Sample records for regression analysis including

  1. Principal component regression analysis with SPSS.

    PubMed

    Liu, R X; Kuang, J; Gong, Q; Hou, X L

    2003-06-01

    The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.

  2. The Economic Value of Mangroves: A Meta-Analysis

    Treesearch

    Marwa Salem; D. Evan Mercer

    2012-01-01

    This paper presents a synthesis of the mangrove ecosystem valuation literature through a meta-regression analysis. The main contribution of this study is that it is the first meta-analysis focusing solely on mangrove forests, whereas previous studies have included different types of wetlands. The number of studies included in the regression analysis is 44 for a total...

  3. A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation.

    PubMed

    Karabatsos, George

    2017-02-01

    Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected functionals and values of covariates. The software is illustrated through the BNP regression analysis of real data.

  4. An improved multiple linear regression and data analysis computer program package

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.

    1972-01-01

    NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.

  5. Interpreting Bivariate Regression Coefficients: Going beyond the Average

    ERIC Educational Resources Information Center

    Halcoussis, Dennis; Phillips, G. Michael

    2010-01-01

    Statistics, econometrics, investment analysis, and data analysis classes often review the calculation of several types of averages, including the arithmetic mean, geometric mean, harmonic mean, and various weighted averages. This note shows how each of these can be computed using a basic regression framework. By recognizing when a regression model…

  6. Methods for estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina, 2011

    USGS Publications Warehouse

    Feaster, Toby D.; Gotvald, Anthony J.; Weaver, J. Curtis

    2014-01-01

    Reliable estimates of the magnitude and frequency of floods are essential for the design of transportation and water-conveyance structures, flood-insurance studies, and flood-plain management. Such estimates are particularly important in densely populated urban areas. In order to increase the number of streamflow-gaging stations (streamgages) available for analysis, expand the geographical coverage that would allow for application of regional regression equations across State boundaries, and build on a previous flood-frequency investigation of rural U.S Geological Survey streamgages in the Southeast United States, a multistate approach was used to update methods for determining the magnitude and frequency of floods in urban and small, rural streams that are not substantially affected by regulation or tidal fluctuations in Georgia, South Carolina, and North Carolina. The at-site flood-frequency analysis of annual peak-flow data for urban and small, rural streams (through September 30, 2011) included 116 urban streamgages and 32 small, rural streamgages, defined in this report as basins draining less than 1 square mile. The regional regression analysis included annual peak-flow data from an additional 338 rural streamgages previously included in U.S. Geological Survey flood-frequency reports and 2 additional rural streamgages in North Carolina that were not included in the previous Southeast rural flood-frequency investigation for a total of 488 streamgages included in the urban and small, rural regression analysis. The at-site flood-frequency analyses for the urban and small, rural streamgages included the expected moments algorithm, which is a modification of the Bulletin 17B log-Pearson type III method for fitting the statistical distribution to the logarithms of the annual peak flows. Where applicable, the flood-frequency analysis also included low-outlier and historic information. Additionally, the application of a generalized Grubbs-Becks test allowed for the detection of multiple potentially influential low outliers. Streamgage basin characteristics were determined using geographical information system techniques. Initial ordinary least squares regression simulations reduced the number of basin characteristics on the basis of such factors as statistical significance, coefficient of determination, Mallow’s Cp statistic, and ease of measurement of the explanatory variable. Application of generalized least squares regression techniques produced final predictive (regression) equations for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probability flows for urban and small, rural ungaged basins for three hydrologic regions (HR1, Piedmont–Ridge and Valley; HR3, Sand Hills; and HR4, Coastal Plain), which previously had been defined from exploratory regression analysis in the Southeast rural flood-frequency investigation. Because of the limited availability of urban streamgages in the Coastal Plain of Georgia, South Carolina, and North Carolina, additional urban streamgages in Florida and New Jersey were used in the regression analysis for this region. Including the urban streamgages in New Jersey allowed for the expansion of the applicability of the predictive equations in the Coastal Plain from 3.5 to 53.5 square miles. Average standard error of prediction for the predictive equations, which is a measure of the average accuracy of the regression equations when predicting flood estimates for ungaged sites, range from 25.0 percent for the 10-percent annual exceedance probability regression equation for the Piedmont–Ridge and Valley region to 73.3 percent for the 0.2-percent annual exceedance probability regression equation for the Sand Hills region.

  7. A general framework for the use of logistic regression models in meta-analysis.

    PubMed

    Simmonds, Mark C; Higgins, Julian Pt

    2016-12-01

    Where individual participant data are available for every randomised trial in a meta-analysis of dichotomous event outcomes, "one-stage" random-effects logistic regression models have been proposed as a way to analyse these data. Such models can also be used even when individual participant data are not available and we have only summary contingency table data. One benefit of this one-stage regression model over conventional meta-analysis methods is that it maximises the correct binomial likelihood for the data and so does not require the common assumption that effect estimates are normally distributed. A second benefit of using this model is that it may be applied, with only minor modification, in a range of meta-analytic scenarios, including meta-regression, network meta-analyses and meta-analyses of diagnostic test accuracy. This single model can potentially replace the variety of often complex methods used in these areas. This paper considers, with a range of meta-analysis examples, how random-effects logistic regression models may be used in a number of different types of meta-analyses. This one-stage approach is compared with widely used meta-analysis methods including Bayesian network meta-analysis and the bivariate and hierarchical summary receiver operating characteristic (ROC) models for meta-analyses of diagnostic test accuracy. © The Author(s) 2014.

  8. Understanding poisson regression.

    PubMed

    Hayat, Matthew J; Higgins, Melinda

    2014-04-01

    Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. Copyright 2014, SLACK Incorporated.

  9. Adherence to preferable behavior for lipid control by high-risk dyslipidemic Japanese patients under pravastatin treatment: the APPROACH-J study.

    PubMed

    Kitagawa, Yasuhisa; Teramoto, Tamio; Daida, Hiroyuki

    2012-01-01

    We evaluated the impact of adherence to preferable behavior on serum lipid control assessed by a self-reported questionnaire in high-risk patients taking pravastatin for primary prevention of coronary artery disease. High-risk patients taking pravastatin were followed for 2 years. Questionnaire surveys comprising 21 questions, including 18 questions concerning awareness of health, and current status of diet, exercise, and drug therapy, were conducted at baseline and after 1 year. Potential domains were established by factor analysis from the results of questionnaires, and adherence scores were calculated in each domain. The relationship between adherence scores and lipid values during the 1-year treatment period was analyzed by each domain using multiple regression analysis. A total of 5,792 patients taking pravastatin were included in the analysis. Multiple regression analysis showed a significant correlation in terms of "Intake of high fat/cholesterol/sugar foods" (regression coefficient -0.58, p=0.0105) and "Adherence to instructions for drug therapy" (regression coefficient -6.61, p<0.0001). Low-density lipoprotein cholesterol (LDL-C) values were significantly lower in patients who had an increase in the adherence score in the "Awareness of health" domain compared with those with a decreased score. There was a significant correlation between high-density lipoprotein (HDL-C) values and "Awareness of health" (regression coefficient 0.26; p= 0.0037), "Preferable dietary behaviors" (regression coefficient 0.75; p<0.0001), and "Exercise" (regression coefficient 0.73; p= 0.0002). Similar relations were seen with triglycerides. In patients who have a high awareness of their health, a positive attitude toward lipid-lowering treatment including diet, exercise, and high adherence to drug therapy, is related with favorable overall lipid control even in patients under treatment with pravastatin.

  10. Regression Analysis with Dummy Variables: Use and Interpretation.

    ERIC Educational Resources Information Center

    Hinkle, Dennis E.; Oliver, J. Dale

    1986-01-01

    Multiple regression analysis (MRA) may be used when both continuous and categorical variables are included as independent research variables. The use of MRA with categorical variables involves dummy coding, that is, assigning zeros and ones to levels of categorical variables. Caution is urged in results interpretation. (Author/CH)

  11. Applied Statistics: From Bivariate through Multivariate Techniques [with CD-ROM

    ERIC Educational Resources Information Center

    Warner, Rebecca M.

    2007-01-01

    This book provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked…

  12. A Simulation Investigation of Principal Component Regression.

    ERIC Educational Resources Information Center

    Allen, David E.

    Regression analysis is one of the more common analytic tools used by researchers. However, multicollinearity between the predictor variables can cause problems in using the results of regression analyses. Problems associated with multicollinearity include entanglement of relative influences of variables due to reduced precision of estimation,…

  13. Regression: The Apple Does Not Fall Far From the Tree.

    PubMed

    Vetter, Thomas R; Schober, Patrick

    2018-05-15

    Researchers and clinicians are frequently interested in either: (1) assessing whether there is a relationship or association between 2 or more variables and quantifying this association; or (2) determining whether 1 or more variables can predict another variable. The strength of such an association is mainly described by the correlation. However, regression analysis and regression models can be used not only to identify whether there is a significant relationship or association between variables but also to generate estimations of such a predictive relationship between variables. This basic statistical tutorial discusses the fundamental concepts and techniques related to the most common types of regression analysis and modeling, including simple linear regression, multiple regression, logistic regression, ordinal regression, and Poisson regression, as well as the common yet often underrecognized phenomenon of regression toward the mean. The various types of regression analysis are powerful statistical techniques, which when appropriately applied, can allow for the valid interpretation of complex, multifactorial data. Regression analysis and models can assess whether there is a relationship or association between 2 or more observed variables and estimate the strength of this association, as well as determine whether 1 or more variables can predict another variable. Regression is thus being applied more commonly in anesthesia, perioperative, critical care, and pain research. However, it is crucial to note that regression can identify plausible risk factors; it does not prove causation (a definitive cause and effect relationship). The results of a regression analysis instead identify independent (predictor) variable(s) associated with the dependent (outcome) variable. As with other statistical methods, applying regression requires that certain assumptions be met, which can be tested with specific diagnostics.

  14. Prevalence of treponema species detected in endodontic infections: systematic review and meta-regression analysis.

    PubMed

    Leite, Fábio R M; Nascimento, Gustavo G; Demarco, Flávio F; Gomes, Brenda P F A; Pucci, Cesar R; Martinho, Frederico C

    2015-05-01

    This systematic review and meta-regression analysis aimed to calculate a combined prevalence estimate and evaluate the prevalence of different Treponema species in primary and secondary endodontic infections, including symptomatic and asymptomatic cases. The MEDLINE/PubMed, Embase, Scielo, Web of Knowledge, and Scopus databases were searched without starting date restriction up to and including March 2014. Only reports in English were included. The selected literature was reviewed by 2 authors and classified as suitable or not to be included in this review. Lists were compared, and, in case of disagreements, decisions were made after a discussion based on inclusion and exclusion criteria. A pooled prevalence of Treponema species in endodontic infections was estimated. Additionally, a meta-regression analysis was performed. Among the 265 articles identified in the initial search, only 51 were included in the final analysis. The studies were classified into 2 different groups according to the type of endodontic infection and whether it was an exclusively primary/secondary study (n = 36) or a primary/secondary comparison (n = 15). The pooled prevalence of Treponema species was 41.5% (95% confidence interval, 35.9-47.0). In the multivariate model of meta-regression analysis, primary endodontic infections (P < .001), acute apical abscess, symptomatic apical periodontitis (P < .001), and concomitant presence of 2 or more species (P = .028) explained the heterogeneity regarding the prevalence rates of Treponema species. Our findings suggest that Treponema species are important pathogens involved in endodontic infections, particularly in cases of primary and acute infections. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Conjoint Analysis: A Study of the Effects of Using Person Variables.

    ERIC Educational Resources Information Center

    Fraas, John W.; Newman, Isadore

    Three statistical techniques--conjoint analysis, a multiple linear regression model, and a multiple linear regression model with a surrogate person variable--were used to estimate the relative importance of five university attributes for students in the process of selecting a college. The five attributes include: availability and variety of…

  16. Multiple Logistic Regression Analysis of Cigarette Use among High School Students

    ERIC Educational Resources Information Center

    Adwere-Boamah, Joseph

    2011-01-01

    A binary logistic regression analysis was performed to predict high school students' cigarette smoking behavior from selected predictors from 2009 CDC Youth Risk Behavior Surveillance Survey. The specific target student behavior of interest was frequent cigarette use. Five predictor variables included in the model were: a) race, b) frequency of…

  17. Multivariate Analysis of Seismic Field Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, M. Kathleen

    1999-06-01

    This report includes the details of the model building procedure and prediction of seismic field data. Principal Components Regression, a multivariate analysis technique, was used to model seismic data collected as two pieces of equipment were cycled on and off. Models built that included only the two pieces of equipment of interest had trouble predicting data containing signals not included in the model. Evidence for poor predictions came from the prediction curves as well as spectral F-ratio plots. Once the extraneous signals were included in the model, predictions improved dramatically. While Principal Components Regression performed well for the present datamore » sets, the present data analysis suggests further work will be needed to develop more robust modeling methods as the data become more complex.« less

  18. Identifying predictive features in drug response using machine learning: opportunities and challenges.

    PubMed

    Vidyasagar, Mathukumalli

    2015-01-01

    This article reviews several techniques from machine learning that can be used to study the problem of identifying a small number of features, from among tens of thousands of measured features, that can accurately predict a drug response. Prediction problems are divided into two categories: sparse classification and sparse regression. In classification, the clinical parameter to be predicted is binary, whereas in regression, the parameter is a real number. Well-known methods for both classes of problems are briefly discussed. These include the SVM (support vector machine) for classification and various algorithms such as ridge regression, LASSO (least absolute shrinkage and selection operator), and EN (elastic net) for regression. In addition, several well-established methods that do not directly fall into machine learning theory are also reviewed, including neural networks, PAM (pattern analysis for microarrays), SAM (significance analysis for microarrays), GSEA (gene set enrichment analysis), and k-means clustering. Several references indicative of the application of these methods to cancer biology are discussed.

  19. Multiplication factor versus regression analysis in stature estimation from hand and foot dimensions.

    PubMed

    Krishan, Kewal; Kanchan, Tanuj; Sharma, Abhilasha

    2012-05-01

    Estimation of stature is an important parameter in identification of human remains in forensic examinations. The present study is aimed to compare the reliability and accuracy of stature estimation and to demonstrate the variability in estimated stature and actual stature using multiplication factor and regression analysis methods. The study is based on a sample of 246 subjects (123 males and 123 females) from North India aged between 17 and 20 years. Four anthropometric measurements; hand length, hand breadth, foot length and foot breadth taken on the left side in each subject were included in the study. Stature was measured using standard anthropometric techniques. Multiplication factors were calculated and linear regression models were derived for estimation of stature from hand and foot dimensions. Derived multiplication factors and regression formula were applied to the hand and foot measurements in the study sample. The estimated stature from the multiplication factors and regression analysis was compared with the actual stature to find the error in estimated stature. The results indicate that the range of error in estimation of stature from regression analysis method is less than that of multiplication factor method thus, confirming that the regression analysis method is better than multiplication factor analysis in stature estimation. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  20. Population heterogeneity in the salience of multiple risk factors for adolescent delinquency.

    PubMed

    Lanza, Stephanie T; Cooper, Brittany R; Bray, Bethany C

    2014-03-01

    To present mixture regression analysis as an alternative to more standard regression analysis for predicting adolescent delinquency. We demonstrate how mixture regression analysis allows for the identification of population subgroups defined by the salience of multiple risk factors. We identified population subgroups (i.e., latent classes) of individuals based on their coefficients in a regression model predicting adolescent delinquency from eight previously established risk indices drawn from the community, school, family, peer, and individual levels. The study included N = 37,763 10th-grade adolescents who participated in the Communities That Care Youth Survey. Standard, zero-inflated, and mixture Poisson and negative binomial regression models were considered. Standard and mixture negative binomial regression models were selected as optimal. The five-class regression model was interpreted based on the class-specific regression coefficients, indicating that risk factors had varying salience across classes of adolescents. Standard regression showed that all risk factors were significantly associated with delinquency. Mixture regression provided more nuanced information, suggesting a unique set of risk factors that were salient for different subgroups of adolescents. Implications for the design of subgroup-specific interventions are discussed. Copyright © 2014 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  1. Meta-regression analysis of commensal and pathogenic Escherichia coli survival in soil and water.

    PubMed

    Franz, Eelco; Schijven, Jack; de Roda Husman, Ana Maria; Blaak, Hetty

    2014-06-17

    The extent to which pathogenic and commensal E. coli (respectively PEC and CEC) can survive, and which factors predominantly determine the rate of decline, are crucial issues from a public health point of view. The goal of this study was to provide a quantitative summary of the variability in E. coli survival in soil and water over a broad range of individual studies and to identify the most important sources of variability. To that end, a meta-regression analysis on available literature data was conducted. The considerable variation in reported decline rates indicated that the persistence of E. coli is not easily predictable. The meta-analysis demonstrated that for soil and water, the type of experiment (laboratory or field), the matrix subtype (type of water and soil), and temperature were the main factors included in the regression analysis. A higher average decline rate in soil of PEC compared with CEC was observed. The regression models explained at best 57% of the variation in decline rate in soil and 41% of the variation in decline rate in water. This indicates that additional factors, not included in the current meta-regression analysis, are of importance but rarely reported. More complete reporting of experimental conditions may allow future inference on the global effects of these variables on the decline rate of E. coli.

  2. An Effect Size for Regression Predictors in Meta-Analysis

    ERIC Educational Resources Information Center

    Aloe, Ariel M.; Becker, Betsy Jane

    2012-01-01

    A new effect size representing the predictive power of an independent variable from a multiple regression model is presented. The index, denoted as r[subscript sp], is the semipartial correlation of the predictor with the outcome of interest. This effect size can be computed when multiple predictor variables are included in the regression model…

  3. Interrupted Time Series Versus Statistical Process Control in Quality Improvement Projects.

    PubMed

    Andersson Hagiwara, Magnus; Andersson Gäre, Boel; Elg, Mattias

    2016-01-01

    To measure the effect of quality improvement interventions, it is appropriate to use analysis methods that measure data over time. Examples of such methods include statistical process control analysis and interrupted time series with segmented regression analysis. This article compares the use of statistical process control analysis and interrupted time series with segmented regression analysis for evaluating the longitudinal effects of quality improvement interventions, using an example study on an evaluation of a computerized decision support system.

  4. Handling nonnormality and variance heterogeneity for quantitative sublethal toxicity tests.

    PubMed

    Ritz, Christian; Van der Vliet, Leana

    2009-09-01

    The advantages of using regression-based techniques to derive endpoints from environmental toxicity data are clear, and slowly, this superior analytical technique is gaining acceptance. As use of regression-based analysis becomes more widespread, some of the associated nuances and potential problems come into sharper focus. Looking at data sets that cover a broad spectrum of standard test species, we noticed that some model fits to data failed to meet two key assumptions-variance homogeneity and normality-that are necessary for correct statistical analysis via regression-based techniques. Failure to meet these assumptions often is caused by reduced variance at the concentrations showing severe adverse effects. Although commonly used with linear regression analysis, transformation of the response variable only is not appropriate when fitting data using nonlinear regression techniques. Through analysis of sample data sets, including Lemna minor, Eisenia andrei (terrestrial earthworm), and algae, we show that both the so-called Box-Cox transformation and use of the Poisson distribution can help to correct variance heterogeneity and nonnormality and so allow nonlinear regression analysis to be implemented. Both the Box-Cox transformation and the Poisson distribution can be readily implemented into existing protocols for statistical analysis. By correcting for nonnormality and variance heterogeneity, these two statistical tools can be used to encourage the transition to regression-based analysis and the depreciation of less-desirable and less-flexible analytical techniques, such as linear interpolation.

  5. Visual grading characteristics and ordinal regression analysis during optimisation of CT head examinations.

    PubMed

    Zarb, Francis; McEntee, Mark F; Rainford, Louise

    2015-06-01

    To evaluate visual grading characteristics (VGC) and ordinal regression analysis during head CT optimisation as a potential alternative to visual grading assessment (VGA), traditionally employed to score anatomical visualisation. Patient images (n = 66) were obtained using current and optimised imaging protocols from two CT suites: a 16-slice scanner at the national Maltese centre for trauma and a 64-slice scanner in a private centre. Local resident radiologists (n = 6) performed VGA followed by VGC and ordinal regression analysis. VGC alone indicated that optimised protocols had similar image quality as current protocols. Ordinal logistic regression analysis provided an in-depth evaluation, criterion by criterion allowing the selective implementation of the protocols. The local radiology review panel supported the implementation of optimised protocols for brain CT examinations (including trauma) in one centre, achieving radiation dose reductions ranging from 24 % to 36 %. In the second centre a 29 % reduction in radiation dose was achieved for follow-up cases. The combined use of VGC and ordinal logistic regression analysis led to clinical decisions being taken on the implementation of the optimised protocols. This improved method of image quality analysis provided the evidence to support imaging protocol optimisation, resulting in significant radiation dose savings. • There is need for scientifically based image quality evaluation during CT optimisation. • VGC and ordinal regression analysis in combination led to better informed clinical decisions. • VGC and ordinal regression analysis led to dose reductions without compromising diagnostic efficacy.

  6. The process and utility of classification and regression tree methodology in nursing research

    PubMed Central

    Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda

    2014-01-01

    Aim This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Background Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Design Discussion paper. Data sources English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984–2013. Discussion Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Implications for Nursing Research Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Conclusion Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. PMID:24237048

  7. The process and utility of classification and regression tree methodology in nursing research.

    PubMed

    Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda

    2014-06-01

    This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Discussion paper. English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984-2013. Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. © 2013 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  8. Moderation analysis using a two-level regression model.

    PubMed

    Yuan, Ke-Hai; Cheng, Ying; Maxwell, Scott

    2014-10-01

    Moderation analysis is widely used in social and behavioral research. The most commonly used model for moderation analysis is moderated multiple regression (MMR) in which the explanatory variables of the regression model include product terms, and the model is typically estimated by least squares (LS). This paper argues for a two-level regression model in which the regression coefficients of a criterion variable on predictors are further regressed on moderator variables. An algorithm for estimating the parameters of the two-level model by normal-distribution-based maximum likelihood (NML) is developed. Formulas for the standard errors (SEs) of the parameter estimates are provided and studied. Results indicate that, when heteroscedasticity exists, NML with the two-level model gives more efficient and more accurate parameter estimates than the LS analysis of the MMR model. When error variances are homoscedastic, NML with the two-level model leads to essentially the same results as LS with the MMR model. Most importantly, the two-level regression model permits estimating the percentage of variance of each regression coefficient that is due to moderator variables. When applied to data from General Social Surveys 1991, NML with the two-level model identified a significant moderation effect of race on the regression of job prestige on years of education while LS with the MMR model did not. An R package is also developed and documented to facilitate the application of the two-level model.

  9. Length bias correction in gene ontology enrichment analysis using logistic regression.

    PubMed

    Mi, Gu; Di, Yanming; Emerson, Sarah; Cumbie, Jason S; Chang, Jeff H

    2012-01-01

    When assessing differential gene expression from RNA sequencing data, commonly used statistical tests tend to have greater power to detect differential expression of genes encoding longer transcripts. This phenomenon, called "length bias", will influence subsequent analyses such as Gene Ontology enrichment analysis. In the presence of length bias, Gene Ontology categories that include longer genes are more likely to be identified as enriched. These categories, however, are not necessarily biologically more relevant. We show that one can effectively adjust for length bias in Gene Ontology analysis by including transcript length as a covariate in a logistic regression model. The logistic regression model makes the statistical issue underlying length bias more transparent: transcript length becomes a confounding factor when it correlates with both the Gene Ontology membership and the significance of the differential expression test. The inclusion of the transcript length as a covariate allows one to investigate the direct correlation between the Gene Ontology membership and the significance of testing differential expression, conditional on the transcript length. We present both real and simulated data examples to show that the logistic regression approach is simple, effective, and flexible.

  10. Association between response rates and survival outcomes in patients with newly diagnosed multiple myeloma. A systematic review and meta-regression analysis.

    PubMed

    Mainou, Maria; Madenidou, Anastasia-Vasiliki; Liakos, Aris; Paschos, Paschalis; Karagiannis, Thomas; Bekiari, Eleni; Vlachaki, Efthymia; Wang, Zhen; Murad, Mohammad Hassan; Kumar, Shaji; Tsapas, Apostolos

    2017-06-01

    We performed a systematic review and meta-regression analysis of randomized control trials to investigate the association between response to initial treatment and survival outcomes in patients with newly diagnosed multiple myeloma (MM). Response outcomes included complete response (CR) and the combined outcome of CR or very good partial response (VGPR), while survival outcomes were overall survival (OS) and progression-free survival (PFS). We used random-effect meta-regression models and conducted sensitivity analyses based on definition of CR and study quality. Seventy-two trials were included in the systematic review, 63 of which contributed data in meta-regression analyses. There was no association between OS and CR in patients without autologous stem cell transplant (ASCT) (regression coefficient: .02, 95% confidence interval [CI] -0.06, 0.10), in patients undergoing ASCT (-.11, 95% CI -0.44, 0.22) and in trials comparing ASCT with non-ASCT patients (.04, 95% CI -0.29, 0.38). Similarly, OS did not correlate with the combined metric of CR or VGPR, and no association was evident between response outcomes and PFS. Sensitivity analyses yielded similar results. This meta-regression analysis suggests that there is no association between conventional response outcomes and survival in patients with newly diagnosed MM. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. The more total cognitive load is reduced by cues, the better retention and transfer of multimedia learning: A meta-analysis and two meta-regression analyses.

    PubMed

    Xie, Heping; Wang, Fuxing; Hao, Yanbin; Chen, Jiaxue; An, Jing; Wang, Yuxin; Liu, Huashan

    2017-01-01

    Cueing facilitates retention and transfer of multimedia learning. From the perspective of cognitive load theory (CLT), cueing has a positive effect on learning outcomes because of the reduction in total cognitive load and avoidance of cognitive overload. However, this has not been systematically evaluated. Moreover, what remains ambiguous is the direct relationship between the cue-related cognitive load and learning outcomes. A meta-analysis and two subsequent meta-regression analyses were conducted to explore these issues. Subjective total cognitive load (SCL) and scores on a retention test and transfer test were selected as dependent variables. Through a systematic literature search, 32 eligible articles encompassing 3,597 participants were included in the SCL-related meta-analysis. Among them, 25 articles containing 2,910 participants were included in the retention-related meta-analysis and the following retention-related meta-regression, while there were 29 articles containing 3,204 participants included in the transfer-related meta-analysis and the transfer-related meta-regression. The meta-analysis revealed a statistically significant cueing effect on subjective ratings of cognitive load (d = -0.11, 95% CI = [-0.19, -0.02], p < 0.05), retention performance (d = 0.27, 95% CI = [0.08, 0.46], p < 0.01), and transfer performance (d = 0.34, 95% CI = [0.12, 0.56], p < 0.01). The subsequent meta-regression analyses showed that dSCL for cueing significantly predicted dretention for cueing (β = -0.70, 95% CI = [-1.02, -0.38], p < 0.001), as well as dtransfer for cueing (β = -0.60, 95% CI = [-0.92, -0.28], p < 0.001). Thus in line with CLT, adding cues in multimedia materials can indeed reduce SCL and promote learning outcomes, and the more SCL is reduced by cues, the better retention and transfer of multimedia learning.

  12. The more total cognitive load is reduced by cues, the better retention and transfer of multimedia learning: A meta-analysis and two meta-regression analyses

    PubMed Central

    Hao, Yanbin; Chen, Jiaxue; An, Jing; Wang, Yuxin; Liu, Huashan

    2017-01-01

    Cueing facilitates retention and transfer of multimedia learning. From the perspective of cognitive load theory (CLT), cueing has a positive effect on learning outcomes because of the reduction in total cognitive load and avoidance of cognitive overload. However, this has not been systematically evaluated. Moreover, what remains ambiguous is the direct relationship between the cue-related cognitive load and learning outcomes. A meta-analysis and two subsequent meta-regression analyses were conducted to explore these issues. Subjective total cognitive load (SCL) and scores on a retention test and transfer test were selected as dependent variables. Through a systematic literature search, 32 eligible articles encompassing 3,597 participants were included in the SCL-related meta-analysis. Among them, 25 articles containing 2,910 participants were included in the retention-related meta-analysis and the following retention-related meta-regression, while there were 29 articles containing 3,204 participants included in the transfer-related meta-analysis and the transfer-related meta-regression. The meta-analysis revealed a statistically significant cueing effect on subjective ratings of cognitive load (d = −0.11, 95% CI = [−0.19, −0.02], p < 0.05), retention performance (d = 0.27, 95% CI = [0.08, 0.46], p < 0.01), and transfer performance (d = 0.34, 95% CI = [0.12, 0.56], p < 0.01). The subsequent meta-regression analyses showed that dSCL for cueing significantly predicted dretention for cueing (β = −0.70, 95% CI = [−1.02, −0.38], p < 0.001), as well as dtransfer for cueing (β = −0.60, 95% CI = [−0.92, −0.28], p < 0.001). Thus in line with CLT, adding cues in multimedia materials can indeed reduce SCL and promote learning outcomes, and the more SCL is reduced by cues, the better retention and transfer of multimedia learning. PMID:28854205

  13. Selecting risk factors: a comparison of discriminant analysis, logistic regression and Cox's regression model using data from the Tromsø Heart Study.

    PubMed

    Brenn, T; Arnesen, E

    1985-01-01

    For comparative evaluation, discriminant analysis, logistic regression and Cox's model were used to select risk factors for total and coronary deaths among 6595 men aged 20-49 followed for 9 years. Groups with mortality between 5 and 93 per 1000 were considered. Discriminant analysis selected variable sets only marginally different from the logistic and Cox methods which always selected the same sets. A time-saving option, offered for both the logistic and Cox selection, showed no advantage compared with discriminant analysis. Analysing more than 3800 subjects, the logistic and Cox methods consumed, respectively, 80 and 10 times more computer time than discriminant analysis. When including the same set of variables in non-stepwise analyses, all methods estimated coefficients that in most cases were almost identical. In conclusion, discriminant analysis is advocated for preliminary or stepwise analysis, otherwise Cox's method should be used.

  14. An Analysis of San Diego's Housing Market Using a Geographically Weighted Regression Approach

    NASA Astrophysics Data System (ADS)

    Grant, Christina P.

    San Diego County real estate transaction data was evaluated with a set of linear models calibrated by ordinary least squares and geographically weighted regression (GWR). The goal of the analysis was to determine whether the spatial effects assumed to be in the data are best studied globally with no spatial terms, globally with a fixed effects submarket variable, or locally with GWR. 18,050 single-family residential sales which closed in the six months between April 2014 and September 2014 were used in the analysis. Diagnostic statistics including AICc, R2, Global Moran's I, and visual inspection of diagnostic plots and maps indicate superior model performance by GWR as compared to both global regressions.

  15. Determination of water pH using absorption-based optical sensors: evaluation of different calculation methods

    NASA Astrophysics Data System (ADS)

    Wang, Hongliang; Liu, Baohua; Ding, Zhongjun; Wang, Xiangxin

    2017-02-01

    Absorption-based optical sensors have been developed for the determination of water pH. In this paper, based on the preparation of a transparent sol-gel thin film with a phenol red (PR) indicator, several calculation methods, including simple linear regression analysis, quadratic regression analysis and dual-wavelength absorbance ratio analysis, were used to calculate water pH. Results of MSSRR show that dual-wavelength absorbance ratio analysis can improve the calculation accuracy of water pH in long-term measurement.

  16. Regression analysis for solving diagnosis problem of children's health

    NASA Astrophysics Data System (ADS)

    Cherkashina, Yu A.; Gerget, O. M.

    2016-04-01

    The paper includes results of scientific researches. These researches are devoted to the application of statistical techniques, namely, regression analysis, to assess the health status of children in the neonatal period based on medical data (hemostatic parameters, parameters of blood tests, the gestational age, vascular-endothelial growth factor) measured at 3-5 days of children's life. In this paper a detailed description of the studied medical data is given. A binary logistic regression procedure is discussed in the paper. Basic results of the research are presented. A classification table of predicted values and factual observed values is shown, the overall percentage of correct recognition is determined. Regression equation coefficients are calculated, the general regression equation is written based on them. Based on the results of logistic regression, ROC analysis was performed, sensitivity and specificity of the model are calculated and ROC curves are constructed. These mathematical techniques allow carrying out diagnostics of health of children providing a high quality of recognition. The results make a significant contribution to the development of evidence-based medicine and have a high practical importance in the professional activity of the author.

  17. Regression analysis using dependent Polya trees.

    PubMed

    Schörgendorfer, Angela; Branscum, Adam J

    2013-11-30

    Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.

  18. A Method of Calculating Functional Independence Measure at Discharge from Functional Independence Measure Effectiveness Predicted by Multiple Regression Analysis Has a High Degree of Predictive Accuracy.

    PubMed

    Tokunaga, Makoto; Watanabe, Susumu; Sonoda, Shigeru

    2017-09-01

    Multiple linear regression analysis is often used to predict the outcome of stroke rehabilitation. However, the predictive accuracy may not be satisfactory. The objective of this study was to elucidate the predictive accuracy of a method of calculating motor Functional Independence Measure (mFIM) at discharge from mFIM effectiveness predicted by multiple regression analysis. The subjects were 505 patients with stroke who were hospitalized in a convalescent rehabilitation hospital. The formula "mFIM at discharge = mFIM effectiveness × (91 points - mFIM at admission) + mFIM at admission" was used. By including the predicted mFIM effectiveness obtained through multiple regression analysis in this formula, we obtained the predicted mFIM at discharge (A). We also used multiple regression analysis to directly predict mFIM at discharge (B). The correlation between the predicted and the measured values of mFIM at discharge was compared between A and B. The correlation coefficients were .916 for A and .878 for B. Calculating mFIM at discharge from mFIM effectiveness predicted by multiple regression analysis had a higher degree of predictive accuracy of mFIM at discharge than that directly predicted. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  19. Multilayer Perceptron for Robust Nonlinear Interval Regression Analysis Using Genetic Algorithms

    PubMed Central

    2014-01-01

    On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets. PMID:25110755

  20. Multilayer perceptron for robust nonlinear interval regression analysis using genetic algorithms.

    PubMed

    Hu, Yi-Chung

    2014-01-01

    On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets.

  1. Retro-regression--another important multivariate regression improvement.

    PubMed

    Randić, M

    2001-01-01

    We review the serious problem associated with instabilities of the coefficients of regression equations, referred to as the MRA (multivariate regression analysis) "nightmare of the first kind". This is manifested when in a stepwise regression a descriptor is included or excluded from a regression. The consequence is an unpredictable change of the coefficients of the descriptors that remain in the regression equation. We follow with consideration of an even more serious problem, referred to as the MRA "nightmare of the second kind", arising when optimal descriptors are selected from a large pool of descriptors. This process typically causes at different steps of the stepwise regression a replacement of several previously used descriptors by new ones. We describe a procedure that resolves these difficulties. The approach is illustrated on boiling points of nonanes which are considered (1) by using an ordered connectivity basis; (2) by using an ordering resulting from application of greedy algorithm; and (3) by using an ordering derived from an exhaustive search for optimal descriptors. A novel variant of multiple regression analysis, called retro-regression (RR), is outlined showing how it resolves the ambiguities associated with both "nightmares" of the first and the second kind of MRA.

  2. Application of Partial Least Squares (PLS) Regression to Determine Landscape-Scale Aquatic Resource Vulnerability in the Ozark Mountains

    EPA Science Inventory

    Partial least squares (PLS) analysis offers a number of advantages over the more traditionally used regression analyses applied in landscape ecology to study the associations among constituents of surface water and landscapes. Common data problems in ecological studies include: s...

  3. Evaluation of land use regression models (LURs) for nitrogen dioxide and benzene in four U.S. Cities.

    EPA Science Inventory

    Spatial analysis studies have included application of land use regression models (LURs) for health and air quality assessments. Recent LUR studies have collected nitrogen dioxide (NO2) and volatile organic compounds (VOCs) using passive samplers at urban air monitoring networks ...

  4. Advanced statistics: linear regression, part I: simple linear regression.

    PubMed

    Marill, Keith A

    2004-01-01

    Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.

  5. Multicollinearity and Regression Analysis

    NASA Astrophysics Data System (ADS)

    Daoud, Jamal I.

    2017-12-01

    In regression analysis it is obvious to have a correlation between the response and predictor(s), but having correlation among predictors is something undesired. The number of predictors included in the regression model depends on many factors among which, historical data, experience, etc. At the end selection of most important predictors is something objective due to the researcher. Multicollinearity is a phenomena when two or more predictors are correlated, if this happens, the standard error of the coefficients will increase [8]. Increased standard errors means that the coefficients for some or all independent variables may be found to be significantly different from In other words, by overinflating the standard errors, multicollinearity makes some variables statistically insignificant when they should be significant. In this paper we focus on the multicollinearity, reasons and consequences on the reliability of the regression model.

  6. Procedures for adjusting regional regression models of urban-runoff quality using local data

    USGS Publications Warehouse

    Hoos, A.B.; Sisolak, J.K.

    1993-01-01

    Statistical operations termed model-adjustment procedures (MAP?s) can be used to incorporate local data into existing regression models to improve the prediction of urban-runoff quality. Each MAP is a form of regression analysis in which the local data base is used as a calibration data set. Regression coefficients are determined from the local data base, and the resulting `adjusted? regression models can then be used to predict storm-runoff quality at unmonitored sites. The response variable in the regression analyses is the observed load or mean concentration of a constituent in storm runoff for a single storm. The set of explanatory variables used in the regression analyses is different for each MAP, but always includes the predicted value of load or mean concentration from a regional regression model. The four MAP?s examined in this study were: single-factor regression against the regional model prediction, P, (termed MAP-lF-P), regression against P,, (termed MAP-R-P), regression against P, and additional local variables (termed MAP-R-P+nV), and a weighted combination of P, and a local-regression prediction (termed MAP-W). The procedures were tested by means of split-sample analysis, using data from three cities included in the Nationwide Urban Runoff Program: Denver, Colorado; Bellevue, Washington; and Knoxville, Tennessee. The MAP that provided the greatest predictive accuracy for the verification data set differed among the three test data bases and among model types (MAP-W for Denver and Knoxville, MAP-lF-P and MAP-R-P for Bellevue load models, and MAP-R-P+nV for Bellevue concentration models) and, in many cases, was not clearly indicated by the values of standard error of estimate for the calibration data set. A scheme to guide MAP selection, based on exploratory data analysis of the calibration data set, is presented and tested. The MAP?s were tested for sensitivity to the size of a calibration data set. As expected, predictive accuracy of all MAP?s for the verification data set decreased as the calibration data-set size decreased, but predictive accuracy was not as sensitive for the MAP?s as it was for the local regression models.

  7. Methods for estimating peak-flow frequencies at ungaged sites in Montana based on data through water year 2011: Chapter F in Montana StreamStats

    USGS Publications Warehouse

    Sando, Roy; Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.

    2016-04-05

    The U.S. Geological Survey (USGS), in cooperation with the Montana Department of Natural Resources and Conservation, completed a study to update methods for estimating peak-flow frequencies at ungaged sites in Montana based on peak-flow data at streamflow-gaging stations through water year 2011. The methods allow estimation of peak-flow frequencies (that is, peak-flow magnitudes, in cubic feet per second, associated with annual exceedance probabilities of 66.7, 50, 42.9, 20, 10, 4, 2, 1, 0.5, and 0.2 percent) at ungaged sites. The annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.Regional regression analysis is a primary focus of Chapter F of this Scientific Investigations Report, and regression equations for estimating peak-flow frequencies at ungaged sites in eight hydrologic regions in Montana are presented. The regression equations are based on analysis of peak-flow frequencies and basin characteristics at 537 streamflow-gaging stations in or near Montana and were developed using generalized least squares regression or weighted least squares regression.All of the data used in calculating basin characteristics that were included as explanatory variables in the regression equations were developed for and are available through the USGS StreamStats application (http://water.usgs.gov/osw/streamstats/) for Montana. StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. The primary purpose of the Montana StreamStats application is to provide estimates of basin characteristics and streamflow characteristics for user-selected ungaged sites on Montana streams. The regional regression equations presented in this report chapter can be conveniently solved using the Montana StreamStats application.Selected results from this study were compared with results of previous studies. For most hydrologic regions, the regression equations reported for this study had lower mean standard errors of prediction (in percent) than the previously reported regression equations for Montana. The equations presented for this study are considered to be an improvement on the previously reported equations primarily because this study (1) included 13 more years of peak-flow data; (2) included 35 more streamflow-gaging stations than previous studies; (3) used a detailed geographic information system (GIS)-based definition of the regulation status of streamflow-gaging stations, which allowed better determination of the unregulated peak-flow records that are appropriate for use in the regional regression analysis; (4) included advancements in GIS and remote-sensing technologies, which allowed more convenient calculation of basin characteristics and investigation of many more candidate basin characteristics; and (5) included advancements in computational and analytical methods, which allowed more thorough and consistent data analysis.This report chapter also presents other methods for estimating peak-flow frequencies at ungaged sites. Two methods for estimating peak-flow frequencies at ungaged sites located on the same streams as streamflow-gaging stations are described. Additionally, envelope curves relating maximum recorded annual peak flows to contributing drainage area for each of the eight hydrologic regions in Montana are presented and compared to a national envelope curve. In addition to providing general information on characteristics of large peak flows, the regional envelope curves can be used to assess the reasonableness of peak-flow frequency estimates determined using the regression equations.

  8. Assessing risk factors for periodontitis using regression

    NASA Astrophysics Data System (ADS)

    Lobo Pereira, J. A.; Ferreira, Maria Cristina; Oliveira, Teresa

    2013-10-01

    Multivariate statistical analysis is indispensable to assess the associations and interactions between different factors and the risk of periodontitis. Among others, regression analysis is a statistical technique widely used in healthcare to investigate and model the relationship between variables. In our work we study the impact of socio-demographic, medical and behavioral factors on periodontal health. Using regression, linear and logistic models, we can assess the relevance, as risk factors for periodontitis disease, of the following independent variables (IVs): Age, Gender, Diabetic Status, Education, Smoking status and Plaque Index. The multiple linear regression analysis model was built to evaluate the influence of IVs on mean Attachment Loss (AL). Thus, the regression coefficients along with respective p-values will be obtained as well as the respective p-values from the significance tests. The classification of a case (individual) adopted in the logistic model was the extent of the destruction of periodontal tissues defined by an Attachment Loss greater than or equal to 4 mm in 25% (AL≥4mm/≥25%) of sites surveyed. The association measures include the Odds Ratios together with the correspondent 95% confidence intervals.

  9. Robust mislabel logistic regression without modeling mislabel probabilities.

    PubMed

    Hung, Hung; Jou, Zhi-Yu; Huang, Su-Yun

    2018-03-01

    Logistic regression is among the most widely used statistical methods for linear discriminant analysis. In many applications, we only observe possibly mislabeled responses. Fitting a conventional logistic regression can then lead to biased estimation. One common resolution is to fit a mislabel logistic regression model, which takes into consideration of mislabeled responses. Another common method is to adopt a robust M-estimation by down-weighting suspected instances. In this work, we propose a new robust mislabel logistic regression based on γ-divergence. Our proposal possesses two advantageous features: (1) It does not need to model the mislabel probabilities. (2) The minimum γ-divergence estimation leads to a weighted estimating equation without the need to include any bias correction term, that is, it is automatically bias-corrected. These features make the proposed γ-logistic regression more robust in model fitting and more intuitive for model interpretation through a simple weighting scheme. Our method is also easy to implement, and two types of algorithms are included. Simulation studies and the Pima data application are presented to demonstrate the performance of γ-logistic regression. © 2017, The International Biometric Society.

  10. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong W. Lee

    During this reporting period, the literature survey including the gasifier temperature measurement literature, the ultrasonic application and its background study in cleaning application, and spray coating process are completed. The gasifier simulator (cold model) testing has been successfully conducted. Four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. The Analysis of Variance (ANOVA) was applied to analyze the test data. The analysis shows that all four factors are significant to the temperature measurements in the gasifier simulator (cold model). The regression analysis for the case with the normalizedmore » room temperature shows that linear model fits the temperature data with 82% accuracy (18% error). The regression analysis for the case without the normalized room temperature shows 72.5% accuracy (27.5% error). The nonlinear regression analysis indicates a better fit than that of the linear regression. The nonlinear regression model's accuracy is 88.7% (11.3% error) for normalized room temperature case, which is better than the linear regression analysis. The hot model thermocouple sleeve design and fabrication are completed. The gasifier simulator (hot model) design and the fabrication are completed. The system tests of the gasifier simulator (hot model) have been conducted and some modifications have been made. Based on the system tests and results analysis, the gasifier simulator (hot model) has met the proposed design requirement and the ready for system test. The ultrasonic cleaning method is under evaluation and will be further studied for the gasifier simulator (hot model) application. The progress of this project has been on schedule.« less

  11. Support vector methods for survival analysis: a comparison between ranking and regression approaches.

    PubMed

    Van Belle, Vanya; Pelckmans, Kristiaan; Van Huffel, Sabine; Suykens, Johan A K

    2011-10-01

    To compare and evaluate ranking, regression and combined machine learning approaches for the analysis of survival data. The literature describes two approaches based on support vector machines to deal with censored observations. In the first approach the key idea is to rephrase the task as a ranking problem via the concordance index, a problem which can be solved efficiently in a context of structural risk minimization and convex optimization techniques. In a second approach, one uses a regression approach, dealing with censoring by means of inequality constraints. The goal of this paper is then twofold: (i) introducing a new model combining the ranking and regression strategy, which retains the link with existing survival models such as the proportional hazards model via transformation models; and (ii) comparison of the three techniques on 6 clinical and 3 high-dimensional datasets and discussing the relevance of these techniques over classical approaches fur survival data. We compare svm-based survival models based on ranking constraints, based on regression constraints and models based on both ranking and regression constraints. The performance of the models is compared by means of three different measures: (i) the concordance index, measuring the model's discriminating ability; (ii) the logrank test statistic, indicating whether patients with a prognostic index lower than the median prognostic index have a significant different survival than patients with a prognostic index higher than the median; and (iii) the hazard ratio after normalization to restrict the prognostic index between 0 and 1. Our results indicate a significantly better performance for models including regression constraints above models only based on ranking constraints. This work gives empirical evidence that svm-based models using regression constraints perform significantly better than svm-based models based on ranking constraints. Our experiments show a comparable performance for methods including only regression or both regression and ranking constraints on clinical data. On high dimensional data, the former model performs better. However, this approach does not have a theoretical link with standard statistical models for survival data. This link can be made by means of transformation models when ranking constraints are included. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. "Mad or bad?": burden on caregivers of patients with personality disorders.

    PubMed

    Bauer, Rita; Döring, Antje; Schmidt, Tanja; Spießl, Hermann

    2012-12-01

    The burden on caregivers of patients with personality disorders is often greatly underestimated or completely disregarded. Possibilities for caregiver support have rarely been assessed. Thirty interviews were conducted with caregivers of such patients to assess illness-related burden. Responses were analyzed with a mixed method of qualitative and quantitative analysis in a sequential design. Patient and caregiver data, including sociodemographic and disease-related variables, were evaluated with regression analysis and regression trees. Caregiver statements (n = 404) were summarized into 44 global statements. The most frequent global statements were worries about the burden on other family members (70.0%), poor cooperation with clinical centers and other institutions (60.0%), financial burden (56.7%), worry about the patient's future (53.3%), and dissatisfaction with the patient's treatment and rehabilitation (53.3%). Linear regression and regression tree analysis identified predictors for more burdened caregivers. Caregivers of patients with personality disorders experience a variety of burdens, some disorder specific. Yet these caregivers often receive little attention or support.

  13. Influence diagnostics in meta-regression model.

    PubMed

    Shi, Lei; Zuo, ShanShan; Yu, Dalei; Zhou, Xiaohua

    2017-09-01

    This paper studies the influence diagnostics in meta-regression model including case deletion diagnostic and local influence analysis. We derive the subset deletion formulae for the estimation of regression coefficient and heterogeneity variance and obtain the corresponding influence measures. The DerSimonian and Laird estimation and maximum likelihood estimation methods in meta-regression are considered, respectively, to derive the results. Internal and external residual and leverage measure are defined. The local influence analysis based on case-weights perturbation scheme, responses perturbation scheme, covariate perturbation scheme, and within-variance perturbation scheme are explored. We introduce a method by simultaneous perturbing responses, covariate, and within-variance to obtain the local influence measure, which has an advantage of capable to compare the influence magnitude of influential studies from different perturbations. An example is used to illustrate the proposed methodology. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Individual risk factors for deep infection and compromised fracture healing after intramedullary nailing of tibial shaft fractures: a single centre experience of 480 patients.

    PubMed

    Metsemakers, W-J; Handojo, K; Reynders, P; Sermon, A; Vanderschot, P; Nijs, S

    2015-04-01

    Despite modern advances in the treatment of tibial shaft fractures, complications including nonunion, malunion, and infection remain relatively frequent. A better understanding of these injuries and its complications could lead to prevention rather than treatment strategies. A retrospective study was performed to identify risk factors for deep infection and compromised fracture healing after intramedullary nailing (IMN) of tibial shaft fractures. Between January 2000 and January 2012, 480 consecutive patients with 486 tibial shaft fractures were enrolled in the study. Statistical analysis was performed to determine predictors of deep infection and compromised fracture healing. Compromised fracture healing was subdivided in delayed union and nonunion. The following independent variables were selected for analysis: age, sex, smoking, obesity, diabetes, American Society of Anaesthesiologists (ASA) classification, polytrauma, fracture type, open fractures, Gustilo type, primary external fixation (EF), time to nailing (TTN) and reaming. As primary statistical evaluation we performed a univariate analysis, followed by a multiple logistic regression model. Univariate regression analysis revealed similar risk factors for delayed union and nonunion, including fracture type, open fractures and Gustilo type. Factors affecting the occurrence of deep infection in this model were primary EF, a prolonged TTN, open fractures and Gustilo type. Multiple logistic regression analysis revealed polytrauma as the single risk factor for nonunion. With respect to delayed union, no risk factors could be identified. In the same statistical model, deep infection was correlated with primary EF. The purpose of this study was to evaluate risk factors of poor outcome after IMN of tibial shaft fractures. The univariate regression analysis showed that the nature of complications after tibial shaft nailing could be multifactorial. This was not confirmed in a multiple logistic regression model, which only revealed polytrauma and primary EF as risk factors for nonunion and deep infection, respectively. Future strategies should focus on prevention in high-risk populations such as polytrauma patients treated with EF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Examining the Association between Patient-Reported Symptoms of Attention and Memory Dysfunction with Objective Cognitive Performance: A Latent Regression Rasch Model Approach.

    PubMed

    Li, Yuelin; Root, James C; Atkinson, Thomas M; Ahles, Tim A

    2016-06-01

    Patient-reported cognition generally exhibits poor concordance with objectively assessed cognitive performance. In this article, we introduce latent regression Rasch modeling and provide a step-by-step tutorial for applying Rasch methods as an alternative to traditional correlation to better clarify the relationship of self-report and objective cognitive performance. An example analysis using these methods is also included. Introduction to latent regression Rasch modeling is provided together with a tutorial on implementing it using the JAGS programming language for the Bayesian posterior parameter estimates. In an example analysis, data from a longitudinal neurocognitive outcomes study of 132 breast cancer patients and 45 non-cancer matched controls that included self-report and objective performance measures pre- and post-treatment were analyzed using both conventional and latent regression Rasch model approaches. Consistent with previous research, conventional analysis and correlations between neurocognitive decline and self-reported problems were generally near zero. In contrast, application of latent regression Rasch modeling found statistically reliable associations between objective attention and processing speed measures with self-reported Attention and Memory scores. Latent regression Rasch modeling, together with correlation of specific self-reported cognitive domains with neurocognitive measures, helps to clarify the relationship of self-report with objective performance. While the majority of patients attribute their cognitive difficulties to memory decline, the Rash modeling suggests the importance of processing speed and initial learning. To encourage the use of this method, a step-by-step guide and programming language for implementation is provided. Implications of this method in cognitive outcomes research are discussed. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong W. Lee

    2004-10-01

    The systematic tests of the gasifier simulator on the clean thermocouple were completed in this reporting period. Within the systematic tests on the clean thermocouple, five (5) factors were considered as the experimental parameters including air flow rate, water flow rate, fine dust particle amount, ammonia addition and high/low frequency device (electric motor). The fractional factorial design method was used in the experiment design with sixteen (16) data sets of readings. Analysis of Variances (ANOVA) was applied to the results from systematic tests. The ANOVA results show that the un-balanced motor vibration frequency did not have the significant impact onmore » the temperature changes in the gasifier simulator. For the fine dust particles testing, the amount of fine dust particles has significant impact to the temperature measurements in the gasifier simulator. The effects of the air and water on the temperature measurements show the same results as reported in the previous report. The ammonia concentration was included as an experimental parameter for the reducing environment in this reporting period. The ammonia concentration does not seem to be a significant factor on the temperature changes. The linear regression analysis was applied to the temperature reading with five (5) factors. The accuracy of the linear regression is relatively low, which is less than 10% accuracy. Nonlinear regression was also conducted to the temperature reading with the same factors. Since the experiments were designed in two (2) levels, the nonlinear regression is not very effective with the dataset (16 readings). An extra central point test was conducted. With the data of the center point testing, the accuracy of the nonlinear regression is much better than the linear regression.« less

  17. Prediction of hearing outcomes by multiple regression analysis in patients with idiopathic sudden sensorineural hearing loss.

    PubMed

    Suzuki, Hideaki; Tabata, Takahisa; Koizumi, Hiroki; Hohchi, Nobusuke; Takeuchi, Shoko; Kitamura, Takuro; Fujino, Yoshihisa; Ohbuchi, Toyoaki

    2014-12-01

    This study aimed to create a multiple regression model for predicting hearing outcomes of idiopathic sudden sensorineural hearing loss (ISSNHL). The participants were 205 consecutive patients (205 ears) with ISSNHL (hearing level ≥ 40 dB, interval between onset and treatment ≤ 30 days). They received systemic steroid administration combined with intratympanic steroid injection. Data were examined by simple and multiple regression analyses. Three hearing indices (percentage hearing improvement, hearing gain, and posttreatment hearing level [HLpost]) and 7 prognostic factors (age, days from onset to treatment, initial hearing level, initial hearing level at low frequencies, initial hearing level at high frequencies, presence of vertigo, and contralateral hearing level) were included in the multiple regression analysis as dependent and explanatory variables, respectively. In the simple regression analysis, the percentage hearing improvement, hearing gain, and HLpost showed significant correlation with 2, 5, and 6 of the 7 prognostic factors, respectively. The multiple correlation coefficients were 0.396, 0.503, and 0.714 for the percentage hearing improvement, hearing gain, and HLpost, respectively. Predicted values of HLpost calculated by the multiple regression equation were reliable with 70% probability with a 40-dB-width prediction interval. Prediction of HLpost by the multiple regression model may be useful to estimate the hearing prognosis of ISSNHL. © The Author(s) 2014.

  18. Clinical evaluation of a novel population-based regression analysis for detecting glaucomatous visual field progression.

    PubMed

    Kovalska, M P; Bürki, E; Schoetzau, A; Orguel, S F; Orguel, S; Grieshaber, M C

    2011-04-01

    The distinction of real progression from test variability in visual field (VF) series may be based on clinical judgment, on trend analysis based on follow-up of test parameters over time, or on identification of a significant change related to the mean of baseline exams (event analysis). The aim of this study was to compare a new population-based method (Octopus field analysis, OFA) with classic regression analyses and clinical judgment for detecting glaucomatous VF changes. 240 VF series of 240 patients with at least 9 consecutive examinations available were included into this study. They were independently classified by two experienced investigators. The results of such a classification served as a reference for comparison for the following statistical tests: (a) t-test global, (b) r-test global, (c) regression analysis of 10 VF clusters and (d) point-wise linear regression analysis. 32.5 % of the VF series were classified as progressive by the investigators. The sensitivity and specificity were 89.7 % and 92.0 % for r-test, and 73.1 % and 93.8 % for the t-test, respectively. In the point-wise linear regression analysis, the specificity was comparable (89.5 % versus 92 %), but the sensitivity was clearly lower than in the r-test (22.4 % versus 89.7 %) at a significance level of p = 0.01. A regression analysis for the 10 VF clusters showed a markedly higher sensitivity for the r-test (37.7 %) than the t-test (14.1 %) at a similar specificity (88.3 % versus 93.8 %) for a significant trend (p = 0.005). In regard to the cluster distribution, the paracentral clusters and the superior nasal hemifield progressed most frequently. The population-based regression analysis seems to be superior to the trend analysis in detecting VF progression in glaucoma, and may eliminate the drawbacks of the event analysis. Further, it may assist the clinician in the evaluation of VF series and may allow better visualization of the correlation between function and structure owing to VF clusters. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Utility-Based Instruments for People with Dementia: A Systematic Review and Meta-Regression Analysis.

    PubMed

    Li, Li; Nguyen, Kim-Huong; Comans, Tracy; Scuffham, Paul

    2018-04-01

    Several utility-based instruments have been applied in cost-utility analysis to assess health state values for people with dementia. Nevertheless, concerns and uncertainty regarding their performance for people with dementia have been raised. To assess the performance of available utility-based instruments for people with dementia by comparing their psychometric properties and to explore factors that cause variations in the reported health state values generated from those instruments by conducting meta-regression analyses. A literature search was conducted and psychometric properties were synthesized to demonstrate the overall performance of each instrument. When available, health state values and variables such as the type of instrument and cognitive impairment levels were extracted from each article. A meta-regression analysis was undertaken and available covariates were included in the models. A total of 64 studies providing preference-based values were identified and included. The EuroQol five-dimension questionnaire demonstrated the best combination of feasibility, reliability, and validity. Meta-regression analyses suggested that significant differences exist between instruments, type of respondents, and mode of administration and the variations in estimated utility values had influences on incremental quality-adjusted life-year calculation. This review finds that the EuroQol five-dimension questionnaire is the most valid utility-based instrument for people with dementia, but should be replaced by others under certain circumstances. Although no utility estimates were reported in the article, the meta-regression analyses that examined variations in utility estimates produced by different instruments impact on cost-utility analysis, potentially altering the decision-making process in some circumstances. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  20. Bootstrap investigation of the stability of a Cox regression model.

    PubMed

    Altman, D G; Andersen, P K

    1989-07-01

    We describe a bootstrap investigation of the stability of a Cox proportional hazards regression model resulting from the analysis of a clinical trial of azathioprine versus placebo in patients with primary biliary cirrhosis. We have considered stability to refer both to the choice of variables included in the model and, more importantly, to the predictive ability of the model. In stepwise Cox regression analyses of 100 bootstrap samples using 17 candidate variables, the most frequently selected variables were those selected in the original analysis, and no other important variable was identified. Thus there was no reason to doubt the model obtained in the original analysis. For each patient in the trial, bootstrap confidence intervals were constructed for the estimated probability of surviving two years. It is shown graphically that these intervals are markedly wider than those obtained from the original model.

  1. Robustness of meta-analyses in finding gene × environment interactions

    PubMed Central

    Shi, Gang; Nehorai, Arye

    2017-01-01

    Meta-analyses that synthesize statistical evidence across studies have become important analytical tools for genetic studies. Inspired by the success of genome-wide association studies of the genetic main effect, researchers are searching for gene × environment interactions. Confounders are routinely included in the genome-wide gene × environment interaction analysis as covariates; however, this does not control for any confounding effects on the results if covariate × environment interactions are present. We carried out simulation studies to evaluate the robustness to the covariate × environment confounder for meta-regression and joint meta-analysis, which are two commonly used meta-analysis methods for testing the gene × environment interaction or the genetic main effect and interaction jointly. Here we show that meta-regression is robust to the covariate × environment confounder while joint meta-analysis is subject to the confounding effect with inflated type I error rates. Given vast sample sizes employed in genome-wide gene × environment interaction studies, non-significant covariate × environment interactions at the study level could substantially elevate the type I error rate at the consortium level. When covariate × environment confounders are present, type I errors can be controlled in joint meta-analysis by including the covariate × environment terms in the analysis at the study level. Alternatively, meta-regression can be applied, which is robust to potential covariate × environment confounders. PMID:28362796

  2. Effective psychological and psychosocial approaches to reduce repetition of self-harm: a systematic review, meta-analysis and meta-regression

    PubMed Central

    Robinson, Jo; Spittal, Matthew J; Carter, Greg

    2016-01-01

    Objective To examine the efficacy of psychological and psychosocial interventions for reductions in repeated self-harm. Design We conducted a systematic review, meta-analysis and meta-regression to examine the efficacy of psychological and psychosocial interventions to reduce repeat self-harm in adults. We included a sensitivity analysis of studies with a low risk of bias for the meta-analysis. For the meta-regression, we examined whether the type, intensity (primary analyses) and other components of intervention or methodology (secondary analyses) modified the overall intervention effect. Data sources A comprehensive search of MEDLINE, PsycInfo and EMBASE (from 1999 to June 2016) was performed. Eligibility criteria for selecting studies Randomised controlled trials of psychological and psychosocial interventions for adult self-harm patients. Results Forty-five trials were included with data available from 36 (7354 participants) for the primary analysis. Meta-analysis showed a significant benefit of all psychological and psychosocial interventions combined (risk ratio 0.84; 95% CI 0.74 to 0.96; number needed to treat=33); however, sensitivity analyses showed that this benefit was non-significant when restricted to a limited number of high-quality studies. Meta-regression showed that the type of intervention did not modify the treatment effects. Conclusions Consideration of a psychological or psychosocial intervention over and above treatment as usual is worthwhile; with the public health benefits of ensuring that this practice is widely adopted potentially worth the investment. However, the specific type and nature of the intervention that should be delivered is not yet clear. Cognitive–behavioural therapy or interventions with an interpersonal focus and targeted on the precipitants to self-harm may be the best candidates on the current evidence. Further research is required. PMID:27660314

  3. Classification and regression tree analysis vs. multivariable linear and logistic regression methods as statistical tools for studying haemophilia.

    PubMed

    Henrard, S; Speybroeck, N; Hermans, C

    2015-11-01

    Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.

  4. Logistic LASSO regression for the diagnosis of breast cancer using clinical demographic data and the BI-RADS lexicon for ultrasonography.

    PubMed

    Kim, Sun Mi; Kim, Yongdai; Jeong, Kuhwan; Jeong, Heeyeong; Kim, Jiyoung

    2018-01-01

    The aim of this study was to compare the performance of image analysis for predicting breast cancer using two distinct regression models and to evaluate the usefulness of incorporating clinical and demographic data (CDD) into the image analysis in order to improve the diagnosis of breast cancer. This study included 139 solid masses from 139 patients who underwent a ultrasonography-guided core biopsy and had available CDD between June 2009 and April 2010. Three breast radiologists retrospectively reviewed 139 breast masses and described each lesion using the Breast Imaging Reporting and Data System (BI-RADS) lexicon. We applied and compared two regression methods-stepwise logistic (SL) regression and logistic least absolute shrinkage and selection operator (LASSO) regression-in which the BI-RADS descriptors and CDD were used as covariates. We investigated the performances of these regression methods and the agreement of radiologists in terms of test misclassification error and the area under the curve (AUC) of the tests. Logistic LASSO regression was superior (P<0.05) to SL regression, regardless of whether CDD was included in the covariates, in terms of test misclassification errors (0.234 vs. 0.253, without CDD; 0.196 vs. 0.258, with CDD) and AUC (0.785 vs. 0.759, without CDD; 0.873 vs. 0.735, with CDD). However, it was inferior (P<0.05) to the agreement of three radiologists in terms of test misclassification errors (0.234 vs. 0.168, without CDD; 0.196 vs. 0.088, with CDD) and the AUC without CDD (0.785 vs. 0.844, P<0.001), but was comparable to the AUC with CDD (0.873 vs. 0.880, P=0.141). Logistic LASSO regression based on BI-RADS descriptors and CDD showed better performance than SL in predicting the presence of breast cancer. The use of CDD as a supplement to the BI-RADS descriptors significantly improved the prediction of breast cancer using logistic LASSO regression.

  5. Increased risk for complications following removal of hardware in patients with liver disease, pilon or pelvic fractures: A regression analysis.

    PubMed

    Brown, Bryan D; Steinert, Justin N; Stelzer, John W; Yoon, Richard S; Langford, Joshua R; Koval, Kenneth J

    2017-12-01

    Indications for removing orthopedic hardware on an elective basis varies widely. Although viewed as a relatively benign procedure, there is a lack of data regarding overall complication rates after fracture fixation. The purpose of this study is to determine the overall short-term complication rate for elective removal of orthopedic hardware after fracture fixation and to identify associated risk factors. Adult patients indicated for elective hardware removal after fracture fixation between July 2012 and July 2016 were screened for inclusion. Inclusion criteria included patients with hardware related pain and/or impaired cosmesis with complete medical and radiographic records and at least 3-month follow-up. Exclusion criteria were those patients indicated for hardware removal for a diagnosis of malunion, non-union, and/or infection. Data collected included patient age, gender, anatomic location of hardware removed, body mass index, ASA score, and comorbidities. Overall complications, as well as complications requiring revision surgery were recorded. Statistical analysis was performed with SPSS 20.0, and included univariate and multivariate regression analysis. 391 patients (418 procedures) were included for analysis. Overall complication rates were 8.4%, with a 3.6% revision surgery rate. Univariate regression analysis revealed that patients who had liver disease were at significant risk for complication (p=0.001) and revision surgery (p=0.036). Multivariate regression analysis showed that: 1) patients who had liver disease were at significant risk of overall complication (p=0.001) and revision surgery (p=0.039); 2) Removal of hardware following fixation for a pilon had significantly increased risk for complication (p=0.012), but not revision surgery (p=0.43); and 3) Removal of hardware for pelvic fixation had a significantly increased risk for revision surgery (p=0.017). Removal of hardware following fracture fixation is not a risk-free procedure. Patients with liver disease are at increased risk for complications, including increased risk for needing revision surgery following hardware removal. Patients having hardware removed following fixation for pilon fractures also are at increased risk for complication, although they may not require a return trip to the operating room. Finally, removal of pelvic hardware is associated with a higher return to the operating room. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Ca analysis: An Excel based program for the analysis of intracellular calcium transients including multiple, simultaneous regression analysis☆

    PubMed Central

    Greensmith, David J.

    2014-01-01

    Here I present an Excel based program for the analysis of intracellular Ca transients recorded using fluorescent indicators. The program can perform all the necessary steps which convert recorded raw voltage changes into meaningful physiological information. The program performs two fundamental processes. (1) It can prepare the raw signal by several methods. (2) It can then be used to analyze the prepared data to provide information such as absolute intracellular Ca levels. Also, the rates of change of Ca can be measured using multiple, simultaneous regression analysis. I demonstrate that this program performs equally well as commercially available software, but has numerous advantages, namely creating a simplified, self-contained analysis workflow. PMID:24125908

  7. A method for nonlinear exponential regression analysis

    NASA Technical Reports Server (NTRS)

    Junkin, B. G.

    1971-01-01

    A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.

  8. Parental education predicts change in intelligence quotient after childhood epilepsy surgery.

    PubMed

    Meekes, Joost; van Schooneveld, Monique M J; Braams, Olga B; Jennekens-Schinkel, Aag; van Rijen, Peter C; Hendriks, Marc P H; Braun, Kees P J; van Nieuwenhuizen, Onno

    2015-04-01

    To know whether change in the intelligence quotient (IQ) of children who undergo epilepsy surgery is associated with the educational level of their parents. Retrospective analysis of data obtained from a cohort of children who underwent epilepsy surgery between January 1996 and September 2010. We performed simple and multiple regression analyses to identify predictors associated with IQ change after surgery. In addition to parental education, six variables previously demonstrated to be associated with IQ change after surgery were included as predictors: age at surgery, duration of epilepsy, etiology, presurgical IQ, reduction of antiepileptic drugs, and seizure freedom. We used delta IQ (IQ 2 years after surgery minus IQ shortly before surgery) as the primary outcome variable, but also performed analyses with pre- and postsurgical IQ as outcome variables to support our findings. To validate the results we performed simple regression analysis with parental education as the predictor in specific subgroups. The sample for regression analysis included 118 children (60 male; median age at surgery 9.73 years). Parental education was significantly associated with delta IQ in simple regression analysis (p = 0.004), and also contributed significantly to postsurgical IQ in multiple regression analysis (p = 0.008). Additional analyses demonstrated that parental education made a unique contribution to prediction of delta IQ, that is, it could not be replaced by the illness-related variables. Subgroup analyses confirmed the association of parental education with IQ change after surgery for most groups. Children whose parents had higher education demonstrate on average a greater increase in IQ after surgery and a higher postsurgical--but not presurgical--IQ than children whose parents completed at most lower secondary education. Parental education--and perhaps other environmental variables--should be considered in the prognosis of cognitive function after childhood epilepsy surgery. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  9. Ca analysis: an Excel based program for the analysis of intracellular calcium transients including multiple, simultaneous regression analysis.

    PubMed

    Greensmith, David J

    2014-01-01

    Here I present an Excel based program for the analysis of intracellular Ca transients recorded using fluorescent indicators. The program can perform all the necessary steps which convert recorded raw voltage changes into meaningful physiological information. The program performs two fundamental processes. (1) It can prepare the raw signal by several methods. (2) It can then be used to analyze the prepared data to provide information such as absolute intracellular Ca levels. Also, the rates of change of Ca can be measured using multiple, simultaneous regression analysis. I demonstrate that this program performs equally well as commercially available software, but has numerous advantages, namely creating a simplified, self-contained analysis workflow. Copyright © 2013 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. Interrupted time series regression for the evaluation of public health interventions: a tutorial.

    PubMed

    Bernal, James Lopez; Cummins, Steven; Gasparrini, Antonio

    2017-02-01

    Interrupted time series (ITS) analysis is a valuable study design for evaluating the effectiveness of population-level health interventions that have been implemented at a clearly defined point in time. It is increasingly being used to evaluate the effectiveness of interventions ranging from clinical therapy to national public health legislation. Whereas the design shares many properties of regression-based approaches in other epidemiological studies, there are a range of unique features of time series data that require additional methodological considerations. In this tutorial we use a worked example to demonstrate a robust approach to ITS analysis using segmented regression. We begin by describing the design and considering when ITS is an appropriate design choice. We then discuss the essential, yet often omitted, step of proposing the impact model a priori. Subsequently, we demonstrate the approach to statistical analysis including the main segmented regression model. Finally we describe the main methodological issues associated with ITS analysis: over-dispersion of time series data, autocorrelation, adjusting for seasonal trends and controlling for time-varying confounders, and we also outline some of the more complex design adaptations that can be used to strengthen the basic ITS design.

