Sample records for regression analysis relating

  1. Using Dominance Analysis to Determine Predictor Importance in Logistic Regression

    ERIC Educational Resources Information Center

    Azen, Razia; Traxel, Nicole

    2009-01-01

    This article proposes an extension of dominance analysis that allows researchers to determine the relative importance of predictors in logistic regression models. Criteria for choosing logistic regression R[superscript 2] analogues were determined and measures were selected that can be used to perform dominance analysis in logistic regression. A…

  2. FIRE: an SPSS program for variable selection in multiple linear regression analysis via the relative importance of predictors.

    PubMed

    Lorenzo-Seva, Urbano; Ferrando, Pere J

    2011-03-01

    We provide an SPSS program that implements currently recommended techniques and recent developments for selecting variables in multiple linear regression analysis via the relative importance of predictors. The approach consists of: (1) optimally splitting the data for cross-validation, (2) selecting the final set of predictors to be retained in the equation regression, and (3) assessing the behavior of the chosen model using standard indices and procedures. The SPSS syntax, a short manual, and data files related to this article are available as supplemental materials from brm.psychonomic-journals.org/content/supplemental.

  3. Quantile Regression in the Study of Developmental Sciences

    ERIC Educational Resources Information Center

    Petscher, Yaacov; Logan, Jessica A. R.

    2014-01-01

    Linear regression analysis is one of the most common techniques applied in developmental research, but only allows for an estimate of the average relations between the predictor(s) and the outcome. This study describes quantile regression, which provides estimates of the relations between the predictor(s) and outcome, but across multiple points of…

  4. Do Our Means of Inquiry Match our Intentions?

    PubMed Central

    Petscher, Yaacov

    2016-01-01

    A key stage of the scientific method is the analysis of data, yet despite the variety of methods that are available to researchers they are most frequently distilled to a model that focuses on the average relation between variables. Although research questions are frequently conceived with broad inquiry in mind, most regression methods are limited in comprehensively evaluating how observed behaviors are related to each other. Quantile regression is a largely unknown yet well-suited analytic technique similar to traditional regression analysis, but allows for a more systematic approach to understanding complex associations among observed phenomena in the psychological sciences. Data from the National Education Longitudinal Study of 1988/2000 are used to illustrate how quantile regression overcomes the limitations of average associations in linear regression by showing that psychological well-being and sex each differentially relate to reading achievement depending on one’s level of reading achievement. PMID:27486410

  5. Applications of statistics to medical science, III. Correlation and regression.

    PubMed

    Watanabe, Hiroshi

    2012-01-01

    In this third part of a series surveying medical statistics, the concepts of correlation and regression are reviewed. In particular, methods of linear regression and logistic regression are discussed. Arguments related to survival analysis will be made in a subsequent paper.

  6. Correlative and multivariate analysis of increased radon concentration in underground laboratory.

    PubMed

    Maletić, Dimitrije M; Udovičić, Vladimir I; Banjanac, Radomir M; Joković, Dejan R; Dragić, Aleksandar L; Veselinović, Nikola B; Filipović, Jelena

    2014-11-01

    The results of analysis using correlative and multivariate methods, as developed for data analysis in high-energy physics and implemented in the Toolkit for Multivariate Analysis software package, of the relations of the variation of increased radon concentration with climate variables in shallow underground laboratory is presented. Multivariate regression analysis identified a number of multivariate methods which can give a good evaluation of increased radon concentrations based on climate variables. The use of the multivariate regression methods will enable the investigation of the relations of specific climate variable with increased radon concentrations by analysis of regression methods resulting in 'mapped' underlying functional behaviour of radon concentrations depending on a wide spectrum of climate variables. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Sheyenne River, North Dakota, 1980-2006

    USGS Publications Warehouse

    Ryberg, Karen R.

    2007-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the North Dakota State Water Commission, to estimate water-quality constituent concentrations at seven sites on the Sheyenne River, N. Dak. Regression analysis of water-quality data collected in 1980-2006 was used to estimate concentrations for hardness, dissolved solids, calcium, magnesium, sodium, and sulfate. The explanatory variables examined for the regression relations were continuously monitored streamflow, specific conductance, and water temperature. For the conditions observed in 1980-2006, streamflow was a significant explanatory variable for some constituents. Specific conductance was a significant explanatory variable for all of the constituents, and water temperature was not a statistically significant explanatory variable for any of the constituents in this study. The regression relations were evaluated using common measures of variability, including R2, the proportion of variability in the estimated constituent concentration explained by the explanatory variables and regression equation. R2 values ranged from 0.784 for calcium to 0.997 for dissolved solids. The regression relations also were evaluated by calculating the median relative percentage difference (RPD) between measured constituent concentration and the constituent concentration estimated by the regression equations. Median RPDs ranged from 1.7 for dissolved solids to 11.5 for sulfate. The regression relations also may be used to estimate daily constituent loads. The relations should be monitored for change over time, especially at sites 2 and 3 which have a short period of record. In addition, caution should be used when the Sheyenne River is affected by ice or when upstream sites are affected by isolated storm runoff. Almost all of the outliers and highly influential samples removed from the analysis were made during periods when the Sheyenne River might be affected by ice.

  8. The more total cognitive load is reduced by cues, the better retention and transfer of multimedia learning: A meta-analysis and two meta-regression analyses.

    PubMed

    Xie, Heping; Wang, Fuxing; Hao, Yanbin; Chen, Jiaxue; An, Jing; Wang, Yuxin; Liu, Huashan

    2017-01-01

    Cueing facilitates retention and transfer of multimedia learning. From the perspective of cognitive load theory (CLT), cueing has a positive effect on learning outcomes because of the reduction in total cognitive load and avoidance of cognitive overload. However, this has not been systematically evaluated. Moreover, what remains ambiguous is the direct relationship between the cue-related cognitive load and learning outcomes. A meta-analysis and two subsequent meta-regression analyses were conducted to explore these issues. Subjective total cognitive load (SCL) and scores on a retention test and transfer test were selected as dependent variables. Through a systematic literature search, 32 eligible articles encompassing 3,597 participants were included in the SCL-related meta-analysis. Among them, 25 articles containing 2,910 participants were included in the retention-related meta-analysis and the following retention-related meta-regression, while there were 29 articles containing 3,204 participants included in the transfer-related meta-analysis and the transfer-related meta-regression. The meta-analysis revealed a statistically significant cueing effect on subjective ratings of cognitive load (d = -0.11, 95% CI = [-0.19, -0.02], p < 0.05), retention performance (d = 0.27, 95% CI = [0.08, 0.46], p < 0.01), and transfer performance (d = 0.34, 95% CI = [0.12, 0.56], p < 0.01). The subsequent meta-regression analyses showed that dSCL for cueing significantly predicted dretention for cueing (β = -0.70, 95% CI = [-1.02, -0.38], p < 0.001), as well as dtransfer for cueing (β = -0.60, 95% CI = [-0.92, -0.28], p < 0.001). Thus in line with CLT, adding cues in multimedia materials can indeed reduce SCL and promote learning outcomes, and the more SCL is reduced by cues, the better retention and transfer of multimedia learning.

  9. The more total cognitive load is reduced by cues, the better retention and transfer of multimedia learning: A meta-analysis and two meta-regression analyses

    PubMed Central

    Hao, Yanbin; Chen, Jiaxue; An, Jing; Wang, Yuxin; Liu, Huashan

    2017-01-01

    Cueing facilitates retention and transfer of multimedia learning. From the perspective of cognitive load theory (CLT), cueing has a positive effect on learning outcomes because of the reduction in total cognitive load and avoidance of cognitive overload. However, this has not been systematically evaluated. Moreover, what remains ambiguous is the direct relationship between the cue-related cognitive load and learning outcomes. A meta-analysis and two subsequent meta-regression analyses were conducted to explore these issues. Subjective total cognitive load (SCL) and scores on a retention test and transfer test were selected as dependent variables. Through a systematic literature search, 32 eligible articles encompassing 3,597 participants were included in the SCL-related meta-analysis. Among them, 25 articles containing 2,910 participants were included in the retention-related meta-analysis and the following retention-related meta-regression, while there were 29 articles containing 3,204 participants included in the transfer-related meta-analysis and the transfer-related meta-regression. The meta-analysis revealed a statistically significant cueing effect on subjective ratings of cognitive load (d = −0.11, 95% CI = [−0.19, −0.02], p < 0.05), retention performance (d = 0.27, 95% CI = [0.08, 0.46], p < 0.01), and transfer performance (d = 0.34, 95% CI = [0.12, 0.56], p < 0.01). The subsequent meta-regression analyses showed that dSCL for cueing significantly predicted dretention for cueing (β = −0.70, 95% CI = [−1.02, −0.38], p < 0.001), as well as dtransfer for cueing (β = −0.60, 95% CI = [−0.92, −0.28], p < 0.001). Thus in line with CLT, adding cues in multimedia materials can indeed reduce SCL and promote learning outcomes, and the more SCL is reduced by cues, the better retention and transfer of multimedia learning. PMID:28854205

  10. Prediction of unwanted pregnancies using logistic regression, probit regression and discriminant analysis

    PubMed Central

    Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon

    2015-01-01

    Background: Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. Methods: In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. Results: The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Conclusion: Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended. PMID:26793655

  11. Prediction of unwanted pregnancies using logistic regression, probit regression and discriminant analysis.

    PubMed

    Ebrahimzadeh, Farzad; Hajizadeh, Ebrahim; Vahabi, Nasim; Almasian, Mohammad; Bakhteyar, Katayoon

    2015-01-01

    Unwanted pregnancy not intended by at least one of the parents has undesirable consequences for the family and the society. In the present study, three classification models were used and compared to predict unwanted pregnancies in an urban population. In this cross-sectional study, 887 pregnant mothers referring to health centers in Khorramabad, Iran, in 2012 were selected by the stratified and cluster sampling; relevant variables were measured and for prediction of unwanted pregnancy, logistic regression, discriminant analysis, and probit regression models and SPSS software version 21 were used. To compare these models, indicators such as sensitivity, specificity, the area under the ROC curve, and the percentage of correct predictions were used. The prevalence of unwanted pregnancies was 25.3%. The logistic and probit regression models indicated that parity and pregnancy spacing, contraceptive methods, household income and number of living male children were related to unwanted pregnancy. The performance of the models based on the area under the ROC curve was 0.735, 0.733, and 0.680 for logistic regression, probit regression, and linear discriminant analysis, respectively. Given the relatively high prevalence of unwanted pregnancies in Khorramabad, it seems necessary to revise family planning programs. Despite the similar accuracy of the models, if the researcher is interested in the interpretability of the results, the use of the logistic regression model is recommended.

  12. A Simulation Investigation of Principal Component Regression.

    ERIC Educational Resources Information Center

    Allen, David E.

    Regression analysis is one of the more common analytic tools used by researchers. However, multicollinearity between the predictor variables can cause problems in using the results of regression analyses. Problems associated with multicollinearity include entanglement of relative influences of variables due to reduced precision of estimation,…

  13. Determining the Statistical Significance of Relative Weights

    ERIC Educational Resources Information Center

    Tonidandel, Scott; LeBreton, James M.; Johnson, Jeff W.

    2009-01-01

    Relative weight analysis is a procedure for estimating the relative importance of correlated predictors in a regression equation. Because the sampling distribution of relative weights is unknown, researchers using relative weight analysis are unable to make judgments regarding the statistical significance of the relative weights. J. W. Johnson…

  14. Regression: The Apple Does Not Fall Far From the Tree.

    PubMed

    Vetter, Thomas R; Schober, Patrick

    2018-05-15

    Researchers and clinicians are frequently interested in either: (1) assessing whether there is a relationship or association between 2 or more variables and quantifying this association; or (2) determining whether 1 or more variables can predict another variable. The strength of such an association is mainly described by the correlation. However, regression analysis and regression models can be used not only to identify whether there is a significant relationship or association between variables but also to generate estimations of such a predictive relationship between variables. This basic statistical tutorial discusses the fundamental concepts and techniques related to the most common types of regression analysis and modeling, including simple linear regression, multiple regression, logistic regression, ordinal regression, and Poisson regression, as well as the common yet often underrecognized phenomenon of regression toward the mean. The various types of regression analysis are powerful statistical techniques, which when appropriately applied, can allow for the valid interpretation of complex, multifactorial data. Regression analysis and models can assess whether there is a relationship or association between 2 or more observed variables and estimate the strength of this association, as well as determine whether 1 or more variables can predict another variable. Regression is thus being applied more commonly in anesthesia, perioperative, critical care, and pain research. However, it is crucial to note that regression can identify plausible risk factors; it does not prove causation (a definitive cause and effect relationship). The results of a regression analysis instead identify independent (predictor) variable(s) associated with the dependent (outcome) variable. As with other statistical methods, applying regression requires that certain assumptions be met, which can be tested with specific diagnostics.

  15. Addressing the identification problem in age-period-cohort analysis: a tutorial on the use of partial least squares and principal components analysis.

    PubMed

    Tu, Yu-Kang; Krämer, Nicole; Lee, Wen-Chung

    2012-07-01

    In the analysis of trends in health outcomes, an ongoing issue is how to separate and estimate the effects of age, period, and cohort. As these 3 variables are perfectly collinear by definition, regression coefficients in a general linear model are not unique. In this tutorial, we review why identification is a problem, and how this problem may be tackled using partial least squares and principal components regression analyses. Both methods produce regression coefficients that fulfill the same collinearity constraint as the variables age, period, and cohort. We show that, because the constraint imposed by partial least squares and principal components regression is inherent in the mathematical relation among the 3 variables, this leads to more interpretable results. We use one dataset from a Taiwanese health-screening program to illustrate how to use partial least squares regression to analyze the trends in body heights with 3 continuous variables for age, period, and cohort. We then use another dataset of hepatocellular carcinoma mortality rates for Taiwanese men to illustrate how to use partial least squares regression to analyze tables with aggregated data. We use the second dataset to show the relation between the intrinsic estimator, a recently proposed method for the age-period-cohort analysis, and partial least squares regression. We also show that the inclusion of all indicator variables provides a more consistent approach. R code for our analyses is provided in the eAppendix.

  16. Optimizing the time-frame for the definition of bleeding-related death after acute variceal bleeding in cirrhosis.

    PubMed

    Merkel, C; Gatta, A; Bellumat, A; Bolognesi, M; Borsato, L; Caregaro, L; Cavallarin, G; Cielo, R; Cristina, P; Cucci, E; Donada, C; Donadon, V; Enzo, E; Martin, R; Mazzaro, C; Sacerdoti, D; Torboli, P

    1996-01-01

    To identify the best time-frame for defining bleeding-related death after variceal bleeding in patients with cirrhosis. Prospective long-term evaluation of a cohort of 155 patients admitted with variceal bleeding. Eight medical departments in seven hospitals in north-eastern Italy. Non-linear regression analysis of a hazard curve for death, and Cox's multiple regression analyses using different zero-time points. Cumulative hazard plots gave two slopes, the first corresponding to the risk of death from acute bleeding, the second a baseline risk of death. The first 30 days were outside the confidence limits of the regression curve for the baseline risk of death. Using Cox's regression analysis, the significant predictors of overall mortality risk were balanced between factors related to severity of bleeding and those related to severity of liver disease. If only deaths occurring after 30 days were considered, only predictors related to the severity of liver disease were found to be of importance. Thirty days after bleeding is considered to be a reasonable time-frame for the definition of bleeding-related death in patients with cirrhosis and variceal bleeding.

  17. Conjoint Analysis: A Study of the Effects of Using Person Variables.

    ERIC Educational Resources Information Center

    Fraas, John W.; Newman, Isadore

    Three statistical techniques--conjoint analysis, a multiple linear regression model, and a multiple linear regression model with a surrogate person variable--were used to estimate the relative importance of five university attributes for students in the process of selecting a college. The five attributes include: availability and variety of…

  18. "Mad or bad?": burden on caregivers of patients with personality disorders.

    PubMed

    Bauer, Rita; Döring, Antje; Schmidt, Tanja; Spießl, Hermann

    2012-12-01

    The burden on caregivers of patients with personality disorders is often greatly underestimated or completely disregarded. Possibilities for caregiver support have rarely been assessed. Thirty interviews were conducted with caregivers of such patients to assess illness-related burden. Responses were analyzed with a mixed method of qualitative and quantitative analysis in a sequential design. Patient and caregiver data, including sociodemographic and disease-related variables, were evaluated with regression analysis and regression trees. Caregiver statements (n = 404) were summarized into 44 global statements. The most frequent global statements were worries about the burden on other family members (70.0%), poor cooperation with clinical centers and other institutions (60.0%), financial burden (56.7%), worry about the patient's future (53.3%), and dissatisfaction with the patient's treatment and rehabilitation (53.3%). Linear regression and regression tree analysis identified predictors for more burdened caregivers. Caregivers of patients with personality disorders experience a variety of burdens, some disorder specific. Yet these caregivers often receive little attention or support.

  19. Quantile Regression in the Study of Developmental Sciences

    PubMed Central

    Petscher, Yaacov; Logan, Jessica A. R.

    2014-01-01

    Linear regression analysis is one of the most common techniques applied in developmental research, but only allows for an estimate of the average relations between the predictor(s) and the outcome. This study describes quantile regression, which provides estimates of the relations between the predictor(s) and outcome, but across multiple points of the outcome’s distribution. Using data from the High School and Beyond and U.S. Sustained Effects Study databases, quantile regression is demonstrated and contrasted with linear regression when considering models with: (a) one continuous predictor, (b) one dichotomous predictor, (c) a continuous and a dichotomous predictor, and (d) a longitudinal application. Results from each example exhibited the differential inferences which may be drawn using linear or quantile regression. PMID:24329596

  20. Use of principal-component, correlation, and stepwise multiple-regression analyses to investigate selected physical and hydraulic properties of carbonate-rock aquifers

    USGS Publications Warehouse

    Brown, C. Erwin

    1993-01-01

    Correlation analysis in conjunction with principal-component and multiple-regression analyses were applied to laboratory chemical and petrographic data to assess the usefulness of these techniques in evaluating selected physical and hydraulic properties of carbonate-rock aquifers in central Pennsylvania. Correlation and principal-component analyses were used to establish relations and associations among variables, to determine dimensions of property variation of samples, and to filter the variables containing similar information. Principal-component and correlation analyses showed that porosity is related to other measured variables and that permeability is most related to porosity and grain size. Four principal components are found to be significant in explaining the variance of data. Stepwise multiple-regression analysis was used to see how well the measured variables could predict porosity and (or) permeability for this suite of rocks. The variation in permeability and porosity is not totally predicted by the other variables, but the regression is significant at the 5% significance level. ?? 1993.

  1. Drusen regression is associated with local changes in fundus autofluorescence in intermediate age-related macular degeneration.

    PubMed

    Toy, Brian C; Krishnadev, Nupura; Indaram, Maanasa; Cunningham, Denise; Cukras, Catherine A; Chew, Emily Y; Wong, Wai T

    2013-09-01

    To investigate the association of spontaneous drusen regression in intermediate age-related macular degeneration (AMD) with changes on fundus photography and fundus autofluorescence (FAF) imaging. Prospective observational case series. Fundus images from 58 eyes (in 58 patients) with intermediate AMD and large drusen were assessed over 2 years for areas of drusen regression that exceeded the area of circle C1 (diameter 125 μm; Age-Related Eye Disease Study grading protocol). Manual segmentation and computer-based image analysis were used to detect and delineate areas of drusen regression. Delineated regions were graded as to their appearance on fundus photographs and FAF images, and changes in FAF signal were graded manually and quantitated using automated image analysis. Drusen regression was detected in approximately half of study eyes using manual (48%) and computer-assisted (50%) techniques. At year-2, the clinical appearance of areas of drusen regression on fundus photography was mostly unremarkable, with a majority of eyes (71%) demonstrating no detectable clinical abnormalities, and the remainder (29%) showing minor pigmentary changes. However, drusen regression areas were associated with local changes in FAF that were significantly more prominent than changes on fundus photography. A majority of eyes (64%-66%) demonstrated a predominant decrease in overall FAF signal, while 14%-21% of eyes demonstrated a predominant increase in overall FAF signal. FAF imaging demonstrated that drusen regression in intermediate AMD was often accompanied by changes in local autofluorescence signal. Drusen regression may be associated with concurrent structural and physiologic changes in the outer retina. Published by Elsevier Inc.

  2. Identification of Sexually Abused Female Adolescents at Risk for Suicidal Ideations: A Classification and Regression Tree Analysis

    ERIC Educational Resources Information Center

    Brabant, Marie-Eve; Hebert, Martine; Chagnon, Francois

    2013-01-01

    This study explored the clinical profiles of 77 female teenager survivors of sexual abuse and examined the association of abuse-related and personal variables with suicidal ideations. Analyses revealed that 64% of participants experienced suicidal ideations. Findings from classification and regression tree analysis indicated that depression,…

  3. A Quantitative Analysis of the Extrinsic and Intrinsic Turnover Factors of Relational Database Support Professionals

    ERIC Educational Resources Information Center

    Takusi, Gabriel Samuto

    2010-01-01

    This quantitative analysis explored the intrinsic and extrinsic turnover factors of relational database support specialists. Two hundred and nine relational database support specialists were surveyed for this research. The research was conducted based on Hackman and Oldham's (1980) Job Diagnostic Survey. Regression analysis and a univariate ANOVA…

  4. Fall-related self-efficacy, not balance and mobility performance, is related to accidental falls in chronic stroke survivors with low bone mineral density

    PubMed Central

    Pang, Marco Y.C.; Eng, Janice J.

    2011-01-01

    Introduction Chronic stroke survivors with low bone mineral density (BMD) are particularly prone to fragility fractures. The purpose of this study was to identify the determinants of balance, mobility and falls in this sub-group of stroke patients. Methods Thirty nine chronic stroke survivors with low hip BMD (T-score <-1.0) were studied. Each subject was evaluated for: balance, mobility, leg muscle strength, spasticity, and falls-related self-efficacy. Any falls in the past 12 months were also recorded. Multiple regression analysis was used to identify the determinants of balance and mobility performance whereas logistic regression was used to identify the determinants of falls. Results Multiple regression analysis revealed that after adjusting for basic demographics, falls-related self-efficacy remained independently associated with balance/mobility performance (R2=0.494, P<0.001). Logistic regression showed that falls-related self-efficacy, but not balance and mobility performance, was a significant determinant of falls (odds ratio: 0.18, P=0.04). Conclusions Falls-related self-efficacy, but not mobility and balance performance, was the most important determinant of accidental falls. This psychological factor should not be overlooked in the prevention of fragility fractures among chronic stroke survivors with low hip BMD. PMID:18097709

  5. An improved strategy for regression of biophysical variables and Landsat ETM+ data.

    Treesearch

    Warren B. Cohen; Thomas K. Maiersperger; Stith T. Gower; David P. Turner

    2003-01-01

    Empirical models are important tools for relating field-measured biophysical variables to remote sensing data. Regression analysis has been a popular empirical method of linking these two types of data to provide continuous estimates for variables such as biomass, percent woody canopy cover, and leaf area index (LAI). Traditional methods of regression are not...

  6. Quasi-likelihood generalized linear regression analysis of fatality risk data

    DOT National Transportation Integrated Search

    2009-01-01

    Transportation-related fatality risks is a function of many interacting human, vehicle, and environmental factors. Statisitcally valid analysis of such data is challenged both by the complexity of plausable structural models relating fatality rates t...

  7. Logistic regression analysis of conventional ultrasonography, strain elastosonography, and contrast-enhanced ultrasound characteristics for the differentiation of benign and malignant thyroid nodules

    PubMed Central

    Deng, Yingyuan; Wang, Tianfu; Chen, Siping; Liu, Weixiang

    2017-01-01

    The aim of the study is to screen the significant sonographic features by logistic regression analysis and fit a model to diagnose thyroid nodules. A total of 525 pathological thyroid nodules were retrospectively analyzed. All the nodules underwent conventional ultrasonography (US), strain elastosonography (SE), and contrast -enhanced ultrasound (CEUS). Those nodules’ 12 suspicious sonographic features were used to assess thyroid nodules. The significant features of diagnosing thyroid nodules were picked out by logistic regression analysis. All variables that were statistically related to diagnosis of thyroid nodules, at a level of p < 0.05 were embodied in a logistic regression analysis model. The significant features in the logistic regression model of diagnosing thyroid nodules were calcification, suspected cervical lymph node metastasis, hypoenhancement pattern, margin, shape, vascularity, posterior acoustic, echogenicity, and elastography score. According to the results of logistic regression analysis, the formula that could predict whether or not thyroid nodules are malignant was established. The area under the receiver operating curve (ROC) was 0.930 and the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 83.77%, 89.56%, 87.05%, 86.04%, and 87.79% respectively. PMID:29228030

  8. Logistic regression analysis of conventional ultrasonography, strain elastosonography, and contrast-enhanced ultrasound characteristics for the differentiation of benign and malignant thyroid nodules.

    PubMed

    Pang, Tiantian; Huang, Leidan; Deng, Yingyuan; Wang, Tianfu; Chen, Siping; Gong, Xuehao; Liu, Weixiang

    2017-01-01

    The aim of the study is to screen the significant sonographic features by logistic regression analysis and fit a model to diagnose thyroid nodules. A total of 525 pathological thyroid nodules were retrospectively analyzed. All the nodules underwent conventional ultrasonography (US), strain elastosonography (SE), and contrast -enhanced ultrasound (CEUS). Those nodules' 12 suspicious sonographic features were used to assess thyroid nodules. The significant features of diagnosing thyroid nodules were picked out by logistic regression analysis. All variables that were statistically related to diagnosis of thyroid nodules, at a level of p < 0.05 were embodied in a logistic regression analysis model. The significant features in the logistic regression model of diagnosing thyroid nodules were calcification, suspected cervical lymph node metastasis, hypoenhancement pattern, margin, shape, vascularity, posterior acoustic, echogenicity, and elastography score. According to the results of logistic regression analysis, the formula that could predict whether or not thyroid nodules are malignant was established. The area under the receiver operating curve (ROC) was 0.930 and the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 83.77%, 89.56%, 87.05%, 86.04%, and 87.79% respectively.

  9. The process and utility of classification and regression tree methodology in nursing research

    PubMed Central

    Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda

    2014-01-01

    Aim This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Background Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Design Discussion paper. Data sources English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984–2013. Discussion Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Implications for Nursing Research Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Conclusion Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. PMID:24237048

  10. The process and utility of classification and regression tree methodology in nursing research.

    PubMed

    Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda

    2014-06-01

    This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Discussion paper. English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984-2013. Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. © 2013 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  11. Serum S100B Is Related to Illness Duration and Clinical Symptoms in Schizophrenia—A Meta-Regression Analysis

    PubMed Central

    Schümberg, Katharina; Polyakova, Maryna; Steiner, Johann; Schroeter, Matthias L.

    2016-01-01

    S100B has been linked to glial pathology in several psychiatric disorders. Previous studies found higher S100B serum levels in patients with schizophrenia compared to healthy controls, and a number of covariates influencing the size of this effect have been proposed in the literature. Here, we conducted a meta-analysis and meta-regression analysis on alterations of serum S100B in schizophrenia in comparison with healthy control subjects. The meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to guarantee a high quality and reproducibility. With strict inclusion criteria 19 original studies could be included in the quantitative meta-analysis, comprising a total of 766 patients and 607 healthy control subjects. The meta-analysis confirmed higher values of the glial serum marker S100B in schizophrenia if compared with control subjects. Meta-regression analyses revealed significant effects of illness duration and clinical symptomatology, in particular the total score of the Positive and Negative Syndrome Scale (PANSS), on serum S100B levels in schizophrenia. In sum, results confirm glial pathology in schizophrenia that is modulated by illness duration and related to clinical symptomatology. Further studies are needed to investigate mechanisms and mediating factors related to these findings. PMID:26941608

  12. Enhancing Hungarian Special Forces through Transformation -- The Shift to Special Operations Forces

    DTIC Science & Technology

    2010-06-01

    heteroskedasticity and the Ramsey RESET test . For the detailed regression results see Appendix B. Damodar N. Gujarati, Basic Econometrics , Third...96 Table 13. Ramsey RESET test using powers of the fitted values of DV1 (relative attitude toward HUNSF... Ramsey RESET test using powers of the fitted values of DV1 (relative attitude toward HUNSF) B. REGRESSION ANALYSIS

  13. Breaking the solid ground of common sense: undoing "structure" with Michael Balint.

    PubMed

    Bonomi, Carlo

    2003-09-01

    Balint's great merit was to question what, in the classical perspective, was assumed as a prerequisite for analysis and thus located beyond analysis: the maturity of the ego. A fundamental premise of his work was Ferenczi's distrust for the structural model, which praised the maturity of the ego and its verbal, social, and adaptive abilities. Ferenczi's view of ego maturation as a trauma derivative was strikingly different from the theories of all other psychoanalytic schools and seems to be responsible for Balint's understanding of regression as a sort of inverted process that enables the undoing of the sheltering structures of the mature mind. Balint's understanding of the relation between mature ego and regression diverged not only from the ego psychologists, who emphasized the idea of therapeutic alliance, but also from most of the authors who embraced the object-relational view, like Klein (who considered regression a manifestation of the patient's craving for oral gratification), Fairbairn (who gave up the notion of regression), and Guntrip (who viewed regression as a schizoid phenomenon related to the ego weakness). According to Balint, the clinical appearance of a regression would "depend also on the way the regression is recognized, is accepted, and is responded to by the analyst." In this respect, his position was close to Winnicott's reformulation of the therapeutic action. Yet, the work of Balint reflects the persuasion that the progressive fluidification of the solid structure could be enabled only by the analyst's capacity for becoming himself or herself [unsolid].

  14. Adherence to preferable behavior for lipid control by high-risk dyslipidemic Japanese patients under pravastatin treatment: the APPROACH-J study.

    PubMed

    Kitagawa, Yasuhisa; Teramoto, Tamio; Daida, Hiroyuki

    2012-01-01

    We evaluated the impact of adherence to preferable behavior on serum lipid control assessed by a self-reported questionnaire in high-risk patients taking pravastatin for primary prevention of coronary artery disease. High-risk patients taking pravastatin were followed for 2 years. Questionnaire surveys comprising 21 questions, including 18 questions concerning awareness of health, and current status of diet, exercise, and drug therapy, were conducted at baseline and after 1 year. Potential domains were established by factor analysis from the results of questionnaires, and adherence scores were calculated in each domain. The relationship between adherence scores and lipid values during the 1-year treatment period was analyzed by each domain using multiple regression analysis. A total of 5,792 patients taking pravastatin were included in the analysis. Multiple regression analysis showed a significant correlation in terms of "Intake of high fat/cholesterol/sugar foods" (regression coefficient -0.58, p=0.0105) and "Adherence to instructions for drug therapy" (regression coefficient -6.61, p<0.0001). Low-density lipoprotein cholesterol (LDL-C) values were significantly lower in patients who had an increase in the adherence score in the "Awareness of health" domain compared with those with a decreased score. There was a significant correlation between high-density lipoprotein (HDL-C) values and "Awareness of health" (regression coefficient 0.26; p= 0.0037), "Preferable dietary behaviors" (regression coefficient 0.75; p<0.0001), and "Exercise" (regression coefficient 0.73; p= 0.0002). Similar relations were seen with triglycerides. In patients who have a high awareness of their health, a positive attitude toward lipid-lowering treatment including diet, exercise, and high adherence to drug therapy, is related with favorable overall lipid control even in patients under treatment with pravastatin.

  15. Two-dimensional advective transport in ground-water flow parameter estimation

    USGS Publications Warehouse

    Anderman, E.R.; Hill, M.C.; Poeter, E.P.

    1996-01-01

    Nonlinear regression is useful in ground-water flow parameter estimation, but problems of parameter insensitivity and correlation often exist given commonly available hydraulic-head and head-dependent flow (for example, stream and lake gain or loss) observations. To address this problem, advective-transport observations are added to the ground-water flow, parameter-estimation model MODFLOWP using particle-tracking methods. The resulting model is used to investigate the importance of advective-transport observations relative to head-dependent flow observations when either or both are used in conjunction with hydraulic-head observations in a simulation of the sewage-discharge plume at Otis Air Force Base, Cape Cod, Massachusetts, USA. The analysis procedure for evaluating the probable effect of new observations on the regression results consists of two steps: (1) parameter sensitivities and correlations calculated at initial parameter values are used to assess the model parameterization and expected relative contributions of different types of observations to the regression; and (2) optimal parameter values are estimated by nonlinear regression and evaluated. In the Cape Cod parameter-estimation model, advective-transport observations did not significantly increase the overall parameter sensitivity; however: (1) inclusion of advective-transport observations decreased parameter correlation enough for more unique parameter values to be estimated by the regression; (2) realistic uncertainties in advective-transport observations had a small effect on parameter estimates relative to the precision with which the parameters were estimated; and (3) the regression results and sensitivity analysis provided insight into the dynamics of the ground-water flow system, especially the importance of accurate boundary conditions. In this work, advective-transport observations improved the calibration of the model and the estimation of ground-water flow parameters, and use of regression and related techniques produced significant insight into the physical system.

  16. Satellite remote sensing of fine particulate air pollutants over Indian mega cities

    NASA Astrophysics Data System (ADS)

    Sreekanth, V.; Mahesh, B.; Niranjan, K.

    2017-11-01

    In the backdrop of the need for high spatio-temporal resolution data on PM2.5 mass concentrations for health and epidemiological studies over India, empirical relations between Aerosol Optical Depth (AOD) and PM2.5 mass concentrations are established over five Indian mega cities. These relations are sought to predict the surface PM2.5 mass concentrations from high resolution columnar AOD datasets. Current study utilizes multi-city public domain PM2.5 data (from US Consulate and Embassy's air monitoring program) and MODIS AOD, spanning for almost four years. PM2.5 is found to be positively correlated with AOD. Station-wise linear regression analysis has shown spatially varying regression coefficients. Similar analysis has been repeated by eliminating data from the elevated aerosol prone seasons, which has improved the correlation coefficient. The impact of the day to day variability in the local meteorological conditions on the AOD-PM2.5 relationship has been explored by performing a multiple regression analysis. A cross-validation approach for the multiple regression analysis considering three years of data as training dataset and one-year data as validation dataset yielded an R value of ∼0.63. The study was concluded by discussing the factors which can improve the relationship.

  17. Estimation of diffusion coefficients from voltammetric signals by support vector and gaussian process regression

    PubMed Central

    2014-01-01

    Background Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of electroanalytical experimental data to estimate diffusion coefficients. Results For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of typical voltammetric peak features decreased the performance of both regression algorithms compared to a reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for three organometallic complexes. Conclusions Estimated diffusion coefficients closely matched the values determined by the parameter fitting method, but reduced the required computational time considerably for one of the reaction mechanisms. The automated processing of voltammograms according to the regression algorithms yields better results than the conventional analysis of peak-related data. PMID:24987463

  18. Multilayer Perceptron for Robust Nonlinear Interval Regression Analysis Using Genetic Algorithms

    PubMed Central

    2014-01-01

    On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets. PMID:25110755

  19. Multilayer perceptron for robust nonlinear interval regression analysis using genetic algorithms.

    PubMed

    Hu, Yi-Chung

    2014-01-01

    On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets.

  20. [A case-control study on the risk factors of work-related acute pesticide poisoning among farmers from Jiangsu province].

    PubMed

    Tu, Zhi-bin; Cui, Meng-jing; Yao, Hong-yan; Hu, Guo-qing; Xiang, Hui-yun; Stallones, Lorann; Zhang, Xu-jun

    2012-04-01

    To explore the risk factors on cases regarding work-related acute pesticide poisoning among farmers of Jiangsu province. A population-based, 1:2 matched case-control study was carried out, with 121 patients as case-group paired by 242 persons with same gender, district and age less then difference of 3 years, as controls. Cases were the ones who had suffered from work-related acute pesticide poisoning. A unified questionnaire was used. Data base was established by EpiData 3.1, and SPSS 16.0 was used for both data single factor and multi-conditional logistics regression analysis. Results from the single factor logistic regression analysis showed that the related risk factors were: lack of safety guidance, lack of readable labels before praying pesticides, no regression during application, using hand to wipe sweat, using leaking knapsack, body contaminated during application and continuing to work when feeling ill after the contact of pesticides. Results from multi-conditional logistic regression analysis indicated that the lack of safety guidance (OR=2.25, 95%CI: 1.35-3.74), no readable labels before praying pesticides (OR=1.95, 95%CI: 1.19-3.18), wiping the sweat by hand during application (OR=1.97, 95%CI: 1.20-3.24) and using leaking knapsack during application (OR=1.82, 95%CI:1.10-3.01) were risk factors for the occurrence of work-related acute pesticide poisoning. The lack of safety guidance, no readable labels before praying pesticides, wiping the sweat by hand or using leaking knapsack during application were correlated to the occurrence of work-related acute pesticide poisoning.

  1. Enhance-Synergism and Suppression Effects in Multiple Regression

    ERIC Educational Resources Information Center

    Lipovetsky, Stan; Conklin, W. Michael

    2004-01-01

    Relations between pairwise correlations and the coefficient of multiple determination in regression analysis are considered. The conditions for the occurrence of enhance-synergism and suppression effects when multiple determination becomes bigger than the total of squared correlations of the dependent variable with the regressors are discussed. It…

  2. Statistical methods and regression analysis of stratospheric ozone and meteorological variables in Isfahan

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, S.; Hosseinibalam, F.; Omidvari, M.

    2008-04-01

    Data of seven meteorological variables (relative humidity, wet temperature, dry temperature, maximum temperature, minimum temperature, ground temperature and sun radiation time) and ozone values have been used for statistical analysis. Meteorological variables and ozone values were analyzed using both multiple linear regression and principal component methods. Data for the period 1999-2004 are analyzed jointly using both methods. For all periods, temperature dependent variables were highly correlated, but were all negatively correlated with relative humidity. Multiple regression analysis was used to fit the meteorological variables using the meteorological variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to obtain subsets of the predictor variables to be included in the linear regression model of the meteorological variables. In 1999, 2001 and 2002 one of the meteorological variables was weakly influenced predominantly by the ozone concentrations. However, the model did not predict that the meteorological variables for the year 2000 were not influenced predominantly by the ozone concentrations that point to variation in sun radiation. This could be due to other factors that were not explicitly considered in this study.

  3. Prescription-drug-related risk in driving: comparing conventional and lasso shrinkage logistic regressions.

    PubMed

    Avalos, Marta; Adroher, Nuria Duran; Lagarde, Emmanuel; Thiessard, Frantz; Grandvalet, Yves; Contrand, Benjamin; Orriols, Ludivine

    2012-09-01

    Large data sets with many variables provide particular challenges when constructing analytic models. Lasso-related methods provide a useful tool, although one that remains unfamiliar to most epidemiologists. We illustrate the application of lasso methods in an analysis of the impact of prescribed drugs on the risk of a road traffic crash, using a large French nationwide database (PLoS Med 2010;7:e1000366). In the original case-control study, the authors analyzed each exposure separately. We use the lasso method, which can simultaneously perform estimation and variable selection in a single model. We compare point estimates and confidence intervals using (1) a separate logistic regression model for each drug with a Bonferroni correction and (2) lasso shrinkage logistic regression analysis. Shrinkage regression had little effect on (bias corrected) point estimates, but led to less conservative results, noticeably for drugs with moderate levels of exposure. Carbamates, carboxamide derivative and fatty acid derivative antiepileptics, drugs used in opioid dependence, and mineral supplements of potassium showed stronger associations. Lasso is a relevant method in the analysis of databases with large number of exposures and can be recommended as an alternative to conventional strategies.

  4. Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Monteiro, Sildomar Takahashi; Minekawa, Yohei; Kosugi, Yukio; Akazawa, Tsuneya; Oda, Kunio

    Hyperspectral image data provides a powerful tool for non-destructive crop analysis. This paper investigates a hyperspectral image data-processing method to predict the sweetness and amino acid content of soybean crops. Regression models based on artificial neural networks were developed in order to calculate the level of sucrose, glucose, fructose, and nitrogen concentrations, which can be related to the sweetness and amino acid content of vegetables. A performance analysis was conducted comparing regression models obtained using different preprocessing methods, namely, raw reflectance, second derivative, and principal components analysis. This method is demonstrated using high-resolution hyperspectral data of wavelengths ranging from the visible to the near infrared acquired from an experimental field of green vegetable soybeans. The best predictions were achieved using a nonlinear regression model of the second derivative transformed dataset. Glucose could be predicted with greater accuracy, followed by sucrose, fructose and nitrogen. The proposed method provides the possibility to provide relatively accurate maps predicting the chemical content of soybean crop fields.

  5. Spatial structure, sampling design and scale in remotely-sensed imagery of a California savanna woodland

    NASA Technical Reports Server (NTRS)

    Mcgwire, K.; Friedl, M.; Estes, J. E.

    1993-01-01

    This article describes research related to sampling techniques for establishing linear relations between land surface parameters and remotely-sensed data. Predictive relations are estimated between percentage tree cover in a savanna environment and a normalized difference vegetation index (NDVI) derived from the Thematic Mapper sensor. Spatial autocorrelation in original measurements and regression residuals is examined using semi-variogram analysis at several spatial resolutions. Sampling schemes are then tested to examine the effects of autocorrelation on predictive linear models in cases of small sample sizes. Regression models between image and ground data are affected by the spatial resolution of analysis. Reducing the influence of spatial autocorrelation by enforcing minimum distances between samples may also improve empirical models which relate ground parameters to satellite data.

  6. AN IMPROVED STRATEGY FOR REGRESSION OF BIOPHYSICAL VARIABLES AND LANDSAT ETM+ DATA. (R828309)

    EPA Science Inventory

    Empirical models are important tools for relating field-measured biophysical variables to remote sensing data. Regression analysis has been a popular empirical method of linking these two types of data to provide continuous estimates for variables such as biomass, percent wood...

  7. Spatial analysis of alcohol-related motor vehicle crash injuries in southeastern Michigan.

    PubMed

    Meliker, Jaymie R; Maio, Ronald F; Zimmerman, Marc A; Kim, Hyungjin Myra; Smith, Sarah C; Wilson, Mark L

    2004-11-01

    Temporal, behavioral and social risk factors that affect injuries resulting from alcohol-related motor vehicle crashes have been characterized in previous research. Much less is known about spatial patterns and environmental associations of alcohol-related motor vehicle crashes. The aim of this study was to evaluate geographic patterns of alcohol-related motor vehicle crashes and to determine if locations of alcohol outlets are associated with those crashes. In addition, we sought to demonstrate the value of integrating spatial and traditional statistical techniques in the analysis of this preventable public health risk. The study design was a cross-sectional analysis of individual-level blood alcohol content, traffic report information, census block group data, and alcohol distribution outlets. Besag and Newell's spatial analysis and traditional logistic regression both indicated that areas of low population density had more alcohol-related motor vehicle crashes than expected (P < 0.05). There was no significant association between alcohol outlets and alcohol-related motor vehicle crashes using distance analyses, logistic regression, and Chi-square. Differences in environmental or behavioral factors characteristic of areas of low population density may be responsible for the higher proportion of alcohol-related crashes occurring in these areas.

  8. Regression Analysis and Calibration Recommendations for the Characterization of Balance Temperature Effects

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Volden, T.

    2018-01-01

    Analysis and use of temperature-dependent wind tunnel strain-gage balance calibration data are discussed in the paper. First, three different methods are presented and compared that may be used to process temperature-dependent strain-gage balance data. The first method uses an extended set of independent variables in order to process the data and predict balance loads. The second method applies an extended load iteration equation during the analysis of balance calibration data. The third method uses temperature-dependent sensitivities for the data analysis. Physical interpretations of the most important temperature-dependent regression model terms are provided that relate temperature compensation imperfections and the temperature-dependent nature of the gage factor to sets of regression model terms. Finally, balance calibration recommendations are listed so that temperature-dependent calibration data can be obtained and successfully processed using the reviewed analysis methods.

  9. Investigating the effects of climate variations on bacillary dysentery incidence in northeast China using ridge regression and hierarchical cluster analysis

    PubMed Central

    Huang, Desheng; Guan, Peng; Guo, Junqiao; Wang, Ping; Zhou, Baosen

    2008-01-01

    Background The effects of climate variations on bacillary dysentery incidence have gained more recent concern. However, the multi-collinearity among meteorological factors affects the accuracy of correlation with bacillary dysentery incidence. Methods As a remedy, a modified method to combine ridge regression and hierarchical cluster analysis was proposed for investigating the effects of climate variations on bacillary dysentery incidence in northeast China. Results All weather indicators, temperatures, precipitation, evaporation and relative humidity have shown positive correlation with the monthly incidence of bacillary dysentery, while air pressure had a negative correlation with the incidence. Ridge regression and hierarchical cluster analysis showed that during 1987–1996, relative humidity, temperatures and air pressure affected the transmission of the bacillary dysentery. During this period, all meteorological factors were divided into three categories. Relative humidity and precipitation belonged to one class, temperature indexes and evaporation belonged to another class, and air pressure was the third class. Conclusion Meteorological factors have affected the transmission of bacillary dysentery in northeast China. Bacillary dysentery prevention and control would benefit from by giving more consideration to local climate variations. PMID:18816415

  10. Serum dehydroepiandrosterone sulphate, psychosocial factors and musculoskeletal pain in workers.

    PubMed

    Marinelli, A; Prodi, A; Pesel, G; Ronchese, F; Bovenzi, M; Negro, C; Larese Filon, F

    2017-12-30

    The serum level of dehydroepiandrosterone sulphate (DHEA-S) has been suggested as a biological marker of stress. To assess the association between serum DHEA-S, psychosocial factors and musculoskeletal (MS) pain in university workers. The study population included voluntary workers at the scientific departments of the University of Trieste (Italy) who underwent periodical health surveillance from January 2011 to June 2012. DHEA-S level was analysed in serum. The assessment tools included the General Health Questionnaire (GHQ) and a modified Nordic musculoskeletal symptoms questionnaire. The relation between DHEA-S, individual characteristics, pain perception and psychological factors was assessed by means of multivariable linear regression analysis. There were 189 study participants. The study population was characterized by high reward and low effort. Pain perception in the neck, shoulder, upper limbs, upper back and lower back was reported by 42, 32, 19, 29 and 43% of people, respectively. In multivariable regression analysis, gender, age and pain perception in the shoulder and upper limbs were significantly related to serum DHEA-S. Effort and overcommitment were related to shoulder and neck pain but not to DHEA-S. The GHQ score was associated with pain perception in different body sites and inversely to DHEA-S but significance was lost in multivariable regression analysis. DHEA-S was associated with age, gender and perception of MS pain, while effort-reward imbalance dimensions and GHQ score failed to reach the statistical significance in multivariable regression analysis. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  11. Self-reported work ability and work performance in workers with chronic nonspecific musculoskeletal pain.

    PubMed

    de Vries, Haitze J; Reneman, Michiel F; Groothoff, Johan W; Geertzen, Jan H B; Brouwer, Sandra

    2013-03-01

    To assess self-reported work ability and work performance of workers who stay at work despite chronic nonspecific musculoskeletal pain (CMP), and to explore which variables were associated with these outcomes. In a cross-sectional study we assessed work ability (Work Ability Index, single item scale 0-10) and work performance (Health and Work Performance Questionnaire, scale 0-10) among 119 workers who continued work while having CMP. Scores of work ability and work performance were categorized into excellent (10), good (9), moderate (8) and poor (0-7). Hierarchical multiple regression and logistic regression analysis was used to analyze the relation of socio-demographic, pain-related, personal- and work-related variables with work ability and work performance. Mean work ability and work performance were 7.1 and 7.7 (poor to moderate). Hierarchical multiple regression analysis revealed that higher work ability scores were associated with lower age, better general health perception, and higher pain self-efficacy beliefs (R(2) = 42 %). Higher work performance was associated with lower age, higher pain self-efficacy beliefs, lower physical work demand category and part-time work (R(2) = 37 %). Logistic regression analysis revealed that work ability ≥8 was significantly explained by age (OR = 0.90), general health perception (OR = 1.04) and pain self-efficacy (OR = 1.15). Work performance ≥8 was explained by pain self-efficacy (OR = 1.11). Many workers with CMP who stay at work report poor to moderate work ability and work performance. Our findings suggest that a subgroup of workers with CMP can stay at work with high work ability and performance, especially when they have high beliefs of pain self-efficacy. Our results further show that not the pain itself, but personal and work-related factors relate to work ability and work performance.

  12. Development and Validation of the Work-Related Well-Being Index: Analysis of the Federal Employee Viewpoint Survey.

    PubMed

    Eaton, Jennifer L; Mohr, David C; Hodgson, Michael J; McPhaul, Kathleen M

    2018-02-01

    To describe development and validation of the work-related well-being (WRWB) index. Principal components analysis was performed using Federal Employee Viewpoint Survey (FEVS) data (N = 392,752) to extract variables representing worker well-being constructs. Confirmatory factor analysis was performed to verify factor structure. To validate the WRWB index, we used multiple regression analysis to examine relationships with burnout associated outcomes. Principal Components Analysis identified three positive psychology constructs: "Work Positivity", "Co-worker Relationships", and "Work Mastery". An 11 item index explaining 63.5% of variance was achieved. The structural equation model provided a very good fit to the data. Higher WRWB scores were positively associated with all three employee experience measures examined in regression models. The new WRWB index shows promise as a valid and widely accessible instrument to assess worker well-being.

  13. Analysis of the Influence of Quantile Regression Model on Mainland Tourists' Service Satisfaction Performance

    PubMed Central

    Wang, Wen-Cheng; Cho, Wen-Chien; Chen, Yin-Jen

    2014-01-01

    It is estimated that mainland Chinese tourists travelling to Taiwan can bring annual revenues of 400 billion NTD to the Taiwan economy. Thus, how the Taiwanese Government formulates relevant measures to satisfy both sides is the focus of most concern. Taiwan must improve the facilities and service quality of its tourism industry so as to attract more mainland tourists. This paper conducted a questionnaire survey of mainland tourists and used grey relational analysis in grey mathematics to analyze the satisfaction performance of all satisfaction question items. The first eight satisfaction items were used as independent variables, and the overall satisfaction performance was used as a dependent variable for quantile regression model analysis to discuss the relationship between the dependent variable under different quantiles and independent variables. Finally, this study further discussed the predictive accuracy of the least mean regression model and each quantile regression model, as a reference for research personnel. The analysis results showed that other variables could also affect the overall satisfaction performance of mainland tourists, in addition to occupation and age. The overall predictive accuracy of quantile regression model Q0.25 was higher than that of the other three models. PMID:24574916

  14. Analysis of the influence of quantile regression model on mainland tourists' service satisfaction performance.

    PubMed

    Wang, Wen-Cheng; Cho, Wen-Chien; Chen, Yin-Jen

    2014-01-01

    It is estimated that mainland Chinese tourists travelling to Taiwan can bring annual revenues of 400 billion NTD to the Taiwan economy. Thus, how the Taiwanese Government formulates relevant measures to satisfy both sides is the focus of most concern. Taiwan must improve the facilities and service quality of its tourism industry so as to attract more mainland tourists. This paper conducted a questionnaire survey of mainland tourists and used grey relational analysis in grey mathematics to analyze the satisfaction performance of all satisfaction question items. The first eight satisfaction items were used as independent variables, and the overall satisfaction performance was used as a dependent variable for quantile regression model analysis to discuss the relationship between the dependent variable under different quantiles and independent variables. Finally, this study further discussed the predictive accuracy of the least mean regression model and each quantile regression model, as a reference for research personnel. The analysis results showed that other variables could also affect the overall satisfaction performance of mainland tourists, in addition to occupation and age. The overall predictive accuracy of quantile regression model Q0.25 was higher than that of the other three models.

  15. A Latent Class Regression Analysis of Men's Conformity to Masculine Norms and Psychological Distress

    ERIC Educational Resources Information Center

    Wong, Y. Joel; Owen, Jesse; Shea, Munyi

    2012-01-01

    How are specific dimensions of masculinity related to psychological distress in specific groups of men? To address this question, the authors used latent class regression to assess the optimal number of latent classes that explained differential relationships between conformity to masculine norms and psychological distress in a racially diverse…

  16. Improving Students' Self-Efficacy in Strategic Management: The Relative Impact of Cases and Simulations.

    ERIC Educational Resources Information Center

    Tompson, George H.; Dass, Parshotam

    2000-01-01

    Investigates the relative contribution of computer simulations and case studies for improving undergraduate students' self-efficacy in strategic management courses. Results of pre-and post-test data, regression analysis, and analysis of variance show that simulations result in significantly higher improvement in self-efficacy than case studies.…

  17. Determining Predictor Importance in Hierarchical Linear Models Using Dominance Analysis

    ERIC Educational Resources Information Center

    Luo, Wen; Azen, Razia

    2013-01-01

    Dominance analysis (DA) is a method used to evaluate the relative importance of predictors that was originally proposed for linear regression models. This article proposes an extension of DA that allows researchers to determine the relative importance of predictors in hierarchical linear models (HLM). Commonly used measures of model adequacy in…

  18. Multivariate Linear Regression and CART Regression Analysis of TBM Performance at Abu Hamour Phase-I Tunnel

    NASA Astrophysics Data System (ADS)

    Jakubowski, J.; Stypulkowski, J. B.; Bernardeau, F. G.

    2017-12-01

    The first phase of the Abu Hamour drainage and storm tunnel was completed in early 2017. The 9.5 km long, 3.7 m diameter tunnel was excavated with two Earth Pressure Balance (EPB) Tunnel Boring Machines from Herrenknecht. TBM operation processes were monitored and recorded by Data Acquisition and Evaluation System. The authors coupled collected TBM drive data with available information on rock mass properties, cleansed, completed with secondary variables and aggregated by weeks and shifts. Correlations and descriptive statistics charts were examined. Multivariate Linear Regression and CART regression tree models linking TBM penetration rate (PR), penetration per revolution (PPR) and field penetration index (FPI) with TBM operational and geotechnical characteristics were performed for the conditions of the weak/soft rock of Doha. Both regression methods are interpretable and the data were screened with different computational approaches allowing enriched insight. The primary goal of the analysis was to investigate empirical relations between multiple explanatory and responding variables, to search for best subsets of explanatory variables and to evaluate the strength of linear and non-linear relations. For each of the penetration indices, a predictive model coupling both regression methods was built and validated. The resultant models appeared to be stronger than constituent ones and indicated an opportunity for more accurate and robust TBM performance predictions.

  19. [Hyperspectral Estimation of Apple Tree Canopy LAI Based on SVM and RF Regression].

    PubMed

    Han, Zhao-ying; Zhu, Xi-cun; Fang, Xian-yi; Wang, Zhuo-yuan; Wang, Ling; Zhao, Geng-Xing; Jiang, Yuan-mao

    2016-03-01

    Leaf area index (LAI) is the dynamic index of crop population size. Hyperspectral technology can be used to estimate apple canopy LAI rapidly and nondestructively. It can be provide a reference for monitoring the tree growing and yield estimation. The Red Fuji apple trees of full bearing fruit are the researching objects. Ninety apple trees canopies spectral reflectance and LAI values were measured by the ASD Fieldspec3 spectrometer and LAI-2200 in thirty orchards in constant two years in Qixia research area of Shandong Province. The optimal vegetation indices were selected by the method of correlation analysis of the original spectral reflectance and vegetation indices. The models of predicting the LAI were built with the multivariate regression analysis method of support vector machine (SVM) and random forest (RF). The new vegetation indices, GNDVI527, ND-VI676, RVI682, FD-NVI656 and GRVI517 and the previous two main vegetation indices, NDVI670 and NDVI705, are in accordance with LAI. In the RF regression model, the calibration set decision coefficient C-R2 of 0.920 and validation set decision coefficient V-R2 of 0.889 are higher than the SVM regression model by 0.045 and 0.033 respectively. The root mean square error of calibration set C-RMSE of 0.249, the root mean square error validation set V-RMSE of 0.236 are lower than that of the SVM regression model by 0.054 and 0.058 respectively. Relative analysis of calibrating error C-RPD and relative analysis of validation set V-RPD reached 3.363 and 2.520, 0.598 and 0.262, respectively, which were higher than the SVM regression model. The measured and predicted the scatterplot trend line slope of the calibration set and validation set C-S and V-S are close to 1. The estimation result of RF regression model is better than that of the SVM. RF regression model can be used to estimate the LAI of red Fuji apple trees in full fruit period.

  20. A comparison of three methods of assessing differential item functioning (DIF) in the Hospital Anxiety Depression Scale: ordinal logistic regression, Rasch analysis and the Mantel chi-square procedure.

    PubMed

    Cameron, Isobel M; Scott, Neil W; Adler, Mats; Reid, Ian C

    2014-12-01

    It is important for clinical practice and research that measurement scales of well-being and quality of life exhibit only minimal differential item functioning (DIF). DIF occurs where different groups of people endorse items in a scale to different extents after being matched by the intended scale attribute. We investigate the equivalence or otherwise of common methods of assessing DIF. Three methods of measuring age- and sex-related DIF (ordinal logistic regression, Rasch analysis and Mantel χ(2) procedure) were applied to Hospital Anxiety Depression Scale (HADS) data pertaining to a sample of 1,068 patients consulting primary care practitioners. Three items were flagged by all three approaches as having either age- or sex-related DIF with a consistent direction of effect; a further three items identified did not meet stricter criteria for important DIF using at least one method. When applying strict criteria for significant DIF, ordinal logistic regression was slightly less sensitive. Ordinal logistic regression, Rasch analysis and contingency table methods yielded consistent results when identifying DIF in the HADS depression and HADS anxiety scales. Regardless of methods applied, investigators should use a combination of statistical significance, magnitude of the DIF effect and investigator judgement when interpreting the results.

  1. Fall-related self-efficacy, not balance and mobility performance, is related to accidental falls in chronic stroke survivors with low bone mineral density.

    PubMed

    Pang, M Y C; Eng, J J

    2008-07-01

    Chronic stroke survivors with low hip bone density are particularly prone to fractures. This study shows that fear of falling is independently associated with falls in this population. Thus, fear of falling should not be overlooked in the prevention of fragility fractures in these patients. Chronic stroke survivors with low bone mineral density (BMD) are particularly prone to fragility fractures. The purpose of this study was to identify the determinants of balance, mobility and falls in this sub-group of stroke patients. Thirty-nine chronic stroke survivors with low hip BMD (T-score <-1.0) were studied. Each subject was evaluated for the following: balance, mobility, leg muscle strength, spasticity, and fall-related self-efficacy. Any falls in the past 12 months were also recorded. Multiple regression analysis was used to identify the determinants of balance and mobility performance, whereas logistic regression was used to identify the determinants of falls. Multiple regression analysis revealed that after adjusting for basic demographics, fall-related self-efficacy remained independently associated with balance/mobility performance (R2 = 0.494, P < 0.001). Logistic regression showed that fall-related self-efficacy, but not balance and mobility performance, was a significant determinant of falls (odds ratio: 0.18, P = 0.04). Fall-related self-efficacy, but not mobility and balance performance, was the most important determinant of accidental falls. This psychological factor should not be overlooked in the prevention of fragility fractures among chronic stroke survivors with low hip BMD.

  2. An Extension of Dominance Analysis to Canonical Correlation Analysis

    ERIC Educational Resources Information Center

    Huo, Yan; Budescu, David V.

    2009-01-01

    Dominance analysis (Budescu, 1993) offers a general framework for determination of relative importance of predictors in univariate and multivariate multiple regression models. This approach relies on pairwise comparisons of the contribution of predictors in all relevant subset models. In this article we extend dominance analysis to canonical…

  3. [Spatial interpolation of soil organic matter using regression Kriging and geographically weighted regression Kriging].

    PubMed

    Yang, Shun-hua; Zhang, Hai-tao; Guo, Long; Ren, Yan

    2015-06-01

    Relative elevation and stream power index were selected as auxiliary variables based on correlation analysis for mapping soil organic matter. Geographically weighted regression Kriging (GWRK) and regression Kriging (RK) were used for spatial interpolation of soil organic matter and compared with ordinary Kriging (OK), which acts as a control. The results indicated that soil or- ganic matter was significantly positively correlated with relative elevation whilst it had a significantly negative correlation with stream power index. Semivariance analysis showed that both soil organic matter content and its residuals (including ordinary least square regression residual and GWR resi- dual) had strong spatial autocorrelation. Interpolation accuracies by different methods were esti- mated based on a data set of 98 validation samples. Results showed that the mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) of RK were respectively 39.2%, 17.7% and 20.6% lower than the corresponding values of OK, with a relative-improvement (RI) of 20.63. GWRK showed a similar tendency, having its ME, MAE and RMSE to be respectively 60.6%, 23.7% and 27.6% lower than those of OK, with a RI of 59.79. Therefore, both RK and GWRK significantly improved the accuracy of OK interpolation of soil organic matter due to their in- corporation of auxiliary variables. In addition, GWRK performed obviously better than RK did in this study, and its improved performance should be attributed to the consideration of sample spatial locations.

  4. Multi Objective Optimization of Multi Wall Carbon Nanotube Based Nanogrinding Wheel Using Grey Relational and Regression Analysis

    NASA Astrophysics Data System (ADS)

    Sethuramalingam, Prabhu; Vinayagam, Babu Kupusamy

    2016-07-01

    Carbon nanotube mixed grinding wheel is used in the grinding process to analyze the surface characteristics of AISI D2 tool steel material. Till now no work has been carried out using carbon nanotube based grinding wheel. Carbon nanotube based grinding wheel has excellent thermal conductivity and good mechanical properties which are used to improve the surface finish of the workpiece. In the present study, the multi response optimization of process parameters like surface roughness and metal removal rate of grinding process of single wall carbon nanotube (CNT) in mixed cutting fluids is undertaken using orthogonal array with grey relational analysis. Experiments are performed with designated grinding conditions obtained using the L9 orthogonal array. Based on the results of the grey relational analysis, a set of optimum grinding parameters is obtained. Using the analysis of variance approach the significant machining parameters are found. Empirical model for the prediction of output parameters has been developed using regression analysis and the results are compared empirically, for conditions of with and without CNT grinding wheel in grinding process.

  5. Factor analysis and multiple regression between topography and precipitation on Jeju Island, Korea

    NASA Astrophysics Data System (ADS)

    Um, Myoung-Jin; Yun, Hyeseon; Jeong, Chang-Sam; Heo, Jun-Haeng

    2011-11-01

    SummaryIn this study, new factors that influence precipitation were extracted from geographic variables using factor analysis, which allow for an accurate estimation of orographic precipitation. Correlation analysis was also used to examine the relationship between nine topographic variables from digital elevation models (DEMs) and the precipitation in Jeju Island. In addition, a spatial analysis was performed in order to verify the validity of the regression model. From the results of the correlation analysis, it was found that all of the topographic variables had a positive correlation with the precipitation. The relations between the variables also changed in accordance with a change in the precipitation duration. However, upon examining the correlation matrix, no significant relationship between the latitude and the aspect was found. According to the factor analysis, eight topographic variables (latitude being the exception) were found to have a direct influence on the precipitation. Three factors were then extracted from the eight topographic variables. By directly comparing the multiple regression model with the factors (model 1) to the multiple regression model with the topographic variables (model 3), it was found that model 1 did not violate the limits of statistical significance and multicollinearity. As such, model 1 was considered to be appropriate for estimating the precipitation when taking into account the topography. In the study of model 1, the multiple regression model using factor analysis was found to be the best method for estimating the orographic precipitation on Jeju Island.

  6. [Quantitative Analysis of Heavy Metals in Water with LIBS Based on Signal-to-Background Ratio].

    PubMed

    Hu, Li; Zhao, Nan-jing; Liu, Wen-qing; Fang, Li; Zhang, Da-hai; Wang, Yin; Meng, De Shuo; Yu, Yang; Ma, Ming-jun

    2015-07-01

    There are many influence factors in the precision and accuracy of the quantitative analysis with LIBS technology. According to approximately the same characteristics trend of background spectrum and characteristic spectrum along with the change of temperature through in-depth analysis, signal-to-background ratio (S/B) measurement and regression analysis could compensate the spectral line intensity changes caused by system parameters such as laser power, spectral efficiency of receiving. Because the measurement dates were limited and nonlinear, we used support vector machine (SVM) for regression algorithm. The experimental results showed that the method could improve the stability and the accuracy of quantitative analysis of LIBS, and the relative standard deviation and average relative error of test set respectively were 4.7% and 9.5%. Data fitting method based on signal-to-background ratio(S/B) is Less susceptible to matrix elements and background spectrum etc, and provides data processing reference for real-time online LIBS quantitative analysis technology.

  7. Emotional Issues and Peer Relations in Gifted Elementary Students: Regression Analysis of National Data

    ERIC Educational Resources Information Center

    Wiley, Kristofor R.

    2013-01-01

    Many of the social and emotional needs that have historically been associated with gifted students have been questioned on the basis of recent empirical evidence. Research on the topic, however, is often limited by sample size, selection bias, or definition. This study addressed these limitations by applying linear regression methodology to data…

  8. Development and evaluation of habitat models for herpetofauna and small mammals

    Treesearch

    William M. Block; Michael L. Morrison; Peter E. Scott

    1998-01-01

    We evaluated the ability of discriminant analysis (DA), logistic regression (LR), and multiple regression (MR) to describe habitat use by amphibians, reptiles, and small mammals found in California oak woodlands. We also compared models derived from pitfall and live trapping data for several species. Habitat relations modeled by DA and LR produced similar results,...

  9. Multiple linear regression analysis

    NASA Technical Reports Server (NTRS)

    Edwards, T. R.

    1980-01-01

    Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.

  10. Further Insight and Additional Inference Methods for Polynomial Regression Applied to the Analysis of Congruence

    ERIC Educational Resources Information Center

    Cohen, Ayala; Nahum-Shani, Inbal; Doveh, Etti

    2010-01-01

    In their seminal paper, Edwards and Parry (1993) presented the polynomial regression as a better alternative to applying difference score in the study of congruence. Although this method is increasingly applied in congruence research, its complexity relative to other methods for assessing congruence (e.g., difference score methods) was one of the…

  11. Atmospheric mold spore counts in relation to meteorological parameters

    NASA Astrophysics Data System (ADS)

    Katial, R. K.; Zhang, Yiming; Jones, Richard H.; Dyer, Philip D.

    Fungal spore counts of Cladosporium, Alternaria, and Epicoccum were studied during 8 years in Denver, Colorado. Fungal spore counts were obtained daily during the pollinating season by a Rotorod sampler. Weather data were obtained from the National Climatic Data Center. Daily averages of temperature, relative humidity, daily precipitation, barometric pressure, and wind speed were studied. A time series analysis was performed on the data to mathematically model the spore counts in relation to weather parameters. Using SAS PROC ARIMA software, a regression analysis was performed, regressing the spore counts on the weather variables assuming an autoregressive moving average (ARMA) error structure. Cladosporium was found to be positively correlated (P<0.02) with average daily temperature, relative humidity, and negatively correlated with precipitation. Alternaria and Epicoccum did not show increased predictability with weather variables. A mathematical model was derived for Cladosporium spore counts using the annual seasonal cycle and significant weather variables. The model for Alternaria and Epicoccum incorporated the annual seasonal cycle. Fungal spore counts can be modeled by time series analysis and related to meteorological parameters controlling for seasonallity; this modeling can provide estimates of exposure to fungal aeroallergens.

  12. Social network type and morale in old age.

    PubMed

    Litwin, H

    2001-08-01

    The aim of this research was to derive network types among an elderly population and to examine the relationship of network type to morale. Secondary analysis of data compiled by the Israeli Central Bureau of Statistics (n = 2,079) was employed, and network types were derived through K-means cluster analysis. Respondents' morale scores were regressed on network types, controlling for background and health variables. Five network types were derived. Respondents in diverse or friends networks reported the highest morale; those in exclusively family or restricted networks had the lowest. Multivariate regression analysis underscored that certain network types were second among the study variables in predicting respondents' morale, preceded only by disability level (Adjusted R(2) =.41). Classification of network types allows consideration of the interpersonal environments of older people in relation to outcomes of interest. The relative effects on morale of elective versus obligated social ties, evident in the current analysis, is a case in point.

  13. Development and Validation of the Work-Related Well-Being Index: Analysis of the Federal Employee Viewpoint Survey (FEVS).

    PubMed

    Eaton, Jennifer L; Mohr, David C; Hodgson, Michael J; McPhaul, Kathleen M

    2017-10-11

    To describe development and validation of the Work-Related Well-Being (WRWB) Index. Principal Components Analysis was performed using Federal Employee Viewpoint Survey (FEVS) data (N = 392,752) to extract variables representing worker well-being constructs. Confirmatory factor analysis was performed to verify factor structure. To validate the WRWB index, we used multiple regression analysis to examine relationships with burnout associated outcomes. PCA identified three positive psychology constructs: "Work Positivity", "Co-worker Relationships", and "Work Mastery". An 11 item index explaining 63.5% of variance was achieved. The structural equation model provided a very good fit to the data. Higher WRWB scores were positively associated with all 3 employee experience measures examined in regression models. The new WRWB index shows promise as a valid and widely accessible instrument to assess worker well-being.

  14. Paired Comparison Survey Analyses Utilizing Rasch Methodology of the Relative Difficulty and Estimated Work Relative Value Units of CPT® Code 27279.

    PubMed

    Lorio, Morgan; Martinson, Melissa; Ferrara, Lisa

    2016-01-01

    Minimally invasive sacroiliac joint arthrodesis ("MI SIJ fusion") received a Category I CPT ® code (27279) effective January 1, 2015 and was assigned a work relative value unit ("RVU") of 9.03. The International Society for the Advancement of Spine Surgery ("ISASS") conducted a study consisting of a Rasch analysis of two separate surveys of surgeons to assess the accuracy of the assigned work RVU. A survey was developed and sent to ninety-three ISASS surgeon committee members. Respondents were asked to compare CPT ® 27279 to ten other comparator CPT ® codes reflective of common spine surgeries. The survey presented each comparator CPT ® code with its code descriptor as well as the description of CPT ® 27279 and asked respondents to indicate whether CPT ® 27279 was greater, equal, or less in terms of work effort than the comparator code. A second survey was sent to 557 U.S.-based spine surgeon members of ISASS and 241 spine surgeon members of the Society for Minimally Invasive Spine Surgery ("SMISS"). The design of the second survey mirrored that of the first survey except for the use of a broader set of comparator CPT ® codes (27 vs. 10). Using the work RVUs of the comparator codes, a Rasch analysis was performed to estimate the relative difficulty of CPT ® 27279, after which the work RVU of CPT ® 27279 was estimated by regression analysis. Twenty surgeons responded to the first survey and thirty-four surgeons responded to the second survey. The results of the regression analysis of the first survey indicate a work RVU for CPT ® 27279 of 14.36 and the results of the regression analysis of the second survey indicate a work RVU for CPT ® 27279 of 14.1. The Rasch analysis indicates that the current work RVU assigned to CPT ® 27279 is undervalued at 9.03. Averaging the results of the regression analyses of the two surveys indicates a work RVU for CPT ® 27279 of 14.23.

  15. Membrane Introduction Mass Spectrometry Combined with an Orthogonal Partial-Least Squares Calibration Model for Mixture Analysis.

    PubMed

    Li, Min; Zhang, Lu; Yao, Xiaolong; Jiang, Xingyu

    2017-01-01

    The emerging membrane introduction mass spectrometry technique has been successfully used to detect benzene, toluene, ethyl benzene and xylene (BTEX), while overlapped spectra have unfortunately hindered its further application to the analysis of mixtures. Multivariate calibration, an efficient method to analyze mixtures, has been widely applied. In this paper, we compared univariate and multivariate analyses for quantification of the individual components of mixture samples. The results showed that the univariate analysis creates poor models with regression coefficients of 0.912, 0.867, 0.440 and 0.351 for BTEX, respectively. For multivariate analysis, a comparison to the partial-least squares (PLS) model shows that the orthogonal partial-least squares (OPLS) regression exhibits an optimal performance with regression coefficients of 0.995, 0.999, 0.980 and 0.976, favorable calibration parameters (RMSEC and RMSECV) and a favorable validation parameter (RMSEP). Furthermore, the OPLS exhibits a good recovery of 73.86 - 122.20% and relative standard deviation (RSD) of the repeatability of 1.14 - 4.87%. Thus, MIMS coupled with the OPLS regression provides an optimal approach for a quantitative BTEX mixture analysis in monitoring and predicting water pollution.

  16. Modeling vertebrate diversity in Oregon using satellite imagery

    NASA Astrophysics Data System (ADS)

    Cablk, Mary Elizabeth

    Vertebrate diversity was modeled for the state of Oregon using a parametric approach to regression tree analysis. This exploratory data analysis effectively modeled the non-linear relationships between vertebrate richness and phenology, terrain, and climate. Phenology was derived from time-series NOAA-AVHRR satellite imagery for the year 1992 using two methods: principal component analysis and derivation of EROS data center greenness metrics. These two measures of spatial and temporal vegetation condition incorporated the critical temporal element in this analysis. The first three principal components were shown to contain spatial and temporal information about the landscape and discriminated phenologically distinct regions in Oregon. Principal components 2 and 3, 6 greenness metrics, elevation, slope, aspect, annual precipitation, and annual seasonal temperature difference were investigated as correlates to amphibians, birds, all vertebrates, reptiles, and mammals. Variation explained for each regression tree by taxa were: amphibians (91%), birds (67%), all vertebrates (66%), reptiles (57%), and mammals (55%). Spatial statistics were used to quantify the pattern of each taxa and assess validity of resulting predictions from regression tree models. Regression tree analysis was relatively robust against spatial autocorrelation in the response data and graphical results indicated models were well fit to the data.

  17. Father and adolescent son variables related to son's HIV prevention.

    PubMed

    Glenn, Betty L; Demi, Alice; Kimble, Laura P

    2008-02-01

    The purpose of this study was to examine the relationship between fathers' influences and African American male adolescents' perceptions of self-efficacy to reduce high-risk sexual behavior. A convenience sample of 70 fathers was recruited from churches in a large metropolitan area in the South. Hierarchical multiple linear regression analysis indicated father-related factors and son-related factors were associated with 26.1% of the variance in son's self-efficacy to be abstinent. In the regression model greater son's perception of the communication of sexual standards and greater father's perception of his son's self-efficacy were significantly related to greater son's self-efficacy for abstinence. The second regression model with son's self-efficacy for safer sex as the criterion was not statistically significant. Data support the need for fathers to express confidence in their sons' ability to be abstinent or practice safer sex and to communicate with their sons regarding sexual issues and standards.

  18. Clinical evaluation of a novel population-based regression analysis for detecting glaucomatous visual field progression.

    PubMed

    Kovalska, M P; Bürki, E; Schoetzau, A; Orguel, S F; Orguel, S; Grieshaber, M C

    2011-04-01

    The distinction of real progression from test variability in visual field (VF) series may be based on clinical judgment, on trend analysis based on follow-up of test parameters over time, or on identification of a significant change related to the mean of baseline exams (event analysis). The aim of this study was to compare a new population-based method (Octopus field analysis, OFA) with classic regression analyses and clinical judgment for detecting glaucomatous VF changes. 240 VF series of 240 patients with at least 9 consecutive examinations available were included into this study. They were independently classified by two experienced investigators. The results of such a classification served as a reference for comparison for the following statistical tests: (a) t-test global, (b) r-test global, (c) regression analysis of 10 VF clusters and (d) point-wise linear regression analysis. 32.5 % of the VF series were classified as progressive by the investigators. The sensitivity and specificity were 89.7 % and 92.0 % for r-test, and 73.1 % and 93.8 % for the t-test, respectively. In the point-wise linear regression analysis, the specificity was comparable (89.5 % versus 92 %), but the sensitivity was clearly lower than in the r-test (22.4 % versus 89.7 %) at a significance level of p = 0.01. A regression analysis for the 10 VF clusters showed a markedly higher sensitivity for the r-test (37.7 %) than the t-test (14.1 %) at a similar specificity (88.3 % versus 93.8 %) for a significant trend (p = 0.005). In regard to the cluster distribution, the paracentral clusters and the superior nasal hemifield progressed most frequently. The population-based regression analysis seems to be superior to the trend analysis in detecting VF progression in glaucoma, and may eliminate the drawbacks of the event analysis. Further, it may assist the clinician in the evaluation of VF series and may allow better visualization of the correlation between function and structure owing to VF clusters. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Bayesian dose-response analysis for epidemiological studies with complex uncertainty in dose estimation.

    PubMed

    Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian E; Simon, Steven L

    2016-02-10

    Most conventional risk analysis methods rely on a single best estimate of exposure per person, which does not allow for adjustment for exposure-related uncertainty. Here, we propose a Bayesian model averaging method to properly quantify the relationship between radiation dose and disease outcomes by accounting for shared and unshared uncertainty in estimated dose. Our Bayesian risk analysis method utilizes multiple realizations of sets (vectors) of doses generated by a two-dimensional Monte Carlo simulation method that properly separates shared and unshared errors in dose estimation. The exposure model used in this work is taken from a study of the risk of thyroid nodules among a cohort of 2376 subjects who were exposed to fallout from nuclear testing in Kazakhstan. We assessed the performance of our method through an extensive series of simulations and comparisons against conventional regression risk analysis methods. When the estimated doses contain relatively small amounts of uncertainty, the Bayesian method using multiple a priori plausible draws of dose vectors gave similar results to the conventional regression-based methods of dose-response analysis. However, when large and complex mixtures of shared and unshared uncertainties are present, the Bayesian method using multiple dose vectors had significantly lower relative bias than conventional regression-based risk analysis methods and better coverage, that is, a markedly increased capability to include the true risk coefficient within the 95% credible interval of the Bayesian-based risk estimate. An evaluation of the dose-response using our method is presented for an epidemiological study of thyroid disease following radiation exposure. Copyright © 2015 John Wiley & Sons, Ltd.

  20. New analysis methods to push the boundaries of diagnostic techniques in the environmental sciences

    NASA Astrophysics Data System (ADS)

    Lungaroni, M.; Murari, A.; Peluso, E.; Gelfusa, M.; Malizia, A.; Vega, J.; Talebzadeh, S.; Gaudio, P.

    2016-04-01

    In the last years, new and more sophisticated measurements have been at the basis of the major progress in various disciplines related to the environment, such as remote sensing and thermonuclear fusion. To maximize the effectiveness of the measurements, new data analysis techniques are required. First data processing tasks, such as filtering and fitting, are of primary importance, since they can have a strong influence on the rest of the analysis. Even if Support Vector Regression is a method devised and refined at the end of the 90s, a systematic comparison with more traditional non parametric regression methods has never been reported. In this paper, a series of systematic tests is described, which indicates how SVR is a very competitive method of non-parametric regression that can usefully complement and often outperform more consolidated approaches. The performance of Support Vector Regression as a method of filtering is investigated first, comparing it with the most popular alternative techniques. Then Support Vector Regression is applied to the problem of non-parametric regression to analyse Lidar surveys for the environments measurement of particulate matter due to wildfires. The proposed approach has given very positive results and provides new perspectives to the interpretation of the data.

  1. Combustion performance and scale effect from N2O/HTPB hybrid rocket motor simulations

    NASA Astrophysics Data System (ADS)

    Shan, Fanli; Hou, Lingyun; Piao, Ying

    2013-04-01

    HRM code for the simulation of N2O/HTPB hybrid rocket motor operation and scale effect analysis has been developed. This code can be used to calculate motor thrust and distributions of physical properties inside the combustion chamber and nozzle during the operational phase by solving the unsteady Navier-Stokes equations using a corrected compressible difference scheme and a two-step, five species combustion model. A dynamic fuel surface regression technique and a two-step calculation method together with the gas-solid coupling are applied in the calculation of fuel regression and the determination of combustion chamber wall profile as fuel regresses. Both the calculated motor thrust from start-up to shut-down mode and the combustion chamber wall profile after motor operation are in good agreements with experimental data. The fuel regression rate equation and the relation between fuel regression rate and axial distance have been derived. Analysis of results suggests improvements in combustion performance to the current hybrid rocket motor design and explains scale effects in the variation of fuel regression rate with combustion chamber diameter.

  2. A Bayesian goodness of fit test and semiparametric generalization of logistic regression with measurement data.

    PubMed

    Schörgendorfer, Angela; Branscum, Adam J; Hanson, Timothy E

    2013-06-01

    Logistic regression is a popular tool for risk analysis in medical and population health science. With continuous response data, it is common to create a dichotomous outcome for logistic regression analysis by specifying a threshold for positivity. Fitting a linear regression to the nondichotomized response variable assuming a logistic sampling model for the data has been empirically shown to yield more efficient estimates of odds ratios than ordinary logistic regression of the dichotomized endpoint. We illustrate that risk inference is not robust to departures from the parametric logistic distribution. Moreover, the model assumption of proportional odds is generally not satisfied when the condition of a logistic distribution for the data is violated, leading to biased inference from a parametric logistic analysis. We develop novel Bayesian semiparametric methodology for testing goodness of fit of parametric logistic regression with continuous measurement data. The testing procedures hold for any cutoff threshold and our approach simultaneously provides the ability to perform semiparametric risk estimation. Bayes factors are calculated using the Savage-Dickey ratio for testing the null hypothesis of logistic regression versus a semiparametric generalization. We propose a fully Bayesian and a computationally efficient empirical Bayesian approach to testing, and we present methods for semiparametric estimation of risks, relative risks, and odds ratios when parametric logistic regression fails. Theoretical results establish the consistency of the empirical Bayes test. Results from simulated data show that the proposed approach provides accurate inference irrespective of whether parametric assumptions hold or not. Evaluation of risk factors for obesity shows that different inferences are derived from an analysis of a real data set when deviations from a logistic distribution are permissible in a flexible semiparametric framework. © 2013, The International Biometric Society.

  3. Latent profile analysis of regression-based norms demonstrates relationship of compounding MS symptom burden and negative work events.

    PubMed

    Frndak, Seth E; Smerbeck, Audrey M; Irwin, Lauren N; Drake, Allison S; Kordovski, Victoria M; Kunker, Katrina A; Khan, Anjum L; Benedict, Ralph H B

    2016-10-01

    We endeavored to clarify how distinct co-occurring symptoms relate to the presence of negative work events in employed multiple sclerosis (MS) patients. Latent profile analysis (LPA) was utilized to elucidate common disability patterns by isolating patient subpopulations. Samples of 272 employed MS patients and 209 healthy controls (HC) were administered neuroperformance tests of ambulation, hand dexterity, processing speed, and memory. Regression-based norms were created from the HC sample. LPA identified latent profiles using the regression-based z-scores. Finally, multinomial logistic regression tested for negative work event differences among the latent profiles. Four profiles were identified via LPA: a common profile (55%) characterized by slightly below average performance in all domains, a broadly low-performing profile (18%), a poor motor abilities profile with average cognition (17%), and a generally high-functioning profile (9%). Multinomial regression analysis revealed that the uniformly low-performing profile demonstrated a higher likelihood of reported negative work events. Employed MS patients with co-occurring motor, memory and processing speed impairments were most likely to report a negative work event, classifying them as uniquely at risk for job loss.

  4. Statistical model to perform error analysis of curve fits of wind tunnel test data using the techniques of analysis of variance and regression analysis

    NASA Technical Reports Server (NTRS)

    Alston, D. W.

    1981-01-01

    The considered research had the objective to design a statistical model that could perform an error analysis of curve fits of wind tunnel test data using analysis of variance and regression analysis techniques. Four related subproblems were defined, and by solving each of these a solution to the general research problem was obtained. The capabilities of the evolved true statistical model are considered. The least squares fit is used to determine the nature of the force, moment, and pressure data. The order of the curve fit is increased in order to delete the quadratic effect in the residuals. The analysis of variance is used to determine the magnitude and effect of the error factor associated with the experimental data.

  5. Escherichia coli bacteria density in relation to turbidity, streamflow characteristics, and season in the Chattahoochee River near Atlanta, Georgia, October 2000 through September 2008—Description, statistical analysis, and predictive modeling

    USGS Publications Warehouse

    Lawrence, Stephen J.

    2012-01-01

    Regression analyses show that E. coli density in samples was strongly related to turbidity, streamflow characteristics, and season at both sites. The regression equation chosen for the Norcross data showed that 78 percent of the variability in E. coli density (in log base 10 units) was explained by the variability in turbidity values (in log base 10 units), streamflow event (dry-weather flow or stormflow), season (cool or warm), and an interaction term that is the cross product of streamflow event and turbidity. The regression equation chosen for the Atlanta data showed that 76 percent of the variability in E. coli density (in log base 10 units) was explained by the variability in turbidity values (in log base 10 units), water temperature, streamflow event, and an interaction term that is the cross product of streamflow event and turbidity. Residual analysis and model confirmation using new data indicated the regression equations selected at both sites predicted E. coli density within the 90 percent prediction intervals of the equations and could be used to predict E. coli density in real time at both sites.

  6. Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation

    NASA Astrophysics Data System (ADS)

    Reis, D. S.; Stedinger, J. R.; Martins, E. S.

    2005-10-01

    This paper develops a Bayesian approach to analysis of a generalized least squares (GLS) regression model for regional analyses of hydrologic data. The new approach allows computation of the posterior distributions of the parameters and the model error variance using a quasi-analytic approach. Two regional skew estimation studies illustrate the value of the Bayesian GLS approach for regional statistical analysis of a shape parameter and demonstrate that regional skew models can be relatively precise with effective record lengths in excess of 60 years. With Bayesian GLS the marginal posterior distribution of the model error variance and the corresponding mean and variance of the parameters can be computed directly, thereby providing a simple but important extension of the regional GLS regression procedures popularized by Tasker and Stedinger (1989), which is sensitive to the likely values of the model error variance when it is small relative to the sampling error in the at-site estimator.

  7. Premium analysis for copula model: A case study for Malaysian motor insurance claims

    NASA Astrophysics Data System (ADS)

    Resti, Yulia; Ismail, Noriszura; Jaaman, Saiful Hafizah

    2014-06-01

    This study performs premium analysis for copula models with regression marginals. For illustration purpose, the copula models are fitted to the Malaysian motor insurance claims data. In this study, we consider copula models from Archimedean and Elliptical families, and marginal distributions of Gamma and Inverse Gaussian regression models. The simulated results from independent model, which is obtained from fitting regression models separately to each claim category, and dependent model, which is obtained from fitting copula models to all claim categories, are compared. The results show that the dependent model using Frank copula is the best model since the risk premiums estimated under this model are closely approximate to the actual claims experience relative to the other copula models.

  8. Factors Affecting Seedling Survivorship of Blue Oak (Quercus douglasii H. & A.) in Central California

    Treesearch

    Frank W. Davis; Mark Borchert; L. E. Harvey; Joel C. Michaelsen

    1991-01-01

    Blue oak seedling mortality was studied in relation to vertebrate predators, initial acorn planting position, slope and aspect, and oak canopy cover at two sites in the Central Coast Ranges of California. Seedling survival rates (Psd) were related to treatment variables using logistic regression analysis. Analysis of 2842 seedlings for 3 years following establishment...

  9. Comparing machine learning and logistic regression methods for predicting hypertension using a combination of gene expression and next-generation sequencing data.

    PubMed

    Held, Elizabeth; Cape, Joshua; Tintle, Nathan

    2016-01-01

    Machine learning methods continue to show promise in the analysis of data from genetic association studies because of the high number of variables relative to the number of observations. However, few best practices exist for the application of these methods. We extend a recently proposed supervised machine learning approach for predicting disease risk by genotypes to be able to incorporate gene expression data and rare variants. We then apply 2 different versions of the approach (radial and linear support vector machines) to simulated data from Genetic Analysis Workshop 19 and compare performance to logistic regression. Method performance was not radically different across the 3 methods, although the linear support vector machine tended to show small gains in predictive ability relative to a radial support vector machine and logistic regression. Importantly, as the number of genes in the models was increased, even when those genes contained causal rare variants, model predictive ability showed a statistically significant decrease in performance for both the radial support vector machine and logistic regression. The linear support vector machine showed more robust performance to the inclusion of additional genes. Further work is needed to evaluate machine learning approaches on larger samples and to evaluate the relative improvement in model prediction from the incorporation of gene expression data.

  10. Identification of sexually abused female adolescents at risk for suicidal ideations: a classification and regression tree analysis.

    PubMed

    Brabant, Marie-Eve; Hébert, Martine; Chagnon, François

    2013-01-01

    This study explored the clinical profiles of 77 female teenager survivors of sexual abuse and examined the association of abuse-related and personal variables with suicidal ideations. Analyses revealed that 64% of participants experienced suicidal ideations. Findings from classification and regression tree analysis indicated that depression, posttraumatic stress symptoms, and hopelessness discriminated profiles of suicidal and nonsuicidal survivors. The elevated prevalence of suicidal ideations among adolescent survivors of sexual abuse underscores the importance of investigating the presence of suicidal ideations in sexual abuse survivors. However, suicidal ideation is not the sole variable that needs to be investigated; depression, hopelessness and posttraumatic stress symptoms are also related to suicidal ideations in survivors and could therefore guide interventions.

  11. Optimizing methods for linking cinematic features to fMRI data.

    PubMed

    Kauttonen, Janne; Hlushchuk, Yevhen; Tikka, Pia

    2015-04-15

    One of the challenges of naturalistic neurosciences using movie-viewing experiments is how to interpret observed brain activations in relation to the multiplicity of time-locked stimulus features. As previous studies have shown less inter-subject synchronization across viewers of random video footage than story-driven films, new methods need to be developed for analysis of less story-driven contents. To optimize the linkage between our fMRI data collected during viewing of a deliberately non-narrative silent film 'At Land' by Maya Deren (1944) and its annotated content, we combined the method of elastic-net regularization with the model-driven linear regression and the well-established data-driven independent component analysis (ICA) and inter-subject correlation (ISC) methods. In the linear regression analysis, both IC and region-of-interest (ROI) time-series were fitted with time-series of a total of 36 binary-valued and one real-valued tactile annotation of film features. The elastic-net regularization and cross-validation were applied in the ordinary least-squares linear regression in order to avoid over-fitting due to the multicollinearity of regressors, the results were compared against both the partial least-squares (PLS) regression and the un-regularized full-model regression. Non-parametric permutation testing scheme was applied to evaluate the statistical significance of regression. We found statistically significant correlation between the annotation model and 9 ICs out of 40 ICs. Regression analysis was also repeated for a large set of cubic ROIs covering the grey matter. Both IC- and ROI-based regression analyses revealed activations in parietal and occipital regions, with additional smaller clusters in the frontal lobe. Furthermore, we found elastic-net based regression more sensitive than PLS and un-regularized regression since it detected a larger number of significant ICs and ROIs. Along with the ISC ranking methods, our regression analysis proved a feasible method for ordering the ICs based on their functional relevance to the annotated cinematic features. The novelty of our method is - in comparison to the hypothesis-driven manual pre-selection and observation of some individual regressors biased by choice - in applying data-driven approach to all content features simultaneously. We found especially the combination of regularized regression and ICA useful when analyzing fMRI data obtained using non-narrative movie stimulus with a large set of complex and correlated features. Copyright © 2015. Published by Elsevier Inc.

  12. Effects of Relational Authenticity on Adjustment to College

    ERIC Educational Resources Information Center

    Lenz, A. Stephen; Holman, Rachel L.; Lancaster, Chloe; Gotay, Stephanie G.

    2016-01-01

    The authors examined the association between relational health and student adjustment to college. Data were collected from 138 undergraduate students completing their 1st semester at a large university in the mid-southern United States. Regression analysis indicated that higher levels of relational authenticity were a predictor of success during…

  13. Linear regression in astronomy. II

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.; Babu, Gutti J.

    1992-01-01

    A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.

  14. Air Leakage of US Homes: Regression Analysis and Improvements from Retrofit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Wanyu R.; Joh, Jeffrey; Sherman, Max H.

    2012-08-01

    LBNL Residential Diagnostics Database (ResDB) contains blower door measurements and other diagnostic test results of homes in United States. Of these, approximately 134,000 single-family detached homes have sufficient information for the analysis of air leakage in relation to a number of housing characteristics. We performed regression analysis to consider the correlation between normalized leakage and a number of explanatory variables: IECC climate zone, floor area, height, year built, foundation type, duct location, and other characteristics. The regression model explains 68% of the observed variability in normalized leakage. ResDB also contains the before and after retrofit air leakage measurements of approximatelymore » 23,000 homes that participated in weatherization assistant programs (WAPs) or residential energy efficiency programs. The two types of programs achieve rather similar reductions in normalized leakage: 30% for WAPs and 20% for other energy programs.« less

  15. Relationship between alcohol-related expectancies and anterior brain functioning in young men at risk for developing alcoholism.

    PubMed

    Deckel, A W; Hesselbrock, V; Bauer, L

    1995-04-01

    This experiment examined the relationship between anterior brain functioning and alcohol-related expectancies. Ninety-one young men at risk for developing alcoholism were assessed on the Alcohol Expectancy Questionnaire (AEQ) and administered neuropsychological and EEG tests. Three of the scales on the AEQ, including the "Enhanced Sexual Functioning" scale, the "Increased Social Assertiveness" scale, and items from the "Global/Positive Change scale," were used, because each of these scales has been found to discriminate alcohol-based expectancies adequately by at least two separate sets of investigators. Regression analysis found that anterior neuropsychological tests (including the Wisconsin Card Sorting test, the Porteus Maze test, the Controlled Oral Word Fluency test, and the Luria-Nebraska motor functioning tests) were predictive of the AEQ scale scores on regression analysis. One of the AEQ scales, "Enhanced Sexual Functioning," was also predicted by WAIS-R-Verbal scales, whereas the "Global/Positive" AEQ scale was predicted by the WAIS-R Performance scales. Regression analysis using EEG power as predictors found that left versus right hemisphere "difference" scores obtained from frontal EEG leads were predictive of the three AEQ scales. Conversely, parietal EEG power did not significantly predict any of the expectancy scales. It is concluded that anterior brain any of the expectancy scales. It is concluded that anterior brain functioning is associated with alcohol-related expectancies. These findings suggest that alcohol-related expectancy may be, in part, biologically determined by frontal/prefrontal systems, and that dysfunctioning in these systems may serve as a risk factor for the development of alcohol-related behaviors.

  16. Spatial analysis of relative humidity during ungauged periods in a mountainous region

    NASA Astrophysics Data System (ADS)

    Um, Myoung-Jin; Kim, Yeonjoo

    2017-08-01

    Although atmospheric humidity influences environmental and agricultural conditions, thereby influencing plant growth, human health, and air pollution, efforts to develop spatial maps of atmospheric humidity using statistical approaches have thus far been limited. This study therefore aims to develop statistical approaches for inferring the spatial distribution of relative humidity (RH) for a mountainous island, for which data are not uniformly available across the region. A multiple regression analysis based on various mathematical models was used to identify the optimal model for estimating monthly RH by incorporating not only temperature but also location and elevation. Based on the regression analysis, we extended the monthly RH data from weather stations to cover the ungauged periods when no RH observations were available. Then, two different types of station-based data, the observational data and the data extended via the regression model, were used to form grid-based data with a resolution of 100 m. The grid-based data that used the extended station-based data captured the increasing RH trend along an elevation gradient. Furthermore, annual RH values averaged over the regions were examined. Decreasing temporal trends were found in most cases, with magnitudes varying based on the season and region.

  17. Contributions of sociodemographic factors to criminal behavior

    PubMed Central

    Mundia, Lawrence; Matzin, Rohani; Mahalle, Salwa; Hamid, Malai Hayati; Osman, Ratna Suriani

    2016-01-01

    We explored the extent to which prisoner sociodemographic variables (age, education, marital status, employment, and whether their parents were married or not) influenced offending in 64 randomly selected Brunei inmates, comprising both sexes. A quantitative field survey design ideal for the type of participants used in a prison context was employed to investigate the problem. Hierarchical multiple regression analysis with backward elimination identified prisoner marital status and age groups as significantly related to offending. Furthermore, hierarchical multinomial logistic regression analysis with backward elimination indicated that prisoners’ age, primary level education, marital status, employment status, and parental marital status as significantly related to stealing offenses with high odds ratios. All 29 nonrecidivists were false negatives and predicted to reoffend upon release. Similarly, all 33 recidivists were projected to reoffend after release. Hierarchical binary logistic regression analysis revealed age groups (24–29 years and 30–35 years), employed prisoner, and primary level education as variables with high likelihood trends for reoffending. The results suggested that prisoner interventions (educational, counseling, and psychotherapy) in Brunei should treat not only antisocial personality, psychopathy, and mental health problems but also sociodemographic factors. The study generated offending patterns, trends, and norms that may inform subsequent investigations on Brunei prisoners. PMID:27382342

  18. Methods for estimating the magnitude and frequency of peak streamflows at ungaged sites in and near the Oklahoma Panhandle

    USGS Publications Warehouse

    Smith, S. Jerrod; Lewis, Jason M.; Graves, Grant M.

    2015-09-28

    Generalized-least-squares multiple-linear regression analysis was used to formulate regression relations between peak-streamflow frequency statistics and basin characteristics. Contributing drainage area was the only basin characteristic determined to be statistically significant for all percentage of annual exceedance probabilities and was the only basin characteristic used in regional regression equations for estimating peak-streamflow frequency statistics on unregulated streams in and near the Oklahoma Panhandle. The regression model pseudo-coefficient of determination, converted to percent, for the Oklahoma Panhandle regional regression equations ranged from about 38 to 63 percent. The standard errors of prediction and the standard model errors for the Oklahoma Panhandle regional regression equations ranged from about 84 to 148 percent and from about 76 to 138 percent, respectively. These errors were comparable to those reported for regional peak-streamflow frequency regression equations for the High Plains areas of Texas and Colorado. The root mean square errors for the Oklahoma Panhandle regional regression equations (ranging from 3,170 to 92,000 cubic feet per second) were less than the root mean square errors for the Oklahoma statewide regression equations (ranging from 18,900 to 412,000 cubic feet per second); therefore, the Oklahoma Panhandle regional regression equations produce more accurate peak-streamflow statistic estimates for the irrigated period of record in the Oklahoma Panhandle than do the Oklahoma statewide regression equations. The regression equations developed in this report are applicable to streams that are not substantially affected by regulation, impoundment, or surface-water withdrawals. These regression equations are intended for use for stream sites with contributing drainage areas less than or equal to about 2,060 square miles, the maximum value for the independent variable used in the regression analysis.

  19. A method for fitting regression splines with varying polynomial order in the linear mixed model.

    PubMed

    Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W

    2006-02-15

    The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.

  20. Comparative study of contrast-enhanced ultrasound qualitative and quantitative analysis for identifying benign and malignant breast tumor lumps.

    PubMed

    Liu, Jian; Gao, Yun-Hua; Li, Ding-Dong; Gao, Yan-Chun; Hou, Ling-Mi; Xie, Ting

    2014-01-01

    To compare the value of contrast-enhanced ultrasound (CEUS) qualitative and quantitative analysis in the identification of breast tumor lumps. Qualitative and quantitative indicators of CEUS for 73 cases of breast tumor lumps were retrospectively analyzed by univariate and multivariate approaches. Logistic regression was applied and ROC curves were drawn for evaluation and comparison. The CEUS qualitative indicator-generated regression equation contained three indicators, namely enhanced homogeneity, diameter line expansion and peak intensity grading, which demonstrated prediction accuracy for benign and malignant breast tumor lumps of 91.8%; the quantitative indicator-generated regression equation only contained one indicator, namely the relative peak intensity, and its prediction accuracy was 61.5%. The corresponding areas under the ROC curve for qualitative and quantitative analyses were 91.3% and 75.7%, respectively, which exhibited a statistically significant difference by the Z test (P<0.05). The ability of CEUS qualitative analysis to identify breast tumor lumps is better than with quantitative analysis.

  1. Equations for predicting biomass in 2- to 6-year-old Eucalyptus saligna in Hawaii

    Treesearch

    Craig D. Whitesell; Susan C. Miyasaka; Robert F. Strand; Thomas H. Schubert; Katharine E. McDuffie

    1988-01-01

    Eucalyptus saligna trees grown in short-rotation plantations on the island of Hawaii were measured, harvested, and weighed to provide data for developing regression equations using non-destructive stand measurements. Regression analysis of the data from 190 trees in the 2.0- to 3.5-year range and 96 trees in the 4- to 6-year range related stem-only...

  2. Assessing College Student Interest in Math and/or Computer Science in a Cross-National Sample Using Classification and Regression Trees

    ERIC Educational Resources Information Center

    Kitsantas, Anastasia; Kitsantas, Panagiota; Kitsantas, Thomas

    2012-01-01

    The purpose of this exploratory study was to assess the relative importance of a number of variables in predicting students' interest in math and/or computer science. Classification and regression trees (CART) were employed in the analysis of survey data collected from 276 college students enrolled in two U.S. and Greek universities. The results…

  3. Binding affinity toward human prion protein of some anti-prion compounds - Assessment based on QSAR modeling, molecular docking and non-parametric ranking.

    PubMed

    Kovačević, Strahinja; Karadžić, Milica; Podunavac-Kuzmanović, Sanja; Jevrić, Lidija

    2018-01-01

    The present study is based on the quantitative structure-activity relationship (QSAR) analysis of binding affinity toward human prion protein (huPrP C ) of quinacrine, pyridine dicarbonitrile, diphenylthiazole and diphenyloxazole analogs applying different linear and non-linear chemometric regression techniques, including univariate linear regression, multiple linear regression, partial least squares regression and artificial neural networks. The QSAR analysis distinguished molecular lipophilicity as an important factor that contributes to the binding affinity. Principal component analysis was used in order to reveal similarities or dissimilarities among the studied compounds. The analysis of in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters was conducted. The ranking of the studied analogs on the basis of their ADMET parameters was done applying the sum of ranking differences, as a relatively new chemometric method. The main aim of the study was to reveal the most important molecular features whose changes lead to the changes in the binding affinities of the studied compounds. Another point of view on the binding affinity of the most promising analogs was established by application of molecular docking analysis. The results of the molecular docking were proven to be in agreement with the experimental outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The role of health-related behaviors in the socioeconomic disparities in oral health.

    PubMed

    Sabbah, Wael; Tsakos, Georgios; Sheiham, Aubrey; Watt, Richard G

    2009-01-01

    This study aimed to examine the socioeconomic disparities in health-related behaviors and to assess if behaviors eliminate socioeconomic disparities in oral health in a nationally representative sample of adult Americans. Data are from the US Third National Health and Nutrition Examination Survey (1988-1994). Behaviors were indicated by smoking, dental visits, frequency of eating fresh fruits and vegetables and extent of calculus, used as a marker for oral hygiene. Oral health outcomes were gingival bleeding, loss of periodontal attachment, tooth loss and perceived oral health. Education and income indicated socioeconomic position. Sex, age, ethnicity, dental insurance and diabetes were adjusted for in the regression analysis. Regression analysis was used to assess socioeconomic disparities in behaviors. Regression models adjusting and not adjusting for behaviors were compared to assess the change in socioeconomic disparities in oral health. The results showed clear socioeconomic disparities in all behaviors. After adjusting for behaviors, the association between oral health and socioeconomic indicators attenuated but did not disappear. These findings imply that improvement in health-related behaviors may lessen, but not eliminate socioeconomic disparities in oral health, and suggest the presence of more complex determinants of these disparities which should be addressed by oral health preventive policies.

  5. Application of principal component regression and partial least squares regression in ultraviolet spectrum water quality detection

    NASA Astrophysics Data System (ADS)

    Li, Jiangtong; Luo, Yongdao; Dai, Honglin

    2018-01-01

    Water is the source of life and the essential foundation of all life. With the development of industrialization, the phenomenon of water pollution is becoming more and more frequent, which directly affects the survival and development of human. Water quality detection is one of the necessary measures to protect water resources. Ultraviolet (UV) spectral analysis is an important research method in the field of water quality detection, which partial least squares regression (PLSR) analysis method is becoming predominant technology, however, in some special cases, PLSR's analysis produce considerable errors. In order to solve this problem, the traditional principal component regression (PCR) analysis method was improved by using the principle of PLSR in this paper. The experimental results show that for some special experimental data set, improved PCR analysis method performance is better than PLSR. The PCR and PLSR is the focus of this paper. Firstly, the principal component analysis (PCA) is performed by MATLAB to reduce the dimensionality of the spectral data; on the basis of a large number of experiments, the optimized principal component is extracted by using the principle of PLSR, which carries most of the original data information. Secondly, the linear regression analysis of the principal component is carried out with statistic package for social science (SPSS), which the coefficients and relations of principal components can be obtained. Finally, calculating a same water spectral data set by PLSR and improved PCR, analyzing and comparing two results, improved PCR and PLSR is similar for most data, but improved PCR is better than PLSR for data near the detection limit. Both PLSR and improved PCR can be used in Ultraviolet spectral analysis of water, but for data near the detection limit, improved PCR's result better than PLSR.

  6. The impact of a standardized program on short and long-term outcomes in bariatric surgery.

    PubMed

    Aird, Lisa N F; Hong, Dennis; Gmora, Scott; Breau, Ruth; Anvari, Mehran

    2017-02-01

    The purpose of this study was to determine whether there has been an improvement in short- and long-term clinical outcomes since 2010, when the Ontario Bariatric Network led a province-wide initiative to establish a standardized system of care for bariatric patients. The system includes nine bariatric centers, a centralized referral system, and a research registry. Standardization of procedures has progressed yearly, including guidelines for preoperative assessment and perioperative care. Analysis of the OBN registry data was performed by fiscal year between April 2010 and March 2015. Three-month overall postoperative complication rates and 30 day postoperative mortality were calculated. The mean percentage of weight loss at 1, 2, and 3 years postoperative, and regression of obesity-related diseases were calculated. The analysis of continuous and nominal data was performed using ANOVA, Chi-square, and McNemar's testing. A multiple logistic regression analysis was performed for factors affecting postoperative complication rate. Eight thousand and forty-three patients were included in the bariatric registry between April 2010 and March 2015. Thirty-day mortality was rare (<0.075 %) and showed no significant difference between years. Three-month overall postoperative complication rates significantly decreased with standardization (p < 0.001), as did intra-operative complication rates (p < -0.001). Regression analysis demonstrated increasing standardization to be a predictor of 3 month complication rate OR of 0.59 (95 %CI 0.41-0.85, p = 0.00385). The mean percentage of weight loss at 1, 2, and 3 years postoperative showed stability at 33.2 % (9.0 SD), 34.1 % (10.1 SD), and 32.7 % (10.1 SD), respectively. Sustained regression in obesity-related comorbidities was demonstrated at 1, 2, and 3 years postoperative. Evidence indicates the implementation of a standardized system of bariatric care has contributed to improvements in complication rates and supported prolonged weight loss and regression of obesity-related diseases in patients undergoing bariatric surgery in Ontario.

  7. Symptoms of musculoskeletal disorders among ammunition factory workers in Turkey.

    PubMed

    Pinar, Tevfik; Cakmak, Z Aytul; Saygun, Meral; Akdur, Recep; Ulu, Nuriye; Keles, Isik; Saylam, Hamdi Saim

    2013-01-01

    The aim of this study was to assess the prevalence of symptoms of work-related musculoskeletal disorders (MSDs) and to determine the risk factors among ammunition factory workers in Turkey. This cross-sectional study was performed on 955 ammunition factory workers. Potential risk factors were investigated with a questionnaire and multivariate logistic regression analysis was performed. During the previous year, 39.3% of ammunition workers experienced symptoms of work-related MSDs. Logistic regression analysis showed smoking (odds ratio [OR] = 1.372), chronic diseases (OR = 1.795), body mass index (BMI; overweight) (OR = 1.631), working year (OR = 1.509), cold temperature (OR = 1.838), and work load (OR = 2.210) were significant independent risk factors for the development of symptoms of MSDs. It was found that both work-related conditions and personal and environmental factors are important for the development of occupational MSDs.

  8. Estimating population prevalence of psychiatric conditions by small area with applications to analysing outcome and referral variations.

    PubMed

    Congdon, Peter

    2006-12-01

    This paper considers the development of estimates of mental illness prevalence for small areas and applications in explaining psychiatric outcomes and in assessing service provision. Estimates of prevalence are based on a logistic regression analysis of two national studies that provides model based estimates of relative morbidity risk by demographic, socio-economic and ethnic group for major psychiatric conditions; household/marital and area status also figure in the regression. Relative risk estimates are used, along with suitably disaggregated census populations, to make prevalence estimates for 354 English local authorities (LAs). Two applications are considered: the first involves analysis of variations in schizophrenia referrals and suicide mortality over English LAs that takes account of prevalence differences, and the second involves assessing hospital referral and bed use in relation to prevalence (for ages 16-74) for a case study area, Waltham Forest in NE London.

  9. Impact of Pacemaker Lead Characteristics on Pacemaker Related Infection and Heart Perforation: A Nationwide Population-Based Cohort Study.

    PubMed

    Lin, Yu-Sheng; Chen, Tien-Hsing; Hung, Sheng-Ping; Chen, Dong Yi; Mao, Chun-Tai; Tsai, Ming-Lung; Chang, Shih-Tai; Wang, Chun-Chieh; Wen, Ming-Shien; Chen, Mien-Cheng

    2015-01-01

    Several risk factors for pacemaker (PM) related complications have been reported. However, no study has investigated the impact of lead characteristics on pacemaker-related complications. Patients who received a new pacemaker implant from January 1997 to December 2011 were selected from the Taiwan National Health Insurance Database. This population was grouped according to the pacemaker lead characteristics in terms of fixation and insulation. The impact of the characteristics of leads on early heart perforation was analyzed by multivariable logistic regression analysis, while the impact of the lead characteristics on early and late infection and late heart perforation over a three-year period were analyzed using Cox regression. This study included 36,104 patients with a mean age of 73.4±12.5 years. In terms of both early and late heart perforations, there were no significant differences between groups across the different types of fixation and insulations. In the multivariable Cox regression analysis, the pacemaker-related infection rate was significantly lower in the active fixation only group compared to either the both fixation (OR, 0.23; 95% CI, 0.07-0.80; P = 0.020) or the passive fixation group (OR, 0.26; 95% CI, 0.08-0.83; P = 0.023). There was no difference in heart perforation between active and passive fixation leads. Active fixation leads were associated with reduced risk of pacemaker-related infection.

  10. Clinicians' adherence to clinical practice guidelines for cardiac function monitoring during antipsychotic treatment: a retrospective report on 434 patients with severe mental illness.

    PubMed

    Manchia, Mirko; Firinu, Giorgio; Carpiniello, Bernardo; Pinna, Federica

    2017-03-31

    Severe mental illness (SMI) has considerable excess morbidity and mortality, a proportion of which is explained by cardiovascular diseases, caused in part by antipsychotic (AP) induced QT-related arrhythmias and sudden death by Torsade de Point (TdP). The implementation of evidence-based recommendations for cardiac function monitoring might reduce the incidence of these AP-related adverse events. To investigate clinicians' adherence to cardiac function monitoring before and after starting AP, we performed a retrospective assessment of 434 AP-treated SMI patients longitudinally followed-up for 5 years at an academic community mental health center. We classified antipsychotics according to their risk of inducing QT-related arrhythmias and TdP (Center for Research on Therapeutics, University of Arizona). We used univariate tests and multinomial or binary logistic regression model for data analysis. Univariate and multinomial regression analysis showed that psychiatrists were more likely to perform pre-treatment electrocardiogram (ECG) and electrolyte testing with AP carrying higher cardiovascular risk, but not on the basis of AP pharmacological class. Univariate and binomial regression analysis showed that cardiac function parameters (ECG and electrolyte balance) were more frequently monitored during treatment with second generation AP than with first generation AP. Our data show the presence of weaknesses in the cardiac function monitoring of AP-treated SMI patients, and might guide future interventions to tackle them.

  11. Neural Networks for Readability Analysis.

    ERIC Educational Resources Information Center

    McEneaney, John E.

    This paper describes and reports on the performance of six related artificial neural networks that have been developed for the purpose of readability analysis. Two networks employ counts of linguistic variables that simulate a traditional regression-based approach to readability. The remaining networks determine readability from "visual…

  12. Adolescent Drug Use and Other Behaviors.

    ERIC Educational Resources Information Center

    Hundleby, John D.; And Others

    1982-01-01

    Two-hundred-thirty-one adolescents completed questionnaires concerning their use of drugs (alcohol, tobacco, pain-killers, and marijuana). Factor analysis of endorsements of a broad range of behavior, followed by regression analysis, indicated that sexual behavior, general delinquency, school achievement, and social behavior were all related to…

  13. [Sociodemographic context of homicide in Mexico City: a spatial analysis].

    PubMed

    Fuentes Flores, César; Sánchez Salinas, Omar

    2015-12-01

    Investigate the spatial distribution pattern of the homicide rate and its relation to sociodemographic features in the Benito Juárez, Coyoacán, and Cuauhtémoc districts of Mexico City in 2010. Inferential cross-sectional study that uses spatial analysis methods to study the spatial association of the homicide rate and demographic features. Spatial association was determined through the location quotient, multiple regression analysis, and the use of geographically weighted regression. Homicides show a heterogeneous location pattern with high rates in areas with non-residential land use, low population density, and low marginalization. Spatial analysis tools are powerful instruments for the design of prevention- and recreation-focused public safety policies that aim to reduce mortality from external causes such as homicides.

  14. Examining Relations between Mathematics Teachers' Instructional Vision and Knowledge and Change in Practice

    ERIC Educational Resources Information Center

    Munter, Charles; Correnti, Richard

    2017-01-01

    This article provides a longitudinal examination of how changes in more than 200 middle-grades mathematics teachers' instructional practices related to their (a) mathematical knowledge for teaching (MKT) and (b) instructional vision. Results of this multilevel regression analysis suggest that MKT and instructional vision are related to instruction…

  15. Analysis of regression methods for solar activity forecasting

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A.; Vaughan, W. W.

    1979-01-01

    The paper deals with the potential use of the most recent solar data to project trends in the next few years. Assuming that a mode of solar influence on weather can be identified, advantageous use of that knowledge presumably depends on estimating future solar activity. A frequently used technique for solar cycle predictions is a linear regression procedure along the lines formulated by McNish and Lincoln (1949). The paper presents a sensitivity analysis of the behavior of such regression methods relative to the following aspects: cycle minimum, time into cycle, composition of historical data base, and unnormalized vs. normalized solar cycle data. Comparative solar cycle forecasts for several past cycles are presented as to these aspects of the input data. Implications for the current cycle, No. 21, are also given.

  16. On the use of regression analysis for the estimation of human biological age.

    PubMed

    Krøll, J; Saxtrup, O

    2000-01-01

    The present investigation compares three linear regression procedures for the definition of human biological age (bioage). As a model system for bioage definition is used the variations with age of blood hemoglobin (B-hemoglobin) in males in the age range 50-95 years. The bioage measures compared are: 1: P-bioage; defined from regression of chronological age on B-hemoglobin results. 2: AC-bioage; obtained by indirect regression, using in reverse the equation describing the regression of B-hemoglobin on age in a reference population. 3: BC-bioage; defined by orthogonal regression on the reference regression line of B-hemoglobin on age. It is demonstrated that the P-bioage measure gives an overestimation of the bioage in the younger and an underestimation in the older individuals. This 'regression to the mean' is avoided using the indirect regression procedures. Here the relatively low SD of the BC-bioage measure results from the inclusion of individual chronological age in the orthogonal regression procedure. Observations on male blood donors illustrates the variation of the AC- and BC-bioage measures in the individual.

  17. Background stratified Poisson regression analysis of cohort data.

    PubMed

    Richardson, David B; Langholz, Bryan

    2012-03-01

    Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models.

  18. Constitution of traditional chinese medicine and related factors in women of childbearing age.

    PubMed

    Jiang, Qiao-Yu; Li, Jue; Zheng, Liang; Wang, Guang-Hua; Wang, Jing

    2018-04-01

    This study investigates the constitution of traditional Chinese medicine (TCM) among women who want to be pregnant in one year and explores factors related to TCM constitution. This study was conducted on women who participated in free preconception check-ups provided by the Zhabei District Maternity and Child Care Center in Shanghai, China. The information regarding the female demographic characteristics, physical condition, history of pregnancy and childbearing, diet and behavior, and social psychological factors was collected, and TCM constitution assessment was performed. The Chi-square test, t-test, logistic regression analysis, and multinomial logistic regression analysis were used to explore the related factors of TCM constitution. The participants in this study were aged 28.3 ± 3.0 years. Approximately fifty-five women in this study had Unbalanced Constitution. Logistic regression analysis showed that Shanghai residence, dysmenorrhea, gum bleeding, aversion to vegetables, preference for raw meat, job stress, and economic stress were significantly and negatively associated with Balanced Constitution. Multinomial logistic analysis showed that Shanghai residence was significantly associated with Yang-deficiency, Yin-deficiency, and Stagnant Qi Constitutions; gum bleeding was significantly associated with Yin-deficiency, Stagnant Blood, Stagnant Qi, and Inherited Special Constitutions; aversion to vegetables was significantly associated with Damp-heat Constitution; job stress was significantly associated with Yang-deficiency, Phlegm-dampness, Damp-heat, Stagnant Blood, and Stagnant Qi Constitutions; and economic stress was significantly associated with Yang-deficiency, and Stagnant Qi Constitutions. The application of TCM constitution to preconception care would be beneficial for early identification of potential TCM constitution risks and be beneficial for early intervention (e.g., health education, and dietary education), especially during the women who do not have a medical condition and those who have related factors found in this study. Copyright © 2018. Published by Elsevier Taiwan LLC.

  19. Multivariate time series analysis of neuroscience data: some challenges and opportunities.

    PubMed

    Pourahmadi, Mohsen; Noorbaloochi, Siamak

    2016-04-01

    Neuroimaging data may be viewed as high-dimensional multivariate time series, and analyzed using techniques from regression analysis, time series analysis and spatiotemporal analysis. We discuss issues related to data quality, model specification, estimation, interpretation, dimensionality and causality. Some recent research areas addressing aspects of some recurring challenges are introduced. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Analysis of the discriminative methods for diagnosis of benign and malignant solitary pulmonary nodules based on serum markers.

    PubMed

    Wang, Wanping; Liu, Mingyue; Wang, Jing; Tian, Rui; Dong, Junqiang; Liu, Qi; Zhao, Xianping; Wang, Yuanfang

    2014-01-01

    Screening indexes of tumor serum markers for benign and malignant solitary pulmonary nodules (SPNs) were analyzed to find the optimum method for diagnosis. Enzyme-linked immunosorbent assays, an automatic immune analyzer and radioimmunoassay methods were used to examine the levels of 8 serum markers in 164 SPN patients, and the sensitivity for differential diagnosis of malignant or benign SPN was compared for detection using a single plasma marker or a combination of markers. The results for serological indicators that closely relate to benign and malignant SPNs were screened using the Fisher discriminant analysis and a non-conditional logistic regression analysis method, respectively. The results were then verified by the k-means clustering analysis method. The sensitivity when using a combination of serum markers to detect SPN was higher than that using a single marker. By Fisher discriminant analysis, cytokeratin 19 fragments (CYFRA21-1), carbohydrate antigen 125 (CA125), squamous cell carcinoma antigen (SCC) and breast cancer antigen (CA153), which relate to the benign and malignant SPNs, were screened. Through non-conditional logistic regression analysis, CYFRA21-1, SCC and CA153 were obtained. Using the k-means clustering analysis, the cophenetic correlation coefficient (0.940) obtained by the Fisher discriminant analysis was higher than that obtained with logistic regression analysis (0.875). This study indicated that the Fisher discriminant analysis functioned better in screening out serum markers to recognize the benign and malignant SPN. The combined detection of CYFRA21-1, CA125, SCC and CA153 is an effective way to distinguish benign and malignant SPN, and will find an important clinical application in the early diagnosis of SPN. © 2014 S. Karger GmbH, Freiburg.

  1. Wavelet analysis for the study of the relations among soil radon anomalies, volcanic and seismic events: the case of Mt. Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Ferrera, Elisabetta; Giammanco, Salvatore; Cannata, Andrea; Montalto, Placido

    2013-04-01

    From November 2009 to April 2011 soil radon activity was continuously monitored using a Barasol® probe located on the upper NE flank of Mt. Etna volcano, close either to the Piano Provenzana fault or to the NE-Rift. Seismic and volcanological data have been analyzed together with radon data. We also analyzed air and soil temperature, barometric pressure, snow and rain fall data. In order to find possible correlations among the above parameters, and hence to reveal possible anomalies in the radon time-series, we used different statistical methods: i) multivariate linear regression; ii) cross-correlation; iii) coherence analysis through wavelet transform. Multivariate regression indicated a modest influence on soil radon from environmental parameters (R2 = 0.31). When using 100-days time windows, the R2 values showed wide variations in time, reaching their maxima (~0.63-0.66) during summer. Cross-correlation analysis over 100-days moving averages showed that, similar to multivariate linear regression analysis, the summer period is characterised by the best correlation between radon data and environmental parameters. Lastly, the wavelet coherence analysis allowed a multi-resolution coherence analysis of the time series acquired. This approach allows to study the relations among different signals either in time or frequency domain. It confirmed the results of the previous methods, but also allowed to recognize correlations between radon and environmental parameters at different observation scales (e.g., radon activity changed during strong precipitations, but also during anomalous variations of soil temperature uncorrelated with seasonal fluctuations). Our work suggests that in order to make an accurate analysis of the relations among distinct signals it is necessary to use different techniques that give complementary analytical information. In particular, the wavelet analysis showed to be very effective in discriminating radon changes due to environmental influences from those correlated with impending seismic or volcanic events.

  2. Field Demonstration Report Applied Innovative Technologies for Characterization of Nitrocellulose- and Nitroglycerine Contaminated Buildings and Soils, Rev 1

    DTIC Science & Technology

    2007-01-05

    positive / false negatives. The quantitative on-site methods were evaluated using linear regression analysis and relative percent difference (RPD) comparison...Conclusion ...............................................................................................3-9 3.2 Quantitative Analysis Using CRREL...3-37 3.3 Quantitative Analysis for NG by GC/TID.........................................................3-38 3.3.1 Introduction

  3. Psychological factors influence the gastroesophageal reflux disease (GERD) and their effect on quality of life among firefighters in South Korea.

    PubMed

    Jang, Seung-Ho; Ryu, Han-Seung; Choi, Suck-Chei; Lee, Sang-Yeol

    2016-10-01

    The purpose of this study was to examine psychosocial factors related to gastroesophageal reflux disease (GERD) and their effects on quality of life (QOL) in firefighters. Data were collected from 1217 firefighters in a Korean province. We measured psychological symptoms using the scale. In order to observe the influence of the high-risk group on occupational stress, we conduct logistic multiple linear regression. The correlation between psychological factors and QOL was also analyzed and performed a hierarchical regression analysis. GERD was observed in 32.2% of subjects. Subjects with GERD showed higher depressive symptom, anxiety and occupational stress scores, and lower self-esteem and QOL scores relative to those observed in GERD - negative subject. GERD risk was higher for the following occupational stress subcategories: job demand, lack of reward, interpersonal conflict, and occupational climate. The stepwise regression analysis showed that depressive symptoms, occupational stress, self-esteem, and anxiety were the best predictors of QOL. The results suggest that psychological and medical approaches should be combined in GERD assessment.

  4. Psychological factors influence the gastroesophageal reflux disease (GERD) and their effect on quality of life among firefighters in South Korea

    PubMed Central

    Jang, Seung-Ho; Ryu, Han-Seung; Choi, Suck-Chei; Lee, Sang-Yeol

    2016-01-01

    Objectives The purpose of this study was to examine psychosocial factors related to gastroesophageal reflux disease (GERD) and their effects on quality of life (QOL) in firefighters. Methods Data were collected from 1217 firefighters in a Korean province. We measured psychological symptoms using the scale. In order to observe the influence of the high-risk group on occupational stress, we conduct logistic multiple linear regression. The correlation between psychological factors and QOL was also analyzed and performed a hierarchical regression analysis. Results GERD was observed in 32.2% of subjects. Subjects with GERD showed higher depressive symptom, anxiety and occupational stress scores, and lower self-esteem and QOL scores relative to those observed in GERD – negative subject. GERD risk was higher for the following occupational stress subcategories: job demand, lack of reward, interpersonal conflict, and occupational climate. The stepwise regression analysis showed that depressive symptoms, occupational stress, self-esteem, and anxiety were the best predictors of QOL. Conclusions The results suggest that psychological and medical approaches should be combined in GERD assessment. PMID:27691373

  5. Biomass relations for components of five Minnesota shrubs.

    Treesearch

    Richard R. Buech; David J. Rugg

    1995-01-01

    Presents equations for estimating biomass of six components on five species of shrubs common to northeastern Minnesota. Regression analysis is used to compare the performance of three estimators of biomass.

  6. Differences in Risk Factors for Rotator Cuff Tears between Elderly Patients and Young Patients.

    PubMed

    Watanabe, Akihisa; Ono, Qana; Nishigami, Tomohiko; Hirooka, Takahiko; Machida, Hirohisa

    2018-02-01

    It has been unclear whether the risk factors for rotator cuff tears are the same at all ages or differ between young and older populations. In this study, we examined the risk factors for rotator cuff tears using classification and regression tree analysis as methods of nonlinear regression analysis. There were 65 patients in the rotator cuff tears group and 45 patients in the intact rotator cuff group. Classification and regression tree analysis was performed to predict rotator cuff tears. The target factor was rotator cuff tears; explanatory variables were age, sex, trauma, and critical shoulder angle≥35°. In the results of classification and regression tree analysis, the tree was divided at age 64. For patients aged≥64, the tree was divided at trauma. For patients aged<64, the tree was divided at critical shoulder angle≥35°. The odds ratio for critical shoulder angle≥35° was significant for all ages (5.89), and for patients aged<64 (10.3) while trauma was only a significant factor for patients aged≥64 (5.13). Age, trauma, and critical shoulder angle≥35° were related to rotator cuff tears in this study. However, these risk factors showed different trends according to age group, not a linear relationship.

  7. Methods for estimating streamflow at mountain fronts in southern New Mexico

    USGS Publications Warehouse

    Waltemeyer, S.D.

    1994-01-01

    The infiltration of streamflow is potential recharge to alluvial-basin aquifers at or near mountain fronts in southern New Mexico. Data for 13 streamflow-gaging stations were used to determine a relation between mean annual stream- flow and basin and climatic conditions. Regression analysis was used to develop an equation that can be used to estimate mean annual streamflow on the basis of drainage areas and mean annual precipi- tation. The average standard error of estimate for this equation is 46 percent. Regression analysis also was used to develop an equation to estimate mean annual streamflow on the basis of active- channel width. Measurements of the width of active channels were determined for 6 of the 13 gaging stations. The average standard error of estimate for this relation is 29 percent. Stream- flow estimates made using a regression equation based on channel geometry are considered more reliable than estimates made from an equation based on regional relations of basin and climatic conditions. The sample size used to develop these relations was small, however, and the reported standard error of estimate may not represent that of the entire population. Active-channel-width measurements were made at 23 ungaged sites along the Rio Grande upstream from Elephant Butte Reservoir. Data for additional sites would be needed for a more comprehensive assessment of mean annual streamflow in southern New Mexico.

  8. RELATION OF ENVIRONMENTAL CHARACTERISTICS TO FISH ASSEMBLAGES IN THE UPPER FRENCH BROAD RIVER BASIN, NORTH CAROLINA

    EPA Science Inventory

    Fish assemblages at 16 sites in the upper French Broad River basin, North Carolina were related to environmental variables using detrended correspondence analysis (DCA) and linear regression. This study was conducted at the landscape scale because regional variables are controlle...

  9. Unique Associations between Peer Relations and Social Anxiety in Early Adolescence

    ERIC Educational Resources Information Center

    Flanagan, Kelly S.; Erath, Stephen A.; Bierman, Karen L.

    2008-01-01

    This study examined the unique associations between feelings of social anxiety and multiple dimensions of peer relations (positive peer nominations, peer- and self-reported peer victimization, and self-reported friendship quality) among 383 sixth- and seventh-grade students. Hierarchical regression analysis provided evidence for the unique…

  10. Development of a Risk Assessment Tool to Predict Fall-Related Severe Injuries Occurring in a Hospital

    PubMed Central

    Toyabe, Shin-ichi

    2014-01-01

    Inpatient falls are the most common adverse events that occur in a hospital, and about 3 to 10% of falls result in serious injuries such as bone fractures and intracranial haemorrhages. We previously reported that bone fractures and intracranial haemorrhages were two major fall-related injuries and that risk assessment score for osteoporotic bone fracture was significantly associated not only with bone fractures after falls but also with intracranial haemorrhage after falls. Based on the results, we tried to establish a risk assessment tool for predicting fall-related severe injuries in a hospital. Possible risk factors related to fall-related serious injuries were extracted from data on inpatients that were admitted to a tertiary-care university hospital by using multivariate Cox’ s regression analysis and multiple logistic regression analysis. We found that fall risk score and fracture risk score were the two significant factors, and we constructed models to predict fall-related severe injuries incorporating these factors. When the prediction model was applied to another independent dataset, the constructed model could detect patients with fall-related severe injuries efficiently. The new assessment system could identify patients prone to severe injuries after falls in a reproducible fashion. PMID:25168984

  11. Regarding to the Variance Analysis of Regression Equation of the Surface Roughness obtained by End Milling process of 7136 Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    POP, A. B.; ȚÎȚU, M. A.

    2016-11-01

    In the metal cutting process, surface quality is intrinsically related to the cutting parameters and to the cutting tool geometry. At the same time, metal cutting processes are closely related to the machining costs. The purpose of this paper is to reduce manufacturing costs and processing time. A study was made, based on the mathematical modelling of the average of the absolute value deviation (Ra) resulting from the end milling process on 7136 aluminium alloy, depending on cutting process parameters. The novel element brought by this paper is the 7136 aluminium alloy type, chosen to conduct the experiments, which is a material developed and patented by Universal Alloy Corporation. This aluminium alloy is used in the aircraft industry to make parts from extruded profiles, and it has not been studied for the proposed research direction. Based on this research, a mathematical model of surface roughness Ra was established according to the cutting parameters studied in a set experimental field. A regression analysis was performed, which identified the quantitative relationships between cutting parameters and the surface roughness. Using the variance analysis ANOVA, the degree of confidence for the achieved results by the regression equation was determined, and the suitability of this equation at every point of the experimental field.

  12. Heuristic approach to capillary pressures averaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coca, B.P.

    1980-10-01

    Several methods are available to average capillary pressure curves. Among these are the J-curve and regression equations of the wetting-fluid saturation in porosity and permeability (capillary pressure held constant). While the regression equation seem completely empiric, the J-curve method seems to be theoretically sound due to its expression based on a relation between the average capillary radius and the permeability-porosity ratio. An analysis is given of each of these methods.

  13. Prediction of the Main Engine Power of a New Container Ship at the Preliminary Design Stage

    NASA Astrophysics Data System (ADS)

    Cepowski, Tomasz

    2017-06-01

    The paper presents mathematical relationships that allow us to forecast the estimated main engine power of new container ships, based on data concerning vessels built in 2005-2015. The presented approximations allow us to estimate the engine power based on the length between perpendiculars and the number of containers the ship will carry. The approximations were developed using simple linear regression and multivariate linear regression analysis. The presented relations have practical application for estimation of container ship engine power needed in preliminary parametric design of the ship. It follows from the above that the use of multiple linear regression to predict the main engine power of a container ship brings more accurate solutions than simple linear regression.

  14. Principal component regression analysis with SPSS.

    PubMed

    Liu, R X; Kuang, J; Gong, Q; Hou, X L

    2003-06-01

    The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.

  15. Evaluation of the comprehensive palatability of Japanese sake paired with dishes by multiple regression analysis based on subdomains.

    PubMed

    Nakamura, Ryo; Nakano, Kumiko; Tamura, Hiroyasu; Mizunuma, Masaki; Fushiki, Tohru; Hirata, Dai

    2017-08-01

    Many factors contribute to palatability. In order to evaluate the palatability of Japanese alcohol sake paired with certain dishes by integrating multiple factors, here we applied an evaluation method previously reported for palatability of cheese by multiple regression analysis based on 3 subdomain factors (rewarding, cultural, and informational). We asked 94 Japanese participants/subjects to evaluate the palatability of sake (1st evaluation/E1 for the first cup, 2nd/E2 and 3rd/E3 for the palatability with aftertaste/afterglow of certain dishes) and to respond to a questionnaire related to 3 subdomains. In E1, 3 factors were extracted by a factor analysis, and the subsequent multiple regression analyses indicated that the palatability of sake was interpreted by mainly the rewarding. Further, the results of attribution-dissections in E1 indicated that 2 factors (rewarding and informational) contributed to the palatability. Finally, our results indicated that the palatability of sake was influenced by the dish eaten just before drinking.

  16. Diesel engine exhaust and lung cancer risks - evaluation of the meta-analysis by Vermeulen et al. 2014.

    PubMed

    Morfeld, Peter; Spallek, Michael

    2015-01-01

    Vermeulen et al. 2014 published a meta-regression analysis of three relevant epidemiological US studies (Steenland et al. 1998, Garshick et al. 2012, Silverman et al. 2012) that estimated the association between occupational diesel engine exhaust (DEE) exposure and lung cancer mortality. The DEE exposure was measured as cumulative exposure to estimated respirable elemental carbon in μg/m(3)-years. Vermeulen et al. 2014 found a statistically significant dose-response association and described elevated lung cancer risks even at very low exposures. We performed an extended re-analysis using different modelling approaches (fixed and random effects regression analyses, Greenland/Longnecker method) and explored the impact of varying input data (modified coefficients of Garshick et al. 2012, results from Crump et al. 2015 replacing Silverman et al. 2012, modified analysis of Moehner et al. 2013). We reproduced the individual and main meta-analytical results of Vermeulen et al. 2014. However, our analysis demonstrated a heterogeneity of the baseline relative risk levels between the three studies. This heterogeneity was reduced after the coefficients of Garshick et al. 2012 were modified while the dose coefficient dropped by an order of magnitude for this study and was far from being significant (P = 0.6). A (non-significant) threshold estimate for the cumulative DEE exposure was found at 150 μg/m(3)-years when extending the meta-analyses of the three studies by hockey-stick regression modelling (including the modified coefficients for Garshick et al. 2012). The data used by Vermeulen and colleagues led to the highest relative risk estimate across all sensitivity analyses performed. The lowest relative risk estimate was found after exclusion of the explorative study by Steenland et al. 1998 in a meta-regression analysis of Garshick et al. 2012 (modified), Silverman et al. 2012 (modified according to Crump et al. 2015) and Möhner et al. 2013. The meta-coefficient was estimated to be about 10-20 % of the main effect estimate in Vermeulen et al. 2014 in this analysis. The findings of Vermeulen et al. 2014 should not be used without reservations in any risk assessments. This is particularly true for the low end of the exposure scale.

  17. The Relational-Behavior Survey as a Predictor of HIV-Related Parental Miscommunication: Implications for HIV, Prevention and Education at Primary Healthcare Service Facilities

    ERIC Educational Resources Information Center

    Chandler, Michele Denise; Chandler, Donald S.; Chandler, Donald S., Jr.; Race, James

    2012-01-01

    The study examined the relational-behavior survey (RBS) as a predictor of HIV-related parental miscommunication (HPM) among a voluntary sample 75 African American parents at a private healthcare facility located in the southwest region of the United States. A multiple regression analysis indicated that there was significant marginal prediction of…

  18. Modeling time-to-event (survival) data using classification tree analysis.

    PubMed

    Linden, Ariel; Yarnold, Paul R

    2017-12-01

    Time to the occurrence of an event is often studied in health research. Survival analysis differs from other designs in that follow-up times for individuals who do not experience the event by the end of the study (called censored) are accounted for in the analysis. Cox regression is the standard method for analysing censored data, but the assumptions required of these models are easily violated. In this paper, we introduce classification tree analysis (CTA) as a flexible alternative for modelling censored data. Classification tree analysis is a "decision-tree"-like classification model that provides parsimonious, transparent (ie, easy to visually display and interpret) decision rules that maximize predictive accuracy, derives exact P values via permutation tests, and evaluates model cross-generalizability. Using empirical data, we identify all statistically valid, reproducible, longitudinally consistent, and cross-generalizable CTA survival models and then compare their predictive accuracy to estimates derived via Cox regression and an unadjusted naïve model. Model performance is assessed using integrated Brier scores and a comparison between estimated survival curves. The Cox regression model best predicts average incidence of the outcome over time, whereas CTA survival models best predict either relatively high, or low, incidence of the outcome over time. Classification tree analysis survival models offer many advantages over Cox regression, such as explicit maximization of predictive accuracy, parsimony, statistical robustness, and transparency. Therefore, researchers interested in accurate prognoses and clear decision rules should consider developing models using the CTA-survival framework. © 2017 John Wiley & Sons, Ltd.

  19. Magnitude and frequency of floods in Washington

    USGS Publications Warehouse

    Cummans, J.E.; Collings, Michael R.; Nasser, Edmund George

    1975-01-01

    Relations are provided to estimate the magnitude and frequency of floods on Washington streams. Annual-peak-flow data from stream gaging stations on unregulated streams having 1 years or more of record were used to determine a log-Pearson Type III frequency curve for each station. Flood magnitudes having recurrence intervals of 2, 5, i0, 25, 50, and 10years were then related to physical and climatic indices of the drainage basins by multiple-regression analysis using the Biomedical Computer Program BMDO2R. These regression relations are useful for estimating flood magnitudes of the specified recurrence intervals at ungaged or short-record sites. Separate sets of regression equations were defined for western and eastern parts of the State, and the State was further subdivided into 12 regions in which the annual floods exhibit similar flood characteristics. Peak flows are related most significantly in western Washington to drainage-area size and mean annual precipitation. In eastern Washington-they are related most significantly to drainage-area size, mean annual precipitation, and percentage of forest cover. Standard errors of estimate of the estimating relations range from 25 to 129 percent, and the smallest errors are generally associated with the more humid regions.

  20. Differential item functioning analysis with ordinal logistic regression techniques. DIFdetect and difwithpar.

    PubMed

    Crane, Paul K; Gibbons, Laura E; Jolley, Lance; van Belle, Gerald

    2006-11-01

    We present an ordinal logistic regression model for identification of items with differential item functioning (DIF) and apply this model to a Mini-Mental State Examination (MMSE) dataset. We employ item response theory ability estimation in our models. Three nested ordinal logistic regression models are applied to each item. Model testing begins with examination of the statistical significance of the interaction term between ability and the group indicator, consistent with nonuniform DIF. Then we turn our attention to the coefficient of the ability term in models with and without the group term. If including the group term has a marked effect on that coefficient, we declare that it has uniform DIF. We examined DIF related to language of test administration in addition to self-reported race, Hispanic ethnicity, age, years of education, and sex. We used PARSCALE for IRT analyses and STATA for ordinal logistic regression approaches. We used an iterative technique for adjusting IRT ability estimates on the basis of DIF findings. Five items were found to have DIF related to language. These same items also had DIF related to other covariates. The ordinal logistic regression approach to DIF detection, when combined with IRT ability estimates, provides a reasonable alternative for DIF detection. There appear to be several items with significant DIF related to language of test administration in the MMSE. More attention needs to be paid to the specific criteria used to determine whether an item has DIF, not just the technique used to identify DIF.

  1. Frequency-domain nonlinear regression algorithm for spectral analysis of broadband SFG spectroscopy.

    PubMed

    He, Yuhan; Wang, Ying; Wang, Jingjing; Guo, Wei; Wang, Zhaohui

    2016-03-01

    The resonant spectral bands of the broadband sum frequency generation (BB-SFG) spectra are often distorted by the nonresonant portion and the lineshapes of the laser pulses. Frequency domain nonlinear regression (FDNLR) algorithm was proposed to retrieve the first-order polarization induced by the infrared pulse and to improve the analysis of SFG spectra through simultaneous fitting of a series of time-resolved BB-SFG spectra. The principle of FDNLR was presented, and the validity and reliability were tested by the analysis of the virtual and measured SFG spectra. The relative phase, dephasing time, and lineshapes of the resonant vibrational SFG bands can be retrieved without any preset assumptions about the SFG bands and the incident laser pulses.

  2. Regression mixture models: Does modeling the covariance between independent variables and latent classes improve the results?

    PubMed Central

    Lamont, Andrea E.; Vermunt, Jeroen K.; Van Horn, M. Lee

    2016-01-01

    Regression mixture models are increasingly used as an exploratory approach to identify heterogeneity in the effects of a predictor on an outcome. In this simulation study, we test the effects of violating an implicit assumption often made in these models – i.e., independent variables in the model are not directly related to latent classes. Results indicated that the major risk of failing to model the relationship between predictor and latent class was an increase in the probability of selecting additional latent classes and biased class proportions. Additionally, this study tests whether regression mixture models can detect a piecewise relationship between a predictor and outcome. Results suggest that these models are able to detect piecewise relations, but only when the relationship between the latent class and the predictor is included in model estimation. We illustrate the implications of making this assumption through a re-analysis of applied data examining heterogeneity in the effects of family resources on academic achievement. We compare previous results (which assumed no relation between independent variables and latent class) to the model where this assumption is lifted. Implications and analytic suggestions for conducting regression mixture based on these findings are noted. PMID:26881956

  3. Relation between increased numbers of safe playing areas and decreased vehicle related child mortality rates in Japan from 1970 to 1985: a trend analysis

    PubMed Central

    Nakahara, S.; Nakamura, Y.; Ichikawa, M.; Wakai, S.

    2004-01-01

    Objectives: To examine vehicle related mortality trends of children in Japan; and to investigate how environmental modifications such as the installation of public parks and pavements are associated with these trends. Design: Poisson regression was used for trend analysis, and multiple regression modelling was used to investigate the associations between trends in environmental modifications and trends in motor vehicle related child mortality rates. Setting: Mortality data of Japan from 1970 to 1994, defined as E-code 810–23 from 1970 to 1978 and E810–25 from 1979 to 1994, were obtained from vital statistics. Multiple regression modelling was confined to the 1970–1985 data. Data concerning public parks and other facilities were obtained from the Ministry of Land, Infrastructure, and Transport. Subjects: Children aged 0–14 years old were examined in this study and divided into two groups: 0–4 and 5–14 years. Main results: An increased number of public parks was associated with decreased vehicle related mortality rates among children aged 0–4 years, but not among children aged 5–14. In contrast, there was no association between trends in pavements and mortality rates. Conclusions: An increased number of public parks might reduce vehicle related preschooler deaths, in particular those involving pedestrians. Safe play areas in residential areas might reduce the risk of vehicle related child death by lessening the journey both to and from such areas as well as reducing the number of children playing on the street. However, such measures might not be effective in reducing the vehicle related mortalities of school age children who have an expanded range of activities and walk longer distances. PMID:15547055

  4. Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey)

    NASA Astrophysics Data System (ADS)

    Ozdemir, Adnan

    2011-07-01

    SummaryThe purpose of this study is to produce a groundwater spring potential map of the Sultan Mountains in central Turkey, based on a logistic regression method within a Geographic Information System (GIS) environment. Using field surveys, the locations of the springs (440 springs) were determined in the study area. In this study, 17 spring-related factors were used in the analysis: geology, relative permeability, land use/land cover, precipitation, elevation, slope, aspect, total curvature, plan curvature, profile curvature, wetness index, stream power index, sediment transport capacity index, distance to drainage, distance to fault, drainage density, and fault density map. The coefficients of the predictor variables were estimated using binary logistic regression analysis and were used to calculate the groundwater spring potential for the entire study area. The accuracy of the final spring potential map was evaluated based on the observed springs. The accuracy of the model was evaluated by calculating the relative operating characteristics. The area value of the relative operating characteristic curve model was found to be 0.82. These results indicate that the model is a good estimator of the spring potential in the study area. The spring potential map shows that the areas of very low, low, moderate and high groundwater spring potential classes are 105.586 km 2 (28.99%), 74.271 km 2 (19.906%), 101.203 km 2 (27.14%), and 90.05 km 2 (24.671%), respectively. The interpretations of the potential map showed that stream power index, relative permeability of lithologies, geology, elevation, aspect, wetness index, plan curvature, and drainage density play major roles in spring occurrence and distribution in the Sultan Mountains. The logistic regression approach has not yet been used to delineate groundwater potential zones. In this study, the logistic regression method was used to locate potential zones for groundwater springs in the Sultan Mountains. The evolved model was found to be in strong agreement with the available groundwater spring test data. Hence, this method can be used routinely in groundwater exploration under favourable conditions.

  5. The Global Signal in fMRI: Nuisance or Information?

    PubMed Central

    Nalci, Alican; Falahpour, Maryam

    2017-01-01

    The global signal is widely used as a regressor or normalization factor for removing the effects of global variations in the analysis of functional magnetic resonance imaging (fMRI) studies. However, there is considerable controversy over its use because of the potential bias that can be introduced when it is applied to the analysis of both task-related and resting-state fMRI studies. In this paper we take a closer look at the global signal, examining in detail the various sources that can contribute to the signal. For the most part, the global signal has been treated as a nuisance term, but there is growing evidence that it may also contain valuable information. We also examine the various ways that the global signal has been used in the analysis of fMRI data, including global signal regression, global signal subtraction, and global signal normalization. Furthermore, we describe new ways for understanding the effects of global signal regression and its relation to the other approaches. PMID:28213118

  6. Model synthesis in frequency analysis of Missouri floods

    USGS Publications Warehouse

    Hauth, Leland D.

    1974-01-01

    Synthetic flood records for 43 small-stream sites aided in definition of techniques for estimating the magnitude and frequency of floods in Missouri. The long-term synthetic flood records were generated by use of a digital computer model of the rainfall-runoff process. A relatively short period of concurrent rainfall and runoff data observed at each of the 43 sites was used to calibrate the model, and rainfall records covering from 66 to 78 years for four Missouri sites and pan-evaporation data were used to generate the synthetic records. Flood magnitude and frequency characteristics of both the synthetic records and observed long-term flood records available for 109 large-stream sites were used in a multiple-regression analysis to define relations for estimating future flood characteristics at ungaged sites. That analysis indicated that drainage basin size and slope were the most useful estimating variables. It also indicated that a more complex regression model than the commonly used log-linear one was needed for the range of drainage basin sizes available in this study.

  7. An analysis of the magnitude and frequency of floods on Oahu, Hawaii

    USGS Publications Warehouse

    Nakahara, R.H.

    1980-01-01

    An analysis of available peak-flow data for the island of Oahu, Hawaii, was made by using multiple regression techniques which related flood-frequency data to basin and climatic characteristics for 74 gaging stations on Oahu. In the analysis, several different groupings of stations were investigated, including divisions by geographic location and size of drainage area. The grouping consisting of two leeward divisions and one windward division produced the best results. Drainage basins ranged in area from 0.03 to 45.7 square miles. Equations relating flood magnitudes of selected frequencies to basin characteristics were developed for the three divisions of Oahu. These equations can be used to estimate the magnitude and frequency of floods for any site, gaged or ungaged, for any desired recurrence interval from 2 to 100 years. Data on basin characteristics, flood magnitudes for various recurrence intervals from individual station-frequency curves, and computed flood magnitudes by use of the regression equation are tabulated to provide the needed data. (USGS)

  8. Modeling Longitudinal Data Containing Non-Normal Within Subject Errors

    NASA Technical Reports Server (NTRS)

    Feiveson, Alan; Glenn, Nancy L.

    2013-01-01

    The mission of the National Aeronautics and Space Administration’s (NASA) human research program is to advance safe human spaceflight. This involves conducting experiments, collecting data, and analyzing data. The data are longitudinal and result from a relatively few number of subjects; typically 10 – 20. A longitudinal study refers to an investigation where participant outcomes and possibly treatments are collected at multiple follow-up times. Standard statistical designs such as mean regression with random effects and mixed–effects regression are inadequate for such data because the population is typically not approximately normally distributed. Hence, more advanced data analysis methods are necessary. This research focuses on four such methods for longitudinal data analysis: the recently proposed linear quantile mixed models (lqmm) by Geraci and Bottai (2013), quantile regression, multilevel mixed–effects linear regression, and robust regression. This research also provides computational algorithms for longitudinal data that scientists can directly use for human spaceflight and other longitudinal data applications, then presents statistical evidence that verifies which method is best for specific situations. This advances the study of longitudinal data in a broad range of applications including applications in the sciences, technology, engineering and mathematics fields.

  9. Determination of variability in leaf biomass densities of conifers and mixed conifers under different environmental conditions in the San Joaquin Valley air basin. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temple, P.J.; Mutters, R.J.; Adams, C.

    1995-06-01

    Biomass sampling plots were established at 29 locations within the dominant vegetation zones of the study area. Estimates of foliar biomass were made for each plot by three independent methods: regression analysis on the basis of tree diameter, calculation of the amount of light intercepted by the leaf canopy, and extrapolation from branch leaf area. Multivariate regression analysis was used to relate these foliar biomass estimates for oak plots and conifer plots to several independent predictor variables, including elevation, slope, aspect, temperature, precipitation, and soil chemical characteristics.

  10. Regression Analysis by Example. 5th Edition

    ERIC Educational Resources Information Center

    Chatterjee, Samprit; Hadi, Ali S.

    2012-01-01

    Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. "Regression Analysis by Example, Fifth Edition" has been expanded and thoroughly…

  11. Alcohol consumption and its related harms in The Netherlands since 1960: relationships with planned and unplanned factors.

    PubMed

    Knibbe, Ronald A; Derickx, Mieke; Allamani, Allaman; Massini, Giulia

    2014-10-01

    to establish which unplanned (social developments) and planned (alcohol policy measures) factors are related to per capita consumption and alcohol-related harms in the Netherlands. linear regression was used to establish which of the planned and unplanned factors were most strongly connected with alcohol consumption and harms. Artificial Neural Analysis (ANN) was used to inspect the interconnections between all variables. mothers age at birth was most strongly associated with increase in consumption. The ban on selling alcoholic beverages at petrol station was associated with a decrease in consumption. The linear regression of harms did not show any relation between alcohol policy measures and harms. The ANN-analyses indicate a very high interconnectedness between all variables allowing no causal inferences. Exceptions are the relation between price of beer and wine and the consumption of these beverages and the relation between a decrease in transport mortality and the increased use of breathalyzers tests and a restriction of paracommercial selling. unplanned factors are most strongly associated with per capita consumption and harms. ANN-analysis indicates that price of alcoholic beverages, breath testing, and restriction of sales may have had some influence. The study's limitations are noted.

  12. Hypomagnesemia predicts postoperative biochemical hypocalcemia after thyroidectomy.

    PubMed

    Luo, Han; Yang, Hongliu; Zhao, Wanjun; Wei, Tao; Su, Anping; Wang, Bin; Zhu, Jingqiang

    2017-05-25

    To investigate the role of magnesium in biochemical and symptomatic hypocalcemia, a retrospective study was conducted. Less-than-total thyroidectomy patients were excluded from the final analysis. Identified the risk factors of biochemical and symptomatic hypocalcemia, and investigated the correlation by logistic regression and correlation test respectively. A total of 304 patients were included in the final analysis. General incidence of hypomagnesemia was 23.36%. Logistic regression showed that gender (female) (OR = 2.238, p = 0.015) and postoperative hypomagnesemia (OR = 2.010, p = 0.017) were independent risk factors for biochemical hypocalcemia. Both Pearson and partial correlation tests indicated there was indeed significant relation between calcium and magnesium. However, relative decreasing of iPTH (>70%) (6.691, p < 0.001) and hypocalcemia (2.222, p = 0.046) were identified as risk factors of symptomatic hypocalcemia. The difference remained significant even in normoparathyroidism patients. Postoperative hypomagnesemia was independent risk factor of biochemical hypocalcemia. Relative decline of iPTH was predominating in predicting symptomatic hypocalcemia.

  13. Association between work role stressors and sleep quality.

    PubMed

    Iwasaki, S; Deguchi, Y; Inoue, K

    2018-05-17

    Work-related stressors are associated with low sleep quality. However, few studies have reported an association between role stressors and sleep quality. To elucidate the association between role stressors (including role conflict and ambiguity) and sleep quality. Cross-sectional study of daytime workers whose sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI). Work-related stressors, including role stressors, were assessed using the Generic Job Stress Questionnaire (GJSQ). The association between sleep quality and work-related stressors was investigated by logistic regression analysis. A total of 243 participants completed questionnaires were received (response rate 71%); 86 participants reported poor sleep quality, based on a global PSQI score ≥6. Multivariable logistic regression analysis revealed that higher role ambiguity was associated with global PSQI scores ≥6, and that role conflict was significantly associated with sleep problems, including sleep disturbance and daytime dysfunction. These results suggest that high role stress is associated with low sleep quality, and that this association should be considered an important determinant of the health of workers.

  14. Size, Stability and Incremental Budgeting Outcomes in Public Universities.

    ERIC Educational Resources Information Center

    Schick, Allen G.; Hills, Frederick S.

    1982-01-01

    Examined the influence of relative size in the analysis of total dollar and workforce budgets, and changes in total dollar and workforce budgets when correlational/regression methods are used. Data suggested that size dominates the analysis of total budgets, and is not a factor when discretionary dollar increments are analyzed. (JAC)

  15. Job Satisfaction in Mexican Faculty: An Analysis of its Predictor Variables. ASHE Annual Meeting Paper.

    ERIC Educational Resources Information Center

    Galaz-Fontes, Jesus Francisco; Gil-Anton, Manuel

    This study examined overall job satisfaction among college faculty in Mexico. The study used data from a 1992-93 Carnegie International Faculty Survey. Secondary multiple regression analysis identified predictor variables for several faculty subgroups. Results were interpreted by differentiating between work-related and intrinsic factors, as well…

  16. An Evaluation of AFIT’s Graduate Programs in Operations Research (GOR) and Strategic and Tactical Sciences (GST).

    DTIC Science & Technology

    1987-08-01

    of economics (e.g., present/future value, costing, cost-benefit analysis, regression analysis, etc.) are scattered throughout the core. Unfortunately...in the subject, largely because most of the problems and examples used are not related to military operations research. Some fundamental -j principles

  17. Vocational Teacher Stress and the Educational System.

    ERIC Educational Resources Information Center

    Adams, Elaine; Heath-Camp, Betty; Camp, William G.

    1999-01-01

    A multiple regression analysis of data from 235 secondary vocational teachers in Virginia found that educational system-related variables explained most teacher stress. The most important explanatory variables were task stress and role overload. (SK)

  18. Spectral regression and correlation coefficients of some benzaldimines and salicylaldimines in different solvents

    NASA Astrophysics Data System (ADS)

    Hammud, Hassan H.; Ghannoum, Amer; Masoud, Mamdouh S.

    2006-02-01

    Sixteen Schiff bases obtained from the condensation of benzaldehyde or salicylaldehyde with various amines (aniline, 4-carboxyaniline, phenylhydrazine, 2,4-dinitrophenylhydrazine, ethylenediamine, hydrazine, o-phenylenediamine and 2,6-pyridinediamine) are studied with UV-vis spectroscopy to observe the effect of solvents, substituents and other structural factors on the spectra. The bands involving different electronic transitions are interpreted. Computerized analysis and multiple regression techniques were applied to calculate the regression and correlation coefficients based on the equation that relates peak position λmax to the solvent parameters that depend on the H-bonding ability, refractive index and dielectric constant of solvents.

  19. [Associations between dormitory environment/other factors and sleep quality of medical students].

    PubMed

    Zheng, Bang; Wang, Kailu; Pan, Ziqi; Li, Man; Pan, Yuting; Liu, Ting; Xu, Dan; Lyu, Jun

    2016-03-01

    To investigate the sleep quality and related factors among medical students in China, understand the association between dormitory environment and sleep quality, and provide evidence and recommendations for sleep hygiene intervention. A total of 555 undergraduate students were selected from a medical school of an university in Beijing through stratified-cluster random-sampling to conduct a questionnaire survey by using Chinese version of Pittsburgh Sleep Quality Index (PSQI) and self-designed questionnaire. Analyses were performed by using multiple logistic regression model as well as multilevel linear regression model. The prevalence of sleep disorder was 29.1%(149/512), and 39.1%(200/512) of the students reported that the sleep quality was influenced by dormitory environment. PSQI score was negatively correlated with self-reported rating of dormitory environment (γs=-0.310, P<0.001). Logistic regression analysis showed the related factors of sleep disorder included grade, sleep regularity, self-rated health status, pressures of school work and employment, as well as dormitory environment. RESULTS of multilevel regression analysis also indicated that perception on dormitory environment (individual level) was associated with sleep quality with the dormitory level random effects under control (b=-0.619, P<0.001). The prevalence of sleep disorder was high in medical students, which was associated with multiple factors. Dormitory environment should be taken into consideration when the interventions are taken to improve the sleep quality of students.

  20. Too Latino and Not Latino Enough: The Role of Ethnicity-Related Stressors on Latino College Students' Life Satisfaction

    ERIC Educational Resources Information Center

    Ojeda, Lizette; Navarro, Rachel L.; Meza, Rocio Rosales; Arbona, Consuelo

    2012-01-01

    The relationship between demographics (generation status, age, gender, education level) and ethnicity-related stressors, namely, perceived discrimination, stereotype confirmation concern, and own-group conformity pressure, and the life satisfaction of 115 Latino college students was examined. A hierarchical multiple regression analysis indicated…

  1. Parental Influences, Career Decision-Making Attributions, and Self-Efficacy: Differences for Men and Women?

    ERIC Educational Resources Information Center

    Lease, Suzanne H.; Dahlbeck, David T.

    2009-01-01

    This study investigated the relations of maternal and paternal attachment, parenting styles, and career locus of control to college students' career decision self-efficacy and explored whether these relations differed by student gender. Data analysis using hierarchical multiple regression revealed that attachment was relevant for females' career…

  2. Predictors of Asian American Adolescents' Suicide Attempts: A Latent Class Regression Analysis

    ERIC Educational Resources Information Center

    Wong, Y. Joel; Maffini, Cara S.

    2011-01-01

    Although suicide-related outcomes among Asian American adolescents are a serious public health problem in the United States, research in this area has been relatively sparse. To address this gap in the empirical literature, this study examined subgroups of Asian American adolescents for whom family, school, and peer relationships exerted…

  3. African American Career Aspirations: Examining the Relative Influence of Internalized Racism

    ERIC Educational Resources Information Center

    Brown, Danice L.; Segrist, Daniel

    2016-01-01

    The present study examined the relative influence of aspects of internalized racism on the career aspirations of a sample of African American adults. Participants (N = 315), ranging in age from 18 to 62 years, completed measures of internalized racism and career aspirations online. A hierarchical multiple regression analysis was conducted to…

  4. Challenges Associated with Estimating Utility in Wet Age-Related Macular Degeneration: A Novel Regression Analysis to Capture the Bilateral Nature of the Disease.

    PubMed

    Hodgson, Robert; Reason, Timothy; Trueman, David; Wickstead, Rose; Kusel, Jeanette; Jasilek, Adam; Claxton, Lindsay; Taylor, Matthew; Pulikottil-Jacob, Ruth

    2017-10-01

    The estimation of utility values for the economic evaluation of therapies for wet age-related macular degeneration (AMD) is a particular challenge. Previous economic models in wet AMD have been criticized for failing to capture the bilateral nature of wet AMD by modelling visual acuity (VA) and utility values associated with the better-seeing eye only. Here we present a de novo regression analysis using generalized estimating equations (GEE) applied to a previous dataset of time trade-off (TTO)-derived utility values from a sample of the UK population that wore contact lenses to simulate visual deterioration in wet AMD. This analysis allows utility values to be estimated as a function of VA in both the better-seeing eye (BSE) and worse-seeing eye (WSE). VAs in both the BSE and WSE were found to be statistically significant (p < 0.05) when regressed separately. When included without an interaction term, only the coefficient for VA in the BSE was significant (p = 0.04), but when an interaction term between VA in the BSE and WSE was included, only the constant term (mean TTO utility value) was significant, potentially a result of the collinearity between the VA of the two eyes. The lack of both formal model fit statistics from the GEE approach and theoretical knowledge to support the superiority of one model over another make it difficult to select the best model. Limitations of this analysis arise from the potential influence of collinearity between the VA of both eyes, and the use of contact lenses to reflect VA states to obtain the original dataset. Whilst further research is required to elicit more accurate utility values for wet AMD, this novel regression analysis provides a possible source of utility values to allow future economic models to capture the quality of life impact of changes in VA in both eyes. Novartis Pharmaceuticals UK Limited.

  5. Albumin, a marker for post-operative myocardial damage in cardiac surgery.

    PubMed

    van Beek, Dianne E C; van der Horst, Iwan C C; de Geus, A Fred; Mariani, Massimo A; Scheeren, Thomas W L

    2018-06-06

    Low serum albumin (SA) is a prognostic factor for poor outcome after cardiac surgery. The aim of this study was to estimate the association between pre-operative SA, early post-operative SA and postoperative myocardial injury. This single center cohort study included adult patients undergoing cardiac surgery during 4 consecutive years. Postoperative myocardial damage was defined by calculating the area under the curve (AUC) of troponin (Tn) values during the first 72 h after surgery and its association with SA analyzed using linear regression and with multivariable linear regression to account for patient related and procedural confounders. The association between SA and the secondary outcomes (peri-operative myocardial infarction [PMI], requiring ventilation >24 h, rhythm disturbances, 30-day mortality) was studied using (multivariable) log binomial regression analysis. In total 2757 patients were included. The mean pre-operative SA was 29 ± 13 g/l and the mean post-operative SA was 26 ± 6 g/l. Post-operative SA levels (on average 26 min after surgery) were inversely associated with postoperative myocardial damage in both univariable analysis (regression coefficient - 0.019, 95%CI -0.022/-0.015, p < 0.005) and after adjustment for patient related and surgical confounders (regression coefficient - 0.014 [95% CI -0.020/-0.008], p < 0.0005). Post-operative albumin levels were significantly correlated with the amount of postoperative myocardial damage in patients undergoing cardiac surgery independent of typical confounders. Copyright © 2018. Published by Elsevier Inc.

  6. Regression modeling plan for 29 biochemical indicators of diet and nutrition measured in NHANES 2003-2006.

    PubMed

    Sternberg, Maya R; Schleicher, Rosemary L; Pfeiffer, Christine M

    2013-06-01

    The collection of articles in this supplement issue provides insight into the association of various covariates with concentrations of biochemical indicators of diet and nutrition (biomarkers), beyond age, race, and sex, using linear regression. We studied 10 specific sociodemographic and lifestyle covariates in combination with 29 biomarkers from NHANES 2003-2006 for persons aged ≥ 20 y. The covariates were organized into 2 sets or "chunks": sociodemographic (age, sex, race-ethnicity, education, and income) and lifestyle (dietary supplement use, smoking, alcohol consumption, BMI, and physical activity) and fit in hierarchical fashion by using each category or set of related variables to determine how covariates, jointly, are related to biomarker concentrations. In contrast to many regression modeling applications, all variables were retained in a full regression model regardless of significance to preserve the interpretation of the statistical properties of β coefficients, P values, and CIs and to keep the interpretation consistent across a set of biomarkers. The variables were preselected before data analysis, and the data analysis plan was designed at the outset to minimize the reporting of false-positive findings by limiting the amount of preliminary hypothesis testing. Although we generally found that demographic differences seen in biomarkers were over- or underestimated when ignoring other key covariates, the demographic differences generally remained significant after adjusting for sociodemographic and lifestyle variables. These articles are intended to provide a foundation to researchers to help them generate hypotheses for future studies or data analyses and/or develop predictive regression models using the wealth of NHANES data.

  7. Estimating current and future streamflow characteristics at ungaged sites, central and eastern Montana, with application to evaluating effects of climate change on fish populations

    USGS Publications Warehouse

    Sando, Roy; Chase, Katherine J.

    2017-03-23

    A common statistical procedure for estimating streamflow statistics at ungaged locations is to develop a relational model between streamflow and drainage basin characteristics at gaged locations using least squares regression analysis; however, least squares regression methods are parametric and make constraining assumptions about the data distribution. The random forest regression method provides an alternative nonparametric method for estimating streamflow characteristics at ungaged sites and requires that the data meet fewer statistical conditions than least squares regression methods.Random forest regression analysis was used to develop predictive models for 89 streamflow characteristics using Precipitation-Runoff Modeling System simulated streamflow data and drainage basin characteristics at 179 sites in central and eastern Montana. The predictive models were developed from streamflow data simulated for current (baseline, water years 1982–99) conditions and three future periods (water years 2021–38, 2046–63, and 2071–88) under three different climate-change scenarios. These predictive models were then used to predict streamflow characteristics for baseline conditions and three future periods at 1,707 fish sampling sites in central and eastern Montana. The average root mean square error for all predictive models was about 50 percent. When streamflow predictions at 23 fish sampling sites were compared to nearby locations with simulated data, the mean relative percent difference was about 43 percent. When predictions were compared to streamflow data recorded at 21 U.S. Geological Survey streamflow-gaging stations outside of the calibration basins, the average mean absolute percent error was about 73 percent.

  8. Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression

    NASA Astrophysics Data System (ADS)

    Chu, Hone-Jay; Kong, Shish-Jeng; Chang, Chih-Hua

    2018-03-01

    The turbidity (TB) of a water body varies with time and space. Water quality is traditionally estimated via linear regression based on satellite images. However, estimating and mapping water quality require a spatio-temporal nonstationary model, while TB mapping necessitates the use of geographically and temporally weighted regression (GTWR) and geographically weighted regression (GWR) models, both of which are more precise than linear regression. Given the temporal nonstationary models for mapping water quality, GTWR offers the best option for estimating regional water quality. Compared with GWR, GTWR provides highly reliable information for water quality mapping, boasts a relatively high goodness of fit, improves the explanation of variance from 44% to 87%, and shows a sufficient space-time explanatory power. The seasonal patterns of TB and the main spatial patterns of TB variability can be identified using the estimated TB maps from GTWR and by conducting an empirical orthogonal function (EOF) analysis.

  9. An evaluation of treatment strategies for head and neck cancer in an African American population.

    PubMed

    Ignacio, D N; Griffin, J J; Daniel, M G; Serlemitsos-Day, M T; Lombardo, F A; Alleyne, T A

    2013-07-01

    This study evaluated treatment strategies for head and neck cancers in a predominantly African American population. Data were collected utilizing medical records and the tumour registry at the Howard University Hospital. Kaplan-Meier method was used for survival analysis and Cox proportional hazards regression analysis predicted the hazard of death. Analysis revealed that the main treatment strategy was radiation combined with platinum for all stages except stage I. Cetuximab was employed in only 1% of cases. Kaplan-Meier analysis revealed stage II patients had poorer outcome than stage IV while Cox proportional hazard regression analysis (p = 0.4662) showed that stage I had a significantly lower hazard of death than stage IV (HR = 0.314; p = 0.0272). Contributory factors included tobacco and alcohol but body mass index (BMI) was inversely related to hazard of death. There was no difference in survival using any treatment modality for African Americans.

  10. Predictors of quality of life: A quantitative investigation of the stress-coping model in children with asthma

    PubMed Central

    Peeters, Yvette; Boersma, Sandra N; Koopman, Hendrik M

    2008-01-01

    Background Aim of this study is to further explore predictors of health related quality of life in children with asthma using factors derived from to the extended stress-coping model. While the stress-coping model has often been used as a frame of reference in studying health related quality of life in chronic illness, few have actually tested the model in children with asthma. Method In this survey study data were obtained by means of self-report questionnaires from seventy-eight children with asthma and their parents. Based on data derived from these questionnaires the constructs of the extended stress-coping model were assessed, using regression analysis and path analysis. Results The results of both regression analysis and path analysis reveal tentative support for the proposed relationships between predictors and health related quality of life in the stress-coping model. Moreover, as indicated in the stress-coping model, HRQoL is only directly predicted by coping. Both coping strategies 'emotional reaction' (significantly) and 'avoidance' are directly related to HRQoL. Conclusion In children with asthma, the extended stress-coping model appears to be a useful theoretical framework for understanding the impact of the illness on their quality of life. Consequently, the factors suggested by this model should be taken into account when designing optimal psychosocial-care interventions. PMID:18366753

  11. Evaluating differential effects using regression interactions and regression mixture models

    PubMed Central

    Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung

    2015-01-01

    Research increasingly emphasizes understanding differential effects. This paper focuses on understanding regression mixture models, a relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their formulation, and their assumptions are compared using Monte Carlo simulations and real data analysis. The capabilities of regression mixture models are described and specific issues to be addressed when conducting regression mixtures are proposed. The paper aims to clarify the role that regression mixtures can take in the estimation of differential effects and increase awareness of the benefits and potential pitfalls of this approach. Regression mixture models are shown to be a potentially effective exploratory method for finding differential effects when these effects can be defined by a small number of classes of respondents who share a typical relationship between a predictor and an outcome. It is also shown that the comparison between regression mixture models and interactions becomes substantially more complex as the number of classes increases. It is argued that regression interactions are well suited for direct tests of specific hypotheses about differential effects and regression mixtures provide a useful approach for exploring effect heterogeneity given adequate samples and study design. PMID:26556903

  12. Factors Associated With Work Ability in Patients Undergoing Surgery for Cervical Radiculopathy.

    PubMed

    Ng, Eunice; Johnston, Venerina; Wibault, Johanna; Löfgren, Håkan; Dedering, Åsa; Öberg, Birgitta; Zsigmond, Peter; Peolsson, Anneli

    2015-08-15

    Cross-sectional study. To investigate the factors associated with work ability in patients undergoing surgery for cervical radiculopathy. Surgery is a common treatment of cervical radiculopathy in people of working age. However, few studies have investigated the impact on the work ability of these patients. Patients undergoing surgery for cervical radiculopathy (n = 201) were recruited from spine centers in Sweden to complete a battery of questionnaires and physical measures the day before surgery. The associations between various individual, psychological, and work-related factors and self-reported work ability were investigated by Spearman rank correlation coefficient, multivariate linear regression, and forward stepwise regression analyses. Factors that were significant (P < 0.05) in each statistical analysis were entered into the successive analysis to reveal the factors most related to work ability. Work ability was assessed using the Work Ability Index. The mean Work Ability Index score was 28 (SD, 9.0). The forward stepwise regression analysis revealed 6 factors significantly associated with work ability, which explained 62% of the variance in the Work Ability Index. Factors highly correlated with greater work ability included greater self-efficacy in performing self-cares, lower physical load on the neck at work, greater self-reported chance of being able to work in 6 months' time, greater use of active coping strategies, lower frequency of hand weakness, and higher health-related quality of life. Psychological, work-related and individual factors were significantly associated with work ability in patients undergoing surgery for cervical radiculopathy. High self-efficacy was most associated with greater work ability. Consideration of these factors by surgeons preoperatively may provide optimal return to work outcomes after surgery. 3.

  13. Cell cycle-related genes as modifiers of age of onset of colorectal cancer in Lynch syndrome: a large-scale study in non-Hispanic white patients.

    PubMed

    Chen, Jinyun; Pande, Mala; Huang, Yu-Jing; Wei, Chongjuan; Amos, Christopher I; Talseth-Palmer, Bente A; Meldrum, Cliff J; Chen, Wei V; Gorlov, Ivan P; Lynch, Patrick M; Scott, Rodney J; Frazier, Marsha L

    2013-02-01

    Heterogeneity in age of onset of colorectal cancer in individuals with mutations in DNA mismatch repair genes (Lynch syndrome) suggests the influence of other lifestyle and genetic modifiers. We hypothesized that genes regulating the cell cycle influence the observed heterogeneity as cell cycle-related genes respond to DNA damage by arresting the cell cycle to provide time for repair and induce transcription of genes that facilitate repair. We examined the association of 1456 single nucleotide polymorphisms (SNPs) in 128 cell cycle-related genes and 31 DNA repair-related genes in 485 non-Hispanic white participants with Lynch syndrome to determine whether there are SNPs associated with age of onset of colorectal cancer. Genotyping was performed on an Illumina GoldenGate platform, and data were analyzed using Kaplan-Meier survival analysis, Cox regression analysis and classification and regression tree (CART) methods. Ten SNPs were independently significant in a multivariable Cox proportional hazards regression model after correcting for multiple comparisons (P < 5 × 10(-4)). Furthermore, risk modeling using CART analysis defined combinations of genotypes for these SNPs with which subjects could be classified into low-risk, moderate-risk and high-risk groups that had median ages of colorectal cancer onset of 63, 50 and 42 years, respectively. The age-associated risk of colorectal cancer in the high-risk group was more than four times the risk in the low-risk group (hazard ratio = 4.67, 95% CI = 3.16-6.92). The additional genetic markers identified may help in refining risk groups for more tailored screening and follow-up of non-Hispanic white patients with Lynch syndrome.

  14. Cell cycle–related genes as modifiers of age of onset of colorectal cancer in Lynch syndrome: a large-scale study in non-Hispanic white patients

    PubMed Central

    Chen, Jinyun; Pande, Mala

    2013-01-01

    Heterogeneity in age of onset of colorectal cancer in individuals with mutations in DNA mismatch repair genes (Lynch syndrome) suggests the influence of other lifestyle and genetic modifiers. We hypothesized that genes regulating the cell cycle influence the observed heterogeneity as cell cycle–related genes respond to DNA damage by arresting the cell cycle to provide time for repair and induce transcription of genes that facilitate repair. We examined the association of 1456 single nucleotide polymorphisms (SNPs) in 128 cell cycle–related genes and 31 DNA repair–related genes in 485 non-Hispanic white participants with Lynch syndrome to determine whether there are SNPs associated with age of onset of colorectal cancer. Genotyping was performed on an Illumina GoldenGate platform, and data were analyzed using Kaplan–Meier survival analysis, Cox regression analysis and classification and regression tree (CART) methods. Ten SNPs were independently significant in a multivariable Cox proportional hazards regression model after correcting for multiple comparisons (P < 5×10–4). Furthermore, risk modeling using CART analysis defined combinations of genotypes for these SNPs with which subjects could be classified into low-risk, moderate-risk and high-risk groups that had median ages of colorectal cancer onset of 63, 50 and 42 years, respectively. The age-associated risk of colorectal cancer in the high-risk group was more than four times the risk in the low-risk group (hazard ratio = 4.67, 95% CI = 3.16–6.92). The additional genetic markers identified may help in refining risk groups for more tailored screening and follow-up of non-Hispanic white patients with Lynch syndrome. PMID:23125224

  15. Carbon financial markets: A time-frequency analysis of CO2 prices

    NASA Astrophysics Data System (ADS)

    Sousa, Rita; Aguiar-Conraria, Luís; Soares, Maria Joana

    2014-11-01

    We characterize the interrelation of CO2 prices with energy prices (electricity, gas and coal), and with economic activity. Previous studies have relied on time-domain techniques, such as Vector Auto-Regressions. In this study, we use multivariate wavelet analysis, which operates in the time-frequency domain. Wavelet analysis provides convenient tools to distinguish relations at particular frequencies and at particular time horizons. Our empirical approach has the potential to identify relations getting stronger and then disappearing over specific time intervals and frequencies. We are able to examine the coherency of these variables and lead-lag relations at different frequencies for the time periods in focus.

  16. Combining logistic regression with classification and regression tree to predict quality of care in a home health nursing data set.

    PubMed

    Guo, Huey-Ming; Shyu, Yea-Ing Lotus; Chang, Her-Kun

    2006-01-01

    In this article, the authors provide an overview of a research method to predict quality of care in home health nursing data set. The results of this study can be visualized through classification an regression tree (CART) graphs. The analysis was more effective, and the results were more informative since the home health nursing dataset was analyzed with a combination of the logistic regression and CART, these two techniques complete each other. And the results more informative that more patients' characters were related to quality of care in home care. The results contributed to home health nurse predict patient outcome in case management. Improved prediction is needed for interventions to be appropriately targeted for improved patient outcome and quality of care.

  17. Effect of clinical response to active drugs and placebo on antipsychotics and mood stabilizers relative efficacy for bipolar depression and mania: A meta-regression analysis.

    PubMed

    Bartoli, Francesco; Clerici, Massimo; Di Brita, Carmen; Riboldi, Ilaria; Crocamo, Cristina; Carrà, Giuseppe

    2018-04-01

    Randomised placebo-controlled trials investigating treatments for bipolar disorder have been hampered by wide variations of active drugs and placebo clinical response rates. It is important to estimate whether the active drug or placebo response has a greater influence in determining the relative efficacy of drugs for psychosis (antipsychotics) and relapse prevention (mood stabilisers) for bipolar depression and mania. We identified 53 randomised, placebo-controlled trials assessing antipsychotic or mood stabiliser monotherapy ('active drugs') for bipolar depression or mania. We carried out random-effects meta-regressions, estimating the influence of active drugs and placebo response rates on treatment relative efficacy. Meta-regressions showed that treatment relative efficacy for bipolar mania was influenced by the magnitude of clinical response to active drugs ( p=0.002), but not to placebo ( p=0.60). On the other hand, treatment relative efficacy for bipolar depression was influenced by response to placebo ( p=0.047), but not to active drugs ( p=0.98). Despite several limitations, our unexpected findings showed that antipsychotics / mood stabilisers relative efficacy for bipolar depression seems unrelated to active drugs response rates, depending only on clinical response to placebo. Future research should explore strategies to reduce placebo-related issues in randomised, placebo-controlled trials for bipolar depression.

  18. Pre-hospital electrocardiogram triage with telemedicine near halves time to treatment in STEMI: A meta-analysis and meta-regression analysis of non-randomized studies.

    PubMed

    Brunetti, Natale Daniele; De Gennaro, Luisa; Correale, Michele; Santoro, Francesco; Caldarola, Pasquale; Gaglione, Antonio; Di Biase, Matteo

    2017-04-01

    A shorter time to treatment has been shown to be associated with lower mortality rates in acute myocardial infarction (AMI). Several strategies have been adopted with the aim to reduce any delay in diagnosis of AMI: pre-hospital triage with telemedicine is one of such strategies. We therefore aimed to measure the real effect of pre-hospital triage with telemedicine in case of AMI in a meta-analysis study. We performed a meta-analysis of non-randomized studies with the aim to quantify the exact reduction of time to treatment achieved by pre-hospital triage with telemedicine. Data were pooled and compared by relative time reduction and 95% C.I.s. A meta-regression analysis was performed in order to find possible predictors of shorter time to treatment. Eleven studies were selected and finally evaluated in the study. The overall relative reduction of time to treatment with pre-hospital triage and telemedicine was -38/-40% (p<0.001). Absolute time reduction was significantly correlated to time to treatment in the control groups (p<0.001), while relative time reduction was independent. A non-significant trend toward shorter relative time reductions was observed over years. Pre-hospital triage with telemedicine is associated with a near halved time to treatment in AMI. The benefit is larger in terms of absolute time to treatment reduction in populations with larger delays to treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Regression Analysis of Stage Variability for West-Central Florida Lakes

    USGS Publications Warehouse

    Sacks, Laura A.; Ellison, Donald L.; Swancar, Amy

    2008-01-01

    The variability in a lake's stage depends upon many factors, including surface-water flows, meteorological conditions, and hydrogeologic characteristics near the lake. An understanding of the factors controlling lake-stage variability for a population of lakes may be helpful to water managers who set regulatory levels for lakes. The goal of this study is to determine whether lake-stage variability can be predicted using multiple linear regression and readily available lake and basin characteristics defined for each lake. Regressions were evaluated for a recent 10-year period (1996-2005) and for a historical 10-year period (1954-63). Ground-water pumping is considered to have affected stage at many of the 98 lakes included in the recent period analysis, and not to have affected stage at the 20 lakes included in the historical period analysis. For the recent period, regression models had coefficients of determination (R2) values ranging from 0.60 to 0.74, and up to five explanatory variables. Standard errors ranged from 21 to 37 percent of the average stage variability. Net leakage was the most important explanatory variable in regressions describing the full range and low range in stage variability for the recent period. The most important explanatory variable in the model predicting the high range in stage variability was the height over median lake stage at which surface-water outflow would occur. Other explanatory variables in final regression models for the recent period included the range in annual rainfall for the period and several variables related to local and regional hydrogeology: (1) ground-water pumping within 1 mile of each lake, (2) the amount of ground-water inflow (by category), (3) the head gradient between the lake and the Upper Floridan aquifer, and (4) the thickness of the intermediate confining unit. Many of the variables in final regression models are related to hydrogeologic characteristics, underscoring the importance of ground-water exchange in controlling the stage of karst lakes in Florida. Regression equations were used to predict lake-stage variability for the recent period for 12 additional lakes, and the median difference between predicted and observed values ranged from 11 to 23 percent. Coefficients of determination for the historical period were considerably lower (maximum R2 of 0.28) than for the recent period. Reasons for these low R2 values are probably related to the small number of lakes (20) with stage data for an equivalent time period that were unaffected by ground-water pumping, the similarity of many of the lake types (large surface-water drainage lakes), and the greater uncertainty in defining historical basin characteristics. The lack of lake-stage data unaffected by ground-water pumping and the poor regression results obtained for that group of lakes limit the ability to predict natural lake-stage variability using this method in west-central Florida.

  20. Isolating and Examining Sources of Suppression and Multicollinearity in Multiple Linear Regression.

    PubMed

    Beckstead, Jason W

    2012-03-30

    The presence of suppression (and multicollinearity) in multiple regression analysis complicates interpretation of predictor-criterion relationships. The mathematical conditions that produce suppression in regression analysis have received considerable attention in the methodological literature but until now nothing in the way of an analytic strategy to isolate, examine, and remove suppression effects has been offered. In this article such an approach, rooted in confirmatory factor analysis theory and employing matrix algebra, is developed. Suppression is viewed as the result of criterion-irrelevant variance operating among predictors. Decomposition of predictor variables into criterion-relevant and criterion-irrelevant components using structural equation modeling permits derivation of regression weights with the effects of criterion-irrelevant variance omitted. Three examples with data from applied research are used to illustrate the approach: the first assesses child and parent characteristics to explain why some parents of children with obsessive-compulsive disorder accommodate their child's compulsions more so than do others, the second examines various dimensions of personal health to explain individual differences in global quality of life among patients following heart surgery, and the third deals with quantifying the relative importance of various aptitudes for explaining academic performance in a sample of nursing students. The approach is offered as an analytic tool for investigators interested in understanding predictor-criterion relationships when complex patterns of intercorrelation among predictors are present and is shown to augment dominance analysis.

  1. Combined analysis of magnetic and gravity anomalies using normalized source strength (NSS)

    NASA Astrophysics Data System (ADS)

    Li, L.; Wu, Y.

    2017-12-01

    Gravity field and magnetic field belong to potential fields which lead inherent multi-solution. Combined analysis of magnetic and gravity anomalies based on Poisson's relation is used to determinate homology gravity and magnetic anomalies and decrease the ambiguity. The traditional combined analysis uses the linear regression of the reduction to pole (RTP) magnetic anomaly to the first order vertical derivative of the gravity anomaly, and provides the quantitative or semi-quantitative interpretation by calculating the correlation coefficient, slope and intercept. In the calculation process, due to the effect of remanent magnetization, the RTP anomaly still contains the effect of oblique magnetization. In this case the homology gravity and magnetic anomalies display irrelevant results in the linear regression calculation. The normalized source strength (NSS) can be transformed from the magnetic tensor matrix, which is insensitive to the remanence. Here we present a new combined analysis using NSS. Based on the Poisson's relation, the gravity tensor matrix can be transformed into the pseudomagnetic tensor matrix of the direction of geomagnetic field magnetization under the homologous condition. The NSS of pseudomagnetic tensor matrix and original magnetic tensor matrix are calculated and linear regression analysis is carried out. The calculated correlation coefficient, slope and intercept indicate the homology level, Poisson's ratio and the distribution of remanent respectively. We test the approach using synthetic model under complex magnetization, the results show that it can still distinguish the same source under the condition of strong remanence, and establish the Poisson's ratio. Finally, this approach is applied in China. The results demonstrated that our approach is feasible.

  2. Analysis and selection of magnitude relations for the Working Group on Utah Earthquake Probabilities

    USGS Publications Warehouse

    Duross, Christopher; Olig, Susan; Schwartz, David

    2015-01-01

    Prior to calculating time-independent and -dependent earthquake probabilities for faults in the Wasatch Front region, the Working Group on Utah Earthquake Probabilities (WGUEP) updated a seismic-source model for the region (Wong and others, 2014) and evaluated 19 historical regressions on earthquake magnitude (M). These regressions relate M to fault parameters for historical surface-faulting earthquakes, including linear fault length (e.g., surface-rupture length [SRL] or segment length), average displacement, maximum displacement, rupture area, seismic moment (Mo ), and slip rate. These regressions show that significant epistemic uncertainties complicate the determination of characteristic magnitude for fault sources in the Basin and Range Province (BRP). For example, we found that M estimates (as a function of SRL) span about 0.3–0.4 units (figure 1) owing to differences in the fault parameter used; age, quality, and size of historical earthquake databases; and fault type and region considered.

  3. Estimation of railroad capacity using parametric methods.

    DOT National Transportation Integrated Search

    2013-12-01

    This paper reviews different methodologies used for railroad capacity estimation and presents a user-friendly method to measure capacity. The objective of this paper is to use multivariate regression analysis to develop a continuous relation of the d...

  4. High-level language ability in healthy individuals and its relationship with verbal working memory.

    PubMed

    Antonsson, Malin; Longoni, Francesca; Einald, Christina; Hallberg, Lina; Kurt, Gabriella; Larsson, Kajsa; Nilsson, Tina; Hartelius, Lena

    2016-01-01

    The aims of the study were to investigate healthy subjects' performance on a clinical test of high-level language (HLL) and how it is related to demographic characteristics and verbal working memory (VWM). One hundred healthy subjects (20-79 years old) were assessed with the Swedish BeSS test (Laakso, Brunnegård, Hartelius, & Ahlsén, 2000) and two digit span tasks. Relationships between the demographic variables, VWM and BeSS were investigated both with bivariate correlations and multiple regression analysis. The results present the norms for BeSS. The correlations and multiple regression analysis show that demographic variables had limited influence on test performance. Measures of VWM were moderately related to total BeSS score and weakly to moderately correlated with five of the seven subtests. To conclude, education has an influence on the test as a whole but measures of VWM stood out as the most robust predictor of HLL.

  5. Correlates of Protective Motivation Theory (PMT) to Adolescents’ Drug Use Intention

    PubMed Central

    Wu, Cynthia Sau Ting; Wong, Ho Ting; Chou, Lai Yan; To, Bobby Pak Wai; Lee, Wai Lok; Loke, Alice Yuen

    2014-01-01

    Early onset and increasing proliferation of illicit adolescent drug-use poses a global health concern. This study aimed to examine the correlation between Protective Motivation Theory (PMT) measures and the intention to use drugs among adolescents. An exploratory quantitative correlation design and convenience sampling were adopted. A total of 318 students completed a self-reported questionnaire that solicited information related to their demographics and activities, measures of threat appraisal and coping appraisal, and the intention to use drugs. Logistic regression analysis showed that intrinsic and extrinsic rewards were significant predictors of intention. The odds ratios were equal to 2.90 (p < 0.05) and 8.04 (p < 0.001), respectively. The logistic regression model analysis resulted in a high Nagelkerke R2 of 0.49, which suggests that PMT related measures could be used in predicting drug use intention among adolescents. Further research should be conducted with non-school adolescents to confirm the application. PMID:24394215

  6. Correlates of Protective Motivation Theory (PMT) to adolescents' drug use intention.

    PubMed

    Wu, Cynthia Sau Ting; Wong, Ho Ting; Chou, Lai Yan; To, Bobby Pak Wai; Lee, Wai Lok; Loke, Alice Yuen

    2014-01-03

    Early onset and increasing proliferation of illicit adolescent drug-use poses a global health concern. This study aimed to examine the correlation between Protective Motivation Theory (PMT) measures and the intention to use drugs among adolescents. An exploratory quantitative correlation design and convenience sampling were adopted. A total of 318 students completed a self-reported questionnaire that solicited information related to their demographics and activities, measures of threat appraisal and coping appraisal, and the intention to use drugs. Logistic regression analysis showed that intrinsic and extrinsic rewards were significant predictors of intention. The odds ratios were equal to 2.90 (p < 0.05) and 8.04 (p < 0.001), respectively. The logistic regression model analysis resulted in a high Nagelkerke R2 of 0.49, which suggests that PMT related measures could be used in predicting drug use intention among adolescents. Further research should be conducted with non-school adolescents to confirm the application.

  7. Development and evaluation of an electromagnetic hypersensitivity questionnaire for Japanese people

    PubMed Central

    Tokiya, Mikiko; Mizuki, Masami; Miyata, Mikio; Kanatani, Kumiko T.; Takagi, Airi; Tsurikisawa, Naomi; Kame, Setsuko; Katoh, Takahiko; Tsujiuchi, Takuya; Kumano, Hiroaki

    2016-01-01

    The purpose of the present study was to evaluate the validity and reliability of a Japanese version of an electromagnetic hypersensitivity (EHS) questionnaire, originally developed by Eltiti et al. in the United Kingdom. Using this Japanese EHS questionnaire, surveys were conducted on 1306 controls and 127 self‐selected EHS subjects in Japan. Principal component analysis of controls revealed eight principal symptom groups, namely, nervous, skin‐related, head‐related, auditory and vestibular, musculoskeletal, allergy‐related, sensory, and heart/chest‐related. The reliability of the Japanese EHS questionnaire was confirmed by high to moderate intraclass correlation coefficients in a test–retest analysis, and high Cronbach's α coefficients (0.853–0.953) from each subscale. A comparison of scores of each subscale between self‐selected EHS subjects and age‐ and sex‐matched controls using bivariate logistic regression analysis, Mann–Whitney U‐ and χ 2 tests, verified the validity of the questionnaire. This study demonstrated that the Japanese EHS questionnaire is reliable and valid, and can be used for surveillance of EHS individuals in Japan. Furthermore, based on multiple logistic regression and receiver operating characteristic analyses, we propose specific preliminary criteria for screening EHS individuals in Japan. Bioelectromagnetics. 37:353–372, 2016. © 2016 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc. PMID:27324106

  8. Methodology for Estimation of Flood Magnitude and Frequency for New Jersey Streams

    USGS Publications Warehouse

    Watson, Kara M.; Schopp, Robert D.

    2009-01-01

    Methodologies were developed for estimating flood magnitudes at the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for unregulated or slightly regulated streams in New Jersey. Regression equations that incorporate basin characteristics were developed to estimate flood magnitude and frequency for streams throughout the State by use of a generalized least squares regression analysis. Relations between flood-frequency estimates based on streamflow-gaging-station discharge and basin characteristics were determined by multiple regression analysis, and weighted by effective years of record. The State was divided into five hydrologically similar regions to refine the regression equations. The regression analysis indicated that flood discharge, as determined by the streamflow-gaging-station annual peak flows, is related to the drainage area, main channel slope, percentage of lake and wetland areas in the basin, population density, and the flood-frequency region, at the 95-percent confidence level. The standard errors of estimate for the various recurrence-interval floods ranged from 48.1 to 62.7 percent. Annual-maximum peak flows observed at streamflow-gaging stations through water year 2007 and basin characteristics determined using geographic information system techniques for 254 streamflow-gaging stations were used for the regression analysis. Drainage areas of the streamflow-gaging stations range from 0.18 to 779 mi2. Peak-flow data and basin characteristics for 191 streamflow-gaging stations located in New Jersey were used, along with peak-flow data for stations located in adjoining States, including 25 stations in Pennsylvania, 17 stations in New York, 16 stations in Delaware, and 5 stations in Maryland. Streamflow records for selected stations outside of New Jersey were included in the present study because hydrologic, physiographic, and geologic boundaries commonly extend beyond political boundaries. The StreamStats web application was developed cooperatively by the U.S. Geological Survey and the Environmental Systems Research Institute, Inc., and was designed for national implementation. This web application has been recently implemented for use in New Jersey. This program used in conjunction with a geographic information system provides the computation of values for selected basin characteristics, estimates of flood magnitudes and frequencies, and statistics for stream locations in New Jersey chosen by the user, whether the site is gaged or ungaged.

  9. [Chemical and sensory characterization of tea (Thea sinensis) consumed in Chile].

    PubMed

    Wittig de Penna, Emma; José Zúñiga, María; Fuenzalida, Regina; López-Planes, Reinaldo

    2005-03-01

    By means of descriptive analysis four varieties of tea (Thea sinensis) were assesed: Argentinean OP (orange pekoe) tea (black), Brazilian OP tea (black), Ceylan OP tea (black) and Darjeeling OP tea (green). The appearance of dry tea leaves were qualitatively characterized comparing with dry leaves standard. The attributes: colour, form, regularity of the leaves, fibre and stem cutting were evaluated The differences obtained were related to the differences produced by the effect of the fermentation process. Flavour and aroma descriptors of the tea liqueur were generated by a trained panel. Colour and astringency were evaluated in comparison with qualified standards using non structured linear scales. In order to relate the sensory analysis and the chemical composition for the different varieties of tea, following determinations were made: chemical moisture, dry material, aqueous extract, tannin and caffeine. Through multifactor regression analysis the equations in relation to the following chemical parameters were determined. Dry material, aqueous extract and tannins for colour and moisture, dry material and aqueous extract for astringency, respectively. Statistical analysis through ANOVA (3 variation sources: samples, judges and replications) showed for samples four significant different groups for astringency and three different groups for colour. No significant differences between judges or repetitions were found. By multifactor regression analysis of both, colour and astringency, on their dependence of chemist results were calculated in order to asses the corresponding equations.

  10. Proteomic analysis of early-stage embryos: implications for egg quality in hapuku (Polyprion oxygeneios).

    PubMed

    Kohn, Yair Y; Symonds, Jane E; Kleffmann, Torsten; Nakagawa, Shinichi; Lagisz, Malgorzata; Lokman, P Mark

    2015-12-01

    In order to develop biomarkers that may help predict the egg quality of captive hapuku (Polyprion oxygeneios) and provide potential avenues for its manipulation, the present study (1) sequenced the proteome of early-stage embryos using isobaric tag for relative and absolute quantification analysis, and (2) aimed to establish the predictive value of the abundance of identified proteins with regard to egg quality through regression analysis. Egg quality was determined for eight different egg batches by blastomere symmetry scores. In total, 121 proteins were identified and assigned to one of nine major groups according to their function/pathway. A mixed-effects model analysis revealed a decrease in relative protein abundance that correlated with (decreasing) egg quality in one major group (heat-shock proteins). No differences were found in the other protein groups. Linear regression analysis, performed for each identified protein separately, revealed seven proteins that showed a significant decrease in relative abundance with reduced blastomere symmetry: two correlates that have been named in other studies (vitellogenin, heat-shock protein-70) and a further five new candidate proteins (78 kDa glucose-regulated protein, elongation factor-2, GTP-binding nuclear protein Ran, iduronate 2-sulfatase and 6-phosphogluconate dehydrogenase). Notwithstanding issues associated with multiple statistical testing, we conclude that these proteins, and especially iduronate 2-sulfatase and the generic heat-shock protein group, could serve as biomarkers of egg quality in hapuku.

  11. Development of a Multiple Linear Regression Model to Forecast Facility Electrical Consumption at an Air Force Base.

    DTIC Science & Technology

    1981-09-01

    corresponds to the same square footage that consumed the electrical energy. 3. The basic assumptions of multiple linear regres- sion, as enumerated in...7. Data related to the sample of bases is assumed to be representative of bases in the population. Limitations Basic limitations on this research were... Ratemaking --Overview. Rand Report R-5894, Santa Monica CA, May 1977. Chatterjee, Samprit, and Bertram Price. Regression Analysis by Example. New York: John

  12. Economics of Education and Work Life Demand in Terms of Earnings and Skills

    ERIC Educational Resources Information Center

    Xia, Belle Selene; Liitiäinen, Elia

    2014-01-01

    This article uses data from a major international survey to construct earnings functions in terms of learning outcomes and variables related to working life in different European countries. In order to complement the extended earnings regression model, the authors have used partial correlation analysis and the analysis of covariance (ANCOVA) to…

  13. Bayesian correction for covariate measurement error: A frequentist evaluation and comparison with regression calibration.

    PubMed

    Bartlett, Jonathan W; Keogh, Ruth H

    2018-06-01

    Bayesian approaches for handling covariate measurement error are well established and yet arguably are still relatively little used by researchers. For some this is likely due to unfamiliarity or disagreement with the Bayesian inferential paradigm. For others a contributory factor is the inability of standard statistical packages to perform such Bayesian analyses. In this paper, we first give an overview of the Bayesian approach to handling covariate measurement error, and contrast it with regression calibration, arguably the most commonly adopted approach. We then argue why the Bayesian approach has a number of statistical advantages compared to regression calibration and demonstrate that implementing the Bayesian approach is usually quite feasible for the analyst. Next, we describe the closely related maximum likelihood and multiple imputation approaches and explain why we believe the Bayesian approach to generally be preferable. We then empirically compare the frequentist properties of regression calibration and the Bayesian approach through simulation studies. The flexibility of the Bayesian approach to handle both measurement error and missing data is then illustrated through an analysis of data from the Third National Health and Nutrition Examination Survey.

  14. Using Spatial Multiple Regression to Identify Intrinsic Connectivity Networks Involved in Working Memory Performance

    PubMed Central

    Gordon, Evan M.; Stollstorff, Melanie; Vaidya, Chandan J.

    2012-01-01

    Many researchers have noted that the functional architecture of the human brain is relatively invariant during task performance and the resting state. Indeed, intrinsic connectivity networks (ICNs) revealed by resting-state functional connectivity analyses are spatially similar to regions activated during cognitive tasks. This suggests that patterns of task-related activation in individual subjects may result from the engagement of one or more of these ICNs; however, this has not been tested. We used a novel analysis, spatial multiple regression, to test whether the patterns of activation during an N-back working memory task could be well described by a linear combination of ICNs delineated using Independent Components Analysis at rest. We found that across subjects, the cingulo-opercular Set Maintenance ICN, as well as right and left Frontoparietal Control ICNs, were reliably activated during working memory, while Default Mode and Visual ICNs were reliably deactivated. Further, involvement of Set Maintenance, Frontoparietal Control, and Dorsal Attention ICNs was sensitive to varying working memory load. Finally, the degree of left Frontoparietal Control network activation predicted response speed, while activation in both left Frontoparietal Control and Dorsal Attention networks predicted task accuracy. These results suggest that a close relationship between resting-state networks and task-evoked activation is functionally relevant for behavior, and that spatial multiple regression analysis is a suitable method for revealing that relationship. PMID:21761505

  15. Multinomial Logistic Regression Predicted Probability Map To Visualize The Influence Of Socio-Economic Factors On Breast Cancer Occurrence in Southern Karnataka

    NASA Astrophysics Data System (ADS)

    Madhu, B.; Ashok, N. C.; Balasubramanian, S.

    2014-11-01

    Multinomial logistic regression analysis was used to develop statistical model that can predict the probability of breast cancer in Southern Karnataka using the breast cancer occurrence data during 2007-2011. Independent socio-economic variables describing the breast cancer occurrence like age, education, occupation, parity, type of family, health insurance coverage, residential locality and socioeconomic status of each case was obtained. The models were developed as follows: i) Spatial visualization of the Urban- rural distribution of breast cancer cases that were obtained from the Bharat Hospital and Institute of Oncology. ii) Socio-economic risk factors describing the breast cancer occurrences were complied for each case. These data were then analysed using multinomial logistic regression analysis in a SPSS statistical software and relations between the occurrence of breast cancer across the socio-economic status and the influence of other socio-economic variables were evaluated and multinomial logistic regression models were constructed. iii) the model that best predicted the occurrence of breast cancer were identified. This multivariate logistic regression model has been entered into a geographic information system and maps showing the predicted probability of breast cancer occurrence in Southern Karnataka was created. This study demonstrates that Multinomial logistic regression is a valuable tool for developing models that predict the probability of breast cancer Occurrence in Southern Karnataka.

  16. Design of an optimum computer vision-based automatic abalone (Haliotis discus hannai) grading algorithm.

    PubMed

    Lee, Donggil; Lee, Kyounghoon; Kim, Seonghun; Yang, Yongsu

    2015-04-01

    An automatic abalone grading algorithm that estimates abalone weights on the basis of computer vision using 2D images is developed and tested. The algorithm overcomes the problems experienced by conventional abalone grading methods that utilize manual sorting and mechanical automatic grading. To design an optimal algorithm, a regression formula and R(2) value were investigated by performing a regression analysis for each of total length, body width, thickness, view area, and actual volume against abalone weights. The R(2) value between the actual volume and abalone weight was 0.999, showing a relatively high correlation. As a result, to easily estimate the actual volumes of abalones based on computer vision, the volumes were calculated under the assumption that abalone shapes are half-oblate ellipsoids, and a regression formula was derived to estimate the volumes of abalones through linear regression analysis between the calculated and actual volumes. The final automatic abalone grading algorithm is designed using the abalone volume estimation regression formula derived from test results, and the actual volumes and abalone weights regression formula. In the range of abalones weighting from 16.51 to 128.01 g, the results of evaluation of the performance of algorithm via cross-validation indicate root mean square and worst-case prediction errors of are 2.8 and ±8 g, respectively. © 2015 Institute of Food Technologists®

  17. Regression with Small Data Sets: A Case Study using Code Surrogates in Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamath, C.; Fan, Y. J.

    There has been an increasing interest in recent years in the mining of massive data sets whose sizes are measured in terabytes. While it is easy to collect such large data sets in some application domains, there are others where collecting even a single data point can be very expensive, so the resulting data sets have only tens or hundreds of samples. For example, when complex computer simulations are used to understand a scientific phenomenon, we want to run the simulation for many different values of the input parameters and analyze the resulting output. The data set relating the simulationmore » inputs and outputs is typically quite small, especially when each run of the simulation is expensive. However, regression techniques can still be used on such data sets to build an inexpensive \\surrogate" that could provide an approximate output for a given set of inputs. A good surrogate can be very useful in sensitivity analysis, uncertainty analysis, and in designing experiments. In this paper, we compare different regression techniques to determine how well they predict melt-pool characteristics in the problem domain of additive manufacturing. Our analysis indicates that some of the commonly used regression methods do perform quite well even on small data sets.« less

  18. Goodness-of-fit tests and model diagnostics for negative binomial regression of RNA sequencing data.

    PubMed

    Mi, Gu; Di, Yanming; Schafer, Daniel W

    2015-01-01

    This work is about assessing model adequacy for negative binomial (NB) regression, particularly (1) assessing the adequacy of the NB assumption, and (2) assessing the appropriateness of models for NB dispersion parameters. Tools for the first are appropriate for NB regression generally; those for the second are primarily intended for RNA sequencing (RNA-Seq) data analysis. The typically small number of biological samples and large number of genes in RNA-Seq analysis motivate us to address the trade-offs between robustness and statistical power using NB regression models. One widely-used power-saving strategy, for example, is to assume some commonalities of NB dispersion parameters across genes via simple models relating them to mean expression rates, and many such models have been proposed. As RNA-Seq analysis is becoming ever more popular, it is appropriate to make more thorough investigations into power and robustness of the resulting methods, and into practical tools for model assessment. In this article, we propose simulation-based statistical tests and diagnostic graphics to address model adequacy. We provide simulated and real data examples to illustrate that our proposed methods are effective for detecting the misspecification of the NB mean-variance relationship as well as judging the adequacy of fit of several NB dispersion models.

  19. Fine and Gray competing risk regression model to study the cause-specific under-five child mortality in Bangladesh.

    PubMed

    Mohammad, Khandoker Akib; Fatima-Tuz-Zahura, Most; Bari, Wasimul

    2017-01-28

    The cause-specific under-five mortality of Bangladesh has been studied by fitting cumulative incidence function (CIF) based Fine and Gray competing risk regression model (1999). For the purpose of analysis, Bangladesh Demographic and Health Survey (BDHS), 2011 data set was used. Three types of mode of mortality for the under-five children are considered. These are disease, non-disease and other causes. Product-Limit survival probabilities for the under-five child mortality with log-rank test were used to select a set of covariates for the regression model. The covariates found to have significant association in bivariate analysis were only considered in the regression analysis. Potential determinants of under-five child mortality due to disease is size of child at birth, while gender of child, NGO (non-government organization) membership of mother, mother's education level, and size of child at birth are due to non-disease and age of mother at birth, NGO membership of mother, and mother's education level are for the mortality due to other causes. Female participation in the education programs needs to be increased because of the improvement of child health and government should arrange family and social awareness programs as well as health related programs for women so that they are aware of their child health.

  20. Partial Least Squares Regression Can Aid in Detecting Differential Abundance of Multiple Features in Sets of Metagenomic Samples

    PubMed Central

    Libiger, Ondrej; Schork, Nicholas J.

    2015-01-01

    It is now feasible to examine the composition and diversity of microbial communities (i.e., “microbiomes”) that populate different human organs and orifices using DNA sequencing and related technologies. To explore the potential links between changes in microbial communities and various diseases in the human body, it is essential to test associations involving different species within and across microbiomes, environmental settings and disease states. Although a number of statistical techniques exist for carrying out relevant analyses, it is unclear which of these techniques exhibit the greatest statistical power to detect associations given the complexity of most microbiome datasets. We compared the statistical power of principal component regression, partial least squares regression, regularized regression, distance-based regression, Hill's diversity measures, and a modified test implemented in the popular and widely used microbiome analysis methodology “Metastats” across a wide range of simulated scenarios involving changes in feature abundance between two sets of metagenomic samples. For this purpose, simulation studies were used to change the abundance of microbial species in a real dataset from a published study examining human hands. Each technique was applied to the same data, and its ability to detect the simulated change in abundance was assessed. We hypothesized that a small subset of methods would outperform the rest in terms of the statistical power. Indeed, we found that the Metastats technique modified to accommodate multivariate analysis and partial least squares regression yielded high power under the models and data sets we studied. The statistical power of diversity measure-based tests, distance-based regression and regularized regression was significantly lower. Our results provide insight into powerful analysis strategies that utilize information on species counts from large microbiome data sets exhibiting skewed frequency distributions obtained on a small to moderate number of samples. PMID:26734061

  1. Analysis of the Magnitude and Frequency of Peak Discharge and Maximum Observed Peak Discharge in New Mexico and Surrounding Areas

    USGS Publications Warehouse

    Waltemeyer, Scott D.

    2008-01-01

    Estimates of the magnitude and frequency of peak discharges are necessary for the reliable design of bridges, culverts, and open-channel hydraulic analysis, and for flood-hazard mapping in New Mexico and surrounding areas. The U.S. Geological Survey, in cooperation with the New Mexico Department of Transportation, updated estimates of peak-discharge magnitude for gaging stations in the region and updated regional equations for estimation of peak discharge and frequency at ungaged sites. Equations were developed for estimating the magnitude of peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years at ungaged sites by use of data collected through 2004 for 293 gaging stations on unregulated streams that have 10 or more years of record. Peak discharges for selected recurrence intervals were determined at gaging stations by fitting observed data to a log-Pearson Type III distribution with adjustments for a low-discharge threshold and a zero skew coefficient. A low-discharge threshold was applied to frequency analysis of 140 of the 293 gaging stations. This application provides an improved fit of the log-Pearson Type III frequency distribution. Use of the low-discharge threshold generally eliminated the peak discharge by having a recurrence interval of less than 1.4 years in the probability-density function. Within each of the nine regions, logarithms of the maximum peak discharges for selected recurrence intervals were related to logarithms of basin and climatic characteristics by using stepwise ordinary least-squares regression techniques for exploratory data analysis. Generalized least-squares regression techniques, an improved regression procedure that accounts for time and spatial sampling errors, then were applied to the same data used in the ordinary least-squares regression analyses. The average standard error of prediction, which includes average sampling error and average standard error of regression, ranged from 38 to 93 percent (mean value is 62, and median value is 59) for the 100-year flood. The 1996 investigation standard error of prediction for the flood regions ranged from 41 to 96 percent (mean value is 67, and median value is 68) for the 100-year flood that was analyzed by using generalized least-squares regression analysis. Overall, the equations based on generalized least-squares regression techniques are more reliable than those in the 1996 report because of the increased length of record and improved geographic information system (GIS) method to determine basin and climatic characteristics. Flood-frequency estimates can be made for ungaged sites upstream or downstream from gaging stations by using a method that transfers flood-frequency data at the gaging station to the ungaged site by using a drainage-area ratio adjustment equation. The peak discharge for a given recurrence interval at the gaging station, drainage-area ratio, and the drainage-area exponent from the regional regression equation of the respective region is used to transfer the peak discharge for the recurrence interval to the ungaged site. Maximum observed peak discharge as related to drainage area was determined for New Mexico. Extreme events are commonly used in the design and appraisal of bridge crossings and other structures. Bridge-scour evaluations are commonly made by using the 500-year peak discharge for these appraisals. Peak-discharge data collected at 293 gaging stations and 367 miscellaneous sites were used to develop a maximum peak-discharge relation as an alternative method of estimating peak discharge of an extreme event such as a maximum probable flood.

  2. Relations among soil radon, environmental parameters, volcanic and seismic events at Mt. Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Giammanco, S.; Ferrera, E.; Cannata, A.; Montalto, P.; Neri, M.

    2013-12-01

    From November 2009 to April 2011 soil radon activity was continuously monitored using a Barasol probe located on the upper NE flank of Mt. Etna volcano (Italy), close both to the Piano Provenzana fault and to the NE-Rift. Seismic, volcanological and radon data were analysed together with data on environmental parameters, such as air and soil temperature, barometric pressure, snow and rain fall. In order to find possible correlations among the above parameters, and hence to reveal possible anomalous trends in the radon time-series, we used different statistical methods: i) multivariate linear regression; ii) cross-correlation; iii) coherence analysis through wavelet transform. Multivariate regression indicated a modest influence on soil radon from environmental parameters (R2 = 0.31). When using 100-day time windows, the R2 values showed wide variations in time, reaching their maxima (~0.63-0.66) during summer. Cross-correlation analysis over 100-day moving averages showed that, similar to multivariate linear regression analysis, the summer period was characterised by the best correlation between radon data and environmental parameters. Lastly, the wavelet coherence analysis allowed a multi-resolution coherence analysis of the time series acquired. This approach allowed to study the relations among different signals either in the time or in the frequency domain. It confirmed the results of the previous methods, but also allowed to recognize correlations between radon and environmental parameters at different observation scales (e.g., radon activity changed during strong precipitations, but also during anomalous variations of soil temperature uncorrelated with seasonal fluctuations). Using the above analysis, two periods were recognized when radon variations were significantly correlated with marked soil temperature changes and also with local seismic or volcanic activity. This allowed to produce two different physical models of soil gas transport that explain the observed anomalies. Our work suggests that in order to make an accurate analysis of the relations among different signals it is necessary to use different techniques that give complementary analytical information. In particular, the wavelet analysis showed to be the most effective in discriminating radon changes due to environmental influences from those correlated with impending seismic or volcanic events.

  3. Discriminating between adaptive and carcinogenic liver hypertrophy in rat studies using logistic ridge regression analysis of toxicogenomic data: The mode of action and predictive models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shujie; Kawamoto, Taisuke; Morita, Osamu

    Chemical exposure often results in liver hypertrophy in animal tests, characterized by increased liver weight, hepatocellular hypertrophy, and/or cell proliferation. While most of these changes are considered adaptive responses, there is concern that they may be associated with carcinogenesis. In this study, we have employed a toxicogenomic approach using a logistic ridge regression model to identify genes responsible for liver hypertrophy and hypertrophic hepatocarcinogenesis and to develop a predictive model for assessing hypertrophy-inducing compounds. Logistic regression models have previously been used in the quantification of epidemiological risk factors. DNA microarray data from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System weremore » used to identify hypertrophy-related genes that are expressed differently in hypertrophy induced by carcinogens and non-carcinogens. Data were collected for 134 chemicals (72 non-hypertrophy-inducing chemicals, 27 hypertrophy-inducing non-carcinogenic chemicals, and 15 hypertrophy-inducing carcinogenic compounds). After applying logistic ridge regression analysis, 35 genes for liver hypertrophy (e.g., Acot1 and Abcc3) and 13 genes for hypertrophic hepatocarcinogenesis (e.g., Asns and Gpx2) were selected. The predictive models built using these genes were 94.8% and 82.7% accurate, respectively. Pathway analysis of the genes indicates that, aside from a xenobiotic metabolism-related pathway as an adaptive response for liver hypertrophy, amino acid biosynthesis and oxidative responses appear to be involved in hypertrophic hepatocarcinogenesis. Early detection and toxicogenomic characterization of liver hypertrophy using our models may be useful for predicting carcinogenesis. In addition, the identified genes provide novel insight into discrimination between adverse hypertrophy associated with carcinogenesis and adaptive hypertrophy in risk assessment. - Highlights: • Hypertrophy (H) and hypertrophic carcinogenesis (C) were studied by toxicogenomics. • Important genes for H and C were selected by logistic ridge regression analysis. • Amino acid biosynthesis and oxidative responses may be involved in C. • Predictive models for H and C provided 94.8% and 82.7% accuracy, respectively. • The identified genes could be useful for assessment of liver hypertrophy.« less

  4. Religiosity Profiles of American Youth in Relation to Substance Use, Violence, and Delinquency

    ERIC Educational Resources Information Center

    Salas-Wright, Christopher P.; Vaughn, Michael G.; Hodge, David R.; Perron, Brian E.

    2012-01-01

    Relatively little is known in terms of the relationship between religiosity profiles and adolescents' involvement in substance use, violence, and delinquency. Using a diverse sample of 17,705 (49 % female) adolescents from the 2008 National Survey on Drug Use and Health, latent profile analysis and multinomial regression are employed to examine…

  5. Examination of the Relation between the Values of Adolescents and Virtual Sensitiveness

    ERIC Educational Resources Information Center

    Yilmaz, Hasan

    2013-01-01

    The aim of this study is to examine the relation between the values adolescents have and virtual sensitiveness. The study is carried out on 447 adolescents, 160 of whom are female, 287 males. The Humanistic Values Scale and Virtual Sensitiveness scale were used. Pearson Product Moment Coefficient and multiple regression analysis techniques were…

  6. Exploring the Relations between Parent Depressive Symptoms, Family Religious Involvement, and Adolescent Depressive Symptoms: A Test of Moderation

    ERIC Educational Resources Information Center

    Hooper, Lisa M.; Caroline R. Newman

    2011-01-01

    Building on previous research, the current study examined the relations between parent depressive symptoms, family religious involvement, and adolescent depressive symptoms in a convenience sample of 74 parent-adolescent dyads of southern U.S. families. We used hierarchical regression analysis to explore whether family religious involvement…

  7. Preliminary results of spatial modeling of selected forest health variables in Georgia

    Treesearch

    Brock Stewart; Chris J. Cieszewski

    2009-01-01

    Variables relating to forest health monitoring, such as mortality, are difficult to predict and model. We present here the results of fitting various spatial regression models to these variables. We interpolate plot-level values compiled from the Forest Inventory and Analysis National Information Management System (FIA-NIMS) data that are related to forest health....

  8. The Examination of the Relation between Teacher Candidates' Problem Solving Appraisal and Utilization of Motivated Strategies for Learning

    ERIC Educational Resources Information Center

    Turgut, Ozden; Ocak, Gurbuz

    2017-01-01

    This study examines the relation between teacher candidates' problem solving appraisal and utilization of motivated strategies for learning. The study has been carried out with 416 teacher candidates. A correlation has been used between problem solving appraisal and utilization of motivated strategies for learning. Besides, regression analysis has…

  9. An Analysis of Online Course Sizes as It Relates to Student Success and Faculty Performance through Hierarchical Regression

    ERIC Educational Resources Information Center

    Aylward, Bryan T.

    2018-01-01

    Online distance education program has continued to change the educational landscape in higher education. There has been extensive research on the relationship between course size, faculty performance, and student success within traditional on-ground colleges and universities, but limited research as it related to online educational modalities. The…

  10. Helping Students Assess the Relative Importance of Different Intermolecular Interactions

    ERIC Educational Resources Information Center

    Jasien, Paul G.

    2008-01-01

    A semi-quantitative model has been developed to estimate the relative effects of dispersion, dipole-dipole interactions, and H-bonding on the normal boiling points ("T[subscript b]") for a subset of simple organic systems. The model is based upon a statistical analysis using multiple linear regression on a series of straight-chain organic…

  11. The use of segmented regression in analysing interrupted time series studies: an example in pre-hospital ambulance care.

    PubMed

    Taljaard, Monica; McKenzie, Joanne E; Ramsay, Craig R; Grimshaw, Jeremy M

    2014-06-19

    An interrupted time series design is a powerful quasi-experimental approach for evaluating effects of interventions introduced at a specific point in time. To utilize the strength of this design, a modification to standard regression analysis, such as segmented regression, is required. In segmented regression analysis, the change in intercept and/or slope from pre- to post-intervention is estimated and used to test causal hypotheses about the intervention. We illustrate segmented regression using data from a previously published study that evaluated the effectiveness of a collaborative intervention to improve quality in pre-hospital ambulance care for acute myocardial infarction (AMI) and stroke. In the original analysis, a standard regression model was used with time as a continuous variable. We contrast the results from this standard regression analysis with those from segmented regression analysis. We discuss the limitations of the former and advantages of the latter, as well as the challenges of using segmented regression in analysing complex quality improvement interventions. Based on the estimated change in intercept and slope from pre- to post-intervention using segmented regression, we found insufficient evidence of a statistically significant effect on quality of care for stroke, although potential clinically important effects for AMI cannot be ruled out. Segmented regression analysis is the recommended approach for analysing data from an interrupted time series study. Several modifications to the basic segmented regression analysis approach are available to deal with challenges arising in the evaluation of complex quality improvement interventions.

  12. Regression Models for the Analysis of Longitudinal Gaussian Data from Multiple Sources

    PubMed Central

    O’Brien, Liam M.; Fitzmaurice, Garrett M.

    2006-01-01

    We present a regression model for the joint analysis of longitudinal multiple source Gaussian data. Longitudinal multiple source data arise when repeated measurements are taken from two or more sources, and each source provides a measure of the same underlying variable and on the same scale. This type of data generally produces a relatively large number of observations per subject; thus estimation of an unstructured covariance matrix often may not be possible. We consider two methods by which parsimonious models for the covariance can be obtained for longitudinal multiple source data. The methods are illustrated with an example of multiple informant data arising from a longitudinal interventional trial in psychiatry. PMID:15726666

  13. The solar wind effect on cosmic rays and solar activity

    NASA Technical Reports Server (NTRS)

    Fujimoto, K.; Kojima, H.; Murakami, K.

    1985-01-01

    The relation of cosmic ray intensity to solar wind velocity is investigated, using neutron monitor data from Kiel and Deep River. The analysis shows that the regression coefficient of the average intensity for a time interval to the corresponding average velocity is negative and that the absolute effect increases monotonously with the interval of averaging, tau, that is, from -0.5% per 100km/s for tau = 1 day to -1.1% per 100km/s for tau = 27 days. For tau 27 days the coefficient becomes almost constant independently of the value of tau. The analysis also shows that this tau-dependence of the regression coefficiently is varying with the solar activity.

  14. Standardized Regression Coefficients as Indices of Effect Sizes in Meta-Analysis

    ERIC Educational Resources Information Center

    Kim, Rae Seon

    2011-01-01

    When conducting a meta-analysis, it is common to find many collected studies that report regression analyses, because multiple regression analysis is widely used in many fields. Meta-analysis uses effect sizes drawn from individual studies as a means of synthesizing a collection of results. However, indices of effect size from regression analyses…

  15. [Bibliometrics and visualization analysis of land use regression models in ambient air pollution research].

    PubMed

    Zhang, Y J; Zhou, D H; Bai, Z P; Xue, F X

    2018-02-10

    Objective: To quantitatively analyze the current status and development trends regarding the land use regression (LUR) models on ambient air pollution studies. Methods: Relevant literature from the PubMed database before June 30, 2017 was analyzed, using the Bibliographic Items Co-occurrence Matrix Builder (BICOMB 2.0). Keywords co-occurrence networks, cluster mapping and timeline mapping were generated, using the CiteSpace 5.1.R5 software. Relevant literature identified in three Chinese databases was also reviewed. Results: Four hundred sixty four relevant papers were retrieved from the PubMed database. The number of papers published showed an annual increase, in line with the growing trend of the index. Most papers were published in the journal of Environmental Health Perspectives . Results from the Co-word cluster analysis identified five clusters: cluster#0 consisted of birth cohort studies related to the health effects of prenatal exposure to air pollution; cluster#1 referred to land use regression modeling and exposure assessment; cluster#2 was related to the epidemiology on traffic exposure; cluster#3 dealt with the exposure to ultrafine particles and related health effects; cluster#4 described the exposure to black carbon and related health effects. Data from Timeline mapping indicated that cluster#0 and#1 were the main research areas while cluster#3 and#4 were the up-coming hot areas of research. Ninety four relevant papers were retrieved from the Chinese databases with most of them related to studies on modeling. Conclusion: In order to better assess the health-related risks of ambient air pollution, and to best inform preventative public health intervention policies, application of LUR models to environmental epidemiology studies in China should be encouraged.

  16. Comparison of methods for the analysis of relatively simple mediation models.

    PubMed

    Rijnhart, Judith J M; Twisk, Jos W R; Chinapaw, Mai J M; de Boer, Michiel R; Heymans, