid. The reproducibility of all biomarkers was excellent (0.81-1.0). This study revealed that metabolomics analysis of urine using NMR identified AD novel biomarkers which can discriminate AD from social drinkers and controls with high accuracy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Maintenance Operations in Mission Oriented Protective Posture Level IV (MOPPIV)

    DTIC Science & Technology

    1987-10-01

    Repair FADAC Printed Circuit Board ............. 6 3. Data Analysis Techniques ............................. 6 a. Multiple Linear Regression... ANALYSIS /DISCUSSION ............................... 12 1. Exa-ple of Regression Analysis ..................... 12 S2. Regression results for all tasks...6 * TABLE 9. Task Grouping for Analysis ........................ 7 "TABXLE 10. Remove/Replace H60A3 Power Pack................. 8 TABLE

  14. Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence.

    PubMed

    Sniekers, Suzanne; Stringer, Sven; Watanabe, Kyoko; Jansen, Philip R; Coleman, Jonathan R I; Krapohl, Eva; Taskesen, Erdogan; Hammerschlag, Anke R; Okbay, Aysu; Zabaneh, Delilah; Amin, Najaf; Breen, Gerome; Cesarini, David; Chabris, Christopher F; Iacono, William G; Ikram, M Arfan; Johannesson, Magnus; Koellinger, Philipp; Lee, James J; Magnusson, Patrik K E; McGue, Matt; Miller, Mike B; Ollier, William E R; Payton, Antony; Pendleton, Neil; Plomin, Robert; Rietveld, Cornelius A; Tiemeier, Henning; van Duijn, Cornelia M; Posthuma, Danielle

    2017-07-01

    Intelligence is associated with important economic and health-related life outcomes. Despite intelligence having substantial heritability (0.54) and a confirmed polygenic nature, initial genetic studies were mostly underpowered. Here we report a meta-analysis for intelligence of 78,308 individuals. We identify 336 associated SNPs (METAL P < 5 × 10 -8 ) in 18 genomic loci, of which 15 are new. Around half of the SNPs are located inside a gene, implicating 22 genes, of which 11 are new findings. Gene-based analyses identified an additional 30 genes (MAGMA P < 2.73 × 10 -6 ), of which all but one had not been implicated previously. We show that the identified genes are predominantly expressed in brain tissue, and pathway analysis indicates the involvement of genes regulating cell development (MAGMA competitive P = 3.5 × 10 -6 ). Despite the well-known difference in twin-based heritability for intelligence in childhood (0.45) and adulthood (0.80), we show substantial genetic correlation (r g = 0.89, LD score regression P = 5.4 × 10 -29 ). These findings provide new insight into the genetic architecture of intelligence.

  15. An application in identifying high-risk populations in alternative tobacco product use utilizing logistic regression and CART: a heuristic comparison.

    PubMed

    Lei, Yang; Nollen, Nikki; Ahluwahlia, Jasjit S; Yu, Qing; Mayo, Matthew S

    2015-04-09

    Other forms of tobacco use are increasing in prevalence, yet most tobacco control efforts are aimed at cigarettes. In light of this, it is important to identify individuals who are using both cigarettes and alternative tobacco products (ATPs). Most previous studies have used regression models. We conducted a traditional logistic regression model and a classification and regression tree (CART) model to illustrate and discuss the added advantages of using CART in the setting of identifying high-risk subgroups of ATP users among cigarettes smokers. The data were collected from an online cross-sectional survey administered by Survey Sampling International between July 5, 2012 and August 15, 2012. Eligible participants self-identified as current smokers, African American, White, or Latino (of any race), were English-speaking, and were at least 25 years old. The study sample included 2,376 participants and was divided into independent training and validation samples for a hold out validation. Logistic regression and CART models were used to examine the important predictors of cigarettes + ATP users. The logistic regression model identified nine important factors: gender, age, race, nicotine dependence, buying cigarettes or borrowing, whether the price of cigarettes influences the brand purchased, whether the participants set limits on cigarettes per day, alcohol use scores, and discrimination frequencies. The C-index of the logistic regression model was 0.74, indicating good discriminatory capability. The model performed well in the validation cohort also with good discrimination (c-index = 0.73) and excellent calibration (R-square = 0.96 in the calibration regression). The parsimonious CART model identified gender, age, alcohol use score, race, and discrimination frequencies to be the most important factors. It also revealed interesting partial interactions. The c-index is 0.70 for the training sample and 0.69 for the validation sample. The misclassification rate was 0.342 for the training sample and 0.346 for the validation sample. The CART model was easier to interpret and discovered target populations that possess clinical significance. This study suggests that the non-parametric CART model is parsimonious, potentially easier to interpret, and provides additional information in identifying the subgroups at high risk of ATP use among cigarette smokers.

  16. The association between maternal serious psychological distress and child obesity at 3 years: a cross-sectional analysis of the UK Millennium Cohort Data.

    PubMed

    Ramasubramanian, L; Lane, S; Rahman, A

    2013-01-01

      The prevalence of child obesity is increasing rapidly worldwide. Early childhood has been identified as a critical time period for the development of obesity. Maternal mental health and early life environment are crucial factors and have been linked to adverse child outcomes. The objective of the study was to examine the relationship between maternal serious psychological distress and obesity in early childhood.   A cross-sectional analysis of data from the Millennium Cohort Study was conducted. Subjects consisted of all natural mothers (n= 10 465) who had complete and plausible data for Kessler-6 scores, socio-demographic and anthropometric variables, and their children for whom anthropometric measurements were completed at age 3. Maternal serious psychological distress was defined as a score of 13 or more on the Kessler-6 scale. Obesity was defined as body mass index ≥95th centile of the 1990 reference chart for age and sex in children. The data were analysed using spss 16. Maternal socio-demographic factors that are known to influence maternal mental health and child obesity were identified and adjusted using multivariate logistic regression.   Of the 10 465 mother-child dyads, 3.5% of mothers had serious psychological distress and 5.5% of children were obese at 3 years of age. Logistic regression analysis showed that maternal serious psychological distress was associated with early childhood obesity (P= 0.01; OR 1.62, 95% CI 1.11, 2.37). After adjusting for potential confounding factors using multivariate logistic regression, maternal serious psychological distress remained significantly associated with early childhood obesity (P= 0.01; OR 1.59, 95% CI 1.08, 2.34).   The results show that maternal serious psychological distress is independently associated with early childhood obesity. © 2011 Blackwell Publishing Ltd.

  17. Patient and Disease Characteristics Associated with Activation for Self-Management in Patients with Diabetes, Chronic Obstructive Pulmonary Disease, Chronic Heart Failure and Chronic Renal Disease: A Cross-Sectional Survey Study

    PubMed Central

    Bos-Touwen, Irene; Schuurmans, Marieke; Monninkhof, Evelyn M.; Korpershoek, Yvonne; Spruit-Bentvelzen, Lotte; Ertugrul-van der Graaf, Inge; de Wit, Niek; Trappenburg, Jaap

    2015-01-01

    A substantial proportion of chronic disease patients do not respond to self-management interventions, which suggests that one size interventions do not fit all, demanding more tailored interventions. To compose more individualized strategies, we aim to increase our understanding of characteristics associated with patient activation for self-management and to evaluate whether these are disease-transcending. A cross-sectional survey study was conducted in primary and secondary care in patients with type-2 Diabetes Mellitus (DM-II), Chronic Obstructive Pulmonary Disease (COPD), Chronic Heart Failure (CHF) and Chronic Renal Disease (CRD). Using multiple linear regression analysis, we analyzed associations between self-management activation (13-item Patient Activation Measure; PAM-13) and a wide range of socio-demographic, clinical, and psychosocial determinants. Furthermore, we assessed whether the associations between the determinants and the PAM were disease-transcending by testing whether disease was an effect modifier. In addition, we identified determinants associated with low activation for self-management using logistic regression analysis. We included 1154 patients (53% response rate); 422 DM-II patients, 290 COPD patients, 223 HF patients and 219 CRD patients. Mean age was 69.6±10.9. Multiple linear regression analysis revealed 9 explanatory determinants of activation for self-management: age, BMI, educational level, financial distress, physical health status, depression, illness perception, social support and underlying disease, explaining a variance of 16.3%. All associations, except for social support, were disease transcending. This study explored factors associated with varying levels of activation for self-management. These results are a first step in supporting clinicians and researchers to identify subpopulations of chronic disease patients less likely to be engaged in self-management. Increased scientific efforts are needed to explain the greater part of the factors that contribute to the complex nature of patient activation for self-management. PMID:25950517

  18. Regression Analysis of Combined Gene Expression Regulation in Acute Myeloid Leukemia

    PubMed Central

    Li, Yue; Liang, Minggao; Zhang, Zhaolei

    2014-01-01

    Gene expression is a combinatorial function of genetic/epigenetic factors such as copy number variation (CNV), DNA methylation (DM), transcription factors (TF) occupancy, and microRNA (miRNA) post-transcriptional regulation. At the maturity of microarray/sequencing technologies, large amounts of data measuring the genome-wide signals of those factors became available from Encyclopedia of DNA Elements (ENCODE) and The Cancer Genome Atlas (TCGA). However, there is a lack of an integrative model to take full advantage of these rich yet heterogeneous data. To this end, we developed RACER (Regression Analysis of Combined Expression Regulation), which fits the mRNA expression as response using as explanatory variables, the TF data from ENCODE, and CNV, DM, miRNA expression signals from TCGA. Briefly, RACER first infers the sample-specific regulatory activities by TFs and miRNAs, which are then used as inputs to infer specific TF/miRNA-gene interactions. Such a two-stage regression framework circumvents a common difficulty in integrating ENCODE data measured in generic cell-line with the sample-specific TCGA measurements. As a case study, we integrated Acute Myeloid Leukemia (AML) data from TCGA and the related TF binding data measured in K562 from ENCODE. As a proof-of-concept, we first verified our model formalism by 10-fold cross-validation on predicting gene expression. We next evaluated RACER on recovering known regulatory interactions, and demonstrated its superior statistical power over existing methods in detecting known miRNA/TF targets. Additionally, we developed a feature selection procedure, which identified 18 regulators, whose activities clustered consistently with cytogenetic risk groups. One of the selected regulators is miR-548p, whose inferred targets were significantly enriched for leukemia-related pathway, implicating its novel role in AML pathogenesis. Moreover, survival analysis using the inferred activities identified C-Fos as a potential AML prognostic marker. Together, we provided a novel framework that successfully integrated the TCGA and ENCODE data in revealing AML-specific regulatory program at global level. PMID:25340776

  19. Economic and Health Predictors of National Postpartum Depression Prevalence: A Systematic Review, Meta-analysis, and Meta-Regression of 291 Studies from 56 Countries.

    PubMed

    Hahn-Holbrook, Jennifer; Cornwell-Hinrichs, Taylor; Anaya, Itzel

    2017-01-01

    Postpartum depression (PPD) poses a major global public health challenge. PPD is the most common complication associated with childbirth and exerts harmful effects on children. Although hundreds of PPD studies have been published, we lack accurate global or national PPD prevalence estimates and have no clear account of why PPD appears to vary so dramatically between nations. Accordingly, we conducted a meta-analysis to estimate the global and national prevalence of PPD and a meta-regression to identify economic, health, social, or policy factors associated with national PPD prevalence. We conducted a systematic review of all papers reporting PPD prevalence using the Edinburgh Postnatal Depression Scale. PPD prevalence and methods were extracted from each study. Random effects meta-analysis was used to estimate global and national PPD prevalence. To test for country level predictors, we drew on data from UNICEF, WHO, and the World Bank. Random effects meta-regression was used to test national predictors of PPD prevalence. 291 studies of 296284 women from 56 countries were identified. The global pooled prevalence of PPD was 17.7% (95% confidence interval: 16.6-18.8%), with significant heterogeneity across nations ( Q  = 16,823, p  = 0.000, I 2  = 98%), ranging from 3% (2-5%) in Singapore to 38% (35-41%) in Chile. Nations with significantly higher rates of income inequality ( R 2  = 41%), maternal mortality ( R 2  = 19%), infant mortality ( R 2  = 16%), or women of childbearing age working ≥40 h a week ( R 2  = 31%) have higher rates of PPD. Together, these factors explain 73% of the national variation in PPD prevalence. The global prevalence of PPD is greater than previously thought and varies dramatically by nation. Disparities in wealth inequality and maternal-child-health factors explain much of the national variation in PPD prevalence.

  20. Variation of Annual ET Determined from Water Budgets Across Rural Southeastern Basins Differing in Forest Types

    NASA Astrophysics Data System (ADS)

    Younger, S. E.; Jackson, C. R.

    2017-12-01

    In the Southeastern United States, evapotranspiration (ET) typically accounts for 60-70% of precipitation. Watershed and plot scale experiments show that evergreen forests have higher ET rates than hardwood forests and pastures. However, some plot experiments indicate that certain hardwood species have higher ET than paired evergreens. The complexity of factors influencing ET in mixed land cover watersheds makes identifying the relative influences difficult. Previous watershed scale studies have relied on regression to understand the influences or low flow analysis to indicate growing season differences among watersheds. Existing studies in the southeast investigating ET rates for watersheds with multiple forest cover types have failed to identify a significant forest type effect, but these studies acknowledge small sample sizes. Trends of decreasing streamflow have been recognized in the region and are generally attributed to five key factors, 1.) influences from multiple droughts, 2.) changes in distribution of precipitation, 3.) reforestation of agricultural land, 4.) increasing consumptive uses, or 5.) a combination of these and other factors. This study attempts to address the influence of forest type on long term average annual streamflow and on stream low flows. Long term annual ET rates were calculated as ET = P-Q for 46 USGS gaged basins with daily data for the 1982 - 2014 water years, >40% forest cover, and no large reservoirs. Land cover data was regressed against ET to describe the relationship between each of the forest types in the National Land Cover Database. Regression analysis indicates evergreen land cover has a positive relationship with ET while deciduous and total forest have a negative relationship with ET. Low flow analysis indicates low flows tend to be lower in watersheds with more evergreen cover, and that low flows increase with increasing deciduous cover, although these relationships are noisy. This work suggests considering forest cover type improves understanding of watershed scale ET at annual and seasonal levels which is consistent with historic paired watershed experiments and some plot scale data.

  1. Quantifying the sensitivity of feedstock properties and process conditions on hydrochar yield, carbon content, and energy content.

    PubMed

    Li, Liang; Wang, Yiying; Xu, Jiting; Flora, Joseph R V; Hoque, Shamia; Berge, Nicole D

    2018-08-01

    Hydrothermal carbonization (HTC) is a wet, low temperature thermal conversion process that continues to gain attention for the generation of hydrochar. The importance of specific process conditions and feedstock properties on hydrochar characteristics is not well understood. To evaluate this, linear and non-linear models were developed to describe hydrochar characteristics based on data collected from HTC-related literature. A Sobol analysis was subsequently conducted to identify parameters that most influence hydrochar characteristics. Results from this analysis indicate that for each investigated hydrochar property, the model fit and predictive capability associated with the random forest models is superior to both the linear and regression tree models. Based on results from the Sobol analysis, the feedstock properties and process conditions most influential on hydrochar yield, carbon content, and energy content were identified. In addition, a variational process parameter sensitivity analysis was conducted to determine how feedstock property importance changes with process conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Creep-Rupture Data Analysis - Engineering Application of Regression Techniques. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Rummler, D. R.

    1976-01-01

    The results are presented of investigations to apply regression techniques to the development of methodology for creep-rupture data analysis. Regression analysis techniques are applied to the explicit description of the creep behavior of materials for space shuttle thermal protection systems. A regression analysis technique is compared with five parametric methods for analyzing three simulated and twenty real data sets, and a computer program for the evaluation of creep-rupture data is presented.

  3. Partial Least Squares Based Gene Expression Analysis in EBV- Positive and EBV-Negative Posttransplant Lymphoproliferative Disorders.

    PubMed

    Wu, Sa; Zhang, Xin; Li, Zhi-Ming; Shi, Yan-Xia; Huang, Jia-Jia; Xia, Yi; Yang, Hang; Jiang, Wen-Qi

    2013-01-01

    Post-transplant lymphoproliferative disorder (PTLD) is a common complication of therapeutic immunosuppression after organ transplantation. Gene expression profile facilitates the identification of biological difference between Epstein-Barr virus (EBV) positive and negative PTLDs. Previous studies mainly implemented variance/regression analysis without considering unaccounted array specific factors. The aim of this study is to investigate the gene expression difference between EBV positive and negative PTLDs through partial least squares (PLS) based analysis. With a microarray data set from the Gene Expression Omnibus database, we performed PLS based analysis. We acquired 1188 differentially expressed genes. Pathway and Gene Ontology enrichment analysis identified significantly over-representation of dysregulated genes in immune response and cancer related biological processes. Network analysis identified three hub genes with degrees higher than 15, including CREBBP, ATXN1, and PML. Proteins encoded by CREBBP and PML have been reported to be interact with EBV before. Our findings shed light on expression distinction of EBV positive and negative PTLDs with the hope to offer theoretical support for future therapeutic study.

  4. Resting-state functional magnetic resonance imaging: the impact of regression analysis.

    PubMed

    Yeh, Chia-Jung; Tseng, Yu-Sheng; Lin, Yi-Ru; Tsai, Shang-Yueh; Huang, Teng-Yi

    2015-01-01

    To investigate the impact of regression methods on resting-state functional magnetic resonance imaging (rsfMRI). During rsfMRI preprocessing, regression analysis is considered effective for reducing the interference of physiological noise on the signal time course. However, it is unclear whether the regression method benefits rsfMRI analysis. Twenty volunteers (10 men and 10 women; aged 23.4 ± 1.5 years) participated in the experiments. We used node analysis and functional connectivity mapping to assess the brain default mode network by using five combinations of regression methods. The results show that regressing the global mean plays a major role in the preprocessing steps. When a global regression method is applied, the values of functional connectivity are significantly lower (P ≤ .01) than those calculated without a global regression. This step increases inter-subject variation and produces anticorrelated brain areas. rsfMRI data processed using regression should be interpreted carefully. The significance of the anticorrelated brain areas produced by global signal removal is unclear. Copyright © 2014 by the American Society of Neuroimaging.

  5. Metabolomics study on primary dysmenorrhea patients during the luteal regression stage based on ultra performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry

    PubMed Central

    Fang, Ling; Gu, Caiyun; Liu, Xinyu; Xie, Jiabin; Hou, Zhiguo; Tian, Meng; Yin, Jia; Li, Aizhu; Li, Yubo

    2017-01-01

    Primary dysmenorrhea (PD) is a common gynecological disorder which, while not life-threatening, severely affects the quality of life of women. Most patients with PD suffer ovarian hormone imbalances caused by uterine contraction, which results in dysmenorrhea. PD patients may also suffer from increases in estrogen levels caused by increased levels of prostaglandin synthesis and release during luteal regression and early menstruation. Although PD pathogenesis has been previously reported on, these studies only examined the menstrual period and neglected the importance of the luteal regression stage. Therefore, the present study used urine metabolomics to examine changes in endogenous substances and detect urine biomarkers for PD during luteal regression. Ultra performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry was used to create metabolomic profiles for 36 patients with PD and 27 healthy controls. Principal component analysis and partial least squares discriminate analysis were used to investigate the metabolic alterations associated with PD. Ten biomarkers for PD were identified, including ornithine, dihydrocortisol, histidine, citrulline, sphinganine, phytosphingosine, progesterone, 17-hydroxyprogesterone, androstenedione, and 15-keto-prostaglandin F2α. The specificity and sensitivity of these biomarkers was assessed based on the area under the curve of receiver operator characteristic curves, which can be used to distinguish patients with PD from healthy controls. These results provide novel targets for the treatment of PD. PMID:28098892

  6. Comparison of Various Anthropometric and Body Fat Indices in Identifying Cardiometabolic Disturbances in Chinese Men and Women

    PubMed Central

    Zhang, Zhe-qing; Deng, Juan; He, Li-ping; Ling, Wen-hua; Su, Yi-xiang; Chen, Yu-ming

    2013-01-01

    Background Although many adiposity indices may be used to predict obesity-related health risks, uncertainty remains over which of them performs best. Objective This study compared the predictive capability of direct and indirect adiposity measures in identifying people at higher risk of metabolic abnormalities. Methods This population-based cross-sectional study recruited 2780 women and 1160 men. Body weight and height, waist circumference (WC), and hip circumference (HC) were measured and body mass index (BMI), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR) were calculated. Body fat (and percentage of fat) over the whole body and the trunk were determined by bioelectrical impedance analysis (BIA). Blood pressure, fasting lipid profiles, and glucose and urine acid levels were assessed. Results In women, the ROC and the multivariate logistic regression analyses both showed that WHtR consistently had the best performance in identifying hypertension, dyslipidemia, hyperuricemia, diabetes/IFG, and metabolic syndrome (MetS). In men, the ROC analysis showed that WHtR was the best predictor of hypertension, WHtR and WC were equally good predictors of dyslipidemia and MetS, and WHtR was the second-best predictor of hyperuricemia and diabetes/IFG. The multivariate logistic regression also found WHtR to be superior in discriminating between MetS, diabetes/IFG, and dyslipidemia while BMI performed better in predicting hypertension and hyperuricemia in men. The BIA-derived indices were the second-worst predictors for all of the endpoints, and HC was the worst. Conclusion WHtR was the best predictor of various metabolic abnormalities. BMI may be used as an alternative measure of obesity for identifying hypertension in both sexes. PMID:23951031

  7. Predictors of vitamin D deficiency in inflammatory bowel disease and health: A Mississippi perspective

    PubMed Central

    Pallav, Kumar; Riche, Daniel; May, Warren L; Sanchez, Patrick; Gupta, Nitin K

    2017-01-01

    AIM To identify the predictors of vitamin D deficiency in patients with and without inflammatory bowel disease (IBD). METHODS Patients with ulcerative colitis (UC) or Crohn’s disease (CD) related diagnostic codes who received medical care at University of Mississippi Medical Center between July 2012 and 2015 were identified. After thorough chart review, we identified patients with biopsy proven IBD who had also been tested for serum 25-hydroxyvitamin D [25(OH)D] concentration. We compared these patients to a previously studied cohort of healthy controls who also had vitamin D concentration checked. Logistic regression analysis was performed to determine the association between vitamin d deficiency and UC, CD, race, age, gender and body mass index (BMI). RESULTS We identified 237 patients with confirmed IBD. Of these, only 211 had a serum 25(OH)D concentrations available in the medical record. The group of healthy controls consisted of 98 individuals with available serum 25(OH)D concentration. 43% of IBD patients were African American (AA). Patients with CD were more likely to have vitamin D concentration checked. Bivariate analysis showed that AA (51% vs 21%, P = 0.00001), subjects with BMI >30 kg/m2 (39% vs 23% P = 0.01) and CD (40% vs 26%, P = 0.04) were more likely to be vitamin D deficient than vitamin D sufficient. Those with Age > 65 were more likely to be vitamin D sufficient (46% vs 15%, P = 0.04). Multiple regression showed that only BMI > 30 kg/m2 and AA race are associated with vitamin D deficiency. CONCLUSION BMI > 30 kg/m2 and AA race are predictive of vitamin D deficiency. Gender, age and diagnosis of IBD are not predictive of vitamin D deficiency. PMID:28216970

  8. Predictors of vitamin D deficiency in inflammatory bowel disease and health: A Mississippi perspective.

    PubMed

    Pallav, Kumar; Riche, Daniel; May, Warren L; Sanchez, Patrick; Gupta, Nitin K

    2017-01-28

    To identify the predictors of vitamin D deficiency in patients with and without inflammatory bowel disease (IBD). Patients with ulcerative colitis (UC) or Crohn's disease (CD) related diagnostic codes who received medical care at University of Mississippi Medical Center between July 2012 and 2015 were identified. After thorough chart review, we identified patients with biopsy proven IBD who had also been tested for serum 25-hydroxyvitamin D [25(OH)D] concentration. We compared these patients to a previously studied cohort of healthy controls who also had vitamin D concentration checked. Logistic regression analysis was performed to determine the association between vitamin d deficiency and UC, CD, race, age, gender and body mass index (BMI). We identified 237 patients with confirmed IBD. Of these, only 211 had a serum 25(OH)D concentrations available in the medical record. The group of healthy controls consisted of 98 individuals with available serum 25(OH)D concentration. 43% of IBD patients were African American (AA). Patients with CD were more likely to have vitamin D concentration checked. Bivariate analysis showed that AA (51% vs 21%, P = 0.00001), subjects with BMI >30 kg/m 2 (39% vs 23% P = 0.01) and CD (40% vs 26%, P = 0.04) were more likely to be vitamin D deficient than vitamin D sufficient. Those with Age > 65 were more likely to be vitamin D sufficient (46% vs 15%, P = 0.04). Multiple regression showed that only BMI > 30 kg/m 2 and AA race are associated with vitamin D deficiency. BMI > 30 kg/m 2 and AA race are predictive of vitamin D deficiency. Gender, age and diagnosis of IBD are not predictive of vitamin D deficiency.

  9. Genetic polymorphisms to predict gains in maximal O2 uptake and knee peak torque after a high intensity training program in humans.

    PubMed

    Yoo, Jinho; Kim, Bo-Hyung; Kim, Soo-Hwan; Kim, Yangseok; Yim, Sung-Vin

    2016-05-01

    The study aimed to identify single nucleotide polymorphisms (SNPs) that significantly influenced the level of improvement of two kinds of training responses, including maximal O2 uptake (V'O2max) and knee peak torque of healthy adults participating in the high intensity training (HIT) program. The study also aimed to use these SNPs to develop prediction models for individual training responses. 79 Healthy volunteers participated in the HIT program. A genome-wide association study, based on 2,391,739 SNPs, was performed to identify SNPs that were significantly associated with gains in V'O2max and knee peak torque, following 9 weeks of the HIT program. To predict two training responses, two independent SNPs sets were determined using linear regression and iterative binary logistic regression analysis. False discovery rate analysis and permutation tests were performed to avoid false-positive findings. To predict gains in V'O2max, 7 SNPs were identified. These SNPs accounted for 26.0 % of the variance in the increment of V'O2max, and discriminated the subjects into three subgroups, non-responders, medium responders, and high responders, with prediction accuracy of 86.1 %. For the knee peak torque, 6 SNPs were identified, and accounted for 27.5 % of the variance in the increment of knee peak torque. The prediction accuracy discriminating the subjects into the three subgroups was estimated as 77.2 %. Novel SNPs found in this study could explain, and predict inter-individual variability in gains of V'O2max, and knee peak torque. Furthermore, with these genetic markers, a methodology suggested in this study provides a sound approach for the personalized training program.

  10. Identifying Balance Measures Most Likely to Identify Recent Falls.

    PubMed

    Criter, Robin E; Honaker, Julie A

    2016-01-01

    Falls sustained by older adults are an increasing health care issue. Early identification of those at risk for falling can lead to successful prevention of falls. Balance complaints are common among individuals who fall or are at risk for falling. The purpose of this study was to evaluate the clinical utility of a multifaceted balance protocol used for fall risk screening, with the hypothesis that this protocol would successfully identify individuals who had a recent fall (within the previous 12 months). This is a retrospective review of 30 individuals who self-referred for a free fall risk screening. Measures included case history, Activities-Specific Balance Confidence Scale, modified Clinical Test of Sensory Interaction on Balance, Timed Up and Go test, and Dynamic Visual Acuity. Statistical analyses were focused on the ability of the test protocol to identify a fall within the past 12 months and included descriptive statistics, clinical utility indices, logistic regression, receiver operating characteristic curve, area under the curve analysis, effect size (Cohen d), and Spearman correlation coefficients. All individuals who self-referred for this free screening had current imbalance complaints, and were typically women (70%), had a mean age of 77.2 years, and had a fear of falling (70%). Almost half (46.7%) reported at least 1 lifetime fall and 40.0% within the past 12 months. Regression analysis suggested that the Timed Up and Go test was the most important indicator of a recent fall. A cutoff score of 12 or more seconds was optimal (sensitivity: 83.3%; specificity: 61.1%). Older adults with current complaints of imbalance have a higher rate of falls, fall-related injury, and fear of falling than the general community-dwelling public. The Timed Up and Go test is useful for determining recent fall history in individuals with imbalance.

  11. Identifying the bleeding trauma patient: predictive factors for massive transfusion in an Australasian trauma population.

    PubMed

    Hsu, Jeremy Ming; Hitos, Kerry; Fletcher, John P

    2013-09-01

    Military and civilian data would suggest that hemostatic resuscitation results in improved outcomes for exsanguinating patients. However, identification of those patients who are at risk of significant hemorrhage is not clearly defined. We attempted to identify factors that would predict the need for massive transfusion (MT) in an Australasian trauma population, by comparing those trauma patients who did receive massive transfusion with those who did not. Between 1985 and 2010, 1,686 trauma patients receiving at least 1 U of packed red blood cells were identified from our prospectively maintained trauma registry. Demographic, physiologic, laboratory, injury, and outcome variables were reviewed. Univariate analysis determined significant factors between those who received MT and those who did not. A predictive multivariate logistic regression model with backward conditional stepwise elimination was used for MT risk. Statistical analysis was performed using SPSS PASW. MT patients had a higher pulse rate, lower Glasgow Coma Scale (GCS) score, lower systolic blood pressure, lower hemoglobin level, higher Injury Severity Score (ISS), higher international normalized ratio (INR), and longer stay. Initial logistic regression identified base deficit (BD), INR, and hemoperitoneum at laparotomy as independent predictive variables. After assigning cutoff points of BD being greater than 5 and an INR of 1.5 or greater, a further model was created. A BD greater than 5 and either INR of 1.5 or greater or hemoperitoneum was associated with 51 times increase in MT risk (odds ratio, 51.6; 95% confidence interval, 24.9-95.8). The area under the receiver operating characteristic curve for the model was 0.859. From this study, a combination of BD, INR, and hemoperitoneum has demonstrated good predictability for MT. This tool may assist in the determination of those patients who might benefit from hemostatic resuscitation. Prognostic study, level III.

  12. The influence of sexual harassment on mental health among female military personnel of the Republic of Korea Armed Forces

    PubMed Central

    Kim, Tae Kyung; Lee, H-C; Lee, S G; Han, K-T; Park, E-C

    2017-01-01

    Introduction Reports of sexual harassment are becoming more frequent in Republic of Korea (ROK) Armed Forces. This study aimed to analyse the impact of sexual harassment on mental health among female military personnel of the ROK Armed Forces. Methods Data from the 2014 Military Health Survey were used. Instances of sexual harassment were recorded as ‘yes’ or ‘no’. Analysis of variance (ANOVA) was carried out to compare Kessler Psychological Distress Scale 10 (K-10) scores. Multiple logistic regression analysis was performed to identify associations between sexual harassment and K-10 scores. Results Among 228 female military personnel, 13 (5.7%) individuals experienced sexual harassment. Multiple logistic regression analysis revealed that sexual harassment had a significantly negative impact on K-10 scores (3.486, p<0.04). Higher K-10 scores among individuals experiencing sexual harassment were identified in the unmarried (including never-married) group (6.761, p<0.04), the short-term military service group (12.014, p<0.03) and the group whose length of service was <2 years (11.067, p<0.02). Conclusions Sexual harassment has a negative impact on mental health. Factors associated with worse mental health scores included service classification and length of service. The results provide helpful information with which to develop measures for minimising the negative psychological effects from sexual harassment and promoting sexual harassment prevention policy. PMID:27084842

  13. Anesthesia Technique and Outcomes of Mechanical Thrombectomy in Patients With Acute Ischemic Stroke.

    PubMed

    Bekelis, Kimon; Missios, Symeon; MacKenzie, Todd A; Tjoumakaris, Stavropoula; Jabbour, Pascal

    2017-02-01

    The impact of anesthesia technique on the outcomes of mechanical thrombectomy for acute ischemic stroke remains an issue of debate. We investigated the association of general anesthesia with outcomes in patients undergoing mechanical thrombectomy for ischemic stroke. We performed a cohort study involving patients undergoing mechanical thrombectomy for ischemic stroke from 2009 to 2013, who were registered in the New York Statewide Planning and Research Cooperative System database. An instrumental variable (hospital rate of general anesthesia) analysis was used to simulate the effects of randomization and investigate the association of anesthesia technique with case-fatality and length of stay. Among 1174 patients, 441 (37.6%) underwent general anesthesia and 733 (62.4%) underwent conscious sedation. Using an instrumental variable analysis, we identified that general anesthesia was associated with a 6.4% increased case-fatality (95% confidence interval, 1.9%-11.0%) and 8.4 days longer length of stay (95% confidence interval, 2.9-14.0) in comparison to conscious sedation. This corresponded to 15 patients needing to be treated with conscious sedation to prevent 1 death. Our results were robust in sensitivity analysis with mixed effects regression and propensity score-adjusted regression models. Using a comprehensive all-payer cohort of acute ischemic stroke patients undergoing mechanical thrombectomy in New York State, we identified an association of general anesthesia with increased case-fatality and length of stay. These considerations should be taken into account when standardizing acute stroke care. © 2017 American Heart Association, Inc.

  14. Using Decomposition Analysis to Identify Modifiable Racial Disparities in the Distribution of Blood Pressure in the United States.

    PubMed

    Basu, Sanjay; Hong, Anthony; Siddiqi, Arjumand

    2015-08-15

    To lower the prevalence of hypertension and racial disparities in hypertension, public health agencies have attempted to reduce modifiable risk factors for high blood pressure, such as excess sodium intake or high body mass index. In the present study, we used decomposition methods to identify how population-level reductions in key risk factors for hypertension could reshape entire population distributions of blood pressure and associated disparities among racial/ethnic groups. We compared blood pressure distributions among non-Hispanic white, non-Hispanic black, and Mexican-American persons using data from the US National Health and Nutrition Examination Survey (2003-2010). When using standard adjusted logistic regression analysis, we found that differences in body mass index were the only significant explanatory correlate to racial disparities in blood pressure. By contrast, our decomposition approach provided more nuanced revelations; we found that disparities in hypertension related to tobacco use might be masked by differences in body mass index that significantly increase the disparities between black and white participants. Analysis of disparities between white and Mexican-American participants also reveal hidden relationships between tobacco use, body mass index, and blood pressure. Decomposition offers an approach to understand how modifying risk factors might alter population-level health disparities in overall outcome distributions that can be obscured by standard regression analyses. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

  15. Measuring Work Environment and Performance in Nursing Homes

    PubMed Central

    Temkin-Greener, Helena; Zheng, Nan (Tracy); Katz, Paul; Zhao, Hongwei; Mukamel, Dana B.

    2008-01-01

    Background Qualitative studies of the nursing home work environment have long suggested that such attributes as leadership and communication may be related to nursing home performance, including residents' outcomes. However, empirical studies examining these relationships have been scant. Objectives This study is designed to: develop an instrument for measuring nursing home work environment and perceived work effectiveness; test the reliability and validity of the instrument; and identify individual and facility-level factors associated with better facility performance. Research Design and Methods The analysis was based on survey responses provided by managers (N=308) and direct care workers (N=7,418) employed in 162 facilities throughout New York State. Exploratory factor analysis, Chronbach's alphas, analysis of variance, and regression models were used to assess instrument reliability and validity. Multivariate regression models, with fixed facility effects, were used to examine factors associated with work effectiveness. Results The reliability and the validity of the survey instrument for measuring work environment and perceived work effectiveness has been demonstrated. Several individual (e.g. occupation, race) and facility characteristics (e.g. management style, workplace conditions, staffing) that are significant predictors of perceived work effectiveness were identified. Conclusions The organizational performance model used in this study recognizes the multidimensionality of the work environment in nursing homes. Our findings suggest that efforts at improving work effectiveness must also be multifaceted. Empirical findings from such a line of research may provide insights for improving the quality of the work environment and ultimately the quality of residents' care. PMID:19330892

  16. Adverse event reporting in cancer clinical trial publications.

    PubMed

    Sivendran, Shanthi; Latif, Asma; McBride, Russell B; Stensland, Kristian D; Wisnivesky, Juan; Haines, Lindsay; Oh, William K; Galsky, Matthew D

    2014-01-10

    Reporting adverse events is a critical element of a clinical trial publication. In 2003, the Consolidated Standards of Reporting Trials (CONSORT) group generated recommendations regarding the appropriate reporting of adverse events. The degree to which these recommendations are followed in oncology publications has not been comprehensively evaluated. A review of citations from PubMed, Medline, and Embase published between Jan 1, 2009 and December 31, 2011, identified eligible randomized, controlled phase III trials in metastatic solid malignancies. Publications were assessed for 14 adverse event-reporting elements derived from the CONSORT harms extension statement; a completeness score (range, 0 to 14) was calculated by adding the number of elements reported. Linear regression analysis identified which publication characteristics associated with reporting completeness. A total of 175 publications, with data for 96,125 patients, were included in the analysis. The median completeness score was eight (range, three to 12). Most publications (96%) reported only adverse events occurring above a threshold rate or severity, 37% did not specify the criteria used to select which adverse events were reported, and 88% grouped together adverse events of varying severity. Regression analysis revealed that trials without a stated funding source and with an earlier year of publication had significantly lower completeness scores. Reporting of adverse events in oncology publications of randomized trials is suboptimal and characterized by substantial selectivity and heterogeneity. The development of oncology-specific standards for adverse event reporting should be established to ensure consistency and provide critical information required for medical decision-making.

  17. Socioeconomic and Demographic Disparities in Knowledge of Reproductive Healthcare among Female University Students in Bangladesh

    PubMed Central

    Islam Mondal, Md. Nazrul; Nasir Ullah, Md. Monzur Morshad; Khan, Md. Nuruzzaman; Islam, Mohammad Zamirul; Islam, Md. Nurul; Moni, Sabiha Yasmin; Hoque, Md. Nazrul; Rahman, Md. Mashiur

    2015-01-01

    Background: Reproductive health (RH) is a critical component of women’s health and overall well-being around the world, especially in developing countries. We examine the factors that determine knowledge of RH care among female university students in Bangladesh. Methods: Data on 300 female students were collected from Rajshahi University, Bangladesh through a structured questionnaire using purposive sampling technique. The data were used for univariate analysis, to carry out the description of the variables; bivariate analysis was used to examine the associations between the variables; and finally, multivariate analysis (binary logistic regression model) was used to examine and fit the model and interpret the parameter estimates, especially in terms of odds ratios. Results: The results revealed that more than one-third (34.3%) respondents do not have sufficient knowledge of RH care. The χ2-test identified the significant (p < 0.05) associations between respondents’ knowledge of RH care with respondents’ age, education, family type, watching television; and knowledge about pregnancy, family planning, and contraceptive use. Finally, the binary logistic regression model identified respondents’ age, education, family type; and knowledge about family planning, and contraceptive use as the significant (p < 0.05) predictors of RH care. Conclusions and Global Health Implications: Knowledge of RH care among female university students was found unsatisfactory. Government and concerned organizations should promote and strengthen various health education programs to focus on RH care especially for the female university students in Bangladesh. PMID:27622005

  18. Diabetes and Risk of Surgical Site Infection: A systematic review and meta-analysis

    PubMed Central

    Kaye, Keith S.; Knott, Caitlin; Nguyen, Huong; Santarossa, Maressa; Evans, Richard; Bertran, Elizabeth; Jaber, Linda

    2016-01-01

    Objective To determine the independent association between diabetes and SSI across multiple surgical procedures. Design Systematic review and meta-analysis. Methods Studies indexed in PubMed published between December 1985 and through July 2015 were identified through the search terms “risk factors” or “glucose” and “surgical site infection”. A total of 3,631 abstracts were identified through the initial search terms. Full texts were reviewed for 522 articles. Of these, 94 articles met the criteria for inclusion. Standardized data collection forms were used to extract study-specific estimates for diabetes, blood glucose levels, and body mass index (BMI). Random-effects meta-analysis was used to generate pooled estimates and meta-regression was used to evaluate specific hypothesized sources of heterogeneity. Results The primary outcome was SSI, as defined by the Centers for Disease Control and Prevention surveillance criteria. The overall effect size for the association between diabetes and SSI was OR=1.53 (95% Predictive Interval 1.11, 2.12, I2: 57.2%). SSI class, study design, or patient BMI did not significantly impact study results in a meta-regression model. The association was higher for cardiac surgery 2.03 (95% Predictive Interval 1.13, 4.05) compared to surgeries of other types (p=0.001). Conclusion These results support the consideration of diabetes as an independent risk factor for SSIs for multiple surgical procedure types. Continued efforts are needed to improve surgical outcomes for diabetic patients. PMID:26503187

  19. Optimization of selective breeding through analysis of morphological traits in Chinese sea bass (Lateolabrax maculatus).

    PubMed

    Wang, W; Ma, C Y; Chen, W; Ma, H Y; Zhang, H; Meng, Y Y; Ni, Y; Ma, L B

    2016-08-19

    Determining correlations between certain traits of economic importance constitutes an essential component of selective activities. In this study, our aim was to provide effective indicators for breeding programs of Lateolabrax maculatus, an important aquaculture species in China. We analyzed correlations between 20 morphometric traits and body weight, using correlation and path analyses. The results indicated that the correlations among all 21 traits were highly significant, with the highest correlation coefficient identified between total length and body weight. The path analysis indicated that total length (X 1 ), body width (X 5 ), distance from first dorsal fin origin to anal fin origin (X 10 ), snout length (X 16 ), eye diameter (X 17 ), eye cross (X 18 ), and slanting distance from snout tip to first dorsal fin origin (X 19 ) significantly affected body weight (Y) directly. The following multiple-regression equation was obtained using stepwise multiple-regression analysis: Y = -472.108 + 1.065X 1 + 7.728X 5 + 1.973X 10 - 7.024X 16 - 4.400X 17 - 3.338X 18 + 2.138X 19 , with an adjusted multiple-correlation coefficient of 0.947. Body width had the largest determinant coefficient, as well as the highest positive direct correlation with body weight. At the same time, high indirect effects with six other morphometric traits on L. maculatus body weight, through body width, were identified. Hence, body width could be a key factor that efficiently indicates significant effects on body weight in L. maculatus.

  20. Analyzing industrial energy use through ordinary least squares regression models

    NASA Astrophysics Data System (ADS)

    Golden, Allyson Katherine

    Extensive research has been performed using regression analysis and calibrated simulations to create baseline energy consumption models for residential buildings and commercial institutions. However, few attempts have been made to discuss the applicability of these methodologies to establish baseline energy consumption models for industrial manufacturing facilities. In the few studies of industrial facilities, the presented linear change-point and degree-day regression analyses illustrate ideal cases. It follows that there is a need in the established literature to discuss the methodologies and to determine their applicability for establishing baseline energy consumption models of industrial manufacturing facilities. The thesis determines the effectiveness of simple inverse linear statistical regression models when establishing baseline energy consumption models for industrial manufacturing facilities. Ordinary least squares change-point and degree-day regression methods are used to create baseline energy consumption models for nine different case studies of industrial manufacturing facilities located in the southeastern United States. The influence of ambient dry-bulb temperature and production on total facility energy consumption is observed. The energy consumption behavior of industrial manufacturing facilities is only sometimes sufficiently explained by temperature, production, or a combination of the two variables. This thesis also provides methods for generating baseline energy models that are straightforward and accessible to anyone in the industrial manufacturing community. The methods outlined in this thesis may be easily replicated by anyone that possesses basic spreadsheet software and general knowledge of the relationship between energy consumption and weather, production, or other influential variables. With the help of simple inverse linear regression models, industrial manufacturing facilities may better understand their energy consumption and production behavior, and identify opportunities for energy and cost savings. This thesis study also utilizes change-point and degree-day baseline energy models to disaggregate facility annual energy consumption into separate industrial end-user categories. The baseline energy model provides a suitable and economical alternative to sub-metering individual manufacturing equipment. One case study describes the conjoined use of baseline energy models and facility information gathered during a one-day onsite visit to perform an end-point energy analysis of an injection molding facility conducted by the Alabama Industrial Assessment Center. Applying baseline regression model results to the end-point energy analysis allowed the AIAC to better approximate the annual energy consumption of the facility's HVAC system.

  1. SFRP1 is a possible candidate for epigenetic therapy in non-small cell lung cancer.

    PubMed

    Taguchi, Y-H; Iwadate, Mitsuo; Umeyama, Hideaki

    2016-08-12

    Non-small cell lung cancer (NSCLC) remains a lethal disease despite many proposed treatments. Recent studies have indicated that epigenetic therapy, which targets epigenetic effects, might be a new therapeutic methodology for NSCLC. However, it is not clear which objects (e.g., genes) this treatment specifically targets. Secreted frizzled-related proteins (SFRPs) are promising candidates for epigenetic therapy in many cancers, but there have been no reports of SFRPs targeted by epigenetic therapy for NSCLC. This study performed a meta-analysis of reprogrammed NSCLC cell lines instead of the direct examination of epigenetic therapy treatment to identify epigenetic therapy targets. In addition, mRNA expression/promoter methylation profiles were processed by recently proposed principal component analysis based unsupervised feature extraction and categorical regression analysis based feature extraction. The Wnt/β-catenin signalling pathway was extensively enriched among 32 genes identified by feature extraction. Among the genes identified, SFRP1 was specifically indicated to target β-catenin, and thus might be targeted by epigenetic therapy in NSCLC cell lines. A histone deacetylase inhibitor might reactivate SFRP1 based upon the re-analysis of a public domain data set. Numerical computation validated the binding of SFRP1 to WNT1 to suppress Wnt signalling pathway activation in NSCLC. The meta-analysis of reprogrammed NSCLC cell lines identified SFRP1 as a promising target of epigenetic therapy for NSCLC.

  2. Estimating magnitude and frequency of peak discharges for rural, unregulated, streams in West Virginia

    USGS Publications Warehouse

    Wiley, J.B.; Atkins, John T.; Tasker, Gary D.

    2000-01-01

    Multiple and simple least-squares regression models for the log10-transformed 100-year discharge with independent variables describing the basin characteristics (log10-transformed and untransformed) for 267 streamflow-gaging stations were evaluated, and the regression residuals were plotted as areal distributions that defined three regions of the State, designated East, North, and South. Exploratory data analysis procedures identified 31 gaging stations at which discharges are different than would be expected for West Virginia. Regional equations for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year peak discharges were determined by generalized least-squares regression using data from 236 gaging stations. Log10-transformed drainage area was the most significant independent variable for all regions.Equations developed in this study are applicable only to rural, unregulated, streams within the boundaries of West Virginia. The accuracy of estimating equations is quantified by measuring the average prediction error (from 27.7 to 44.7 percent) and equivalent years of record (from 1.6 to 20.0 years).

  3. Standards for Standardized Logistic Regression Coefficients

    ERIC Educational Resources Information Center

    Menard, Scott

    2011-01-01

    Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…

  4. Predictors of discontinuation of antipsychotic medication and subsequent outcomes in the European First Episode Schizophrenia Trial (EUFEST).

    PubMed

    Landolt, Karin; Rössler, Wulf; Ajdacic-Gross, Vladeta; Derks, Eske M; Libiger, Jan; Kahn, René S; Fleischhacker, W Wolfgang

    2016-04-01

    This study had two aims: to describe patients suffering from first-episode schizophrenia who had stopped taking any antipsychotic medication, and to gain information on the predictors of successful discontinuation. We investigated data from the European First Episode Schizophrenia Trial (EUFEST). From the 325 patients included, 15.7% discontinued all antipsychotic medication. In a first analysis, clinical and sociodemographical predictors of discontinuing any antipsychotic medication were identified, using Cox regression. In the second analysis, logistic regression was used to determine variables associated with those patients who had stopped taking antipsychotic medication and had a favourable outcome, i.e., successful discontinuation. A good outcome was defined as a) having had no relapse within the whole observation period (80.6%), and b) having had no relapse and symptomatic remission at 12-month-follow-up (37.2%). Cox regression revealed that a higher proportion of patients from Western European countries and Israel stopped antipsychotic medication than from Central and Eastern European countries, that relapse was associated with discontinuation, and that discontinuers had lower compliance and higher quality of life. Predictors of successful discontinuation differed with the outcome definition used. Using definition b), successful discontinuers had a better baseline prognosis and better baseline social integration. Using definition a), successful discontinuers more often were from Western European countries. Region and clinical factors were associated with discontinuation. Prognosis and social integration played an important role in predicting successful discontinuation. As this study had several limitations, for example the observational design regarding discontinuation, further studies are needed to identify predictors of successful discontinuation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Evidence-based identification of key beliefs explaining adult male circumcision motivation in Zimbabwe: targets for behavior change messaging.

    PubMed

    Montaño, Daniel E; Kasprzyk, Danuta; Hamilton, Deven T; Tshimanga, Mufuta; Gorn, Gerald

    2014-05-01

    Male circumcision (MC) reduces HIV acquisition among men, leading WHO/UNAIDS to recommend a goal to circumcise 80 % of men in high HIV prevalence countries. Significant investment to increase MC capacity in priority countries was made, yet only 5 % of the goal has been achieved in Zimbabwe. The integrated behavioral model (IBM) was used as a framework to investigate the factors affecting MC motivation among men in Zimbabwe. A survey instrument was designed based on elicitation study results, and administered to a representative household-based sample of 1,201 men aged 18-30 from two urban and two rural areas in Zimbabwe. Multiple regression analysis found all five IBM constructs significantly explained MC Intention. Nearly all beliefs underlying the IBM constructs were significantly correlated with MC Intention. Stepwise regression analysis of beliefs underlying each construct respectively found that 13 behavioral beliefs, 5 normative beliefs, 4 descriptive norm beliefs, 6 efficacy beliefs, and 10 control beliefs were significant in explaining MC Intention. A final stepwise regression of the five sets of significant IBM construct beliefs identified 14 key beliefs that best explain Intention. Similar analyses were carried out with subgroups of men by urban-rural and age. Different sets of behavioral, normative, efficacy, and control beliefs were significant for each sub-group, suggesting communication messages need to be targeted to be most effective for sub-groups. Implications for the design of effective MC demand creation messages are discussed. This study demonstrates the application of theory-driven research to identify evidence-based targets for intervention messages to increase men's motivation to get circumcised and thereby improve demand for male circumcision.

  6. Contraceptive use before first pregnancy by women in India (2005-2006): determinants and differentials.

    PubMed

    Pandey, Anjali; Singh, K K

    2015-12-29

    There exist ample of research literature investigating the various facet of contraceptive use behaviors in India but the use of contraception by married Indian women, prior to having their first pregnancy has been neglected so far. This study attempts to identify the socio demographic determinants and differentials of contraceptive use or non use by a woman in India, before she proceeds to have her first child. The analysis was done using data from the third National Family Health Survey (2005-2006), India. This study utilized information from 54,918 women who ever have been married and whose current age at the time of NFHS-3 survey was 15-34 years. To identify the crucial socio-demographic determinants governing this pioneering behavior, logistic regression technique has been used. Hosmer Lemeshow test and ROC curve analysis was also performed in order to check the fitting of logistic regression model to the data under consideration. Of all the considered explanatory variables religion, caste, education, current age, age at marriage, media exposure and zonal classifications were found to be significantly affecting the study behavior. Place of residence i.e. urban--rural locality came to be insignificant in multivariable logistic regression. In the light of sufficient evidences confirming the presence of early marriages and child bearing practices in India, conjunct efforts are required to address the socio demographic differentials in contraceptive use by the young married women prior to their first pregnancy. Encouraging women to opt for higher education, ensuring marriages only after legal minimum age at marriage and promoting the family planning programs via print and electronic media may address the existing socio economic barriers. Also, the family planning programs should be oriented to take care of the geographical variations in the study behavior.

  7. [Bibliometrics and visualization analysis of land use regression models in ambient air pollution research].

    PubMed

    Zhang, Y J; Zhou, D H; Bai, Z P; Xue, F X

    2018-02-10

    Objective: To quantitatively analyze the current status and development trends regarding the land use regression (LUR) models on ambient air pollution studies. Methods: Relevant literature from the PubMed database before June 30, 2017 was analyzed, using the Bibliographic Items Co-occurrence Matrix Builder (BICOMB 2.0). Keywords co-occurrence networks, cluster mapping and timeline mapping were generated, using the CiteSpace 5.1.R5 software. Relevant literature identified in three Chinese databases was also reviewed. Results: Four hundred sixty four relevant papers were retrieved from the PubMed database. The number of papers published showed an annual increase, in line with the growing trend of the index. Most papers were published in the journal of Environmental Health Perspectives . Results from the Co-word cluster analysis identified five clusters: cluster#0 consisted of birth cohort studies related to the health effects of prenatal exposure to air pollution; cluster#1 referred to land use regression modeling and exposure assessment; cluster#2 was related to the epidemiology on traffic exposure; cluster#3 dealt with the exposure to ultrafine particles and related health effects; cluster#4 described the exposure to black carbon and related health effects. Data from Timeline mapping indicated that cluster#0 and#1 were the main research areas while cluster#3 and#4 were the up-coming hot areas of research. Ninety four relevant papers were retrieved from the Chinese databases with most of them related to studies on modeling. Conclusion: In order to better assess the health-related risks of ambient air pollution, and to best inform preventative public health intervention policies, application of LUR models to environmental epidemiology studies in China should be encouraged.

  8. Regression Analysis to Identify Factors Associated with Urinary Iodine Concentration at the Sub-National Level in India, Ghana, and Senegal

    PubMed Central

    Knowles, Jacky; Kupka, Roland; Dumble, Sam; Garrett, Greg S.; Pandav, Chandrakant S.; Yadav, Kapil; Touré, Ndeye Khady; Foriwa Amoaful, Esi; Gorstein, Jonathan

    2018-01-01

    Single and multiple variable regression analyses were conducted using data from stratified, cluster sample design, iodine surveys in India, Ghana, and Senegal to identify factors associated with urinary iodine concentration (UIC) among women of reproductive age (WRA) at the national and sub-national level. Subjects were survey household respondents, typically WRA. For all three countries, UIC was significantly different (p < 0.05) by household salt iodine category. Other significant differences were by strata and by household vulnerability to poverty in India and Ghana. In multiple variable regression analysis, UIC was significantly associated with strata and household salt iodine category in India and Ghana (p < 0.001). Estimated UIC was 1.6 (95% confidence intervals (CI) 1.3, 2.0) times higher (India) and 1.4 (95% CI 1.2, 1.6) times higher (Ghana) among WRA from households using adequately iodised salt than among WRA from households using non-iodised salt. Other significant associations with UIC were found in India, with having heard of iodine deficiency (1.2 times higher; CI 1.1, 1.3; p < 0.001) and having improved dietary diversity (1.1 times higher, CI 1.0, 1.2; p = 0.015); and in Ghana, with the level of tomato paste consumption the previous week (p = 0.029) (UIC for highest consumption level was 1.2 times lowest level; CI 1.1, 1.4). No significant associations were found in Senegal. Sub-national data on iodine status are required to assess equity of access to optimal iodine intake and to develop strategic responses as needed. PMID:29690505

  9. Cloning and Characterizing Genes Involved in Monoterpene Induced Mammary Tumor Regression

    DTIC Science & Technology

    1998-05-01

    Monoterpene -induced/repressed genes were identified in regressing rat mammary carcinomas treated with dietary limonene using a newly developed method...termed subtractive display. The subtractive display screen identified 42 monoterpene -induced genes comprising 9 known genes and 33 unidentified genes...as well as 58 monoterpene -repressed genes comprising 1 known gene and 57 unidentified genes. Several of the identified differentially expressed

  10. Effects of Military/Family Conflict on Female Naval Officer Retention

    DTIC Science & Technology

    2004-06-01

    has the greatest impact on retention . Hierarchical regression was used to identify life domains (e.g., family factors, job experiences, job ...where work/family conflict has the greatest impact on retention . Hierarchical regression was used to identify life domains (e.g., family factors, job ...experiences, job satisfaction, and commitment) that are key drivers of retention intent among female Naval officers. By identifying areas that are

  11. Optimizing Prophylactic CPAP in Patients Without Obstructive Sleep Apnoea for High-Risk Abdominal Surgeries: A Meta-regression Analysis.

    PubMed

    Singh, Preet Mohinder; Borle, Anuradha; Shah, Dipal; Sinha, Ashish; Makkar, Jeetinder Kaur; Trikha, Anjan; Goudra, Basavana Gouda

    2016-04-01

    Prophylactic continuous positive airway pressure (CPAP) can prevent pulmonary adverse events following upper abdominal surgeries. The present meta-regression evaluates and quantifies the effect of degree/duration of (CPAP) on the incidence of postoperative pulmonary events. Medical databases were searched for randomized controlled trials involving adult patients, comparing the outcome in those receiving prophylactic postoperative CPAP versus no CPAP, undergoing high-risk abdominal surgeries. Our meta-analysis evaluated the relationship between the postoperative pulmonary complications and the use of CPAP. Furthermore, meta-regression was used to quantify the effect of cumulative duration and degree of CPAP on the measured outcomes. Seventy-three potentially relevant studies were identified, of which 11 had appropriate data, allowing us to compare a total of 362 and 363 patients in CPAP and control groups, respectively. Qualitatively, Odds ratio for CPAP showed protective effect for pneumonia [0.39 (0.19-0.78)], atelectasis [0.51 (0.32-0.80)] and pulmonary complications [0.37 (0.24-0.56)] with zero heterogeneity. For prevention of pulmonary complications, odds ratio was better for continuous than intermittent CPAP. Meta-regression demonstrated a positive correlation between the degree of CPAP and the incidence of pneumonia with a regression coefficient of +0.61 (95 % CI 0.02-1.21, P = 0.048, τ (2) = 0.078, r (2) = 7.87 %). Overall, adverse effects were similar with or without the use of CPAP. Prophylactic postoperative use of continuous CPAP significantly reduces the incidence of postoperative pneumonia, atelectasis and pulmonary complications in patients undergoing high-risk abdominal surgeries. Quantitatively, increasing the CPAP levels does not necessarily enhance the protective effect against pneumonia. Instead, protective effect diminishes with increasing degree of CPAP.

  12. Linear regression analysis: part 14 of a series on evaluation of scientific publications.

    PubMed

    Schneider, Astrid; Hommel, Gerhard; Blettner, Maria

    2010-11-01

    Regression analysis is an important statistical method for the analysis of medical data. It enables the identification and characterization of relationships among multiple factors. It also enables the identification of prognostically relevant risk factors and the calculation of risk scores for individual prognostication. This article is based on selected textbooks of statistics, a selective review of the literature, and our own experience. After a brief introduction of the uni- and multivariable regression models, illustrative examples are given to explain what the important considerations are before a regression analysis is performed, and how the results should be interpreted. The reader should then be able to judge whether the method has been used correctly and interpret the results appropriately. The performance and interpretation of linear regression analysis are subject to a variety of pitfalls, which are discussed here in detail. The reader is made aware of common errors of interpretation through practical examples. Both the opportunities for applying linear regression analysis and its limitations are presented.

  13. Spatiotemporal analysis of the relationship between socioeconomic factors and stroke in the Portuguese mainland population under 65 years old.

    PubMed

    Oliveira, André; Cabral, António J R; Mendes, Jorge M; Martins, Maria R O; Cabral, Pedro

    2015-11-04

    Stroke risk has been shown to display varying patterns of geographic distribution amongst countries but also between regions of the same country. Traditionally a disease of older persons, a global 25% increase in incidence instead was noticed between 1990 and 2010 in persons aged 20-≤64 years, particularly in low- and medium-income countries. Understanding spatial disparities in the association between socioeconomic factors and stroke is critical to target public health initiatives aiming to mitigate or prevent this disease, including in younger persons. We aimed to identify socioeconomic determinants of geographic disparities of stroke risk in people <65 years old, in municipalities of mainland Portugal, and the spatiotemporal variation of the association between these determinants and stroke risk during two study periods (1992-1996 and 2002-2006). Poisson and negative binomial global regression models were used to explore determinants of disease risk. Geographically weighted regression (GWR) represents a distinctive approach, allowing estimation of local regression coefficients. Models for both study periods were identified. Significant variables included education attainment, work hours per week and unemployment. Local Poisson GWR models achieved the best fit and evidenced spatially varying regression coefficients. Spatiotemporal inequalities were observed in significant variables, with dissimilarities between men and women. This study contributes to a better understanding of the relationship between stroke and socioeconomic factors in the population <65 years of age, one age group seldom analysed separately. It can thus help to improve the targeting of public health initiatives, even more in a context of economic crisis.

  14. An improved multiple linear regression and data analysis computer program package

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.

    1972-01-01

    NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.

  15. Relative efficacy of topical non-steroidal anti-inflammatory drugs and topical capsaicin in osteoarthritis: protocol for an individual patient data meta-analysis.

    PubMed

    Persson, Monica S M; Fu, Yu; Bhattacharya, Archan; Goh, Siew-Li; van Middelkoop, Marienke; Bierma-Zeinstra, Sita M A; Walsh, David; Doherty, Michael; Zhang, Weiya

    2016-09-29

    Pain is the most troubling issue to patients with osteoarthritis (OA), yet current pharmacological treatments offer only small-to-moderate pain reduction. Current guidelines therefore emphasise the need to identify predictors of treatment response. In line with these recommendations, an individual patient data (IPD) meta-analysis will be conducted. The study aims to investigate the relative treatment effects of topical non-steroidal anti-inflammatory drugs (NSAIDs) and topical capsaicin in OA and to identify patient-level predictors of treatment response. IPD will be collected from randomised controlled trials (RCTs) of topical NSAIDs and capsaicin in OA. Multilevel regression modelling will be conducted to determine predictors for the specific and the overall treatment effect. Through the identification of treatment responders, this IPD meta-analysis may improve the current understanding of the pain mechanisms in OA and guide clinical decision-making. Identifying and prescribing the treatment most likely to be beneficial for an individual with OA will improve the efficiency of patient management. CRD42016035254.

  16. Role of Demographic and Personality Factors in Mediating Vulnerability to Suicide Attempts under Intoxication with Alcohol: A Record-based Exploratory Study.

    PubMed

    Kattimani, Shivanand; Menon, Vikas; Sarkar, Siddharth; Arun, Anand Babu; Venkatalakshmi, Penchilaiya

    2016-01-01

    Identifying those who are likely to make suicide attempts under alcohol intoxication has important implications for management and prevention of further suicidal behavior. To identify the frequency of suicide attempts made under the influence of alcohol and the percentage of impulsive suicide attempts among them. We also aimed to identify predictors of attempted suicide under intoxication with alcohol. Record-based study carried out at a tertiary care hospital. The clinical charts of consecutive suicide attempters ( n = 147) who presented to the crisis intervention clinic from July 2013 to June 2014 were reviewed, and relevant data were extracted. The participants were divided into three groups - nonusers of alcohol ( n = 85), alcohol users who did not attempt under intoxication ( n = 31) and alcohol users who attempted under intoxication ( n = 31). These groups were compared on various sociodemographic and clinical variables. Logistic regression was done to identify predictors of suicide attempt under intoxication. Chi-square (χ 2 ) test, one-way ANOVA (F) test and backward stepwise logistic regression. About 21.08% of all suicide attempts occurred under alcohol intoxication. Such subjects were more likely to be older ( F = 12.428, P < 0.001), male (χ 2 = 87.367, P < 0.001), married (χ 2 = 6.787, P = 0.034), employed (χ 2 = 41.778, P < 0.001), and fewer years of formal schooling ( F = 3.312, P = 0.039). Physical methods (hanging) were used more often in this group (χ 2 = 19.510, P = 0.012). In regression analysis, only marital status and living condition emerged as predictors of attempt under intoxication (odds ratios 4.52 [confidence interval (CI) 1.34-15.24, P = 0.015] and 5.67 [CI 1.17-27.39, P = 0.031] respectively). Certain demographic features may help us in identifying those who are more likely to make attempts under intoxication. The role of personality factors as potential mediators of such behavior needs further exploration.

  17. A Model-Based Joint Identification of Differentially Expressed Genes and Phenotype-Associated Genes

    PubMed Central

    Seo, Minseok; Shin, Su-kyung; Kwon, Eun-Young; Kim, Sung-Eun; Bae, Yun-Jung; Lee, Seungyeoun; Sung, Mi-Kyung; Choi, Myung-Sook; Park, Taesung

    2016-01-01

    Over the last decade, many analytical methods and tools have been developed for microarray data. The detection of differentially expressed genes (DEGs) among different treatment groups is often a primary purpose of microarray data analysis. In addition, association studies investigating the relationship between genes and a phenotype of interest such as survival time are also popular in microarray data analysis. Phenotype association analysis provides a list of phenotype-associated genes (PAGs). However, it is sometimes necessary to identify genes that are both DEGs and PAGs. We consider the joint identification of DEGs and PAGs in microarray data analyses. The first approach we used was a naïve approach that detects DEGs and PAGs separately and then identifies the genes in an intersection of the list of PAGs and DEGs. The second approach we considered was a hierarchical approach that detects DEGs first and then chooses PAGs from among the DEGs or vice versa. In this study, we propose a new model-based approach for the joint identification of DEGs and PAGs. Unlike the previous two-step approaches, the proposed method identifies genes simultaneously that are DEGs and PAGs. This method uses standard regression models but adopts different null hypothesis from ordinary regression models, which allows us to perform joint identification in one-step. The proposed model-based methods were evaluated using experimental data and simulation studies. The proposed methods were used to analyze a microarray experiment in which the main interest lies in detecting genes that are both DEGs and PAGs, where DEGs are identified between two diet groups and PAGs are associated with four phenotypes reflecting the expression of leptin, adiponectin, insulin-like growth factor 1, and insulin. Model-based approaches provided a larger number of genes, which are both DEGs and PAGs, than other methods. Simulation studies showed that they have more power than other methods. Through analysis of data from experimental microarrays and simulation studies, the proposed model-based approach was shown to provide a more powerful result than the naïve approach and the hierarchical approach. Since our approach is model-based, it is very flexible and can easily handle different types of covariates. PMID:26964035

  18. Aroma profile and sensory characteristics of a sulfur dioxide-free mulberry (Morus nigra) wine subjected to non-thermal accelerating aging techniques.

    PubMed

    Tchabo, William; Ma, Yongkun; Kwaw, Emmanuel; Zhang, Haining; Xiao, Lulu; Tahir, Haroon Elrasheid

    2017-10-01

    The present study was undertaken to assess accelerating aging effects of high pressure, ultrasound and manosonication on the aromatic profile and sensorial attributes of aged mulberry wines (AMW). A total of 166 volatile compounds were found amongst the AMW. The outcomes of the investigation were presented by means of geometric mean (GM), cluster analysis (CA), principal component analysis (PCA), partial least squares regressions (PLSR) and principal component regression (PCR). GM highlighted 24 organoleptic attributes responsible for the sensorial profile of the AMW. Moreover, CA revealed that the volatile composition of the non-thermal accelerated aged wines differs from that of the conventional aged wines. Besides, PCA discriminated the AMW on the basis of their main sensorial characteristics. Furthermore, PLSR identified 75 aroma compounds which were mainly responsible for the olfactory notes of the AMW. Finally, the overall quality of the AMW was noted to be better predicted by PLSR than PCR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Obsessional personality features in employed Japanese adults with a lifetime history of depression: assessment by the Munich Personality Test (MPT).

    PubMed

    Sakado, K; Sakado, M; Seki, T; Kuwabara, H; Kojima, M; Sato, T; Someya, T

    2001-06-01

    Although a number of studies have reported on the association between obsessional personality features as measured by the Munich Personality Test (MPT) "Rigidity" scale and depression, there has been no examination of these relationships in a non-clinical sample. The dimensional scores on the MPT were compared between subjects with and without lifetime depression, using a sample of employed Japanese adults. The odds ratio for suffering from lifetime depression was estimated by multiple logistic regression analysis. To diagnose a lifetime history of depression, the Inventory to Diagnose Depression, Lifetime version (IDDL) was used. The subjects with lifetime depression scored significantly higher on the "Rigidity" scale than the subjects without lifetime depression. In our logistic regression analysis, three risk factors were identified as each independently increasing a person's risk for suffering from lifetime depression: higher levels of "Rigidity", being of the female gender, and suffering from current depressive symptoms. The MPT "Rigidity" scale is a sensitive measure of personality features that occur with depression.

  20. Quantitative analysis of microbial contamination in private drinking water supply systems.

    PubMed

    Allevi, Richard P; Krometis, Leigh-Anne H; Hagedorn, Charles; Benham, Brian; Lawrence, Annie H; Ling, Erin J; Ziegler, Peter E

    2013-06-01

    Over one million households rely on private water supplies (e.g. well, spring, cistern) in the Commonwealth of Virginia, USA. The present study tested 538 private wells and springs in 20 Virginia counties for total coliforms (TCs) and Escherichia coli along with a suite of chemical contaminants. A logistic regression analysis was used to investigate potential correlations between TC contamination and chemical parameters (e.g. NO3(-), turbidity), as well as homeowner-provided survey data describing system characteristics and perceived water quality. Of the 538 samples collected, 41% (n = 221) were positive for TCs and 10% (n = 53) for E. coli. Chemical parameters were not statistically predictive of microbial contamination. Well depth, water treatment, and farm location proximate to the water supply were factors in a regression model that predicted presence/absence of TCs with 74% accuracy. Microbial and chemical source tracking techniques (Bacteroides gene Bac32F and HF183 detection via polymerase chain reaction and optical brightener detection via fluorometry) identified four samples as likely contaminated with human wastewater.

Top