  11. Interrupted time series regression for the evaluation of public health interventions: a tutorial

    PubMed Central

    Bernal, James Lopez; Cummins, Steven; Gasparrini, Antonio

    2017-01-01

    Abstract Interrupted time series (ITS) analysis is a valuable study design for evaluating the effectiveness of population-level health interventions that have been implemented at a clearly defined point in time. It is increasingly being used to evaluate the effectiveness of interventions ranging from clinical therapy to national public health legislation. Whereas the design shares many properties of regression-based approaches in other epidemiological studies, there are a range of unique features of time series data that require additional methodological considerations. In this tutorial we use a worked example to demonstrate a robust approach to ITS analysis using segmented regression. We begin by describing the design and considering when ITS is an appropriate design choice. We then discuss the essential, yet often omitted, step of proposing the impact model a priori. Subsequently, we demonstrate the approach to statistical analysis including the main segmented regression model. Finally we describe the main methodological issues associated with ITS analysis: over-dispersion of time series data, autocorrelation, adjusting for seasonal trends and controlling for time-varying confounders, and we also outline some of the more complex design adaptations that can be used to strengthen the basic ITS design. PMID:27283160

  12. Productivity: Vocational Education's Role. Information Series No. 223.

    ERIC Educational Resources Information Center

    Bolino, August C.

    This paper's overiew of the relationship between vocational education and productivity includes the presentation of results from a multiple regression analysis of vocational education enrollments and various productivity indices. This tentative analysis contributes additional observations to the studies reviewed and offers pertinent suggestions…

  13. Binding affinity toward human prion protein of some anti-prion compounds - Assessment based on QSAR modeling, molecular docking and non-parametric ranking.

    PubMed

    Kovačević, Strahinja; Karadžić, Milica; Podunavac-Kuzmanović, Sanja; Jevrić, Lidija

    2018-01-01

    The present study is based on the quantitative structure-activity relationship (QSAR) analysis of binding affinity toward human prion protein (huPrP C ) of quinacrine, pyridine dicarbonitrile, diphenylthiazole and diphenyloxazole analogs applying different linear and non-linear chemometric regression techniques, including univariate linear regression, multiple linear regression, partial least squares regression and artificial neural networks. The QSAR analysis distinguished molecular lipophilicity as an important factor that contributes to the binding affinity. Principal component analysis was used in order to reveal similarities or dissimilarities among the studied compounds. The analysis of in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters was conducted. The ranking of the studied analogs on the basis of their ADMET parameters was done applying the sum of ranking differences, as a relatively new chemometric method. The main aim of the study was to reveal the most important molecular features whose changes lead to the changes in the binding affinities of the studied compounds. Another point of view on the binding affinity of the most promising analogs was established by application of molecular docking analysis. The results of the molecular docking were proven to be in agreement with the experimental outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Gender effects in gaming research: a case for regression residuals?

    PubMed

    Pfister, Roland

    2011-10-01

    Numerous recent studies have examined the impact of video gaming on various dependent variables, including the players' affective reactions, positive as well as detrimental cognitive effects, and real-world aggression. These target variables are typically analyzed as a function of game characteristics and player attributes-especially gender. However, findings on the uneven distribution of gaming experience between males and females, on the one hand, and the effect of gaming experience on several target variables, on the other hand, point at a possible confound when gaming experiments are analyzed with a standard analysis of variance. This study uses simulated data to exemplify analysis of regression residuals as a potentially beneficial data analysis strategy for such datasets. As the actual impact of gaming experience on each of the various dependent variables differs, the ultimate benefits of analysis of regression residuals entirely depend on the research question, but it offers a powerful statistical approach to video game research whenever gaming experience is a confounding factor.

  15. Simple estimation procedures for regression analysis of interval-censored failure time data under the proportional hazards model.

    PubMed

    Sun, Jianguo; Feng, Yanqin; Zhao, Hui

    2015-01-01

    Interval-censored failure time data occur in many fields including epidemiological and medical studies as well as financial and sociological studies, and many authors have investigated their analysis (Sun, The statistical analysis of interval-censored failure time data, 2006; Zhang, Stat Modeling 9:321-343, 2009). In particular, a number of procedures have been developed for regression analysis of interval-censored data arising from the proportional hazards model (Finkelstein, Biometrics 42:845-854, 1986; Huang, Ann Stat 24:540-568, 1996; Pan, Biometrics 56:199-203, 2000). For most of these procedures, however, one drawback is that they involve estimation of both regression parameters and baseline cumulative hazard function. In this paper, we propose two simple estimation approaches that do not need estimation of the baseline cumulative hazard function. The asymptotic properties of the resulting estimates are given, and an extensive simulation study is conducted and indicates that they work well for practical situations.

  16. Improving power and robustness for detecting genetic association with extreme-value sampling design.

    PubMed

    Chen, Hua Yun; Li, Mingyao

    2011-12-01

    Extreme-value sampling design that samples subjects with extremely large or small quantitative trait values is commonly used in genetic association studies. Samples in such designs are often treated as "cases" and "controls" and analyzed using logistic regression. Such a case-control analysis ignores the potential dose-response relationship between the quantitative trait and the underlying trait locus and thus may lead to loss of power in detecting genetic association. An alternative approach to analyzing such data is to model the dose-response relationship by a linear regression model. However, parameter estimation from this model can be biased, which may lead to inflated type I errors. We propose a robust and efficient approach that takes into consideration of both the biased sampling design and the potential dose-response relationship. Extensive simulations demonstrate that the proposed method is more powerful than the traditional logistic regression analysis and is more robust than the linear regression analysis. We applied our method to the analysis of a candidate gene association study on high-density lipoprotein cholesterol (HDL-C) which includes study subjects with extremely high or low HDL-C levels. Using our method, we identified several SNPs showing a stronger evidence of association with HDL-C than the traditional case-control logistic regression analysis. Our results suggest that it is important to appropriately model the quantitative traits and to adjust for the biased sampling when dose-response relationship exists in extreme-value sampling designs. © 2011 Wiley Periodicals, Inc.

  17. A general regression framework for a secondary outcome in case-control studies.

    PubMed

    Tchetgen Tchetgen, Eric J

    2014-01-01

    Modern case-control studies typically involve the collection of data on a large number of outcomes, often at considerable logistical and monetary expense. These data are of potentially great value to subsequent researchers, who, although not necessarily concerned with the disease that defined the case series in the original study, may want to use the available information for a regression analysis involving a secondary outcome. Because cases and controls are selected with unequal probability, regression analysis involving a secondary outcome generally must acknowledge the sampling design. In this paper, the author presents a new framework for the analysis of secondary outcomes in case-control studies. The approach is based on a careful re-parameterization of the conditional model for the secondary outcome given the case-control outcome and regression covariates, in terms of (a) the population regression of interest of the secondary outcome given covariates and (b) the population regression of the case-control outcome on covariates. The error distribution for the secondary outcome given covariates and case-control status is otherwise unrestricted. For a continuous outcome, the approach sometimes reduces to extending model (a) by including a residual of (b) as a covariate. However, the framework is general in the sense that models (a) and (b) can take any functional form, and the methodology allows for an identity, log or logit link function for model (a).

  18. Practical Guidance for Conducting Mediation Analysis With Multiple Mediators Using Inverse Odds Ratio Weighting

    PubMed Central

    Nguyen, Quynh C.; Osypuk, Theresa L.; Schmidt, Nicole M.; Glymour, M. Maria; Tchetgen Tchetgen, Eric J.

    2015-01-01

    Despite the recent flourishing of mediation analysis techniques, many modern approaches are difficult to implement or applicable to only a restricted range of regression models. This report provides practical guidance for implementing a new technique utilizing inverse odds ratio weighting (IORW) to estimate natural direct and indirect effects for mediation analyses. IORW takes advantage of the odds ratio's invariance property and condenses information on the odds ratio for the relationship between the exposure (treatment) and multiple mediators, conditional on covariates, by regressing exposure on mediators and covariates. The inverse of the covariate-adjusted exposure-mediator odds ratio association is used to weight the primary analytical regression of the outcome on treatment. The treatment coefficient in such a weighted regression estimates the natural direct effect of treatment on the outcome, and indirect effects are identified by subtracting direct effects from total effects. Weighting renders treatment and mediators independent, thereby deactivating indirect pathways of the mediators. This new mediation technique accommodates multiple discrete or continuous mediators. IORW is easily implemented and is appropriate for any standard regression model, including quantile regression and survival analysis. An empirical example is given using data from the Moving to Opportunity (1994–2002) experiment, testing whether neighborhood context mediated the effects of a housing voucher program on obesity. Relevant Stata code (StataCorp LP, College Station, Texas) is provided. PMID:25693776

  19. Multiple regression analysis of anthropometric measurements influencing the cephalic index of male Japanese university students.

    PubMed

    Hossain, Md Golam; Saw, Aik; Alam, Rashidul; Ohtsuki, Fumio; Kamarul, Tunku

    2013-09-01

    Cephalic index (CI), the ratio of head breadth to head length, is widely used to categorise human populations. The aim of this study was to access the impact of anthropometric measurements on the CI of male Japanese university students. This study included 1,215 male university students from Tokyo and Kyoto, selected using convenient sampling. Multiple regression analysis was used to determine the effect of anthropometric measurements on CI. The variance inflation factor (VIF) showed no evidence of a multicollinearity problem among independent variables. The coefficients of the regression line demonstrated a significant positive relationship between CI and minimum frontal breadth (p < 0.01), bizygomatic breadth (p < 0.01) and head height (p < 0.05), and a negative relationship between CI and morphological facial height (p < 0.01) and head circumference (p < 0.01). Moreover, the coefficient and odds ratio of logistic regression analysis showed a greater likelihood for minimum frontal breadth (p < 0.01) and bizygomatic breadth (p < 0.01) to predict round-headedness, and morphological facial height (p < 0.05) and head circumference (p < 0.01) to predict long-headedness. Stepwise regression analysis revealed bizygomatic breadth, head circumference, minimum frontal breadth, head height and morphological facial height to be the best predictor craniofacial measurements with respect to CI. The results suggest that most of the variables considered in this study appear to influence the CI of adult male Japanese students.

  20. Serum dehydroepiandrosterone sulphate, psychosocial factors and musculoskeletal pain in workers.

    PubMed

    Marinelli, A; Prodi, A; Pesel, G; Ronchese, F; Bovenzi, M; Negro, C; Larese Filon, F

    2017-12-30

    The serum level of dehydroepiandrosterone sulphate (DHEA-S) has been suggested as a biological marker of stress. To assess the association between serum DHEA-S, psychosocial factors and musculoskeletal (MS) pain in university workers. The study population included voluntary workers at the scientific departments of the University of Trieste (Italy) who underwent periodical health surveillance from January 2011 to June 2012. DHEA-S level was analysed in serum. The assessment tools included the General Health Questionnaire (GHQ) and a modified Nordic musculoskeletal symptoms questionnaire. The relation between DHEA-S, individual characteristics, pain perception and psychological factors was assessed by means of multivariable linear regression analysis. There were 189 study participants. The study population was characterized by high reward and low effort. Pain perception in the neck, shoulder, upper limbs, upper back and lower back was reported by 42, 32, 19, 29 and 43% of people, respectively. In multivariable regression analysis, gender, age and pain perception in the shoulder and upper limbs were significantly related to serum DHEA-S. Effort and overcommitment were related to shoulder and neck pain but not to DHEA-S. The GHQ score was associated with pain perception in different body sites and inversely to DHEA-S but significance was lost in multivariable regression analysis. DHEA-S was associated with age, gender and perception of MS pain, while effort-reward imbalance dimensions and GHQ score failed to reach the statistical significance in multivariable regression analysis. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. The impact of a standardized program on short and long-term outcomes in bariatric surgery.

    PubMed

    Aird, Lisa N F; Hong, Dennis; Gmora, Scott; Breau, Ruth; Anvari, Mehran

    2017-02-01

    The purpose of this study was to determine whether there has been an improvement in short- and long-term clinical outcomes since 2010, when the Ontario Bariatric Network led a province-wide initiative to establish a standardized system of care for bariatric patients. The system includes nine bariatric centers, a centralized referral system, and a research registry. Standardization of procedures has progressed yearly, including guidelines for preoperative assessment and perioperative care. Analysis of the OBN registry data was performed by fiscal year between April 2010 and March 2015. Three-month overall postoperative complication rates and 30 day postoperative mortality were calculated. The mean percentage of weight loss at 1, 2, and 3 years postoperative, and regression of obesity-related diseases were calculated. The analysis of continuous and nominal data was performed using ANOVA, Chi-square, and McNemar's testing. A multiple logistic regression analysis was performed for factors affecting postoperative complication rate. Eight thousand and forty-three patients were included in the bariatric registry between April 2010 and March 2015. Thirty-day mortality was rare (<0.075 %) and showed no significant difference between years. Three-month overall postoperative complication rates significantly decreased with standardization (p < 0.001), as did intra-operative complication rates (p < -0.001). Regression analysis demonstrated increasing standardization to be a predictor of 3 month complication rate OR of 0.59 (95 %CI 0.41-0.85, p = 0.00385). The mean percentage of weight loss at 1, 2, and 3 years postoperative showed stability at 33.2 % (9.0 SD), 34.1 % (10.1 SD), and 32.7 % (10.1 SD), respectively. Sustained regression in obesity-related comorbidities was demonstrated at 1, 2, and 3 years postoperative. Evidence indicates the implementation of a standardized system of bariatric care has contributed to improvements in complication rates and supported prolonged weight loss and regression of obesity-related diseases in patients undergoing bariatric surgery in Ontario.

  2. Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data.

    PubMed

    Ying, Gui-Shuang; Maguire, Maureen G; Glynn, Robert; Rosner, Bernard

    2017-04-01

    To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data. We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field in the elderly. When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI -0.03 to 0.32D, p = 0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, p = 0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller p-values, while analysis of the worse eye provided larger p-values than mixed effects models and marginal models. In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision.

  3. Classification and regression tree analysis of acute-on-chronic hepatitis B liver failure: Seeing the forest for the trees.

    PubMed

    Shi, K-Q; Zhou, Y-Y; Yan, H-D; Li, H; Wu, F-L; Xie, Y-Y; Braddock, M; Lin, X-Y; Zheng, M-H

    2017-02-01

    At present, there is no ideal model for predicting the short-term outcome of patients with acute-on-chronic hepatitis B liver failure (ACHBLF). This study aimed to establish and validate a prognostic model by using the classification and regression tree (CART) analysis. A total of 1047 patients from two separate medical centres with suspected ACHBLF were screened in the study, which were recognized as derivation cohort and validation cohort, respectively. CART analysis was applied to predict the 3-month mortality of patients with ACHBLF. The accuracy of the CART model was tested using the area under the receiver operating characteristic curve, which was compared with the model for end-stage liver disease (MELD) score and a new logistic regression model. CART analysis identified four variables as prognostic factors of ACHBLF: total bilirubin, age, serum sodium and INR, and three distinct risk groups: low risk (4.2%), intermediate risk (30.2%-53.2%) and high risk (81.4%-96.9%). The new logistic regression model was constructed with four independent factors, including age, total bilirubin, serum sodium and prothrombin activity by multivariate logistic regression analysis. The performances of the CART model (0.896), similar to the logistic regression model (0.914, P=.382), exceeded that of MELD score (0.667, P<.001). The results were confirmed in the validation cohort. We have developed and validated a novel CART model superior to MELD for predicting three-month mortality of patients with ACHBLF. Thus, the CART model could facilitate medical decision-making and provide clinicians with a validated practical bedside tool for ACHBLF risk stratification. © 2016 John Wiley & Sons Ltd.

  4. Quantitative laser-induced breakdown spectroscopy data using peak area step-wise regression analysis: an alternative method for interpretation of Mars science laboratory results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clegg, Samuel M; Barefield, James E; Wiens, Roger C

    2008-01-01

    The ChemCam instrument on the Mars Science Laboratory (MSL) will include a laser-induced breakdown spectrometer (LIBS) to quantify major and minor elemental compositions. The traditional analytical chemistry approach to calibration curves for these data regresses a single diagnostic peak area against concentration for each element. This approach contrasts with a new multivariate method in which elemental concentrations are predicted by step-wise multiple regression analysis based on areas of a specific set of diagnostic peaks for each element. The method is tested on LIBS data from igneous and metamorphosed rocks. Between 4 and 13 partial regression coefficients are needed to describemore » each elemental abundance accurately (i.e., with a regression line of R{sup 2} > 0.9995 for the relationship between predicted and measured elemental concentration) for all major and minor elements studied. Validation plots suggest that the method is limited at present by the small data set, and will work best for prediction of concentration when a wide variety of compositions and rock types has been analyzed.« less

  5. Background stratified Poisson regression analysis of cohort data.

    PubMed

    Richardson, David B; Langholz, Bryan

    2012-03-01

    Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models.

  6. Site-specific estimation of peak-streamflow frequency using generalized least-squares regression for natural basins in Texas

    USGS Publications Warehouse

    Asquith, William H.; Slade, R.M.

    1999-01-01

    The U.S. Geological Survey, in cooperation with the Texas Department of Transportation, has developed a computer program to estimate peak-streamflow frequency for ungaged sites in natural basins in Texas. Peak-streamflow frequency refers to the peak streamflows for recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Peak-streamflow frequency estimates are needed by planners, managers, and design engineers for flood-plain management; for objective assessment of flood risk; for cost-effective design of roads and bridges; and also for the desin of culverts, dams, levees, and other flood-control structures. The program estimates peak-streamflow frequency using a site-specific approach and a multivariate generalized least-squares linear regression. A site-specific approach differs from a traditional regional regression approach by developing unique equations to estimate peak-streamflow frequency specifically for the ungaged site. The stations included in the regression are selected using an informal cluster analysis that compares the basin characteristics of the ungaged site to the basin characteristics of all the stations in the data base. The program provides several choices for selecting the stations. Selecting the stations using cluster analysis ensures that the stations included in the regression will have the most pertinent information about flooding characteristics of the ungaged site and therefore provide the basis for potentially improved peak-streamflow frequency estimation. An evaluation of the site-specific approach in estimating peak-streamflow frequency for gaged sites indicates that the site-specific approach is at least as accurate as a traditional regional regression approach.

  7. Regression Analysis of Stage Variability for West-Central Florida Lakes

    USGS Publications Warehouse

    Sacks, Laura A.; Ellison, Donald L.; Swancar, Amy

    2008-01-01

    The variability in a lake's stage depends upon many factors, including surface-water flows, meteorological conditions, and hydrogeologic characteristics near the lake. An understanding of the factors controlling lake-stage variability for a population of lakes may be helpful to water managers who set regulatory levels for lakes. The goal of this study is to determine whether lake-stage variability can be predicted using multiple linear regression and readily available lake and basin characteristics defined for each lake. Regressions were evaluated for a recent 10-year period (1996-2005) and for a historical 10-year period (1954-63). Ground-water pumping is considered to have affected stage at many of the 98 lakes included in the recent period analysis, and not to have affected stage at the 20 lakes included in the historical period analysis. For the recent period, regression models had coefficients of determination (R2) values ranging from 0.60 to 0.74, and up to five explanatory variables. Standard errors ranged from 21 to 37 percent of the average stage variability. Net leakage was the most important explanatory variable in regressions describing the full range and low range in stage variability for the recent period. The most important explanatory variable in the model predicting the high range in stage variability was the height over median lake stage at which surface-water outflow would occur. Other explanatory variables in final regression models for the recent period included the range in annual rainfall for the period and several variables related to local and regional hydrogeology: (1) ground-water pumping within 1 mile of each lake, (2) the amount of ground-water inflow (by category), (3) the head gradient between the lake and the Upper Floridan aquifer, and (4) the thickness of the intermediate confining unit. Many of the variables in final regression models are related to hydrogeologic characteristics, underscoring the importance of ground-water exchange in controlling the stage of karst lakes in Florida. Regression equations were used to predict lake-stage variability for the recent period for 12 additional lakes, and the median difference between predicted and observed values ranged from 11 to 23 percent. Coefficients of determination for the historical period were considerably lower (maximum R2 of 0.28) than for the recent period. Reasons for these low R2 values are probably related to the small number of lakes (20) with stage data for an equivalent time period that were unaffected by ground-water pumping, the similarity of many of the lake types (large surface-water drainage lakes), and the greater uncertainty in defining historical basin characteristics. The lack of lake-stage data unaffected by ground-water pumping and the poor regression results obtained for that group of lakes limit the ability to predict natural lake-stage variability using this method in west-central Florida.

  8. Linear regression metamodeling as a tool to summarize and present simulation model results.

    PubMed

    Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M

    2013-10-01

    Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.

  9. Dietary consumption patterns and laryngeal cancer risk.

    PubMed

    Vlastarakos, Petros V; Vassileiou, Andrianna; Delicha, Evie; Kikidis, Dimitrios; Protopapas, Dimosthenis; Nikolopoulos, Thomas P

    2016-06-01

    We conducted a case-control study to investigate the effect of diet on laryngeal carcinogenesis. Our study population was made up of 140 participants-70 patients with laryngeal cancer (LC) and 70 controls with a non-neoplastic condition that was unrelated to diet, smoking, or alcohol. A food-frequency questionnaire determined the mean consumption of 113 different items during the 3 years prior to symptom onset. Total energy intake and cooking mode were also noted. The relative risk, odds ratio (OR), and 95% confidence interval (CI) were estimated by multiple logistic regression analysis. We found that the total energy intake was significantly higher in the LC group (p < 0.001), and that the difference remained statistically significant after logistic regression analysis (p < 0.001; OR: 118.70). Notably, meat consumption was higher in the LC group (p < 0.001), and the difference remained significant after logistic regression analysis (p = 0.029; OR: 1.16). LC patients also consumed significantly more fried food (p = 0.036); this difference also remained significant in the logistic regression model (p = 0.026; OR: 5.45). The LC group also consumed significantly more seafood (p = 0.012); the difference persisted after logistic regression analysis (p = 0.009; OR: 2.48), with the consumption of shrimp proving detrimental (p = 0.049; OR: 2.18). Finally, the intake of zinc was significantly higher in the LC group before and after logistic regression analysis (p = 0.034 and p = 0.011; OR: 30.15, respectively). Cereal consumption (including pastas) was also higher among the LC patients (p = 0.043), with logistic regression analysis showing that their negative effect was possibly associated with the sauces and dressings that traditionally accompany pasta dishes (p = 0.006; OR: 4.78). Conversely, a higher consumption of dairy products was found in controls (p < 0.05); logistic regression analysis showed that calcium appeared to be protective at the micronutrient level (p < 0.001; OR: 0.27). We found no difference in the overall consumption of fruits and vegetables between the LC patients and controls; however, the LC patients did have a greater consumption of cooked tomatoes and cooked root vegetables (p = 0.039 for both), and the controls had more consumption of leeks (p = 0.042) and, among controls younger than 65 years, cooked beans (p = 0.037). Lemon (p = 0.037), squeezed fruit juice (p = 0.032), and watermelon (p = 0.018) were also more frequently consumed by the controls. Other differences at the micronutrient level included greater consumption by the LC patients of retinol (p = 0.044), polyunsaturated fats (p = 0.041), and linoleic acid (p = 0.008); LC patients younger than 65 years also had greater intake of riboflavin (p = 0.045). We conclude that the differences in dietary consumption patterns between LC patients and controls indicate a possible role for lifestyle modifications involving nutritional factors as a means of decreasing the risk of laryngeal cancer.

  10. The contextual effects of social capital on health: a cross-national instrumental variable analysis.

    PubMed

    Kim, Daniel; Baum, Christopher F; Ganz, Michael L; Subramanian, S V; Kawachi, Ichiro

    2011-12-01

    Past research on the associations between area-level/contextual social capital and health has produced conflicting evidence. However, interpreting this rapidly growing literature is difficult because estimates using conventional regression are prone to major sources of bias including residual confounding and reverse causation. Instrumental variable (IV) analysis can reduce such bias. Using data on up to 167,344 adults in 64 nations in the European and World Values Surveys and applying IV and ordinary least squares (OLS) regression, we estimated the contextual effects of country-level social trust on individual self-rated health. We further explored whether these associations varied by gender and individual levels of trust. Using OLS regression, we found higher average country-level trust to be associated with better self-rated health in both women and men. Instrumental variable analysis yielded qualitatively similar results, although the estimates were more than double in size in both sexes when country population density and corruption were used as instruments. The estimated health effects of raising the percentage of a country's population that trusts others by 10 percentage points were at least as large as the estimated health effects of an individual developing trust in others. These findings were robust to alternative model specifications and instruments. Conventional regression and to a lesser extent IV analysis suggested that these associations are more salient in women and in women reporting social trust. In a large cross-national study, our findings, including those using instrumental variables, support the presence of beneficial effects of higher country-level trust on self-rated health. Previous findings for contextual social capital using traditional regression may have underestimated the true associations. Given the close linkages between self-rated health and all-cause mortality, the public health gains from raising social capital within and across countries may be large. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. The contextual effects of social capital on health: a cross-national instrumental variable analysis

    PubMed Central

    Kim, Daniel; Baum, Christopher F; Ganz, Michael; Subramanian, S V; Kawachi, Ichiro

    2011-01-01

    Past observational studies of the associations of area-level/contextual social capital with health have revealed conflicting findings. However, interpreting this rapidly growing literature is difficult because estimates using conventional regression are prone to major sources of bias including residual confounding and reverse causation. Instrumental variable (IV) analysis can reduce such bias. Using data on up to 167 344 adults in 64 nations in the European and World Values Surveys and applying IV and ordinary least squares (OLS) regression, we estimated the contextual effects of country-level social trust on individual self-rated health. We further explored whether these associations varied by gender and individual levels of trust. Using OLS regression, we found higher average country-level trust to be associated with better self-rated health in both women and men. Instrumental variable analysis yielded qualitatively similar results, although the estimates were more than double in size in women and men using country population density and corruption as instruments. The estimated health effects of raising the percentage of a country's population that trusts others by 10 percentage points were at least as large as the estimated health effects of an individual developing trust in others. These findings were robust to alternative model specifications and instruments. Conventional regression and to a lesser extent IV analysis suggested that these associations are more salient in women and in women reporting social trust. In a large cross-national study, our findings, including those using instrumental variables, support the presence of beneficial effects of higher country-level trust on self-rated health. Past findings for contextual social capital using traditional regression may have underestimated the true associations. Given the close linkages between self-rated health and all-cause mortality, the public health gains from raising social capital within countries may be large. PMID:22078106

  12. Spectroscopic analysis and control

    DOEpatents

    Tate; , James D.; Reed, Christopher J.; Domke, Christopher H.; Le, Linh; Seasholtz, Mary Beth; Weber, Andy; Lipp, Charles

    2017-04-18

    Apparatus for spectroscopic analysis which includes a tunable diode laser spectrometer having a digital output signal and a digital computer for receiving the digital output signal from the spectrometer, the digital computer programmed to process the digital output signal using a multivariate regression algorithm. In addition, a spectroscopic method of analysis using such apparatus. Finally, a method for controlling an ethylene cracker hydrogenator.

  13. Massive Open Online Course Completion Rates Revisited: Assessment, Length and Attrition

    ERIC Educational Resources Information Center

    Jordan, Katy

    2015-01-01

    This analysis is based upon enrolment and completion data collected for a total of 221 Massive Open Online Courses (MOOCs). It extends previously reported work (Jordan, 2014) with an expanded dataset; the original work is extended to include a multiple regression analysis of factors that affect completion rates and analysis of attrition rates…

  14. Factor Retention in Exploratory Factor Analysis: A Comparison of Alternative Methods.

    ERIC Educational Resources Information Center

    Mumford, Karen R.; Ferron, John M.; Hines, Constance V.; Hogarty, Kristine Y.; Kromrey, Jeffery D.

    This study compared the effectiveness of 10 methods of determining the number of factors to retain in exploratory common factor analysis. The 10 methods included the Kaiser rule and a modified Kaiser criterion, 3 variations of parallel analysis, 4 regression-based variations of the scree procedure, and the minimum average partial procedure. The…

  15. Robust Mediation Analysis Based on Median Regression

    PubMed Central

    Yuan, Ying; MacKinnon, David P.

    2014-01-01

    Mediation analysis has many applications in psychology and the social sciences. The most prevalent methods typically assume that the error distribution is normal and homoscedastic. However, this assumption may rarely be met in practice, which can affect the validity of the mediation analysis. To address this problem, we propose robust mediation analysis based on median regression. Our approach is robust to various departures from the assumption of homoscedasticity and normality, including heavy-tailed, skewed, contaminated, and heteroscedastic distributions. Simulation studies show that under these circumstances, the proposed method is more efficient and powerful than standard mediation analysis. We further extend the proposed robust method to multilevel mediation analysis, and demonstrate through simulation studies that the new approach outperforms the standard multilevel mediation analysis. We illustrate the proposed method using data from a program designed to increase reemployment and enhance mental health of job seekers. PMID:24079925

  16. The relationship between air pollution, fossil fuel energy consumption, and water resources in the panel of selected Asia-Pacific countries.

    PubMed

    Rafindadi, Abdulkadir Abdulrashid; Yusof, Zarinah; Zaman, Khalid; Kyophilavong, Phouphet; Akhmat, Ghulam

    2014-10-01

    The objective of the study is to examine the relationship between air pollution, fossil fuel energy consumption, water resources, and natural resource rents in the panel of selected Asia-Pacific countries, over a period of 1975-2012. The study includes number of variables in the model for robust analysis. The results of cross-sectional analysis show that there is a significant relationship between air pollution, energy consumption, and water productivity in the individual countries of Asia-Pacific. However, the results of each country vary according to the time invariant shocks. For this purpose, the study employed the panel least square technique which includes the panel least square regression, panel fixed effect regression, and panel two-stage least square regression. In general, all the panel tests indicate that there is a significant and positive relationship between air pollution, energy consumption, and water resources in the region. The fossil fuel energy consumption has a major dominating impact on the changes in the air pollution in the region.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penna, M.L.; Duchiade, M.P.

    The authors report the results of an investigation into the possible association between air pollution and infant mortality from pneumonia in the Rio de Janeiro Metropolitan Area. This investigation employed multiple linear regression analysis (stepwise method) for infant mortality from pneumonia in 1980, including the study population's areas of residence, incomes, and pollution exposure as independent variables. With the income variable included in the regression, a statistically significant association was observed between the average annual level of particulates and infant mortality from pneumonia. While this finding should be accepted with caution, it does suggest a biological association between these variables.more » The authors' conclusion is that air quality indicators should be included in studies of acute respiratory infections in developing countries.« less

  18. Publication Trends of Doctoral Students in Three Fields from 1965-1995.

    ERIC Educational Resources Information Center

    Lee, Wade M.

    2000-01-01

    Describes a study that investigated the publication rates of successful doctoral students in the fields of analytical chemistry, experimental psychology, and American literature. Data analysis, including linear regression analysis, revealed differences in publication rates and in solo authorship that mirrored differences between the fields as a…

  19. Determinants of Crime in Virginia: An Empirical Analysis

    ERIC Educational Resources Information Center

    Ali, Abdiweli M.; Peek, Willam

    2009-01-01

    This paper is an empirical analysis of the determinants of crime in Virginia. Over a dozen explanatory variables that current literature suggests as important determinants of crime are collected. The data is from 1970 to 2000. These include economic, fiscal, demographic, political, and social variables. The regression results indicate that crime…

  20. Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data

    PubMed Central

    Ying, Gui-shuang; Maguire, Maureen G; Glynn, Robert; Rosner, Bernard

    2017-01-01

    Purpose To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data. Methods We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field data in the elderly. Results When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI −0.03 to 0.32D, P=0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, P=0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller P-values, while analysis of the worse eye provided larger P-values than mixed effects models and marginal models. Conclusion In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision. PMID:28102741

  1. Estimation of standard liver volume in Chinese adult living donors.

    PubMed

    Fu-Gui, L; Lu-Nan, Y; Bo, L; Yong, Z; Tian-Fu, W; Ming-Qing, X; Wen-Tao, W; Zhe-Yu, C

    2009-12-01

    To determine a formula predicting the standard liver volume based on body surface area (BSA) or body weight in Chinese adults. A total of 115 consecutive right-lobe living donors not including the middle hepatic vein underwent right hemi-hepatectomy. No organs were used from prisoners, and no subjects were prisoners. Donor anthropometric data including age, gender, body weight, and body height were recorded prospectively. The weights and volumes of the right lobe liver grafts were measured at the back table. Liver weights and volumes were calculated from the right lobe graft weight and volume obtained at the back table, divided by the proportion of the right lobe on computed tomography. By simple linear regression analysis and stepwise multiple linear regression analysis, we correlated calculated liver volume and body height, body weight, or body surface area. The subjects had a mean age of 35.97 +/- 9.6 years, and a female-to-male ratio of 60:55. The mean volume of the right lobe was 727.47 +/- 136.17 mL, occupying 55.59% +/- 6.70% of the whole liver by computed tomography. The volume of the right lobe was 581.73 +/- 96.137 mL, and the estimated liver volume was 1053.08 +/- 167.56 mL. Females of the same body weight showed a slightly lower liver weight. By simple linear regression analysis and stepwise multiple linear regression analysis, a formula was derived based on body weight. All formulae except the Hong Kong formula overestimated liver volume compared to this formula. The formula of standard liver volume, SLV (mL) = 11.508 x body weight (kg) + 334.024, may be applied to estimate liver volumes in Chinese adults.

  2. Statistical methods and regression analysis of stratospheric ozone and meteorological variables in Isfahan

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, S.; Hosseinibalam, F.; Omidvari, M.

    2008-04-01

    Data of seven meteorological variables (relative humidity, wet temperature, dry temperature, maximum temperature, minimum temperature, ground temperature and sun radiation time) and ozone values have been used for statistical analysis. Meteorological variables and ozone values were analyzed using both multiple linear regression and principal component methods. Data for the period 1999-2004 are analyzed jointly using both methods. For all periods, temperature dependent variables were highly correlated, but were all negatively correlated with relative humidity. Multiple regression analysis was used to fit the meteorological variables using the meteorological variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to obtain subsets of the predictor variables to be included in the linear regression model of the meteorological variables. In 1999, 2001 and 2002 one of the meteorological variables was weakly influenced predominantly by the ozone concentrations. However, the model did not predict that the meteorological variables for the year 2000 were not influenced predominantly by the ozone concentrations that point to variation in sun radiation. This could be due to other factors that were not explicitly considered in this study.

  3. Getting Answers to Natural Language Questions on the Web.

    ERIC Educational Resources Information Center

    Radev, Dragomir R.; Libner, Kelsey; Fan, Weiguo

    2002-01-01

    Describes a study that investigated the use of natural language questions on Web search engines. Highlights include query languages; differences in search engine syntax; and results of logistic regression and analysis of variance that showed aspects of questions that predicted significantly different performances, including the number of words,…

  4. Meta-Analysis of the Reasoned Action Approach (RAA) to Understanding Health Behaviors.

    PubMed

    McEachan, Rosemary; Taylor, Natalie; Harrison, Reema; Lawton, Rebecca; Gardner, Peter; Conner, Mark

    2016-08-01

    Reasoned action approach (RAA) includes subcomponents of attitude (experiential/instrumental), perceived norm (injunctive/descriptive), and perceived behavioral control (capacity/autonomy) to predict intention and behavior. To provide a meta-analysis of the RAA for health behaviors focusing on comparing the pairs of RAA subcomponents and differences between health protection and health-risk behaviors. The present research reports a meta-analysis of correlational tests of RAA subcomponents, examination of moderators, and combined effects of subcomponents on intention and behavior. Regressions were used to predict intention and behavior based on data from studies measuring all variables. Capacity and experiential attitude had large, and other constructs had small-medium-sized correlations with intention; all constructs except autonomy were significant independent predictors of intention in regressions. Intention, capacity, and experiential attitude had medium-large, and other constructs had small-medium-sized correlations with behavior; intention, capacity, experiential attitude, and descriptive norm were significant independent predictors of behavior in regressions. The RAA subcomponents have utility in predicting and understanding health behaviors.

  5. Application and interpretation of functional data analysis techniques to differential scanning calorimetry data from lupus patients.

    PubMed

    Kendrick, Sarah K; Zheng, Qi; Garbett, Nichola C; Brock, Guy N

    2017-01-01

    DSC is used to determine thermally-induced conformational changes of biomolecules within a blood plasma sample. Recent research has indicated that DSC curves (or thermograms) may have different characteristics based on disease status and, thus, may be useful as a monitoring and diagnostic tool for some diseases. Since thermograms are curves measured over a range of temperature values, they are considered functional data. In this paper we apply functional data analysis techniques to analyze differential scanning calorimetry (DSC) data from individuals from the Lupus Family Registry and Repository (LFRR). The aim was to assess the effect of lupus disease status as well as additional covariates on the thermogram profiles, and use FD analysis methods to create models for classifying lupus vs. control patients on the basis of the thermogram curves. Thermograms were collected for 300 lupus patients and 300 controls without lupus who were matched with diseased individuals based on sex, race, and age. First, functional regression with a functional response (DSC) and categorical predictor (disease status) was used to determine how thermogram curve structure varied according to disease status and other covariates including sex, race, and year of birth. Next, functional logistic regression with disease status as the response and functional principal component analysis (FPCA) scores as the predictors was used to model the effect of thermogram structure on disease status prediction. The prediction accuracy for patients with Osteoarthritis and Rheumatoid Arthritis but without Lupus was also calculated to determine the ability of the classifier to differentiate between Lupus and other diseases. Data were divided 1000 times into separate 2/3 training and 1/3 test data for evaluation of predictions. Finally, derivatives of thermogram curves were included in the models to determine whether they aided in prediction of disease status. Functional regression with thermogram as a functional response and disease status as predictor showed a clear separation in thermogram curve structure between cases and controls. The logistic regression model with FPCA scores as the predictors gave the most accurate results with a mean 79.22% correct classification rate with a mean sensitivity = 79.70%, and specificity = 81.48%. The model correctly classified OA and RA patients without Lupus as controls at a rate of 75.92% on average with a mean sensitivity = 79.70% and specificity = 77.6%. Regression models including FPCA scores for derivative curves did not perform as well, nor did regression models including covariates. Changes in thermograms observed in the disease state likely reflect covalent modifications of plasma proteins or changes in large protein-protein interacting networks resulting in the stabilization of plasma proteins towards thermal denaturation. By relating functional principal components from thermograms to disease status, our Functional Principal Component Analysis model provides results that are more easily interpretable compared to prior studies. Further, the model could also potentially be coupled with other biomarkers to improve diagnostic classification for lupus.

  6. Regression Analysis by Example. 5th Edition

    ERIC Educational Resources Information Center

    Chatterjee, Samprit; Hadi, Ali S.

    2012-01-01

    Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. "Regression Analysis by Example, Fifth Edition" has been expanded and thoroughly…

  7. Ranibizumab alone or in combination with photodynamic therapy vs photodynamic therapy for polypoidal choroidal vasculopathy: a systematic review and Meta-analysis.

    PubMed

    Tang, Kai; Si, Jun-Kang; Guo, Da-Dong; Cui, Yan; Du, Yu-Xiang; Pan, Xue-Mei; Bi, Hong-Sheng

    2015-01-01

    To compare the efficacy of intravitreal ranibizumab (IVR) alone or in combination with photodynamic therapy (PDT) vs PDT in patients with symptomatic polypoidal choroidal vasculopathy (PCV). A systematic search of a wide range of databases (including PubMed, EMBASE, Cochrane Library and Web of Science) was searched to identify relevant studies. Both randomized controlled trials (RCTs) and non-RCT studies were included. Methodological quality of included literatures was evaluated according to the Newcastle-Ottawa Scale. RevMan 5.2.7 software was used to do the Meta-analysis. Three RCTs and 6 retrospective studies were included. The results showed that PDT monotherapy had a significantly higher proportion in patients who achieved complete regression of polyps than IVR monotherapy at months 3, 6, and 12 (All P≤0.01), respectively. However, IVR had a tendency to be more effective in improving vision on the basis of RCTs. The proportion of patients who gained complete regression of polyps revealed that there was no significant difference between the combination treatment and PDT monotherapy. The mean change of best-corrected visual acuity (BCVA) from baseline showed that the combination treatment had significant superiority in improving vision vs PDT monotherapy at months 3, 6 and 24 (All P<0.05), respectively. In the mean time, this comparison result was also significant at month 12 (P<0.01) after removal of a heterogeneous study. IVR has non-inferiority compare with PDT either in stabilizing or in improving vision, although it can hardly promote the regression of polyps. The combination treatment of PDT and IVR can exert a synergistic effect on regressing polyps and on maintaining or improving visual acuity. Thus, it can be the first-line therapy for PCV.

  8. Ranibizumab alone or in combination with photodynamic therapy vs photodynamic therapy for polypoidal choroidal vasculopathy: a systematic review and Meta-analysis

    PubMed Central

    Tang, Kai; Si, Jun-Kang; Guo, Da-Dong; Cui, Yan; Du, Yu-Xiang; Pan, Xue-Mei; Bi, Hong-Sheng

    2015-01-01

    AIM To compare the efficacy of intravitreal ranibizumab (IVR) alone or in combination with photodynamic therapy (PDT) vs PDT in patients with symptomatic polypoidal choroidal vasculopathy (PCV). METHODS A systematic search of a wide range of databases (including PubMed, EMBASE, Cochrane Library and Web of Science) was searched to identify relevant studies. Both randomized controlled trials (RCTs) and non-RCT studies were included. Methodological quality of included literatures was evaluated according to the Newcastle-Ottawa Scale. RevMan 5.2.7 software was used to do the Meta-analysis. RESULTS Three RCTs and 6 retrospective studies were included. The results showed that PDT monotherapy had a significantly higher proportion in patients who achieved complete regression of polyps than IVR monotherapy at months 3, 6, and 12 (All P≤0.01), respectively. However, IVR had a tendency to be more effective in improving vision on the basis of RCTs. The proportion of patients who gained complete regression of polyps revealed that there was no significant difference between the combination treatment and PDT monotherapy. The mean change of best-corrected visual acuity (BCVA) from baseline showed that the combination treatment had significant superiority in improving vision vs PDT monotherapy at months 3, 6 and 24 (All P<0.05), respectively. In the mean time, this comparison result was also significant at month 12 (P<0.01) after removal of a heterogeneous study. CONCLUSION IVR has non-inferiority compare with PDT either in stabilizing or in improving vision, although it can hardly promote the regression of polyps. The combination treatment of PDT and IVR can exert a synergistic effect on regressing polyps and on maintaining or improving visual acuity. Thus, it can be the first-line therapy for PCV. PMID:26558226

  9. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults

    PubMed Central

    Fuster-Parra, Pilar; Bennasar-Veny, Miquel; Tauler, Pedro; Yañez, Aina; López-González, Angel A.; Aguiló, Antoni

    2015-01-01

    Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (ρ = 0:87 vs. ρ = 0:86 for the whole sample and ρ = 0:88 vs. ρ = 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF. PMID:25821960

  10. A comparison between multiple regression models and CUN-BAE equation to predict body fat in adults.

    PubMed

    Fuster-Parra, Pilar; Bennasar-Veny, Miquel; Tauler, Pedro; Yañez, Aina; López-González, Angel A; Aguiló, Antoni

    2015-01-01

    Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (ρ = 0:87 vs. ρ = 0:86 for the whole sample and ρ = 0:88 vs. ρ = 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.

  11. Integrated analysis of DNA-methylation and gene expression using high-dimensional penalized regression: a cohort study on bone mineral density in postmenopausal women.

    PubMed

    Lien, Tonje G; Borgan, Ørnulf; Reppe, Sjur; Gautvik, Kaare; Glad, Ingrid Kristine

    2018-03-07

    Using high-dimensional penalized regression we studied genome-wide DNA-methylation in bone biopsies of 80 postmenopausal women in relation to their bone mineral density (BMD). The women showed BMD varying from severely osteoporotic to normal. Global gene expression data from the same individuals was available, and since DNA-methylation often affects gene expression, the overall aim of this paper was to include both of these omics data sets into an integrated analysis. The classical penalized regression uses one penalty, but we incorporated individual penalties for each of the DNA-methylation sites. These individual penalties were guided by the strength of association between DNA-methylations and gene transcript levels. DNA-methylations that were highly associated to one or more transcripts got lower penalties and were therefore favored compared to DNA-methylations showing less association to expression. Because of the complex pathways and interactions among genes, we investigated both the association between DNA-methylations and their corresponding cis gene, as well as the association between DNA-methylations and trans-located genes. Two integrating penalized methods were used: first, an adaptive group-regularized ridge regression, and secondly, variable selection was performed through a modified version of the weighted lasso. When information from gene expressions was integrated, predictive performance was considerably improved, in terms of predictive mean square error, compared to classical penalized regression without data integration. We found a 14.7% improvement in the ridge regression case and a 17% improvement for the lasso case. Our version of the weighted lasso with data integration found a list of 22 interesting methylation sites. Several corresponded to genes that are known to be important in bone formation. Using BMD as response and these 22 methylation sites as covariates, least square regression analyses resulted in R 2 =0.726, comparable to an average R 2 =0.438 for 10000 randomly selected groups of DNA-methylations with group size 22. Two recent types of penalized regression methods were adapted to integrate DNA-methylation and their association to gene expression in the analysis of bone mineral density. In both cases predictions clearly benefit from including the additional information on gene expressions.

  12. Regression modeling of ground-water flow

    USGS Publications Warehouse

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  13. Multiple Imputation of a Randomly Censored Covariate Improves Logistic Regression Analysis.

    PubMed

    Atem, Folefac D; Qian, Jing; Maye, Jacqueline E; Johnson, Keith A; Betensky, Rebecca A

    2016-01-01

    Randomly censored covariates arise frequently in epidemiologic studies. The most commonly used methods, including complete case and single imputation or substitution, suffer from inefficiency and bias. They make strong parametric assumptions or they consider limit of detection censoring only. We employ multiple imputation, in conjunction with semi-parametric modeling of the censored covariate, to overcome these shortcomings and to facilitate robust estimation. We develop a multiple imputation approach for randomly censored covariates within the framework of a logistic regression model. We use the non-parametric estimate of the covariate distribution or the semiparametric Cox model estimate in the presence of additional covariates in the model. We evaluate this procedure in simulations, and compare its operating characteristics to those from the complete case analysis and a survival regression approach. We apply the procedures to an Alzheimer's study of the association between amyloid positivity and maternal age of onset of dementia. Multiple imputation achieves lower standard errors and higher power than the complete case approach under heavy and moderate censoring and is comparable under light censoring. The survival regression approach achieves the highest power among all procedures, but does not produce interpretable estimates of association. Multiple imputation offers a favorable alternative to complete case analysis and ad hoc substitution methods in the presence of randomly censored covariates within the framework of logistic regression.

  14. A guide to understanding meta-analysis.

    PubMed

    Israel, Heidi; Richter, Randy R

    2011-07-01

    With the focus on evidence-based practice in healthcare, a well-conducted systematic review that includes a meta-analysis where indicated represents a high level of evidence for treatment effectiveness. The purpose of this commentary is to assist clinicians in understanding meta-analysis as a statistical tool using both published articles and explanations of components of the technique. We describe what meta-analysis is, what heterogeneity is, and how it affects meta-analysis, effect size, the modeling techniques of meta-analysis, and strengths and weaknesses of meta-analysis. Common components like forest plot interpretation, software that may be used, special cases for meta-analysis, such as subgroup analysis, individual patient data, and meta-regression, and a discussion of criticisms, are included.

  15. Modeling Longitudinal Data Containing Non-Normal Within Subject Errors

    NASA Technical Reports Server (NTRS)

    Feiveson, Alan; Glenn, Nancy L.

    2013-01-01

    The mission of the National Aeronautics and Space Administration’s (NASA) human research program is to advance safe human spaceflight. This involves conducting experiments, collecting data, and analyzing data. The data are longitudinal and result from a relatively few number of subjects; typically 10 – 20. A longitudinal study refers to an investigation where participant outcomes and possibly treatments are collected at multiple follow-up times. Standard statistical designs such as mean regression with random effects and mixed–effects regression are inadequate for such data because the population is typically not approximately normally distributed. Hence, more advanced data analysis methods are necessary. This research focuses on four such methods for longitudinal data analysis: the recently proposed linear quantile mixed models (lqmm) by Geraci and Bottai (2013), quantile regression, multilevel mixed–effects linear regression, and robust regression. This research also provides computational algorithms for longitudinal data that scientists can directly use for human spaceflight and other longitudinal data applications, then presents statistical evidence that verifies which method is best for specific situations. This advances the study of longitudinal data in a broad range of applications including applications in the sciences, technology, engineering and mathematics fields.

  16. Monitoring heavy metal Cr in soil based on hyperspectral data using regression analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Ningyu; Xu, Fuyun; Zhuang, Shidong; He, Changwei

    2016-10-01

    Heavy metal pollution in soils is one of the most critical problems in the global ecology and environment safety nowadays. Hyperspectral remote sensing and its application is capable of high speed, low cost, less risk and less damage, and provides a good method for detecting heavy metals in soil. This paper proposed a new idea of applying regression analysis of stepwise multiple regression between the spectral data and monitoring the amount of heavy metal Cr by sample points in soil for environmental protection. In the measurement, a FieldSpec HandHeld spectroradiometer is used to collect reflectance spectra of sample points over the wavelength range of 325-1075 nm. Then the spectral data measured by the spectroradiometer is preprocessed to reduced the influence of the external factors, and the preprocessed methods include first-order differential equation, second-order differential equation and continuum removal method. The algorithms of stepwise multiple regression are established accordingly, and the accuracy of each equation is tested. The results showed that the accuracy of first-order differential equation works best, which makes it feasible to predict the content of heavy metal Cr by using stepwise multiple regression.

  17. TSS concentration in sewers estimated from turbidity measurements by means of linear regression accounting for uncertainties in both variables.

    PubMed

    Bertrand-Krajewski, J L

    2004-01-01

    In order to replace traditional sampling and analysis techniques, turbidimeters can be used to estimate TSS concentration in sewers, by means of sensor and site specific empirical equations established by linear regression of on-site turbidity Tvalues with TSS concentrations C measured in corresponding samples. As the ordinary least-squares method is not able to account for measurement uncertainties in both T and C variables, an appropriate regression method is used to solve this difficulty and to evaluate correctly the uncertainty in TSS concentrations estimated from measured turbidity. The regression method is described, including detailed calculations of variances and covariance in the regression parameters. An example of application is given for a calibrated turbidimeter used in a combined sewer system, with data collected during three dry weather days. In order to show how the established regression could be used, an independent 24 hours long dry weather turbidity data series recorded at 2 min time interval is used, transformed into estimated TSS concentrations, and compared to TSS concentrations measured in samples. The comparison appears as satisfactory and suggests that turbidity measurements could replace traditional samples. Further developments, including wet weather periods and other types of sensors, are suggested.

  18. Determination of variability in leaf biomass densities of conifers and mixed conifers under different environmental conditions in the San Joaquin Valley air basin. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temple, P.J.; Mutters, R.J.; Adams, C.

    1995-06-01

    Biomass sampling plots were established at 29 locations within the dominant vegetation zones of the study area. Estimates of foliar biomass were made for each plot by three independent methods: regression analysis on the basis of tree diameter, calculation of the amount of light intercepted by the leaf canopy, and extrapolation from branch leaf area. Multivariate regression analysis was used to relate these foliar biomass estimates for oak plots and conifer plots to several independent predictor variables, including elevation, slope, aspect, temperature, precipitation, and soil chemical characteristics.

  19. Strengths use as a secret of happiness: Another dimension of visually impaired individuals' psychological state.

    PubMed

    Matsuguma, Shinichiro; Kawashima, Motoko; Negishi, Kazuno; Sano, Fumiya; Mimura, Masaru; Tsubota, Kazuo

    2018-01-01

    It is well recognized that visual impairments (VI) worsen individuals' mental condition. However, little is known about the positive aspects including subjective happiness, positive emotions, and strengths. Therefore, the purpose of this study was to investigate the positive aspects of persons with VI including their subjective happiness, positive emotions, and strengths use. Positive aspects of persons with VI were measured using the Subjective Happiness Scale (SHS), the Scale of Positive and Negative Experience-Balance (SPANE-B), and the Strengths Use Scale (SUS). A cross-sectional analysis was utilized to examine personal information in a Tokyo sample (N = 44). We used a simple regression analysis and found significant relationships between the SHS or SPANE-B and SUS; on the contrary, VI-related variables were not correlated with them. A multiple regression analysis confirmed that SUS was a significant factor associated with both the SHS and SPANE-B. Strengths use might be a possible protective factor from the negative effects of VI.

  20. Fast Detection of Copper Content in Rice by Laser-Induced Breakdown Spectroscopy with Uni- and Multivariate Analysis.

    PubMed

    Liu, Fei; Ye, Lanhan; Peng, Jiyu; Song, Kunlin; Shen, Tingting; Zhang, Chu; He, Yong

    2018-02-27

    Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV). Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R 2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR) showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and prediction sets, where R c 2 and R p 2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice.

  1. Fast Detection of Copper Content in Rice by Laser-Induced Breakdown Spectroscopy with Uni- and Multivariate Analysis

    PubMed Central

    Ye, Lanhan; Song, Kunlin; Shen, Tingting

    2018-01-01

    Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV). Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR) showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and prediction sets, where Rc2 and Rp2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice. PMID:29495445

  2. Forecasting models for sugi (Cryptomeria japonica D. Don) pollen count showing an alternate dispersal rhythm.

    PubMed

    Ito, Yukiko; Hattori, Reiko; Mase, Hiroki; Watanabe, Masako; Shiotani, Itaru

    2008-12-01

    Pollen information is indispensable for allergic individuals and clinicians. This study aimed to develop forecasting models for the total annual count of airborne pollen grains based on data monitored over the last 20 years at the Mie Chuo Medical Center, Tsu, Mie, Japan. Airborne pollen grains were collected using a Durham sampler. Total annual pollen count and pollen count from October to December (OD pollen count) of the previous year were transformed to logarithms. Regression analysis of the total pollen count was performed using variables such as the OD pollen count and the maximum temperature for mid-July of the previous year. Time series analysis revealed an alternate rhythm of the series of total pollen count. The alternate rhythm consisted of a cyclic alternation of an "on" year (high pollen count) and an "off" year (low pollen count). This rhythm was used as a dummy variable in regression equations. Of the three models involving the OD pollen count, a multiple regression equation that included the alternate rhythm variable and the interaction of this rhythm with OD pollen count showed a high coefficient of determination (0.844). Of the three models involving the maximum temperature for mid-July, those including the alternate rhythm variable and the interaction of this rhythm with maximum temperature had the highest coefficient of determination (0.925). An alternate pollen dispersal rhythm represented by a dummy variable in the multiple regression analysis plays a key role in improving forecasting models for the total annual sugi pollen count.

  3. Age Estimation of Infants Through Metric Analysis of Developing Anterior Deciduous Teeth.

    PubMed

    Viciano, Joan; De Luca, Stefano; Irurita, Javier; Alemán, Inmaculada

    2018-01-01

    This study provides regression equations for estimation of age of infants from the dimensions of their developing deciduous teeth. The sample comprises 97 individuals of known sex and age (62 boys, 35 girls), aged between 2 days and 1,081 days. The age-estimation equations were obtained for the sexes combined, as well as for each sex separately, thus including "sex" as an independent variable. The values of the correlations and determination coefficients obtained for each regression equation indicate good fits for most of the equations obtained. The "sex" factor was statistically significant when included as an independent variable in seven of the regression equations. However, the "sex" factor provided an advantage for age estimation in only three of the equations, compared to those that did not include "sex" as a factor. These data suggest that the ages of infants can be accurately estimated from measurements of their developing deciduous teeth. © 2017 American Academy of Forensic Sciences.

  4. [Logistic regression model of noninvasive prediction for portal hypertensive gastropathy in patients with hepatitis B associated cirrhosis].

    PubMed

    Wang, Qingliang; Li, Xiaojie; Hu, Kunpeng; Zhao, Kun; Yang, Peisheng; Liu, Bo

    2015-05-12

    To explore the risk factors of portal hypertensive gastropathy (PHG) in patients with hepatitis B associated cirrhosis and establish a Logistic regression model of noninvasive prediction. The clinical data of 234 hospitalized patients with hepatitis B associated cirrhosis from March 2012 to March 2014 were analyzed retrospectively. The dependent variable was the occurrence of PHG while the independent variables were screened by binary Logistic analysis. Multivariate Logistic regression was used for further analysis of significant noninvasive independent variables. Logistic regression model was established and odds ratio was calculated for each factor. The accuracy, sensitivity and specificity of model were evaluated by the curve of receiver operating characteristic (ROC). According to univariate Logistic regression, the risk factors included hepatic dysfunction, albumin (ALB), bilirubin (TB), prothrombin time (PT), platelet (PLT), white blood cell (WBC), portal vein diameter, spleen index, splenic vein diameter, diameter ratio, PLT to spleen volume ratio, esophageal varices (EV) and gastric varices (GV). Multivariate analysis showed that hepatic dysfunction (X1), TB (X2), PLT (X3) and splenic vein diameter (X4) were the major occurring factors for PHG. The established regression model was Logit P=-2.667+2.186X1-2.167X2+0.725X3+0.976X4. The accuracy of model for PHG was 79.1% with a sensitivity of 77.2% and a specificity of 80.8%. Hepatic dysfunction, TB, PLT and splenic vein diameter are risk factors for PHG and the noninvasive predicted Logistic regression model was Logit P=-2.667+2.186X1-2.167X2+0.725X3+0.976X4.

  5. Patterns of Library Use by Undergraduate Students in a Chilean University

    ERIC Educational Resources Information Center

    Jara, Magdalena; Clasing, Paula; Gonzalez, Carlos; Montenegro, Maximiliano; Kelly, Nick; Alarcón, Rosa; Sandoval, Augusto; Saurina, Elvira

    2017-01-01

    This paper explores the patterns of use of print materials and digital resources in an undergraduate library in a Chilean university, by the students' discipline and year of study. A quantitative analysis was carried out, including descriptive analysis of contingency tables, chi-squared tests, t-tests, and multiple linear regressions. The results…

  6. Meta-analysis of haplotype-association studies: comparison of methods and empirical evaluation of the literature

    PubMed Central

    2011-01-01

    Background Meta-analysis is a popular methodology in several fields of medical research, including genetic association studies. However, the methods used for meta-analysis of association studies that report haplotypes have not been studied in detail. In this work, methods for performing meta-analysis of haplotype association studies are summarized, compared and presented in a unified framework along with an empirical evaluation of the literature. Results We present multivariate methods that use summary-based data as well as methods that use binary and count data in a generalized linear mixed model framework (logistic regression, multinomial regression and Poisson regression). The methods presented here avoid the inflation of the type I error rate that could be the result of the traditional approach of comparing a haplotype against the remaining ones, whereas, they can be fitted using standard software. Moreover, formal global tests are presented for assessing the statistical significance of the overall association. Although the methods presented here assume that the haplotypes are directly observed, they can be easily extended to allow for such an uncertainty by weighting the haplotypes by their probability. Conclusions An empirical evaluation of the published literature and a comparison against the meta-analyses that use single nucleotide polymorphisms, suggests that the studies reporting meta-analysis of haplotypes contain approximately half of the included studies and produce significant results twice more often. We show that this excess of statistically significant results, stems from the sub-optimal method of analysis used and, in approximately half of the cases, the statistical significance is refuted if the data are properly re-analyzed. Illustrative examples of code are given in Stata and it is anticipated that the methods developed in this work will be widely applied in the meta-analysis of haplotype association studies. PMID:21247440

  7. Association between work role stressors and sleep quality.

    PubMed

    Iwasaki, S; Deguchi, Y; Inoue, K

    2018-05-17

    Work-related stressors are associated with low sleep quality. However, few studies have reported an association between role stressors and sleep quality. To elucidate the association between role stressors (including role conflict and ambiguity) and sleep quality. Cross-sectional study of daytime workers whose sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI). Work-related stressors, including role stressors, were assessed using the Generic Job Stress Questionnaire (GJSQ). The association between sleep quality and work-related stressors was investigated by logistic regression analysis. A total of 243 participants completed questionnaires were received (response rate 71%); 86 participants reported poor sleep quality, based on a global PSQI score ≥6. Multivariable logistic regression analysis revealed that higher role ambiguity was associated with global PSQI scores ≥6, and that role conflict was significantly associated with sleep problems, including sleep disturbance and daytime dysfunction. These results suggest that high role stress is associated with low sleep quality, and that this association should be considered an important determinant of the health of workers.

  8. Development of LACIE CCEA-1 weather/wheat yield models. [regression analysis

    NASA Technical Reports Server (NTRS)

    Strommen, N. D.; Sakamoto, C. M.; Leduc, S. K.; Umberger, D. E. (Principal Investigator)

    1979-01-01

    The advantages and disadvantages of the casual (phenological, dynamic, physiological), statistical regression, and analog approaches to modeling for grain yield are examined. Given LACIE's primary goal of estimating wheat production for the large areas of eight major wheat-growing regions, the statistical regression approach of correlating historical yield and climate data offered the Center for Climatic and Environmental Assessment the greatest potential return within the constraints of time and data sources. The basic equation for the first generation wheat-yield model is given. Topics discussed include truncation, trend variable, selection of weather variables, episodic events, strata selection, operational data flow, weighting, and model results.

  9. Women, Physical Activity, and Quality of Life: Self-concept as a Mediator.

    PubMed

    Gonzalo Silvestre, Tamara; Ubillos Landa, Silvia

    2016-02-22

    The objectives of this research are: (a) analyze the incremental validity of physical activity's (PA) influence on perceived quality of life (PQL); (b) determine if PA's predictive power is mediated by self-concept; and (c) study if results vary according to a unidimensional or multidimensional approach to self-concept measurement. The sample comprised 160 women from Burgos, Spain aged 18 to 45 years old. Non-probability sampling was used. Two three-step hierarchical regression analyses were applied to forecast PQL. The hedonic quality-of-life indicators, self-concept, self-esteem, and PA were included as independent variables. The first regression analysis included global self-concept as predictor variable, while the second included its five dimensions. Two mediation analyses were conducted to see if PA's ability to predict PQL was mediated by global and physical self-concept. Results from the first regression shows that self-concept, satisfaction with life, and PA were significant predictors. PA slightly but significantly increased explained variance in PQL (2.1%). In the second regression, substituting global self-concept with its five constituent factors, only the physical dimension and satisfaction with life predicted PQL, while PA ceased to be a significant predictor. Mediation analysis revealed that only physical self-concept mediates the relationship between PA and PQL (z = 1.97, p < .050), and not global self-concept. Physical self-concept was the strongest predictor and approximately 32.45 % of PA's effect on PQL was mediated by it. This study's findings support a multidimensional view of self-concept, and represent a more accurate image of the relationship between PQL, PA, and self-concept.

  10. Challenges Associated with Estimating Utility in Wet Age-Related Macular Degeneration: A Novel Regression Analysis to Capture the Bilateral Nature of the Disease.

    PubMed

    Hodgson, Robert; Reason, Timothy; Trueman, David; Wickstead, Rose; Kusel, Jeanette; Jasilek, Adam; Claxton, Lindsay; Taylor, Matthew; Pulikottil-Jacob, Ruth

    2017-10-01

    The estimation of utility values for the economic evaluation of therapies for wet age-related macular degeneration (AMD) is a particular challenge. Previous economic models in wet AMD have been criticized for failing to capture the bilateral nature of wet AMD by modelling visual acuity (VA) and utility values associated with the better-seeing eye only. Here we present a de novo regression analysis using generalized estimating equations (GEE) applied to a previous dataset of time trade-off (TTO)-derived utility values from a sample of the UK population that wore contact lenses to simulate visual deterioration in wet AMD. This analysis allows utility values to be estimated as a function of VA in both the better-seeing eye (BSE) and worse-seeing eye (WSE). VAs in both the BSE and WSE were found to be statistically significant (p < 0.05) when regressed separately. When included without an interaction term, only the coefficient for VA in the BSE was significant (p = 0.04), but when an interaction term between VA in the BSE and WSE was included, only the constant term (mean TTO utility value) was significant, potentially a result of the collinearity between the VA of the two eyes. The lack of both formal model fit statistics from the GEE approach and theoretical knowledge to support the superiority of one model over another make it difficult to select the best model. Limitations of this analysis arise from the potential influence of collinearity between the VA of both eyes, and the use of contact lenses to reflect VA states to obtain the original dataset. Whilst further research is required to elicit more accurate utility values for wet AMD, this novel regression analysis provides a possible source of utility values to allow future economic models to capture the quality of life impact of changes in VA in both eyes. Novartis Pharmaceuticals UK Limited.

  11. An evaluation of treatment strategies for head and neck cancer in an African American population.

    PubMed

    Ignacio, D N; Griffin, J J; Daniel, M G; Serlemitsos-Day, M T; Lombardo, F A; Alleyne, T A

    2013-07-01

    This study evaluated treatment strategies for head and neck cancers in a predominantly African American population. Data were collected utilizing medical records and the tumour registry at the Howard University Hospital. Kaplan-Meier method was used for survival analysis and Cox proportional hazards regression analysis predicted the hazard of death. Analysis revealed that the main treatment strategy was radiation combined with platinum for all stages except stage I. Cetuximab was employed in only 1% of cases. Kaplan-Meier analysis revealed stage II patients had poorer outcome than stage IV while Cox proportional hazard regression analysis (p = 0.4662) showed that stage I had a significantly lower hazard of death than stage IV (HR = 0.314; p = 0.0272). Contributory factors included tobacco and alcohol but body mass index (BMI) was inversely related to hazard of death. There was no difference in survival using any treatment modality for African Americans.

  12. [On the effectiveness of the homeopathic remedy Arnica montana].

    PubMed

    Lüdtke, Rainer; Hacke, Daniela

    2005-11-01

    Arnica montana is a homeopathic remedy often prescribed after traumata and injuries. To assess whether Arnica is effective beyond placebo and to identify factors which support or contradict this effectiveness. All prospective, controlled trials on the effectiveness of homeopathic Arnica were included. Overall effectiveness was assessed by meta-analysis and meta-regression techniques. 68 comparisons from 49 clinical trials show a significant effectiveness of Arnica in traumatic injuries in random effects meta-analysis (odds ratio [OR], 0.36; 95% confidence interval [CI], 0.24-0.55), but not in meta-regression models (OR, 0.37; CI, 0.11-1.24). We found no evidence for publication bias. Studies from Medline-listed journals and high-quality studies are less likely to report positive results (p = 0.0006 and p = 0.0167). The hypothesis that homeopathic Arnica is effective could neither be proved nor rejected. All trials were highly heterogeneous, meta-regression does not help to explain this heterogeneity substantially.

  13. Forecasting urban water demand: A meta-regression analysis.

    PubMed

    Sebri, Maamar

    2016-12-01

    Water managers and planners require accurate water demand forecasts over the short-, medium- and long-term for many purposes. These range from assessing water supply needs over spatial and temporal patterns to optimizing future investments and planning future allocations across competing sectors. This study surveys the empirical literature on the urban water demand forecasting using the meta-analytical approach. Specifically, using more than 600 estimates, a meta-regression analysis is conducted to identify explanations of cross-studies variation in accuracy of urban water demand forecasting. Our study finds that accuracy depends significantly on study characteristics, including demand periodicity, modeling method, forecasting horizon, model specification and sample size. The meta-regression results remain robust to different estimators employed as well as to a series of sensitivity checks performed. The importance of these findings lies in the conclusions and implications drawn out for regulators and policymakers and for academics alike. Copyright © 2016. Published by Elsevier Ltd.

  14. Albumin, a marker for post-operative myocardial damage in cardiac surgery.

    PubMed

    van Beek, Dianne E C; van der Horst, Iwan C C; de Geus, A Fred; Mariani, Massimo A; Scheeren, Thomas W L

    2018-06-06

    Low serum albumin (SA) is a prognostic factor for poor outcome after cardiac surgery. The aim of this study was to estimate the association between pre-operative SA, early post-operative SA and postoperative myocardial injury. This single center cohort study included adult patients undergoing cardiac surgery during 4 consecutive years. Postoperative myocardial damage was defined by calculating the area under the curve (AUC) of troponin (Tn) values during the first 72 h after surgery and its association with SA analyzed using linear regression and with multivariable linear regression to account for patient related and procedural confounders. The association between SA and the secondary outcomes (peri-operative myocardial infarction [PMI], requiring ventilation >24 h, rhythm disturbances, 30-day mortality) was studied using (multivariable) log binomial regression analysis. In total 2757 patients were included. The mean pre-operative SA was 29 ± 13 g/l and the mean post-operative SA was 26 ± 6 g/l. Post-operative SA levels (on average 26 min after surgery) were inversely associated with postoperative myocardial damage in both univariable analysis (regression coefficient - 0.019, 95%CI -0.022/-0.015, p < 0.005) and after adjustment for patient related and surgical confounders (regression coefficient - 0.014 [95% CI -0.020/-0.008], p < 0.0005). Post-operative albumin levels were significantly correlated with the amount of postoperative myocardial damage in patients undergoing cardiac surgery independent of typical confounders. Copyright © 2018. Published by Elsevier Inc.

  15. The association between short interpregnancy interval and preterm birth in Louisiana: a comparison of methods.

    PubMed

    Howard, Elizabeth J; Harville, Emily; Kissinger, Patricia; Xiong, Xu

    2013-07-01

    There is growing interest in the application of propensity scores (PS) in epidemiologic studies, especially within the field of reproductive epidemiology. This retrospective cohort study assesses the impact of a short interpregnancy interval (IPI) on preterm birth and compares the results of the conventional logistic regression analysis with analyses utilizing a PS. The study included 96,378 singleton infants from Louisiana birth certificate data (1995-2007). Five regression models designed for methods comparison are presented. Ten percent (10.17 %) of all births were preterm; 26.83 % of births were from a short IPI. The PS-adjusted model produced a more conservative estimate of the exposure variable compared to the conventional logistic regression method (β-coefficient: 0.21 vs. 0.43), as well as a smaller standard error (0.024 vs. 0.028), odds ratio and 95 % confidence intervals [1.15 (1.09, 1.20) vs. 1.23 (1.17, 1.30)]. The inclusion of more covariate and interaction terms in the PS did not change the estimates of the exposure variable. This analysis indicates that PS-adjusted regression may be appropriate for validation of conventional methods in a large dataset with a fairly common outcome. PS's may be beneficial in producing more precise estimates, especially for models with many confounders and effect modifiers and where conventional adjustment with logistic regression is unsatisfactory. Short intervals between pregnancies are associated with preterm birth in this population, according to either technique. Birth spacing is an issue that women have some control over. Educational interventions, including birth control, should be applied during prenatal visits and following delivery.

  16. Practical guidance for conducting mediation analysis with multiple mediators using inverse odds ratio weighting.

    PubMed

    Nguyen, Quynh C; Osypuk, Theresa L; Schmidt, Nicole M; Glymour, M Maria; Tchetgen Tchetgen, Eric J

    2015-03-01

    Despite the recent flourishing of mediation analysis techniques, many modern approaches are difficult to implement or applicable to only a restricted range of regression models. This report provides practical guidance for implementing a new technique utilizing inverse odds ratio weighting (IORW) to estimate natural direct and indirect effects for mediation analyses. IORW takes advantage of the odds ratio's invariance property and condenses information on the odds ratio for the relationship between the exposure (treatment) and multiple mediators, conditional on covariates, by regressing exposure on mediators and covariates. The inverse of the covariate-adjusted exposure-mediator odds ratio association is used to weight the primary analytical regression of the outcome on treatment. The treatment coefficient in such a weighted regression estimates the natural direct effect of treatment on the outcome, and indirect effects are identified by subtracting direct effects from total effects. Weighting renders treatment and mediators independent, thereby deactivating indirect pathways of the mediators. This new mediation technique accommodates multiple discrete or continuous mediators. IORW is easily implemented and is appropriate for any standard regression model, including quantile regression and survival analysis. An empirical example is given using data from the Moving to Opportunity (1994-2002) experiment, testing whether neighborhood context mediated the effects of a housing voucher program on obesity. Relevant Stata code (StataCorp LP, College Station, Texas) is provided. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Deletion Diagnostics for Alternating Logistic Regressions

    PubMed Central

    Preisser, John S.; By, Kunthel; Perin, Jamie; Qaqish, Bahjat F.

    2013-01-01

    Deletion diagnostics are introduced for the regression analysis of clustered binary outcomes estimated with alternating logistic regressions, an implementation of generalized estimating equations (GEE) that estimates regression coefficients in a marginal mean model and in a model for the intracluster association given by the log odds ratio. The diagnostics are developed within an estimating equations framework that recasts the estimating functions for association parameters based upon conditional residuals into equivalent functions based upon marginal residuals. Extensions of earlier work on GEE diagnostics follow directly, including computational formulae for one-step deletion diagnostics that measure the influence of a cluster of observations on the estimated regression parameters and on the overall marginal mean or association model fit. The diagnostic formulae are evaluated with simulations studies and with an application concerning an assessment of factors associated with health maintenance visits in primary care medical practices. The application and the simulations demonstrate that the proposed cluster-deletion diagnostics for alternating logistic regressions are good approximations of their exact fully iterated counterparts. PMID:22777960

  18. A population-based study on the association between rheumatoid arthritis and voice problems.

    PubMed

    Hah, J Hun; An, Soo-Youn; Sim, Songyong; Kim, So Young; Oh, Dong Jun; Park, Bumjung; Kim, Sung-Gyun; Choi, Hyo Geun

    2016-07-01

    The objective of this study was to investigate whether rheumatoid arthritis increases the frequency of organic laryngeal lesions and the subjective voice complaint rate in those with no organic laryngeal lesion. We performed a cross-sectional study using the data from 19,368 participants (418 rheumatoid arthritis patients and 18,950 controls) of the 2008-2011 Korea National Health and Nutrition Examination Survey. The associations between rheumatoid arthritis and organic laryngeal lesions/subjective voice complaints were analyzed using simple/multiple logistic regression analysis with complex sample adjusting for confounding factors, including age, sex, smoking status, stress level, and body mass index, which could provoke voice problems. Vocal nodules, vocal polyp, and vocal palsy were not associated with rheumatoid arthritis in a multiple regression analysis, and only laryngitis showed a positive association (adjusted odds ratio, 1.59; 95 % confidence interval, 1.01-2.52; P = 0.047). Rheumatoid arthritis was associated with subjective voice discomfort in a simple regression analysis, but not in a multiple regression analysis. Participants with rheumatoid arthritis were older, more often female, and had higher stress levels than those without rheumatoid arthritis. These factors were associated with subjective voice complaints in both simple and multiple regression analyses. Rheumatoid arthritis was not associated with organic laryngeal diseases except laryngitis. Rheumatoid arthritis did not increase the odds ratio for subjective voice complaints. Voice problems in participants with rheumatoid arthritis originated from the characteristics of the rheumatoid arthritis group (higher mean age, female sex, and stress level) rather than rheumatoid arthritis itself.

  19. Addressing data privacy in matched studies via virtual pooling.

    PubMed

    Saha-Chaudhuri, P; Weinberg, C R

    2017-09-07

    Data confidentiality and shared use of research data are two desirable but sometimes conflicting goals in research with multi-center studies and distributed data. While ideal for straightforward analysis, confidentiality restrictions forbid creation of a single dataset that includes covariate information of all participants. Current approaches such as aggregate data sharing, distributed regression, meta-analysis and score-based methods can have important limitations. We propose a novel application of an existing epidemiologic tool, specimen pooling, to enable confidentiality-preserving analysis of data arising from a matched case-control, multi-center design. Instead of pooling specimens prior to assay, we apply the methodology to virtually pool (aggregate) covariates within nodes. Such virtual pooling retains most of the information used in an analysis with individual data and since individual participant data is not shared externally, within-node virtual pooling preserves data confidentiality. We show that aggregated covariate levels can be used in a conditional logistic regression model to estimate individual-level odds ratios of interest. The parameter estimates from the standard conditional logistic regression are compared to the estimates based on a conditional logistic regression model with aggregated data. The parameter estimates are shown to be similar to those without pooling and to have comparable standard errors and confidence interval coverage. Virtual data pooling can be used to maintain confidentiality of data from multi-center study and can be particularly useful in research with large-scale distributed data.

  20. Optimal plateau pressure for patients with acute respiratory distress syndrome: a protocol for a systematic review and meta-analysis with meta-regression.

    PubMed

    Yasuda, Hideto; Nishimura, Tetsuro; Kamo, Tetsuro; Sanui, Masamitsu; Nango, Eishu; Abe, Takayuki; Takebayashi, Toru; Lefor, Alan Kawarai; Hashimoto, Satoru

    2017-05-29

    Lower tidal volume ventilation in patients with acute respiratory distress syndrome (ARDS) is a strategy to reduce the plateau pressure and driving pressure to limit ventilator-induced lung injury (VILI). Several randomised controlled trials (RCTs) and meta-analyses showed that limiting both the plateau pressure and the tidal volume decreased mortality, but the optimal plateau pressure to demonstrate a benefit is uncertain. The aim of this systematic review is to investigate the optimal upper limit of plateau pressure in patients with ARDS to prevent VILI and improve clinical outcomes using meta-analysis with and without meta-regression. RCTs comparing two mechanical ventilation strategies will be included, with lower plateau pressure and with higher plateau pressure, among patients with ARDS and acute lung injury. Data sources include MEDLINE via the NCBI Entrez system, Cochrane Central Register of Controlled Trials (CENTRAL), EMBASE and Ichushi, a database of papers in Japanese. Two of three physicians will independently screen trials obtained by search for eligibility, and extract data from included studies onto standardised data recording forms. For each included trial, the risk of bias and the quality of evidence will be evaluated using the Grading of Recommendation Assessment Development and Evaluation system. This study does not require ethical approval. The results of this systematic review and meta-analysis with and without meta-regression will be disseminated through conference presentation and publication in a peer-reviewed journal. CRD42016041924. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Serum S100B Is Related to Illness Duration and Clinical Symptoms in Schizophrenia—A Meta-Regression Analysis

    PubMed Central

    Schümberg, Katharina; Polyakova, Maryna; Steiner, Johann; Schroeter, Matthias L.

    2016-01-01

    S100B has been linked to glial pathology in several psychiatric disorders. Previous studies found higher S100B serum levels in patients with schizophrenia compared to healthy controls, and a number of covariates influencing the size of this effect have been proposed in the literature. Here, we conducted a meta-analysis and meta-regression analysis on alterations of serum S100B in schizophrenia in comparison with healthy control subjects. The meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to guarantee a high quality and reproducibility. With strict inclusion criteria 19 original studies could be included in the quantitative meta-analysis, comprising a total of 766 patients and 607 healthy control subjects. The meta-analysis confirmed higher values of the glial serum marker S100B in schizophrenia if compared with control subjects. Meta-regression analyses revealed significant effects of illness duration and clinical symptomatology, in particular the total score of the Positive and Negative Syndrome Scale (PANSS), on serum S100B levels in schizophrenia. In sum, results confirm glial pathology in schizophrenia that is modulated by illness duration and related to clinical symptomatology. Further studies are needed to investigate mechanisms and mediating factors related to these findings. PMID:26941608

  2. From concepts, theory, and evidence of heterogeneity of treatment effects to methodological approaches: a primer.

    PubMed

    Willke, Richard J; Zheng, Zhiyuan; Subedi, Prasun; Althin, Rikard; Mullins, C Daniel

    2012-12-13

    Implicit in the growing interest in patient-centered outcomes research is a growing need for better evidence regarding how responses to a given intervention or treatment may vary across patients, referred to as heterogeneity of treatment effect (HTE). A variety of methods are available for exploring HTE, each associated with unique strengths and limitations. This paper reviews a selected set of methodological approaches to understanding HTE, focusing largely but not exclusively on their uses with randomized trial data. It is oriented for the "intermediate" outcomes researcher, who may already be familiar with some methods, but would value a systematic overview of both more and less familiar methods with attention to when and why they may be used. Drawing from the biomedical, statistical, epidemiological and econometrics literature, we describe the steps involved in choosing an HTE approach, focusing on whether the intent of the analysis is for exploratory, initial testing, or confirmatory testing purposes. We also map HTE methodological approaches to data considerations as well as the strengths and limitations of each approach. Methods reviewed include formal subgroup analysis, meta-analysis and meta-regression, various types of predictive risk modeling including classification and regression tree analysis, series of n-of-1 trials, latent growth and growth mixture models, quantile regression, and selected non-parametric methods. In addition to an overview of each HTE method, examples and references are provided for further reading.By guiding the selection of the methods and analysis, this review is meant to better enable outcomes researchers to understand and explore aspects of HTE in the context of patient-centered outcomes research.

  3. Neural Network and Regression Methods Demonstrated in the Design Optimization of a Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Lavelle, Thomas M.; Patnaik, Surya

    2003-01-01

    The neural network and regression methods of NASA Glenn Research Center s COMETBOARDS design optimization testbed were used to generate approximate analysis and design models for a subsonic aircraft operating at Mach 0.85 cruise speed. The analytical model is defined by nine design variables: wing aspect ratio, engine thrust, wing area, sweep angle, chord-thickness ratio, turbine temperature, pressure ratio, bypass ratio, fan pressure; and eight response parameters: weight, landing velocity, takeoff and landing field lengths, approach thrust, overall efficiency, and compressor pressure and temperature. The variables were adjusted to optimally balance the engines to the airframe. The solution strategy included a sensitivity model and the soft analysis model. Researchers generated the sensitivity model by training the approximators to predict an optimum design. The trained neural network predicted all response variables, within 5-percent error. This was reduced to 1 percent by the regression method. The soft analysis model was developed to replace aircraft analysis as the reanalyzer in design optimization. Soft models have been generated for a neural network method, a regression method, and a hybrid method obtained by combining the approximators. The performance of the models is graphed for aircraft weight versus thrust as well as for wing area and turbine temperature. The regression method followed the analytical solution with little error. The neural network exhibited 5-percent maximum error over all parameters. Performance of the hybrid method was intermediate in comparison to the individual approximators. Error in the response variable is smaller than that shown in the figure because of a distortion scale factor. The overall performance of the approximators was considered to be satisfactory because aircraft analysis with NASA Langley Research Center s FLOPS (Flight Optimization System) code is a synthesis of diverse disciplines: weight estimation, aerodynamic analysis, engine cycle analysis, propulsion data interpolation, mission performance, airfield length for landing and takeoff, noise footprint, and others.

  4. The impact of young drivers' lifestyle on their road traffic accident risk in greater Athens area.

    PubMed

    Chliaoutakis, J E; Darviri, C; Demakakos, P T

    1999-11-01

    Young drivers (18-24) both in Greece and elsewhere appear to have high rates of road traffic accidents. Many factors contribute to the creation of these high road traffic accidents rates. It has been suggested that lifestyle is an important one. The main objective of this study is to find out and clarify the (potential) relationship between young drivers' lifestyle and the road traffic accident risk they face. Moreover, to examine if all the youngsters have the same elevated risk on the road or not. The sample consisted of 241 young Greek drivers of both sexes. The statistical analysis included factor analysis and logistic regression analysis. Through the principal component analysis a ten factor scale was created which included the basic lifestyle traits of young Greek drivers. The logistic regression analysis showed that the young drivers whose dominant lifestyle trait is alcohol consumption or drive without destination have high accident risk, while these whose dominant lifestyle trait is culture, face low accident risk. Furthermore, young drivers who are religious in one way or another seem to have low accident risk. Finally, some preliminary observations on how health promotion should be put into practice are discussed.

  5. Logistic Regression in the Identification of Hazards in Construction

    NASA Astrophysics Data System (ADS)

    Drozd, Wojciech

    2017-10-01

    The construction site and its elements create circumstances that are conducive to the formation of risks to safety during the execution of works. Analysis indicates the critical importance of these factors in the set of characteristics that describe the causes of accidents in the construction industry. This article attempts to analyse the characteristics related to the construction site, in order to indicate their importance in defining the circumstances of accidents at work. The study includes sites inspected in 2014 - 2016 by the employees of the District Labour Inspectorate in Krakow (Poland). The analysed set of detailed (disaggregated) data includes both quantitative and qualitative characteristics. The substantive task focused on classification modelling in the identification of hazards in construction and identifying those of the analysed characteristics that are important in an accident. In terms of methodology, resource data analysis using statistical classifiers, in the form of logistic regression, was the method used.

  6. Classification of Effective Soil Depth by Using Multinomial Logistic Regression Analysis

    NASA Astrophysics Data System (ADS)

    Chang, C. H.; Chan, H. C.; Chen, B. A.

    2016-12-01

    Classification of effective soil depth is a task of determining the slopeland utilizable limitation in Taiwan. The "Slopeland Conservation and Utilization Act" categorizes the slopeland into agriculture and husbandry land, land suitable for forestry and land for enhanced conservation according to the factors including average slope, effective soil depth, soil erosion and parental rock. However, sit investigation of the effective soil depth requires a cost-effective field work. This research aimed to classify the effective soil depth by using multinomial logistic regression with the environmental factors. The Wen-Shui Watershed located at the central Taiwan was selected as the study areas. The analysis of multinomial logistic regression is performed by the assistance of a Geographic Information Systems (GIS). The effective soil depth was categorized into four levels including deeper, deep, shallow and shallower. The environmental factors of slope, aspect, digital elevation model (DEM), curvature and normalized difference vegetation index (NDVI) were selected for classifying the soil depth. An Error Matrix was then used to assess the model accuracy. The results showed an overall accuracy of 75%. At the end, a map of effective soil depth was produced to help planners and decision makers in determining the slopeland utilizable limitation in the study areas.

  7. Associations between Caries among Children and Household Sugar Procurement, Exposure to Fluoridated Water and Socioeconomic Indicators in the Brazilian Capital Cities

    PubMed Central

    Gonçalves, Michele Martins; Leles, Cláudio Rodrigues; Freire, Maria do Carmo Matias

    2013-01-01

    The objective of this ecological study was to investigate the association between caries experience in 5- and 12-year-old Brazilian children in 2010 and household sugar procurement in 2003 and the effects of exposure to water fluoridation and socioeconomic indicators. Sample units were all 27 Brazilian capital cities. Data were obtained from the National Surveys of Oral Health; the National Household Food Budget Survey; and the United Nations Program for Development. Data analysis included correlation coefficients, exploratory factor analysis, and linear regression. There were significant negative associations between caries experience and procurement of confectionery, fluoridated water, HDI, and per capita income. Procurement of confectionery and soft drinks was positively associated with HDI and per capita income. Exploratory factor analysis grouped the independent variables by reducing highly correlated variables into two uncorrelated component variables that explained 86.1% of total variance. The first component included income, HDI, water fluoridation, and procurement of confectionery, while the second included free sugar and procurement of soft drinks. Multiple regression analysis showed that caries is associated with the first component. Caries experience was associated with better socioeconomic indicators of a city and exposure to fluoridated water, which may affect the impact of sugars on the disease. PMID:24307900

  8. The use of segmented regression in analysing interrupted time series studies: an example in pre-hospital ambulance care.

    PubMed

    Taljaard, Monica; McKenzie, Joanne E; Ramsay, Craig R; Grimshaw, Jeremy M

    2014-06-19

    An interrupted time series design is a powerful quasi-experimental approach for evaluating effects of interventions introduced at a specific point in time. To utilize the strength of this design, a modification to standard regression analysis, such as segmented regression, is required. In segmented regression analysis, the change in intercept and/or slope from pre- to post-intervention is estimated and used to test causal hypotheses about the intervention. We illustrate segmented regression using data from a previously published study that evaluated the effectiveness of a collaborative intervention to improve quality in pre-hospital ambulance care for acute myocardial infarction (AMI) and stroke. In the original analysis, a standard regression model was used with time as a continuous variable. We contrast the results from this standard regression analysis with those from segmented regression analysis. We discuss the limitations of the former and advantages of the latter, as well as the challenges of using segmented regression in analysing complex quality improvement interventions. Based on the estimated change in intercept and slope from pre- to post-intervention using segmented regression, we found insufficient evidence of a statistically significant effect on quality of care for stroke, although potential clinically important effects for AMI cannot be ruled out. Segmented regression analysis is the recommended approach for analysing data from an interrupted time series study. Several modifications to the basic segmented regression analysis approach are available to deal with challenges arising in the evaluation of complex quality improvement interventions.

  9. Independent Prognostic Factors for Acute Organophosphorus Pesticide Poisoning.

    PubMed

    Tang, Weidong; Ruan, Feng; Chen, Qi; Chen, Suping; Shao, Xuebo; Gao, Jianbo; Zhang, Mao

    2016-07-01

    Acute organophosphorus pesticide poisoning (AOPP) is becoming a significant problem and a potential cause of human mortality because of the abuse of organophosphate compounds. This study aims to determine the independent prognostic factors of AOPP by using multivariate logistic regression analysis. The clinical data for 71 subjects with AOPP admitted to our hospital were retrospectively analyzed. This information included the Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, admission blood cholinesterase levels, 6-h post-admission blood cholinesterase levels, cholinesterase activity, blood pH, and other factors. Univariate analysis and multivariate logistic regression analyses were conducted to identify all prognostic factors and independent prognostic factors, respectively. A receiver operating characteristic curve was plotted to analyze the testing power of independent prognostic factors. Twelve of 71 subjects died. Admission blood lactate levels, 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, blood pH, and APACHE II scores were identified as prognostic factors for AOPP according to the univariate analysis, whereas only 6-h post-admission blood lactate levels, post-admission 6-h lactate clearance rates, and blood pH were independent prognostic factors identified by multivariate logistic regression analysis. The receiver operating characteristic analysis suggested that post-admission 6-h lactate clearance rates were of moderate diagnostic value. High 6-h post-admission blood lactate levels, low blood pH, and low post-admission 6-h lactate clearance rates were independent prognostic factors identified by multivariate logistic regression analysis. Copyright © 2016 by Daedalus Enterprises.

  10. Standardized Regression Coefficients as Indices of Effect Sizes in Meta-Analysis

    ERIC Educational Resources Information Center

    Kim, Rae Seon

    2011-01-01

    When conducting a meta-analysis, it is common to find many collected studies that report regression analyses, because multiple regression analysis is widely used in many fields. Meta-analysis uses effect sizes drawn from individual studies as a means of synthesizing a collection of results. However, indices of effect size from regression analyses…

  11. Methodology for Estimation of Flood Magnitude and Frequency for New Jersey Streams

    USGS Publications Warehouse

    Watson, Kara M.; Schopp, Robert D.

    2009-01-01

    Methodologies were developed for estimating flood magnitudes at the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for unregulated or slightly regulated streams in New Jersey. Regression equations that incorporate basin characteristics were developed to estimate flood magnitude and frequency for streams throughout the State by use of a generalized least squares regression analysis. Relations between flood-frequency estimates based on streamflow-gaging-station discharge and basin characteristics were determined by multiple regression analysis, and weighted by effective years of record. The State was divided into five hydrologically similar regions to refine the regression equations. The regression analysis indicated that flood discharge, as determined by the streamflow-gaging-station annual peak flows, is related to the drainage area, main channel slope, percentage of lake and wetland areas in the basin, population density, and the flood-frequency region, at the 95-percent confidence level. The standard errors of estimate for the various recurrence-interval floods ranged from 48.1 to 62.7 percent. Annual-maximum peak flows observed at streamflow-gaging stations through water year 2007 and basin characteristics determined using geographic information system techniques for 254 streamflow-gaging stations were used for the regression analysis. Drainage areas of the streamflow-gaging stations range from 0.18 to 779 mi2. Peak-flow data and basin characteristics for 191 streamflow-gaging stations located in New Jersey were used, along with peak-flow data for stations located in adjoining States, including 25 stations in Pennsylvania, 17 stations in New York, 16 stations in Delaware, and 5 stations in Maryland. Streamflow records for selected stations outside of New Jersey were included in the present study because hydrologic, physiographic, and geologic boundaries commonly extend beyond political boundaries. The StreamStats web application was developed cooperatively by the U.S. Geological Survey and the Environmental Systems Research Institute, Inc., and was designed for national implementation. This web application has been recently implemented for use in New Jersey. This program used in conjunction with a geographic information system provides the computation of values for selected basin characteristics, estimates of flood magnitudes and frequencies, and statistics for stream locations in New Jersey chosen by the user, whether the site is gaged or ungaged.

  12. Analysis strategies for longitudinal attachment loss data.

    PubMed

    Beck, J D; Elter, J R

    2000-02-01

    The purpose of this invited review is to describe and discuss methods currently in use to quantify the progression of attachment loss in epidemiological studies of periodontal disease, and to make recommendations for specific analytic methods based upon the particular design of the study and structure of the data. The review concentrates on the definition of incident attachment loss (ALOSS) and its component parts; measurement issues including thresholds and regression to the mean; methods of accounting for longitudinal change, including changes in means, changes in proportions of affected sites, incidence density, the effect of tooth loss and reversals, and repeated events; statistical models of longitudinal change, including the incorporation of the time element, use of linear, logistic or Poisson regression or survival analysis, and statistical tests; site vs person level of analysis, including statistical adjustment for correlated data; the strengths and limitations of ALOSS data. Examples from the Piedmont 65+ Dental Study are used to illustrate specific concepts. We conclude that incidence density is the preferred methodology to use for periodontal studies with more than one period of follow-up and that the use of studies not employing methods for dealing with complex samples, correlated data, and repeated measures does not take advantage of our current understanding of the site- and person-level variables important in periodontal disease and may generate biased results.

  13. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Sheyenne River, North Dakota, 1980-2006

    USGS Publications Warehouse

    Ryberg, Karen R.

    2007-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the North Dakota State Water Commission, to estimate water-quality constituent concentrations at seven sites on the Sheyenne River, N. Dak. Regression analysis of water-quality data collected in 1980-2006 was used to estimate concentrations for hardness, dissolved solids, calcium, magnesium, sodium, and sulfate. The explanatory variables examined for the regression relations were continuously monitored streamflow, specific conductance, and water temperature. For the conditions observed in 1980-2006, streamflow was a significant explanatory variable for some constituents. Specific conductance was a significant explanatory variable for all of the constituents, and water temperature was not a statistically significant explanatory variable for any of the constituents in this study. The regression relations were evaluated using common measures of variability, including R2, the proportion of variability in the estimated constituent concentration explained by the explanatory variables and regression equation. R2 values ranged from 0.784 for calcium to 0.997 for dissolved solids. The regression relations also were evaluated by calculating the median relative percentage difference (RPD) between measured constituent concentration and the constituent concentration estimated by the regression equations. Median RPDs ranged from 1.7 for dissolved solids to 11.5 for sulfate. The regression relations also may be used to estimate daily constituent loads. The relations should be monitored for change over time, especially at sites 2 and 3 which have a short period of record. In addition, caution should be used when the Sheyenne River is affected by ice or when upstream sites are affected by isolated storm runoff. Almost all of the outliers and highly influential samples removed from the analysis were made during periods when the Sheyenne River might be affected by ice.

  14. Something old, something new, something borrowed, something blue: a framework for the marriage of health econometrics and cost-effectiveness analysis.

    PubMed

    Hoch, Jeffrey S; Briggs, Andrew H; Willan, Andrew R

    2002-07-01

    Economic evaluation is often seen as a branch of health economics divorced from mainstream econometric techniques. Instead, it is perceived as relying on statistical methods for clinical trials. Furthermore, the statistic of interest in cost-effectiveness analysis, the incremental cost-effectiveness ratio is not amenable to regression-based methods, hence the traditional reliance on comparing aggregate measures across the arms of a clinical trial. In this paper, we explore the potential for health economists undertaking cost-effectiveness analysis to exploit the plethora of established econometric techniques through the use of the net-benefit framework - a recently suggested reformulation of the cost-effectiveness problem that avoids the reliance on cost-effectiveness ratios and their associated statistical problems. This allows the formulation of the cost-effectiveness problem within a standard regression type framework. We provide an example with empirical data to illustrate how a regression type framework can enhance the net-benefit method. We go on to suggest that practical advantages of the net-benefit regression approach include being able to use established econometric techniques, adjust for imperfect randomisation, and identify important subgroups in order to estimate the marginal cost-effectiveness of an intervention. Copyright 2002 John Wiley & Sons, Ltd.

  15. Quantitative assessment of cervical vertebral maturation using cone beam computed tomography in Korean girls.

    PubMed

    Byun, Bo-Ram; Kim, Yong-Il; Yamaguchi, Tetsutaro; Maki, Koutaro; Son, Woo-Sung

    2015-01-01

    This study was aimed to examine the correlation between skeletal maturation status and parameters from the odontoid process/body of the second vertebra and the bodies of third and fourth cervical vertebrae and simultaneously build multiple regression models to be able to estimate skeletal maturation status in Korean girls. Hand-wrist radiographs and cone beam computed tomography (CBCT) images were obtained from 74 Korean girls (6-18 years of age). CBCT-generated cervical vertebral maturation (CVM) was used to demarcate the odontoid process and the body of the second cervical vertebra, based on the dentocentral synchondrosis. Correlation coefficient analysis and multiple linear regression analysis were used for each parameter of the cervical vertebrae (P < 0.05). Forty-seven of 64 parameters from CBCT-generated CVM (independent variables) exhibited statistically significant correlations (P < 0.05). The multiple regression model with the greatest R (2) had six parameters (PH2/W2, UW2/W2, (OH+AH2)/LW2, UW3/LW3, D3, and H4/W4) as independent variables with a variance inflation factor (VIF) of <2. CBCT-generated CVM was able to include parameters from the second cervical vertebral body and odontoid process, respectively, for the multiple regression models. This suggests that quantitative analysis might be used to estimate skeletal maturation status.

  16. Information and Communication Technology (ICT) Usage and Achievement of Turkish Students in Pisa 2006

    ERIC Educational Resources Information Center

    Aypay, Ahmet

    2010-01-01

    The purpose of this study is to examine the ICT usage and academic achievement of Turkish students in PISA 2006 data. The sample of the study included 4942 students from 160 schools. Frequencies, independent samples t-tests, ANOVAs, pearson correlation coefficients, exploratory factor analysis, and regression analysis were used. A high percentage…

  17. 77 FR 3121 - Program Integrity: Gainful Employment-Debt Measures; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ...On June 13, 2011, the Secretary of Education (Secretary) published a notice of final regulations in the Federal Register for Program Integrity: Gainful Employment--Debt Measures (Gainful Employment--Debt Measures) (76 FR 34386). In the preamble of the final regulations, we used the wrong data to calculate the percent of total variance in institutions' repayment rates that may be explained by race/ethnicity. Our intent was to use the data that included all minority students per institution. However, we mistakenly used the data for a subset of minority students per institution. We have now recalculated the total variance using the data that includes all minority students. Through this document, we correct, in the preamble of the Gainful Employment--Debt Measures final regulations, the errors resulting from this misapplication. We do not change the regression analysis model itself; we are using the same model with the appropriate data. Through this notice we also correct, in the preamble of the Gainful Employment--Debt Measures final regulations, our description of one component of the regression analysis. The preamble referred to use of an institutional variable measuring acceptance rates. This description was incorrect; in fact we used an institutional variable measuring retention rates. Correcting this language does not change the regression analysis model itself or the variance explained by the model. The text of the final regulations remains unchanged.

  18. Drought Patterns Forecasting using an Auto-Regressive Logistic Model

    NASA Astrophysics Data System (ADS)

    del Jesus, M.; Sheffield, J.; Méndez Incera, F. J.; Losada, I. J.; Espejo, A.

    2014-12-01

    Drought is characterized by a water deficit that may manifest across a large range of spatial and temporal scales. Drought may create important socio-economic consequences, many times of catastrophic dimensions. A quantifiable definition of drought is elusive because depending on its impacts, consequences and generation mechanism, different water deficit periods may be identified as a drought by virtue of some definitions but not by others. Droughts are linked to the water cycle and, although a climate change signal may not have emerged yet, they are also intimately linked to climate.In this work we develop an auto-regressive logistic model for drought prediction at different temporal scales that makes use of a spatially explicit framework. Our model allows to include covariates, continuous or categorical, to improve the performance of the auto-regressive component.Our approach makes use of dimensionality reduction (principal component analysis) and classification techniques (K-Means and maximum dissimilarity) to simplify the representation of complex climatic patterns, such as sea surface temperature (SST) and sea level pressure (SLP), while including information on their spatial structure, i.e. considering their spatial patterns. This procedure allows us to include in the analysis multivariate representation of complex climatic phenomena, as the El Niño-Southern Oscillation. We also explore the impact of other climate-related variables such as sun spots. The model allows to quantify the uncertainty of the forecasts and can be easily adapted to make predictions under future climatic scenarios. The framework herein presented may be extended to other applications such as flash flood analysis, or risk assessment of natural hazards.

  19. Comparison of methods for the analysis of relatively simple mediation models.

    PubMed

    Rijnhart, Judith J M; Twisk, Jos W R; Chinapaw, Mai J M; de Boer, Michiel R; Heymans, Martijn W

    2017-09-01

    Statistical mediation analysis is an often used method in trials, to unravel the pathways underlying the effect of an intervention on a particular outcome variable. Throughout the years, several methods have been proposed, such as ordinary least square (OLS) regression, structural equation modeling (SEM), and the potential outcomes framework. Most applied researchers do not know that these methods are mathematically equivalent when applied to mediation models with a continuous mediator and outcome variable. Therefore, the aim of this paper was to demonstrate the similarities between OLS regression, SEM, and the potential outcomes framework in three mediation models: 1) a crude model, 2) a confounder-adjusted model, and 3) a model with an interaction term for exposure-mediator interaction. Secondary data analysis of a randomized controlled trial that included 546 schoolchildren. In our data example, the mediator and outcome variable were both continuous. We compared the estimates of the total, direct and indirect effects, proportion mediated, and 95% confidence intervals (CIs) for the indirect effect across OLS regression, SEM, and the potential outcomes framework. OLS regression, SEM, and the potential outcomes framework yielded the same effect estimates in the crude mediation model, the confounder-adjusted mediation model, and the mediation model with an interaction term for exposure-mediator interaction. Since OLS regression, SEM, and the potential outcomes framework yield the same results in three mediation models with a continuous mediator and outcome variable, researchers can continue using the method that is most convenient to them.

  20. Gradient descent for robust kernel-based regression

    NASA Astrophysics Data System (ADS)

    Guo, Zheng-Chu; Hu, Ting; Shi, Lei

    2018-06-01

    In this paper, we study the gradient descent algorithm generated by a robust loss function over a reproducing kernel Hilbert space (RKHS). The loss function is defined by a windowing function G and a scale parameter σ, which can include a wide range of commonly used robust losses for regression. There is still a gap between theoretical analysis and optimization process of empirical risk minimization based on loss: the estimator needs to be global optimal in the theoretical analysis while the optimization method can not ensure the global optimality of its solutions. In this paper, we aim to fill this gap by developing a novel theoretical analysis on the performance of estimators generated by the gradient descent algorithm. We demonstrate that with an appropriately chosen scale parameter σ, the gradient update with early stopping rules can approximate the regression function. Our elegant error analysis can lead to convergence in the standard L 2 norm and the strong RKHS norm, both of which are optimal in the mini-max sense. We show that the scale parameter σ plays an important role in providing robustness as well as fast convergence. The numerical experiments implemented on synthetic examples and real data set also support our theoretical results.

  1. Risk stratification personalised model for prediction of life-threatening ventricular tachyarrhythmias in patients with chronic heart failure.

    PubMed

    Frolov, Alexander Vladimirovich; Vaikhanskaya, Tatjana Gennadjevna; Melnikova, Olga Petrovna; Vorobiev, Anatoly Pavlovich; Guel, Ludmila Michajlovna

    2017-01-01

    The development of prognostic factors of life-threatening ventricular tachyarrhythmias (VTA) and sudden cardiac death (SCD) continues to maintain its priority and relevance in cardiology. The development of a method of personalised prognosis based on multifactorial analysis of the risk factors associated with life-threatening heart rhythm disturbances is considered a key research and clinical task. To design a prognostic and mathematical model to define personalised risk for life-threatening VTA in patients with chronic heart failure (CHF). The study included 240 patients with CHF (mean-age of 50.5 ± 12.1 years; left ventricular ejection fraction 32.8 ± 10.9%; follow-up period 36.8 ± 5.7 months). The participants received basic therapy for heart failure. The elec-trocardiogram (ECG) markers of myocardial electrical instability were assessed including microvolt T-wave alternans, heart rate turbulence, heart rate deceleration, and QT dispersion. Additionally, echocardiography and Holter monitoring (HM) were performed. The cardiovascular events were considered as primary endpoints, including SCD, paroxysmal ventricular tachycardia/ventricular fibrillation (VT/VF) based on HM-ECG data, and data obtained from implantable device interrogation (CRT-D, ICD) as well as appropriated shocks. During the follow-up period, 66 (27.5%) subjects with CHF showed adverse arrhythmic events, including nine SCD events and 57 VTAs. Data from a stepwise discriminant analysis of cumulative ECG-markers of myocardial electrical instability were used to make a mathematical model of preliminary VTA risk stratification. Uni- and multivariate Cox logistic regression analysis were performed to define an individualised risk stratification model of SCD/VTA. A binary logistic regression model demonstrated a high prognostic significance of discriminant function with a classification sensitivity of 80.8% and specificity of 99.1% (F = 31.2; c2 = 143.2; p < 0.0001). The method of personalised risk stratification using Cox logistic regression allows correct classification of more than 93.9% of CHF cases. A robust body of evidence concerning logistic regression prognostic significance to define VTA risk allows inclusion of this method into the algorithm of subsequent control and selection of the optimal treatment modality to treat patients with CHF.

  2. Prevalence of rapid eye movement sleep behavior disorder (RBD) in Parkinson's disease: a meta and meta-regression analysis.

    PubMed

    Zhang, Xiaona; Sun, Xiaoxuan; Wang, Junhong; Tang, Liou; Xie, Anmu

    2017-01-01

    Rapid eye movement sleep behavior disorder (RBD) is thought to be one of the most frequent preceding symptoms of Parkinson's disease (PD). However, the prevalence of RBD in PD stated in the published studies is still inconsistent. We conducted a meta and meta-regression analysis in this paper to estimate the pooled prevalence. We searched the electronic databases of PubMed, ScienceDirect, EMBASE and EBSCO up to June 2016 for related articles. STATA 12.0 statistics software was used to calculate the available data from each research. The prevalence of RBD in PD patients in each study was combined to a pooled prevalence with a 95 % confidence interval (CI). Subgroup analysis and meta-regression analysis were performed to search for the causes of the heterogeneity. A total of 28 studies with 6869 PD cases were deemed eligible and included in our meta-analysis based on the inclusion and exclusion criteria. The pooled prevalence of RBD in PD was 42.3 % (95 % CI 37.4-47.1 %). In subgroup analysis and meta-regression analysis, we found that the important causes of heterogeneity were the diagnosis criteria of RBD and age of PD patients (P = 0.016, P = 0.019, respectively). The results indicate that nearly half of the PD patients are suffering from RBD. Older age and longer duration are risk factors for RBD in PD. We can use the minimal diagnosis criteria for RBD according to the International Classification of Sleep Disorders to diagnose RBD patients in our daily work if polysomnography is not necessary.

  3. Regression Equations for Estimating Flood Flows at Selected Recurrence Intervals for Ungaged Streams in Pennsylvania

    USGS Publications Warehouse

    Roland, Mark A.; Stuckey, Marla H.

    2008-01-01

    Regression equations were developed for estimating flood flows at selected recurrence intervals for ungaged streams in Pennsylvania with drainage areas less than 2,000 square miles. These equations were developed utilizing peak-flow data from 322 streamflow-gaging stations within Pennsylvania and surrounding states. All stations used in the development of the equations had 10 or more years of record and included active and discontinued continuous-record as well as crest-stage partial-record stations. The state was divided into four regions, and regional regression equations were developed to estimate the 2-, 5-, 10-, 50-, 100-, and 500-year recurrence-interval flood flows. The equations were developed by means of a regression analysis that utilized basin characteristics and flow data associated with the stations. Significant explanatory variables at the 95-percent confidence level for one or more regression equations included the following basin characteristics: drainage area; mean basin elevation; and the percentages of carbonate bedrock, urban area, and storage within a basin. The regression equations can be used to predict the magnitude of flood flows for specified recurrence intervals for most streams in the state; however, they are not valid for streams with drainage areas generally greater than 2,000 square miles or with substantial regulation, diversion, or mining activity within the basin. Estimates of flood-flow magnitude and frequency for streamflow-gaging stations substantially affected by upstream regulation are also presented.

  4. Using Dominance Analysis to Determine Predictor Importance in Logistic Regression

    ERIC Educational Resources Information Center

    Azen, Razia; Traxel, Nicole

    2009-01-01

    This article proposes an extension of dominance analysis that allows researchers to determine the relative importance of predictors in logistic regression models. Criteria for choosing logistic regression R[superscript 2] analogues were determined and measures were selected that can be used to perform dominance analysis in logistic regression. A…

  5. Nonparametric methods for drought severity estimation at ungauged sites

    NASA Astrophysics Data System (ADS)

    Sadri, S.; Burn, D. H.

    2012-12-01

    The objective in frequency analysis is, given extreme events such as drought severity or duration, to estimate the relationship between that event and the associated return periods at a catchment. Neural networks and other artificial intelligence approaches in function estimation and regression analysis are relatively new techniques in engineering, providing an attractive alternative to traditional statistical models. There are, however, few applications of neural networks and support vector machines in the area of severity quantile estimation for drought frequency analysis. In this paper, we compare three methods for this task: multiple linear regression, radial basis function neural networks, and least squares support vector regression (LS-SVR). The area selected for this study includes 32 catchments in the Canadian Prairies. From each catchment drought severities are extracted and fitted to a Pearson type III distribution, which act as observed values. For each method-duration pair, we use a jackknife algorithm to produce estimated values at each site. The results from these three approaches are compared and analyzed, and it is found that LS-SVR provides the best quantile estimates and extrapolating capacity.

  6. Determining delayed admission to intensive care unit for mechanically ventilated patients in the emergency department.

    PubMed

    Hung, Shih-Chiang; Kung, Chia-Te; Hung, Chih-Wei; Liu, Ber-Ming; Liu, Jien-Wei; Chew, Ghee; Chuang, Hung-Yi; Lee, Wen-Huei; Lee, Tzu-Chi

    2014-08-23

    The adverse effects of delayed admission to the intensive care unit (ICU) have been recognized in previous studies. However, the definitions of delayed admission varies across studies. This study proposed a model to define "delayed admission", and explored the effect of ICU-waiting time on patients' outcome. This retrospective cohort study included non-traumatic adult patients on mechanical ventilation in the emergency department (ED), from July 2009 to June 2010. The primary outcomes measures were 21-ventilator-day mortality and prolonged hospital stays (over 30 days). Models of Cox regression and logistic regression were used for multivariate analysis. The non-delayed ICU-waiting was defined as a period in which the time effect on mortality was not statistically significant in a Cox regression model. To identify a suitable cut-off point between "delayed" and "non-delayed", subsets from the overall data were made based on ICU-waiting time and the hazard ratio of ICU-waiting hour in each subset was iteratively calculated. The cut-off time was then used to evaluate the impact of delayed ICU admission on mortality and prolonged length of hospital stay. The final analysis included 1,242 patients. The time effect on mortality emerged after 4 hours, thus we deduced ICU-waiting time in ED > 4 hours as delayed. By logistic regression analysis, delayed ICU admission affected the outcomes of 21 ventilator-days mortality and prolonged hospital stay, with odds ratio of 1.41 (95% confidence interval, 1.05 to 1.89) and 1.56 (95% confidence interval, 1.07 to 2.27) respectively. For patients on mechanical ventilation at the ED, delayed ICU admission is associated with higher probability of mortality and additional resource expenditure. A benchmark waiting time of no more than 4 hours for ICU admission is recommended.

  7. OAO battery data analysis

    NASA Technical Reports Server (NTRS)

    Gaston, S.; Wertheim, M.; Orourke, J. A.

    1973-01-01

    Summary, consolidation and analysis of specifications, manufacturing process and test controls, and performance results for OAO-2 and OAO-3 lot 20 Amp-Hr sealed nickel cadmium cells and batteries are reported. Correlation of improvements in control requirements with performance is a key feature. Updates for a cell/battery computer model to improve performance prediction capability are included. Applicability of regression analysis computer techniques to relate process controls to performance is checked.

  8. Statistical Tutorial | Center for Cancer Research

    Cancer.gov

    Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data.  ST is designed as a follow up to Statistical Analysis of Research Data (SARD) held in April 2018.  The tutorial will apply the general principles of statistical analysis of research data including descriptive statistics, z- and t-tests of means and mean differences, simple and multiple linear regression, ANOVA tests, and Chi-Squared distribution.

  9. Analysis of low flows and selected methods for estimating low-flow characteristics at partial-record and ungaged stream sites in western Washington

    USGS Publications Warehouse

    Curran, Christopher A.; Eng, Ken; Konrad, Christopher P.

    2012-01-01

    Regional low-flow regression models for estimating Q7,10 at ungaged stream sites are developed from the records of daily discharge at 65 continuous gaging stations (including 22 discontinued gaging stations) for the purpose of evaluating explanatory variables. By incorporating the base-flow recession time constant τ as an explanatory variable in the regression model, the root-mean square error for estimating Q7,10 at ungaged sites can be lowered to 72 percent (for known values of τ), which is 42 percent less than if only basin area and mean annual precipitation are used as explanatory variables. If partial-record sites are included in the regression data set, τ must be estimated from pairs of discharge measurements made during continuous periods of declining low flows. Eight measurement pairs are optimal for estimating τ at partial-record sites, and result in a lowering of the root-mean square error by 25 percent. A low-flow survey strategy that includes paired measurements at partial-record sites requires additional effort and planning beyond a standard strategy, but could be used to enhance regional estimates of τ and potentially reduce the error of regional regression models for estimating low-flow characteristics at ungaged sites.

  10. Neutrophil/lymphocyte ratio and platelet/lymphocyte ratio in mood disorders: A meta-analysis.

    PubMed

    Mazza, Mario Gennaro; Lucchi, Sara; Tringali, Agnese Grazia Maria; Rossetti, Aurora; Botti, Eugenia Rossana; Clerici, Massimo

    2018-06-08

    The immune and inflammatory system is involved in the etiology of mood disorders. Neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR) and monocyte/lymphocyte ratio (MLR) are inexpensive and reproducible biomarkers of inflammation. This is the first meta-analysis exploring the role of NLR and PLR in mood disorder. We identified 11 studies according to our inclusion criteria from the main Electronic Databases. Meta-analyses were carried out generating pooled standardized mean differences (SMDs) between index and healthy controls (HC). Heterogeneity was estimated. Relevant sensitivity and meta-regression analyses were conducted. Subjects with bipolar disorder (BD) had higher NLR and PLR as compared with HC (respectively SMD = 0.672; p < 0.001; I 2  = 82.4% and SMD = 0.425; p = 0.048; I 2  = 86.53%). Heterogeneity-based sensitivity analyses confirmed these findings. Subgroup analysis evidenced an influence of bipolar phase on the overall estimate whit studies including subjects in manic and any bipolar phase showing a significantly higher NLR and PLR as compared with HC whereas the effect was not significant among studies including only euthymic bipolar subjects. Meta-regression showed that age and sex influenced the relationship between BD and NLR but not the relationship between BD and PLR. Meta-analysis was not carried out for MLR because our search identified only one study when comparing BD to HC, and only one study when comparing MDD to HC. Subjects with major depressive disorder (MDD) had higher NLR as compared with HC (SMD = 0.670; p = 0.028; I 2  = 89.931%). Heterogeneity-based sensitivity analyses and meta-regression confirmed these findings. Our meta-analysis supports the hypothesis that an inflammatory activation occurs in mood disorders and NLR and PLR may be useful to detect this activation. More researches including comparison of NLR, PLR and MLR between different bipolar phases and between BD and MDD are needed. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. [Associated factors in newborns with intrauterine growth retardation].

    PubMed

    Thompson-Chagoyán, Oscar C; Vega-Franco, Leopoldo

    2008-01-01

    To identify the risk factors implicated in the intrauterine growth retardation (IUGR) of neonates born in a social security institution. Case controls design study in 376 neonates: 188 with IUGR (weight < 10 percentile) and 188 without IUGR. When they born, information about 30 variables of risk for IUGR were obtained from mothers. Risk analysis and logistical regression (stepwise) were used. Odds ratios were significant for 12 of the variables. The model obtains by stepwise regression included: weight gain at pregnancy, prenatal care attendance, toxemia, chocolate ingestion, father's weight, and the environmental house. Must of the variables included in the model are related to socioeconomic disadvantages related to the risk of RCIU in the population.

  12. Immortal time bias in observational studies of time-to-event outcomes.

    PubMed

    Jones, Mark; Fowler, Robert

    2016-12-01

    The purpose of the study is to show, through simulation and example, the magnitude and direction of immortal time bias when an inappropriate analysis is used. We compare 4 methods of analysis for observational studies of time-to-event outcomes: logistic regression, standard Cox model, landmark analysis, and time-dependent Cox model using an example data set of patients critically ill with influenza and a simulation study. For the example data set, logistic regression, standard Cox model, and landmark analysis all showed some evidence that treatment with oseltamivir provides protection from mortality in patients critically ill with influenza. However, when the time-dependent nature of treatment exposure is taken account of using a time-dependent Cox model, there is no longer evidence of a protective effect of treatment. The simulation study showed that, under various scenarios, the time-dependent Cox model consistently provides unbiased treatment effect estimates, whereas standard Cox model leads to bias in favor of treatment. Logistic regression and landmark analysis may also lead to bias. To minimize the risk of immortal time bias in observational studies of survival outcomes, we strongly suggest time-dependent exposures be included as time-dependent variables in hazard-based analyses. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Dose-Dependent Effects of Statins for Patients with Aneurysmal Subarachnoid Hemorrhage: Meta-Regression Analysis.

    PubMed

    To, Minh-Son; Prakash, Shivesh; Poonnoose, Santosh I; Bihari, Shailesh

    2018-05-01

    The study uses meta-regression analysis to quantify the dose-dependent effects of statin pharmacotherapy on vasospasm, delayed ischemic neurologic deficits (DIND), and mortality in aneurysmal subarachnoid hemorrhage. Prospective, retrospective observational studies, and randomized controlled trials (RCTs) were retrieved by a systematic database search. Summary estimates were expressed as absolute risk (AR) for a given statin dose or control (placebo). Meta-regression using inverse variance weighting and robust variance estimation was performed to assess the effect of statin dose on transformed AR in a random effects model. Dose-dependence of predicted AR with 95% confidence interval (CI) was recovered by using Miller's Freeman-Tukey inverse. The database search and study selection criteria yielded 18 studies (2594 patients) for analysis. These included 12 RCTs, 4 retrospective observational studies, and 2 prospective observational studies. Twelve studies investigated simvastatin, whereas the remaining studies investigated atorvastatin, pravastatin, or pitavastatin, with simvastatin-equivalent doses ranging from 20 to 80 mg. Meta-regression revealed dose-dependent reductions in Freeman-Tukey-transformed AR of vasospasm (slope coefficient -0.00404, 95% CI -0.00720 to -0.00087; P = 0.0321), DIND (slope coefficient -0.00316, 95% CI -0.00586 to -0.00047; P = 0.0392), and mortality (slope coefficient -0.00345, 95% CI -0.00623 to -0.00067; P = 0.0352). The present meta-regression provides weak evidence for dose-dependent reductions in vasospasm, DIND and mortality associated with acute statin use after aneurysmal subarachnoid hemorrhage. However, the analysis was limited by substantial heterogeneity among individual studies. Greater dosing strategies are a potential consideration for future RCTs. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Integrative eQTL analysis of tumor and host omics data in individuals with bladder cancer.

    PubMed

    Pineda, Silvia; Van Steen, Kristel; Malats, Núria

    2017-09-01

    Integrative analyses of several omics data are emerging. The data are usually generated from the same source material (i.e., tumor sample) representing one level of regulation. However, integrating different regulatory levels (i.e., blood) with those from tumor may also reveal important knowledge about the human genetic architecture. To model this multilevel structure, an integrative-expression quantitative trait loci (eQTL) analysis applying two-stage regression (2SR) was proposed. This approach first regressed tumor gene expression levels with tumor markers and the adjusted residuals from the previous model were then regressed with the germline genotypes measured in blood. Previously, we demonstrated that penalized regression methods in combination with a permutation-based MaxT method (Global-LASSO) is a promising tool to fix some of the challenges that high-throughput omics data analysis imposes. Here, we assessed whether Global-LASSO can also be applied when tumor and blood omics data are integrated. We further compared our strategy with two 2SR-approaches, one using multiple linear regression (2SR-MLR) and other using LASSO (2SR-LASSO). We applied the three models to integrate genomic, epigenomic, and transcriptomic data from tumor tissue with blood germline genotypes from 181 individuals with bladder cancer included in the TCGA Consortium. Global-LASSO provided a larger list of eQTLs than the 2SR methods, identified a previously reported eQTLs in prostate stem cell antigen (PSCA), and provided further clues on the complexity of APBEC3B loci, with a minimal false-positive rate not achieved by 2SR-MLR. It also represents an important contribution for omics integrative analysis because it is easy to apply and adaptable to any type of data. © 2017 WILEY PERIODICALS, INC.

  15. Age estimation using pulp/tooth area ratio in maxillary canines-A digital image analysis.

    PubMed

    Juneja, Manjushree; Devi, Yashoda B K; Rakesh, N; Juneja, Saurabh

    2014-09-01

    Determination of age of a subject is one of the most important aspects of medico-legal cases and anthropological research. Radiographs can be used to indirectly measure the rate of secondary dentine deposition which is depicted by reduction in the pulp area. In this study, 200 patients of Karnataka aged between 18-72 years were selected for the study. Panoramic radiographs were made and indirectly digitized. Radiographic images of maxillary canines (RIC) were processed using a computer-aided drafting program (ImageJ). The variables pulp/root length (p), pulp/tooth length (r), pulp/root width at enamel-cementum junction (ECJ) level (a), pulp/root width at mid-root level (c), pulp/root width at midpoint level between ECJ level and mid-root level (b) and pulp/tooth area ratio (AR) were recorded. All the morphological variables including gender were statistically analyzed to derive regression equation for estimation of age. It was observed that 2 variables 'AR' and 'b' contributed significantly to the fit and were included in the regression model, yielding the formula: Age = 87.305-480.455(AR)+48.108(b). Statistical analysis indicated that the regression equation with selected variables explained 96% of total variance with the median of the residuals of 0.1614 years and standard error of estimate of 3.0186 years. There is significant correlation between age and morphological variables 'AR' and 'b' and the derived population specific regression equation can be potentially used for estimation of chronological age of individuals of Karnataka origin.

  16. Creating a non-linear total sediment load formula using polynomial best subset regression model

    NASA Astrophysics Data System (ADS)

    Okcu, Davut; Pektas, Ali Osman; Uyumaz, Ali

    2016-08-01

    The aim of this study is to derive a new total sediment load formula which is more accurate and which has less application constraints than the well-known formulae of the literature. 5 most known stream power concept sediment formulae which are approved by ASCE are used for benchmarking on a wide range of datasets that includes both field and flume (lab) observations. The dimensionless parameters of these widely used formulae are used as inputs in a new regression approach. The new approach is called Polynomial Best subset regression (PBSR) analysis. The aim of the PBRS analysis is fitting and testing all possible combinations of the input variables and selecting the best subset. Whole the input variables with their second and third powers are included in the regression to test the possible relation between the explanatory variables and the dependent variable. While selecting the best subset a multistep approach is used that depends on significance values and also the multicollinearity degrees of inputs. The new formula is compared to others in a holdout dataset and detailed performance investigations are conducted for field and lab datasets within this holdout data. Different goodness of fit statistics are used as they represent different perspectives of the model accuracy. After the detailed comparisons are carried out we figured out the most accurate equation that is also applicable on both flume and river data. Especially, on field dataset the prediction performance of the proposed formula outperformed the benchmark formulations.

  17. [Prediction model of health workforce and beds in county hospitals of Hunan by multiple linear regression].

    PubMed

    Ling, Ru; Liu, Jiawang

    2011-12-01

    To construct prediction model for health workforce and hospital beds in county hospitals of Hunan by multiple linear regression. We surveyed 16 counties in Hunan with stratified random sampling according to uniform questionnaires,and multiple linear regression analysis with 20 quotas selected by literature view was done. Independent variables in the multiple linear regression model on medical personnels in county hospitals included the counties' urban residents' income, crude death rate, medical beds, business occupancy, professional equipment value, the number of devices valued above 10 000 yuan, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, and utilization rate of hospital beds. Independent variables in the multiple linear regression model on county hospital beds included the the population of aged 65 and above in the counties, disposable income of urban residents, medical personnel of medical institutions in county area, business occupancy, the total value of professional equipment, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, utilization rate of hospital beds, and length of hospitalization. The prediction model shows good explanatory and fitting, and may be used for short- and mid-term forecasting.

  18. Black Male Labor Force Participation.

    ERIC Educational Resources Information Center

    Baer, Roger K.

    This study attempts to test (via multiple regression analysis) hypothesized relationships between designated independent variables and age specific incidences of labor force participation for black male subpopulations in 54 Standard Metropolitan Statistical Areas. Leading independent variables tested include net migration, earnings, unemployment,…

  19. Blood Glucose Reduction by Diabetic Drugs with Minimal Hypoglycemia Risk for Cardiovascular Outcomes: Evidence from Meta-regression Analysis of Randomized Controlled Trials.

    PubMed

    Huang, Chi-Jung; Wang, Wei-Ting; Sung, Shih-Hsien; Chen, Chen-Huan; Lip, Gregory Yh; Cheng, Hao-Min; Chiang, Chern-En

    2018-05-02

    To investigate the effects of blood glucose control with antihyperglycemic agents with minimal hypoglycemia risk on cardiovascular outcomes in patients with type 2 diabetes (T2D). Randomized controlled trials (RCTs) comparing the relative efficacy and safety of antidiabetic drugs with less hypoglycemia risk were comprehensively searched in MEDLINE, Embase, and the Cochrane Library up to January 27, 2018. Mixed-effects meta-regression analysis was conducted to explore the relationship between haemoglobin A1c (HbA1c) reduction and the risk of major adverse cardiovascular events (MACE), myocardial infarction, stroke, cardiovascular death, all-cause death, and hospitalization for heart failure. Ten RCTs comprising 92400 participants with T2D were included and provided information on 9773 MACE during a median follow-up of 2.6 years. The mean HbA1c concentration was 0.42% lower (median, 0.27-0.86%) for participants given antihyperglycemic agents than those given placebo. The meta-regression analysis demonstrated that HbA1c reduction was significantly associated with a decreased risk of MACE (β value, -0.39 to -0.55; P<0.02) even after adjusting for each of the following possible confounding factors including age, sex, baseline HbA1c, duration of follow-up, difference in achieved systolic blood pressure, difference in achieved body weight, or risk difference in hypoglycemia. Lowering HbA1c by 1% conferred a significant risk reduction of 30% (95% CI, 17-40%) for MACE. By contrast, the meta-regression analysis for trials using conventional agents failed to demonstrate a significant relationship between achieved HbA1c difference and MACE risk (P>0.74). Compared with placebo, newer T2D agents with less hypoglycemic hazard significantly reduced the risk of MACE. The MACE reduction seems to be associated with HbA1c reduction in a linear relationship. This article is protected by copyright. All rights reserved.

  20. Reporting quality of statistical methods in surgical observational studies: protocol for systematic review.

    PubMed

    Wu, Robert; Glen, Peter; Ramsay, Tim; Martel, Guillaume

    2014-06-28

    Observational studies dominate the surgical literature. Statistical adjustment is an important strategy to account for confounders in observational studies. Research has shown that published articles are often poor in statistical quality, which may jeopardize their conclusions. The Statistical Analyses and Methods in the Published Literature (SAMPL) guidelines have been published to help establish standards for statistical reporting.This study will seek to determine whether the quality of statistical adjustment and the reporting of these methods are adequate in surgical observational studies. We hypothesize that incomplete reporting will be found in all surgical observational studies, and that the quality and reporting of these methods will be of lower quality in surgical journals when compared with medical journals. Finally, this work will seek to identify predictors of high-quality reporting. This work will examine the top five general surgical and medical journals, based on a 5-year impact factor (2007-2012). All observational studies investigating an intervention related to an essential component area of general surgery (defined by the American Board of Surgery), with an exposure, outcome, and comparator, will be included in this systematic review. Essential elements related to statistical reporting and quality were extracted from the SAMPL guidelines and include domains such as intent of analysis, primary analysis, multiple comparisons, numbers and descriptive statistics, association and correlation analyses, linear regression, logistic regression, Cox proportional hazard analysis, analysis of variance, survival analysis, propensity analysis, and independent and correlated analyses. Each article will be scored as a proportion based on fulfilling criteria in relevant analyses used in the study. A logistic regression model will be built to identify variables associated with high-quality reporting. A comparison will be made between the scores of surgical observational studies published in medical versus surgical journals. Secondary outcomes will pertain to individual domains of analysis. Sensitivity analyses will be conducted. This study will explore the reporting and quality of statistical analyses in surgical observational studies published in the most referenced surgical and medical journals in 2013 and examine whether variables (including the type of journal) can predict high-quality reporting.

  1. Analysis of Private Returns to Vocational Education and Training: Support Document

    ERIC Educational Resources Information Center

    Lee, Wang-Sheng; Coelli, Michael

    2010-01-01

    This document is an appendix that is meant to accompany the main report, "Analysis of Private Returns to Vocational Education and Training". Included here are the detailed regression results that correspond to Tables 4 to 59 of the main report. This document was produced by the authors based on their research for the main report, and is…

  2. The perception of the relationship between environment and health according to data from Italian Behavioural Risk Factor Surveillance System (PASSI).

    PubMed

    Sampaolo, Letizia; Tommaso, Giulia; Gherardi, Bianca; Carrozzi, Giuliano; Freni Sterrantino, Anna; Ottone, Marta; Goldoni, Carlo Alberto; Bertozzi, Nicoletta; Scaringi, Meri; Bolognesi, Lara; Masocco, Maria; Salmaso, Stefania; Lauriola, Paolo

    2017-01-01

    "OBJECTIVES: to identify groups of people in relation to the perception of environmental risk and to assess the main characteristics using data collected in the environmental module of the surveillance network Italian Behavioral Risk Factor Surveillance System (PASSI). perceptive profiles were identified using a latent class analysis; later they were included as outcome in multinomial logistic regression models to assess the association between environmental risk perception and demographic, health, socio-economic and behavioural variables. the latent class analysis allowed to split the sample in "worried", "indifferent", and "positive" people. The multinomial logistic regression model showed that the "worried" profile typically includes people of Italian nationality, living in highly urbanized areas, with a high level of education, and with economic difficulties; they pay special attention to their own health and fitness, but they have a negative perception of their own psychophysical state. the application of advanced statistical analysis enable to appraise PASSI data in order to characterize the perception of environmental risk, making the planning of interventions related to risk communication possible. ".

  3. Orthodontic bracket bonding without previous adhesive priming: A meta-regression analysis.

    PubMed

    Altmann, Aline Segatto Pires; Degrazia, Felipe Weidenbach; Celeste, Roger Keller; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo

    2016-05-01

    To determine the consensus among studies that adhesive resin application improves the bond strength of orthodontic brackets and the association of methodological variables on the influence of bond strength outcome. In vitro studies were selected to answer whether adhesive resin application increases the immediate shear bond strength of metal orthodontic brackets bonded with a photo-cured orthodontic adhesive. Studies included were those comparing a group having adhesive resin to a group without adhesive resin with the primary outcome measurement shear bond strength in MPa. A systematic electronic search was performed in PubMed and Scopus databases. Nine studies were included in the analysis. Based on the pooled data and due to a high heterogeneity among studies (I(2)  =  93.3), a meta-regression analysis was conducted. The analysis demonstrated that five experimental conditions explained 86.1% of heterogeneity and four of them had significantly affected in vitro shear bond testing. The shear bond strength of metal brackets was not significantly affected when bonded with adhesive resin, when compared to those without adhesive resin. The adhesive resin application can be set aside during metal bracket bonding to enamel regardless of the type of orthodontic adhesive used.

  4. Total body weight loss of ≥ 10 % is associated with improved hepatic fibrosis in patients with nonalcoholic steatohepatitis.

    PubMed

    Glass, Lisa M; Dickson, Rolland C; Anderson, Joseph C; Suriawinata, Arief A; Putra, Juan; Berk, Brian S; Toor, Arifa

    2015-04-01

    Given the rising epidemics of obesity and metabolic syndrome, nonalcoholic steatohepatitis (NASH) is now the most common cause of liver disease in the developed world. Effective treatment for NASH, either to reverse or prevent the progression of hepatic fibrosis, is currently lacking. To define the predictors associated with improved hepatic fibrosis in NASH patients undergoing serial liver biopsies at prolonged biopsy interval. This is a cohort study of 45 NASH patients undergoing serial liver biopsies for clinical monitoring in a tertiary care setting. Biopsies were scored using the NASH Clinical Research Network guidelines. Fibrosis regression was defined as improvement in fibrosis score ≥1 stage. Univariate analysis utilized Fisher's exact or Student's t test. Multivariate regression models determined independent predictors for regression of fibrosis. Forty-five NASH patients with biopsies collected at a mean interval of 4.6 years (±1.4) were included. The mean initial fibrosis stage was 1.96, two patients had cirrhosis and 12 patients (26.7 %) underwent bariatric surgery. There was a significantly higher rate of fibrosis regression among patients who lost ≥10 % total body weight (TBW) (63.2 vs. 9.1 %; p = 0.001) and who underwent bariatric surgery (47.4 vs. 4.5 %; p = 0.003). Factors such as age, gender, glucose intolerance, elevated ferritin, and A1AT heterozygosity did not influence fibrosis regression. On multivariate analysis, only weight loss of ≥10 % TBW predicted fibrosis regression [OR 8.14 (CI 1.08-61.17)]. Results indicate that regression of fibrosis in NASH is possible, even in advanced stages. Weight loss of ≥10 % TBW predicts fibrosis regression.

  5. From concepts, theory, and evidence of heterogeneity of treatment effects to methodological approaches: a primer

    PubMed Central

    2012-01-01

    Implicit in the growing interest in patient-centered outcomes research is a growing need for better evidence regarding how responses to a given intervention or treatment may vary across patients, referred to as heterogeneity of treatment effect (HTE). A variety of methods are available for exploring HTE, each associated with unique strengths and limitations. This paper reviews a selected set of methodological approaches to understanding HTE, focusing largely but not exclusively on their uses with randomized trial data. It is oriented for the “intermediate” outcomes researcher, who may already be familiar with some methods, but would value a systematic overview of both more and less familiar methods with attention to when and why they may be used. Drawing from the biomedical, statistical, epidemiological and econometrics literature, we describe the steps involved in choosing an HTE approach, focusing on whether the intent of the analysis is for exploratory, initial testing, or confirmatory testing purposes. We also map HTE methodological approaches to data considerations as well as the strengths and limitations of each approach. Methods reviewed include formal subgroup analysis, meta-analysis and meta-regression, various types of predictive risk modeling including classification and regression tree analysis, series of n-of-1 trials, latent growth and growth mixture models, quantile regression, and selected non-parametric methods. In addition to an overview of each HTE method, examples and references are provided for further reading. By guiding the selection of the methods and analysis, this review is meant to better enable outcomes researchers to understand and explore aspects of HTE in the context of patient-centered outcomes research. PMID:23234603

  6. The Association of Fever with Total Mechanical Ventilation Time in Critically Ill Patients.

    PubMed

    Park, Dong Won; Egi, Moritoki; Nishimura, Masaji; Chang, Youjin; Suh, Gee Young; Lim, Chae Man; Kim, Jae Yeol; Tada, Keiichi; Matsuo, Koichi; Takeda, Shinhiro; Tsuruta, Ryosuke; Yokoyama, Takeshi; Kim, Seon Ok; Koh, Younsuck

    2016-12-01

    This research aims to investigate the impact of fever on total mechanical ventilation time (TVT) in critically ill patients. Subgroup analysis was conducted using a previous prospective, multicenter observational study. We included mechanically ventilated patients for more than 24 hours from 10 Korean and 15 Japanese intensive care units (ICU), and recorded maximal body temperature under the support of mechanical ventilation (MAX(MV)). To assess the independent association of MAX(MV) with TVT, we used propensity-matched analysis in a total of 769 survived patients with medical or surgical admission, separately. Together with multiple linear regression analysis to evaluate the association between the severity of fever and TVT, the effect of MAX(MV) on ventilator-free days was also observed by quantile regression analysis in all subjects including non-survivors. After propensity score matching, a MAX(MV) ≥ 37.5°C was significantly associated with longer mean TVT by 5.4 days in medical admission, and by 1.2 days in surgical admission, compared to those with MAX(MV) of 36.5°C to 37.4°C. In multivariate linear regression analysis, patients with three categories of fever (MAX(MV) of 37.5°C to 38.4°C, 38.5°C to 39.4°C, and ≥ 39.5°C) sustained a significantly longer duration of TVT than those with normal range of MAX(MV) in both categories of ICU admission. A significant association between MAX(MV) and mechanical ventilator-free days was also observed in all enrolled subjects. Fever may be a detrimental factor to prolong TVT in mechanically ventilated patients. These findings suggest that fever in mechanically ventilated patients might be associated with worse mechanical ventilation outcome.

  7. On approaches to analyze the sensitivity of simulated hydrologic fluxes to model parameters in the community land model

    DOE PAGES

    Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; ...

    2015-12-04

    Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalizedmore » linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.« less

  8. An overview of longitudinal data analysis methods for neurological research.

    PubMed

    Locascio, Joseph J; Atri, Alireza

    2011-01-01

    The purpose of this article is to provide a concise, broad and readily accessible overview of longitudinal data analysis methods, aimed to be a practical guide for clinical investigators in neurology. In general, we advise that older, traditional methods, including (1) simple regression of the dependent variable on a time measure, (2) analyzing a single summary subject level number that indexes changes for each subject and (3) a general linear model approach with a fixed-subject effect, should be reserved for quick, simple or preliminary analyses. We advocate the general use of mixed-random and fixed-effect regression models for analyses of most longitudinal clinical studies. Under restrictive situations or to provide validation, we recommend: (1) repeated-measure analysis of covariance (ANCOVA), (2) ANCOVA for two time points, (3) generalized estimating equations and (4) latent growth curve/structural equation models.

  9. The parenting attitudes and the stress of mothers predict the asthmatic severity of their children: a prospective study.

    PubMed

    Nagano, Jun; Kakuta, Chikage; Motomura, Chikako; Odajima, Hiroshi; Sudo, Nobuyuki; Nishima, Sankei; Kubo, Chiharu

    2010-10-07

    To examine relationships between a mother's stress-related conditions and parenting attitudes and their children's asthmatic status. 274 mothers of an asthmatic child 2 to 12 years old completed a questionnaire including questions about their chronic stress/coping behaviors (the "Stress Inventory"), parenting attitudes (the "Ta-ken Diagnostic Test for Parent-Child Relationship, Parent Form"), and their children's disease status. One year later, a follow-up questionnaire was mailed to the mothers that included questions on the child's disease status. 223 mothers (81%) responded to the follow-up survey. After controlling for non-psychosocial factors including disease severity at baseline, multiple linear regression analysis followed by multiple logistic regression analysis found chronic irritation/anger and emotional suppression to be aggravating factors for children aged < 7 years; for children aged 7 and over, the mothers' egocentric behavior was a mitigating factor while interference was an aggravating factor. Different types of parental stress/coping behaviors and parenting styles may differently predict their children's asthmatic status, and such associations may change as children grow.

  10. Calibration and Data Analysis of the MC-130 Air Balance

    NASA Technical Reports Server (NTRS)

    Booth, Dennis; Ulbrich, N.

    2012-01-01

    Design, calibration, calibration analysis, and intended use of the MC-130 air balance are discussed. The MC-130 balance is an 8.0 inch diameter force balance that has two separate internal air flow systems and one external bellows system. The manual calibration of the balance consisted of a total of 1854 data points with both unpressurized and pressurized air flowing through the balance. A subset of 1160 data points was chosen for the calibration data analysis. The regression analysis of the subset was performed using two fundamentally different analysis approaches. First, the data analysis was performed using a recently developed extension of the Iterative Method. This approach fits gage outputs as a function of both applied balance loads and bellows pressures while still allowing the application of the iteration scheme that is used with the Iterative Method. Then, for comparison, the axial force was also analyzed using the Non-Iterative Method. This alternate approach directly fits loads as a function of measured gage outputs and bellows pressures and does not require a load iteration. The regression models used by both the extended Iterative and Non-Iterative Method were constructed such that they met a set of widely accepted statistical quality requirements. These requirements lead to reliable regression models and prevent overfitting of data because they ensure that no hidden near-linear dependencies between regression model terms exist and that only statistically significant terms are included. Finally, a comparison of the axial force residuals was performed. Overall, axial force estimates obtained from both methods show excellent agreement as the differences of the standard deviation of the axial force residuals are on the order of 0.001 % of the axial force capacity.

  11. Comparison of Regression Analysis and Transfer Function in Estimating the Parameters of Central Pulse Waves from Brachial Pulse Wave.

    PubMed

    Chai, Rui; Xu, Li-Sheng; Yao, Yang; Hao, Li-Ling; Qi, Lin

    2017-01-01

    This study analyzed ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO), and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. Invasively measured parameters were compared with parameters measured from brachial pulse waves by regression model and transfer function model. Accuracy of parameters estimated by regression and transfer function model, was compared too. Findings showed that k value, central pulse wave and brachial pulse wave parameters invasively measured, correlated positively. Regression model parameters including A_slope, DBP, SEVR, and transfer function model parameters had good consistency with parameters invasively measured. They had same effect of consistency. SBP, PP, SV, and CO could be calculated through the regression model, but their accuracies were worse than that of transfer function model.

  12. Comparing lagged linear correlation, lagged regression, Granger causality, and vector autoregression for uncovering associations in EHR data.

    PubMed

    Levine, Matthew E; Albers, David J; Hripcsak, George

    2016-01-01

    Time series analysis methods have been shown to reveal clinical and biological associations in data collected in the electronic health record. We wish to develop reliable high-throughput methods for identifying adverse drug effects that are easy to implement and produce readily interpretable results. To move toward this goal, we used univariate and multivariate lagged regression models to investigate associations between twenty pairs of drug orders and laboratory measurements. Multivariate lagged regression models exhibited higher sensitivity and specificity than univariate lagged regression in the 20 examples, and incorporating autoregressive terms for labs and drugs produced more robust signals in cases of known associations among the 20 example pairings. Moreover, including inpatient admission terms in the model attenuated the signals for some cases of unlikely associations, demonstrating how multivariate lagged regression models' explicit handling of context-based variables can provide a simple way to probe for health-care processes that confound analyses of EHR data.

  13. Applied Multiple Linear Regression: A General Research Strategy

    ERIC Educational Resources Information Center

    Smith, Brandon B.

    1969-01-01

    Illustrates some of the basic concepts and procedures for using regression analysis in experimental design, analysis of variance, analysis of covariance, and curvilinear regression. Applications to evaluation of instruction and vocational education programs are illustrated. (GR)

  14. Poisson Regression Analysis of Illness and Injury Surveillance Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frome E.L., Watkins J.P., Ellis E.D.

    2012-12-12

    The Department of Energy (DOE) uses illness and injury surveillance to monitor morbidity and assess the overall health of the work force. Data collected from each participating site include health events and a roster file with demographic information. The source data files are maintained in a relational data base, and are used to obtain stratified tables of health event counts and person time at risk that serve as the starting point for Poisson regression analysis. The explanatory variables that define these tables are age, gender, occupational group, and time. Typical response variables of interest are the number of absences duemore » to illness or injury, i.e., the response variable is a count. Poisson regression methods are used to describe the effect of the explanatory variables on the health event rates using a log-linear main effects model. Results of fitting the main effects model are summarized in a tabular and graphical form and interpretation of model parameters is provided. An analysis of deviance table is used to evaluate the importance of each of the explanatory variables on the event rate of interest and to determine if interaction terms should be considered in the analysis. Although Poisson regression methods are widely used in the analysis of count data, there are situations in which over-dispersion occurs. This could be due to lack-of-fit of the regression model, extra-Poisson variation, or both. A score test statistic and regression diagnostics are used to identify over-dispersion. A quasi-likelihood method of moments procedure is used to evaluate and adjust for extra-Poisson variation when necessary. Two examples are presented using respiratory disease absence rates at two DOE sites to illustrate the methods and interpretation of the results. In the first example the Poisson main effects model is adequate. In the second example the score test indicates considerable over-dispersion and a more detailed analysis attributes the over-dispersion to extra-Poisson variation. The R open source software environment for statistical computing and graphics is used for analysis. Additional details about R and the data that were used in this report are provided in an Appendix. Information on how to obtain R and utility functions that can be used to duplicate results in this report are provided.« less

  15. Bootstrap Methods: A Very Leisurely Look.

    ERIC Educational Resources Information Center

    Hinkle, Dennis E.; Winstead, Wayland H.

    The Bootstrap method, a computer-intensive statistical method of estimation, is illustrated using a simple and efficient Statistical Analysis System (SAS) routine. The utility of the method for generating unknown parameters, including standard errors for simple statistics, regression coefficients, discriminant function coefficients, and factor…

  16. Tradespace Exploration for the Engineering of Resilient Systems

    DTIC Science & Technology

    2015-05-01

    world scenarios. The types of tools within the SAE set include visualization, decision analysis, and M&S, so it is difficult to categorize this toolset... overpopulated , or questionable. ERS Tradespace Workshop Create predictive models using multiple techniques (e.g., regression, Kriging, neural nets

  17. A consistent framework for Horton regression statistics that leads to a modified Hack's law

    USGS Publications Warehouse

    Furey, P.R.; Troutman, B.M.

    2008-01-01

    A statistical framework is introduced that resolves important problems with the interpretation and use of traditional Horton regression statistics. The framework is based on a univariate regression model that leads to an alternative expression for Horton ratio, connects Horton regression statistics to distributional simple scaling, and improves the accuracy in estimating Horton plot parameters. The model is used to examine data for drainage area A and mainstream length L from two groups of basins located in different physiographic settings. Results show that confidence intervals for the Horton plot regression statistics are quite wide. Nonetheless, an analysis of covariance shows that regression intercepts, but not regression slopes, can be used to distinguish between basin groups. The univariate model is generalized to include n > 1 dependent variables. For the case where the dependent variables represent ln A and ln L, the generalized model performs somewhat better at distinguishing between basin groups than two separate univariate models. The generalized model leads to a modification of Hack's law where L depends on both A and Strahler order ??. Data show that ?? plays a statistically significant role in the modified Hack's law expression. ?? 2008 Elsevier B.V.

  18. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws.

    PubMed

    Xiao, Xiao; White, Ethan P; Hooten, Mevin B; Durham, Susan L

    2011-10-01

    Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain.

  19. Analysis of an Environmental Exposure Health Questionnaire in a Metropolitan Minority Population Utilizing Logistic Regression and Support Vector Machines

    PubMed Central

    Chen, Chau-Kuang; Bruce, Michelle; Tyler, Lauren; Brown, Claudine; Garrett, Angelica; Goggins, Susan; Lewis-Polite, Brandy; Weriwoh, Mirabel L; Juarez, Paul D.; Hood, Darryl B.; Skelton, Tyler

    2014-01-01

    The goal of this study was to analyze a 54-item instrument for assessment of perception of exposure to environmental contaminants within the context of the built environment, or exposome. This exposome was defined in five domains to include 1) home and hobby, 2) school, 3) community, 4) occupation, and 5) exposure history. Interviews were conducted with child-bearing-age minority women at Metro Nashville General Hospital at Meharry Medical College. Data were analyzed utilizing DTReg software for Support Vector Machine (SVM) modeling followed by an SPSS package for a logistic regression model. The target (outcome) variable of interest was respondent's residence by ZIP code. The results demonstrate that the rank order of important variables with respect to SVM modeling versus traditional logistic regression models is almost identical. This is the first study documenting that SVM analysis has discriminate power for determination of higher-ordered spatial relationships on an environmental exposure history questionnaire. PMID:23395953

  20. Analysis of an environmental exposure health questionnaire in a metropolitan minority population utilizing logistic regression and Support Vector Machines.

    PubMed

    Chen, Chau-Kuang; Bruce, Michelle; Tyler, Lauren; Brown, Claudine; Garrett, Angelica; Goggins, Susan; Lewis-Polite, Brandy; Weriwoh, Mirabel L; Juarez, Paul D; Hood, Darryl B; Skelton, Tyler

    2013-02-01

    The goal of this study was to analyze a 54-item instrument for assessment of perception of exposure to environmental contaminants within the context of the built environment, or exposome. This exposome was defined in five domains to include 1) home and hobby, 2) school, 3) community, 4) occupation, and 5) exposure history. Interviews were conducted with child-bearing-age minority women at Metro Nashville General Hospital at Meharry Medical College. Data were analyzed utilizing DTReg software for Support Vector Machine (SVM) modeling followed by an SPSS package for a logistic regression model. The target (outcome) variable of interest was respondent's residence by ZIP code. The results demonstrate that the rank order of important variables with respect to SVM modeling versus traditional logistic regression models is almost identical. This is the first study documenting that SVM analysis has discriminate power for determination of higher-ordered spatial relationships on an environmental exposure history questionnaire.

  1. A New SEYHAN's Approach in Case of Heterogeneity of Regression Slopes in ANCOVA.

    PubMed

    Ankarali, Handan; Cangur, Sengul; Ankarali, Seyit

    2018-06-01

    In this study, when the assumptions of linearity and homogeneity of regression slopes of conventional ANCOVA are not met, a new approach named as SEYHAN has been suggested to use conventional ANCOVA instead of robust or nonlinear ANCOVA. The proposed SEYHAN's approach involves transformation of continuous covariate into categorical structure when the relationship between covariate and dependent variable is nonlinear and the regression slopes are not homogenous. A simulated data set was used to explain SEYHAN's approach. In this approach, we performed conventional ANCOVA in each subgroup which is constituted according to knot values and analysis of variance with two-factor model after MARS method was used for categorization of covariate. The first model is a simpler model than the second model that includes interaction term. Since the model with interaction effect has more subjects, the power of test also increases and the existing significant difference is revealed better. We can say that linearity and homogeneity of regression slopes are not problem for data analysis by conventional linear ANCOVA model by helping this approach. It can be used fast and efficiently for the presence of one or more covariates.

  2. Quotation accuracy in medical journal articles-a systematic review and meta-analysis.

    PubMed

    Jergas, Hannah; Baethge, Christopher

    2015-01-01

    Background. Quotations and references are an indispensable element of scientific communication. They should support what authors claim or provide important background information for readers. Studies indicate, however, that quotations not serving their purpose-quotation errors-may be prevalent. Methods. We carried out a systematic review, meta-analysis and meta-regression of quotation errors, taking account of differences between studies in error ascertainment. Results. Out of 559 studies screened we included 28 in the main analysis, and estimated major, minor and total quotation error rates of 11,9%, 95% CI [8.4, 16.6] 11.5% [8.3, 15.7], and 25.4% [19.5, 32.4]. While heterogeneity was substantial, even the lowest estimate of total quotation errors was considerable (6.7%). Indirect references accounted for less than one sixth of all quotation problems. The findings remained robust in a number of sensitivity and subgroup analyses (including risk of bias analysis) and in meta-regression. There was no indication of publication bias. Conclusions. Readers of medical journal articles should be aware of the fact that quotation errors are common. Measures against quotation errors include spot checks by editors and reviewers, correct placement of citations in the text, and declarations by authors that they have checked cited material. Future research should elucidate if and to what degree quotation errors are detrimental to scientific progress.

  3. Quotation accuracy in medical journal articles—a systematic review and meta-analysis

    PubMed Central

    Jergas, Hannah

    2015-01-01

    Background. Quotations and references are an indispensable element of scientific communication. They should support what authors claim or provide important background information for readers. Studies indicate, however, that quotations not serving their purpose—quotation errors—may be prevalent. Methods. We carried out a systematic review, meta-analysis and meta-regression of quotation errors, taking account of differences between studies in error ascertainment. Results. Out of 559 studies screened we included 28 in the main analysis, and estimated major, minor and total quotation error rates of 11,9%, 95% CI [8.4, 16.6] 11.5% [8.3, 15.7], and 25.4% [19.5, 32.4]. While heterogeneity was substantial, even the lowest estimate of total quotation errors was considerable (6.7%). Indirect references accounted for less than one sixth of all quotation problems. The findings remained robust in a number of sensitivity and subgroup analyses (including risk of bias analysis) and in meta-regression. There was no indication of publication bias. Conclusions. Readers of medical journal articles should be aware of the fact that quotation errors are common. Measures against quotation errors include spot checks by editors and reviewers, correct placement of citations in the text, and declarations by authors that they have checked cited material. Future research should elucidate if and to what degree quotation errors are detrimental to scientific progress. PMID:26528420

  4. Regression-based model of skin diffuse reflectance for skin color analysis

    NASA Astrophysics Data System (ADS)

    Tsumura, Norimichi; Kawazoe, Daisuke; Nakaguchi, Toshiya; Ojima, Nobutoshi; Miyake, Yoichi

    2008-11-01

    A simple regression-based model of skin diffuse reflectance is developed based on reflectance samples calculated by Monte Carlo simulation of light transport in a two-layered skin model. This reflectance model includes the values of spectral reflectance in the visible spectra for Japanese women. The modified Lambert Beer law holds in the proposed model with a modified mean free path length in non-linear density space. The averaged RMS and maximum errors of the proposed model were 1.1 and 3.1%, respectively, in the above range.

  5. Quantitative Assessment of Cervical Vertebral Maturation Using Cone Beam Computed Tomography in Korean Girls

    PubMed Central

    Byun, Bo-Ram; Kim, Yong-Il; Maki, Koutaro; Son, Woo-Sung

    2015-01-01

    This study was aimed to examine the correlation between skeletal maturation status and parameters from the odontoid process/body of the second vertebra and the bodies of third and fourth cervical vertebrae and simultaneously build multiple regression models to be able to estimate skeletal maturation status in Korean girls. Hand-wrist radiographs and cone beam computed tomography (CBCT) images were obtained from 74 Korean girls (6–18 years of age). CBCT-generated cervical vertebral maturation (CVM) was used to demarcate the odontoid process and the body of the second cervical vertebra, based on the dentocentral synchondrosis. Correlation coefficient analysis and multiple linear regression analysis were used for each parameter of the cervical vertebrae (P < 0.05). Forty-seven of 64 parameters from CBCT-generated CVM (independent variables) exhibited statistically significant correlations (P < 0.05). The multiple regression model with the greatest R 2 had six parameters (PH2/W2, UW2/W2, (OH+AH2)/LW2, UW3/LW3, D3, and H4/W4) as independent variables with a variance inflation factor (VIF) of <2. CBCT-generated CVM was able to include parameters from the second cervical vertebral body and odontoid process, respectively, for the multiple regression models. This suggests that quantitative analysis might be used to estimate skeletal maturation status. PMID:25878721

  6. In vitro chemo-sensitivity assay guided chemotherapy is associated with prolonged overall survival in cancer patients.

    PubMed

    Udelnow, Andrej; Schönfęlder, Manfred; Würl, Peter; Halloul, Zuhir; Meyer, Frank; Lippert, Hans; Mroczkowski, Paweł

    2013-06-01

    The overall survival (OS) of patients suffering From various tumour entities was correlated with the results of in vitro-chemosensitivity assay (CSA) of the in vivo applied drugs. Tumour specimen (n=611) were dissected in 514 patients and incubated for primary tumour cell culture. The histocytological regression assay was performed 5 days after adding chemotherapeutic substances to the cell cultures. n=329 patients undergoing chemotherapy were included in the in vitro/in vivo associations. OS was assessed and in vitro response groups compared using survival analysis. Furthermore Cox-regression analysis was performed on OS including CSA, age, TNM classification and treatment course. The growth rate of the primary was 73-96% depending on tumour entity. The in-vitro response rate varied with histology and drugs (e.g. 8-18% for methotrexate and 33-83% for epirubicine). OS was significantly prolonged for patients treated with in vitro effective drugs compared to empiric therapy (log-rank-test, p=0.0435). Cox-regression revealed that application of in vitro effective drugs, residual tumour and postoperative radiotherapy determined the death risk independently. When patients were treated with drugs effective in our CSA, OS was significantly prolonged compared to empiric therapy. CSA guided chemotherapy should be compared to empiric treatment by a prospective randomized trial.

  7. Improved Regression Analysis of Temperature-Dependent Strain-Gage Balance Calibration Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2015-01-01

    An improved approach is discussed that may be used to directly include first and second order temperature effects in the load prediction algorithm of a wind tunnel strain-gage balance. The improved approach was designed for the Iterative Method that fits strain-gage outputs as a function of calibration loads and uses a load iteration scheme during the wind tunnel test to predict loads from measured gage outputs. The improved approach assumes that the strain-gage balance is at a constant uniform temperature when it is calibrated and used. First, the method introduces a new independent variable for the regression analysis of the balance calibration data. The new variable is designed as the difference between the uniform temperature of the balance and a global reference temperature. This reference temperature should be the primary calibration temperature of the balance so that, if needed, a tare load iteration can be performed. Then, two temperature{dependent terms are included in the regression models of the gage outputs. They are the temperature difference itself and the square of the temperature difference. Simulated temperature{dependent data obtained from Triumph Aerospace's 2013 calibration of NASA's ARC-30K five component semi{span balance is used to illustrate the application of the improved approach.

  8. Germplasm-regression-combined (GRC) marker-trait association identification in plant breeding: a challenge for plant biotechnological breeding under soil water deficit conditions.

    PubMed

    Ruan, Cheng-Jiang; Xu, Xue-Xuan; Shao, Hong-Bo; Jaleel, Cheruth Abdul

    2010-09-01

    In the past 20 years, the major effort in plant breeding has changed from quantitative to molecular genetics with emphasis on quantitative trait loci (QTL) identification and marker assisted selection (MAS). However, results have been modest. This has been due to several factors including absence of tight linkage QTL, non-availability of mapping populations, and substantial time needed to develop such populations. To overcome these limitations, and as an alternative to planned populations, molecular marker-trait associations have been identified by the combination between germplasm and the regression technique. In the present preview, the authors (1) survey the successful applications of germplasm-regression-combined (GRC) molecular marker-trait association identification in plants; (2) describe how to do the GRC analysis and its differences from mapping QTL based on a linkage map reconstructed from the planned populations; (3) consider the factors that affect the GRC association identification, including selections of optimal germplasm and molecular markers and testing of identification efficiency of markers associated with traits; and (4) finally discuss the future prospects of GRC marker-trait association analysis used in plant MAS/QTL breeding programs, especially in long-juvenile woody plants when no other genetic information such as linkage maps and QTL are available.

  9. Lidocaine dose-response effect on postoperative cognitive deficit: meta-analysis and meta-regression.

    PubMed

    Habibi, Mohammad Reza; Habibi, Valiollah; Habibi, Ali; Soleimani, Aria

    2018-04-01

    The true influence of the perioperative intravenous lidocaine on the development of postoperative cognitive deficit (POCD) in coronary artery bypass grafting (CABG) remains controversial. The principal aim is to undertake a meta-regression to determine whether moderator variables mediate the relationship between lidocaine and POCD. Areas covered: We searched the Web of Science, PubMed database, Scopus and the Cochrane Library database (up to June 2017) and systematically reviewed a list of retrieved articles. Our final review includes only randomized controlled trials (RCTs) that compared infusion of lidocaine and placebo during cardiopulmonary bypass (CPB). Mantel-Haenszel risk ratio (MH RR) and corresponding 95% confidence interval (CI) was used to report the overall effect and meta-regression analysis. A total of 688 patients in five RCTs were included. POCD occurred in 34% of all cases. Perioperative lidocaine reduces POCD (MH RR 0.702 (95% CI: 0.541-0.909). Younger age, male gender, longer CPB and higher concentration of lidocaine significantly mediate the relationship between lidocaine and POCD in favour of the neuroprotective effect of lidocaine. Expert commentary: The neuroprotective effect of lidocaine on POCD is consistent in spite of longer CPB time. A higher concentration of lidocaine strengthened the neuroprotective effect of lidocaine.

  10. External Tank Liquid Hydrogen (LH2) Prepress Regression Analysis Independent Review Technical Consultation Report

    NASA Technical Reports Server (NTRS)

    Parsons, Vickie s.

    2009-01-01

    The request to conduct an independent review of regression models, developed for determining the expected Launch Commit Criteria (LCC) External Tank (ET)-04 cycle count for the Space Shuttle ET tanking process, was submitted to the NASA Engineering and Safety Center NESC on September 20, 2005. The NESC team performed an independent review of regression models documented in Prepress Regression Analysis, Tom Clark and Angela Krenn, 10/27/05. This consultation consisted of a peer review by statistical experts of the proposed regression models provided in the Prepress Regression Analysis. This document is the consultation's final report.

  11. Depressive Symptoms in College Women: Examining the Cumulative Effect of Childhood and Adulthood Domestic Violence.

    PubMed

    Al-Modallal, Hanan

    2016-10-01

    The purpose of this study was to examine the cumulative effect of childhood and adulthood violence on depressive symptoms in a sample of Jordanian college women. Snowball sampling technique was used to recruit the participants. The participants were heterosexual college-aged women between the ages of 18 and 25. The participants were asked about their experiences of childhood violence (including physical violence, sexual violence, psychological violence, and witnessing parental violence), partner violence (including physical partner violence and sexual partner violence), experiences of depressive symptoms, and about other demographic and familial factors as possible predictors for their complaints of depressive symptoms. Multiple linear regression analysis was implemented to identify demographic- and violence-related predictors of their complainants of depressive symptoms. Logistic regression analysis was further performed to identify possible type(s) of violence associated with the increased risk of depressive symptoms. The prevalence of depressive symptoms in this sample was 47.4%. For the violence experience, witnessing parental violence was the most common during childhood, experienced by 40 (41.2%) women, and physical partner violence was the most common in adulthood, experienced by 35 (36.1%) women. Results of logistic regression analysis indicated that experiencing two types of violence (regardless of the time of occurrence) was significant in predicting depressive symptoms (odds ratio [OR] = 3.45, p < .05). Among college women's demographic characteristics, marital status (single vs. engaged), mothers' level of education, income, and smoking were significant in predicting depressive symptoms. Assessment of physical violence and depressive symptoms including the cumulative impact of longer periods of violence on depressive symptoms is recommended to be explored in future studies. © The Author(s) 2015.

  12. Zinc supplementation for the prevention of acute lower respiratory infection in children in developing countries: meta-analysis and meta-regression of randomized trials.

    PubMed

    Roth, Daniel E; Richard, Stephanie A; Black, Robert E

    2010-06-01

    Routine zinc supplementation is a potential intervention for the prevention of acute lower respiratory infection (ALRI) in developing countries. However, discrepant findings from recent randomized trials remain unexplained. Randomized trials of zinc supplementation in young children in developing countries were identified by a systematic literature review. Trials included in the meta-analysis met specific criteria, including participants <5 years of age, daily/weekly zinc and control supplementation for greater than 3 months, active household surveillance for respiratory morbidity and use of a case definition that included at least one sign of lower respiratory tract illness. ALRI case definitions were classified on the basis of specificity/severity. Incidence rate ratios (IRRs) were pooled by random-effects models. Meta-regression and sub-group analysis were performed to assess potential sources of between-study heterogeneity. Ten trials were eligible for inclusion (n = 49 450 children randomized). Zinc reduced the incidence of ALRI defined by specific clinical criteria [IRR 0.65, 95% confidence interval (CI) 0.52-0.82], but had no effect on lower-specificity ALRI case definitions based on caregiver report (IRR 1.01, 95% CI 0.91-1.12) or World Health Organization 'non-severe pneumonia' (0.96, 95% CI 0.86-1.08). By meta-regression, the effect of zinc was associated with ALRI case definition, but not with mean baseline age, geographic location, nutritional status or zinc dose. Routine zinc supplementation reduced the incidence of childhood ALRI defined by relatively specific clinical criteria, but the effect was null if lower specificity case definitions were applied. The choice of ALRI case definition may substantially influence inferences from community trials regarding the efficacy of preventive interventions.

  13. Analysis of the labor productivity of enterprises via quantile regression

    NASA Astrophysics Data System (ADS)

    Türkan, Semra

    2017-07-01

    In this study, we have analyzed the factors that affect the performance of Turkey's Top 500 Industrial Enterprises using quantile regression. The variable about labor productivity of enterprises is considered as dependent variable, the variableabout assets is considered as independent variable. The distribution of labor productivity of enterprises is right-skewed. If the dependent distribution is skewed, linear regression could not catch important aspects of the relationships between the dependent variable and its predictors due to modeling only the conditional mean. Hence, the quantile regression, which allows modelingany quantilesof the dependent distribution, including the median,appears to be useful. It examines whether relationships between dependent and independent variables are different for low, medium, and high percentiles. As a result of analyzing data, the effect of total assets is relatively constant over the entire distribution, except the upper tail. It hasa moderately stronger effect in the upper tail.

  14. Cox regression analysis with missing covariates via nonparametric multiple imputation.

    PubMed

    Hsu, Chiu-Hsieh; Yu, Mandi

    2018-01-01

    We consider the situation of estimating Cox regression in which some covariates are subject to missing, and there exists additional information (including observed event time, censoring indicator and fully observed covariates) which may be predictive of the missing covariates. We propose to use two working regression models: one for predicting the missing covariates and the other for predicting the missing probabilities. For each missing covariate observation, these two working models are used to define a nearest neighbor imputing set. This set is then used to non-parametrically impute covariate values for the missing observation. Upon the completion of imputation, Cox regression is performed on the multiply imputed datasets to estimate the regression coefficients. In a simulation study, we compare the nonparametric multiple imputation approach with the augmented inverse probability weighted (AIPW) method, which directly incorporates the two working models into estimation of Cox regression, and the predictive mean matching imputation (PMM) method. We show that all approaches can reduce bias due to non-ignorable missing mechanism. The proposed nonparametric imputation method is robust to mis-specification of either one of the two working models and robust to mis-specification of the link function of the two working models. In contrast, the PMM method is sensitive to misspecification of the covariates included in imputation. The AIPW method is sensitive to the selection probability. We apply the approaches to a breast cancer dataset from Surveillance, Epidemiology and End Results (SEER) Program.

  15. A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.

    PubMed

    Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S

    2017-06-01

    The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were observed for the SOBP scenario, both non-linear LET spectrum- and linear LET d based models should be further evaluated in clinically realistic scenarios. © 2017 American Association of Physicists in Medicine.

  16. [The mediating role of anger in the relationship between automatic thoughts and physical aggression in adolescents].

    PubMed

    Yavuzer, Yasemin; Karataş, Zeynep

    2013-01-01

    This study aimed to examine the mediating role of anger in the relationship between automatic thoughts and physical aggression in adolescents. The study included 224 adolescents in the 9th grade of 3 different high schools in central Burdur during the 2011-2012 academic year. Participants completed the Aggression Questionnaire and Automatic Thoughts Scale in their classrooms during counseling sessions. Data were analyzed using simple and multiple linear regression analysis. There were positive correlations between the adolescents' automatic thoughts, and physical aggression, and anger. According to regression analysis, automatic thoughts effectively predicted the level of physical aggression (b= 0.233, P < 0.001)) and anger (b= 0.325, P < 0.001). Analysis of the mediating role of anger showed that anger fully mediated the relationship between automatic thoughts and physical aggression (Sobel z = 5.646, P < 0.001). Anger fully mediated the relationship between automatic thoughts and physical aggression. Providing adolescents with anger management skills training is very important for the prevention of physical aggression. Such training programs should include components related to the development of an awareness of dysfunctional and anger-triggering automatic thoughts, and how to change them. As the study group included adolescents from Burdur, the findings can only be generalized to groups with similar characteristics.

  17. Computer-delivered interventions for reducing alcohol consumption: meta-analysis and meta-regression using behaviour change techniques and theory.

    PubMed

    Black, Nicola; Mullan, Barbara; Sharpe, Louise

    2016-09-01

    The current aim was to examine the effectiveness of behaviour change techniques (BCTs), theory and other characteristics in increasing the effectiveness of computer-delivered interventions (CDIs) to reduce alcohol consumption. Included were randomised studies with a primary aim of reducing alcohol consumption, which compared self-directed CDIs to assessment-only control groups. CDIs were coded for the use of 42 BCTs from an alcohol-specific taxonomy, the use of theory according to a theory coding scheme and general characteristics such as length of the CDI. Effectiveness of CDIs was assessed using random-effects meta-analysis and the association between the moderators and effect size was assessed using univariate and multivariate meta-regression. Ninety-three CDIs were included in at least one analysis and produced small, significant effects on five outcomes (d+ = 0.07-0.15). Larger effects occurred with some personal contact, provision of normative information or feedback on performance, prompting commitment or goal review, the social norms approach and in samples with more women. Smaller effects occurred when information on the consequences of alcohol consumption was provided. These findings can be used to inform both intervention- and theory-development. Intervention developers should focus on, including specific, effective techniques, rather than many techniques or more-elaborate approaches.

  18. Could ginseng-based medicines be better than nitrates in treating ischemic heart disease? A systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Jia, Yongliang; Zhang, Shikai; Huang, Fangyi; Leung, Siu-wai

    2012-06-01

    Ginseng-based medicines and nitrates are commonly used in treating ischemic heart disease (IHD) angina pectoris in China. Hundreds of randomized controlled trials (RCTs) reported in Chinese language claimed that ginseng-based medicines can relieve the symptoms of IHD. This study provides the first PRISMA-compliant systematic review with sensitivity and subgroup analyses to evaluate the RCTs comparing the efficacies of ginseng-based medicines and nitrates in treating ischemic heart disease, particularly angina pectoris. Past RCTs published up to 2010 on ginseng versus nitrates in treating IHD for 14 or more days were retrieved from major English and Chinese databases, including PubMed, Science Direct, Cochrane Library, WangFang Data, and Chinese National Knowledge Infrastructure. The qualities of included RCTs were assessed with Jadad scale, a refined Jadad scale called M scale, CONSORT 2010 checklist, and Cochrane risk of bias tool. Meta-analysis was performed on the primary outcomes including the improvement of symptoms and electrocardiography (ECG). Subgroup analysis, sensitivity analysis, and meta-regression were performed to evaluate the effects of study characteristics of RCTs, including quality, follow-up periods, and efficacy definitions on the overall effect size of ginseng. Eighteen RCTs with 1549 participants were included. Overall odds ratios for comparing ginseng-based medicines with nitrates were 3.00 (95% CI: 2.27-3.96) in symptom improvement (n=18) and 1.61 (95% CI: 1.20-2.15) in ECG improvement (n=10). Subgroup analysis, sensitivity analysis, and meta-regression found no significant difference in overall effects among all study characteristics, indicating that the overall effects were stable. The meta-analysis of 18 eligible RCTs demonstrates moderate evidence that ginseng is more effective than nitrates for treating angina pectoris. However, further RCTs for higher quality, longer follow-up periods, lager sample size, multi-center/country, and are still required to verify the efficacy. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  19. Ordinal logistic regression analysis on the nutritional status of children in KarangKitri village

    NASA Astrophysics Data System (ADS)

    Ohyver, Margaretha; Yongharto, Kimmy Octavian

    2015-09-01

    Ordinal logistic regression is a statistical technique that can be used to describe the relationship between ordinal response variable with one or more independent variables. This method has been used in various fields including in the health field. In this research, ordinal logistic regression is used to describe the relationship between nutritional status of children with age, gender, height, and family status. Nutritional status of children in this research is divided into over nutrition, well nutrition, less nutrition, and malnutrition. The purpose for this research is to describe the characteristics of children in the KarangKitri Village and to determine the factors that influence the nutritional status of children in the KarangKitri village. There are three things that obtained from this research. First, there are still children who are not categorized as well nutritional status. Second, there are children who come from sufficient economic level which include in not normal status. Third, the factors that affect the nutritional level of children are age, family status, and height.

  20. Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement

    USGS Publications Warehouse

    Bonilla, M.G.; Mark, R.K.; Lienkaemper, J.J.

    1984-01-01

    In order to refine correlations of surface-wave magnitude, fault rupture length at the ground surface, and fault displacement at the surface by including the uncertainties in these variables, the existing data were critically reviewed and a new data base was compiled. Earthquake magnitudes were redetermined as necessary to make them as consistent as possible with the Gutenberg methods and results, which necessarily make up much of the data base. Measurement errors were estimated for the three variables for 58 moderate to large shallow-focus earthquakes. Regression analyses were then made utilizing the estimated measurement errors. The regression analysis demonstrates that the relations among the variables magnitude, length, and displacement are stochastic in nature. The stochastic variance, introduced in part by incomplete surface expression of seismogenic faulting, variation in shear modulus, and regional factors, dominates the estimated measurement errors. Thus, it is appropriate to use ordinary least squares for the regression models, rather than regression models based upon an underlying deterministic relation with the variance resulting from measurement errors. Significant differences exist in correlations of certain combinations of length, displacement, and magnitude when events are qrouped by fault type or by region, including attenuation regions delineated by Evernden and others. Subdivision of the data results in too few data for some fault types and regions, and for these only regressions using all of the data as a group are reported. Estimates of the magnitude and the standard deviation of the magnitude of a prehistoric or future earthquake associated with a fault can be made by correlating M with the logarithms of rupture length, fault displacement, or the product of length and displacement. Fault rupture area could be reliably estimated for about 20 of the events in the data set. Regression of MS on rupture area did not result in a marked improvement over regressions that did not involve rupture area. Because no subduction-zone earthquakes are included in this study, the reported results do not apply to such zones.

  1. Analysis of the streamflow-gaging station network in Ohio for effectiveness in providing regional streamflow information

    USGS Publications Warehouse

    Straub, D.E.

    1998-01-01

    The streamflow-gaging station network in Ohio was evaluated for its effectiveness in providing regional streamflow information. The analysis involved application of the principles of generalized least squares regression between streamflow and climatic and basin characteristics. Regression equations were developed for three flow characteristics: (1) the instantaneous peak flow with a 100-year recurrence interval (P100), (2) the mean annual flow (Qa), and (3) the 7-day, 10-year low flow (7Q10). All active and discontinued gaging stations with 5 or more years of unregulated-streamflow data with respect to each flow characteristic were used to develop the regression equations. The gaging-station network was evaluated for the current (1996) condition of the network and estimated conditions of various network strategies if an additional 5 and 20 years of streamflow data were collected. Any active or discontinued gaging station with (1) less than 5 years of unregulated-streamflow record, (2) previously defined basin and climatic characteristics, and (3) the potential for collection of more unregulated-streamflow record were included in the network strategies involving the additional 5 and 20 years of data. The network analysis involved use of the regression equations, in combination with location, period of record, and cost of operation, to determine the contribution of the data for each gaging station to regional streamflow information. The contribution of each gaging station was based on a cost-weighted reduction of the mean square error (average sampling-error variance) associated with each regional estimating equation. All gaging stations included in the network analysis were then ranked according to their contribution to the regional information for each flow characteristic. The predictive ability of the regression equations developed from the gaging station network could be improved for all three flow characteristics with the collection of additional streamflow data. The addition of new gaging stations to the network would result in an even greater improvement of the accuracy of the regional regression equations. Typically, continued data collection at stations with unregulated streamflow for all flow conditions that had less than 11 years of record with drainage areas smaller than 200 square miles contributed the largest cost-weighted reduction to the average sampling-error variance of the regional estimating equations. The results of the network analyses can be used to prioritize the continued operation of active gaging stations or the reactivation of discontinued gaging stations if the objective is to maximize the regional information content in the streamflow-gaging station network.

  2. Maintenance Operations in Mission Oriented Protective Posture Level IV (MOPPIV)

    DTIC Science & Technology

    1987-10-01

    Repair FADAC Printed Circuit Board ............. 6 3. Data Analysis Techniques ............................. 6 a. Multiple Linear Regression... ANALYSIS /DISCUSSION ............................... 12 1. Exa-ple of Regression Analysis ..................... 12 S2. Regression results for all tasks...6 * TABLE 9. Task Grouping for Analysis ........................ 7 "TABXLE 10. Remove/Replace H60A3 Power Pack................. 8 TABLE

  3. Creep-Rupture Data Analysis - Engineering Application of Regression Techniques. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Rummler, D. R.

    1976-01-01

    The results are presented of investigations to apply regression techniques to the development of methodology for creep-rupture data analysis. Regression analysis techniques are applied to the explicit description of the creep behavior of materials for space shuttle thermal protection systems. A regression analysis technique is compared with five parametric methods for analyzing three simulated and twenty real data sets, and a computer program for the evaluation of creep-rupture data is presented.

  4. Resting-state functional magnetic resonance imaging: the impact of regression analysis.

    PubMed

    Yeh, Chia-Jung; Tseng, Yu-Sheng; Lin, Yi-Ru; Tsai, Shang-Yueh; Huang, Teng-Yi

    2015-01-01

    To investigate the impact of regression methods on resting-state functional magnetic resonance imaging (rsfMRI). During rsfMRI preprocessing, regression analysis is considered effective for reducing the interference of physiological noise on the signal time course. However, it is unclear whether the regression method benefits rsfMRI analysis. Twenty volunteers (10 men and 10 women; aged 23.4 ± 1.5 years) participated in the experiments. We used node analysis and functional connectivity mapping to assess the brain default mode network by using five combinations of regression methods. The results show that regressing the global mean plays a major role in the preprocessing steps. When a global regression method is applied, the values of functional connectivity are significantly lower (P ≤ .01) than those calculated without a global regression. This step increases inter-subject variation and produces anticorrelated brain areas. rsfMRI data processed using regression should be interpreted carefully. The significance of the anticorrelated brain areas produced by global signal removal is unclear. Copyright © 2014 by the American Society of Neuroimaging.

  5. Causal diagrams and multivariate analysis II: precision work.

    PubMed

    Jupiter, Daniel C

    2014-01-01

    In this Investigators' Corner, I continue my discussion of when and why we researchers should include variables in multivariate regression. My examination focuses on studies comparing treatment groups and situations for which we can either exclude variables from multivariate analyses or include them for reasons of precision. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  6. A Systematic Review and Meta-Regression Analysis of Lung Cancer Risk and Inorganic Arsenic in Drinking Water.

    PubMed

    Lamm, Steven H; Ferdosi, Hamid; Dissen, Elisabeth K; Li, Ji; Ahn, Jaeil

    2015-12-07

    High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1-1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100-150 µg/L arsenic.

  7. A Systematic Review and Meta-Regression Analysis of Lung Cancer Risk and Inorganic Arsenic in Drinking Water

    PubMed Central

    Lamm, Steven H.; Ferdosi, Hamid; Dissen, Elisabeth K.; Li, Ji; Ahn, Jaeil

    2015-01-01

    High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1–1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100–150 µg/L arsenic. PMID:26690190

  8. Comparative Efficacy of Tongxinluo Capsule and Beta-Blockers in Treating Angina Pectoris: Meta-Analysis of Randomized Controlled Trials.

    PubMed

    Jia, Yongliang; Leung, Siu-wai

    2015-11-01

    There have been no systematic reviews, let alone meta-analyses, of randomized controlled trials (RCTs) comparing tongxinluo capsule (TXL) and beta-blockers in treating angina pectoris. This study aimed to evaluate the efficacy of TXL and beta-blockers in treating angina pectoris by a meta-analysis of eligible RCTs. The RCTs comparing TXL with beta-blockers (including metoprolol) in treating angina pectoris were searched and retrieved from databases including PubMed, Chinese National Knowledge Infrastructure, and WanFang Data. Eligible RCTs were selected according to prespecified criteria. Meta-analysis was performed on the odds ratios (OR) of symptomatic and electrocardiographic (ECG) improvements after treatment. Subgroup analysis, sensitivity analysis, meta-regression, and publication biases analysis were conducted to evaluate the robustness of the results. Seventy-three RCTs published between 2000 and 2014 with 7424 participants were eligible. Overall ORs comparing TXL with beta-blockers were 3.40 (95% confidence interval [CI], 2.97-3.89; p<0.0001) for symptomatic improvement and 2.63 (95% CI, 2.29-3.02; p<0.0001) for ECG improvement. Subgroup analysis and sensitivity analysis found no statistically significant dependence of overall ORs on specific study characteristics except efficacy criteria. Meta-regression found no significant except sample sizes for data on symptomatic improvement. Publication biases were statistically significant. TXL seems to be more effective than beta-blockers in treating angina pectoris, on the basis of the eligible RCTs. Further RCTs are warranted to reduce publication bias and verify efficacy.

  9. Standards for Standardized Logistic Regression Coefficients

    ERIC Educational Resources Information Center

    Menard, Scott

    2011-01-01

    Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…

  10. An Overview of Longitudinal Data Analysis Methods for Neurological Research

    PubMed Central

    Locascio, Joseph J.; Atri, Alireza

    2011-01-01

    The purpose of this article is to provide a concise, broad and readily accessible overview of longitudinal data analysis methods, aimed to be a practical guide for clinical investigators in neurology. In general, we advise that older, traditional methods, including (1) simple regression of the dependent variable on a time measure, (2) analyzing a single summary subject level number that indexes changes for each subject and (3) a general linear model approach with a fixed-subject effect, should be reserved for quick, simple or preliminary analyses. We advocate the general use of mixed-random and fixed-effect regression models for analyses of most longitudinal clinical studies. Under restrictive situations or to provide validation, we recommend: (1) repeated-measure analysis of covariance (ANCOVA), (2) ANCOVA for two time points, (3) generalized estimating equations and (4) latent growth curve/structural equation models. PMID:22203825

  11. Sensitivity analysis, calibration, and testing of a distributed hydrological model using error‐based weighting and one objective function

    USGS Publications Warehouse

    Foglia, L.; Hill, Mary C.; Mehl, Steffen W.; Burlando, P.

    2009-01-01

    We evaluate the utility of three interrelated means of using data to calibrate the fully distributed rainfall‐runoff model TOPKAPI as applied to the Maggia Valley drainage area in Switzerland. The use of error‐based weighting of observation and prior information data, local sensitivity analysis, and single‐objective function nonlinear regression provides quantitative evaluation of sensitivity of the 35 model parameters to the data, identification of data types most important to the calibration, and identification of correlations among parameters that contribute to nonuniqueness. Sensitivity analysis required only 71 model runs, and regression required about 50 model runs. The approach presented appears to be ideal for evaluation of models with long run times or as a preliminary step to more computationally demanding methods. The statistics used include composite scaled sensitivities, parameter correlation coefficients, leverage, Cook's D, and DFBETAS. Tests suggest predictive ability of the calibrated model typical of hydrologic models.

  12. Linear regression analysis: part 14 of a series on evaluation of scientific publications.

    PubMed

    Schneider, Astrid; Hommel, Gerhard; Blettner, Maria

    2010-11-01

    Regression analysis is an important statistical method for the analysis of medical data. It enables the identification and characterization of relationships among multiple factors. It also enables the identification of prognostically relevant risk factors and the calculation of risk scores for individual prognostication. This article is based on selected textbooks of statistics, a selective review of the literature, and our own experience. After a brief introduction of the uni- and multivariable regression models, illustrative examples are given to explain what the important considerations are before a regression analysis is performed, and how the results should be interpreted. The reader should then be able to judge whether the method has been used correctly and interpret the results appropriately. The performance and interpretation of linear regression analysis are subject to a variety of pitfalls, which are discussed here in detail. The reader is made aware of common errors of interpretation through practical examples. Both the opportunities for applying linear regression analysis and its limitations are presented.

  13. Predictors of exercise capacity following exercise-based rehabilitation in patients with coronary heart disease and heart failure: A meta-regression analysis.

    PubMed

    Uddin, Jamal; Zwisler, Ann-Dorthe; Lewinter, Christian; Moniruzzaman, Mohammad; Lund, Ken; Tang, Lars H; Taylor, Rod S

    2016-05-01

    The aim of this study was to undertake a comprehensive assessment of the patient, intervention and trial-level factors that may predict exercise capacity following exercise-based rehabilitation in patients with coronary heart disease and heart failure. Meta-analysis and meta-regression analysis. Randomized controlled trials of exercise-based rehabilitation were identified from three published systematic reviews. Exercise capacity was pooled across trials using random effects meta-analysis, and meta-regression used to examine the association between exercise capacity and a range of patient (e.g. age), intervention (e.g. exercise frequency) and trial (e.g. risk of bias) factors. 55 trials (61 exercise-control comparisons, 7553 patients) were included. Following exercise-based rehabilitation compared to control, overall exercise capacity was on average 0.95 (95% CI: 0.76-1.41) standard deviation units higher, and in trials reporting maximum oxygen uptake (VO2max) was 3.3 ml/kg.min(-1) (95% CI: 2.6-4.0) higher. There was evidence of a high level of statistical heterogeneity across trials (I(2) statistic > 50%). In multivariable meta-regression analysis, only exercise intervention intensity was found to be significantly associated with VO2max (P = 0.04); those trials with the highest average exercise intensity had the largest mean post-rehabilitation VO2max compared to control. We found considerable heterogeneity across randomized controlled trials in the magnitude of improvement in exercise capacity following exercise-based rehabilitation compared to control among patients with coronary heart disease or heart failure. Whilst higher exercise intensities were associated with a greater level of post-rehabilitation exercise capacity, there was no strong evidence to support other intervention, patient or trial factors to be predictive. © The European Society of Cardiology 2015.

  14. Exploratory Network Meta Regression Analysis of Stroke Prevention in Atrial Fibrillation Fails to Identify Any Interactions with Treatment Effect.

    PubMed

    Batson, Sarah; Sutton, Alex; Abrams, Keith

    2016-01-01

    Patients with atrial fibrillation are at a greater risk of stroke and therefore the main goal for treatment of patients with atrial fibrillation is to prevent stroke from occurring. There are a number of different stroke prevention treatments available to include warfarin and novel oral anticoagulants. Previous network meta-analyses of novel oral anticoagulants for stroke prevention in atrial fibrillation acknowledge the limitation of heterogeneity across the included trials but have not explored the impact of potentially important treatment modifying covariates. To explore potentially important treatment modifying covariates using network meta-regression analyses for stroke prevention in atrial fibrillation. We performed a network meta-analysis for the outcome of ischaemic stroke and conducted an exploratory regression analysis considering potentially important treatment modifying covariates. These covariates included the proportion of patients with a previous stroke, proportion of males, mean age, the duration of study follow-up and the patients underlying risk of ischaemic stroke. None of the covariates explored impacted relative treatment effects relative to placebo. Notably, the exploration of 'study follow-up' as a covariate supported the assumption that difference in trial durations is unimportant in this indication despite the variation across trials in the network. This study is limited by the quantity of data available. Further investigation is warranted, and, as justifying further trials may be difficult, it would be desirable to obtain individual patient level data (IPD) to facilitate an effort to relate treatment effects to IPD covariates in order to investigate heterogeneity. Observational data could also be examined to establish if there are potential trends elsewhere. The approach and methods presented have potentially wide applications within any indication as to highlight the potential benefit of extending decision problems to include additional comparators outside of those of primary interest to allow for the exploration of heterogeneity.

  15. Global dengue death before and after the new World Health Organization 2009 case classification: A systematic review and meta-regression analysis.

    PubMed

    Low, Gary Kim-Kuan; Ogston, Simon A; Yong, Mun-Hin; Gan, Seng-Chiew; Chee, Hui-Yee

    2018-06-01

    Since the introduction of 2009 WHO dengue case classification, no literature was found regarding its effect on dengue death. This study was to evaluate the effect of 2009 WHO dengue case classification towards dengue case fatality rate. Various databases were used to search relevant articles since 1995. Studies included were cohort and cross-sectional studies, all patients with dengue infection and must report the number of death or case fatality rate. The Joanna Briggs Institute appraisal checklist was used to evaluate the risk of bias of the full-texts. The studies were grouped according to the classification adopted: WHO 1997 and WHO 2009. Meta-regression was employed using a logistic transformation (log-odds) of the case fatality rate. The result of the meta-regression was the adjusted case fatality rate and odds ratio on the explanatory variables. A total of 77 studies were included in the meta-regression analysis. The case fatality rate for all studies combined was 1.14% with 95% confidence interval (CI) of 0.82-1.58%. The combined (unadjusted) case fatality rate for 69 studies which adopted WHO 1997 dengue case classification was 1.09% with 95% CI of 0.77-1.55%; and for eight studies with WHO 2009 was 1.62% with 95% CI of 0.64-4.02%. The unadjusted and adjusted odds ratio of case fatality using WHO 2009 dengue case classification was 1.49 (95% CI: 0.52, 4.24) and 0.83 (95% CI: 0.26, 2.63) respectively, compared to WHO 1997 dengue case classification. There was an apparent increase in trend of case fatality rate from the year 1992-2016. Neither was statistically significant. The WHO 2009 dengue case classification might have no effect towards the case fatality rate although the adjusted results indicated a lower case fatality rate. Future studies are required for an update in the meta-regression analysis to confirm the findings. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. [A SAS marco program for batch processing of univariate Cox regression analysis for great database].

    PubMed

    Yang, Rendong; Xiong, Jie; Peng, Yangqin; Peng, Xiaoning; Zeng, Xiaomin

    2015-02-01

    To realize batch processing of univariate Cox regression analysis for great database by SAS marco program. We wrote a SAS macro program, which can filter, integrate, and export P values to Excel by SAS9.2. The program was used for screening survival correlated RNA molecules of ovarian cancer. A SAS marco program could finish the batch processing of univariate Cox regression analysis, the selection and export of the results. The SAS macro program has potential applications in reducing the workload of statistical analysis and providing a basis for batch processing of univariate Cox regression analysis.

  17. Addressing Gender Equity in Nonfaculty Salaries.

    ERIC Educational Resources Information Center

    Toukoushian, Robert K.

    2000-01-01

    Discusses methodology of gender equity studies on noninstructional employees of colleges and universities, including variable selection in the multiple regression model and alternative approaches for measuring wage gaps. Analysis of staff data at one institution finds that experience and market differences account for 80 percent of gender pay…

  18. ASURV: Astronomical SURVival Statistics

    NASA Astrophysics Data System (ADS)

    Feigelson, E. D.; Nelson, P. I.; Isobe, T.; LaValley, M.

    2014-06-01

    ASURV (Astronomical SURVival Statistics) provides astronomy survival analysis for right- and left-censored data including the maximum-likelihood Kaplan-Meier estimator and several univariate two-sample tests, bivariate correlation measures, and linear regressions. ASURV is written in FORTRAN 77, and is stand-alone and does not call any specialized libraries.

  19. Exact Analysis of Squared Cross-Validity Coefficient in Predictive Regression Models

    ERIC Educational Resources Information Center

    Shieh, Gwowen

    2009-01-01

    In regression analysis, the notion of population validity is of theoretical interest for describing the usefulness of the underlying regression model, whereas the presumably more important concept of population cross-validity represents the predictive effectiveness for the regression equation in future research. It appears that the inference…

  20. Selective principal component regression analysis of fluorescence hyperspectral image to assess aflatoxin contamination in corn

    USDA-ARS?s Scientific Manuscript database

    Selective principal component regression analysis (SPCR) uses a subset of the original image bands for principal component transformation and regression. For optimal band selection before the transformation, this paper used genetic algorithms (GA). In this case, the GA process used the regression co...

  1. Economic Insights into Providing Access to Improved Groundwater Sources in Remote, Low-Resource Areas

    NASA Astrophysics Data System (ADS)

    Abramson, A.; Lazarovitch, N.; Adar, E.

    2013-12-01

    Groundwater is often the most or only feasible drinking water source in remote, low-resource areas. Yet the economics of its development have not been systematically outlined. We applied CBARWI (Cost-Benefit Analysis for Remote Water Improvements), a recently developed Decision Support System, to investigate the economic, physical and management factors related to the costs and benefits of non-networked groundwater supply in remote areas. Synthetic profiles of community water services (n = 17,962), defined across 14 parameters' values and ranges relevant to remote areas, were imputed into the decision framework, and the parameter effects on economic outcomes were investigated through regression analysis (Table 1). Several approaches were included for financing the improvements, after Abramson et al, 2011: willingness-to -pay (WTP), -borrow (WTB) and -work (WTW) in community irrigation (';water-for-work'). We found that low-cost groundwater development approaches are almost 7 times more cost-effective than conventional boreholes fitted with handpumps. The costs of electric, submersible borehole pumps are comparable only when providing expanded water supplies, and off-grid communities pay significantly more for such expansions. In our model, new source construction is less cost-effective than improvement of existing wells, but necessary for expanding access to isolated households. The financing approach significantly impacts the feasibility of demand-driven cost recovery; in our investigation, benefit exceeds cost in 16, 32 and 48% of water service configurations financed by WTP, WTB and WTW, respectively. Regressions of total cost (R2 = 0.723) and net benefit under WTW (R2 = 0.829) along with analysis of output distributions indicate that parameters determining the profitability of irrigation are different from those determining costs and other measures of net benefit. These findings suggest that the cost-benefit outcomes associated with groundwater-based water supply improvements vary considerably by many parameters. Thus, a wide variety of factors should be included to inform water development strategies. Abramson, A. et al (2011), Willingness to pay, borrow and work for water service improvements in developing countries, Water Resour Res, 47Table 1: Descriptions, investigated values and regression coefficients of parameters included in our analysis. Rank of standardized β indicates relative importance. Regression dependent variables are in [($ household-1) y-1]. * Parameters relevant to water-for-work program only.† p <.0001‡ p <.05

  2. Trochanteric entry femoral nails yield better femoral version and lower revision rates-A large cohort multivariate regression analysis.

    PubMed

    Yoon, Richard S; Gage, Mark J; Galos, David K; Donegan, Derek J; Liporace, Frank A

    2017-06-01

    Intramedullary nailing (IMN) has become the standard of care for the treatment of most femoral shaft fractures. Different IMN options include trochanteric and piriformis entry as well as retrograde nails, which may result in varying degrees of femoral rotation. The objective of this study was to analyze postoperative femoral version between three types of nails and to delineate any significant differences in femoral version (DFV) and revision rates. Over a 10-year period, 417 patients underwent IMN of a diaphyseal femur fracture (AO/OTA 32A-C). Of these patients, 316 met inclusion criteria and obtained postoperative computed tomography (CT) scanograms to calculate femoral version and were thus included in the study. In this study, our main outcome measure was the difference in femoral version (DFV) between the uninjured limb and the injured limb. The effect of the following variables on DFV and revision rates were determined via univariate, multivariate, and ordinal regression analyses: gender, age, BMI, ethnicity, mechanism of injury, operative side, open fracture, and table type/position. Statistical significance was set at p<0.05. A total of 316 patients were included. Piriformis entry nails made up the majority (n=141), followed by retrograde (n=108), then trochanteric entry nails (n=67). Univariate regression analysis revealed that a lower BMI was significantly associated with a lower DFV (p=0.006). Controlling for possible covariables, multivariate analysis yielded a significantly lower DFV for trochanteric entry nails than piriformis or retrograde nails (7.9±6.10 vs. 9.5±7.4 vs. 9.4±7.8°, p<0.05). Using revision as an endpoint, trochanteric entry nails also had a significantly lower revision rate, even when controlling for all other variables (p<0.05). Comparative, objective comparisons between DFV between different nails based on entry point revealed that trochanteric nails had a significantly lower DFV and a lower revision rate, even after regression analysis. However, this is not to state that the other nail types exhibited abnormal DFV. Translation to the clinical impact of a few degrees of DFV is also unknown. Future studies to more in-depth study the intricacies of femoral version may lead to improved technology in addition to potentially improved clinical outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. NiftyNet: a deep-learning platform for medical imaging.

    PubMed

    Gibson, Eli; Li, Wenqi; Sudre, Carole; Fidon, Lucas; Shakir, Dzhoshkun I; Wang, Guotai; Eaton-Rosen, Zach; Gray, Robert; Doel, Tom; Hu, Yipeng; Whyntie, Tom; Nachev, Parashkev; Modat, Marc; Barratt, Dean C; Ourselin, Sébastien; Cardoso, M Jorge; Vercauteren, Tom

    2018-05-01

    Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. The NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default. We present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. The NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Educational intervention on physical restraint use in long-term care facilities - Systematic review and meta-analysis.

    PubMed

    Lan, Shao-Huan; Lu, Li-Chin; Lan, Shou-Jen; Chen, Jong-Chen; Wu, Wen-Jun; Chang, Shen-Peng; Lin, Long-Yau

    2017-08-01

    "Physical restraint" formerly used as a measure of protection for psychiatric patients is now widely used. However, existing studies showed that physical restraint not only has inadequate effect of protection but also has negative effects on residents. To analyzes the impact of educational program on the physical restraint use in long-term care facilities. A systematic review with meta-analysis and meta-regression. Eight databases, including Cochrane Library, ProQuest, PubMed, EMBASE, EBSCO, Web of Science, Ovid Medline and Physiotherapy Evidence Database (PEDro), were searched up to January 2017. Eligible studies were classified by intervention and accessed for quality using the Quality Assessment Tool for quantitative studies. Sixteen research articles were eligible in the final review; 10 randomize control trail studies were included in the analysis. The meta-analysis revealed that the use of physical restraint was significantly less often in the experimental (education) group (OR = 0.55, 95% CI: 0.39 to 0.78, p < 0.001) compared to the control group. Meta-regression revealed the period of post education would have decreased the effect of the restraint educational program (β: 0.08, p = 0.002); instead, the longer education period and more times of education would have a stronger effect of reducing the use of physical restraint (β: -0.07, p < 0.001; β: -0.04, p = 0.056). The educational program had an effect on the reduced use of physical restraint. The results of meta-regression suggest that long-term care facilities should provide a continuous education program of physical restraint for caregivers. Copyright © 2017. Published by Elsevier Taiwan.

  5. An association between dietary habits and traffic accidents in patients with chronic liver disease: A data-mining analysis

    PubMed Central

    KAWAGUCHI, TAKUMI; SUETSUGU, TAKURO; OGATA, SHYOU; IMANAGA, MINAMI; ISHII, KUMIKO; ESAKI, NAO; SUGIMOTO, MASAKO; OTSUYAMA, JYURI; NAGAMATSU, AYU; TANIGUCHI, EITARO; ITOU, MINORU; ORIISHI, TETSUHARU; IWASAKI, SHOKO; MIURA, HIROKO; TORIMURA, TAKUJI

    2016-01-01

    The incidence of traffic accidents in patients with chronic liver disease (CLD) is high in the USA. However, the characteristics of patients, including dietary habits, differ between Japan and the USA. The present study investigated the incidence of traffic accidents in CLD patients and the clinical profiles associated with traffic accidents in Japan using a data-mining analysis. A cross-sectional study was performed and 256 subjects [148 CLD patients (CLD group) and 106 patients with other digestive diseases (disease control group)] were enrolled; 2 patients were excluded. The incidence of traffic accidents was compared between the two groups. Independent factors for traffic accidents were analyzed using logistic regression and decision-tree analyses. The incidence of traffic accidents did not differ between the CLD and disease control groups (8.8 vs. 11.3%). The results of the logistic regression analysis showed that yoghurt consumption was the only independent risk factor for traffic accidents (odds ratio, 0.37; 95% confidence interval, 0.16–0.85; P=0.0197). Similarly, the results of the decision-tree analysis showed that yoghurt consumption was the initial divergence variable. In patients who consumed yoghurt habitually, the incidence of traffic accidents was 6.6%, while that in patients who did not consume yoghurt was 16.0%. CLD was not identified as an independent factor in the logistic regression and decision-tree analyses. In conclusion, the difference in the incidence of traffic accidents in Japan between the CLD and disease control groups was insignificant. Furthermore, yoghurt consumption was an independent negative risk factor for traffic accidents in patients with digestive diseases, including CLD. PMID:27123257

  6. An association between dietary habits and traffic accidents in patients with chronic liver disease: A data-mining analysis.

    PubMed

    Kawaguchi, Takumi; Suetsugu, Takuro; Ogata, Shyou; Imanaga, Minami; Ishii, Kumiko; Esaki, Nao; Sugimoto, Masako; Otsuyama, Jyuri; Nagamatsu, Ayu; Taniguchi, Eitaro; Itou, Minoru; Oriishi, Tetsuharu; Iwasaki, Shoko; Miura, Hiroko; Torimura, Takuji

    2016-05-01

    The incidence of traffic accidents in patients with chronic liver disease (CLD) is high in the USA. However, the characteristics of patients, including dietary habits, differ between Japan and the USA. The present study investigated the incidence of traffic accidents in CLD patients and the clinical profiles associated with traffic accidents in Japan using a data-mining analysis. A cross-sectional study was performed and 256 subjects [148 CLD patients (CLD group) and 106 patients with other digestive diseases (disease control group)] were enrolled; 2 patients were excluded. The incidence of traffic accidents was compared between the two groups. Independent factors for traffic accidents were analyzed using logistic regression and decision-tree analyses. The incidence of traffic accidents did not differ between the CLD and disease control groups (8.8 vs. 11.3%). The results of the logistic regression analysis showed that yoghurt consumption was the only independent risk factor for traffic accidents (odds ratio, 0.37; 95% confidence interval, 0.16-0.85; P=0.0197). Similarly, the results of the decision-tree analysis showed that yoghurt consumption was the initial divergence variable. In patients who consumed yoghurt habitually, the incidence of traffic accidents was 6.6%, while that in patients who did not consume yoghurt was 16.0%. CLD was not identified as an independent factor in the logistic regression and decision-tree analyses. In conclusion, the difference in the incidence of traffic accidents in Japan between the CLD and disease control groups was insignificant. Furthermore, yoghurt consumption was an independent negative risk factor for traffic accidents in patients with digestive diseases, including CLD.

  7. [An investigation on job burnout of medical personnel in a top three hospital].

    PubMed

    Li, Y Y; Li, L P

    2016-05-20

    To investigate job burnout status of medical Personnel in a top three hospitals, in order to provide basic data for intervention of the hospital management. A total of 549 doctors and nurses were assessed by Maslach Burnout Inventory-Human Service Survey (MBI-HSS). SPSS 19.0 software package was applied to data description and analysis, including univariate analysis and orderly classification Logistic regression analysis. The rate of high job burnout of doctors and nurses are 36.3% and 42.8% respectively. Female subjects got higher scores (29.4±13.5) on emotional exhaustion than male subjects (26.2±12.8) compared with.Doctors got lower scores (28.2±15.9) on emotional exhaustion and higher scores (31.4±9.3) on personal accomplishment than nurses.Compared with subjects with higher professional title, young subjects with primary professional title got lower scores on personal accomplishment.Subjects with 11-20 years working age got the highest scores on depersonalization.Among all the test departments, medical personnel of emergency department got the highest scores (31.9±12.6) on emotional exhaustion,while the lowest scores (28.1±8.0) on personal accomplishment. According to the results of orderly classification Logistic regression analysis, age, job type,professional qualifications and clinical departments type entered the regression model. Physical resources and emotional resources of medical personnel are overdraft so that they got some high degree of job burnout.Much more attention should be paid to professional mental health of nurses,and personnel who at low age,got low professional titles.Positive measures should be provided, including management mechanism,organizational culture, occupational protection and psychological intervention.

  8. Chordee and Penile Shortening Rather Than Voiding Function Are Associated With Patient Dissatisfaction After Urethroplasty.

    PubMed

    Maciejewski, Conrad C; Haines, Trevor; Rourke, Keith F

    2017-05-01

    To identify factors that predict patient satisfaction after urethroplasty by prospectively examining patient-reported quality of life scores using 3 validated instruments. A 3-part prospective survey consisting of the International Prostate Symptom Score (IPSS), the International Index of Erectile Function (IIEF) score, and a urethroplasty quality of life survey was completed by patients who underwent urethroplasty preoperatively and at 6 months postoperatively. The quality of life score included questions on genitourinary pain, urinary tract infection (UTI), postvoid dribbling, chordee, shortening, overall satisfaction, and overall health. Data were analyzed using descriptive statistics, paired t test, univariate and multivariate logistic regression analyses, and Wilcoxon signed-rank analysis. Patients were enrolled in the study from February 2011 to December 2014, and a total of 94 patients who underwent a total of 102 urethroplasties completed the study. Patients reported statistically significant improvements in IPSS (P < .001). Ordinal linear regression analysis revealed no association between age, IPSS, or IIEF score and patient satisfaction. Wilcoxon signed-rank analysis revealed significant improvements in pain scores (P = .02), UTI (P < .001), perceived overall health (P = .01), and satisfaction (P < .001). Univariate logistic regression identified a length >4 cm and the absence of UTI, pain, shortening, and chordee as predictors of patient satisfaction. Multivariate analysis of quality of life domain scores identified absence of shortening and absence of chordee as independent predictors of patient satisfaction following urethroplasty (P < .01). Patient voiding function and quality of life improve significantly following urethroplasty, but improvement in voiding function is not associated with patient satisfaction. Chordee status and perceived penile shortening impact patient satisfaction, and should be included in patient-reported outcome measures. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Empirical and targeted therapy of candidemia with fluconazole versus echinocandins: a propensity score-derived analysis of a population-based, multicentre prospective cohort.

    PubMed

    López-Cortés, L E; Almirante, B; Cuenca-Estrella, M; Garnacho-Montero, J; Padilla, B; Puig-Asensio, M; Ruiz-Camps, I; Rodríguez-Baño, J

    2016-08-01

    We compared the clinical efficacy of fluconazole and echinocandins in the treatment of candidemia in real practice. The CANDIPOP study is a prospective, population-based cohort study on candidemia carried out between May 2010 and April 2011 in 29 Spanish hospitals. Using strict inclusion criteria, we separately compared the impact of empirical and targeted therapy with fluconazole or echinocandins on 30-day mortality. Cox regression, including a propensity score (PS) for receiving echinocandins, stratified analysis on the PS quartiles and PS-based matched analyses, were performed. The empirical and targeted therapy cohorts comprised 316 and 421 cases, respectively; 30-day mortality was 18.7% with fluconazole and 33.9% with echinocandins (p 0.02) in the empirical therapy group and 19.8% with fluconazole and 27.7% with echinocandins (p 0.06) in the targeted therapy group. Multivariate Cox regression analysis including PS showed that empirical therapy with fluconazole was associated with better prognosis (adjusted hazard ratio 0.38; 95% confidence interval 0.17-0.81; p 0.01); no differences were found within each PS quartile or in cases matched according to PS. Targeted therapy with fluconazole did not show a significant association with mortality in the Cox regression analysis (adjusted hazard ratio 0.77; 95% confidence interval 0.41-1.46; p 0.63), in the PS quartiles or in PS-matched cases. The results were similar among patients with severe sepsis and septic shock. Empirical or targeted treatment with fluconazole was not associated with increased 30-day mortality compared to echinocandins among adults with candidemia. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  10. HIV-related ocular microangiopathic syndrome and color contrast sensitivity.

    PubMed

    Geier, S A; Hammel, G; Bogner, J R; Kronawitter, U; Berninger, T; Goebel, F D

    1994-06-01

    Color vision deficits in patients with acquired immunodeficiency syndrome (AIDS) or human immunodeficiency virus (HIV) disease were reported, and a retinal pathogenic mechanism was proposed. The purpose of this study was to evaluate the association of color vision deficits with HIV-related retinal microangiopathy. A computer graphics system was used to measure protan, deutan, and tritan color contrast sensitivity (CCS) thresholds in 60 HIV-infected patients. Retinal microangiopathy was measured by counting the number of cotton-wool spots, and conjunctival blood-flow sludging was determined. Additional predictors were CD4+ count, age, time on aerosolized pentamidine, time on zidovudine, and Walter Reed staging. The relative influence of each predictor was calculated by stepwise multiple regression analysis (inclusion criterion; incremental P value = < 0.05) using data for the right eyes (RE). The results were validated by using data for the left eyes (LE) and both eyes (BE). The only included predictors in multiple regression analyses for the RE were number of cotton-wool spots (tritan: R = .70; deutan: R = .46; and protan: R = .58; P < .0001 for all axes) and age (tritan: increment of R [Ri] = .05, P = .002; deutan: Ri = .10, P = .004; and protan: Ri = .05, P = .002). The predictors time on zidovudine (Ri = .05, P = .002) and Walter Reed staging (Ri = .03, P = .01) were additionally included in multiple regression analysis for tritan LE. The results for deutan LE were comparable to those for the RE. In the analysis for protan LE, the only included predictor was number of cotton-wool spots. In the analyses for BE, no further predictors were included. The predictors Walter Reed staging and CD4+ count showed a significant association with all three criteria in univariate analysis. Additionally, tritan CCS was significantly associated with conjunctival blood-flow sludging. CCS deficits in patients with HIV disease are primarily associated with the number of cotton-wool spots. Results of this study are in accordance with the hypothesis that CCS deficits are in a relevant part caused by neuroretinal damage secondary to HIV-related microangiopathy.

  11. Is investigator background related to outcome in head to head trials of psychotherapy and pharmacotherapy for adult depression? A systematic review and meta-analysis

    PubMed Central

    Gentili, Claudio; Pietrini, Pietro; Cuijpers, Pim

    2017-01-01

    Background The influence of factors related to the background of investigators conducting trials comparing psychotherapy and pharmacotherapy has remained largely unstudied. Specializations emphasizing biological determinants of mental disorders, like psychiatry, might favor pharmacotherapy, while others stressing psychosocial factors, like psychology, could promote psychotherapy. Yet financial conflict of interest (COI) could be a confounding factor as authors with a medical specialization might receive more sponsoring from the pharmaceutical industry. Method We conducted a meta-analysis with subgroup and meta-regression analysis examining whether the specialization and affiliation of trial authors were associated to outcomes in the direct comparison of psychotherapy and pharmacotherapy for the acute treatment of depression. Meta-regression analysis also included trial risk of bias and author conflict of interest in relationship to the pharmaceutical industry. Results We included 45 trials. In half, the first author was psychologist. The last author was psychiatrist/MD in half of the trials, and a psychologist or statistician/other technical in the rest. Most lead authors had medical affiliations. Subgroup analysis indicated that studies with last authors statisticians favored pharmacotherapy. Univariate analysis showed a negative relationship between the presence of statisticians and outcomes favoring psychotherapy. Multivariate analysis showed that trials including authors with financial COI reported findings more favorable to pharmacotherapy. Discussion We report the first detailed overview of the background of authors conducting head to head trials for depression. Trials co-authored by statisticians appear to subtly favor pharmacotherapy. Receiving funding from the industry is more closely related to finding better outcomes for the industry’s elective treatment than are factors related to authors’ background. Limitations For a minority of authors we could not retrieve background information. The number of trials was insufficient to evidence subtler effects. PMID:28158281

  12. Development of a User Interface for a Regression Analysis Software Tool

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert Manfred; Volden, Thomas R.

    2010-01-01

    An easy-to -use user interface was implemented in a highly automated regression analysis tool. The user interface was developed from the start to run on computers that use the Windows, Macintosh, Linux, or UNIX operating system. Many user interface features were specifically designed such that a novice or inexperienced user can apply the regression analysis tool with confidence. Therefore, the user interface s design minimizes interactive input from the user. In addition, reasonable default combinations are assigned to those analysis settings that influence the outcome of the regression analysis. These default combinations will lead to a successful regression analysis result for most experimental data sets. The user interface comes in two versions. The text user interface version is used for the ongoing development of the regression analysis tool. The official release of the regression analysis tool, on the other hand, has a graphical user interface that is more efficient to use. This graphical user interface displays all input file names, output file names, and analysis settings for a specific software application mode on a single screen which makes it easier to generate reliable analysis results and to perform input parameter studies. An object-oriented approach was used for the development of the graphical user interface. This choice keeps future software maintenance costs to a reasonable limit. Examples of both the text user interface and graphical user interface are discussed in order to illustrate the user interface s overall design approach.

  13. Regression Analysis and the Sociological Imagination

    ERIC Educational Resources Information Center

    De Maio, Fernando

    2014-01-01

    Regression analysis is an important aspect of most introductory statistics courses in sociology but is often presented in contexts divorced from the central concerns that bring students into the discipline. Consequently, we present five lesson ideas that emerge from a regression analysis of income inequality and mortality in the USA and Canada.

  14. Methodologic considerations in the design and analysis of nested case-control studies: association between cytokines and postoperative delirium.

    PubMed

    Ngo, Long H; Inouye, Sharon K; Jones, Richard N; Travison, Thomas G; Libermann, Towia A; Dillon, Simon T; Kuchel, George A; Vasunilashorn, Sarinnapha M; Alsop, David C; Marcantonio, Edward R

    2017-06-06

    The nested case-control study (NCC) design within a prospective cohort study is used when outcome data are available for all subjects, but the exposure of interest has not been collected, and is difficult or prohibitively expensive to obtain for all subjects. A NCC analysis with good matching procedures yields estimates that are as efficient and unbiased as estimates from the full cohort study. We present methodological considerations in a matched NCC design and analysis, which include the choice of match algorithms, analysis methods to evaluate the association of exposures of interest with outcomes, and consideration of overmatching. Matched, NCC design within a longitudinal observational prospective cohort study in the setting of two academic hospitals. Study participants are patients aged over 70 years who underwent scheduled major non-cardiac surgery. The primary outcome was postoperative delirium from in-hospital interviews and medical record review. The main exposure was IL-6 concentration (pg/ml) from blood sampled at three time points before delirium occurred. We used nonparametric signed ranked test to test for the median of the paired differences. We used conditional logistic regression to model the risk of IL-6 on delirium incidence. Simulation was used to generate a sample of cohort data on which unconditional multivariable logistic regression was used, and the results were compared to those of the conditional logistic regression. Partial R-square was used to assess the level of overmatching. We found that the optimal match algorithm yielded more matched pairs than the greedy algorithm. The choice of analytic strategy-whether to consider measured cytokine levels as the predictor or outcome-- yielded inferences that have different clinical interpretations but similar levels of statistical significance. Estimation results from NCC design using conditional logistic regression, and from simulated cohort design using unconditional logistic regression, were similar. We found minimal evidence for overmatching. Using a matched NCC approach introduces methodological challenges into the study design and data analysis. Nonetheless, with careful selection of the match algorithm, match factors, and analysis methods, this design is cost effective and, for our study, yields estimates that are similar to those from a prospective cohort study design.

  15. Composition, volume, and prices for major softwood lumber types in western Oregon and Washington, 1971-2020.

    Treesearch

    James F. Weigand

    1998-01-01

    An analysis of lumber prices provided regressions for price trends during the period 1971-95 for composite lumber grades of major timber species found in the Pacific Northwest west of the crest of the Cascade Range. The analysis included data for coastal Douglas-fir and hem-fir lumber; coastal and inland Pacific Northwest ponderosa, sugar, and western white pines; and...

  16. A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2013-01-01

    Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. PMID:23401213

  17. Private prayer among Alzheimer's caregivers: mediating burden and resiliency.

    PubMed

    Wilks, Scott E; Vonk, M Elizabeth

    2008-01-01

    This study examined whether the coping method of private prayer served as a protective factor of resiliency among a sample (N = 304) of Alzheimer's caregivers. Participants in caregiver support groups completed questionnaires that assessed a number of constructs, including caregiving burden; prayer frequency; use of private prayer as a means of coping; and perceived resiliency. The sample averaged a moderate level of burden and a great extent of prayer usage. Caregiving burden had positively affected the extent of prayer usage and negatively influenced perceived resiliency. Findings from hierarchical regression analysis showed that caregiving burden and private prayer significantly influenced variation in perceived resiliency scores. Results from a regression equation series and path analysis provided support for prayer as a mediator between burden and perceived resiliency. Implications for social work practice and education are discussed.

  18. Applications of modern statistical methods to analysis of data in physical science

    NASA Astrophysics Data System (ADS)

    Wicker, James Eric

    Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance structures. We then use this new algorithm in a genetic algorithm based Expectation-Maximization process that can accurately calculate parameters describing complex clusters in a mixture model routine. Using the accuracy of this GEM algorithm, we assign information scores to cluster calculations in order to best identify the number of mixture components in a multivariate data set. We will showcase how these algorithms can be used to process multivariate data from astronomical observations.

  19. Heat and moisture exchangers (HMEs) and heated humidifiers (HHs) in adult critically ill patients: a systematic review, meta-analysis and meta-regression of randomized controlled trials.

    PubMed

    Vargas, Maria; Chiumello, Davide; Sutherasan, Yuda; Ball, Lorenzo; Esquinas, Antonio M; Pelosi, Paolo; Servillo, Giuseppe

    2017-05-29

    The aims of this systematic review and meta-analysis of randomized controlled trials are to evaluate the effects of active heated humidifiers (HHs) and moisture exchangers (HMEs) in preventing artificial airway occlusion and pneumonia, and on mortality in adult critically ill patients. In addition, we planned to perform a meta-regression analysis to evaluate the relationship between the incidence of artificial airway occlusion, pneumonia and mortality and clinical features of adult critically ill patients. Computerized databases were searched for randomized controlled trials (RCTs) comparing HHs and HMEs and reporting artificial airway occlusion, pneumonia and mortality as predefined outcomes. Relative risk (RR), 95% confidence interval for each outcome and I 2 were estimated for each outcome. Furthermore, weighted random-effect meta-regression analysis was performed to test the relationship between the effect size on each considered outcome and covariates. Eighteen RCTs and 2442 adult critically ill patients were included in the analysis. The incidence of artificial airway occlusion (RR = 1.853; 95% CI 0.792-4.338), pneumonia (RR = 932; 95% CI 0.730-1.190) and mortality (RR = 1.023; 95% CI 0.878-1.192) were not different in patients treated with HMEs and HHs. However, in the subgroup analyses the incidence of airway occlusion was higher in HMEs compared with HHs with non-heated wire (RR = 3.776; 95% CI 1.560-9.143). According to the meta-regression, the effect size in the treatment group on artificial airway occlusion was influenced by the percentage of patients with pneumonia (β = -0.058; p = 0.027; favors HMEs in studies with high prevalence of pneumonia), and a trend was observed for an effect of the duration of mechanical ventilation (MV) (β = -0.108; p = 0.054; favors HMEs in studies with longer MV time). In this meta-analysis we found no superiority of HMEs and HHs, in terms of artificial airway occlusion, pneumonia and mortality. A trend favoring HMEs was observed in studies including a high percentage of patients with pneumonia diagnosis at admission and those with prolonged MV. However, the choice of humidifiers should be made according to the clinical context, trying to avoid possible complications and reaching the appropriate performance at lower costs.

  20. Use of Diuretics is not associated with mortality in patients admitted to the emergency department: results from a cross-sectional study.

    PubMed

    Haider, Dominik G; Lindner, Gregor; Wolzt, Michael; Leichtle, Alexander Benedikt; Fiedler, Georg-Martin; Sauter, Thomas C; Fuhrmann, Valentin; Exadaktylos, Aristomenis K

    2016-02-01

    Patients with diuretic therapy are at risk for drug-induced adverse reactions. It is unknown if presence of diuretic therapy at hospital emergency room admission is associated with mortality. In this cross sectional analysis, all emergency room patients 2010 and 2011 at the Inselspital Bern, Switzerland were included. A multivariable logistic regression model was performed to assess the association between pre-existing diuretic medication and 28 day mortality. Twenty-two thousand two hundred thirty-nine subjects were included in the analysis. A total of 8.5%, 2.5%, and 0.4% of patients used one, two, or three or more diuretics. In univariate analysis spironolactone, torasemide and chlortalidone use were associated with 28 day mortality (all p < 0.05). In a multivariate cox regression model no association with mortality was detectable (p > 0.05). No difference existed between patients with or without diuretic therapy (P > 0.05). Age and creatinine were independent risk factors for mortaliy (both p < 0.05). Use of diuretics is not associated with mortality in an unselected cohort of patients presenting in an emergency room.

  1. Determinants of children's use of and time spent in fast-food and full-service restaurants.

    PubMed

    McIntosh, Alex; Kubena, Karen S; Tolle, Glen; Dean, Wesley; Kim, Mi-Jeong; Jan, Jie-Sheng; Anding, Jenna

    2011-01-01

    Identify parental and children's determinants of children's use of and time spent in fast-food (FF) and full-service (FS) restaurants. Analysis of cross-sectional data. Parents were interviewed by phone; children were interviewed in their homes. Parents and children ages 9-11 or 13-15 from 312 families were obtained via random-digit dialing. Dependent variables were the use of and the time spent in FF and FS restaurants by children. Determinants included parental work schedules, parenting style, and family meal ritual perceptions. Logistic regression was used for multivariate analysis of use of restaurants. Least squares regression was used for multivariate analysis of time spent in restaurants. Significance set at P < .05. Factors related to use of and time spent in FF and FS restaurants included parental work schedules, fathers' use of such restaurants, and children's time spent in the family automobile. Parenting style, parental work, parental eating habits and perceptions of family meals, and children's other uses of their time influence children's use of and time spent in FF and FS restaurants. Copyright © 2011 Society for Nutrition Education. Published by Elsevier Inc. All rights reserved.

  2. Supply and demand analysis for flood insurance by using logistic regression model: case study at Citarum watershed in South Bandung, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Sidi, P.; Mamat, M.; Sukono; Supian, S.

    2017-01-01

    Floods have always occurred in the Citarum river basin. The adverse effects caused by floods can cover all their property, including the destruction of houses. The impact due to damage to residential buildings is usually not small. Indeed, each of flooding, the government and several social organizations providing funds to repair the building. But the donations are given very limited, so it cannot cover the entire cost of repair was necessary. The presence of insurance products for property damage caused by the floods is considered very important. However, if its presence is also considered necessary by the public or not? In this paper, the factors that affect the supply and demand of insurance product for damaged building due to floods are analyzed. The method used in this analysis is the ordinal logistic regression. Based on the analysis that the factors that affect the supply and demand of insurance product for damaged building due to floods, it is included: age, economic circumstances, family situations, insurance motivations, and lifestyle. Simultaneously that the factors affecting supply and demand of insurance product for damaged building due to floods mounted to 65.7%.

  3. Birth by Caesarean Section and the Risk of Adult Psychosis: A Population-Based Cohort Study

    PubMed Central

    O’Neill, Sinéad M.; Curran, Eileen A.; Dalman, Christina; Kenny, Louise C.; Kearney, Patricia M.; Clarke, Gerard; Cryan, John F.; Dinan, Timothy G.; Khashan, Ali S.

    2016-01-01

    Despite the biological plausibility of an association between obstetric mode of delivery and psychosis in later life, studies to date have been inconclusive. We assessed the association between mode of delivery and later onset of psychosis in the offspring. A population-based cohort including data from the Swedish National Registers was used. All singleton live births between 1982 and 1995 were identified (n = 1 345 210) and followed-up to diagnosis at age 16 or later. Mode of delivery was categorized as: unassisted vaginal delivery (VD), assisted VD, elective Caesarean section (CS) (before onset of labor), and emergency CS (after onset of labor). Outcomes included any psychosis; nonaffective psychoses (including schizophrenia only) and affective psychoses (including bipolar disorder only and depression with psychosis only). Cox regression analysis was used reporting partially and fully adjusted hazard ratios (HR) with 95% confidence intervals (CI). Sibling-matched Cox regression was performed to adjust for familial confounding factors. In the fully adjusted analyses, elective CS was significantly associated with any psychosis (HR 1.13, 95% CI 1.03, 1.24). Similar findings were found for nonaffective psychoses (HR 1.13, 95% CI 0.99, 1.29) and affective psychoses (HR 1.17, 95% CI 1.05, 1.31) (χ2 for heterogeneity P = .69). In the sibling-matched Cox regression, this association disappeared (HR 1.03, 95% CI 0.78, 1.37). No association was found between assisted VD or emergency CS and psychosis. This study found that elective CS is associated with an increase in offspring psychosis. However, the association did not persist in the sibling-matched analysis, implying the association is likely due to familial confounding by unmeasured factors such as genetics or environment. PMID:26615187

  4. Cardiovascular risk from water arsenic exposure in Vietnam: Application of systematic review and meta-regression analysis in chemical health risk assessment.

    PubMed

    Phung, Dung; Connell, Des; Rutherford, Shannon; Chu, Cordia

    2017-06-01

    A systematic review (SR) and meta-analysis cannot provide the endpoint answer for a chemical risk assessment (CRA). The objective of this study was to apply SR and meta-regression (MR) analysis to address this limitation using a case study in cardiovascular risk from arsenic exposure in Vietnam. Published studies were searched from PubMed using the keywords of arsenic exposure and cardiovascular diseases (CVD). Random-effects meta-regression was applied to model the linear relationship between arsenic concentration in water and risk of CVD, and then the no-observable-adverse-effect level (NOAEL) were identified from the regression function. The probabilistic risk assessment (PRA) technique was applied to characterize risk of CVD due to arsenic exposure by estimating the overlapping coefficient between dose-response and exposure distribution curves. The risks were evaluated for groundwater, treated and drinking water. A total of 8 high quality studies for dose-response and 12 studies for exposure data were included for final analyses. The results of MR suggested a NOAEL of 50 μg/L and a guideline of 5 μg/L for arsenic in water which valued as a half of NOAEL and guidelines recommended from previous studies and authorities. The results of PRA indicated that the observed exposure level with exceeding CVD risk was 52% for groundwater, 24% for treated water, and 10% for drinking water in Vietnam, respectively. The study found that systematic review and meta-regression can be considered as an ideal method to chemical risk assessment due to its advantages to bring the answer for the endpoint question of a CRA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Multivariate Regression Analysis and Slaughter Livestock,

    DTIC Science & Technology

    AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY

  6. The Effectiveness of Edgenuity When Used for Credit Recovery

    ERIC Educational Resources Information Center

    Eddy, Carri

    2013-01-01

    This quantitative study used descriptive statistics, logistic regression, and chi-square analysis to determine the impact of using Edgenuity (formerly Education 2020 Virtual Classroom) to assist students in the recovery of lost credits. The sample included a North Texas school district. The Skyward student management system provided archived…

  7. A Genetic Analysis of Individual Differences in Dissociative Behaviors in Childhood and Adolescence

    ERIC Educational Resources Information Center

    Becker-Blease, Kathryn A.; Deater-Deckard, Kirby; Eley, Thalia; Freyd, Jennifer J.; Stevenson, Jim; Plomin, Robert

    2004-01-01

    Background: Dissociation--a pattern of general disruption in memory and consciousness--has been found to be an important cognitive component of children's and adults' coping with severe trauma. Dissociative experiences include amnesia, identity disturbance, age regression, difficulty with concentration, and trance states. Stable individual…

  8. Accounting for the Relationship between Initial Status and Growth in Regression Models

    ERIC Educational Resources Information Center

    Kelly, Sean; Ye, Feifei

    2017-01-01

    Educational analysts studying achievement and other educational outcomes frequently encounter an association between initial status and growth, which has important implications for the analysis of covariate effects, including group differences in growth. As explicated by Allison (1990), where only two time points of data are available, identifying…

  9. An analysis of ratings: A guide to RMRATE

    Treesearch

    Thomas C. Brown; Terry C. Daniel; Herbert W. Schroeder; Glen E. Brink

    1990-01-01

    This report describes RMRATE, a computer program for analyzing rating judgments. RMRATE scales ratings using several scaling procedures, and compares the resulting scale values. The scaling procedures include the median and simple mean, standardized values, scale values based on Thurstone's Law of Categorical Judgment, and regression-based values. RMRATE also...

  10. Explaining Relationships among Student Outcomes and the School's Physical Environment

    ERIC Educational Resources Information Center

    Tanner, C. Kenneth

    2008-01-01

    This descriptive study investigated the possible effects of selected school design patterns on third-grade students' academic achievement. A reduced regression analysis revealed the effects of school design components (patterns) on ITBS achievement data, after including control variables, for a sample of third-grade students drawn from 24…

  11. Rural Economic Development: What Makes Rural Communities Grow?

    ERIC Educational Resources Information Center

    Aldrich, Lorna; Kusmin, Lorin

    This report identifies local factors that foster rural economic growth. A review of the literature revealed potential indicators of county economic growth, and those indicators were then tested against data for nonmetro counties during the 1980s using multiple regression analysis. The principal variables examined included demographic and labor…

  12. The Impact of Consumer Credentialism on Employee and Entrepreneur Returns to Higher Education.

    ERIC Educational Resources Information Center

    Tucker, Irvin B., III

    1987-01-01

    Examines the relative importance of education credentials in consumer perceptions of self-employed business people. Using 1980 national cross-sectional data on goods- and service-producing occupations, the regression analysis shows that highly educated entrepreneurs are not influenced by consumer credentialism. Includes 17 references. (MLH)

  13. (The Androgyny Dimension: A Comment on Stokes, Childs, and Fuehrer: And a Response.)

    ERIC Educational Resources Information Center

    Lubinski, David; Stokes, Joseph

    1983-01-01

    Suggests a critical methodological flaw in a study done about the relationship between the Bem Sex-Role Inventory and certain indices of self-disclosure (Stokes, et al.). Notes that multiple regression analysis was not performed in appropriate hierarchical fashion. Includes Stokes reply to the critique. (PAS)

  14. Perceived Foreign Accent: Extended Stays Abroad, Level of Instruction, and Motivation

    ERIC Educational Resources Information Center

    Martinsen, Rob A.; Alvord, Scott M.; Tanner, Joshua

    2014-01-01

    Studies have examined various factors that affect pronunciation including phonetic context, style variation, first language transfer, and experience abroad. A plethora of research has also linked motivation to higher levels of proficiency in the second language. The present study uses native speaker ratings and multiple regression analysis to…

  15. A comparison of different ways of including baseline counts in negative binomial models for data from falls prevention trials.

    PubMed

    Zheng, Han; Kimber, Alan; Goodwin, Victoria A; Pickering, Ruth M

    2018-01-01

    A common design for a falls prevention trial is to assess falling at baseline, randomize participants into an intervention or control group, and ask them to record the number of falls they experience during a follow-up period of time. This paper addresses how best to include the baseline count in the analysis of the follow-up count of falls in negative binomial (NB) regression. We examine the performance of various approaches in simulated datasets where both counts are generated from a mixed Poisson distribution with shared random subject effect. Including the baseline count after log-transformation as a regressor in NB regression (NB-logged) or as an offset (NB-offset) resulted in greater power than including the untransformed baseline count (NB-unlogged). Cook and Wei's conditional negative binomial (CNB) model replicates the underlying process generating the data. In our motivating dataset, a statistically significant intervention effect resulted from the NB-logged, NB-offset, and CNB models, but not from NB-unlogged, and large, outlying baseline counts were overly influential in NB-unlogged but not in NB-logged. We conclude that there is little to lose by including the log-transformed baseline count in standard NB regression compared to CNB for moderate to larger sized datasets. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Extended cox regression model: The choice of timefunction

    NASA Astrophysics Data System (ADS)

    Isik, Hatice; Tutkun, Nihal Ata; Karasoy, Durdu

    2017-07-01

    Cox regression model (CRM), which takes into account the effect of censored observations, is one the most applicative and usedmodels in survival analysis to evaluate the effects of covariates. Proportional hazard (PH), requires a constant hazard ratio over time, is the assumptionofCRM. Using extended CRM provides the test of including a time dependent covariate to assess the PH assumption or an alternative model in case of nonproportional hazards. In this study, the different types of real data sets are used to choose the time function and the differences between time functions are analyzed and discussed.

  17. Logistic regression trees for initial selection of interesting loci in case-control studies

    PubMed Central

    Nickolov, Radoslav Z; Milanov, Valentin B

    2007-01-01

    Modern genetic epidemiology faces the challenge of dealing with hundreds of thousands of genetic markers. The selection of a small initial subset of interesting markers for further investigation can greatly facilitate genetic studies. In this contribution we suggest the use of a logistic regression tree algorithm known as logistic tree with unbiased selection. Using the simulated data provided for Genetic Analysis Workshop 15, we show how this algorithm, with incorporation of multifactor dimensionality reduction method, can reduce an initial large pool of markers to a small set that includes the interesting markers with high probability. PMID:18466557

  18. Genome-wide regression and prediction with the BGLR statistical package.

    PubMed

    Pérez, Paulino; de los Campos, Gustavo

    2014-10-01

    Many modern genomic data analyses require implementing regressions where the number of parameters (p, e.g., the number of marker effects) exceeds sample size (n). Implementing these large-p-with-small-n regressions poses several statistical and computational challenges, some of which can be confronted using Bayesian methods. This approach allows integrating various parametric and nonparametric shrinkage and variable selection procedures in a unified and consistent manner. The BGLR R-package implements a large collection of Bayesian regression models, including parametric variable selection and shrinkage methods and semiparametric procedures (Bayesian reproducing kernel Hilbert spaces regressions, RKHS). The software was originally developed for genomic applications; however, the methods implemented are useful for many nongenomic applications as well. The response can be continuous (censored or not) or categorical (either binary or ordinal). The algorithm is based on a Gibbs sampler with scalar updates and the implementation takes advantage of efficient compiled C and Fortran routines. In this article we describe the methods implemented in BGLR, present examples of the use of the package, and discuss practical issues emerging in real-data analysis. Copyright © 2014 by the Genetics Society of America.

  19. Meta-regression approximations to reduce publication selection bias.

    PubMed

    Stanley, T D; Doucouliagos, Hristos

    2014-03-01

    Publication selection bias is a serious challenge to the integrity of all empirical sciences. We derive meta-regression approximations to reduce this bias. Our approach employs Taylor polynomial approximations to the conditional mean of a truncated distribution. A quadratic approximation without a linear term, precision-effect estimate with standard error (PEESE), is shown to have the smallest bias and mean squared error in most cases and to outperform conventional meta-analysis estimators, often by a great deal. Monte Carlo simulations also demonstrate how a new hybrid estimator that conditionally combines PEESE and the Egger regression intercept can provide a practical solution to publication selection bias. PEESE is easily expanded to accommodate systematic heterogeneity along with complex and differential publication selection bias that is related to moderator variables. By providing an intuitive reason for these approximations, we can also explain why the Egger regression works so well and when it does not. These meta-regression methods are applied to several policy-relevant areas of research including antidepressant effectiveness, the value of a statistical life, the minimum wage, and nicotine replacement therapy. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Cost-effectiveness analysis of the diarrhea alleviation through zinc and oral rehydration therapy (DAZT) program in rural Gujarat India: an application of the net-benefit regression framework.

    PubMed

    Shillcutt, Samuel D; LeFevre, Amnesty E; Fischer-Walker, Christa L; Taneja, Sunita; Black, Robert E; Mazumder, Sarmila

    2017-01-01

    This study evaluates the cost-effectiveness of the DAZT program for scaling up treatment of acute child diarrhea in Gujarat India using a net-benefit regression framework. Costs were calculated from societal and caregivers' perspectives and effectiveness was assessed in terms of coverage of zinc and both zinc and Oral Rehydration Salt. Regression models were tested in simple linear regression, with a specified set of covariates, and with a specified set of covariates and interaction terms using linear regression with endogenous treatment effects was used as the reference case. The DAZT program was cost-effective with over 95% certainty above $5.50 and $7.50 per appropriately treated child in the unadjusted and adjusted models respectively, with specifications including interaction terms being cost-effective with 85-97% certainty. Findings from this study should be combined with other evidence when considering decisions to scale up programs such as the DAZT program to promote the use of ORS and zinc to treat child diarrhea.

  1. Prevalence of vitamin D deficiency and associated factors in women and newborns in the immediate postpartum period

    PubMed Central

    do Prado, Mara Rúbia Maciel Cardoso; Oliveira, Fabiana de Cássia Carvalho; Assis, Karine Franklin; Ribeiro, Sarah Aparecida Vieira; do Prado, Pedro Paulo; Sant'Ana, Luciana Ferreira da Rocha; Priore, Silvia Eloiza; Franceschini, Sylvia do Carmo Castro

    2015-01-01

    Abstract Objective: To assess the prevalence of vitamin D deficiency and its associated factors in women and their newborns in the postpartum period. Methods: This cross-sectional study evaluated vitamin D deficiency/insufficiency in 226 women and their newborns in Viçosa (Minas Gerais, BR) between December 2011 and November 2012. Cord blood and venous maternal blood were collected to evaluate the following biochemical parameters: vitamin D, alkaline phosphatase, calcium, phosphorus and parathyroid hormone. Poisson regression analysis, with a confidence interval of 95%, was applied to assess vitamin D deficiency and its associated factors. Multiple linear regression analysis was performed to identify factors associated with 25(OH)D deficiency in the newborns and women from the study. The criteria for variable inclusion in the multiple linear regression model was the association with the dependent variable in the simple linear regression analysis, considering p<0.20. Significance level was α <5%. Results: From 226 women included, 200 (88.5%) were 20-44 years old; the median age was 28 years. Deficient/insufficient levels of vitamin D were found in 192 (85%) women and in 182 (80.5%) neonates. The maternal 25(OH)D and alkaline phosphatase levels were independently associated with vitamin D deficiency in infants. Conclusions: This study identified a high prevalence of vitamin D deficiency and insufficiency in women and newborns and the association between maternal nutritional status of vitamin D and their infants' vitamin D status. PMID:26100593

  2. Risk factors for pedicled flap necrosis in hand soft tissue reconstruction: a multivariate logistic regression analysis.

    PubMed

    Gong, Xu; Cui, Jianli; Jiang, Ziping; Lu, Laijin; Li, Xiucun

    2018-03-01

    Few clinical retrospective studies have reported the risk factors of pedicled flap necrosis in hand soft tissue reconstruction. The aim of this study was to identify non-technical risk factors associated with pedicled flap perioperative necrosis in hand soft tissue reconstruction via a multivariate logistic regression analysis. For patients with hand soft tissue reconstruction, we carefully reviewed hospital records and identified 163 patients who met the inclusion criteria. The characteristics of these patients, flap transfer procedures and postoperative complications were recorded. Eleven predictors were identified. The correlations between pedicled flap necrosis and risk factors were analysed using a logistic regression model. Of 163 skin flaps, 125 flaps survived completely without any complications. The pedicled flap necrosis rate in hands was 11.04%, which included partial flap necrosis (7.36%) and total flap necrosis (3.68%). Soft tissue defects in fingers were noted in 68.10% of all cases. The logistic regression analysis indicated that the soft tissue defect site (P = 0.046, odds ratio (OR) = 0.079, confidence interval (CI) (0.006, 0.959)), flap size (P = 0.020, OR = 1.024, CI (1.004, 1.045)) and postoperative wound infection (P < 0.001, OR = 17.407, CI (3.821, 79.303)) were statistically significant risk factors for pedicled flap necrosis of the hand. Soft tissue defect site, flap size and postoperative wound infection were risk factors associated with pedicled flap necrosis in hand soft tissue defect reconstruction. © 2017 Royal Australasian College of Surgeons.

  3. The 11-year solar cycle in current reanalyses: a (non)linear attribution study of the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Kuchar, A.; Sacha, P.; Miksovsky, J.; Pisoft, P.

    2015-06-01

    This study focusses on the variability of temperature, ozone and circulation characteristics in the stratosphere and lower mesosphere with regard to the influence of the 11-year solar cycle. It is based on attribution analysis using multiple nonlinear techniques (support vector regression, neural networks) besides the multiple linear regression approach. The analysis was applied to several current reanalysis data sets for the 1979-2013 period, including MERRA, ERA-Interim and JRA-55, with the aim to compare how these types of data resolve especially the double-peaked solar response in temperature and ozone variables and the consequent changes induced by these anomalies. Equatorial temperature signals in the tropical stratosphere were found to be in qualitative agreement with previous attribution studies, although the agreement with observational results was incomplete, especially for JRA-55. The analysis also pointed to the solar signal in the ozone data sets (i.e. MERRA and ERA-Interim) not being consistent with the observed double-peaked ozone anomaly extracted from satellite measurements. The results obtained by linear regression were confirmed by the nonlinear approach through all data sets, suggesting that linear regression is a relevant tool to sufficiently resolve the solar signal in the middle atmosphere. The seasonal evolution of the solar response was also discussed in terms of dynamical causalities in the winter hemispheres. The hypothetical mechanism of a weaker Brewer-Dobson circulation at solar maxima was reviewed together with a discussion of polar vortex behaviour.

  4. Determinants of orphan drugs prices in France: a regression analysis.

    PubMed

    Korchagina, Daria; Millier, Aurelie; Vataire, Anne-Lise; Aballea, Samuel; Falissard, Bruno; Toumi, Mondher

    2017-04-21

    The introduction of the orphan drug legislation led to the increase in the number of available orphan drugs, but the access to them is often limited due to the high price. Social preferences regarding funding orphan drugs as well as the criteria taken into consideration while setting the price remain unclear. The study aimed at identifying the determinant of orphan drug prices in France using a regression analysis. All drugs with a valid orphan designation at the moment of launch for which the price was available in France were included in the analysis. The selection of covariates was based on a literature review and included drug characteristics (Anatomical Therapeutic Chemical (ATC) class, treatment line, age of target population), diseases characteristics (severity, prevalence, availability of alternative therapeutic options), health technology assessment (HTA) details (actual benefit (AB) and improvement in actual benefit (IAB) scores, delay between the HTA and commercialisation), and study characteristics (type of study, comparator, type of endpoint). The main data sources were European public assessment reports, HTA reports, summaries of opinion on orphan designation of the European Medicines Agency, and the French insurance database of drugs and tariffs. A generalized regression model was developed to test the association between the annual treatment cost and selected covariates. A total of 68 drugs were included. The mean annual treatment cost was €96,518. In the univariate analysis, the ATC class (p = 0.01), availability of alternative treatment options (p = 0.02) and the prevalence (p = 0.02) showed a significant correlation with the annual cost. The multivariate analysis demonstrated significant association between the annual cost and availability of alternative treatment options, ATC class, IAB score, type of comparator in the pivotal clinical trial, as well as commercialisation date and delay between the HTA and commercialisation. The orphan drug pricing is a multivariate phenomenon. The complex association between drug prices and the studied attributes and shows that payers integrate multiple variables in decision making when setting orphan drug prices. The interpretation of the study results is limited by the small sample size and the complex data structure.

  5. Time series regression model for infectious disease and weather.

    PubMed

    Imai, Chisato; Armstrong, Ben; Chalabi, Zaid; Mangtani, Punam; Hashizume, Masahiro

    2015-10-01

    Time series regression has been developed and long used to evaluate the short-term associations of air pollution and weather with mortality or morbidity of non-infectious diseases. The application of the regression approaches from this tradition to infectious diseases, however, is less well explored and raises some new issues. We discuss and present potential solutions for five issues often arising in such analyses: changes in immune population, strong autocorrelations, a wide range of plausible lag structures and association patterns, seasonality adjustments, and large overdispersion. The potential approaches are illustrated with datasets of cholera cases and rainfall from Bangladesh and influenza and temperature in Tokyo. Though this article focuses on the application of the traditional time series regression to infectious diseases and weather factors, we also briefly introduce alternative approaches, including mathematical modeling, wavelet analysis, and autoregressive integrated moving average (ARIMA) models. Modifications proposed to standard time series regression practice include using sums of past cases as proxies for the immune population, and using the logarithm of lagged disease counts to control autocorrelation due to true contagion, both of which are motivated from "susceptible-infectious-recovered" (SIR) models. The complexity of lag structures and association patterns can often be informed by biological mechanisms and explored by using distributed lag non-linear models. For overdispersed models, alternative distribution models such as quasi-Poisson and negative binomial should be considered. Time series regression can be used to investigate dependence of infectious diseases on weather, but may need modifying to allow for features specific to this context. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Classical Statistics and Statistical Learning in Imaging Neuroscience

    PubMed Central

    Bzdok, Danilo

    2017-01-01

    Brain-imaging research has predominantly generated insight by means of classical statistics, including regression-type analyses and null-hypothesis testing using t-test and ANOVA. Throughout recent years, statistical learning methods enjoy increasing popularity especially for applications in rich and complex data, including cross-validated out-of-sample prediction using pattern classification and sparsity-inducing regression. This concept paper discusses the implications of inferential justifications and algorithmic methodologies in common data analysis scenarios in neuroimaging. It is retraced how classical statistics and statistical learning originated from different historical contexts, build on different theoretical foundations, make different assumptions, and evaluate different outcome metrics to permit differently nuanced conclusions. The present considerations should help reduce current confusion between model-driven classical hypothesis testing and data-driven learning algorithms for investigating the brain with imaging techniques. PMID:29056896

  7. [Factors of psychiatric treatment satisfaction in inpatients with neurotic and depressive disorders].

    PubMed

    Tsygankov, B D; Malygin, Ya V; Gatin, F F

    2015-01-01

    Factors of patients' satisfaction with medical care vary depending on the level of care and medical specialty. Patient's satisfaction with psychiatric care is understudied. An aim of the present study is to find out the factors of satisfaction with psychiatric care in inpatients with neurotic and depressive disorders. The sample included 356 inpatients suffering from neurotic or depressive disorders. The patients were questioned using PAPI questionnaire designed for this study. Statistical analysis was performed using multiple regression. Key factors of satisfaction with medical care included quality of work of nurses and psychiatrists, hospital ward comfort, the number and quality of psychotherapeutic sessions, psychiatrists' empathy and aptitude to provide the patient with information about the disease and treatment. Multiple regression equation explained 81% of the variance of patients' satisfaction.

  8. Advanced statistics: linear regression, part II: multiple linear regression.

    PubMed

    Marill, Keith A

    2004-01-01

    The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.

  9. Association between obesity with disease-free survival and overall survival in triple-negative breast cancer: A meta-analysis.

    PubMed

    Mei, Lin; He, Lin; Song, Yuhua; Lv, Yang; Zhang, Lijiu; Hao, Fengxi; Xu, Mengmeng

    2018-05-01

    To investigate the relationship between obesity and disease-free survival (DFS) and overall survival (OS) of triple-negative breast cancer. Citations were searched in PubMed, Cochrane Library, and Web of Science. Random effect model meta-analysis was conducted by using Revman software version 5.0, and publication bias was evaluated by creating Egger regression with STATA software version 12. Nine studies (4412 patients) were included for DFS meta-analysis, 8 studies (4392 patients) include for OS meta-analysis. There were no statistical significances between obesity with DFS (P = .60) and OS (P = .71) in triple-negative breast cancer (TNBC) patients. Obesity has no impact on DFS and OS in patients with TNBC.

  10. [Predicting the probability of development and progression of primary open angle glaucoma by regression modeling].

    PubMed

    Likhvantseva, V G; Sokolov, V A; Levanova, O N; Kovelenova, I V

    2018-01-01

    Prediction of the clinical course of primary open-angle glaucoma (POAG) is one of the main directions in solving the problem of vision loss prevention and stabilization of the pathological process. Simple statistical methods of correlation analysis show the extent of each risk factor's impact, but do not indicate the total impact of these factors in personalized combinations. The relationships between the risk factors is subject to correlation and regression analysis. The regression equation represents the dependence of the mathematical expectation of the resulting sign on the combination of factor signs. To develop a technique for predicting the probability of development and progression of primary open-angle glaucoma based on a personalized combination of risk factors by linear multivariate regression analysis. The study included 66 patients (23 female and 43 male; 132 eyes) with newly diagnosed primary open-angle glaucoma. The control group consisted of 14 patients (8 male and 6 female). Standard ophthalmic examination was supplemented with biochemical study of lacrimal fluid. Concentration of matrix metalloproteinase MMP-2 and MMP-9 in tear fluid in both eyes was determined using 'sandwich' enzyme-linked immunosorbent assay (ELISA) method. The study resulted in the development of regression equations and step-by-step multivariate logistic models that can help calculate the risk of development and progression of POAG. Those models are based on expert evaluation of clinical and instrumental indicators of hydrodynamic disturbances (coefficient of outflow ease - C, volume of intraocular fluid secretion - F, fluctuation of intraocular pressure), as well as personalized morphometric parameters of the retina (central retinal thickness in the macular area) and concentration of MMP-2 and MMP-9 in the tear film. The newly developed regression equations are highly informative and can be a reliable tool for studying of the influence vector and assessment of pathogenic potential of the independent risk factors in specific personalized combinations.

  11. Classification of sodium MRI data of cartilage using machine learning.

    PubMed

    Madelin, Guillaume; Poidevin, Frederick; Makrymallis, Antonios; Regatte, Ravinder R

    2015-11-01

    To assess the possible utility of machine learning for classifying subjects with and subjects without osteoarthritis using sodium magnetic resonance imaging data. Theory: Support vector machine, k-nearest neighbors, naïve Bayes, discriminant analysis, linear regression, logistic regression, neural networks, decision tree, and tree bagging were tested. Sodium magnetic resonance imaging with and without fluid suppression by inversion recovery was acquired on the knee cartilage of 19 controls and 28 osteoarthritis patients. Sodium concentrations were measured in regions of interests in the knee for both acquisitions. Mean (MEAN) and standard deviation (STD) of these concentrations were measured in each regions of interest, and the minimum, maximum, and mean of these two measurements were calculated over all regions of interests for each subject. The resulting 12 variables per subject were used as predictors for classification. Either Min [STD] alone, or in combination with Mean [MEAN] or Min [MEAN], all from fluid suppressed data, were the best predictors with an accuracy >74%, mainly with linear logistic regression and linear support vector machine. Other good classifiers include discriminant analysis, linear regression, and naïve Bayes. Machine learning is a promising technique for classifying osteoarthritis patients and controls from sodium magnetic resonance imaging data. © 2014 Wiley Periodicals, Inc.

  12. Template based rotation: A method for functional connectivity analysis with a priori templates☆

    PubMed Central

    Schultz, Aaron P.; Chhatwal, Jasmeer P.; Huijbers, Willem; Hedden, Trey; van Dijk, Koene R.A.; McLaren, Donald G.; Ward, Andrew M.; Wigman, Sarah; Sperling, Reisa A.

    2014-01-01

    Functional connectivity magnetic resonance imaging (fcMRI) is a powerful tool for understanding the network level organization of the brain in research settings and is increasingly being used to study large-scale neuronal network degeneration in clinical trial settings. Presently, a variety of techniques, including seed-based correlation analysis and group independent components analysis (with either dual regression or back projection) are commonly employed to compute functional connectivity metrics. In the present report, we introduce template based rotation,1 a novel analytic approach optimized for use with a priori network parcellations, which may be particularly useful in clinical trial settings. Template based rotation was designed to leverage the stable spatial patterns of intrinsic connectivity derived from out-of-sample datasets by mapping data from novel sessions onto the previously defined a priori templates. We first demonstrate the feasibility of using previously defined a priori templates in connectivity analyses, and then compare the performance of template based rotation to seed based and dual regression methods by applying these analytic approaches to an fMRI dataset of normal young and elderly subjects. We observed that template based rotation and dual regression are approximately equivalent in detecting fcMRI differences between young and old subjects, demonstrating similar effect sizes for group differences and similar reliability metrics across 12 cortical networks. Both template based rotation and dual-regression demonstrated larger effect sizes and comparable reliabilities as compared to seed based correlation analysis, though all three methods yielded similar patterns of network differences. When performing inter-network and sub-network connectivity analyses, we observed that template based rotation offered greater flexibility, larger group differences, and more stable connectivity estimates as compared to dual regression and seed based analyses. This flexibility owes to the reduced spatial and temporal orthogonality constraints of template based rotation as compared to dual regression. These results suggest that template based rotation can provide a useful alternative to existing fcMRI analytic methods, particularly in clinical trial settings where predefined outcome measures and conserved network descriptions across groups are at a premium. PMID:25150630

  13. Regression Analysis: Legal Applications in Institutional Research

    ERIC Educational Resources Information Center

    Frizell, Julie A.; Shippen, Benjamin S., Jr.; Luna, Andrew L.

    2008-01-01

    This article reviews multiple regression analysis, describes how its results should be interpreted, and instructs institutional researchers on how to conduct such analyses using an example focused on faculty pay equity between men and women. The use of multiple regression analysis will be presented as a method with which to compare salaries of…

  14. RAWS II: A MULTIPLE REGRESSION ANALYSIS PROGRAM,

    DTIC Science & Technology

    This memorandum gives instructions for the use and operation of a revised version of RAWS, a multiple regression analysis program. The program...of preprocessed data, the directed retention of variable, listing of the matrix of the normal equations and its inverse, and the bypassing of the regression analysis to provide the input variable statistics only. (Author)

  15. Relationship between alcohol-related expectancies and anterior brain functioning in young men at risk for developing alcoholism.

    PubMed

    Deckel, A W; Hesselbrock, V; Bauer, L

    1995-04-01

    This experiment examined the relationship between anterior brain functioning and alcohol-related expectancies. Ninety-one young men at risk for developing alcoholism were assessed on the Alcohol Expectancy Questionnaire (AEQ) and administered neuropsychological and EEG tests. Three of the scales on the AEQ, including the "Enhanced Sexual Functioning" scale, the "Increased Social Assertiveness" scale, and items from the "Global/Positive Change scale," were used, because each of these scales has been found to discriminate alcohol-based expectancies adequately by at least two separate sets of investigators. Regression analysis found that anterior neuropsychological tests (including the Wisconsin Card Sorting test, the Porteus Maze test, the Controlled Oral Word Fluency test, and the Luria-Nebraska motor functioning tests) were predictive of the AEQ scale scores on regression analysis. One of the AEQ scales, "Enhanced Sexual Functioning," was also predicted by WAIS-R-Verbal scales, whereas the "Global/Positive" AEQ scale was predicted by the WAIS-R Performance scales. Regression analysis using EEG power as predictors found that left versus right hemisphere "difference" scores obtained from frontal EEG leads were predictive of the three AEQ scales. Conversely, parietal EEG power did not significantly predict any of the expectancy scales. It is concluded that anterior brain any of the expectancy scales. It is concluded that anterior brain functioning is associated with alcohol-related expectancies. These findings suggest that alcohol-related expectancy may be, in part, biologically determined by frontal/prefrontal systems, and that dysfunctioning in these systems may serve as a risk factor for the development of alcohol-related behaviors.

  16. Data Mining CMMSs: How to Convert Data into Knowledge.

    PubMed

    Fennigkoh, Larry; Nanney, D Courtney

    2018-01-01

    Although the healthcare technology management (HTM) community has decades of accumulated medical device-related maintenance data, little knowledge has been gleaned from these data. Finding and extracting such knowledge requires the use of the well-established, but admittedly somewhat foreign to HTM, application of inferential statistics. This article sought to provide a basic background on inferential statistics and describe a case study of their application, limitations, and proper interpretation. The research question associated with this case study involved examining the effects of ventilator preventive maintenance (PM) labor hours, age, and manufacturer on needed unscheduled corrective maintenance (CM) labor hours. The study sample included more than 21,000 combined PM inspections and CM work orders on 2,045 ventilators from 26 manufacturers during a five-year period (2012-16). A multiple regression analysis revealed that device age, manufacturer, and accumulated PM inspection labor hours all influenced the amount of CM labor significantly (P < 0.001). In essence, CM labor hours increased with increasing PM labor. However, and despite the statistical significance of these predictors, the regression analysis also indicated that ventilator age, manufacturer, and PM labor hours only explained approximately 16% of all variability in CM labor, with the remainder (84%) caused by other factors that were not included in the study. As such, the regression model obtained here is not suitable for predicting ventilator CM labor hours.

  17. A simple measure of cognitive reserve is relevant for cognitive performance in MS patients.

    PubMed

    Della Corte, Marida; Santangelo, Gabriella; Bisecco, Alvino; Sacco, Rosaria; Siciliano, Mattia; d'Ambrosio, Alessandro; Docimo, Renato; Cuomo, Teresa; Lavorgna, Luigi; Bonavita, Simona; Tedeschi, Gioacchino; Gallo, Antonio

    2018-05-04

    Cognitive reserve (CR) contributes to preserve cognition despite brain damage. This theory has been applied to multiple sclerosis (MS) to explain the partial relationship between cognition and MRI markers of brain pathology. Our aim was to determine the relationship between two measures of CR and cognition in MS. One hundred and forty-seven MS patients were enrolled. Cognition was assessed using the Rao's Brief Repeatable Battery and the Stroop Test. CR was measured as the vocabulary subtest of the WAIS-R score (VOC) and the number of years of formal education (EDU). Regression analysis included raw score data on each neuropsychological (NP) test as dependent variables and demographic/clinical parameters, VOC, and EDU as independent predictors. A binary logistic regression analysis including clinical/CR parameters as covariates and absence/presence of cognitive deficits as dependent variables was performed too. VOC, but not EDU, was strongly correlated with performances at all ten NP tests. EDU was correlated with executive performances. The binary logistic regression showed that only the Expanded Disability Status Scale (EDSS) and VOC were independently correlated with the presence/absence of CD. The lower the VOC and/or the higher the EDSS, the higher the frequency of CD. In conclusion, our study supports the relevance of CR in subtending cognitive performances and the presence of CD in MS patients.

  18. [Comparison of application of Cochran-Armitage trend test and linear regression analysis for rate trend analysis in epidemiology study].

    PubMed

    Wang, D Z; Wang, C; Shen, C F; Zhang, Y; Zhang, H; Song, G D; Xue, X D; Xu, Z L; Zhang, S; Jiang, G H

    2017-05-10

    We described the time trend of acute myocardial infarction (AMI) from 1999 to 2013 in Tianjin incidence rate with Cochran-Armitage trend (CAT) test and linear regression analysis, and the results were compared. Based on actual population, CAT test had much stronger statistical power than linear regression analysis for both overall incidence trend and age specific incidence trend (Cochran-Armitage trend P value

  19. A primer for biomedical scientists on how to execute model II linear regression analysis.

    PubMed

    Ludbrook, John

    2012-04-01

    1. There are two very different ways of executing linear regression analysis. One is Model I, when the x-values are fixed by the experimenter. The other is Model II, in which the x-values are free to vary and are subject to error. 2. I have received numerous complaints from biomedical scientists that they have great difficulty in executing Model II linear regression analysis. This may explain the results of a Google Scholar search, which showed that the authors of articles in journals of physiology, pharmacology and biochemistry rarely use Model II regression analysis. 3. I repeat my previous arguments in favour of using least products linear regression analysis for Model II regressions. I review three methods for executing ordinary least products (OLP) and weighted least products (WLP) regression analysis: (i) scientific calculator and/or computer spreadsheet; (ii) specific purpose computer programs; and (iii) general purpose computer programs. 4. Using a scientific calculator and/or computer spreadsheet, it is easy to obtain correct values for OLP slope and intercept, but the corresponding 95% confidence intervals (CI) are inaccurate. 5. Using specific purpose computer programs, the freeware computer program smatr gives the correct OLP regression coefficients and obtains 95% CI by bootstrapping. In addition, smatr can be used to compare the slopes of OLP lines. 6. When using general purpose computer programs, I recommend the commercial programs systat and Statistica for those who regularly undertake linear regression analysis and I give step-by-step instructions in the Supplementary Information as to how to use loss functions. © 2011 The Author. Clinical and Experimental Pharmacology and Physiology. © 2011 Blackwell Publishing Asia Pty Ltd.

  20. Water quality parameter measurement using spectral signatures

    NASA Technical Reports Server (NTRS)

    White, P. E.

    1973-01-01

    Regression analysis is applied to the problem of measuring water quality parameters from remote sensing spectral signature data. The equations necessary to perform regression analysis are presented and methods of testing the strength and reliability of a regression are described. An efficient algorithm for selecting an optimal subset of the independent variables available for a regression is also presented.

  1. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws

    USGS Publications Warehouse

    Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L.

    2011-01-01

    Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain. ?? 2011 by the Ecological Society of America.

  2. The Andrews’ Principles of Risk, Need, and Responsivity as Applied in Drug Abuse Treatment Programs: Meta-Analysis of Crime and Drug Use Outcomes

    PubMed Central

    Prendergast, Michael L.; Pearson, Frank S.; Podus, Deborah; Hamilton, Zachary K.; Greenwell, Lisa

    2013-01-01

    Objectives The purpose of the present meta-analysis was to answer the question: Can the Andrews principles of risk, needs, and responsivity, originally developed for programs that treat offenders, be extended to programs that treat drug abusers? Methods Drawing from a dataset that included 243 independent comparisons, we conducted random-effects meta-regression and ANOVA-analog meta-analyses to test the Andrews principles by averaging crime and drug use outcomes over a diverse set of programs for drug abuse problems. Results For crime outcomes, in the meta-regressions the point estimates for each of the principles were substantial, consistent with previous studies of the Andrews principles. There was also a substantial point estimate for programs exhibiting a greater number of the principles. However, almost all of the 95% confidence intervals included the zero point. For drug use outcomes, in the meta-regressions the point estimates for each of the principles was approximately zero; however, the point estimate for programs exhibiting a greater number of the principles was somewhat positive. All of the estimates for the drug use principles had confidence intervals that included the zero point. Conclusions This study supports previous findings from primary research studies targeting the Andrews principles that those principles are effective in reducing crime outcomes, here in meta-analytic research focused on drug treatment programs. By contrast, programs that follow the principles appear to have very little effect on drug use outcomes. Primary research studies that experimentally test the Andrews principles in drug treatment programs are recommended. PMID:24058325

  3. Characterizing mammographic images by using generic texture features

    PubMed Central

    2012-01-01

    Introduction Although mammographic density is an established risk factor for breast cancer, its use is limited in clinical practice because of a lack of automated and standardized measurement methods. The aims of this study were to evaluate a variety of automated texture features in mammograms as risk factors for breast cancer and to compare them with the percentage mammographic density (PMD) by using a case-control study design. Methods A case-control study including 864 cases and 418 controls was analyzed automatically. Four hundred seventy features were explored as possible risk factors for breast cancer. These included statistical features, moment-based features, spectral-energy features, and form-based features. An elaborate variable selection process using logistic regression analyses was performed to identify those features that were associated with case-control status. In addition, PMD was assessed and included in the regression model. Results Of the 470 image-analysis features explored, 46 remained in the final logistic regression model. An area under the curve of 0.79, with an odds ratio per standard deviation change of 2.88 (95% CI, 2.28 to 3.65), was obtained with validation data. Adding the PMD did not improve the final model. Conclusions Using texture features to predict the risk of breast cancer appears feasible. PMD did not show any additional value in this study. With regard to the features assessed, most of the analysis tools appeared to reflect mammographic density, although some features did not correlate with PMD. It remains to be investigated in larger case-control studies whether these features can contribute to increased prediction accuracy. PMID:22490545

  4. [Spatial interpolation of soil organic matter using regression Kriging and geographically weighted regression Kriging].

    PubMed

    Yang, Shun-hua; Zhang, Hai-tao; Guo, Long; Ren, Yan

    2015-06-01

    Relative elevation and stream power index were selected as auxiliary variables based on correlation analysis for mapping soil organic matter. Geographically weighted regression Kriging (GWRK) and regression Kriging (RK) were used for spatial interpolation of soil organic matter and compared with ordinary Kriging (OK), which acts as a control. The results indicated that soil or- ganic matter was significantly positively correlated with relative elevation whilst it had a significantly negative correlation with stream power index. Semivariance analysis showed that both soil organic matter content and its residuals (including ordinary least square regression residual and GWR resi- dual) had strong spatial autocorrelation. Interpolation accuracies by different methods were esti- mated based on a data set of 98 validation samples. Results showed that the mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) of RK were respectively 39.2%, 17.7% and 20.6% lower than the corresponding values of OK, with a relative-improvement (RI) of 20.63. GWRK showed a similar tendency, having its ME, MAE and RMSE to be respectively 60.6%, 23.7% and 27.6% lower than those of OK, with a RI of 59.79. Therefore, both RK and GWRK significantly improved the accuracy of OK interpolation of soil organic matter due to their in- corporation of auxiliary variables. In addition, GWRK performed obviously better than RK did in this study, and its improved performance should be attributed to the consideration of sample spatial locations.

  5. Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey

    NASA Astrophysics Data System (ADS)

    Duman, T. Y.; Can, T.; Gokceoglu, C.; Nefeslioglu, H. A.; Sonmez, H.

    2006-11-01

    As a result of industrialization, throughout the world, cities have been growing rapidly for the last century. One typical example of these growing cities is Istanbul, the population of which is over 10 million. Due to rapid urbanization, new areas suitable for settlement and engineering structures are necessary. The Cekmece area located west of the Istanbul metropolitan area is studied, because the landslide activity is extensive in this area. The purpose of this study is to develop a model that can be used to characterize landslide susceptibility in map form using logistic regression analysis of an extensive landslide database. A database of landslide activity was constructed using both aerial-photography and field studies. About 19.2% of the selected study area is covered by deep-seated landslides. The landslides that occur in the area are primarily located in sandstones with interbedded permeable and impermeable layers such as claystone, siltstone and mudstone. About 31.95% of the total landslide area is located at this unit. To apply logistic regression analyses, a data matrix including 37 variables was constructed. The variables used in the forwards stepwise analyses are different measures of slope, aspect, elevation, stream power index (SPI), plan curvature, profile curvature, geology, geomorphology and relative permeability of lithological units. A total of 25 variables were identified as exerting strong influence on landslide occurrence, and included by the logistic regression equation. Wald statistics values indicate that lithology, SPI and slope are more important than the other parameters in the equation. Beta coefficients of the 25 variables included the logistic regression equation provide a model for landslide susceptibility in the Cekmece area. This model is used to generate a landslide susceptibility map that correctly classified 83.8% of the landslide-prone areas.

  6. Using Robust Standard Errors to Combine Multiple Regression Estimates with Meta-Analysis

    ERIC Educational Resources Information Center

    Williams, Ryan T.

    2012-01-01

    Combining multiple regression estimates with meta-analysis has continued to be a difficult task. A variety of methods have been proposed and used to combine multiple regression slope estimates with meta-analysis, however, most of these methods have serious methodological and practical limitations. The purpose of this study was to explore the use…

  7. A Quality Assessment Tool for Non-Specialist Users of Regression Analysis

    ERIC Educational Resources Information Center

    Argyrous, George

    2015-01-01

    This paper illustrates the use of a quality assessment tool for regression analysis. It is designed for non-specialist "consumers" of evidence, such as policy makers. The tool provides a series of questions such consumers of evidence can ask to interrogate regression analysis, and is illustrated with reference to a recent study published…

  8. Meta-regression analysis of the effect of trans fatty acids on low-density lipoprotein cholesterol.

    PubMed

    Allen, Bruce C; Vincent, Melissa J; Liska, DeAnn; Haber, Lynne T

    2016-12-01

    We conducted a meta-regression of controlled clinical trial data to investigate quantitatively the relationship between dietary intake of industrial trans fatty acids (iTFA) and increased low-density lipoprotein cholesterol (LDL-C). Previous regression analyses included insufficient data to determine the nature of the dose response in the low-dose region and have nonetheless assumed a linear relationship between iTFA intake and LDL-C levels. This work contributes to the previous work by 1) including additional studies examining low-dose intake (identified using an evidence mapping procedure); 2) investigating a range of curve shapes, including both linear and nonlinear models; and 3) using Bayesian meta-regression to combine results across trials. We found that, contrary to previous assumptions, the linear model does not acceptably fit the data, while the nonlinear, S-shaped Hill model fits the data well. Based on a conservative estimate of the degree of intra-individual variability in LDL-C (0.1 mmoL/L), as an estimate of a change in LDL-C that is not adverse, a change in iTFA intake of 2.2% of energy intake (%en) (corresponding to a total iTFA intake of 2.2-2.9%en) does not cause adverse effects on LDL-C. The iTFA intake associated with this change in LDL-C is substantially higher than the average iTFA intake (0.5%en). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Mixed-effects Gaussian process functional regression models with application to dose-response curve prediction.

    PubMed

    Shi, J Q; Wang, B; Will, E J; West, R M

    2012-11-20

    We propose a new semiparametric model for functional regression analysis, combining a parametric mixed-effects model with a nonparametric Gaussian process regression model, namely a mixed-effects Gaussian process functional regression model. The parametric component can provide explanatory information between the response and the covariates, whereas the nonparametric component can add nonlinearity. We can model the mean and covariance structures simultaneously, combining the information borrowed from other subjects with the information collected from each individual subject. We apply the model to dose-response curves that describe changes in the responses of subjects for differing levels of the dose of a drug or agent and have a wide application in many areas. We illustrate the method for the management of renal anaemia. An individual dose-response curve is improved when more information is included by this mechanism from the subject/patient over time, enabling a patient-specific treatment regime. Copyright © 2012 John Wiley & Sons, Ltd.

  10. A retrospective analysis to identify the factors affecting infection in patients undergoing chemotherapy.

    PubMed

    Park, Ji Hyun; Kim, Hyeon-Young; Lee, Hanna; Yun, Eun Kyoung

    2015-12-01

    This study compares the performance of the logistic regression and decision tree analysis methods for assessing the risk factors for infection in cancer patients undergoing chemotherapy. The subjects were 732 cancer patients who were receiving chemotherapy at K university hospital in Seoul, Korea. The data were collected between March 2011 and February 2013 and were processed for descriptive analysis, logistic regression and decision tree analysis using the IBM SPSS Statistics 19 and Modeler 15.1 programs. The most common risk factors for infection in cancer patients receiving chemotherapy were identified as alkylating agents, vinca alkaloid and underlying diabetes mellitus. The logistic regression explained 66.7% of the variation in the data in terms of sensitivity and 88.9% in terms of specificity. The decision tree analysis accounted for 55.0% of the variation in the data in terms of sensitivity and 89.0% in terms of specificity. As for the overall classification accuracy, the logistic regression explained 88.0% and the decision tree analysis explained 87.2%. The logistic regression analysis showed a higher degree of sensitivity and classification accuracy. Therefore, logistic regression analysis is concluded to be the more effective and useful method for establishing an infection prediction model for patients undergoing chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. REGRESSION ANALYSIS OF SEA-SURFACE-TEMPERATURE PATTERNS FOR THE NORTH PACIFIC OCEAN.

    DTIC Science & Technology

    SEA WATER, *SURFACE TEMPERATURE, *OCEANOGRAPHIC DATA, PACIFIC OCEAN, REGRESSION ANALYSIS , STATISTICAL ANALYSIS, UNDERWATER EQUIPMENT, DETECTION, UNDERWATER COMMUNICATIONS, DISTRIBUTION, THERMAL PROPERTIES, COMPUTERS.

  12. Poor methodological quality and reporting standards of systematic reviews in burn care management.

    PubMed

    Wasiak, Jason; Tyack, Zephanie; Ware, Robert; Goodwin, Nicholas; Faggion, Clovis M

    2017-10-01

    The methodological and reporting quality of burn-specific systematic reviews has not been established. The aim of this study was to evaluate the methodological quality of systematic reviews in burn care management. Computerised searches were performed in Ovid MEDLINE, Ovid EMBASE and The Cochrane Library through to February 2016 for systematic reviews relevant to burn care using medical subject and free-text terms such as 'burn', 'systematic review' or 'meta-analysis'. Additional studies were identified by hand-searching five discipline-specific journals. Two authors independently screened papers, extracted and evaluated methodological quality using the 11-item A Measurement Tool to Assess Systematic Reviews (AMSTAR) tool and reporting quality using the 27-item Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. Characteristics of systematic reviews associated with methodological and reporting quality were identified. Descriptive statistics and linear regression identified features associated with improved methodological quality. A total of 60 systematic reviews met the inclusion criteria. Six of the 11 AMSTAR items reporting on 'a priori' design, duplicate study selection, grey literature, included/excluded studies, publication bias and conflict of interest were reported in less than 50% of the systematic reviews. Of the 27 items listed for PRISMA, 13 items reporting on introduction, methods, results and the discussion were addressed in less than 50% of systematic reviews. Multivariable analyses showed that systematic reviews associated with higher methodological or reporting quality incorporated a meta-analysis (AMSTAR regression coefficient 2.1; 95% CI: 1.1, 3.1; PRISMA regression coefficient 6·3; 95% CI: 3·8, 8·7) were published in the Cochrane library (AMSTAR regression coefficient 2·9; 95% CI: 1·6, 4·2; PRISMA regression coefficient 6·1; 95% CI: 3·1, 9·2) and included a randomised control trial (AMSTAR regression coefficient 1·4; 95%CI: 0·4, 2·4; PRISMA regression coefficient 3·4; 95% CI: 0·9, 5·8). The methodological and reporting quality of systematic reviews in burn care requires further improvement with stricter adherence by authors to the PRISMA checklist and AMSTAR tool. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  13. Magnitude and frequency of floods in Arkansas

    USGS Publications Warehouse

    Hodge, Scott A.; Tasker, Gary D.

    1995-01-01

    Methods are presented for estimating the magnitude and frequency of peak discharges of streams in Arkansas. Regression analyses were developed in which a stream's physical and flood characteristics were related. Four sets of regional regression equations were derived to predict peak discharges with selected recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years on streams draining less than 7,770 square kilometers. The regression analyses indicate that size of drainage area, main channel slope, mean basin elevation, and the basin shape factor were the most significant basin characteristics that affect magnitude and frequency of floods. The region of influence method is included in this report. This method is still being improved and is to be considered only as a second alternative to the standard method of producing regional regression equations. This method estimates unique regression equations for each recurrence interval for each ungaged site. The regression analyses indicate that size of drainage area, main channel slope, mean annual precipitation, mean basin elevation, and the basin shape factor were the most significant basin and climatic characteristics that affect magnitude and frequency of floods for this method. Certain recommendations on the use of this method are provided. A method is described for estimating the magnitude and frequency of peak discharges of streams for urban areas in Arkansas. The method is from a nationwide U.S. Geeological Survey flood frequency report which uses urban basin characteristics combined with rural discharges to estimate urban discharges. Annual peak discharges from 204 gaging stations, with drainage areas less than 7,770 square kilometers and at least 10 years of unregulated record, were used in the analysis. These data provide the basis for this analysis and are published in the Appendix of this report as supplemental data. Large rivers such as the Red, Arkansas, White, Black, St. Francis, Mississippi, and Ouachita Rivers have floodflow characteristics that differ from those of smaller tributary streams and were treated individually. Regional regression equations are not applicable to these large rivers. The magnitude and frequency of floods along these rivers are based on specific station data. This section is provided in the Appendix and has not been updated since the last Arkansas flood frequency report (1987b), but is included at the request of the cooperator.

  14. Fusing Data Mining, Machine Learning and Traditional Statistics to Detect Biomarkers Associated with Depression

    PubMed Central

    Dipnall, Joanna F.

    2016-01-01

    Background Atheoretical large-scale data mining techniques using machine learning algorithms have promise in the analysis of large epidemiological datasets. This study illustrates the use of a hybrid methodology for variable selection that took account of missing data and complex survey design to identify key biomarkers associated with depression from a large epidemiological study. Methods The study used a three-step methodology amalgamating multiple imputation, a machine learning boosted regression algorithm and logistic regression, to identify key biomarkers associated with depression in the National Health and Nutrition Examination Study (2009–2010). Depression was measured using the Patient Health Questionnaire-9 and 67 biomarkers were analysed. Covariates in this study included gender, age, race, smoking, food security, Poverty Income Ratio, Body Mass Index, physical activity, alcohol use, medical conditions and medications. The final imputed weighted multiple logistic regression model included possible confounders and moderators. Results After the creation of 20 imputation data sets from multiple chained regression sequences, machine learning boosted regression initially identified 21 biomarkers associated with depression. Using traditional logistic regression methods, including controlling for possible confounders and moderators, a final set of three biomarkers were selected. The final three biomarkers from the novel hybrid variable selection methodology were red cell distribution width (OR 1.15; 95% CI 1.01, 1.30), serum glucose (OR 1.01; 95% CI 1.00, 1.01) and total bilirubin (OR 0.12; 95% CI 0.05, 0.28). Significant interactions were found between total bilirubin with Mexican American/Hispanic group (p = 0.016), and current smokers (p<0.001). Conclusion The systematic use of a hybrid methodology for variable selection, fusing data mining techniques using a machine learning algorithm with traditional statistical modelling, accounted for missing data and complex survey sampling methodology and was demonstrated to be a useful tool for detecting three biomarkers associated with depression for future hypothesis generation: red cell distribution width, serum glucose and total bilirubin. PMID:26848571

  15. Fusing Data Mining, Machine Learning and Traditional Statistics to Detect Biomarkers Associated with Depression.

    PubMed

    Dipnall, Joanna F; Pasco, Julie A; Berk, Michael; Williams, Lana J; Dodd, Seetal; Jacka, Felice N; Meyer, Denny

    2016-01-01

    Atheoretical large-scale data mining techniques using machine learning algorithms have promise in the analysis of large epidemiological datasets. This study illustrates the use of a hybrid methodology for variable selection that took account of missing data and complex survey design to identify key biomarkers associated with depression from a large epidemiological study. The study used a three-step methodology amalgamating multiple imputation, a machine learning boosted regression algorithm and logistic regression, to identify key biomarkers associated with depression in the National Health and Nutrition Examination Study (2009-2010). Depression was measured using the Patient Health Questionnaire-9 and 67 biomarkers were analysed. Covariates in this study included gender, age, race, smoking, food security, Poverty Income Ratio, Body Mass Index, physical activity, alcohol use, medical conditions and medications. The final imputed weighted multiple logistic regression model included possible confounders and moderators. After the creation of 20 imputation data sets from multiple chained regression sequences, machine learning boosted regression initially identified 21 biomarkers associated with depression. Using traditional logistic regression methods, including controlling for possible confounders and moderators, a final set of three biomarkers were selected. The final three biomarkers from the novel hybrid variable selection methodology were red cell distribution width (OR 1.15; 95% CI 1.01, 1.30), serum glucose (OR 1.01; 95% CI 1.00, 1.01) and total bilirubin (OR 0.12; 95% CI 0.05, 0.28). Significant interactions were found between total bilirubin with Mexican American/Hispanic group (p = 0.016), and current smokers (p<0.001). The systematic use of a hybrid methodology for variable selection, fusing data mining techniques using a machine learning algorithm with traditional statistical modelling, accounted for missing data and complex survey sampling methodology and was demonstrated to be a useful tool for detecting three biomarkers associated with depression for future hypothesis generation: red cell distribution width, serum glucose and total bilirubin.

  16. Flood-frequency prediction methods for unregulated streams of Tennessee, 2000

    USGS Publications Warehouse

    Law, George S.; Tasker, Gary D.

    2003-01-01

    Up-to-date flood-frequency prediction methods for unregulated, ungaged rivers and streams of Tennessee have been developed. Prediction methods include the regional-regression method and the newer region-of-influence method. The prediction methods were developed using stream-gage records from unregulated streams draining basins having from 1 percent to about 30 percent total impervious area. These methods, however, should not be used in heavily developed or storm-sewered basins with impervious areas greater than 10 percent. The methods can be used to estimate 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence-interval floods of most unregulated rural streams in Tennessee. A computer application was developed that automates the calculation of flood frequency for unregulated, ungaged rivers and streams of Tennessee. Regional-regression equations were derived by using both single-variable and multivariable regional-regression analysis. Contributing drainage area is the explanatory variable used in the single-variable equations. Contributing drainage area, main-channel slope, and a climate factor are the explanatory variables used in the multivariable equations. Deleted-residual standard error for the single-variable equations ranged from 32 to 65 percent. Deleted-residual standard error for the multivariable equations ranged from 31 to 63 percent. These equations are included in the computer application to allow easy comparison of results produced by the different methods. The region-of-influence method calculates multivariable regression equations for each ungaged site and recurrence interval using basin characteristics from 60 similar sites selected from the study area. Explanatory variables that may be used in regression equations computed by the region-of-influence method include contributing drainage area, main-channel slope, a climate factor, and a physiographic-region factor. Deleted-residual standard error for the region-of-influence method tended to be only slightly smaller than those for the regional-regression method and ranged from 27 to 62 percent.

  17. Analysis of training sample selection strategies for regression-based quantitative landslide susceptibility mapping methods

    NASA Astrophysics Data System (ADS)

    Erener, Arzu; Sivas, A. Abdullah; Selcuk-Kestel, A. Sevtap; Düzgün, H. Sebnem

    2017-07-01

    All of the quantitative landslide susceptibility mapping (QLSM) methods requires two basic data types, namely, landslide inventory and factors that influence landslide occurrence (landslide influencing factors, LIF). Depending on type of landslides, nature of triggers and LIF, accuracy of the QLSM methods differs. Moreover, how to balance the number of 0 (nonoccurrence) and 1 (occurrence) in the training set obtained from the landslide inventory and how to select which one of the 1's and 0's to be included in QLSM models play critical role in the accuracy of the QLSM. Although performance of various QLSM methods is largely investigated in the literature, the challenge of training set construction is not adequately investigated for the QLSM methods. In order to tackle this challenge, in this study three different training set selection strategies along with the original data set is used for testing the performance of three different regression methods namely Logistic Regression (LR), Bayesian Logistic Regression (BLR) and Fuzzy Logistic Regression (FLR). The first sampling strategy is proportional random sampling (PRS), which takes into account a weighted selection of landslide occurrences in the sample set. The second method, namely non-selective nearby sampling (NNS), includes randomly selected sites and their surrounding neighboring points at certain preselected distances to include the impact of clustering. Selective nearby sampling (SNS) is the third method, which concentrates on the group of 1's and their surrounding neighborhood. A randomly selected group of landslide sites and their neighborhood are considered in the analyses similar to NNS parameters. It is found that LR-PRS, FLR-PRS and BLR-Whole Data set-ups, with order, yield the best fits among the other alternatives. The results indicate that in QLSM based on regression models, avoidance of spatial correlation in the data set is critical for the model's performance.

  18. Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement

    USGS Publications Warehouse

    Bonilla, Manuel G.; Mark, Robert K.; Lienkaemper, James J.

    1984-01-01

    In order to refine correlations of surface-wave magnitude, fault rupture length at the ground surface, and fault displacement at the surface by including the uncertainties in these variables, the existing data were critically reviewed and a new data base was compiled. Earthquake magnitudes were redetermined as necessary to make them as consistent as possible with the Gutenberg methods and results, which make up much of the data base. Measurement errors were estimated for the three variables for 58 moderate to large shallow-focus earthquakes. Regression analyses were then made utilizing the estimated measurement errors.The regression analysis demonstrates that the relations among the variables magnitude, length, and displacement are stochastic in nature. The stochastic variance, introduced in part by incomplete surface expression of seismogenic faulting, variation in shear modulus, and regional factors, dominates the estimated measurement errors. Thus, it is appropriate to use ordinary least squares for the regression models, rather than regression models based upon an underlying deterministic relation in which the variance results primarily from measurement errors.Significant differences exist in correlations of certain combinations of length, displacement, and magnitude when events are grouped by fault type or by region, including attenuation regions delineated by Evernden and others.Estimates of the magnitude and the standard deviation of the magnitude of a prehistoric or future earthquake associated with a fault can be made by correlating Ms with the logarithms of rupture length, fault displacement, or the product of length and displacement.Fault rupture area could be reliably estimated for about 20 of the events in the data set. Regression of Ms on rupture area did not result in a marked improvement over regressions that did not involve rupture area. Because no subduction-zone earthquakes are included in this study, the reported results do not apply to such zones.

  19. Predictors of aggression in 3.322 patients with affective disorders and schizophrenia spectrum disorders evaluated in an emergency department setting.

    PubMed

    Blanco, Emily A; Duque, Laura M; Rachamallu, Vivekananda; Yuen, Eunice; Kane, John M; Gallego, Juan A

    2018-05-01

    The aim of this study is to determine odds of aggression and associated factors in patients with schizophrenia-spectrum disorders (SSD) and affective disorders who were evaluated in an emergency department setting. A retrospective study was conducted using de-identified data from electronic medical records from 3.322 patients who were evaluated at emergency psychiatric settings. Data extracted included demographic information, variables related to aggression towards people or property in the past 6months, and other factors that could potentially impact the risk of aggression, such as comorbid diagnoses, physical abuse and sexual abuse. Bivariate analyses and multivariate regression analyses were conducted to determine the variables significantly associated with aggression. An initial multivariate regression analysis showed that SSD had 3.1 times the odds of aggression, while bipolar disorder had 2.2 times the odds of aggression compared to unipolar depression. A second regression analysis including bipolar subtypes showed, using unipolar depression as the reference group, that bipolar disorder with a recent mixed episode had an odds ratio (OR) of 4.3, schizophrenia had an OR of 2.6 and bipolar disorder with a recent manic episode had an OR of 2.2. Generalized anxiety disorder was associated with lower odds in both regression analyses. As a whole, the SSD group had higher odds of aggression than the bipolar disorder group. However, after subdividing the groups, schizophrenia had higher odds of aggression than bipolar disorder with a recent manic episode and lower odds of aggression than bipolar disorder with a recent mixed episode. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The isoform A of reticulon-4 (Nogo-A) in cerebrospinal fluid of primary brain tumor patients: influencing factors.

    PubMed

    Koper, Olga Martyna; Kamińska, Joanna; Milewska, Anna; Sawicki, Karol; Mariak, Zenon; Kemona, Halina; Matowicka-Karna, Joanna

    2018-05-18

    The influence of isoform A of reticulon-4 (Nogo-A), also known as neurite outgrowth inhibitor, on primary brain tumor development was reported. Therefore the aim was the evaluation of Nogo-A concentrations in cerebrospinal fluid (CSF) and serum of brain tumor patients compared with non-tumoral individuals. All serum results, except for two cases, obtained both in brain tumors and non-tumoral individuals, were below the lower limit of ELISA detection. Cerebrospinal fluid Nogo-A concentrations were significantly lower in primary brain tumor patients compared to non-tumoral individuals. The univariate linear regression analysis found that if white blood cell count increases by 1 × 10 3 /μL, the mean cerebrospinal fluid Nogo-A concentration value decreases 1.12 times. In the model of multiple linear regression analysis predictor variables influencing cerebrospinal fluid Nogo-A concentrations included: diagnosis, sex, and sodium level. The mean cerebrospinal fluid Nogo-A concentration value was 1.9 times higher for women in comparison to men. In the astrocytic brain tumor group higher sodium level occurs with lower cerebrospinal fluid Nogo-A concentrations. We found the opposite situation in non-tumoral individuals. Univariate linear regression analysis revealed, that cerebrospinal fluid Nogo-A concentrations change in relation to white blood cell count. In the created model of multiple linear regression analysis we found, that within predictor variables influencing CSF Nogo-A concentrations were diagnosis, sex, and sodium level. Results may be relevant to the search for cerebrospinal fluid biomarkers and potential therapeutic targets in primary brain tumor patients. Nogo-A concentrations were tested by means of enzyme-linked immunosorbent assay (ELISA).

  1. Estimation and Selection via Absolute Penalized Convex Minimization And Its Multistage Adaptive Applications

    PubMed Central

    Huang, Jian; Zhang, Cun-Hui

    2013-01-01

    The ℓ1-penalized method, or the Lasso, has emerged as an important tool for the analysis of large data sets. Many important results have been obtained for the Lasso in linear regression which have led to a deeper understanding of high-dimensional statistical problems. In this article, we consider a class of weighted ℓ1-penalized estimators for convex loss functions of a general form, including the generalized linear models. We study the estimation, prediction, selection and sparsity properties of the weighted ℓ1-penalized estimator in sparse, high-dimensional settings where the number of predictors p can be much larger than the sample size n. Adaptive Lasso is considered as a special case. A multistage method is developed to approximate concave regularized estimation by applying an adaptive Lasso recursively. We provide prediction and estimation oracle inequalities for single- and multi-stage estimators, a general selection consistency theorem, and an upper bound for the dimension of the Lasso estimator. Important models including the linear regression, logistic regression and log-linear models are used throughout to illustrate the applications of the general results. PMID:24348100

  2. Identification and functional analysis of risk-related microRNAs for the prognosis of patients with bladder urothelial carcinoma.

    PubMed

    Gao, Ji; Li, Hongyan; Liu, Lei; Song, Lide; Lv, Yanting; Han, Yuping

    2017-12-01

    The aim of the present study was to investigate risk-related microRNAs (miRs) for bladder urothelial carcinoma (BUC) prognosis. Clinical and microRNA expression data downloaded from the Cancer Genome Atlas were utilized for survival analysis. Risk factor estimation was performed using Cox's proportional regression analysis. A microRNA-regulated target gene network was constructed and presented using Cytoscape. In addition, the Database for Annotation, Visualization and Integrated Discovery was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment, followed by protein-protein interaction (PPI) network analysis. Finally, the K-clique method was applied to analyze sub-pathways. A total of 16 significant microRNAs, including hsa-miR-3622a and hsa-miR-29a, were identified (P<0.05). Following Cox's proportional regression analysis, hsa-miR-29a was screened as a prognostic marker of BUC risk (P=0.0449). A regulation network of hsa-miR-29a comprising 417 target genes was constructed. These target genes were primarily enriched in GO terms, including collagen fibril organization, extracellular matrix (ECM) organization and pathways, such as focal adhesion (P<0.05). A PPI network including 197 genes and 510 interactions, was constructed. The top 21 genes in the network module were enriched in GO terms, including collagen fibril organization and pathways, such as ECM receptor interaction (P<0.05). Finally, 4 sub-pathways of cysteine and methionine metabolism, including paths 00270_4, 00270_1, 00270_2 and 00270_5, were obtained (P<0.01) and identified to be enriched through DNA (cytosine-5)-methyltransferase ( DNMT)3A, DNMT3B , methionine adenosyltransferase 2α ( MAT2A ) and spermine synthase ( SMS ). The identified microRNAs, particularly hsa-miR-29a and its 4 associated target genes DNMT3A, DNMT3B, MAT2A and SMS , may participate in the prognostic risk mechanism of BUC.

  3. Advantages of the net benefit regression framework for economic evaluations of interventions in the workplace: a case study of the cost-effectiveness of a collaborative mental health care program for people receiving short-term disability benefits for psychiatric disorders.

    PubMed

    Hoch, Jeffrey S; Dewa, Carolyn S

    2014-04-01

    Economic evaluations commonly accompany trials of new treatments or interventions; however, regression methods and their corresponding advantages for the analysis of cost-effectiveness data are not well known. To illustrate regression-based economic evaluation, we present a case study investigating the cost-effectiveness of a collaborative mental health care program for people receiving short-term disability benefits for psychiatric disorders. We implement net benefit regression to illustrate its strengths and limitations. Net benefit regression offers a simple option for cost-effectiveness analyses of person-level data. By placing economic evaluation in a regression framework, regression-based techniques can facilitate the analysis and provide simple solutions to commonly encountered challenges. Economic evaluations of person-level data (eg, from a clinical trial) should use net benefit regression to facilitate analysis and enhance results.

  4. Breeding value accuracy estimates for growth traits using random regression and multi-trait models in Nelore cattle.

    PubMed

    Boligon, A A; Baldi, F; Mercadante, M E Z; Lobo, R B; Pereira, R J; Albuquerque, L G

    2011-06-28

    We quantified the potential increase in accuracy of expected breeding value for weights of Nelore cattle, from birth to mature age, using multi-trait and random regression models on Legendre polynomials and B-spline functions. A total of 87,712 weight records from 8144 females were used, recorded every three months from birth to mature age from the Nelore Brazil Program. For random regression analyses, all female weight records from birth to eight years of age (data set I) were considered. From this general data set, a subset was created (data set II), which included only nine weight records: at birth, weaning, 365 and 550 days of age, and 2, 3, 4, 5, and 6 years of age. Data set II was analyzed using random regression and multi-trait models. The model of analysis included the contemporary group as fixed effects and age of dam as a linear and quadratic covariable. In the random regression analyses, average growth trends were modeled using a cubic regression on orthogonal polynomials of age. Residual variances were modeled by a step function with five classes. Legendre polynomials of fourth and sixth order were utilized to model the direct genetic and animal permanent environmental effects, respectively, while third-order Legendre polynomials were considered for maternal genetic and maternal permanent environmental effects. Quadratic polynomials were applied to model all random effects in random regression models on B-spline functions. Direct genetic and animal permanent environmental effects were modeled using three segments or five coefficients, and genetic maternal and maternal permanent environmental effects were modeled with one segment or three coefficients in the random regression models on B-spline functions. For both data sets (I and II), animals ranked differently according to expected breeding value obtained by random regression or multi-trait models. With random regression models, the highest gains in accuracy were obtained at ages with a low number of weight records. The results indicate that random regression models provide more accurate expected breeding values than the traditionally finite multi-trait models. Thus, higher genetic responses are expected for beef cattle growth traits by replacing a multi-trait model with random regression models for genetic evaluation. B-spline functions could be applied as an alternative to Legendre polynomials to model covariance functions for weights from birth to mature age.

  5. CADDIS Volume 4. Data Analysis: Basic Analyses

    EPA Pesticide Factsheets

    Use of statistical tests to determine if an observation is outside the normal range of expected values. Details of CART, regression analysis, use of quantile regression analysis, CART in causal analysis, simplifying or pruning resulting trees.

  6. Analyzing the Impact of Ambient Temperature Indicators on Transformer Life in Different Regions of Chinese Mainland

    PubMed Central

    Bai, Cui-fen; Gao, Wen-Sheng; Liu, Tong

    2013-01-01

    Regression analysis is applied to quantitatively analyze the impact of different ambient temperature characteristics on the transformer life at different locations of Chinese mainland. 200 typical locations in Chinese mainland are selected for the study. They are specially divided into six regions so that the subsequent analysis can be done in a regional context. For each region, the local historical ambient temperature and load data are provided as inputs variables of the life consumption model in IEEE Std. C57.91-1995 to estimate the transformer life at every location. Five ambient temperature indicators related to the transformer life are involved into the partial least squares regression to describe their impact on the transformer life. According to a contribution measurement criterion of partial least squares regression, three indicators are conclusively found to be the most important factors influencing the transformer life, and an explicit expression is provided to describe the relationship between the indicators and the transformer life for every region. The analysis result is applicable to the area where the temperature characteristics are similar to Chinese mainland, and the expressions obtained can be applied to the other locations that are not included in this paper if these three indicators are known. PMID:23843729

  7. Analyzing the impact of ambient temperature indicators on transformer life in different regions of Chinese mainland.

    PubMed

    Bai, Cui-fen; Gao, Wen-Sheng; Liu, Tong

    2013-01-01

    Regression analysis is applied to quantitatively analyze the impact of different ambient temperature characteristics on the transformer life at different locations of Chinese mainland. 200 typical locations in Chinese mainland are selected for the study. They are specially divided into six regions so that the subsequent analysis can be done in a regional context. For each region, the local historical ambient temperature and load data are provided as inputs variables of the life consumption model in IEEE Std. C57.91-1995 to estimate the transformer life at every location. Five ambient temperature indicators related to the transformer life are involved into the partial least squares regression to describe their impact on the transformer life. According to a contribution measurement criterion of partial least squares regression, three indicators are conclusively found to be the most important factors influencing the transformer life, and an explicit expression is provided to describe the relationship between the indicators and the transformer life for every region. The analysis result is applicable to the area where the temperature characteristics are similar to Chinese mainland, and the expressions obtained can be applied to the other locations that are not included in this paper if these three indicators are known.

  8. Fish consumption in a sample of people in Bandar Abbas, Iran: application of the theory of planned behavior.

    PubMed

    Aghamolaei, Teamur; Sadat Tavafian, Sedigheh; Madani, Abdoulhossain

    2012-09-01

    This study aimed to apply the conceptual framework of the theory of planned behavior (TPB) to explain fish consumption in a sample of people who lived in Bandar Abbass, Iran. We investigated the role of three traditional constructs of TPB that included attitude, social norms, and perceived behavioral control in an effort to characterize the intention to consume fish as well as the behavioral trends that characterize fish consumption. Data were derived from a cross-sectional sample of 321 subjects. Alpha coefficient correlation and linear regression analysis were applied to test the relationships between constructs. The predictors of fish consumption frequency were also evaluated. Multiple regression analysis revealed that attitude, subjective norms, and perceived behavioral control significantly predicted intention to eat fish (R2 = 0.54, F = 128.4, P < 0.001). Multiple regression analysis for the intention to eat fish and perceived behavioral control revealed that both factors significantly predicted fish consumption frequency (R2 = 0.58, F = 223.1, P < 0.001). The results indicated that the models fit well with the data. Attitude, subjective norms, and perceived behavioral control all had significant positive impacts on behavioral intention. Moreover, both intention and perceived behavioral control could be used to predict the frequency of fish consumption.

  9. An Examination of the Demographic and Career Progression of Air Force Institute of Technology Cost Analysis Graduates.

    DTIC Science & Technology

    1997-09-01

    program include the ACEIT software training and the combination of Department of Defense (DOD) application, regression, and statistics. The weaknesses...and Integrated Tools ( ACEIT ) software and training could not be praised enough. AFIT vs. Civilian Institutions. The GCA program provides a Department...very useful to the graduates and beneficial to their careers. The main strengths of the program include the ACEIT software training and the combination

  10. Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data.

    PubMed

    Balabin, Roman M; Smirnov, Sergey V

    2011-04-29

    During the past several years, near-infrared (near-IR/NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields from petroleum to biomedical sectors. The NIR spectrum (above 4000 cm(-1)) of a sample is typically measured by modern instruments at a few hundred of wavelengths. Recently, considerable effort has been directed towards developing procedures to identify variables (wavelengths) that contribute useful information. Variable selection (VS) or feature selection, also called frequency selection or wavelength selection, is a critical step in data analysis for vibrational spectroscopy (infrared, Raman, or NIRS). In this paper, we compare the performance of 16 different feature selection methods for the prediction of properties of biodiesel fuel, including density, viscosity, methanol content, and water concentration. The feature selection algorithms tested include stepwise multiple linear regression (MLR-step), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), moving window partial least squares regression (MWPLS), (modified) changeable size moving window partial least squares (CSMWPLS/MCSMWPLSR), searching combination moving window partial least squares (SCMWPLS), successive projections algorithm (SPA), uninformative variable elimination (UVE, including UVE-SPA), simulated annealing (SA), back-propagation artificial neural networks (BP-ANN), Kohonen artificial neural network (K-ANN), and genetic algorithms (GAs, including GA-iPLS). Two linear techniques for calibration model building, namely multiple linear regression (MLR) and partial least squares regression/projection to latent structures (PLS/PLSR), are used for the evaluation of biofuel properties. A comparison with a non-linear calibration model, artificial neural networks (ANN-MLP), is also provided. Discussion of gasoline, ethanol-gasoline (bioethanol), and diesel fuel data is presented. The results of other spectroscopic techniques application, such as Raman, ultraviolet-visible (UV-vis), or nuclear magnetic resonance (NMR) spectroscopies, can be greatly improved by an appropriate feature selection choice. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. School Cost Functions: A Meta-Regression Analysis

    ERIC Educational Resources Information Center

    Colegrave, Andrew D.; Giles, Margaret J.

    2008-01-01

    The education cost literature includes econometric studies attempting to determine economies of scale, or estimate an optimal school or district size. Not only do their results differ, but the studies use dissimilar data, techniques, and models. To derive value from these studies requires that the estimates be made comparable. One method to do…

  12. Predictors of College Readiness: An Analysis of the Student Readiness Inventory

    ERIC Educational Resources Information Center

    Wilson, James K., III

    2012-01-01

    The purpose of this study was to better predict how a first semester college freshman becomes prepared for college. The theoretical framework guiding this study is Vrooms' expectancy theory, motivation plays a key role in success. This study used a hierarchical multiple regression model. The independent variables of interest included high school…

  13. Stochastic Frontier Estimation of Efficient Learning in Video Games

    ERIC Educational Resources Information Center

    Hamlen, Karla R.

    2012-01-01

    Stochastic Frontier Regression Analysis was used to investigate strategies and skills that are associated with the minimization of time required to achieve proficiency in video games among students in grades four and five. Students self-reported their video game play habits, including strategies and skills used to become good at the video games…

  14. Computer-Assisted, Programmed Text, and Lecture Modes of Instruction in Three Medical Training Courses: Comparative Evaluation. Final Report.

    ERIC Educational Resources Information Center

    Deignan, Gerard M.; And Others

    This report contains a comparative analysis of the differential effectiveness of computer-assisted instruction (CAI), programmed instructional text (PIT), and lecture methods of instruction in three medical courses--Medical Laboratory, Radiology, and Dental. The summative evaluation includes (1) multiple regression analyses conducted to predict…

  15. Social Influence on Information Technology Adoption and Sustained Use in Healthcare: A Hierarchical Bayesian Learning Method Analysis

    ERIC Educational Resources Information Center

    Hao, Haijing

    2013-01-01

    Information technology adoption and diffusion is currently a significant challenge in the healthcare delivery setting. This thesis includes three papers that explore social influence on information technology adoption and sustained use in the healthcare delivery environment using conventional regression models and novel hierarchical Bayesian…

  16. Predictors of Assessment Accommodations Use for Students Who Are Deaf or Hard of Hearing

    ERIC Educational Resources Information Center

    Cawthon, Stephanie W.; Wurtz, Keith A.

    2010-01-01

    Current accountability reform requires annual assessment for all students, including students with disabilities. Testing accommodations are one way to increase access to assessments while maintaining the validity of test scores. This paper provides findings from an exploratory logistic regression analysis of predictors of four accommodations used…

  17. 40 CFR 86.1823-01 - Durability demonstration procedures for exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (including both hardware and software) must be installed and operating for the entire mileage accumulation... decimal places) from the regression analysis; the result shall be rounded to three-decimal places of... less than one shall be changed to one for the purposes of this paragraph. (2) An additive DF will be...

  18. Mapping and imputing potential productivity of Pacific Northwest forests using climate variables

    Treesearch

    Gregory Latta; Hailemariam Temesgen; Tara Barrett

    2009-01-01

    Regional estimation of potential forest productivity is important to diverse applications, including biofuels supply, carbon sequestration, and projections of forest growth. Using PRISM (Parameter-elevation Regressions on Independent Slopes Model) climate and productivity data measured on a grid of 3356 Forest Inventory and Analysis plots in Oregon and Washington, we...

  19. Factors Affecting University Entrants' Performance in High-Stakes Tests: A Multiple Regression Analysis

    ERIC Educational Resources Information Center

    Uy, Chin; Manalo, Ronaldo A.; Cabauatan, Ronaldo R.

    2015-01-01

    In the Philippines, students seeking admission to a university are usually required to meet certain entrance requirements, including passing the entrance examinations with questions on IQ and English, mathematics, and science. This paper aims to determine the factors that affect the performance of entrants into business programmes in high-stakes…

  20. Nucleated red blood cells in growth-restricted fetuses: associations with short-term neonatal outcome.

    PubMed

    Minior, V K; Bernstein, P S; Divon, M Y

    2000-01-01

    To determine the utility of the neonatal nucleated red blood cell (NRBC) count as an independent predictor of short-term perinatal outcome in growth-restricted fetuses. Hospital charts of neonates with a discharge diagnosis indicating a birth weight <10th percentile were reviewed for perinatal outcome. We studied all eligible neonates who had a complete blood count on the first day of life. After multiple gestations, anomalous fetuses and diabetic pregnancies were excluded; 73 neonates comprised the study group. Statistical analysis included ANOVA, simple and stepwise regression. Elevated NRBC counts were significantly associated with cesarean section for non-reassuring fetal status, neonatal intensive care unit admission and duration of neonatal intensive care unit stay, respiratory distress and intubation, thrombocytopenia, hyperbilirubinemia, intraventricular hemorrhage and neonatal death. Stepwise regression analysis including gestational age at birth, birth weight and NRBC count demonstrated that in growth-restricted fetuses, NRBC count was the strongest predictor of neonatal intraventricular hemorrhage, neonatal respiratory distress and neonatal death. An elevated NRBC count independently predicts adverse perinatal outcome in growth-restricted fetuses. Copyright 2000 S. Karger AG, Basel.

  1. A SYSTEMATIC REVIEW AND META-ANALYSIS OF DROPOUT RATES IN YOUTH SOCCER.

    PubMed

    Møllerløkken, Nina Elise; Lorås, Håvard; Pedersen, Arve Vorland

    2015-12-01

    Despite the many benefits of involvement in youth sports, participation in them declines throughout childhood and adolescence. The present study performed a systematic review and meta-analysis of 12 studies reporting dropout rates in youth soccer, involving a total of 724,036 youths ages 10-18 years from five countries. The mixed effects meta-regression analyses took into account age and sex as statistical moderators of dropout rate. Potential articles were identified through computerized searches of the databases PubMed, MedLine, Embase, and SportDiscus up until August 2014, without any further time limit. Based on results reported in the 10 included articles, the annual weighted mean dropout rate is 23.9% across the included cohorts. Meta-regression indicated that annual dropout rates are stable from the ages of 10-19 years, with higher rates for girls (26.8%) compared to boys (21.4%). The present study suggests that youth soccer players are prone to dropout rates in which close to one-fourth of players leave the sport annually, which appears to be a consistent finding across ages 10-18 years.

  2. Introduction, comparison, and validation of Meta‐Essentials: A free and simple tool for meta‐analysis

    PubMed Central

    van Rhee, Henk; Hak, Tony

    2017-01-01

    We present a new tool for meta‐analysis, Meta‐Essentials, which is free of charge and easy to use. In this paper, we introduce the tool and compare its features to other tools for meta‐analysis. We also provide detailed information on the validation of the tool. Although free of charge and simple, Meta‐Essentials automatically calculates effect sizes from a wide range of statistics and can be used for a wide range of meta‐analysis applications, including subgroup analysis, moderator analysis, and publication bias analyses. The confidence interval of the overall effect is automatically based on the Knapp‐Hartung adjustment of the DerSimonian‐Laird estimator. However, more advanced meta‐analysis methods such as meta‐analytical structural equation modelling and meta‐regression with multiple covariates are not available. In summary, Meta‐Essentials may prove a valuable resource for meta‐analysts, including researchers, teachers, and students. PMID:28801932

  3. The TP53 gene polymorphisms and survival of sporadic breast cancer patients.

    PubMed

    Bišof, V; Salihović, M Peričić; Narančić, N Smolej; Skarić-Jurić, T; Jakić-Razumović, J; Janićijević, B; Rudan, P

    2012-06-01

    The TP53 gene polymorphisms, Arg72Pro and PIN3 (+16 bp), can have prognostic and predictive value in different cancers including breast cancer. The aim of the present study is to investigate a potential association between different genotypes of these polymorphisms and clinicopathological variables with survival of breast cancer patients in Croatian population. Ninety-four women with sporadic breast cancer were retrospectively analyzed. Median follow-up period was 67.9 months. The effects of basic clinical and histopathological characteristics of tumor on survival were tested by Cox's proportional hazards regression analysis. The TNM stage was associated with overall survival by Kaplan-Meier analysis, univariate, and multivariate Cox's proportional hazards regression analysis, while grade was associated with survival by Kaplan-Meier analysis and univariate Cox's proportional hazards regression analysis. Different genotypes of the Arg72Pro and PIN3 (+16 bp) polymorphisms had no significant impact on survival in breast cancer patients. However, in subgroup of patients treated with chemotherapy without anthracycline, the A2A2 genotype of the PIN3 (+16 bp) polymorphism was associated with poorer overall survival than other genotypes by Kaplan-Meier analysis (P = 0.048). The TP53 polymorphisms, Arg72Pro and PIN3 (+16 bp), had no impact on survival in unselected sporadic breast cancer patients in Croatian population. However, the results support the role of the A2A2 genotype of the PIN3 (+16 bp) polymorphism as a marker for identification of patients that may benefit from anthracycline-containing chemotherapy.

  4. Bayesian dose-response analysis for epidemiological studies with complex uncertainty in dose estimation.

    PubMed

    Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian E; Simon, Steven L

    2016-02-10

    Most conventional risk analysis methods rely on a single best estimate of exposure per person, which does not allow for adjustment for exposure-related uncertainty. Here, we propose a Bayesian model averaging method to properly quantify the relationship between radiation dose and disease outcomes by accounting for shared and unshared uncertainty in estimated dose. Our Bayesian risk analysis method utilizes multiple realizations of sets (vectors) of doses generated by a two-dimensional Monte Carlo simulation method that properly separates shared and unshared errors in dose estimation. The exposure model used in this work is taken from a study of the risk of thyroid nodules among a cohort of 2376 subjects who were exposed to fallout from nuclear testing in Kazakhstan. We assessed the performance of our method through an extensive series of simulations and comparisons against conventional regression risk analysis methods. When the estimated doses contain relatively small amounts of uncertainty, the Bayesian method using multiple a priori plausible draws of dose vectors gave similar results to the conventional regression-based methods of dose-response analysis. However, when large and complex mixtures of shared and unshared uncertainties are present, the Bayesian method using multiple dose vectors had significantly lower relative bias than conventional regression-based risk analysis methods and better coverage, that is, a markedly increased capability to include the true risk coefficient within the 95% credible interval of the Bayesian-based risk estimate. An evaluation of the dose-response using our method is presented for an epidemiological study of thyroid disease following radiation exposure. Copyright © 2015 John Wiley & Sons, Ltd.

  5. [Comparison of arterial stiffness in non-hypertensive and hypertensive population of various age groups].

    PubMed

    Zhang, Y J; Wu, S L; Li, H Y; Zhao, Q H; Ning, C H; Zhang, R Y; Yu, J X; Li, W; Chen, S H; Gao, J S

    2018-01-24

    Objective: To investigate the impact of blood pressure and age on arterial stiffness in general population. Methods: Participants who took part in 2010, 2012 and 2014 Kailuan health examination were included. Data of brachial ankle pulse wave velocity (baPWV) examination were analyzed. According to the WHO criteria of age, participants were divided into 3 age groups: 18-44 years group ( n= 11 608), 45-59 years group ( n= 12 757), above 60 years group ( n= 5 002). Participants were further divided into hypertension group and non-hypertension group according to the diagnostic criteria for hypertension (2010 Chinese guidelines for the managemengt of hypertension). Multiple linear regression analysis was used to analyze the association between systolic blood pressure (SBP) with baPWV in the total participants and then stratified by age groups. Multivariate logistic regression model was used to analyze the influence of blood pressure on arterial stiffness (baPWV≥1 400 cm/s) of various groups. Results: (1)The baseline characteristics of all participants: 35 350 participants completed 2010, 2012 and 2014 Kailuan examinations and took part in baPWV examination. 2 237 participants without blood pressure measurement values were excluded, 1 569 participants with history of peripheral artery disease were excluded, we also excluded 1 016 participants with history of cardiac-cerebral vascular disease. Data from 29 367 participants were analyzed. The age was (48.0±12.4) years old, 21 305 were males (72.5%). (2) Distribution of baPWV in various age groups: baPWV increased with aging. In non-hypertension population, baPWV in 18-44 years group, 45-59 years group, above 60 years group were as follows: 1 299.3, 1 428.7 and 1 704.6 cm/s, respectively. For hypertension participants, the respective values of baPWV were: 1 498.4, 1 640.7 and 1 921.4 cm/s. BaPWV was significantly higher in hypertension group than non-hypertension group of respective age groups ( P< 0.05). (3) Multiple linear regression analysis defined risk factors of baPWV: Multivariate linear regression analysis showed that baPWV was positively correlated with SBP( t= 39.30, P< 0.001), and same results were found in the sub-age groups ( t -value was 37.72, 27.30, 9.15, all P< 0.001, respectively) after adjustment for other confounding factors, including age, sex, pulse pressure(PP), body mass index (BMI), fasting blood glucose (FBG), total cholesterol (TC), smoking, drinking, physical exercise, antihypertensive medications, lipid-lowering medication. (4) Multivariate logistic regression analysis of baPWV-related factors: After adjustment for other confounding factors, including age, sex, PP, BMI, FBG, TC, smoking, drinking, physical exercise, antihypertensive medication, lipid-lowering medication, multivariate logistic regression analysis showed that risks for increased arterial stiffness in hypertension group were higher than those in non-hypertension group, the OR in participants with hypertension was 2.54 (2.35-2.74) in the total participants, and same results were also found in sub-age groups, the OR s were 3.22(2.86-3.63), 2.48(2.23-2.76), and 1.91(1.42-2.56), respectively, in each sub-age group. Conclusion: SBP is positively related to arterial stiffness in different age groups, and hypertension is a risk factor for increased arterial stiffness in different age groups. Clinical Trial Registry Chinese Clinical Trial Registry, ChiCTR-TNC-11001489.

  6. A Note on the Relationship between the Number of Indicators and Their Reliability in Detecting Regression Coefficients in Latent Regression Analysis

    ERIC Educational Resources Information Center

    Dolan, Conor V.; Wicherts, Jelte M.; Molenaar, Peter C. M.

    2004-01-01

    We consider the question of how variation in the number and reliability of indicators affects the power to reject the hypothesis that the regression coefficients are zero in latent linear regression analysis. We show that power remains constant as long as the coefficient of determination remains unchanged. Any increase in the number of indicators…

  7. Spatial regression analysis on 32 years of total column ozone data

    NASA Astrophysics Data System (ADS)

    Knibbe, J. S.; van der A, R. J.; de Laat, A. T. J.

    2014-08-01

    Multiple-regression analyses have been performed on 32 years of total ozone column data that was spatially gridded with a 1 × 1.5° resolution. The total ozone data consist of the MSR (Multi Sensor Reanalysis; 1979-2008) and 2 years of assimilated SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) ozone data (2009-2010). The two-dimensionality in this data set allows us to perform the regressions locally and investigate spatial patterns of regression coefficients and their explanatory power. Seasonal dependencies of ozone on regressors are included in the analysis. A new physically oriented model is developed to parameterize stratospheric ozone. Ozone variations on nonseasonal timescales are parameterized by explanatory variables describing the solar cycle, stratospheric aerosols, the quasi-biennial oscillation (QBO), El Niño-Southern Oscillation (ENSO) and stratospheric alternative halogens which are parameterized by the effective equivalent stratospheric chlorine (EESC). For several explanatory variables, seasonally adjusted versions of these explanatory variables are constructed to account for the difference in their effect on ozone throughout the year. To account for seasonal variation in ozone, explanatory variables describing the polar vortex, geopotential height, potential vorticity and average day length are included. Results of this regression model are compared to that of a similar analysis based on a more commonly applied statistically oriented model. The physically oriented model provides spatial patterns in the regression results for each explanatory variable. The EESC has a significant depleting effect on ozone at mid- and high latitudes, the solar cycle affects ozone positively mostly in the Southern Hemisphere, stratospheric aerosols affect ozone negatively at high northern latitudes, the effect of QBO is positive and negative in the tropics and mid- to high latitudes, respectively, and ENSO affects ozone negatively between 30° N and 30° S, particularly over the Pacific. The contribution of explanatory variables describing seasonal ozone variation is generally large at mid- to high latitudes. We observe ozone increases with potential vorticity and day length and ozone decreases with geopotential height and variable ozone effects due to the polar vortex in regions to the north and south of the polar vortices. Recovery of ozone is identified globally. However, recovery rates and uncertainties strongly depend on choices that can be made in defining the explanatory variables. The application of several trend models, each with their own pros and cons, yields a large range of recovery rate estimates. Overall these results suggest that care has to be taken in determining ozone recovery rates, in particular for the Antarctic ozone hole.

  8. Perceived Gender Presentation Among Transgender and Gender Diverse Youth: Approaches to Analysis and Associations with Bullying Victimization and Emotional Distress.

    PubMed

    Gower, Amy L; Rider, G Nicole; Coleman, Eli; Brown, Camille; McMorris, Barbara J; Eisenberg, Marla E

    2018-06-19

    As measures of birth-assigned sex, gender identity, and perceived gender presentation are increasingly included in large-scale research studies, data analysis approaches incorporating such measures are needed. Large samples capable of demonstrating variation within the transgender and gender diverse (TGD) community can inform intervention efforts to improve health equity. A population-based sample of TGD youth was used to examine associations between perceived gender presentation, bullying victimization, and emotional distress using two data analysis approaches. Secondary data analysis of the Minnesota Student Survey included 2168 9th and 11th graders who identified as "transgender, genderqueer, genderfluid, or unsure about their gender identity." Youth reported their biological sex, how others perceived their gender presentation, experiences of four forms of bullying victimization, and four measures of emotional distress. Logistic regression and multifactor analysis of variance (ANOVA) were used to compare and contrast two analysis approaches. Logistic regressions indicated that TGD youth perceived as more gender incongruent had higher odds of bullying victimization and emotional distress relative to those perceived as very congruent with their biological sex. Multifactor ANOVAs demonstrated more variable patterns and allowed for comparisons of each perceived presentation group with all other groups, reflecting nuances that exist within TGD youth. Researchers should adopt data analysis strategies that allow for comparisons of all perceived gender presentation categories rather than assigning a reference group. Those working with TGD youth should be particularly attuned to youth perceived as gender incongruent as they may be more likely to experience bullying victimization and emotional distress.

  9. Predictors of pain relief following spinal cord stimulation in chronic back and leg pain and failed back surgery syndrome: a systematic review and meta-regression analysis.

    PubMed

    Taylor, Rod S; Desai, Mehul J; Rigoard, Philippe; Taylor, Rebecca J

    2014-07-01

    We sought to assess the extent to which pain relief in chronic back and leg pain (CBLP) following spinal cord stimulation (SCS) is influenced by patient-related factors, including pain location, and technology factors. A number of electronic databases were searched with citation searching of included papers and recent systematic reviews. All study designs were included. The primary outcome was pain relief following SCS, we also sought pain score (pre- and post-SCS). Multiple predictive factors were examined: location of pain, history of back surgery, initial level of pain, litigation/worker's compensation, age, gender, duration of pain, duration of follow-up, publication year, continent of data collection, study design, quality score, method of SCS lead implant, and type of SCS lead. Between-study association in predictive factors and pain relief were assessed by meta-regression. Seventy-four studies (N = 3,025 patients with CBLP) met the inclusion criteria; 63 reported data to allow inclusion in a quantitative analysis. Evidence of substantial statistical heterogeneity (P < 0.0001) in level of pain relief following SCS was noted. The mean level of pain relief across studies was 58% (95% CI: 53% to 64%, random effects) at an average follow-up of 24 months. Multivariable meta-regression analysis showed no predictive patient or technology factors. SCS was effective in reducing pain irrespective of the location of CBLP. This review supports SCS as an effective pain relieving treatment for CBLP with predominant leg pain with or without a prior history of back surgery. Randomized controlled trials need to confirm the effectiveness and cost-effectiveness of SCS in the CLBP population with predominant low back pain. © 2013 The Authors Pain Practice Published by Wiley Periodicals, Inc. on behalf of World Institute of Pain.

  10. Regression analysis and transfer function in estimating the parameters of central pulse waves from brachial pulse wave.

    PubMed

    Chai Rui; Li Si-Man; Xu Li-Sheng; Yao Yang; Hao Li-Ling

    2017-07-01

    This study mainly analyzed the parameters such as ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO) and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. These parameters extracted from the central pulse wave invasively measured were compared with the parameters measured from the brachial pulse waves by a regression model and a transfer function model. The accuracy of the parameters which were estimated by the regression model and the transfer function model was compared too. Our findings showed that in addition to the k value, the above parameters of the central pulse wave and the brachial pulse wave invasively measured had positive correlation. Both the regression model parameters including A_slope, DBP, SEVR and the transfer function model parameters had good consistency with the parameters invasively measured, and they had the same effect of consistency. The regression equations of the three parameters were expressed by Y'=a+bx. The SBP, PP, SV, CO of central pulse wave could be calculated through the regression model, but their accuracies were worse than that of transfer function model.

  11. Dental computed tomographic imaging as age estimation: morphological analysis of the third molar of a group of Turkish population.

    PubMed

    Cantekin, Kenan; Sekerci, Ahmet Ercan; Buyuk, Suleyman Kutalmis

    2013-12-01

    Computed tomography (CT) is capable of providing accurate and measurable 3-dimensional images of the third molar. The aims of this study were to analyze the development of the mandibular third molar and its relation to chronological age and to create new reference data for a group of Turkish participants aged 9 to 25 years on the basis of cone-beam CT images. All data were obtained from the patients' records including medical, social, and dental anamnesis and cone-beam CT images of 752 patients. Linear regression analysis was performed to obtain regression formulas for dental age calculation with chronological age and to determine the coefficient of determination (r) for each sex. Statistical analysis showed a strong correlation between age and third-molar development for the males (r2 = 0.80) and the females (r2 = 0.78). Computed tomographic images are clinically useful for accurate and reliable estimation of dental ages of children and youth.

  12. The Global Signal in fMRI: Nuisance or Information?

    PubMed Central

    Nalci, Alican; Falahpour, Maryam

    2017-01-01

    The global signal is widely used as a regressor or normalization factor for removing the effects of global variations in the analysis of functional magnetic resonance imaging (fMRI) studies. However, there is considerable controversy over its use because of the potential bias that can be introduced when it is applied to the analysis of both task-related and resting-state fMRI studies. In this paper we take a closer look at the global signal, examining in detail the various sources that can contribute to the signal. For the most part, the global signal has been treated as a nuisance term, but there is growing evidence that it may also contain valuable information. We also examine the various ways that the global signal has been used in the analysis of fMRI data, including global signal regression, global signal subtraction, and global signal normalization. Furthermore, we describe new ways for understanding the effects of global signal regression and its relation to the other approaches. PMID:28213118

  13. An analysis of the magnitude and frequency of floods on Oahu, Hawaii

    USGS Publications Warehouse

    Nakahara, R.H.

    1980-01-01

    An analysis of available peak-flow data for the island of Oahu, Hawaii, was made by using multiple regression techniques which related flood-frequency data to basin and climatic characteristics for 74 gaging stations on Oahu. In the analysis, several different groupings of stations were investigated, including divisions by geographic location and size of drainage area. The grouping consisting of two leeward divisions and one windward division produced the best results. Drainage basins ranged in area from 0.03 to 45.7 square miles. Equations relating flood magnitudes of selected frequencies to basin characteristics were developed for the three divisions of Oahu. These equations can be used to estimate the magnitude and frequency of floods for any site, gaged or ungaged, for any desired recurrence interval from 2 to 100 years. Data on basin characteristics, flood magnitudes for various recurrence intervals from individual station-frequency curves, and computed flood magnitudes by use of the regression equation are tabulated to provide the needed data. (USGS)

  14. Analysis of an experiment aimed at improving the reliability of transmission centre shafts.

    PubMed

    Davis, T P

    1995-01-01

    Smith (1991) presents a paper proposing the use of Weibull regression models to establish dependence of failure data (usually times) on covariates related to the design of the test specimens and test procedures. In his article Smith made the point that good experimental design was as important in reliability applications as elsewhere, and in view of the current interest in design inspired by Taguchi and others, we pay some attention in this article to that topic. A real case study from the Ford Motor Company is presented. Our main approach is to utilize suggestions in the literature for applying standard least squares techniques of experimental analysis even when there is likely to be nonnormal error, and censoring. This approach lacks theoretical justification, but its appeal is its simplicity and flexibility. For completeness we also include some analysis based on the proportional hazards model, and in an attempt to link back to Smith (1991), look at a Weibull regression model.

  15. Harmonic regression of Landsat time series for modeling attributes from national forest inventory data

    NASA Astrophysics Data System (ADS)

    Wilson, Barry T.; Knight, Joseph F.; McRoberts, Ronald E.

    2018-03-01

    Imagery from the Landsat Program has been used frequently as a source of auxiliary data for modeling land cover, as well as a variety of attributes associated with tree cover. With ready access to all scenes in the archive since 2008 due to the USGS Landsat Data Policy, new approaches to deriving such auxiliary data from dense Landsat time series are required. Several methods have previously been developed for use with finer temporal resolution imagery (e.g. AVHRR and MODIS), including image compositing and harmonic regression using Fourier series. The manuscript presents a study, using Minnesota, USA during the years 2009-2013 as the study area and timeframe. The study examined the relative predictive power of land cover models, in particular those related to tree cover, using predictor variables based solely on composite imagery versus those using estimated harmonic regression coefficients. The study used two common non-parametric modeling approaches (i.e. k-nearest neighbors and random forests) for fitting classification and regression models of multiple attributes measured on USFS Forest Inventory and Analysis plots using all available Landsat imagery for the study area and timeframe. The estimated Fourier coefficients developed by harmonic regression of tasseled cap transformation time series data were shown to be correlated with land cover, including tree cover. Regression models using estimated Fourier coefficients as predictor variables showed a two- to threefold increase in explained variance for a small set of continuous response variables, relative to comparable models using monthly image composites. Similarly, the overall accuracies of classification models using the estimated Fourier coefficients were approximately 10-20 percentage points higher than the models using the image composites, with corresponding individual class accuracies between six and 45 percentage points higher.

  16. A Selective Review of Group Selection in High-Dimensional Models

    PubMed Central

    Huang, Jian; Breheny, Patrick; Ma, Shuangge

    2013-01-01

    Grouping structures arise naturally in many statistical modeling problems. Several methods have been proposed for variable selection that respect grouping structure in variables. Examples include the group LASSO and several concave group selection methods. In this article, we give a selective review of group selection concerning methodological developments, theoretical properties and computational algorithms. We pay particular attention to group selection methods involving concave penalties. We address both group selection and bi-level selection methods. We describe several applications of these methods in nonparametric additive models, semiparametric regression, seemingly unrelated regressions, genomic data analysis and genome wide association studies. We also highlight some issues that require further study. PMID:24174707

  17. [Obesity in Brazilian women: association with parity and socioeconomic status].

    PubMed

    Ferreira, Regicely Aline Brandão; Benicio, Maria Helena D'Aquino

    2015-05-01

    To determine the influence of reproductive history on the prevalence of obesity in Brazilian women and the possible modifying effect of socioeconomic variables on the association between parity and excess weight. A retrospective analysis of complex sample data collected as part of the 2006 Brazilian National Survey on Demography and Health, which included a group representative of women of childbearing age in Brazil was conducted. The study included 11 961 women aged 20 to 49 years. The association between the study factor (parity) and the outcome of interest (obesity) was tested using logistic regression analysis. The adjusted effect of parity on obesity was assessed in a multiple regression model containing control variables: age, family purchasing power, as defined by the Brazilian Association of Research Enterprises (ABEP), schooling, and health care. Significance level was set at below 0.05. The prevalence of obesity in the study population was 18.6%. The effect of parity on obesity was significant (P for trend < 0.001). Unadjusted analysis showed a positive association of obesity with parity and age. Family purchase power had a significant odds ratio for obesity only in the unadjusted analysis. In the adjusted model, this variable did not explain obesity. The present findings suggest that parity has an influence on obesity in Brazilian women of childbearing age, with higher prevalence in women vs. without children.

  18. Effect of motivational interviewing on rates of early childhood caries: a randomized trial.

    PubMed

    Harrison, Rosamund; Benton, Tonya; Everson-Stewart, Siobhan; Weinstein, Phil

    2007-01-01

    The purposes of this randomized controlled trial were to: (1) test motivational interviewing (MI) to prevent early childhood caries; and (2) use Poisson regression for data analysis. A total of 240 South Asian children 6 to 18 months old were enrolled and randomly assigned to either the MI or control condition. Children had a dental exam, and their mothers completed pretested instruments at baseline and 1 and 2 years postintervention. Other covariates that might explain outcomes over and above treatment differences were modeled using Poisson regression. Hazard ratios were produced. Analyses included all participants whenever possible. Poisson regression supported a protective effect of MI (hazard ratio [HR]=0.54 (95%CI=035-0.84)-that is, the M/ group had about a 46% lower rate of dmfs at 2 years than did control children. Similar treatment effect estimates were obtained from models that included, as alternative outcomes, ds, dms, and dmfs, including "white spot lesions." Exploratory analyses revealed that rates of dmfs were higher in children whose mothers had: (1) prechewed their food; (2) been raised in a rural environment; and (3) a higher family income (P<.05). A motivational interviewing-style intervention shows promise to promote preventive behaviors in mothers of young children at high risk for caries.

  19. The relationship between quality of work life and turnover intention of primary health care nurses in Saudi Arabia.

    PubMed

    Almalki, Mohammed J; FitzGerald, Gerry; Clark, Michele

    2012-09-12

    Quality of work life (QWL) has been found to influence the commitment of health professionals, including nurses. However, reliable information on QWL and turnover intention of primary health care (PHC) nurses is limited. The aim of this study was to examine the relationship between QWL and turnover intention of PHC nurses in Saudi Arabia. A cross-sectional survey was used in this study. Data were collected using Brooks' survey of Quality of Nursing Work Life, the Anticipated Turnover Scale and demographic data questions. A total of 508 PHC nurses in the Jazan Region, Saudi Arabia, completed the questionnaire (RR = 87%). Descriptive statistics, t-test, ANOVA, General Linear Model (GLM) univariate analysis, standard multiple regression, and hierarchical multiple regression were applied for analysis using SPSS v17 for Windows. Findings suggested that the respondents were dissatisfied with their work life, with almost 40% indicating a turnover intention from their current PHC centres. Turnover intention was significantly related to QWL. Using standard multiple regression, 26% of the variance in turnover intention was explained by QWL, p < 0.001, with R2 = .263. Further analysis using hierarchical multiple regression found that the total variance explained by the model as a whole (demographics and QWL) was 32.1%, p < 0.001. QWL explained an additional 19% of the variance in turnover intention, after controlling for demographic variables. Creating and maintaining a healthy work life for PHC nurses is very important to improve their work satisfaction, reduce turnover, enhance productivity and improve nursing care outcomes.

  20. [Prevalence of vitamin D deficiency and associated factors in women and newborns in the immediate postpartum period].

    PubMed

    do Prado, Mara Rúbia Maciel Cardoso; Oliveira, Fabiana de Cássia Carvalho; Assis, Karine Franklin; Ribeiro, Sarah Aparecida Vieira; do Prado Junior, Pedro Paulo; Sant'Ana, Luciana Ferreira da Rocha; Priore, Silvia Eloiza; Franceschini, Sylvia do Carmo Castro

    2015-01-01

    To assess the prevalence of vitamin D deficiency and its associated factors in women and their newborns in the postpartum period. This cross-sectional study evaluated vitamin D deficiency/insufficiency in 226 women and their newborns in Viçosa (Minas Gerais, BR) between December 2011 and November 2012. Cord blood and venous maternal blood were collected to evaluate the following biochemical parameters: vitamin D, alkaline phosphatase, calcium, phosphorus and parathyroid hormone. Poisson regression analysis, with a confidence interval of 95% was applied to assess vitamin D deficiency and its associated factors. Multiple linear regression analysis was performed to identify factors associated with 25(OH)D deficiency in the newborns and women from the study. The criteria for variable inclusion in the multiple linear regression model was the association with the dependent variable in the simple linear regression analysis, considering p<0.20. Significance level was α<5%. From 226 women included, 200 (88.5%) were 20 to 44 years old; the median age was 28 years. Deficient/insufficient levels of vitamin D were found in 192 (85%) women and in 182 (80.5%) neonates. The maternal 25(OH)D and alkaline phosphatase levels were independently associated with vitamin D deficiency in infants. This study identified a high prevalence of vitamin D deficiency and insufficiency in women and newborns and the association between maternal nutritional status of vitamin D and their infants' vitamin D status. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  1. Epstein-Barr Virus and Gastric Cancer Risk: A Meta-analysis With Meta-regression of Case-control Studies.

    PubMed

    Bae, Jong-Myon; Kim, Eun Hee

    2016-03-01

    Research on how the risk of gastric cancer increases with Epstein-Barr virus (EBV) infection is lacking. In a systematic review that investigated studies published until September 2014, the authors did not calculate the summary odds ratio (SOR) due to heterogeneity across studies. Therefore, we include here additional studies published until October 2015 and conduct a meta-analysis with meta-regression that controls for the heterogeneity among studies. Using the studies selected in the previously published systematic review, we formulated lists of references, cited articles, and related articles provided by PubMed. From the lists, only case-control studies that detected EBV in tissue samples were selected. In order to control for the heterogeneity among studies, subgroup analysis and meta-regression were performed. In the 33 case-control results with adjacent non-cancer tissue, the total number of test samples in the case and control groups was 5280 and 4962, respectively. In the 14 case-control results with normal tissue, the total number of test samples in case and control groups was 1393 and 945, respectively. Upon meta-regression, the type of control tissue was found to be a statistically significant variable with regard to heterogeneity. When the control tissue was normal tissue of healthy individuals, the SOR was 3.41 (95% CI, 1.78 to 6.51; I-squared, 65.5%). The results of the present study support the argument that EBV infection increases the risk of gastric cancer. In the future, age-matched and sex-matched case-control studies should be conducted.

  2. The relationship between quality of work life and turnover intention of primary health care nurses in Saudi Arabia

    PubMed Central

    2012-01-01

    Background Quality of work life (QWL) has been found to influence the commitment of health professionals, including nurses. However, reliable information on QWL and turnover intention of primary health care (PHC) nurses is limited. The aim of this study was to examine the relationship between QWL and turnover intention of PHC nurses in Saudi Arabia. Methods A cross-sectional survey was used in this study. Data were collected using Brooks’ survey of Quality of Nursing Work Life, the Anticipated Turnover Scale and demographic data questions. A total of 508 PHC nurses in the Jazan Region, Saudi Arabia, completed the questionnaire (RR = 87%). Descriptive statistics, t-test, ANOVA, General Linear Model (GLM) univariate analysis, standard multiple regression, and hierarchical multiple regression were applied for analysis using SPSS v17 for Windows. Results Findings suggested that the respondents were dissatisfied with their work life, with almost 40% indicating a turnover intention from their current PHC centres. Turnover intention was significantly related to QWL. Using standard multiple regression, 26% of the variance in turnover intention was explained by QWL, p < 0.001, with R2 = .263. Further analysis using hierarchical multiple regression found that the total variance explained by the model as a whole (demographics and QWL) was 32.1%, p < 0.001. QWL explained an additional 19% of the variance in turnover intention, after controlling for demographic variables. Conclusions Creating and maintaining a healthy work life for PHC nurses is very important to improve their work satisfaction, reduce turnover, enhance productivity and improve nursing care outcomes. PMID:22970764

  3. Multiple Correlation versus Multiple Regression.

    ERIC Educational Resources Information Center

    Huberty, Carl J.

    2003-01-01

    Describes differences between multiple correlation analysis (MCA) and multiple regression analysis (MRA), showing how these approaches involve different research questions and study designs, different inferential approaches, different analysis strategies, and different reported information. (SLD)

  4. Functional Relationships and Regression Analysis.

    ERIC Educational Resources Information Center

    Preece, Peter F. W.

    1978-01-01

    Using a degenerate multivariate normal model for the distribution of organismic variables, the form of least-squares regression analysis required to estimate a linear functional relationship between variables is derived. It is suggested that the two conventional regression lines may be considered to describe functional, not merely statistical,…

  5. Isolating and Examining Sources of Suppression and Multicollinearity in Multiple Linear Regression

    ERIC Educational Resources Information Center

    Beckstead, Jason W.

    2012-01-01

    The presence of suppression (and multicollinearity) in multiple regression analysis complicates interpretation of predictor-criterion relationships. The mathematical conditions that produce suppression in regression analysis have received considerable attention in the methodological literature but until now nothing in the way of an analytic…

  6. General Nature of Multicollinearity in Multiple Regression Analysis.

    ERIC Educational Resources Information Center

    Liu, Richard

    1981-01-01

    Discusses multiple regression, a very popular statistical technique in the field of education. One of the basic assumptions in regression analysis requires that independent variables in the equation should not be highly correlated. The problem of multicollinearity and some of the solutions to it are discussed. (Author)

  7. Logistic Regression: Concept and Application

    ERIC Educational Resources Information Center

    Cokluk, Omay

    2010-01-01

    The main focus of logistic regression analysis is classification of individuals in different groups. The aim of the present study is to explain basic concepts and processes of binary logistic regression analysis intended to determine the combination of independent variables which best explain the membership in certain groups called dichotomous…

  8. Prevalence of hepatitis C virus infection among high-risk groups in Iran: a systematic review and meta-analysis.

    PubMed

    Nematollahi, S; Ayubi, E; Almasi-Hashiani, A; Mansori, K; Moradi, Y; Veisani, Y; Jenabi, E; Gholamaliei, B; Khazaei, S

    2018-06-20

    Determination of the true burden of hepatitis C virus (HCV) infection among high-risk groups relies heavily on occurrence measures such as prevalence, which are vital for implementation of preventive action plans. Nevertheless, up-to-date data on the prevalence of HCV infection remain scarce in Iran. This study aimed to review the relevant literature systematically and determine the pooled prevalence of HCV infection among high-risk groups in Iran. Systematic review & meta-analysis. In 2016, electronic scientific databases including PubMed, Scopus, Web of Science and local databases were searched using a detailed search strategy with language restricted to English and Farsi. The reference lists of the studies included in this review were also screened. Data were reviewed and extracted independently by two authors. A random effects model was used to estimate the pooled prevalence. Sources of heterogeneity among the studies were determined using subgroup analysis and meta-regression. In total, 1817 records were identified in the initial search, and 46 records were included in the meta-analysis. The overall prevalence of HCV among high-risk groups was 32.3%. The prevalence was 41.3% in injection drug users (IDUs), 22.9% in prisoners, 16.2% in drug-dependent individuals and 24.6% in drug-dependent prisoners. Subgroup and meta-regression analyses revealed that geographical location and year of publication were the probable sources of heterogeneity. This meta-analysis found a high prevalence of HCV among high-risk groups in Iran, particularly among IDUs. There is a need for prevention strategies to reduce the burden of HCV infection among high-risk groups, particularly IDUs. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  9. Classification and regression tree (CART) analysis of endometrial carcinoma: Seeing the forest for the trees.

    PubMed

    Barlin, Joyce N; Zhou, Qin; St Clair, Caryn M; Iasonos, Alexia; Soslow, Robert A; Alektiar, Kaled M; Hensley, Martee L; Leitao, Mario M; Barakat, Richard R; Abu-Rustum, Nadeem R

    2013-09-01

    The objectives of the study are to evaluate which clinicopathologic factors influenced overall survival (OS) in endometrial carcinoma and to determine if the surgical effort to assess para-aortic (PA) lymph nodes (LNs) at initial staging surgery impacts OS. All patients diagnosed with endometrial cancer from 1/1993-12/2011 who had LNs excised were included. PALN assessment was defined by the identification of one or more PALNs on final pathology. A multivariate analysis was performed to assess the effect of PALNs on OS. A form of recursive partitioning called classification and regression tree (CART) analysis was implemented. Variables included: age, stage, tumor subtype, grade, myometrial invasion, total LNs removed, evaluation of PALNs, and adjuvant chemotherapy. The cohort included 1920 patients, with a median age of 62 years. The median number of LNs removed was 16 (range, 1-99). The removal of PALNs was not associated with OS (P=0.450). Using the CART hierarchically, stage I vs. stages II-IV and grades 1-2 vs. grade 3 emerged as predictors of OS. If the tree was allowed to grow, further branching was based on age and myometrial invasion. Total number of LNs removed and assessment of PALNs as defined in this study were not predictive of OS. This innovative CART analysis emphasized the importance of proper stage assignment and a binary grading system in impacting OS. Notably, the total number of LNs removed and specific evaluation of PALNs as defined in this study were not important predictors of OS. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Serum Irisin Predicts Mortality Risk in Acute Heart Failure Patients.

    PubMed

    Shen, Shutong; Gao, Rongrong; Bei, Yihua; Li, Jin; Zhang, Haifeng; Zhou, Yanli; Yao, Wenming; Xu, Dongjie; Zhou, Fang; Jin, Mengchao; Wei, Siqi; Wang, Kai; Xu, Xuejuan; Li, Yongqin; Xiao, Junjie; Li, Xinli

    2017-01-01

    Irisin is a peptide hormone cleaved from a plasma membrane protein fibronectin type III domain containing protein 5 (FNDC5). Emerging studies have indicated association between serum irisin and many major chronic diseases including cardiovascular diseases. However, the role of serum irisin as a predictor for mortality risk in acute heart failure (AHF) patients is not clear. AHF patients were enrolled and serum was collected at the admission and all patients were followed up for 1 year. Enzyme-linked immunosorbent assay was used to measure serum irisin levels. To explore predictors for AHF mortality, the univariate and multivariate logistic regression analysis, and receiver-operator characteristic (ROC) curve analysis were used. To determine the role of serum irisin levels in predicting survival, Kaplan-Meier survival analysis was used. In this study, 161 AHF patients were enrolled and serum irisin level was found to be significantly higher in patients deceased in 1-year follow-up. The univariate logistic regression analysis identified 18 variables associated with all-cause mortality in AHF patients, while the multivariate logistic regression analysis identified 2 variables namely blood urea nitrogen and serum irisin. ROC curve analysis indicated that blood urea nitrogen and the most commonly used biomarker, NT-pro-BNP, displayed poor prognostic value for AHF (AUCs ≤ 0.700) compared to serum irisin (AUC = 0.753). Kaplan-Meier survival analysis demonstrated that AHF patients with higher serum irisin had significantly higher mortality (P<0.001). Collectively, our study identified serum irisin as a predictive biomarker for 1-year all-cause mortality in AHF patients though large multicenter studies are highly needed. © 2017 The Author(s). Published by S. Karger AG, Basel.

  11. Cement Leakage in Percutaneous Vertebral Augmentation for Osteoporotic Vertebral Compression Fractures: Analysis of Risk Factors.

    PubMed

    Xie, Weixing; Jin, Daxiang; Ma, Hui; Ding, Jinyong; Xu, Jixi; Zhang, Shuncong; Liang, De

    2016-05-01

    The risk factors for cement leakage were retrospectively reviewed in 192 patients who underwent percutaneous vertebral augmentation (PVA). To discuss the factors related to the cement leakage in PVA procedure for the treatment of osteoporotic vertebral compression fractures. PVA is widely applied for the treatment of osteoporotic vertebral fractures. Cement leakage is a major complication of this procedure. The risk factors for cement leakage were controversial. A retrospective review of 192 patients who underwent PVA was conducted. The following data were recorded: age, sex, bone density, number of fractured vertebrae before surgery, number of treated vertebrae, severity of the treated vertebrae, operative approach, volume of injected bone cement, preoperative vertebral compression ratio, preoperative local kyphosis angle, intraosseous clefts, preoperative vertebral cortical bone defect, and ratio and type of cement leakage. To study the correlation between each factor and cement leakage ratio, bivariate regression analysis was employed to perform univariate analysis, whereas multivariate linear regression analysis was employed to perform multivariate analysis. The study included 192 patients (282 treated vertebrae), and cement leakage occurred in 100 vertebrae (35.46%). The vertebrae with preoperative cortical bone defects generally exhibited higher cement leakage ratio, and the leakage is typically type C. Vertebrae with intact cortical bones before the procedure tend to experience type S leakage. Univariate analysis showed that patient age, bone density, number of fractured vertebrae before surgery, and vertebral cortical bone were associated with cement leakage ratio (P<0.05). Multivariate analysis showed that the main factors influencing bone cement leakage are bone density and vertebral cortical bone defect, with standardized partial regression coefficients of -0.085 and 0.144, respectively. High bone density and vertebral cortical bone defect are independent risk factors associated with bone cement leakage.

  12. Association between developmental defects of enamel and dental caries: A systematic review and meta-analysis.

    PubMed

    Vargas-Ferreira, F; Salas, M M S; Nascimento, G G; Tarquinio, S B C; Faggion, C M; Peres, M A; Thomson, W M; Demarco, F F

    2015-06-01

    Dental caries is the main problem oral health and it is not well established in the literature if the enamel defects are a risk factor for its development. Studies have reported a potential association between developmental defects enamel (DDE) and dental caries occurrence. We investigated the association between DDE and caries in permanent dentition of children and teenagers. A systematic review was carried out using four databases (Pubmed, Web of Science, Embase, and Science Direct), which were searched from their earliest records until December 31, 2014. Population-based studies assessing differences in dental caries experience according to the presence of enamel defects (and their types) were included. PRISMA guidelines for reporting systematic reviews were followed. Meta-analysis was performed to assess the pooled effect, and meta-regression was carried out to identify heterogeneity sources. From the 2558 initially identified papers, nine studies fulfilled all inclusion criteria after checking the titles, abstracts, references, and complete reading. Seven of them were included in the meta-analysis with random model. A positive association between enamel defects and dental caries was identified; meta-analysis showed that individuals with DDE had higher pooled odds of having dental caries experience [OR 2.21 (95% CI 1.3; 3.54)]. Meta-regression analysis demonstrated that adjustment for sociodemographic factors, countries' socioeconomic status, and bias (quality of studies) explained the high heterogeneity observed. A higher chance of dental caries should be expected among individuals with enamel defects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The diagnostic performance of shear wave elastography for malignant cervical lymph nodes: A systematic review and meta-analysis.

    PubMed

    Suh, Chong Hyun; Choi, Young Jun; Baek, Jung Hwan; Lee, Jeong Hyun

    2017-01-01

    To evaluate the diagnostic performance of shear wave elastography for malignant cervical lymph nodes. We searched the Ovid-MEDLINE and EMBASE databases for published studies regarding the use of shear wave elastography for diagnosing malignant cervical lymph nodes. The diagnostic performance of shear wave elastography was assessed using bivariate modelling and hierarchical summary receiver operating characteristic modelling. Meta-regression analysis and subgroup analysis according to acoustic radiation force impulse imaging (ARFI) and Supersonic shear imaging (SSI) were also performed. Eight eligible studies which included a total sample size of 481 patients with 647 cervical lymph nodes, were included. Shear wave elastography showed a summary sensitivity of 81 % (95 % CI: 72-88 %) and specificity of 85 % (95 % CI: 70-93 %). The results of meta-regression analysis revealed that the prevalence of malignant lymph nodes was a significant factor affecting study heterogeneity (p < .01). According to the subgroup analysis, the summary estimates of the sensitivity and specificity did not differ between ARFI and SSI (p = .93). Shear wave elastography is an acceptable imaging modality for diagnosing malignant cervical lymph nodes. We believe that both ARFI and SSI may have a complementary role for diagnosing malignant cervical lymph nodes. • Shear wave elastography is acceptable modality for diagnosing malignant cervical lymph nodes. • Shear wave elastography demonstrated summary sensitivity of 81 % and specificity of 85 %. • ARFI and SSI have complementary roles for diagnosing malignant cervical lymph nodes.

  14. Influence of Japanese consumer gender and age on sensory attributes and preference (a case study on deep-fried peanuts).

    PubMed

    Miyagi, Atsushi

    2017-09-01

    Detailed exploration of sensory perception as well as preference across gender and age for a certain food is very useful for developing a vendible food commodity related to physiological and psychological motivation for food preference. Sensory tests including color, sweetness, bitterness, fried peanut aroma, textural preference and overall liking of deep-fried peanuts with varying frying time (2, 4, 6, 9, 12 and 15 min) at 150 °C were carried out using 417 healthy Japanese consumers. To determine the influence of gender and age on sensory evaluation, systematic statistical analysis including one-way analysis of variance, polynomial regression analysis and multiple regression analysis was conducted using the collected data. The results indicated that females were more sensitive to bitterness than males. This may affect sensory preference; female subjects favored peanuts prepared with a shorter frying time more than male subjects did. With advancing age, textural preference played a more important role in overall preference. Older subjects liked deeper-fried peanuts, which are more brittle, more than younger subjects did. In the present study, systematic statistical analysis based on collected sensory evaluation data using deep-fried peanuts was conducted and the tendency of sensory perception and preference across gender and age was clarified. These results may be useful for engineering optimal strategies to target specific segments to gain greater acceptance in the market. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Systematic genomic identification of colorectal cancer genes delineating advanced from early clinical stage and metastasis

    PubMed Central

    2013-01-01

    Background Colorectal cancer is the third leading cause of cancer deaths in the United States. The initial assessment of colorectal cancer involves clinical staging that takes into account the extent of primary tumor invasion, determining the number of lymph nodes with metastatic cancer and the identification of metastatic sites in other organs. Advanced clinical stage indicates metastatic cancer, either in regional lymph nodes or in distant organs. While the genomic and genetic basis of colorectal cancer has been elucidated to some degree, less is known about the identity of specific cancer genes that are associated with advanced clinical stage and metastasis. Methods We compiled multiple genomic data types (mutations, copy number alterations, gene expression and methylation status) as well as clinical meta-data from The Cancer Genome Atlas (TCGA). We used an elastic-net regularized regression method on the combined genomic data to identify genetic aberrations and their associated cancer genes that are indicators of clinical stage. We ranked candidate genes by their regression coefficient and level of support from multiple assay modalities. Results A fit of the elastic-net regularized regression to 197 samples and integrated analysis of four genomic platforms identified the set of top gene predictors of advanced clinical stage, including: WRN, SYK, DDX5 and ADRA2C. These genetic features were identified robustly in bootstrap resampling analysis. Conclusions We conducted an analysis integrating multiple genomic features including mutations, copy number alterations, gene expression and methylation. This integrated approach in which one considers all of these genomic features performs better than any individual genomic assay. We identified multiple genes that robustly delineate advanced clinical stage, suggesting their possible role in colorectal cancer metastatic progression. PMID:24308539

  16. Trainee-Associated Factors and Proficiency at Percutaneous Nephrolithotomy.

    PubMed

    Aghamir, Seyed Mohammad Kazem; Behtash, Negar; Hamidi, Morteza; Farahmand, Hasan; Salavati, Alborz; Mortaz Hejri, Sara

    2017-07-01

    Percutaneous nephrolithotomy (PNL) is a complicated procedure for urology trainees. This study was designed to investigate the effect of trainees' ages and previous experience, as well as the number of operated cases, on proficiency at PNL by using patient outcomes. A cross sectional observational study was designed during a five-year period. Trainees in PNL fellowship programs were included. At the end of the program, the trainees' performance in PNL was assessed regarding five competencies and scored 1-5. If the overall score was 4 or above, the trainee was considered as proficient. The trainees' age at the beginning of the program and the years passed from their residency graduation were asked and recorded. Also, the number of PNL cases operated by each trainee was obtained via their logbooks. The age, years passed from graduation, and number of operated cases were compared between two groups of proficient and non-proficient trainees. Univariate and multivariate binary logistic regression analysis was applied to estimate the effect of aforementioned variables on the occurrence of the proficiency. Forty-two trainees were included in the study. The mean and standard deviation for the overall score were 3.40 (out of 5) and 0.67, respectively. Eleven trainees (26.2%) recognized as proficient in performing PNL. Univariate regression analysis indicated that each of three variables (age, years passed from graduation and number of operated cases) had statistically significant effect on proficiency. However, the multivariate regression analysis revealed that just the number of cases had significant effect on achieving proficiency. Although it might be assumed that trainees' age negatively correlates with their scores, in fact, it is their amount of practice that makes a difference. A certain number of cases is required to be operated by a trainee in order to reach the desired competency in PNL.

  17. An event-based approach to understanding decadal fluctuations in the Atlantic meridional overturning circulation

    NASA Astrophysics Data System (ADS)

    Allison, Lesley; Hawkins, Ed; Woollings, Tim

    2015-01-01

    Many previous studies have shown that unforced climate model simulations exhibit decadal-scale fluctuations in the Atlantic meridional overturning circulation (AMOC), and that this variability can have impacts on surface climate fields. However, the robustness of these surface fingerprints across different models is less clear. Furthermore, with the potential for coupled feedbacks that may amplify or damp the response, it is not known whether the associated climate signals are linearly related to the strength of the AMOC changes, or if the fluctuation events exhibit nonlinear behaviour with respect to their strength or polarity. To explore these questions, we introduce an objective and flexible method for identifying the largest natural AMOC fluctuation events in multicentennial/multimillennial simulations of a variety of coupled climate models. The characteristics of the events are explored, including their magnitude, meridional coherence and spatial structure, as well as links with ocean heat transport and the horizontal circulation. The surface fingerprints in ocean temperature and salinity are examined, and compared with the results of linear regression analysis. It is found that the regressions generally provide a good indication of the surface changes associated with the largest AMOC events. However, there are some exceptions, including a nonlinear change in the atmospheric pressure signal, particularly at high latitudes, in HadCM3. Some asymmetries are also found between the changes associated with positive and negative AMOC events in the same model. Composite analysis suggests that there are signals that are robust across the largest AMOC events in each model, which provides reassurance that the surface changes associated with one particular event will be similar to those expected from regression analysis. However, large differences are found between the AMOC fingerprints in different models, which may hinder the prediction and attribution of such events in reality.

  18. Prevalence of difficult venous access and associated risk factors in highly complex hospitalised patients.

    PubMed

    Armenteros-Yeguas, Victoria; Gárate-Echenique, Lucía; Tomás-López, Maria Aranzazu; Cristóbal-Domínguez, Estíbaliz; Moreno-de Gusmão, Breno; Miranda-Serrano, Erika; Moraza-Dulanto, Maria Inmaculada

    2017-12-01

    To estimate the prevalence of difficult venous access in complex patients with multimorbidity and to identify associated risk factors. In highly complex patients, factors like ageing, the need for frequent use of irritant medication and multiple venous catheterisations to complete treatment could contribute to exhaustion of venous access. A cross-sectional study was conducted. 'Highly complex' patients (n = 135) were recruited from March 2013-November 2013. The main study variable was the prevalence of difficult venous access, assessed using one of the following criteria: (1) a history of difficulties obtaining venous access based on more than two attempts to insert an intravenous line and (2) no visible or palpable veins. Other factors potentially associated with the risk of difficult access were also measured (age, gender and chronic illnesses). Univariate analysis was performed for each potential risk factor. Factors with p < 0·2 were then included in multivariable logistic regression analysis. Odds ratios were also calculated. The prevalence of difficult venous access was 59·3%. The univariate logistic regression analysis indicated that gender, a history of vascular access complications and osteoarticular disease were significantly associated with difficult venous access. The multivariable logistic regression showed that only gender was an independent risk factor and the odds ratios was 2·85. The prevalence of difficult venous access is high in this population. Gender (female) is the only independent risk factor associated with this. Previous history of several attempts at catheter insertion is an important criterion in the assessment of difficult venous access. The prevalence of difficult venous access in complex patients is 59·3%. Significant risk factors include being female and a history of complications related to vascular access. © 2017 John Wiley & Sons Ltd.

  19. Discrepancies Between Perceptions of the Parent-Adolescent Relationship and Early Adolescent Depressive Symptoms: An Illustration of Polynomial Regression Analysis.

    PubMed

    Nelemans, S A; Branje, S J T; Hale, W W; Goossens, L; Koot, H M; Oldehinkel, A J; Meeus, W H J

    2016-10-01

    Adolescence is a critical period for the development of depressive symptoms. Lower quality of the parent-adolescent relationship has been consistently associated with higher adolescent depressive symptoms, but discrepancies in perceptions of parents and adolescents regarding the quality of their relationship may be particularly important to consider. In the present study, we therefore examined how discrepancies in parents' and adolescents' perceptions of the parent-adolescent relationship were associated with early adolescent depressive symptoms, both concurrently and longitudinally over a 1-year period. Our sample consisted of 497 Dutch adolescents (57 % boys, M age = 13.03 years), residing in the western and central regions of the Netherlands, and their mothers and fathers, who all completed several questionnaires on two occasions with a 1-year interval. Adolescents reported on depressive symptoms and all informants reported on levels of negative interaction in the parent-adolescent relationship. Results from polynomial regression analyses including interaction terms between informants' perceptions, which have recently been proposed as more valid tests of hypotheses involving informant discrepancies than difference scores, suggested the highest adolescent depressive symptoms when both the mother and the adolescent reported high negative interaction, and when the adolescent reported high but the father reported low negative interaction. This pattern of findings underscores the need for a more sophisticated methodology such as polynomial regression analysis including tests of moderation, rather than the use of difference scores, which can adequately address both congruence and discrepancies in perceptions of adolescents and mothers/fathers of the parent-adolescent relationship in detail. Such an analysis can contribute to a more comprehensive understanding of risk factors for early adolescent depressive symptoms.

  20. Multiple imputation for cure rate quantile regression with censored data.

    PubMed

    Wu, Yuanshan; Yin, Guosheng

    2017-03-01

    The main challenge in the context of cure rate analysis is that one never knows whether censored subjects are cured or uncured, or whether they are susceptible or insusceptible to the event of interest. Considering the susceptible indicator as missing data, we propose a multiple imputation approach to cure rate quantile regression for censored data with a survival fraction. We develop an iterative algorithm to estimate the conditionally uncured probability for each subject. By utilizing this estimated probability and Bernoulli sample imputation, we can classify each subject as cured or uncured, and then employ the locally weighted method to estimate the quantile regression coefficients with only the uncured subjects. Repeating the imputation procedure multiple times and taking an average over the resultant estimators, we obtain consistent estimators for the quantile regression coefficients. Our approach relaxes the usual global linearity assumption, so that we can apply quantile regression to any particular quantile of interest. We establish asymptotic properties for the proposed estimators, including both consistency and asymptotic normality. We conduct simulation studies to assess the finite-sample performance of the proposed multiple imputation method and apply it to a lung cancer study as an illustration. © 2016, The International Biometric Society.

  1. Applying Regression Analysis to Problems in Institutional Research.

    ERIC Educational Resources Information Center

    Bohannon, Tom R.

    1988-01-01

    Regression analysis is one of the most frequently used statistical techniques in institutional research. Principles of least squares, model building, residual analysis, influence statistics, and multi-collinearity are described and illustrated. (Author/MSE)

  2. Online Statistical Modeling (Regression Analysis) for Independent Responses

    NASA Astrophysics Data System (ADS)

    Made Tirta, I.; Anggraeni, Dian; Pandutama, Martinus

    2017-06-01

    Regression analysis (statistical analmodelling) are among statistical methods which are frequently needed in analyzing quantitative data, especially to model relationship between response and explanatory variables. Nowadays, statistical models have been developed into various directions to model various type and complex relationship of data. Rich varieties of advanced and recent statistical modelling are mostly available on open source software (one of them is R). However, these advanced statistical modelling, are not very friendly to novice R users, since they are based on programming script or command line interface. Our research aims to developed web interface (based on R and shiny), so that most recent and advanced statistical modelling are readily available, accessible and applicable on web. We have previously made interface in the form of e-tutorial for several modern and advanced statistical modelling on R especially for independent responses (including linear models/LM, generalized linier models/GLM, generalized additive model/GAM and generalized additive model for location scale and shape/GAMLSS). In this research we unified them in the form of data analysis, including model using Computer Intensive Statistics (Bootstrap and Markov Chain Monte Carlo/ MCMC). All are readily accessible on our online Virtual Statistics Laboratory. The web (interface) make the statistical modeling becomes easier to apply and easier to compare them in order to find the most appropriate model for the data.

  3. Risky decision making in Attention-Deficit/Hyperactivity Disorder: A meta-regression analysis.

    PubMed

    Dekkers, Tycho J; Popma, Arne; Agelink van Rentergem, Joost A; Bexkens, Anika; Huizenga, Hilde M

    2016-04-01

    ADHD has been associated with various forms of risky real life decision making, for example risky driving, unsafe sex and substance abuse. However, results from laboratory studies on decision making deficits in ADHD have been inconsistent, probably because of between study differences. We therefore performed a meta-regression analysis in which 37 studies (n ADHD=1175; n Control=1222) were included, containing 52 effect sizes. The overall analysis yielded a small to medium effect size (standardized mean difference=.36, p<.001, 95% CI [.22, .51]), indicating that groups with ADHD showed more risky decision making than control groups. There was a trend for a moderating influence of co-morbid Disruptive Behavior Disorders (DBD): studies including more participants with co-morbid DBD had larger effect sizes. No moderating influence of co-morbid internalizing disorders, age or task explicitness was found. These results indicate that ADHD is related to increased risky decision making in laboratory settings, which tended to be more pronounced if ADHD is accompanied by DBD. We therefore argue that risky decision making should have a more prominent role in research on the neuropsychological and -biological mechanisms of ADHD, which can be useful in ADHD assessment and intervention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Temporal trends in sperm count: a systematic review and meta-regression analysis.

    PubMed

    Levine, Hagai; Jørgensen, Niels; Martino-Andrade, Anderson; Mendiola, Jaime; Weksler-Derri, Dan; Mindlis, Irina; Pinotti, Rachel; Swan, Shanna H

    2017-11-01

    Reported declines in sperm counts remain controversial today and recent trends are unknown. A definitive meta-analysis is critical given the predictive value of sperm count for fertility, morbidity and mortality. To provide a systematic review and meta-regression analysis of recent trends in sperm counts as measured by sperm concentration (SC) and total sperm count (TSC), and their modification by fertility and geographic group. PubMed/MEDLINE and EMBASE were searched for English language studies of human SC published in 1981-2013. Following a predefined protocol 7518 abstracts were screened and 2510 full articles reporting primary data on SC were reviewed. A total of 244 estimates of SC and TSC from 185 studies of 42 935 men who provided semen samples in 1973-2011 were extracted for meta-regression analysis, as well as information on years of sample collection and covariates [fertility group ('Unselected by fertility' versus 'Fertile'), geographic group ('Western', including North America, Europe Australia and New Zealand versus 'Other', including South America, Asia and Africa), age, ejaculation abstinence time, semen collection method, method of measuring SC and semen volume, exclusion criteria and indicators of completeness of covariate data]. The slopes of SC and TSC were estimated as functions of sample collection year using both simple linear regression and weighted meta-regression models and the latter were adjusted for pre-determined covariates and modification by fertility and geographic group. Assumptions were examined using multiple sensitivity analyses and nonlinear models. SC declined significantly between 1973 and 2011 (slope in unadjusted simple regression models -0.70 million/ml/year; 95% CI: -0.72 to -0.69; P < 0.001; slope in adjusted meta-regression models = -0.64; -1.06 to -0.22; P = 0.003). The slopes in the meta-regression model were modified by fertility (P for interaction = 0.064) and geographic group (P for interaction = 0.027). There was a significant decline in SC between 1973 and 2011 among Unselected Western (-1.38; -2.02 to -0.74; P < 0.001) and among Fertile Western (-0.68; -1.31 to -0.05; P = 0.033), while no significant trends were seen among Unselected Other and Fertile Other. Among Unselected Western studies, the mean SC declined, on average, 1.4% per year with an overall decline of 52.4% between 1973 and 2011. Trends for TSC and SC were similar, with a steep decline among Unselected Western (-5.33 million/year, -7.56 to -3.11; P < 0.001), corresponding to an average decline in mean TSC of 1.6% per year and overall decline of 59.3%. Results changed minimally in multiple sensitivity analyses, and there was no statistical support for the use of a nonlinear model. In a model restricted to data post-1995, the slope both for SC and TSC among Unselected Western was similar to that for the entire period (-2.06 million/ml, -3.38 to -0.74; P = 0.004 and -8.12 million, -13.73 to -2.51, P = 0.006, respectively). This comprehensive meta-regression analysis reports a significant decline in sperm counts (as measured by SC and TSC) between 1973 and 2011, driven by a 50-60% decline among men unselected by fertility from North America, Europe, Australia and New Zealand. Because of the significant public health implications of these results, research on the causes of this continuing decline is urgently needed. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  5. Practical application of cure mixture model for long-term censored survivor data from a withdrawal clinical trial of patients with major depressive disorder.

    PubMed

    Arano, Ichiro; Sugimoto, Tomoyuki; Hamasaki, Toshimitsu; Ohno, Yuko

    2010-04-23

    Survival analysis methods such as the Kaplan-Meier method, log-rank test, and Cox proportional hazards regression (Cox regression) are commonly used to analyze data from randomized withdrawal studies in patients with major depressive disorder. However, unfortunately, such common methods may be inappropriate when a long-term censored relapse-free time appears in data as the methods assume that if complete follow-up were possible for all individuals, each would eventually experience the event of interest. In this paper, to analyse data including such a long-term censored relapse-free time, we discuss a semi-parametric cure regression (Cox cure regression), which combines a logistic formulation for the probability of occurrence of an event with a Cox proportional hazards specification for the time of occurrence of the event. In specifying the treatment's effect on disease-free survival, we consider the fraction of long-term survivors and the risks associated with a relapse of the disease. In addition, we develop a tree-based method for the time to event data to identify groups of patients with differing prognoses (cure survival CART). Although analysis methods typically adapt the log-rank statistic for recursive partitioning procedures, the method applied here used a likelihood ratio (LR) test statistic from a fitting of cure survival regression assuming exponential and Weibull distributions for the latency time of relapse. The method is illustrated using data from a sertraline randomized withdrawal study in patients with major depressive disorder. We concluded that Cox cure regression reveals facts on who may be cured, and how the treatment and other factors effect on the cured incidence and on the relapse time of uncured patients, and that cure survival CART output provides easily understandable and interpretable information, useful both in identifying groups of patients with differing prognoses and in utilizing Cox cure regression models leading to meaningful interpretations.

  6. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies

    PubMed Central

    Vatcheva, Kristina P.; Lee, MinJae; McCormick, Joseph B.; Rahbar, Mohammad H.

    2016-01-01

    The adverse impact of ignoring multicollinearity on findings and data interpretation in regression analysis is very well documented in the statistical literature. The failure to identify and report multicollinearity could result in misleading interpretations of the results. A review of epidemiological literature in PubMed from January 2004 to December 2013, illustrated the need for a greater attention to identifying and minimizing the effect of multicollinearity in analysis of data from epidemiologic studies. We used simulated datasets and real life data from the Cameron County Hispanic Cohort to demonstrate the adverse effects of multicollinearity in the regression analysis and encourage researchers to consider the diagnostic for multicollinearity as one of the steps in regression analysis. PMID:27274911

  7. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies.

    PubMed

    Vatcheva, Kristina P; Lee, MinJae; McCormick, Joseph B; Rahbar, Mohammad H

    2016-04-01

    The adverse impact of ignoring multicollinearity on findings and data interpretation in regression analysis is very well documented in the statistical literature. The failure to identify and report multicollinearity could result in misleading interpretations of the results. A review of epidemiological literature in PubMed from January 2004 to December 2013, illustrated the need for a greater attention to identifying and minimizing the effect of multicollinearity in analysis of data from epidemiologic studies. We used simulated datasets and real life data from the Cameron County Hispanic Cohort to demonstrate the adverse effects of multicollinearity in the regression analysis and encourage researchers to consider the diagnostic for multicollinearity as one of the steps in regression analysis.

  8. Prediction of Emergency Department Hospital Admission Based on Natural Language Processing and Neural Networks.

    PubMed

    Zhang, Xingyu; Kim, Joyce; Patzer, Rachel E; Pitts, Stephen R; Patzer, Aaron; Schrager, Justin D

    2017-10-26

    To describe and compare logistic regression and neural network modeling strategies to predict hospital admission or transfer following initial presentation to Emergency Department (ED) triage with and without the addition of natural language processing elements. Using data from the National Hospital Ambulatory Medical Care Survey (NHAMCS), a cross-sectional probability sample of United States EDs from 2012 and 2013 survey years, we developed several predictive models with the outcome being admission to the hospital or transfer vs. discharge home. We included patient characteristics immediately available after the patient has presented to the ED and undergone a triage process. We used this information to construct logistic regression (LR) and multilayer neural network models (MLNN) which included natural language processing (NLP) and principal component analysis from the patient's reason for visit. Ten-fold cross validation was used to test the predictive capacity of each model and receiver operating curves (AUC) were then calculated for each model. Of the 47,200 ED visits from 642 hospitals, 6,335 (13.42%) resulted in hospital admission (or transfer). A total of 48 principal components were extracted by NLP from the reason for visit fields, which explained 75% of the overall variance for hospitalization. In the model including only structured variables, the AUC was 0.824 (95% CI 0.818-0.830) for logistic regression and 0.823 (95% CI 0.817-0.829) for MLNN. Models including only free-text information generated AUC of 0.742 (95% CI 0.731- 0.753) for logistic regression and 0.753 (95% CI 0.742-0.764) for MLNN. When both structured variables and free text variables were included, the AUC reached 0.846 (95% CI 0.839-0.853) for logistic regression and 0.844 (95% CI 0.836-0.852) for MLNN. The predictive accuracy of hospital admission or transfer for patients who presented to ED triage overall was good, and was improved with the inclusion of free text data from a patient's reason for visit regardless of modeling approach. Natural language processing and neural networks that incorporate patient-reported outcome free text may increase predictive accuracy for hospital admission.

  9. Comparison of Cox's Regression Model and Parametric Models in Evaluating the Prognostic Factors for Survival after Liver Transplantation in Shiraz during 2000-2012.

    PubMed

    Adelian, R; Jamali, J; Zare, N; Ayatollahi, S M T; Pooladfar, G R; Roustaei, N

    2015-01-01

    Identification of the prognostic factors for survival in patients with liver transplantation is challengeable. Various methods of survival analysis have provided different, sometimes contradictory, results from the same data. To compare Cox's regression model with parametric models for determining the independent factors for predicting adults' and pediatrics' survival after liver transplantation. This study was conducted on 183 pediatric patients and 346 adults underwent liver transplantation in Namazi Hospital, Shiraz, southern Iran. The study population included all patients undergoing liver transplantation from 2000 to 2012. The prognostic factors sex, age, Child class, initial diagnosis of the liver disease, PELD/MELD score, and pre-operative laboratory markers were selected for survival analysis. Among 529 patients, 346 (64.5%) were adult and 183 (34.6%) were pediatric cases. Overall, the lognormal distribution was the best-fitting model for adult and pediatric patients. Age in adults (HR=1.16, p<0.05) and weight (HR=2.68, p<0.01) and Child class B (HR=2.12, p<0.05) in pediatric patients were the most important factors for prediction of survival after liver transplantation. Adult patients younger than the mean age and pediatric patients weighing above the mean and Child class A (compared to those with classes B or C) had better survival. Parametric regression model is a good alternative for the Cox's regression model.

  10. Serum Folate Shows an Inverse Association with Blood Pressure in a Cohort of Chinese Women of Childbearing Age: A Cross-Sectional Study

    PubMed Central

    Shen, Minxue; Tan, Hongzhuan; Zhou, Shujin; Retnakaran, Ravi; Smith, Graeme N.; Davidge, Sandra T.; Trasler, Jacquetta; Walker, Mark C.; Wen, Shi Wu

    2016-01-01

    Background It has been reported that higher folate intake from food and supplementation is associated with decreased blood pressure (BP). The association between serum folate concentration and BP has been examined in few studies. We aim to examine the association between serum folate and BP levels in a cohort of young Chinese women. Methods We used the baseline data from a pre-conception cohort of women of childbearing age in Liuyang, China, for this study. Demographic data were collected by structured interview. Serum folate concentration was measured by immunoassay, and homocysteine, blood glucose, triglyceride and total cholesterol were measured through standardized clinical procedures. Multiple linear regression and principal component regression model were applied in the analysis. Results A total of 1,532 healthy normotensive non-pregnant women were included in the final analysis. The mean concentration of serum folate was 7.5 ± 5.4 nmol/L and 55% of the women presented with folate deficiency (< 6.8 nmol/L). Multiple linear regression and principal component regression showed that serum folate levels were inversely associated with systolic and diastolic BP, after adjusting for demographic, anthropometric, and biochemical factors. Conclusions Serum folate is inversely associated with BP in non-pregnant women of childbearing age with high prevalence of folate deficiency. PMID:27182603

  11. [Associations between dormitory environment/other factors and sleep quality of medical students].

    PubMed

    Zheng, Bang; Wang, Kailu; Pan, Ziqi; Li, Man; Pan, Yuting; Liu, Ting; Xu, Dan; Lyu, Jun

    2016-03-01

    To investigate the sleep quality and related factors among medical students in China, understand the association between dormitory environment and sleep quality, and provide evidence and recommendations for sleep hygiene intervention. A total of 555 undergraduate students were selected from a medical school of an university in Beijing through stratified-cluster random-sampling to conduct a questionnaire survey by using Chinese version of Pittsburgh Sleep Quality Index (PSQI) and self-designed questionnaire. Analyses were performed by using multiple logistic regression model as well as multilevel linear regression model. The prevalence of sleep disorder was 29.1%(149/512), and 39.1%(200/512) of the students reported that the sleep quality was influenced by dormitory environment. PSQI score was negatively correlated with self-reported rating of dormitory environment (γs=-0.310, P<0.001). Logistic regression analysis showed the related factors of sleep disorder included grade, sleep regularity, self-rated health status, pressures of school work and employment, as well as dormitory environment. RESULTS of multilevel regression analysis also indicated that perception on dormitory environment (individual level) was associated with sleep quality with the dormitory level random effects under control (b=-0.619, P<0.001). The prevalence of sleep disorder was high in medical students, which was associated with multiple factors. Dormitory environment should be taken into consideration when the interventions are taken to improve the sleep quality of students.

  12. Characterizing Individual Differences in Functional Connectivity Using Dual-Regression and Seed-Based Approaches

    PubMed Central

    Smith, David V.; Utevsky, Amanda V.; Bland, Amy R.; Clement, Nathan; Clithero, John A.; Harsch, Anne E. W.; Carter, R. McKell; Huettel, Scott A.

    2014-01-01

    A central challenge for neuroscience lies in relating inter-individual variability to the functional properties of specific brain regions. Yet, considerable variability exists in the connectivity patterns between different brain areas, potentially producing reliable group differences. Using sex differences as a motivating example, we examined two separate resting-state datasets comprising a total of 188 human participants. Both datasets were decomposed into resting-state networks (RSNs) using a probabilistic spatial independent components analysis (ICA). We estimated voxelwise functional connectivity with these networks using a dual-regression analysis, which characterizes the participant-level spatiotemporal dynamics of each network while controlling for (via multiple regression) the influence of other networks and sources of variability. We found that males and females exhibit distinct patterns of connectivity with multiple RSNs, including both visual and auditory networks and the right frontal-parietal network. These results replicated across both datasets and were not explained by differences in head motion, data quality, brain volume, cortisol levels, or testosterone levels. Importantly, we also demonstrate that dual-regression functional connectivity is better at detecting inter-individual variability than traditional seed-based functional connectivity approaches. Our findings characterize robust—yet frequently ignored—neural differences between males and females, pointing to the necessity of controlling for sex in neuroscience studies of individual differences. Moreover, our results highlight the importance of employing network-based models to study variability in functional connectivity. PMID:24662574

  13. Customized Fetal Growth Charts for Parents' Characteristics, Race, and Parity by Quantile Regression Analysis: A Cross-sectional Multicenter Italian Study.

    PubMed

    Ghi, Tullio; Cariello, Luisa; Rizzo, Ludovica; Ferrazzi, Enrico; Periti, Enrico; Prefumo, Federico; Stampalija, Tamara; Viora, Elsa; Verrotti, Carla; Rizzo, Giuseppe

    2016-01-01

    The purpose of this study was to construct fetal biometric charts between 16 and 40 weeks' gestation that were customized for parental characteristics, race, and parity, using quantile regression analysis. In a multicenter cross-sectional study, 8070 sonographic examinations from low-risk pregnancies between 16 and 40 weeks' gestation were analyzed. The fetal measurements obtained were biparietal diameter, head circumference, abdominal circumference, and femur diaphysis length. Quantile regression was used to examine the impact of parental height and weight, parity, and race across biometric percentiles for the fetal measurements considered. Paternal and maternal height were significant covariates for all of the measurements considered (P < .05). Maternal weight significantly influenced head circumference, abdominal circumference, and femur diaphysis length. Parity was significantly associated with biparietal diameter and head circumference. Central African race was associated with head circumference and femur diaphysis length, whereas North African race was only associated with femur diaphysis length. In this study we constructed customized biometric growth charts using quantile regression in a large cohort of low-risk pregnancies. These charts offer the advantage of defining individualized normal ranges of fetal biometric parameters at each specific percentile corrected for parental height and weight, parity, and race. This study supports the importance of including these variables in routine sonographic screening for fetal growth abnormalities.

  14. Stepwise versus Hierarchical Regression: Pros and Cons

    ERIC Educational Resources Information Center

    Lewis, Mitzi

    2007-01-01

    Multiple regression is commonly used in social and behavioral data analysis. In multiple regression contexts, researchers are very often interested in determining the "best" predictors in the analysis. This focus may stem from a need to identify those predictors that are supportive of theory. Alternatively, the researcher may simply be interested…

  15. Regression Commonality Analysis: A Technique for Quantitative Theory Building

    ERIC Educational Resources Information Center

    Nimon, Kim; Reio, Thomas G., Jr.

    2011-01-01

    When it comes to multiple linear regression analysis (MLR), it is common for social and behavioral science researchers to rely predominately on beta weights when evaluating how predictors contribute to a regression model. Presenting an underutilized statistical technique, this article describes how organizational researchers can use commonality…

  16. Precision Efficacy Analysis for Regression.

    ERIC Educational Resources Information Center

    Brooks, Gordon P.

    When multiple linear regression is used to develop a prediction model, sample size must be large enough to ensure stable coefficients. If the derivation sample size is inadequate, the model may not predict well for future subjects. The precision efficacy analysis for regression (PEAR) method uses a cross- validity approach to select sample sizes…

  17. Estimated prevalence of erosive tooth wear in permanent teeth of children and adolescents: an epidemiological systematic review and meta-regression analysis.

    PubMed

    Salas, M M S; Nascimento, G G; Huysmans, M C; Demarco, F F

    2015-01-01

    The main purpose of this systematic review was to estimate the prevalence of dental erosion in permanent teeth of children and adolescents. An electronic search was performed up to and including March 2014. Eligibility criteria included population-based studies in permanent teeth of children and adolescents aged 8-19-year-old reporting the prevalence or data that allowed the calculation of prevalence rates of tooth erosion. Data collection assessed information regarding geographic location, type of index used for clinical examination, sample size, year of publication, age, examined teeth and tissue exposure. The estimated prevalence of erosive wear was determined, followed by a meta-regression analysis. Twenty-two papers were included in the systematic review. The overall estimated prevalence of tooth erosion was 30.4% (95%IC 23.8-37.0). In the multivariate meta-regression model use of the Tooth Wear Index for clinical examination, studies with sample smaller than 1000 subjects and those conducted in the Middle East and Africa remained associated with higher dental erosion prevalence rates. Our results demonstrated that the estimated prevalence of erosive wear in permanent teeth of children and adolescents is 30.4% with high heterogeneity between studies. Additionally, the correct choice of a clinical index for dental erosion detection and the geographic location play an important role for the large variability of erosive tooth wear in permanent teeth of children and adolescents. The prevalence of tooth erosion observed in permanent teeth of children and adolescents was considerable high. Our results demonstrated that prevalence rate of erosive wear was influenced by methodological and diagnosis factors. When tooth erosion is assessed, the clinical index should be considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Estimation of 1RM for knee extension based on the maximal isometric muscle strength and body composition.

    PubMed

    Kanada, Yoshikiyo; Sakurai, Hiroaki; Sugiura, Yoshito; Arai, Tomoaki; Koyama, Soichiro; Tanabe, Shigeo

    2017-11-01

    [Purpose] To create a regression formula in order to estimate 1RM for knee extensors, based on the maximal isometric muscle strength measured using a hand-held dynamometer and data regarding the body composition. [Subjects and Methods] Measurement was performed in 21 healthy males in their twenties to thirties. Single regression analysis was performed, with measurement values representing 1RM and the maximal isometric muscle strength as dependent and independent variables, respectively. Furthermore, multiple regression analysis was performed, with data regarding the body composition incorporated as another independent variable, in addition to the maximal isometric muscle strength. [Results] Through single regression analysis with the maximal isometric muscle strength as an independent variable, the following regression formula was created: 1RM (kg)=0.714 + 0.783 × maximal isometric muscle strength (kgf). On multiple regression analysis, only the total muscle mass was extracted. [Conclusion] A highly accurate regression formula to estimate 1RM was created based on both the maximal isometric muscle strength and body composition. Using a hand-held dynamometer and body composition analyzer, it was possible to measure these items in a short time, and obtain clinically useful results.

  19. Validating the absolute reliability of a fat free mass estimate equation in hemodialysis patients using near-infrared spectroscopy.

    PubMed

    Kono, Kenichi; Nishida, Yusuke; Moriyama, Yoshihumi; Taoka, Masahiro; Sato, Takashi

    2015-06-01

    The assessment of nutritional states using fat free mass (FFM) measured with near-infrared spectroscopy (NIRS) is clinically useful. This measurement should incorporate the patient's post-dialysis weight ("dry weight"), in order to exclude the effects of any change in water mass. We therefore used NIRS to investigate the regression, independent variables, and absolute reliability of FFM in dry weight. The study included 47 outpatients from the hemodialysis unit. Body weight was measured before dialysis, and FFM was measured using NIRS before and after dialysis treatment. Multiple regression analysis was used to estimate the FFM in dry weight as the dependent variable. The measured FFM before dialysis treatment (Mw-FFM), and the difference between measured and dry weight (Mw-Dw) were independent variables. We performed Bland-Altman analysis to detect errors between the statistically estimated FFM and the measured FFM after dialysis treatment. The multiple regression equation to estimate the FFM in dry weight was: Dw-FFM = 0.038 + (0.984 × Mw-FFM) + (-0.571 × [Mw-Dw]); R(2)  = 0.99). There was no systematic bias between the estimated and the measured values of FFM in dry weight. Using NIRS, FFM in dry weight can be calculated by an equation including FFM in measured weight and the difference between the measured weight and the dry weight. © 2015 The Authors. Therapeutic Apheresis and Dialysis © 2015 International Society for Apheresis.

  20. An investigation on fatality of drivers in vehicle-fixed object accidents on expressways in China: Using multinomial logistic regression model.

    PubMed

    Peng, Yong; Peng, Shuangling; Wang, Xinghua; Tan, Shiyang

    2018-06-01

    This study aims to identify the effects of characteristics of vehicle, roadway, driver, and environment on fatality of drivers in vehicle-fixed object accidents on expressways in Changsha-Zhuzhou-Xiangtan district of Hunan province in China by developing multinomial logistic regression models. For this purpose, 121 vehicle-fixed object accidents from 2011-2017 are included in the modeling process. First, descriptive statistical analysis is made to understand the main characteristics of the vehicle-fixed object crashes. Then, 19 explanatory variables are selected, and correlation analysis of each two variables is conducted to choose the variables to be concluded. Finally, five multinomial logistic regression models including different independent variables are compared, and the model with best fitting and prediction capability is chosen as the final model. The results showed that the turning direction in avoiding fixed objects raised the possibility that drivers would die. About 64% of drivers died in the accident were found being ejected out of the car, of which 50% did not use a seatbelt before the fatal accidents. Drivers are likely to die when they encounter bad weather on the expressway. Drivers with less than 10 years of driving experience are more likely to die in these accidents. Fatigue or distracted driving is also a significant factor in fatality of drivers. Findings from this research provide an insight into reducing fatality of drivers in vehicle-fixed object accidents.

  1. Value of sentinel lymph node biopsy and adjuvant interferon treatment in thick (>4 mm) cutaneous melanoma: an observational study.

    PubMed

    Morera-Sendra, Natalia; Tejera-Vaquerizo, Antonio; Traves, Víctor; Requena, Celia; Bolumar, Isidro; Pla, Angel; Vázquez, Carlos; Soriano, Virtudes; Nagore, Eduardo

    2016-01-01

    The role of sentinel lymph node biopsy and the benefit of immunotherapy with interferon in thick (>4 mm) melanomas remain uncertain. Our aim was to assess the value of both sentinel lymph node (SLN) biopsy and immunotherapy in the prognosis of thick melanomas. A retrospective study based on a computerized patient database in which patients have been prospectively collected since 2005 was performed. Age, sex, location, Breslow thickness, tumor ulceration, regression, Clark level, tumor infiltrating lymphocytes, tumor mitotic rate, microscopic satellite and vascular invasion were included in the analysis. Disease-free (DFS), disease-specific (DSS) and overall (OS) survivals were evaluated by the Kaplan-Meier method and Cox regression analysis. A series of 141 patients with melanomas thicker than 4 mm were included. Multivariate regression showed a worse prognosis in SLN-positive patients with respect to SLN biopsy-negative patients (DFS, hazard ratio [HR] 2, p = 0.04; DSS, HR 2.2, p = 0.002; OS, HR 2.4, p = 0.02). The observational group was shown to have a worse prognosis than the SLN-positive group but was very similar to the clinically positive group. Immunotherapy with high-dose interferon showed a protective effect (DFS, HR 0.5, p = 0.02; DSS, HR 0.3, p = 0.001; OS, HR 0.3, p = 0.001). Our data indicate that SLN biopsy and adjuvant interferon should be considered for patients with thick melanomas.

  2. AGR-1 Thermocouple Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Einerson

    2012-05-01

    This report documents an effort to analyze measured and simulated data obtained in the Advanced Gas Reactor (AGR) fuel irradiation test program conducted in the INL's Advanced Test Reactor (ATR) to support the Next Generation Nuclear Plant (NGNP) R&D program. The work follows up on a previous study (Pham and Einerson, 2010), in which statistical analysis methods were applied for AGR-1 thermocouple data qualification. The present work exercises the idea that, while recognizing uncertainties inherent in physics and thermal simulations of the AGR-1 test, results of the numerical simulations can be used in combination with the statistical analysis methods tomore » further improve qualification of measured data. Additionally, the combined analysis of measured and simulation data can generate insights about simulation model uncertainty that can be useful for model improvement. This report also describes an experimental control procedure to maintain fuel target temperature in the future AGR tests using regression relationships that include simulation results. The report is organized into four chapters. Chapter 1 introduces the AGR Fuel Development and Qualification program, AGR-1 test configuration and test procedure, overview of AGR-1 measured data, and overview of physics and thermal simulation, including modeling assumptions and uncertainties. A brief summary of statistical analysis methods developed in (Pham and Einerson 2010) for AGR-1 measured data qualification within NGNP Data Management and Analysis System (NDMAS) is also included for completeness. Chapters 2-3 describe and discuss cases, in which the combined use of experimental and simulation data is realized. A set of issues associated with measurement and modeling uncertainties resulted from the combined analysis are identified. This includes demonstration that such a combined analysis led to important insights for reducing uncertainty in presentation of AGR-1 measured data (Chapter 2) and interpretation of simulation results (Chapter 3). The statistics-based simulation-aided experimental control procedure described for the future AGR tests is developed and demonstrated in Chapter 4. The procedure for controlling the target fuel temperature (capsule peak or average) is based on regression functions of thermocouple readings and other relevant parameters and accounting for possible changes in both physical and thermal conditions and in instrument performance.« less

  3. Missing data treatments matter: an analysis of multiple imputation for anterior cervical discectomy and fusion procedures.

    PubMed

    Ondeck, Nathaniel T; Fu, Michael C; Skrip, Laura A; McLynn, Ryan P; Cui, Jonathan J; Basques, Bryce A; Albert, Todd J; Grauer, Jonathan N

    2018-04-09

    The presence of missing data is a limitation of large datasets, including the National Surgical Quality Improvement Program (NSQIP). In addressing this issue, most studies use complete case analysis, which excludes cases with missing data, thus potentially introducing selection bias. Multiple imputation, a statistically rigorous approach that approximates missing data and preserves sample size, may be an improvement over complete case analysis. The present study aims to evaluate the impact of using multiple imputation in comparison with complete case analysis for assessing the associations between preoperative laboratory values and adverse outcomes following anterior cervical discectomy and fusion (ACDF) procedures. This is a retrospective review of prospectively collected data. Patients undergoing one-level ACDF were identified in NSQIP 2012-2015. Perioperative adverse outcome variables assessed included the occurrence of any adverse event, severe adverse events, and hospital readmission. Missing preoperative albumin and hematocrit values were handled using complete case analysis and multiple imputation. These preoperative laboratory levels were then tested for associations with 30-day postoperative outcomes using logistic regression. A total of 11,999 patients were included. Of this cohort, 63.5% of patients had missing preoperative albumin and 9.9% had missing preoperative hematocrit. When using complete case analysis, only 4,311 patients were studied. The removed patients were significantly younger, healthier, of a common body mass index, and male. Logistic regression analysis failed to identify either preoperative hypoalbuminemia or preoperative anemia as significantly associated with adverse outcomes. When employing multiple imputation, all 11,999 patients were included. Preoperative hypoalbuminemia was significantly associated with the occurrence of any adverse event and severe adverse events. Preoperative anemia was significantly associated with the occurrence of any adverse event, severe adverse events, and hospital readmission. Multiple imputation is a rigorous statistical procedure that is being increasingly used to address missing values in large datasets. Using this technique for ACDF avoided the loss of cases that may have affected the representativeness and power of the study and led to different results than complete case analysis. Multiple imputation should be considered for future spine studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Exploring visuospatial abilities and their contribution to constructional abilities and nonverbal intelligence.

    PubMed

    Trojano, Luigi; Siciliano, Mattia; Cristinzio, Chiara; Grossi, Dario

    2018-01-01

    The present study aimed at exploring relationships among the visuospatial tasks included in the Battery for Visuospatial Abilities (BVA), and at assessing the relative contribution of different facets of visuospatial processing on tests tapping constructional abilities and nonverbal abstract reasoning. One hundred forty-four healthy subjects with a normal score on Mini Mental State Examination completed the BVA plus Raven's Coloured Progressive Matrices and Constructional Apraxia test. We used Principal Axis Factoring and Parallel Analysis to investigate relationships among the BVA visuospatial tasks, and performed regression analyses to assess the visuospatial contribution to constructional abilities and nonverbal abstract reasoning. Principal Axis Factoring and Parallel Analysis revealed two eigenvalues exceeding 1, accounting for about 60% of the variance. A 2-factor model provided the best fit. Factor 1 included sub-tests exploring "complex" visuospatial skills, whereas Factor 2 included two subtests tapping "simple" visuospatial skills. Regression analyses revealed that both Factor 1 and Factor 2 significantly affected performance on Raven's Coloured Progressive Matrices, whereas only the Factor 1 affected performance on Constructional Apraxia test. Our results supported functional segregation proposed by De Renzi, suggesting clinical caution to utilize a single test to assess visuospatial domain, and qualified the visuospatial contribution in drawing and non-verbal intelligence test.

  5. Regression Model Optimization for the Analysis of Experimental Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2009-01-01

    A candidate math model search algorithm was developed at Ames Research Center that determines a recommended math model for the multivariate regression analysis of experimental data. The search algorithm is applicable to classical regression analysis problems as well as wind tunnel strain gage balance calibration analysis applications. The algorithm compares the predictive capability of different regression models using the standard deviation of the PRESS residuals of the responses as a search metric. This search metric is minimized during the search. Singular value decomposition is used during the search to reject math models that lead to a singular solution of the regression analysis problem. Two threshold dependent constraints are also applied. The first constraint rejects math models with insignificant terms. The second constraint rejects math models with near-linear dependencies between terms. The math term hierarchy rule may also be applied as an optional constraint during or after the candidate math model search. The final term selection of the recommended math model depends on the regressor and response values of the data set, the user s function class combination choice, the user s constraint selections, and the result of the search metric minimization. A frequently used regression analysis example from the literature is used to illustrate the application of the search algorithm to experimental data.

  6. Single Group, Pre- and Post-Test Research Designs: Some Methodological Concerns

    ERIC Educational Resources Information Center

    Marsden, Emma; Torgerson, Carole J.

    2012-01-01

    This article provides two illustrations of some of the factors that can influence findings from pre- and post-test research designs in evaluation studies, including regression to the mean (RTM), maturation, history and test effects. The first illustration involves a re-analysis of data from a study by Marsden (2004), in which pre-test scores are…

  7. Predicting Job Decisions in Tomorrow's Workforce

    ERIC Educational Resources Information Center

    Martin, Cody; Anderson, Lance; Cronin, Brian; Heinen, Beth; Swetharanyan, Sukanya

    2010-01-01

    The Job Decision Factors Survey used policy capturing to measure the influence of 7 factors on job decisions. Data from 400 undergraduate students at a large university, 88% 18-25 years of age, 12% 25-65 years of age, 82% female, 54% White, 21% Asian, 10% Black, 10% Hispanic, 1% American Indian, were included in a regression analysis. Hypothesis…

  8. Determinants of Budget Allocations to Academic Departments: A Case Study. ASHE 1987 Annual Meeting Paper.

    ERIC Educational Resources Information Center

    Winans, Glen T.

    General fund budgetary determinants in 27 academic departments at the University of California Santa Barbara were studied for the period from 1977/78 through 1983/84. The focus was resource allocation and utilization within departments of the College of Letters and Science. The research design included a pooled multivariate regression analysis of…

  9. Learner Characteristics Predict Performance and Confidence in E-Learning: An Analysis of User Behavior and Self-Evaluation

    ERIC Educational Resources Information Center

    Jeske, Debora; Roßnagell, Christian Stamov; Backhaus, Joy

    2014-01-01

    We examined the role of learner characteristics as predictors of four aspects of e-learning performance, including knowledge test performance, learning confidence, learning efficiency, and navigational effectiveness. We used both self reports and log file records to compute the relevant statistics. Regression analyses showed that both need for…

  10. Knowledge and Community: The Effect of a First-Year Seminar on Student Persistence

    ERIC Educational Resources Information Center

    Pittendrigh, Adele; Borkowski, John; Swinford, Steven; Plumb, Carolyn

    2016-01-01

    This study explores the effects of an academic seminar on the persistence of first-year college students, including effects on students most at risk of dropping out. A secondary interest was demonstrating the utility of using classification and regression tree analysis to identify relevant predictors of student persistence. The results of the…

  11. Exploring the Impact of Undergraduate Intramural Sports on Undergraduate Students' Perceived Sense of Community: A Multiple Regression Analysis

    ERIC Educational Resources Information Center

    Penland, Nathan Paul

    2017-01-01

    Research has shown benefits to the student experience for college students when they participate in intramural sports on university campuses. These benefits include improved physical and social health as well as academic performance. This non-experimental, predictive correlational study sought to understand if a relationship exists between the…

  12. Income, Language, and Citizenship Status: Factors Affecting the Health Care Access and Utilization of Chinese Americans.

    ERIC Educational Resources Information Center

    Jang, Michael; Lee, Evelyn; Woo, Kent

    1998-01-01

    The effects of income, language, and citizenship on the use of health-care services by Chinese Americans is examined (N=1808). Focus groups, a telephone survey, and key informant interviews were conducted. Data analysis included an acculturation index, demographic profile, and logistical regression. Health insurance and social factors are…

  13. A Multivariate Analysis of Personality, Values and Expectations as Correlates of Career Aspirations of Final Year Medical Students

    ERIC Educational Resources Information Center

    Rogers, Mary E.; Searle, Judy; Creed, Peter A.; Ng, Shu-Kay

    2010-01-01

    This study reports on the career intentions of 179 final year medical students who completed an online survey that included measures of personality, values, professional and lifestyle expectations, and well-being. Logistic regression analyses identified the determinants of preferred medical specialty, practice location and hours of work.…

  14. Administrative Staff Members' Job Competency and Their Job Satisfaction in a Korean Research University

    ERIC Educational Resources Information Center

    Jung, Jisun; Shin, Jung Cheol

    2015-01-01

    The purpose of this study is to explore the impact of administrative staff's job competency on their job satisfaction in a Korean research university. We conceptualized job satisfaction into three subcomponents: satisfaction in the job field, in the workplace, and with the actual task. In the regression analysis, we included demographics, inner…

  15. Potential redistribution of tree species habitat under five climate change scenarios in the eastern US

    Treesearch

    Louis R. Iverson; Anantha M. Prasad; Anantha M. Prasad

    2002-01-01

    Global climate change could have profound effects on the Earth's biota, including large redistributions of tree species and forest types. We used DISTRIB, a deterministic regression tree analysis model, to examine environmental drivers related to current forest-species distributions and then model potential suitable habitat under five climate change scenarios...

  16. [Application of negative binomial regression and modified Poisson regression in the research of risk factors for injury frequency].

    PubMed

    Cao, Qingqing; Wu, Zhenqiang; Sun, Ying; Wang, Tiezhu; Han, Tengwei; Gu, Chaomei; Sun, Yehuan

    2011-11-01

    To Eexplore the application of negative binomial regression and modified Poisson regression analysis in analyzing the influential factors for injury frequency and the risk factors leading to the increase of injury frequency. 2917 primary and secondary school students were selected from Hefei by cluster random sampling method and surveyed by questionnaire. The data on the count event-based injuries used to fitted modified Poisson regression and negative binomial regression model. The risk factors incurring the increase of unintentional injury frequency for juvenile students was explored, so as to probe the efficiency of these two models in studying the influential factors for injury frequency. The Poisson model existed over-dispersion (P < 0.0001) based on testing by the Lagrangemultiplier. Therefore, the over-dispersion dispersed data using a modified Poisson regression and negative binomial regression model, was fitted better. respectively. Both showed that male gender, younger age, father working outside of the hometown, the level of the guardian being above junior high school and smoking might be the results of higher injury frequencies. On a tendency of clustered frequency data on injury event, both the modified Poisson regression analysis and negative binomial regression analysis can be used. However, based on our data, the modified Poisson regression fitted better and this model could give a more accurate interpretation of relevant factors affecting the frequency of injury.

  17. Logistic regression analysis of conventional ultrasonography, strain elastosonography, and contrast-enhanced ultrasound characteristics for the differentiation of benign and malignant thyroid nodules

    PubMed Central

    Deng, Yingyuan; Wang, Tianfu; Chen, Siping; Liu, Weixiang

    2017-01-01

    The aim of the study is to screen the significant sonographic features by logistic regression analysis and fit a model to diagnose thyroid nodules. A total of 525 pathological thyroid nodules were retrospectively analyzed. All the nodules underwent conventional ultrasonography (US), strain elastosonography (SE), and contrast -enhanced ultrasound (CEUS). Those nodules’ 12 suspicious sonographic features were used to assess thyroid nodules. The significant features of diagnosing thyroid nodules were picked out by logistic regression analysis. All variables that were statistically related to diagnosis of thyroid nodules, at a level of p < 0.05 were embodied in a logistic regression analysis model. The significant features in the logistic regression model of diagnosing thyroid nodules were calcification, suspected cervical lymph node metastasis, hypoenhancement pattern, margin, shape, vascularity, posterior acoustic, echogenicity, and elastography score. According to the results of logistic regression analysis, the formula that could predict whether or not thyroid nodules are malignant was established. The area under the receiver operating curve (ROC) was 0.930 and the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 83.77%, 89.56%, 87.05%, 86.04%, and 87.79% respectively. PMID:29228030

  18. Logistic regression analysis of conventional ultrasonography, strain elastosonography, and contrast-enhanced ultrasound characteristics for the differentiation of benign and malignant thyroid nodules.

    PubMed

    Pang, Tiantian; Huang, Leidan; Deng, Yingyuan; Wang, Tianfu; Chen, Siping; Gong, Xuehao; Liu, Weixiang

    2017-01-01

    The aim of the study is to screen the significant sonographic features by logistic regression analysis and fit a model to diagnose thyroid nodules. A total of 525 pathological thyroid nodules were retrospectively analyzed. All the nodules underwent conventional ultrasonography (US), strain elastosonography (SE), and contrast -enhanced ultrasound (CEUS). Those nodules' 12 suspicious sonographic features were used to assess thyroid nodules. The significant features of diagnosing thyroid nodules were picked out by logistic regression analysis. All variables that were statistically related to diagnosis of thyroid nodules, at a level of p < 0.05 were embodied in a logistic regression analysis model. The significant features in the logistic regression model of diagnosing thyroid nodules were calcification, suspected cervical lymph node metastasis, hypoenhancement pattern, margin, shape, vascularity, posterior acoustic, echogenicity, and elastography score. According to the results of logistic regression analysis, the formula that could predict whether or not thyroid nodules are malignant was established. The area under the receiver operating curve (ROC) was 0.930 and the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 83.77%, 89.56%, 87.05%, 86.04%, and 87.79% respectively.

  19. Covariance functions for body weight from birth to maturity in Nellore cows.

    PubMed

    Boligon, A A; Mercadante, M E Z; Forni, S; Lôbo, R B; Albuquerque, L G

    2010-03-01

    The objective of this study was to estimate (co)variance functions using random regression models on Legendre polynomials for the analysis of repeated measures of BW from birth to adult age. A total of 82,064 records from 8,145 females were analyzed. Different models were compared. The models included additive direct and maternal effects, and animal and maternal permanent environmental effects as random terms. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of animal age (cubic regression) were considered as random covariables. Eight models with polynomials of third to sixth order were used to describe additive direct and maternal effects, and animal and maternal permanent environmental effects. Residual effects were modeled using 1 (i.e., assuming homogeneity of variances across all ages) or 5 age classes. The model with 5 classes was the best to describe the trajectory of residuals along the growth curve. The model including fourth- and sixth-order polynomials for additive direct and animal permanent environmental effects, respectively, and third-order polynomials for maternal genetic and maternal permanent environmental effects were the best. Estimates of (co)variance obtained with the multi-trait and random regression models were similar. Direct heritability estimates obtained with the random regression models followed a trend similar to that obtained with the multi-trait model. The largest estimates of maternal heritability were those of BW taken close to 240 d of age. In general, estimates of correlation between BW from birth to 8 yr of age decreased with increasing distance between ages.

  20. Improving reliability of aggregation, numerical simulation and analysis of complex systems by empirical data

    NASA Astrophysics Data System (ADS)

    Dobronets, Boris S.; Popova, Olga A.

    2018-05-01

    The paper considers a new approach of regression modeling that uses aggregated data presented in the form of density functions. Approaches to Improving the reliability of aggregation of empirical data are considered: improving accuracy and estimating errors. We discuss the procedures of data aggregation as a preprocessing stage for subsequent to regression modeling. An important feature of study is demonstration of the way how represent the aggregated data. It is proposed to use piecewise polynomial models, including spline aggregate functions. We show that the proposed approach to data aggregation can be interpreted as the frequency distribution. To study its properties density function concept is used. Various types of mathematical models of data aggregation are discussed. For the construction of regression models, it is proposed to use data representation procedures based on piecewise polynomial models. New approaches to modeling functional dependencies based on spline aggregations are proposed.

  1. Analysis and selection of magnitude relations for the Working Group on Utah Earthquake Probabilities

    USGS Publications Warehouse

    Duross, Christopher; Olig, Susan; Schwartz, David

    2015-01-01

    Prior to calculating time-independent and -dependent earthquake probabilities for faults in the Wasatch Front region, the Working Group on Utah Earthquake Probabilities (WGUEP) updated a seismic-source model for the region (Wong and others, 2014) and evaluated 19 historical regressions on earthquake magnitude (M). These regressions relate M to fault parameters for historical surface-faulting earthquakes, including linear fault length (e.g., surface-rupture length [SRL] or segment length), average displacement, maximum displacement, rupture area, seismic moment (Mo ), and slip rate. These regressions show that significant epistemic uncertainties complicate the determination of characteristic magnitude for fault sources in the Basin and Range Province (BRP). For example, we found that M estimates (as a function of SRL) span about 0.3–0.4 units (figure 1) owing to differences in the fault parameter used; age, quality, and size of historical earthquake databases; and fault type and region considered.

  2. Random regression analyses using B-splines functions to model growth from birth to adult age in Canchim cattle.

    PubMed

    Baldi, F; Alencar, M M; Albuquerque, L G

    2010-12-01

    The objective of this work was to estimate covariance functions using random regression models on B-splines functions of animal age, for weights from birth to adult age in Canchim cattle. Data comprised 49,011 records on 2435 females. The model of analysis included fixed effects of contemporary groups, age of dam as quadratic covariable and the population mean trend taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were modelled through a step function with four classes. The direct and maternal additive genetic effects, and animal and maternal permanent environmental effects were included as random effects in the model. A total of seventeen analyses, considering linear, quadratic and cubic B-splines functions and up to seven knots, were carried out. B-spline functions of the same order were considered for all random effects. Random regression models on B-splines functions were compared to a random regression model on Legendre polynomials and with a multitrait model. Results from different models of analyses were compared using the REML form of the Akaike Information criterion and Schwarz' Bayesian Information criterion. In addition, the variance components and genetic parameters estimated for each random regression model were also used as criteria to choose the most adequate model to describe the covariance structure of the data. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most adequate to describe the covariance structure of the data. Random regression models using B-spline functions as base functions fitted the data better than Legendre polynomials, especially at mature ages, but higher number of parameters need to be estimated with B-splines functions. © 2010 Blackwell Verlag GmbH.

  3. Optimization to the Culture Conditions for Phellinus Production with Regression Analysis and Gene-Set Based Genetic Algorithm

    PubMed Central

    Li, Zhongwei; Xin, Yuezhen; Wang, Xun; Sun, Beibei; Xia, Shengyu; Li, Hui

    2016-01-01

    Phellinus is a kind of fungus and is known as one of the elemental components in drugs to avoid cancers. With the purpose of finding optimized culture conditions for Phellinus production in the laboratory, plenty of experiments focusing on single factor were operated and large scale of experimental data were generated. In this work, we use the data collected from experiments for regression analysis, and then a mathematical model of predicting Phellinus production is achieved. Subsequently, a gene-set based genetic algorithm is developed to optimize the values of parameters involved in culture conditions, including inoculum size, PH value, initial liquid volume, temperature, seed age, fermentation time, and rotation speed. These optimized values of the parameters have accordance with biological experimental results, which indicate that our method has a good predictability for culture conditions optimization. PMID:27610365

  4. Sibling dilution hypothesis: a regression surface analysis.

    PubMed

    Marjoribanks, K

    2001-08-01

    This study examined relationships between sibship size (the number of children in a family), birth order, and measures of academic performance, academic self-concept, and educational aspirations at different levels of family educational resources. As part of a national longitudinal study of Australian secondary school students data were collected from 2,530 boys and 2,450 girls in Years 9 and 10. Regression surfaces were constructed from models that included terms to account for linear, interaction, and curvilinear associations among the variables. Analysis suggests the general propositions (a) family educational resources have significant associations with children's school-related outcomes at different levels of sibling variables, the relationships for girls being curvilinear, and (b) sibling variables continue to have small significant associations with affective and cognitive outcomes, after taking into account variations in family educational resources. That is, the investigation provides only partial support for the sibling dilution hypothesis.

  5. Melanin and blood concentration in human skin studied by multiple regression analysis: experiments

    NASA Astrophysics Data System (ADS)

    Shimada, M.; Yamada, Y.; Itoh, M.; Yatagai, T.

    2001-09-01

    Knowledge of the mechanism of human skin colour and measurement of melanin and blood concentration in human skin are needed in the medical and cosmetic fields. The absorbance spectrum from reflectance at the visible wavelength of human skin increases under several conditions such as a sunburn or scalding. The change of the absorbance spectrum from reflectance including the scattering effect does not correspond to the molar absorption spectrum of melanin and blood. The modified Beer-Lambert law is applied to the change in the absorbance spectrum from reflectance of human skin as the change in melanin and blood is assumed to be small. The concentration of melanin and blood was estimated from the absorbance spectrum reflectance of human skin using multiple regression analysis. Estimated concentrations were compared with the measured one in a phantom experiment and this method was applied to in vivo skin.

  6. Cancer prevalence and education by cancer site: logistic regression analysis.

    PubMed

    Johnson, Stephanie; Corsten, Martin J; McDonald, James T; Gupta, Michael

    2010-10-01

    Previously, using the American National Health Interview Survey (NHIS) and a logistic regression analysis, we found that upper aerodigestive tract (UADT) cancer is correlated with low socioeconomic status (SES). The objective of this study was to determine if this correlation between low SES and cancer prevalence exists for other cancers. We again used the NHIS and employed education level as our main measure of SES. We controlled for potentially confounding factors, including smoking status and alcohol consumption. We found that only two cancer subsites shared the pattern of increased prevalence with low education level and decreased prevalence with high education level: UADT cancer and cervical cancer. UADT cancer and cervical cancer were the only two cancers identified that had a link between prevalence and lower education level. This raises the possibility that an associated risk factor for the two cancers is causing the relationship between lower education level and prevalence.

  7. Prediction of performance on the RCMP physical ability requirement evaluation.

    PubMed

    Stanish, H I; Wood, T M; Campagna, P

    1999-08-01

    The Royal Canadian Mounted Police use the Physical Ability Requirement Evaluation (PARE) for screening applicants. The purposes of this investigation were to identify those field tests of physical fitness that were associated with PARE performance and determine which most accurately classified successful and unsuccessful PARE performers. The participants were 27 female and 21 male volunteers. Testing included measures of aerobic power, anaerobic power, agility, muscular strength, muscular endurance, and body composition. Multiple regression analysis revealed a three-variable model for males (70-lb bench press, standing long jump, and agility) explaining 79% of the variability in PARE time, whereas a one-variable model (agility) explained 43% of the variability for females. Analysis of the classification accuracy of the males' data was prohibited because 91% of the males passed the PARE. Classification accuracy of the females' data, using logistic regression, produced a two-variable model (agility, 1.5-mile endurance run) with 93% overall classification accuracy.

  8. A model for national outcome audit in vascular surgery.

    PubMed

    Prytherch, D R; Ridler, B M; Beard, J D; Earnshaw, J J

    2001-06-01

    The aim was to model vascular surgical outcome in a national study using POSSUM scoring. One hundred and twenty-one British and Irish surgeons completed data questionnaires on patients undergoing arterial surgery under their care (mean 12 patients, range 1-49) in May/June 1998. A total of 1480 completed data records were available for logistic regression analysis using P-POSSUM methodology. Information collected included all POSSUM data items plus other factors thought to have a significant bearing on patient outcome: "extra items". The main outcome measures were death and major postoperative complications. The data were checked and inconsistent records were excluded. The remaining 1313 were divided into two sets for analysis. The first "training" set was used to obtain logistic regression models that were applied prospectively to the second "test" dataset. using POSSUM data items alone, it was possible to predict both mortality and morbidity after vascular reconstruction using P-POSSUM analysis. The addition of the "extra items" found significant in regression analysis did not significantly improve the accuracy of prediction. It was possible to predict both mortality and morbidity derived from the preoperative physiology components of the POSSUM data items alone. this study has shown that P-POSSUM methodology can be used to predict outcome after arterial surgery across a range of surgeons in different hospitals and could form the basis of a national outcome audit. It was also possible to obtain accurate models for both mortality and major morbidity from the POSSUM physiology scores alone. Copyright 2001 Harcourt Publishers Limited.

  9. Quantitative investigation of inappropriate regression model construction and the importance of medical statistics experts in observational medical research: a cross-sectional study.

    PubMed

    Nojima, Masanori; Tokunaga, Mutsumi; Nagamura, Fumitaka

    2018-05-05

    To investigate under what circumstances inappropriate use of 'multivariate analysis' is likely to occur and to identify the population that needs more support with medical statistics. The frequency of inappropriate regression model construction in multivariate analysis and related factors were investigated in observational medical research publications. The inappropriate algorithm of using only variables that were significant in univariate analysis was estimated to occur at 6.4% (95% CI 4.8% to 8.5%). This was observed in 1.1% of the publications with a medical statistics expert (hereinafter 'expert') as the first author, 3.5% if an expert was included as coauthor and in 12.2% if experts were not involved. In the publications where the number of cases was 50 or less and the study did not include experts, inappropriate algorithm usage was observed with a high proportion of 20.2%. The OR of the involvement of experts for this outcome was 0.28 (95% CI 0.15 to 0.53). A further, nation-level, analysis showed that the involvement of experts and the implementation of unfavourable multivariate analysis are associated at the nation-level analysis (R=-0.652). Based on the results of this study, the benefit of participation of medical statistics experts is obvious. Experts should be involved for proper confounding adjustment and interpretation of statistical models. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Using Time Series Analysis to Predict Cardiac Arrest in a PICU.

    PubMed

    Kennedy, Curtis E; Aoki, Noriaki; Mariscalco, Michele; Turley, James P

    2015-11-01

    To build and test cardiac arrest prediction models in a PICU, using time series analysis as input, and to measure changes in prediction accuracy attributable to different classes of time series data. Retrospective cohort study. Thirty-one bed academic PICU that provides care for medical and general surgical (not congenital heart surgery) patients. Patients experiencing a cardiac arrest in the PICU and requiring external cardiac massage for at least 2 minutes. None. One hundred three cases of cardiac arrest and 109 control cases were used to prepare a baseline dataset that consisted of 1,025 variables in four data classes: multivariate, raw time series, clinical calculations, and time series trend analysis. We trained 20 arrest prediction models using a matrix of five feature sets (combinations of data classes) with four modeling algorithms: linear regression, decision tree, neural network, and support vector machine. The reference model (multivariate data with regression algorithm) had an accuracy of 78% and 87% area under the receiver operating characteristic curve. The best model (multivariate + trend analysis data with support vector machine algorithm) had an accuracy of 94% and 98% area under the receiver operating characteristic curve. Cardiac arrest predictions based on a traditional model built with multivariate data and a regression algorithm misclassified cases 3.7 times more frequently than predictions that included time series trend analysis and built with a support vector machine algorithm. Although the final model lacks the specificity necessary for clinical application, we have demonstrated how information from time series data can be used to increase the accuracy of clinical prediction models.

  11. Fast Quantitative Analysis Of Museum Objects Using Laser-Induced Breakdown Spectroscopy And Multiple Regression Algorithms

    NASA Astrophysics Data System (ADS)

    Lorenzetti, G.; Foresta, A.; Palleschi, V.; Legnaioli, S.

    2009-09-01

    The recent development of mobile instrumentation, specifically devoted to in situ analysis and study of museum objects, allows the acquisition of many LIBS spectra in very short time. However, such large amount of data calls for new analytical approaches which would guarantee a prompt analysis of the results obtained. In this communication, we will present and discuss the advantages of statistical analytical methods, such as Partial Least Squares Multiple Regression algorithms vs. the classical calibration curve approach. PLS algorithms allows to obtain in real time the information on the composition of the objects under study; this feature of the method, compared to the traditional off-line analysis of the data, is extremely useful for the optimization of the measurement times and number of points associated with the analysis. In fact, the real time availability of the compositional information gives the possibility of concentrating the attention on the most `interesting' parts of the object, without over-sampling the zones which would not provide useful information for the scholars or the conservators. Some example on the applications of this method will be presented, including the studies recently performed by the researcher of the Applied Laser Spectroscopy Laboratory on museum bronze objects.

  12. [Use of multiple regression models in observational studies (1970-2013) and requirements of the STROBE guidelines in Spanish scientific journals].

    PubMed

    Real, J; Cleries, R; Forné, C; Roso-Llorach, A; Martínez-Sánchez, J M

    In medicine and biomedical research, statistical techniques like logistic, linear, Cox and Poisson regression are widely known. The main objective is to describe the evolution of multivariate techniques used in observational studies indexed in PubMed (1970-2013), and to check the requirements of the STROBE guidelines in the author guidelines in Spanish journals indexed in PubMed. A targeted PubMed search was performed to identify papers that used logistic linear Cox and Poisson models. Furthermore, a review was also made of the author guidelines of journals published in Spain and indexed in PubMed and Web of Science. Only 6.1% of the indexed manuscripts included a term related to multivariate analysis, increasing from 0.14% in 1980 to 12.3% in 2013. In 2013, 6.7, 2.5, 3.5, and 0.31% of the manuscripts contained terms related to logistic, linear, Cox and Poisson regression, respectively. On the other hand, 12.8% of journals author guidelines explicitly recommend to follow the STROBE guidelines, and 35.9% recommend the CONSORT guideline. A low percentage of Spanish scientific journals indexed in PubMed include the STROBE statement requirement in the author guidelines. Multivariate regression models in published observational studies such as logistic regression, linear, Cox and Poisson are increasingly used both at international level, as well as in journals published in Spanish. Copyright © 2015 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Genetic analysis of body weights of individually fed beef bulls in South Africa using random regression models.

    PubMed

    Selapa, N W; Nephawe, K A; Maiwashe, A; Norris, D

    2012-02-08

    The aim of this study was to estimate genetic parameters for body weights of individually fed beef bulls measured at centralized testing stations in South Africa using random regression models. Weekly body weights of Bonsmara bulls (N = 2919) tested between 1999 and 2003 were available for the analyses. The model included a fixed regression of the body weights on fourth-order orthogonal Legendre polynomials of the actual days on test (7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, and 84) for starting age and contemporary group effects. Random regressions on fourth-order orthogonal Legendre polynomials of the actual days on test were included for additive genetic effects and additional uncorrelated random effects of the weaning-herd-year and the permanent environment of the animal. Residual effects were assumed to be independently distributed with heterogeneous variance for each test day. Variance ratios for additive genetic, permanent environment and weaning-herd-year for weekly body weights at different test days ranged from 0.26 to 0.29, 0.37 to 0.44 and 0.26 to 0.34, respectively. The weaning-herd-year was found to have a significant effect on the variation of body weights of bulls despite a 28-day adjustment period. Genetic correlations amongst body weights at different test days were high, ranging from 0.89 to 1.00. Heritability estimates were comparable to literature using multivariate models. Therefore, random regression model could be applied in the genetic evaluation of body weight of individually fed beef bulls in South Africa.

  14. Factors associated with active commuting to work among women.

    PubMed

    Bopp, Melissa; Child, Stephanie; Campbell, Matthew

    2014-01-01

    Active commuting (AC), the act of walking or biking to work, has notable health benefits though rates of AC remain low among women. This study used a social-ecological framework to examine the factors associated with AC among women. A convenience sample of employed, working women (n = 709) completed an online survey about their mode of travel to work. Individual, interpersonal, institutional, community, and environmental influences were assessed. Basic descriptive statistics and frequencies described the sample. Simple logistic regression models examined associations with the independent variables with AC participation and multiple logistic regression analysis determined the relative influence of social ecological factors on AC participation. The sample was primarily middle-aged (44.09±11.38 years) and non-Hispanic White (92%). Univariate analyses revealed several individual, interpersonal, institutional, community and environmental factors significantly associated with AC. The multivariable logistic regression analysis results indicated that significant factors associated with AC included number of children, income, perceived behavioral control, coworker AC, coworker AC normative beliefs, employer and community supports for AC, and traffic. The results of this study contribute to the limited body of knowledge on AC participation for women and may help to inform gender-tailored interventions to enhance AC behavior and improve health.

  15. Supporting Regularized Logistic Regression Privately and Efficiently.

    PubMed

    Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei

    2016-01-01

    As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc.

  16. Supporting Regularized Logistic Regression Privately and Efficiently

    PubMed Central

    Li, Wenfa; Liu, Hongzhe; Yang, Peng; Xie, Wei

    2016-01-01

    As one of the most popular statistical and machine learning models, logistic regression with regularization has found wide adoption in biomedicine, social sciences, information technology, and so on. These domains often involve data of human subjects that are contingent upon strict privacy regulations. Concerns over data privacy make it increasingly difficult to coordinate and conduct large-scale collaborative studies, which typically rely on cross-institution data sharing and joint analysis. Our work here focuses on safeguarding regularized logistic regression, a widely-used statistical model while at the same time has not been investigated from a data security and privacy perspective. We consider a common use scenario of multi-institution collaborative studies, such as in the form of research consortia or networks as widely seen in genetics, epidemiology, social sciences, etc. To make our privacy-enhancing solution practical, we demonstrate a non-conventional and computationally efficient method leveraging distributing computing and strong cryptography to provide comprehensive protection over individual-level and summary data. Extensive empirical evaluations on several studies validate the privacy guarantee, efficiency and scalability of our proposal. We also discuss the practical implications of our solution for large-scale studies and applications from various disciplines, including genetic and biomedical studies, smart grid, network analysis, etc. PMID:27271738

  17. A PDE approach for quantifying and visualizing tumor progression and regression

    NASA Astrophysics Data System (ADS)

    Sintay, Benjamin J.; Bourland, J. Daniel

    2009-02-01

    Quantification of changes in tumor shape and size allows physicians the ability to determine the effectiveness of various treatment options, adapt treatment, predict outcome, and map potential problem sites. Conventional methods are often based on metrics such as volume, diameter, or maximum cross sectional area. This work seeks to improve the visualization and analysis of tumor changes by simultaneously analyzing changes in the entire tumor volume. This method utilizes an elliptic partial differential equation (PDE) to provide a roadmap of boundary displacement that does not suffer from the discontinuities associated with other measures such as Euclidean distance. Streamline pathways defined by Laplace's equation (a commonly used PDE) are used to track tumor progression and regression at the tumor boundary. Laplace's equation is particularly useful because it provides a smooth, continuous solution that can be evaluated with sub-pixel precision on variable grid sizes. Several metrics are demonstrated including maximum, average, and total regression and progression. This method provides many advantages over conventional means of quantifying change in tumor shape because it is observer independent, stable for highly unusual geometries, and provides an analysis of the entire three-dimensional tumor volume.

  18. Quantification of endocrine disruptors and pesticides in water by gas chromatography-tandem mass spectrometry. Method validation using weighted linear regression schemes.

    PubMed

    Mansilha, C; Melo, A; Rebelo, H; Ferreira, I M P L V O; Pinho, O; Domingues, V; Pinho, C; Gameiro, P

    2010-10-22

    A multi-residue methodology based on a solid phase extraction followed by gas chromatography-tandem mass spectrometry was developed for trace analysis of 32 compounds in water matrices, including estrogens and several pesticides from different chemical families, some of them with endocrine disrupting properties. Matrix standard calibration solutions were prepared by adding known amounts of the analytes to a residue-free sample to compensate matrix-induced chromatographic response enhancement observed for certain pesticides. Validation was done mainly according to the International Conference on Harmonisation recommendations, as well as some European and American validation guidelines with specifications for pesticides analysis and/or GC-MS methodology. As the assumption of homoscedasticity was not met for analytical data, weighted least squares linear regression procedure was applied as a simple and effective way to counteract the greater influence of the greater concentrations on the fitted regression line, improving accuracy at the lower end of the calibration curve. The method was considered validated for 31 compounds after consistent evaluation of the key analytical parameters: specificity, linearity, limit of detection and quantification, range, precision, accuracy, extraction efficiency, stability and robustness. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Patterns of medicinal plant use: an examination of the Ecuadorian Shuar medicinal flora using contingency table and binomial analyses.

    PubMed

    Bennett, Bradley C; Husby, Chad E

    2008-03-28

    Botanical pharmacopoeias are non-random subsets of floras, with some taxonomic groups over- or under-represented. Moerman [Moerman, D.E., 1979. Symbols and selectivity: a statistical analysis of Native American medical ethnobotany, Journal of Ethnopharmacology 1, 111-119] introduced linear regression/residual analysis to examine these patterns. However, regression, the commonly-employed analysis, suffers from several statistical flaws. We use contingency table and binomial analyses to examine patterns of Shuar medicinal plant use (from Amazonian Ecuador). We first analyzed the Shuar data using Moerman's approach, modified to better meet requirements of linear regression analysis. Second, we assessed the exact randomization contingency table test for goodness of fit. Third, we developed a binomial model to test for non-random selection of plants in individual families. Modified regression models (which accommodated assumptions of linear regression) reduced R(2) to from 0.59 to 0.38, but did not eliminate all problems associated with regression analyses. Contingency table analyses revealed that the entire flora departs from the null model of equal proportions of medicinal plants in all families. In the binomial analysis, only 10 angiosperm families (of 115) differed significantly from the null model. These 10 families are largely responsible for patterns seen at higher taxonomic levels. Contingency table and binomial analyses offer an easy and statistically valid alternative to the regression approach.

  20. Predictive capacity of sperm quality parameters and sperm subpopulations on field fertility after artificial insemination in sheep.

    PubMed

    Santolaria, P; Vicente-Fiel, S; Palacín, I; Fantova, E; Blasco, M E; Silvestre, M A; Yániz, J L

    2015-12-01

    This study was designed to evaluate the relevance of several sperm quality parameters and sperm population structure on the reproductive performance after cervical artificial insemination (AI) in sheep. One hundred and thirty-nine ejaculates from 56 adult rams were collected using an artificial vagina, processed for sperm quality assessment and used to perform 1319 AI. Analyses of sperm motility by computer-assisted sperm analysis (CASA), sperm nuclear morphometry by computer-assisted sperm morphometry analysis (CASMA), membrane integrity by acridine orange-propidium iodide combination and sperm DNA fragmentation using the sperm chromatin dispersion test (SCD) were performed. Clustering procedures using the sperm kinematic and morphometric data resulted in the classification of spermatozoa into three kinematic and three morphometric sperm subpopulations. Logistic regression procedures were used, including fertility at AI as the dependent variable (measured by lambing, 0 or 1) and farm, year, month of AI, female parity, female lambing-treatment interval, ram, AI technician and sperm quality parameters (including sperm subpopulations) as independent factors. Sperm quality variables remaining in the logistic regression model were viability and VCL. Fertility increased for each one-unit increase in viability (by a factor of 1.01) and in VCL (by a factor of 1.02). Multiple linear regression analyses were also performed to analyze the factors possibly influencing ejaculate fertility (N=139). The analysis yielded a significant (P<0.05) relationship between sperm viability and ejaculate fertility. The discriminant ability of the different semen variables to predict field fertility was analyzed using receiver operating characteristic (ROC) curve analysis. Sperm viability and VCL showed significant, albeit limited, predictive capacity on field fertility (0.57 and 0.54 Area Under Curve, respectively). The distribution of spermatozoa in the different subpopulations was not related to fertility. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. How Does Physical Activity Intervention Improve Self-Esteem and Self-Concept in Children and Adolescents? Evidence from a Meta-Analysis.

    PubMed

    Liu, Mingli; Wu, Lang; Ming, Qingsen

    2015-01-01

    To perform a systematic review and meta-analysis for the effects of physical activity intervention on self-esteem and self-concept in children and adolescents, and to identify moderator variables by meta-regression. A meta-analysis and meta-regression. Relevant studies were identified through a comprehensive search of electronic databases. Study inclusion criteria were: (1) intervention should be supervised physical activity, (2) reported sufficient data to estimate pooled effect sizes of physical activity intervention on self-esteem or self-concept, (3) participants' ages ranged from 3 to 20 years, and (4) a control or comparison group was included. For each study, study design, intervention design and participant characteristics were extracted. R software (version 3.1.3) and Stata (version 12.0) were used to synthesize effect sizes and perform moderation analyses for determining moderators. Twenty-five randomized controlled trial (RCT) studies and 13 non-randomized controlled trial (non-RCT) studies including a total of 2991 cases were identified. Significant positive effects were found in RCTs for intervention of physical activity alone on general self outcomes (Hedges' g = 0.29, 95% confidence interval [CI]: 0.14 to 0.45; p = 0.001), self-concept (Hedges' g = 0.49, 95%CI: 0.10 to 0.88, p = 0.014) and self-worth (Hedges' g = 0.31, 95%CI: 0.13 to 0.49, p = 0.005). There was no significant effect of intervention of physical activity alone on any outcomes in non-RCTs, as well as in studies with intervention of physical activity combined with other strategies. Meta-regression analysis revealed that higher treatment effects were associated with setting of intervention in RCTs (β = 0.31, 95%CI: 0.07 to 0.55, p = 0.013). Intervention of physical activity alone is associated with increased self-concept and self-worth in children and adolescents. And there is a stronger association with school-based and gymnasium-based intervention compared with other settings.

  2. A sample predictive model for intraocular pressure following laser in situ keratomileusis for myopia and an "intraocular pressure constant".

    PubMed

    Bahadir Kilavuzoglu, Ayse Ebru; Bozkurt, Tahir Kansu; Cosar, Cemile Banu; Sener, Asım Bozkurt

    2017-06-24

    To describe a sample predictive model for intraocular pressure (IOP) following laser in situ keratomileusis (LASIK) for myopia and an IOP constant. The records of patients that underwent LASIK for myopia and myopic astigmatism via WaveLight Allegretto Wave Eye-Q 400 Hz excimer laser and Hansatome XP microkeratome were retrospectively reviewed. Patients with no systemic or ocular disease other than myopia or myopic astigmatism were included in the study. Preoperative and postoperative month 1 data and intraoperative data were used to build the predictive model for IOP after LASIK. The IOP constant was calculated by subtracting the predicted IOP from preoperative IOP. The paired samples t test, Pearson's correlation analysis, curve estimation analysis, and linear regression analysis were used to evaluate the study data. The study included 425 eyes in 214 patients with a mean age of 32 ± 7.8 years. Mean spherical equivalent of the attempted correction (SE-ac) was -3.7 ± 1.7 diopters. Mean post-LASIK decrease in IOP was 4.6 ± 2.3 mmHg. The difference between preoperative and postoperative IOP was statistically significant (P < 0.001). SE-ac, preoperative IOP, and central corneal thickness had highly significant effects on postoperative IOP, based on linear regression analysis (P < 0.001 and R 2  = 0.043, P < 0.001 and R 2  = 0.370, and P < 0.001 and R 2  = 0.132, respectively). Regression model was created (F = 127.733, P < 0.001), and the adjusted R 2 value was 0.548. Evaluation of IOP after LASIK is important in myopic patients. The present study described a practical formula for predicting the true IOP with the aid of an IOP constant value in myopic eyes following LASIK.

  3. Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder.

    PubMed

    Mocking, R J T; Harmsen, I; Assies, J; Koeter, M W J; Ruhé, H G; Schene, A H

    2016-03-15

    Omega-3 polyunsaturated fatty acid (PUFA) supplementation has been proposed as (adjuvant) treatment for major depressive disorder (MDD). In the present meta-analysis, we pooled randomized placebo-controlled trials assessing the effects of omega-3 PUFA supplementation on depressive symptoms in MDD. Moreover, we performed meta-regression to test whether supplementation effects depended on eicosapentaenoic acid (EPA) or docosahexaenoic acid dose, their ratio, study duration, participants' age, percentage antidepressant users, baseline MDD symptom severity, publication year and study quality. To limit heterogeneity, we only included studies in adult patients with MDD assessed using standardized clinical interviews, and excluded studies that specifically studied perinatal/perimenopausal or comorbid MDD. Our PubMED/EMBASE search resulted in 1955 articles, from which we included 13 studies providing 1233 participants. After taking potential publication bias into account, meta-analysis showed an overall beneficial effect of omega-3 PUFAs on depressive symptoms in MDD (standardized mean difference=0.398 (0.114-0.682), P=0.006, random-effects model). As an explanation for significant heterogeneity (I(2)=73.36, P<0.001), meta-regression showed that higher EPA dose (β=0.00037 (0.00009-0.00065), P=0.009), higher percentage antidepressant users (β=0.0058 (0.00017-0.01144), P=0.044) and earlier publication year (β=-0.0735 (-0.143 to 0.004), P=0.04) were significantly associated with better outcome for PUFA supplementation. Additional sensitivity analyses were performed. In conclusion, present meta-analysis suggested a beneficial overall effect of omega-3 PUFA supplementation in MDD patients, especially for higher doses of EPA and in participants taking antidepressants. Future precision medicine trials should establish whether possible interactions between EPA and antidepressants could provide targets to improve antidepressant response and its prediction. Furthermore, potential long-term biochemical side effects of high-dosed add-on EPA supplementation should be carefully monitored.

  4. How much physical activity do people with schizophrenia engage in? A systematic review, comparative meta-analysis and meta-regression.

    PubMed

    Stubbs, Brendon; Firth, Joseph; Berry, Alexandra; Schuch, Felipe B; Rosenbaum, Simon; Gaughran, Fiona; Veronesse, Nicola; Williams, Julie; Craig, Tom; Yung, Alison R; Vancampfort, Davy

    2016-10-01

    Physical activity (PA) improves health outcomes in people with schizophrenia. It is unclear how much PA people with schizophrenia undertake and what influences PA participation. We conducted a meta-analysis to investigate PA levels and predictors in people with schizophrenia. Major databases were searched from inception till 02/2016 for articles measuring PA (self-report questionnaire (SRQ) or objective measure (e.g. accelerometer)) in people with schizophrenia, including first episode psychosis (FEP). A random effects meta-analysis and meta-regression analysis were conducted. 35 studies representing 3453 individuals with schizophrenia (40.0years; 64.0% male) were included. Engagement in light PA was 80.44min (95% CI 68.32-92.52, n=2658), 47.1min moderate-vigorous PA (95% CI 31.5-62.8, n=559) and 1.05min (95% CI 0.48-1.62, n=2533) vigorous PA per day. People with schizophrenia engaged in significantly less moderate (hedges g=-0.45, 95% CI -0.79 to -0.1, p=0.01) and vigorous PA (g=-0.4, 95% CI -0.60 to -0.18) versus controls. Higher light to moderate, but lower vigorous PA levels were observed in outpatients and in studies utilizing objective measures versus SRQ. 56.6% (95% CI 45.8-66.8, studies=12) met the recommended 150min of moderate physical activity per week. Depressive symptoms and older age were associated with less vigorous PA in meta-regression analyses. Our data confirm that people with schizophrenia engage in significantly less moderate and vigorous PA versus controls. Interventions aiming to increase PA, regardless of intensity are indicated for people with schizophrenia, while specifically increasing moderate-vigorous PA should be a priority given the established health benefits. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The Precision Efficacy Analysis for Regression Sample Size Method.

    ERIC Educational Resources Information Center

    Brooks, Gordon P.; Barcikowski, Robert S.

    The general purpose of this study was to examine the efficiency of the Precision Efficacy Analysis for Regression (PEAR) method for choosing appropriate sample sizes in regression studies used for precision. The PEAR method, which is based on the algebraic manipulation of an accepted cross-validity formula, essentially uses an effect size to…

  6. Marginal analysis in assessing factors contributing time to physician in the Emergency Department using operations data.

    PubMed

    Pathan, Sameer A; Bhutta, Zain A; Moinudheen, Jibin; Jenkins, Dominic; Silva, Ashwin D; Sharma, Yogdutt; Saleh, Warda A; Khudabakhsh, Zeenat; Irfan, Furqan B; Thomas, Stephen H

    2016-01-01

    Background: Standard Emergency Department (ED) operations goals include minimization of the time interval (tMD) between patients' initial ED presentation and initial physician evaluation. This study assessed factors known (or suspected) to influence tMD with a two-step goal. The first step was generation of a multivariate model identifying parameters associated with prolongation of tMD at a single study center. The second step was the use of a study center-specific multivariate tMD model as a basis for predictive marginal probability analysis; the marginal model allowed for prediction of the degree of ED operations benefit that would be affected with specific ED operations improvements. Methods: The study was conducted using one month (May 2015) of data obtained from an ED administrative database (EDAD) in an urban academic tertiary ED with an annual census of approximately 500,000; during the study month, the ED saw 39,593 cases. The EDAD data were used to generate a multivariate linear regression model assessing the various demographic and operational covariates' effects on the dependent variable tMD. Predictive marginal probability analysis was used to calculate the relative contributions of key covariates as well as demonstrate the likely tMD impact on modifying those covariates with operational improvements. Analyses were conducted with Stata 14MP, with significance defined at p  < 0.05 and confidence intervals (CIs) reported at the 95% level. Results: In an acceptable linear regression model that accounted for just over half of the overall variance in tMD (adjusted r 2 0.51), important contributors to tMD included shift census ( p  = 0.008), shift time of day ( p  = 0.002), and physician coverage n ( p  = 0.004). These strong associations remained even after adjusting for each other and other covariates. Marginal predictive probability analysis was used to predict the overall tMD impact (improvement from 50 to 43 minutes, p  < 0.001) of consistent staffing with 22 physicians. Conclusions: The analysis identified expected variables contributing to tMD with regression demonstrating significance and effect magnitude of alterations in covariates including patient census, shift time of day, and number of physicians. Marginal analysis provided operationally useful demonstration of the need to adjust physician coverage numbers, prompting changes at the study ED. The methods used in this analysis may prove useful in other EDs wishing to analyze operations information with the goal of predicting which interventions may have the most benefit.

  7. Effect of Contact Damage on the Strength of Ceramic Materials.

    DTIC Science & Technology

    1982-10-01

    variables that are important to erosion, and a multivariate , linear regression analysis is used to fit the data to the dimensional analysis. The...of Equations 7 and 8 by a multivariable regression analysis (room tem- perature data) Exponent Regression Standard error Computed coefficient of...1980) 593. WEAVER, Proc. Brit. Ceram. Soc. 22 (1973) 125. 39. P. W. BRIDGMAN, "Dimensional Analaysis ", (Yale 18. R. W. RICE, S. W. FREIMAN and P. F

  8. PREDICTION OF MALIGNANT BREAST LESIONS FROM MRI FEATURES: A COMPARISON OF ARTIFICIAL NEURAL NETWORK AND LOGISTIC REGRESSION TECHNIQUES

    PubMed Central

    McLaren, Christine E.; Chen, Wen-Pin; Nie, Ke; Su, Min-Ying

    2009-01-01

    Rationale and Objectives Dynamic contrast enhanced MRI (DCE-MRI) is a clinical imaging modality for detection and diagnosis of breast lesions. Analytical methods were compared for diagnostic feature selection and performance of lesion classification to differentiate between malignant and benign lesions in patients. Materials and Methods The study included 43 malignant and 28 benign histologically-proven lesions. Eight morphological parameters, ten gray level co-occurrence matrices (GLCM) texture features, and fourteen Laws’ texture features were obtained using automated lesion segmentation and quantitative feature extraction. Artificial neural network (ANN) and logistic regression analysis were compared for selection of the best predictors of malignant lesions among the normalized features. Results Using ANN, the final four selected features were compactness, energy, homogeneity, and Law_LS, with area under the receiver operating characteristic curve (AUC) = 0.82, and accuracy = 0.76. The diagnostic performance of these 4-features computed on the basis of logistic regression yielded AUC = 0.80 (95% CI, 0.688 to 0.905), similar to that of ANN. The analysis also shows that the odds of a malignant lesion decreased by 48% (95% CI, 25% to 92%) for every increase of 1 SD in the Law_LS feature, adjusted for differences in compactness, energy, and homogeneity. Using logistic regression with z-score transformation, a model comprised of compactness, NRL entropy, and gray level sum average was selected, and it had the highest overall accuracy of 0.75 among all models, with AUC = 0.77 (95% CI, 0.660 to 0.880). When logistic modeling of transformations using the Box-Cox method was performed, the most parsimonious model with predictors, compactness and Law_LS, had an AUC of 0.79 (95% CI, 0.672 to 0.898). Conclusion The diagnostic performance of models selected by ANN and logistic regression was similar. The analytic methods were found to be roughly equivalent in terms of predictive ability when a small number of variables were chosen. The robust ANN methodology utilizes a sophisticated non-linear model, while logistic regression analysis provides insightful information to enhance interpretation of the model features. PMID:19409817

  9. Systematic Review and Meta-Analysis: Dose-Response Relationship of Selective Serotonin Reuptake Inhibitors in Major Depressive Disorder.

    PubMed

    Jakubovski, Ewgeni; Varigonda, Anjali L; Freemantle, Nicholas; Taylor, Matthew J; Bloch, Michael H

    2016-02-01

    Previous studies suggested that the treatment response to selective serotonin reuptake inhibitors (SSRIs) in major depressive disorder follows a flat response curve within the therapeutic dose range. The present study was designed to clarify the relationship between dosage and treatment response in major depressive disorder. The authors searched PubMed for randomized placebo-controlled trials examining the efficacy of SSRIs for treating adults with major depressive disorder. Trials were also required to assess improvement in depression severity at multiple time points. Additional data were collected on treatment response and all-cause and side effect-related discontinuation. All medication doses were transformed into imipramine-equivalent doses. The longitudinal data were analyzed with a mixed-regression model. Endpoint and tolerability analyses were analyzed using meta-regression and stratified subgroup analysis by predefined SSRI dose categories in order to assess the effect of SSRI dosing on the efficacy and tolerability of SSRIs for major depressive disorder. Forty studies involving 10,039 participants were included. Longitudinal modeling (dose-by-time interaction=0.0007, 95% CI=0.0001-0.0013) and endpoint analysis (meta-regression: β=0.00053, 95% CI=0.00018-0.00088, z=2.98) demonstrated a small but statistically significant positive association between SSRI dose and efficacy. Higher doses of SSRIs were associated with an increased likelihood of dropouts due to side effects (meta-regression: β=0.00207, 95% CI=0.00071-0.00342, z=2.98) and decreased likelihood of all-cause dropout (meta-regression: β=-0.00093, 95% CI=-0.00165 to -0.00021, z=-2.54). Higher doses of SSRIs appear slightly more effective in major depressive disorder. This benefit appears to plateau at around 250 mg of imipramine equivalents (50 mg of fluoxetine). The slightly increased benefits of SSRIs at higher doses are somewhat offset by decreased tolerability at high doses.

  10. Estimation of lung tumor position from multiple anatomical features on 4D-CT using multiple regression analysis.

    PubMed

    Ono, Tomohiro; Nakamura, Mitsuhiro; Hirose, Yoshinori; Kitsuda, Kenji; Ono, Yuka; Ishigaki, Takashi; Hiraoka, Masahiro

    2017-09-01

    To estimate the lung tumor position from multiple anatomical features on four-dimensional computed tomography (4D-CT) data sets using single regression analysis (SRA) and multiple regression analysis (MRA) approach and evaluate an impact of the approach on internal target volume (ITV) for stereotactic body radiotherapy (SBRT) of the lung. Eleven consecutive lung cancer patients (12 cases) underwent 4D-CT scanning. The three-dimensional (3D) lung tumor motion exceeded 5 mm. The 3D tumor position and anatomical features, including lung volume, diaphragm, abdominal wall, and chest wall positions, were measured on 4D-CT images. The tumor position was estimated by SRA using each anatomical feature and MRA using all anatomical features. The difference between the actual and estimated tumor positions was defined as the root-mean-square error (RMSE). A standard partial regression coefficient for the MRA was evaluated. The 3D lung tumor position showed a high correlation with the lung volume (R = 0.92 ± 0.10). Additionally, ITVs derived from SRA and MRA approaches were compared with ITV derived from contouring gross tumor volumes on all 10 phases of the 4D-CT (conventional ITV). The RMSE of the SRA was within 3.7 mm in all directions. Also, the RMSE of the MRA was within 1.6 mm in all directions. The standard partial regression coefficient for the lung volume was the largest and had the most influence on the estimated tumor position. Compared with conventional ITV, average percentage decrease of ITV were 31.9% and 38.3% using SRA and MRA approaches, respectively. The estimation accuracy of lung tumor position was improved by the MRA approach, which provided smaller ITV than conventional ITV. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  11. Magnitude and Frequency of Floods for Urban and Small Rural Streams in Georgia, 2008

    USGS Publications Warehouse

    Gotvald, Anthony J.; Knaak, Andrew E.

    2011-01-01

    A study was conducted that updated methods for estimating the magnitude and frequency of floods in ungaged urban basins in Georgia that are not substantially affected by regulation or tidal fluctuations. Annual peak-flow data for urban streams from September 2008 were analyzed for 50 streamgaging stations (streamgages) in Georgia and 6 streamgages on adjacent urban streams in Florida and South Carolina having 10 or more years of data. Flood-frequency estimates were computed for the 56 urban streamgages by fitting logarithms of annual peak flows for each streamgage to a Pearson Type III distribution. Additionally, basin characteristics for the streamgages were computed by using a geographical information system and computer algorithms. Regional regression analysis, using generalized least-squares regression, was used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged urban basins in Georgia. In addition to the 56 urban streamgages, 171 rural streamgages were included in the regression analysis to maintain continuity between flood estimates for urban and rural basins as the basin characteristics pertaining to urbanization approach zero. Because 21 of the rural streamgages have drainage areas less than 1 square mile, the set of equations developed for this study can also be used for estimating small ungaged rural streams in Georgia. Flood-frequency estimates and basin characteristics for 227 streamgages were combined to form the final database used in the regional regression analysis. Four hydrologic regions were developed for Georgia. The final equations are functions of drainage area and percentage of impervious area for three of the regions and drainage area, percentage of developed land, and mean basin slope for the fourth region. Average standard errors of prediction for these regression equations range from 20.0 to 74.5 percent.

  12. Discrimination of honeys using colorimetric sensor arrays, sensory analysis and gas chromatography techniques.

    PubMed

    Tahir, Haroon Elrasheid; Xiaobo, Zou; Xiaowei, Huang; Jiyong, Shi; Mariod, Abdalbasit Adam

    2016-09-01

    Aroma profiles of six honey varieties of different botanical origins were investigated using colorimetric sensor array, gas chromatography-mass spectrometry (GC-MS) and descriptive sensory analysis. Fifty-eight aroma compounds were identified, including 2 norisoprenoids, 5 hydrocarbons, 4 terpenes, 6 phenols, 7 ketones, 9 acids, 12 aldehydes and 13 alcohols. Twenty abundant or active compounds were chosen as key compounds to characterize honey aroma. Discrimination of the honeys was subsequently implemented using multivariate analysis, including hierarchical clustering analysis (HCA) and principal component analysis (PCA). Honeys of the same botanical origin were grouped together in the PCA score plot and HCA dendrogram. SPME-GC/MS and colorimetric sensor array were able to discriminate the honeys effectively with the advantages of being rapid, simple and low-cost. Moreover, partial least squares regression (PLSR) was applied to indicate the relationship between sensory descriptors and aroma compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio

    USGS Publications Warehouse

    Koltun, G.F.; Roberts, J.W.

    1990-01-01

    Multiple-regression equations are presented for estimating flood-peak discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at ungaged sites on rural, unregulated streams in Ohio. The average standard errors of prediction for the equations range from 33.4% to 41.4%. Peak discharge estimates determined by log-Pearson Type III analysis using data collected through the 1987 water year are reported for 275 streamflow-gaging stations. Ordinary least-squares multiple-regression techniques were used to divide the State into three regions and to identify a set of basin characteristics that help explain station-to- station variation in the log-Pearson estimates. Contributing drainage area, main-channel slope, and storage area were identified as suitable explanatory variables. Generalized least-square procedures, which include historical flow data and account for differences in the variance of flows at different gaging stations, spatial correlation among gaging station records, and variable lengths of station record were used to estimate the regression parameters. Weighted peak-discharge estimates computed as a function of the log-Pearson Type III and regression estimates are reported for each station. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site located on the same stream. Limitations and shortcomings cited in an earlier report on the magnitude and frequency of floods in Ohio are addressed in this study. Geographic bias is no longer evident for the Maumee River basin of northwestern Ohio. No bias is found to be associated with the forested-area characteristic for the range used in the regression analysis (0.0 to 99.0%), nor is this characteristic significant in explaining peak discharges. Surface-mined area likewise is not significant in explaining peak discharges, and the regression equations are not biased when applied to basins having approximately 30% or less surface-mined area. Analyses of residuals indicate that the equations tend to overestimate flood-peak discharges for basins having approximately 30% or more surface-mined area. (USGS)

  14. Effective environmental factors on geographical distribution of traffic accidents on pedestrians, downtown of Tehran City.

    PubMed

    Moradi, Ali; Rahmani, Khaled; Kavousi, Amir; Eshghabadi, Farshid; Nematollahi, Shahrzad; Zainni, Slahedyn; Soori, Hamid

    2018-02-20

    The aim of this study was to geographically analyse the traffic casualties in pedestrians in downtown of Tehran City. Study population consisted of pedestrians who had traffic injury accidents from April 2014 to March 2015 in Tehran City. Data were extracted from the offices of traffic police and municipality. For analysis of environmental factors and site of accidents, Ordinary Least Square (OLS) regression models and Geographically Weighted Regression (GWR) were used. All pedestrian accidents including 514 accidents were assessed in this study in which the site of accidents included arterial streets in 370 (71.9%) cases, collector streets in 133 cases (25.2%) and highways in 11 cases (2.1%). Geographical units of traffic accidents in pedestrians had statistically significant relationship with the number of bus stations, number of crossroads and recreational areas. Neighbourhoods close to markets are considered as the most dangerous places for injury in traffic accidents.

  15. Use of ocean color scanner data in water quality mapping

    NASA Technical Reports Server (NTRS)

    Khorram, S.

    1981-01-01

    Remotely sensed data, in combination with in situ data, are used in assessing water quality parameters within the San Francisco Bay-Delta. The parameters include suspended solids, chlorophyll, and turbidity. Regression models are developed between each of the water quality parameter measurements and the Ocean Color Scanner (OCS) data. The models are then extended to the entire study area for mapping water quality parameters. The results include a series of color-coded maps, each pertaining to one of the water quality parameters, and the statistical analysis of the OCS data and regression models. It is found that concurrently collected OCS data and surface truth measurements are highly useful in mapping the selected water quality parameters and locating areas having relatively high biological activity. In addition, it is found to be virtually impossible, at least within this test site, to locate such areas on U-2 color and color-infrared photography.

  16. Modeling the language learning strategies and English language proficiency of pre-university students in UMS: A case study

    NASA Astrophysics Data System (ADS)

    Kiram, J. J.; Sulaiman, J.; Swanto, S.; Din, W. A.

    2015-10-01

    This study aims to construct a mathematical model of the relationship between a student's Language Learning Strategy usage and English Language proficiency. Fifty-six pre-university students of University Malaysia Sabah participated in this study. A self-report questionnaire called the Strategy Inventory for Language Learning was administered to them to measure their language learning strategy preferences before they sat for the Malaysian University English Test (MUET), the results of which were utilised to measure their English language proficiency. We attempted the model assessment specific to Multiple Linear Regression Analysis subject to variable selection using Stepwise regression. We conducted various assessments to the model obtained, including the Global F-test, Root Mean Square Error and R-squared. The model obtained suggests that not all language learning strategies should be included in the model in an attempt to predict Language Proficiency.

  17. Common pitfalls in statistical analysis: Linear regression analysis

    PubMed Central

    Aggarwal, Rakesh; Ranganathan, Priya

    2017-01-01

    In a previous article in this series, we explained correlation analysis which describes the strength of relationship between two continuous variables. In this article, we deal with linear regression analysis which predicts the value of one continuous variable from another. We also discuss the assumptions and pitfalls associated with this analysis. PMID:28447022

  18. A Semiparametric Change-Point Regression Model for Longitudinal Observations.

    PubMed

    Xing, Haipeng; Ying, Zhiliang

    2012-12-01

    Many longitudinal studies involve relating an outcome process to a set of possibly time-varying covariates, giving rise to the usual regression models for longitudinal data. When the purpose of the study is to investigate the covariate effects when experimental environment undergoes abrupt changes or to locate the periods with different levels of covariate effects, a simple and easy-to-interpret approach is to introduce change-points in regression coefficients. In this connection, we propose a semiparametric change-point regression model, in which the error process (stochastic component) is nonparametric and the baseline mean function (functional part) is completely unspecified, the observation times are allowed to be subject-specific, and the number, locations and magnitudes of change-points are unknown and need to be estimated. We further develop an estimation procedure which combines the recent advance in semiparametric analysis based on counting process argument and multiple change-points inference, and discuss its large sample properties, including consistency and asymptotic normality, under suitable regularity conditions. Simulation results show that the proposed methods work well under a variety of scenarios. An application to a real data set is also given.

  19. Effect of heat stress on age at first calving of Japanese Black cows in Okinawa.

    PubMed

    Oikawa, Takuro

    2017-03-01

    Calving records from birth certificates of cows were analyzed to investigate the effect of heat stress on age at first calving (AFC) of Japanese Black cows. The data set covered 20 years (1990-2009) of calving records. Total number of records was 9279. Daily weather information from weather stations in the vicinity of the farms was used. Temperature-humidity index (THI) fitted to a linear model covered 30 days pre-insemination to 61 days post-insemination. Statistical analysis was conducted with procedures of SAS/STAT. Preliminary analysis showed that THI of the lowest temperature and humidity was most conducive to AFC. Covariance analysis, including main effect of sire, farm and year of insemination and covariates of THI on days showed that regression coefficients of THI on day -7, day -2 and day +31 were statistically significant. The estimated piecewise regression line showed different responses of AFC to THI on days: roof-shasped downward trend on day -7, hockey-stick shaped upward trend on day -2 and day +31. The difference among the estimated regression lines may be caused by direct and indirect factors on reproduction: indirect effect of reduced feed intake, failure of conception at previous insemination, direct effect of heat stress on oocyte and embryo development. © 2016 Japanese Society of Animal Science.

  20. The estimated effect of mass or footprint reduction in recent light-duty vehicles on U.S. societal fatality risk per vehicle mile traveled.

    PubMed

    Wenzel, Tom

    2013-10-01

    The National Highway Traffic Safety Administration (NHTSA) recently updated its 2003 and 2010 logistic regression analyses of the effect of a reduction in light-duty vehicle mass on US societal fatality risk per vehicle mile traveled (VMT; Kahane, 2012). Societal fatality risk includes the risk to both the occupants of the case vehicle as well as any crash partner or pedestrians. The current analysis is the most thorough investigation of this issue to date. This paper replicates the Kahane analysis and extends it by testing the sensitivity of his results to changes in the definition of risk, and the data and control variables used in the regression models. An assessment by Lawrence Berkeley National Laboratory (LBNL) indicates that the estimated effect of mass reduction on risk is smaller than in Kahane's previous studies, and is statistically non-significant for all but the lightest cars (Wenzel, 2012a). The estimated effects of a reduction in mass or footprint (i.e. wheelbase times track width) are small relative to other vehicle, driver, and crash variables used in the regression models. The recent historical correlation between mass and footprint is not so large to prohibit including both variables in the same regression model; excluding footprint from the model, i.e. allowing footprint to decrease with mass, increases the estimated detrimental effect of mass reduction on risk in cars and crossover utility vehicles (CUVs)/minivans, but has virtually no effect on light trucks. Analysis by footprint deciles indicates that risk does not consistently increase with reduced mass for vehicles of similar footprint. Finally, the estimated effects of mass and footprint reduction are sensitive to the measure of exposure used (fatalities per induced exposure crash, rather than per VMT), as well as other changes in the data or control variables used. It appears that the safety penalty from lower mass can be mitigated with careful vehicle design, and that manufacturers can reduce mass as a strategy to increase their vehicles' fuel economy and reduce greenhouse gas emissions without necessarily compromising societal safety. Published by Elsevier Ltd.

  1. SandiaMRCR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-01-05

    SandiaMCR was developed to identify pure components and their concentrations from spectral data. This software efficiently implements the multivariate calibration regression alternating least squares (MCR-ALS), principal component analysis (PCA), and singular value decomposition (SVD). Version 3.37 also includes the PARAFAC-ALS Tucker-1 (for trilinear analysis) algorithms. The alternating least squares methods can be used to determine the composition without or with incomplete prior information on the constituents and their concentrations. It allows the specification of numerous preprocessing, initialization and data selection and compression options for the efficient processing of large data sets. The software includes numerous options including the definition ofmore » equality and non-negativety constraints to realistically restrict the solution set, various normalization or weighting options based on the statistics of the data, several initialization choices and data compression. The software has been designed to provide a practicing spectroscopist the tools required to routinely analysis data in a reasonable time and without requiring expert intervention.« less

  2. Visual abilities distinguish pitchers from hitters in professional baseball.

    PubMed

    Klemish, David; Ramger, Benjamin; Vittetoe, Kelly; Reiter, Jerome P; Tokdar, Surya T; Appelbaum, Lawrence Gregory

    2018-01-01

    This study aimed to evaluate the possibility that differences in sensorimotor abilities exist between hitters and pitchers in a large cohort of baseball players of varying levels of experience. Secondary data analysis was performed on 9 sensorimotor tasks comprising the Nike Sensory Station assessment battery. Bayesian hierarchical regression modelling was applied to test for differences between pitchers and hitters in data from 566 baseball players (112 high school, 85 college, 369 professional) collected at 20 testing centres. Explanatory variables including height, handedness, eye dominance, concussion history, and player position were modelled along with age curves using basis regression splines. Regression analyses revealed better performance for hitters relative to pitchers at the professional level in the visual clarity and depth perception tasks, but these differences did not exist at the high school or college levels. No significant differences were observed in the other 7 measures of sensorimotor capabilities included in the test battery, and no systematic biases were found between the testing centres. These findings, indicating that professional-level hitters have better visual acuity and depth perception than professional-level pitchers, affirm the notion that highly experienced athletes have differing perceptual skills. Findings are discussed in relation to deliberate practice theory.

  3. Outdoor artificial light at night, obesity, and sleep health: Cross-sectional analysis in the KoGES study.

    PubMed

    Koo, Yong Seo; Song, Jin-Young; Joo, Eun-Yeon; Lee, Heon-Jeong; Lee, Eunil; Lee, Sang-kun; Jung, Ki-Young

    2016-01-01

    Obesity is a common disorder with many complications. Although chronodisruption plays a role in obesity, few epidemiological studies have investigated the association between artificial light at night (ALAN) and obesity. Since sleep health is related to both obesity and ALAN, we investigated the association between outdoor ALAN and obesity after adjusting for sleep health. We also investigated the association between outdoor ALAN and sleep health. This cross-sectional survey included 8526 adults, 39-70 years of age, who participated in the Korean Genome and Epidemiology Study. Outdoor ALAN data were obtained from satellite images provided by the US Defense Meteorological Satellite Program. We obtained individual data regarding outdoor ALAN; body mass index; depression; and sleep health including sleep duration, mid-sleep time, and insomnia; and other demographic data including age, sex, educational level, type of residential building, monthly household income, alcohol consumption, smoking status and consumption of caffeine or alcohol before sleep. A logistic regression model was used to investigate the association between outdoor ALAN and obesity. The prevalence of obesity differed significantly according to sex (women 47% versus men 39%, p < 0.001) and outdoor ALAN (high 55% versus low 40%, p < 0.001). Univariate logistic regression analysis revealed a significant association between high outdoor ALAN and obesity (odds ratio [OR] 1.24, 95% confidence interval [CI] 1.14-1.35, p < 0.001). Furthermore, multivariate logistic regression analyses showed that high outdoor ALAN was significantly associated with obesity after adjusting for age and sex (OR 1.25, 95% CI 1.14-1.37, p < 0.001) and even after controlling for various other confounding factors including age, sex, educational level, type of residential building, monthly household income, alcohol consumption, smoking, consumption of caffeine or alcohol before sleep, delayed sleep pattern, short sleep duration and habitual snoring (OR 1.20, 95% CI 1.06-1.36, p = 0.003). The findings of our study provide epidemiological evidence that outdoor ALAN is significantly related to obesity.

  4. Birth by Caesarean Section and the Risk of Adult Psychosis: A Population-Based Cohort Study.

    PubMed

    O'Neill, Sinéad M; Curran, Eileen A; Dalman, Christina; Kenny, Louise C; Kearney, Patricia M; Clarke, Gerard; Cryan, John F; Dinan, Timothy G; Khashan, Ali S

    2016-05-01

    Despite the biological plausibility of an association between obstetric mode of delivery and psychosis in later life, studies to date have been inconclusive. We assessed the association between mode of delivery and later onset of psychosis in the offspring. A population-based cohort including data from the Swedish National Registers was used. All singleton live births between 1982 and 1995 were identified (n= 1,345,210) and followed-up to diagnosis at age 16 or later. Mode of delivery was categorized as: unassisted vaginal delivery (VD), assisted VD, elective Caesarean section (CS) (before onset of labor), and emergency CS (after onset of labor). Outcomes included any psychosis; nonaffective psychoses (including schizophrenia only) and affective psychoses (including bipolar disorder only and depression with psychosis only). Cox regression analysis was used reporting partially and fully adjusted hazard ratios (HR) with 95% confidence intervals (CI). Sibling-matched Cox regression was performed to adjust for familial confounding factors. In the fully adjusted analyses, elective CS was significantly associated with any psychosis (HR 1.13, 95% CI 1.03, 1.24). Similar findings were found for nonaffective psychoses (HR 1.13, 95% CI 0.99, 1.29) and affective psychoses (HR 1.17, 95% CI 1.05, 1.31) (χ(2)for heterogeneityP= .69). In the sibling-matched Cox regression, this association disappeared (HR 1.03, 95% CI 0.78, 1.37). No association was found between assisted VD or emergency CS and psychosis. This study found that elective CS is associated with an increase in offspring psychosis. However, the association did not persist in the sibling-matched analysis, implying the association is likely due to familial confounding by unmeasured factors such as genetics or environment. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Estimation of Magnitude and Frequency of Floods for Streams on the Island of Oahu, Hawaii

    USGS Publications Warehouse

    Wong, Michael F.

    1994-01-01

    This report describes techniques for estimating the magnitude and frequency of floods for the island of Oahu. The log-Pearson Type III distribution and methodology recommended by the Interagency Committee on Water Data was used to determine the magnitude and frequency of floods at 79 gaging stations that had 11 to 72 years of record. Multiple regression analysis was used to construct regression equations to transfer the magnitude and frequency information from gaged sites to ungaged sites. Oahu was divided into three hydrologic regions to define relations between peak discharge and drainage-basin and climatic characteristics. Regression equations are provided to estimate the 2-, 5-, 10-, 25-, 50-, and 100-year peak discharges at ungaged sites. Significant basin and climatic characteristics included in the regression equations are drainage area, median annual rainfall, and the 2-year, 24-hour rainfall intensity. Drainage areas for sites used in this study ranged from 0.03 to 45.7 square miles. Standard error of prediction for the regression equations ranged from 34 to 62 percent. Peak-discharge data collected through water year 1988, geographic information system (GIS) technology, and generalized least-squares regression were used in the analyses. The use of GIS seems to be a more flexible and consistent means of defining and calculating basin and climatic characteristics than using manual methods. Standard errors of estimate for the regression equations in this report are an average of 8 percent less than those published in previous studies.

  6. Quality of life in breast cancer patients--a quantile regression analysis.

    PubMed

    Pourhoseingholi, Mohamad Amin; Safaee, Azadeh; Moghimi-Dehkordi, Bijan; Zeighami, Bahram; Faghihzadeh, Soghrat; Tabatabaee, Hamid Reza; Pourhoseingholi, Asma

    2008-01-01

    Quality of life study has an important role in health care especially in chronic diseases, in clinical judgment and in medical resources supplying. Statistical tools like linear regression are widely used to assess the predictors of quality of life. But when the response is not normal the results are misleading. The aim of this study is to determine the predictors of quality of life in breast cancer patients, using quantile regression model and compare to linear regression. A cross-sectional study conducted on 119 breast cancer patients that admitted and treated in chemotherapy ward of Namazi hospital in Shiraz. We used QLQ-C30 questionnaire to assessment quality of life in these patients. A quantile regression was employed to assess the assocciated factors and the results were compared to linear regression. All analysis carried out using SAS. The mean score for the global health status for breast cancer patients was 64.92+/-11.42. Linear regression showed that only grade of tumor, occupational status, menopausal status, financial difficulties and dyspnea were statistically significant. In spite of linear regression, financial difficulties were not significant in quantile regression analysis and dyspnea was only significant for first quartile. Also emotion functioning and duration of disease statistically predicted the QOL score in the third quartile. The results have demonstrated that using quantile regression leads to better interpretation and richer inference about predictors of the breast cancer patient quality of life.

  7. The microcomputer scientific software series 2: general linear model--regression.

    Treesearch

    Harold M. Rauscher

    1983-01-01

    The general linear model regression (GLMR) program provides the microcomputer user with a sophisticated regression analysis capability. The output provides a regression ANOVA table, estimators of the regression model coefficients, their confidence intervals, confidence intervals around the predicted Y-values, residuals for plotting, a check for multicollinearity, a...

  8. Distinct Patterns of Desynchronized Limb Regression in Malagasy Scincine Lizards (Squamata, Scincidae)

    PubMed Central

    Miralles, Aurélien; Hipsley, Christy A.; Erens, Jesse; Gehara, Marcelo; Rakotoarison, Andolalao; Glaw, Frank; Müller, Johannes; Vences, Miguel

    2015-01-01

    Scincine lizards in Madagascar form an endemic clade of about 60 species exhibiting a variety of ecomorphological adaptations. Several subclades have adapted to burrowing and convergently regressed their limbs and eyes, resulting in a variety of partial and completely limbless morphologies among extant taxa. However, patterns of limb regression in these taxa have not been studied in detail. Here we fill this gap in knowledge by providing a phylogenetic analysis of DNA sequences of three mitochondrial and four nuclear gene fragments in an extended sampling of Malagasy skinks, and microtomographic analyses of osteology of various burrowing taxa adapted to sand substrate. Based on our data we propose to (i) consider Sirenoscincus Sakata & Hikida, 2003, as junior synonym of Voeltzkowia Boettger, 1893; (ii) resurrect the genus name Grandidierina Mocquard, 1894, for four species previously included in Voeltzkowia; and (iii) consider Androngo Brygoo, 1982, as junior synonym of Pygomeles Grandidier, 1867. By supporting the clade consisting of the limbless Voeltzkowia mira and the forelimb-only taxa V. mobydick and V. yamagishii, our data indicate that full regression of limbs and eyes occurred in parallel twice in the genus Voeltzkowia (as hitherto defined) that we consider as a sand-swimming ecomorph: in the Voeltzkowia clade sensu stricto the regression first affected the hindlimbs and subsequently the forelimbs, whereas the Grandidierina clade first regressed the forelimbs and subsequently the hindlimbs following the pattern prevalent in squamates. Timetree reconstructions for the Malagasy Scincidae contain a substantial amount of uncertainty due to the absence of suitable primary fossil calibrations. However, our preliminary reconstructions suggest rapid limb regression in Malagasy scincids with an estimated maximal duration of 6 MYr for a complete regression in Paracontias, and 4 and 8 MYr respectively for complete regression of forelimbs in Grandidierina and hindlimbs in Voeltzkowia. PMID:26042667

  9. Distinct patterns of desynchronized limb regression in malagasy scincine lizards (squamata, scincidae).

    PubMed

    Miralles, Aurélien; Hipsley, Christy A; Erens, Jesse; Gehara, Marcelo; Rakotoarison, Andolalao; Glaw, Frank; Müller, Johannes; Vences, Miguel

    2015-01-01

    Scincine lizards in Madagascar form an endemic clade of about 60 species exhibiting a variety of ecomorphological adaptations. Several subclades have adapted to burrowing and convergently regressed their limbs and eyes, resulting in a variety of partial and completely limbless morphologies among extant taxa. However, patterns of limb regression in these taxa have not been studied in detail. Here we fill this gap in knowledge by providing a phylogenetic analysis of DNA sequences of three mitochondrial and four nuclear gene fragments in an extended sampling of Malagasy skinks, and microtomographic analyses of osteology of various burrowing taxa adapted to sand substrate. Based on our data we propose to (i) consider Sirenoscincus Sakata & Hikida, 2003, as junior synonym of Voeltzkowia Boettger, 1893; (ii) resurrect the genus name Grandidierina Mocquard, 1894, for four species previously included in Voeltzkowia; and (iii) consider Androngo Brygoo, 1982, as junior synonym of Pygomeles Grandidier, 1867. By supporting the clade consisting of the limbless Voeltzkowia mira and the forelimb-only taxa V. mobydick and V. yamagishii, our data indicate that full regression of limbs and eyes occurred in parallel twice in the genus Voeltzkowia (as hitherto defined) that we consider as a sand-swimming ecomorph: in the Voeltzkowia clade sensu stricto the regression first affected the hindlimbs and subsequently the forelimbs, whereas the Grandidierina clade first regressed the forelimbs and subsequently the hindlimbs following the pattern prevalent in squamates. Timetree reconstructions for the Malagasy Scincidae contain a substantial amount of uncertainty due to the absence of suitable primary fossil calibrations. However, our preliminary reconstructions suggest rapid limb regression in Malagasy scincids with an estimated maximal duration of 6 MYr for a complete regression in Paracontias, and 4 and 8 MYr respectively for complete regression of forelimbs in Grandidierina and hindlimbs in Voeltzkowia.

  10. Regression analysis of current-status data: an application to breast-feeding.

    PubMed

    Grummer-strawn, L M

    1993-09-01

    "Although techniques for calculating mean survival time from current-status data are well known, their use in multiple regression models is somewhat troublesome. Using data on current breast-feeding behavior, this article considers a number of techniques that have been suggested in the literature, including parametric, nonparametric, and semiparametric models as well as the application of standard schedules. Models are tested in both proportional-odds and proportional-hazards frameworks....I fit [the] models to current status data on breast-feeding from the Demographic and Health Survey (DHS) in six countries: two African (Mali and Ondo State, Nigeria), two Asian (Indonesia and Sri Lanka), and two Latin American (Colombia and Peru)." excerpt

  11. The N-shaped environmental Kuznets curve: an empirical evaluation using a panel quantile regression approach.

    PubMed

    Allard, Alexandra; Takman, Johanna; Uddin, Gazi Salah; Ahmed, Ali

    2018-02-01

    We evaluate the N-shaped environmental Kuznets curve (EKC) using panel quantile regression analysis. We investigate the relationship between CO 2 emissions and GDP per capita for 74 countries over the period of 1994-2012. We include additional explanatory variables, such as renewable energy consumption, technological development, trade, and institutional quality. We find evidence for the N-shaped EKC in all income groups, except for the upper-middle-income countries. Heterogeneous characteristics are, however, observed over the N-shaped EKC. Finally, we find a negative relationship between renewable energy consumption and CO 2 emissions, which highlights the importance of promoting greener energy in order to combat global warming.

  12. USAF (United States Air Force) Stability and Control DATCOM (Data Compendium)

    DTIC Science & Technology

    1978-04-01

    regression analysis involves the study of a group of variables to determine their effect on a given parameter. Because of the empirical nature of this...regression analysis of mathematical statistics. In general, a regression analysis involves the study of a group of variables to determine their effect on a...Excperiment, OSR TN 58-114, MIT Fluid Dynamics Research Group Rapt. 57-5, 1957. (U) 90. Kennet, H., and Ashley, H.: Review of Unsteady Aerodynamic Studies in

  13. Mixed oxidizer hybrid propulsion system optimization under uncertainty using applied response surface methodology and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Whitehead, James Joshua

    The analysis documented herein provides an integrated approach for the conduct of optimization under uncertainty (OUU) using Monte Carlo Simulation (MCS) techniques coupled with response surface-based methods for characterization of mixture-dependent variables. This novel methodology provides an innovative means of conducting optimization studies under uncertainty in propulsion system design. Analytic inputs are based upon empirical regression rate information obtained from design of experiments (DOE) mixture studies utilizing a mixed oxidizer hybrid rocket concept. Hybrid fuel regression rate was selected as the target response variable for optimization under uncertainty, with maximization of regression rate chosen as the driving objective. Characteristic operational conditions and propellant mixture compositions from experimental efforts conducted during previous foundational work were combined with elemental uncertainty estimates as input variables. Response surfaces for mixture-dependent variables and their associated uncertainty levels were developed using quadratic response equations incorporating single and two-factor interactions. These analysis inputs, response surface equations and associated uncertainty contributions were applied to a probabilistic MCS to develop dispersed regression rates as a function of operational and mixture input conditions within design space. Illustrative case scenarios were developed and assessed using this analytic approach including fully and partially constrained operational condition sets over all of design mixture space. In addition, optimization sets were performed across an operationally representative region in operational space and across all investigated mixture combinations. These scenarios were selected as representative examples relevant to propulsion system optimization, particularly for hybrid and solid rocket platforms. Ternary diagrams, including contour and surface plots, were developed and utilized to aid in visualization. The concept of Expanded-Durov diagrams was also adopted and adapted to this study to aid in visualization of uncertainty bounds. Regions of maximum regression rate and associated uncertainties were determined for each set of case scenarios. Application of response surface methodology coupled with probabilistic-based MCS allowed for flexible and comprehensive interrogation of mixture and operating design space during optimization cases. Analyses were also conducted to assess sensitivity of uncertainty to variations in key elemental uncertainty estimates. The methodology developed during this research provides an innovative optimization tool for future propulsion design efforts.

  14. Use of Multiple Regression and Use-Availability Analyses in Determining Habitat Selection by Gray Squirrels (Sciurus Carolinensis)

    Treesearch

    John W. Edwards; Susan C. Loeb; David C. Guynn

    1994-01-01

    Multiple regression and use-availability analyses are two methods for examining habitat selection. Use-availability analysis is commonly used to evaluate macrohabitat selection whereas multiple regression analysis can be used to determine microhabitat selection. We compared these techniques using behavioral observations (n = 5534) and telemetry locations (n = 2089) of...

  15. A simple linear regression method for quantitative trait loci linkage analysis with censored observations.

    PubMed

    Anderson, Carl A; McRae, Allan F; Visscher, Peter M

    2006-07-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.

  16. Comparison of Logistic Regression and Artificial Neural Network in Low Back Pain Prediction: Second National Health Survey

    PubMed Central

    Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H

    2012-01-01

    Background: The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Methods: Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. Results: The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Conclusions: Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant. PMID:23113198

  17. Comparison of logistic regression and artificial neural network in low back pain prediction: second national health survey.

    PubMed

    Parsaeian, M; Mohammad, K; Mahmoudi, M; Zeraati, H

    2012-01-01

    The purpose of this investigation was to compare empirically predictive ability of an artificial neural network with a logistic regression in prediction of low back pain. Data from the second national health survey were considered in this investigation. This data includes the information of low back pain and its associated risk factors among Iranian people aged 15 years and older. Artificial neural network and logistic regression models were developed using a set of 17294 data and they were validated in a test set of 17295 data. Hosmer and Lemeshow recommendation for model selection was used in fitting the logistic regression. A three-layer perceptron with 9 inputs, 3 hidden and 1 output neurons was employed. The efficiency of two models was compared by receiver operating characteristic analysis, root mean square and -2 Loglikelihood criteria. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the logistic regression was 0.752 (0.004), 0.3832 and 14769.2, respectively. The area under the ROC curve (SE), root mean square and -2Loglikelihood of the artificial neural network was 0.754 (0.004), 0.3770 and 14757.6, respectively. Based on these three criteria, artificial neural network would give better performance than logistic regression. Although, the difference is statistically significant, it does not seem to be clinically significant.

  18. Modelling of binary logistic regression for obesity among secondary students in a rural area of Kedah

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Ainur Amira; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Ahmad, Wan Muhamad Amir W.

    2014-07-01

    Logistic regression analysis examines the influence of various factors on a dichotomous outcome by estimating the probability of the event's occurrence. Logistic regression, also called a logit model, is a statistical procedure used to model dichotomous outcomes. In the logit model the log odds of the dichotomous outcome is modeled as a linear combination of the predictor variables. The log odds ratio in logistic regression provides a description of the probabilistic relationship of the variables and the outcome. In conducting logistic regression, selection procedures are used in selecting important predictor variables, diagnostics are used to check that assumptions are valid which include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers and a test statistic is calculated to determine the aptness of the model. This study used the binary logistic regression model to investigate overweight and obesity among rural secondary school students on the basis of their demographics profile, medical history, diet and lifestyle. The results indicate that overweight and obesity of students are influenced by obesity in family and the interaction between a student's ethnicity and routine meals intake. The odds of a student being overweight and obese are higher for a student having a family history of obesity and for a non-Malay student who frequently takes routine meals as compared to a Malay student.

  19. Statistical analysis and application of quasi experiments to antimicrobial resistance intervention studies.

    PubMed

    Shardell, Michelle; Harris, Anthony D; El-Kamary, Samer S; Furuno, Jon P; Miller, Ram R; Perencevich, Eli N

    2007-10-01

    Quasi-experimental study designs are frequently used to assess interventions that aim to limit the emergence of antimicrobial-resistant pathogens. However, previous studies using these designs have often used suboptimal statistical methods, which may result in researchers making spurious conclusions. Methods used to analyze quasi-experimental data include 2-group tests, regression analysis, and time-series analysis, and they all have specific assumptions, data requirements, strengths, and limitations. An example of a hospital-based intervention to reduce methicillin-resistant Staphylococcus aureus infection rates and reduce overall length of stay is used to explore these methods.

  20. Age, Body Mass Index, and Frequency of Sexual Activity are Independent Predictors of Testosterone Deficiency in Men With Erectile Dysfunction.

    PubMed

    Pagano, Matthew J; De Fazio, Adam; Levy, Alison; RoyChoudhury, Arindam; Stahl, Peter J

    2016-04-01

    To identify clinical predictors of testosterone deficiency (TD) in men with erectile dysfunction (ED), thereby identifying subgroups that are most likely to benefit from targeted testosterone screening. Retrospective review was conducted on 498 men evaluated for ED between January 2013 and July 2014. Testing for TD by early morning serum measurement was offered to all eligible men. Patients with history of prostate cancer or testosterone replacement were excluded. Univariable linear regression was conducted to analyze 19 clinical variables for associations with serum total testosterone (TT), calculated free testosterone (cFT), and TD (T <300 ng/dL or cFT <6.5 ng/dL). Variables significant on univariable analysis were included in multiple regression models. A total of 225 men met inclusion criteria. Lower TT levels were associated with greater body mass index (BMI), less frequent sexual activity, and absence of clinical depression on multiple regression analysis. TT decreased by 49.5 ng/dL for each 5-point increase in BMI. BMI and age were the only independent predictors of cFT levels on multivariable analysis. Overall, 62 subjects (27.6%) met criteria for TD. Older age, greater BMI, and less frequent sexual activity were the only independent predictors of TD on multiple regression. We observed a 2.2-fold increase in the odds of TD for every 5-point increase in BMI, and a 1.8-fold increase for every 10 year increase in age. Men with ED and elevated BMI, advanced age, or infrequent sexual activity appear to be at high risk of TD, and such patients represent excellent potential candidates for targeted testosterone screening. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Prediction of coagulation and flocculation processes using ANN models and fuzzy regression.

    PubMed

    Zangooei, Hossein; Delnavaz, Mohammad; Asadollahfardi, Gholamreza

    2016-09-01

    Coagulation and flocculation are two main processes used to integrate colloidal particles into larger particles and are two main stages of primary water treatment. Coagulation and flocculation processes are only needed when colloidal particles are a significant part of the total suspended solid fraction. Our objective was to predict turbidity of water after the coagulation and flocculation process while other parameters such as types and concentrations of coagulants, pH, and influent turbidity of raw water were known. We used a multilayer perceptron (MLP), a radial basis function (RBF) of artificial neural networks (ANNs) and various kinds of fuzzy regression analysis to predict turbidity after the coagulation and flocculation processes. The coagulant used in the pilot plant, which was located in water treatment plant, was poly aluminum chloride. We used existing data, including the type and concentrations of coagulant, pH and influent turbidity, of the raw water because these types of data were available from the pilot plant for simulation and data was collected by the Tehran water authority. The results indicated that ANNs had more ability in simulating the coagulation and flocculation process and predicting turbidity removal with different experimental data than did the fuzzy regression analysis, and may have the ability to reduce the number of jar tests, which are time-consuming and expensive. The MLP neural network proved to be the best network compared to the RBF neural network and fuzzy regression analysis in this study. The MLP neural network can predict the effluent turbidity of the coagulation and the flocculation process with a coefficient of determination (R 2 ) of 0.96 and root mean square error of 0.0106.

  2. Generating linear regression model to predict motor functions by use of laser range finder during TUG.

    PubMed

    Adachi, Daiki; Nishiguchi, Shu; Fukutani, Naoto; Hotta, Takayuki; Tashiro, Yuto; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Yorozu, Ayanori; Takahashi, Masaki; Aoyama, Tomoki

    2017-05-01

    The purpose of this study was to investigate which spatial and temporal parameters of the Timed Up and Go (TUG) test are associated with motor function in elderly individuals. This study included 99 community-dwelling women aged 72.9 ± 6.3 years. Step length, step width, single support time, variability of the aforementioned parameters, gait velocity, cadence, reaction time from starting signal to first step, and minimum distance between the foot and a marker placed to 3 in front of the chair were measured using our analysis system. The 10-m walk test, five times sit-to-stand (FTSTS) test, and one-leg standing (OLS) test were used to assess motor function. Stepwise multivariate linear regression analysis was used to determine which TUG test parameters were associated with each motor function test. Finally, we calculated a predictive model for each motor function test using each regression coefficient. In stepwise linear regression analysis, step length and cadence were significantly associated with the 10-m walk test, FTSTS and OLS test. Reaction time was associated with the FTSTS test, and step width was associated with the OLS test. Each predictive model showed a strong correlation with the 10-m walk test and OLS test (P < 0.01), which was not significant higher correlation than TUG test time. We showed which TUG test parameters were associated with each motor function test. Moreover, the TUG test time regarded as the lower extremity function and mobility has strong predictive ability in each motor function test. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  3. Predictors of Outcomes for African Americans in a Rehabilitation State Agency: Implications for National Policy and Practice

    ERIC Educational Resources Information Center

    Balcazar, Fabricio E.; Oberoi, Ashmeet K.; Suarez-Balcazar, Yolanda; Alvarado, Francisco

    2012-01-01

    A review of vocational rehabilitation (VR) data from a Midwestern state was conducted to identify predictors of rehabilitation outcomes for African American consumers. The database included 37,404 African Americans who were referred or self-referred over a period of five years. Logistic regression analysis indicated that except for age and…

  4. 40 CFR 80.48 - Augmentation of the complex emission model by vehicle testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... section, the analysis shall fit a regression model to a combined data set that includes vehicle testing... logarithm of emissions contained in this combined data set: (A) A term for each vehicle that shall reflect... nearest limit of the data core, using the unaugmented complex model. (B) “B” shall be set equal to the...

  5. 40 CFR 80.48 - Augmentation of the complex emission model by vehicle testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... section, the analysis shall fit a regression model to a combined data set that includes vehicle testing... logarithm of emissions contained in this combined data set: (A) A term for each vehicle that shall reflect... nearest limit of the data core, using the unaugmented complex model. (B) “B” shall be set equal to the...

  6. 40 CFR 80.48 - Augmentation of the complex emission model by vehicle testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... section, the analysis shall fit a regression model to a combined data set that includes vehicle testing... logarithm of emissions contained in this combined data set: (A) A term for each vehicle that shall reflect... nearest limit of the data core, using the unaugmented complex model. (B) “B” shall be set equal to the...

  7. 40 CFR 80.48 - Augmentation of the complex emission model by vehicle testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... section, the analysis shall fit a regression model to a combined data set that includes vehicle testing... logarithm of emissions contained in this combined data set: (A) A term for each vehicle that shall reflect... nearest limit of the data core, using the unaugmented complex model. (B) “B” shall be set equal to the...

  8. 40 CFR 80.48 - Augmentation of the complex emission model by vehicle testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... section, the analysis shall fit a regression model to a combined data set that includes vehicle testing... logarithm of emissions contained in this combined data set: (A) A term for each vehicle that shall reflect... nearest limit of the data core, using the unaugmented complex model. (B) “B” shall be set equal to the...

  9. Using the Rural-Urban Continuum to Explore Adolescent Alcohol, Tobacco, and Other Drug Use in Montana

    ERIC Educational Resources Information Center

    Hanson, Carl L.; Novilla, M. Lelinneth L. B.; Barnes, Michael D.; Eggett, Dennis; McKell, Chelsea; Reichman, Peter; Havens, Mike

    2009-01-01

    The purpose of the study was to compare 30-day prevalence of alcohol, tobacco, and other drug use among twelfth-grade students in Montana across a rural-urban continuum during 2000, 2002, and 2004. The methods include an analysis of the Montana Prevention Needs Assessment (N = 15,372) using multivariable logistic regression adjusting for risk…

  10. Strain-gage bridge calibration and flight loads measurements on a low-aspect-ratio thin wing

    NASA Technical Reports Server (NTRS)

    Peele, E. L.; Eckstrom, C. V.

    1975-01-01

    Strain-gage bridges were used to make in-flight measurements of bending moment, shear, and torque loads on a low-aspect-ratio, thin, swept wing having a full depth honeycomb sandwich type structure. Standard regression analysis techniques were employed in the calibration of the strain bridges. Comparison of the measured loads with theoretical loads are included.

  11. Information-Decay Pursuit of Dynamic Parameters in Student Models

    DTIC Science & Technology

    1994-04-01

    simple worked-through example). Commercially available computer programs for structuring and using Bayesian inference include ERGO ( Noetic Systems...Tukey, J.W. (1977). Data analysis and Regression: A second course in statistics. Reading, MA: Addison-Wesley. Noetic Systems, Inc. (1991). ERGO...Naval Academy Division of Educational Studies Annapolis MD 21402-5002 Elmory Univerity Dr Janice Gifford 210 Fiabburne Bldg University of

  12. Placenta previa: an outcome-based cohort study in a contemporary obstetric population.

    PubMed

    Lal, Ann K; Hibbard, Judith U

    2015-08-01

    The objective of the study is to characterize the maternal and neonatal morbidities of women with placenta previa. This retrospective group study used the Consortium on Safe Labor electronic database, including 12 clinical centers, and 19 hospitals. Patients with placenta previa noted at the time of delivery were included. Maternal and neonatal variables were compared to a control group of women undergoing cesarean delivery with no previa. Logistic regression and general linear regression were used for the analysis, with p < 0.05 significance. There were 19,069 patients in the study: 452 in the placenta previa group and 18,617 in the control group. Neonates born to mothers with placenta previa had lower gestational ages and birth weights. In univariate analysis only, these neonates were at increased risk of lower 5 min Apgar scores, neonatal intensive care unit admission, anemia, respiratory distress syndrome, mechanical ventilation, and intraventricular hemorrhage. There was no association of placenta previa with small for gestational age infants, congenital anomalies or death. As previously shown, women with placenta previa have significantly more maternal morbidities. Increased maternal morbidity was noted; however, only those neonatal morbidities associated with preterm delivery occurred in the placenta previa group.

  13. Estimating individual benefits of medical or behavioral treatments in severely ill patients.

    PubMed

    Diaz, Francisco J

    2017-01-01

    There is a need for statistical methods appropriate for the analysis of clinical trials from a personalized-medicine viewpoint as opposed to the common statistical practice that simply examines average treatment effects. This article proposes an approach to quantifying, reporting and analyzing individual benefits of medical or behavioral treatments to severely ill patients with chronic conditions, using data from clinical trials. The approach is a new development of a published framework for measuring the severity of a chronic disease and the benefits treatments provide to individuals, which utilizes regression models with random coefficients. Here, a patient is considered to be severely ill if the patient's basal severity is close to one. This allows the derivation of a very flexible family of probability distributions of individual benefits that depend on treatment duration and the covariates included in the regression model. Our approach may enrich the statistical analysis of clinical trials of severely ill patients because it allows investigating the probability distribution of individual benefits in the patient population and the variables that influence it, and we can also measure the benefits achieved in specific patients including new patients. We illustrate our approach using data from a clinical trial of the anti-depressant imipramine.

  14. Introduction, comparison, and validation of Meta-Essentials: A free and simple tool for meta-analysis.

    PubMed

    Suurmond, Robert; van Rhee, Henk; Hak, Tony

    2017-12-01

    We present a new tool for meta-analysis, Meta-Essentials, which is free of charge and easy to use. In this paper, we introduce the tool and compare its features to other tools for meta-analysis. We also provide detailed information on the validation of the tool. Although free of charge and simple, Meta-Essentials automatically calculates effect sizes from a wide range of statistics and can be used for a wide range of meta-analysis applications, including subgroup analysis, moderator analysis, and publication bias analyses. The confidence interval of the overall effect is automatically based on the Knapp-Hartung adjustment of the DerSimonian-Laird estimator. However, more advanced meta-analysis methods such as meta-analytical structural equation modelling and meta-regression with multiple covariates are not available. In summary, Meta-Essentials may prove a valuable resource for meta-analysts, including researchers, teachers, and students. © 2017 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd.

  15. Impact of anastomotic leak on recurrence and survival after colorectal cancer surgery: a BioGrid Australia analysis.

    PubMed

    Sammour, Tarik; Hayes, Ian P; Jones, Ian T; Steel, Malcolm C; Faragher, Ian; Gibbs, Peter

    2018-01-01

    There is conflicting evidence regarding the oncological impact of anastomotic leak following colorectal cancer surgery. This study aims to test the hypothesis that anastomotic leak is independently associated with local recurrence and overall and cancer-specific survival. Analysis of prospectively collected data from multiple centres in Victoria between 1988 and 2015 including all patients who underwent colon or rectal resection for cancer with anastomosis was presented. Overall and cancer-specific survival rates and rates of local recurrence were compared using Cox regression analysis. A total of 4892 patients were included, of which 2856 had completed 5-year follow-up. The overall anastomotic leak rate was 4.0%. Cox regression analysis accounting for differences in age, sex, body mass index, American Society of Anesthesiologists score and tumour stage demonstrated that anastomotic leak was associated with significantly worse 5-year overall survival (χ 2 = 6.459, P = 0.011) for colon cancer, but only if early deaths were included. There was no difference in 5-year colon cancer-specific survival (χ 2 = 0.582, P = 0.446) or local recurrence (χ 2 = 0.735, P = 0.391). For rectal cancer, there was no difference in 5-year overall survival (χ 2 = 0.266, P = 0.606), cancer-specific survival (χ 2 = 0.008, P = 0.928) or local recurrence (χ 2 = 2.192, P = 0.139). Anastomotic leak may reduce 5-year overall survival in colon cancer patients but does not appear to influence the 5-year overall survival in rectal cancer patients. There was no effect on local recurrence or cancer-specific survival. © 2016 Royal Australasian College of Surgeons.

  16. Visual Impairment Is Associated With Depressive Symptoms-Results From the Nationwide German DEGS1 Study.

    PubMed

    Schuster, Alexander K; Tesarz, Jonas; Rezapour, Jasmin; Beutel, Manfred E; Bertram, Bernd; Pfeiffer, Norbert

    2018-01-01

    Visual impairment (VI) is associated with a variety of comorbidities including physical and mental health in industrial countries. Our aim is to examine associations between self-reported impairment and depressive symptoms in the German population. The point prevalence of self-reported VI in Germany was computed using data from the German Health Interview and Examination Survey for adults from 2008 to 2011 ( N  = 7.783, 50.5% female, age range 18-79 years). VI was surveyed by two questions, one for seeing faces at a distance of 4 m and one for reading newspapers. Depressive symptoms were evaluated with the Patient Health Questionnaire-9 questionnaire and 2-week prevalence was computed with weighted data. Depressive symptoms were defined by a value of ≥10. Logistic regression analysis was performed to analyze an association between self-reported VI and depressive symptoms. Multivariable analysis including adjustment for age, gender, socioeconomic status, and chronic diseases were carried out with weighted data. The 2-week prevalence of depressive symptoms was 20.8% (95% CI: 16.6-25.7%) for some difficulties in distance vision and 14.4% (95% CI: 7.5-25.9%) for severe difficulties in distance vision, while 17.0% (95% CI: 13.3-21.4%), respectively, 16.7% (95% CI: 10.7-25.1%) for near vision. Analysis revealed that depressive symptoms were associated with self-reported VI for reading, respectively, with low VI for distance vision. Multivariable regression analysis including potential confounders confirmed these findings. Depressive symptoms are a frequent finding in subjects with difficulties in distance and near vision with a prevalence of up to 24%. Depressive comorbidity should therefore be evaluated in subjects reporting VI.

  17. Reduced COPD Exacerbation Risk Correlates With Improved FEV1: A Meta-Regression Analysis.

    PubMed

    Zider, Alexander D; Wang, Xiaoyan; Buhr, Russell G; Sirichana, Worawan; Barjaktarevic, Igor Z; Cooper, Christopher B

    2017-09-01

    The mechanism by which various classes of medication reduce COPD exacerbation risk remains unknown. We hypothesized a correlation between reduced exacerbation risk and improvement in airway patency as measured according to FEV 1 . By systematic review, COPD trials were identified that reported therapeutic changes in predose FEV 1 (dFEV 1 ) and occurrence of moderate to severe exacerbations. Using meta-regression analysis, a model was generated with dFEV 1 as the moderator variable and the absolute difference in exacerbation rate (RD), ratio of exacerbation rates (RRs), or hazard ratio (HR) as dependent variables. The analysis of RD and RR included 119,227 patients, and the HR analysis included 73,475 patients. For every 100-mL change in predose FEV 1 , the HR decreased by 21% (95% CI, 17-26; P < .001; R 2  = 0.85) and the absolute exacerbation rate decreased by 0.06 per patient per year (95% CI, 0.02-0.11; P = .009; R 2  = 0.05), which corresponded to an RR of 0.86 (95% CI, 0.81-0.91; P < .001; R 2  = 0.20). The relationship with exacerbation risk remained statistically significant across multiple subgroup analyses. A significant correlation between increased FEV 1 and lower COPD exacerbation risk suggests that airway patency is an important mechanism responsible for this effect. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  18. [Application of SAS macro to evaluated multiplicative and additive interaction in logistic and Cox regression in clinical practices].

    PubMed

    Nie, Z Q; Ou, Y Q; Zhuang, J; Qu, Y J; Mai, J Z; Chen, J M; Liu, X Q

    2016-05-01

    Conditional logistic regression analysis and unconditional logistic regression analysis are commonly used in case control study, but Cox proportional hazard model is often used in survival data analysis. Most literature only refer to main effect model, however, generalized linear model differs from general linear model, and the interaction was composed of multiplicative interaction and additive interaction. The former is only statistical significant, but the latter has biological significance. In this paper, macros was written by using SAS 9.4 and the contrast ratio, attributable proportion due to interaction and synergy index were calculated while calculating the items of logistic and Cox regression interactions, and the confidence intervals of Wald, delta and profile likelihood were used to evaluate additive interaction for the reference in big data analysis in clinical epidemiology and in analysis of genetic multiplicative and additive interactions.

  19. Magnitude and frequency of floods in small drainage basins in Idaho

    USGS Publications Warehouse

    Thomas, C.A.; Harenberg, W.A.; Anderson, J.M.

    1973-01-01

    A method is presented in this report for determining magnitude and frequency of floods on streams with drainage areas between 0.5 and 200 square miles. The method relates basin characteristics, including drainage area, percentage of forest cover, percentage of water area, latitude, and longitude, with peak flow characteristics. Regression equations for each of eight regions are presented for determination of QIQ/ the peak discharge, which, on the average, will be exceeded once in 10 years. Peak flows, Q25 and Q 50 , can then be estimated from Q25/Q10 and Q-50/Q-10 ratios developed for each region. Nomographs are included which solve the equations for basins between 1 and 50 square miles. The regional regression equations were developed using multiple regression techniques. Annual peaks for 303 sites were analyzed in the study. These included all records on unregulated streams with drainage areas less than about 500 square miles with 10 years or more of record or which could readily be extended to 10 years on the basis of nearby streams. The log-Pearson Type III method as modified and a digital computer were employed to estimate magnitude and frequency of floods for each of the 303 gaged sites. A large number of physical and climatic basin characteristics were determined for each of the gaged sites. The multiple regression method was then applied to determine the equations relating the floodflows and the most significant basin characteristics. For convenience of the users, several equations were simplified and some complex characteristics were deleted at the sacrifice of some increase in the standard error. Standard errors of estimate and many other statistical data were computed in the analysis process and are available in the Boise district office files. The analysis showed that QIQ was the best defined and most practical index flood for determination of the Q25 and 0,50 flood estimates.Regression equations are not developed because of poor definition for areas which total about 20,000 square miles, most of which are in southern Idaho. These areas are described in the report to prevent use of regression equations where they do not apply. They include urbanized areas, streams affected by regulation or diversion by works of man, unforested areas, streams with gaining or losing reaches, streams draining alluvial valleys and the Snake Plain, intense thunderstorm areas, and scattered areas where records indicate recurring floods which depart from the regional equations. Maximum flows of record and basin locations are summarized in tables and maps. The analysis indicates deficiencies in data exist. To improve knowledge regarding flood characteristics in poorly defined areas, the following data-collection programs are recommended. Gages should be operated on a few selected small streams for an extended period to define floods at long recurrence intervals. Crest-stage gages should be operated in representative basins in urbanized areas, newly developed irrigated areas and grasslands, and in unforested areas. Unusual floods should continue to be measured at miscellaneous sites on regulated streams and in intense thunderstorm-prone areas. The relationship between channel geometry and floodflow characteristics should be investigated as an alternative or supplement to operation of gaging stations. Documentation of historic flood data from newspapers and other sources would improve the basic flood-data base.

  20. Prediction by regression and intrarange data scatter in surface-process studies

    USGS Publications Warehouse

    Toy, T.J.; Osterkamp, W.R.; Renard, K.G.

    1993-01-01

    Modeling is a major component of contemporary earth science, and regression analysis occupies a central position in the parameterization, calibration, and validation of geomorphic and hydrologic models. Although this methodology can be used in many ways, we are primarily concerned with the prediction of values for one variable from another variable. Examination of the literature reveals considerable inconsistency in the presentation of the results of regression analysis and the occurrence of patterns in the scatter of data points about the regression line. Both circumstances confound utilization and evaluation of the models. Statisticians are well aware of various problems associated with the use of regression analysis and offer improved practices; often, however, their guidelines are not followed. After a review of the aforementioned circumstances and until standard criteria for model evaluation become established, we recommend, as a minimum, inclusion of scatter diagrams, the standard error of the estimate, and sample size in reporting the results of regression analyses for most surface-process studies. ?? 1993 Springer-Verlag.

Top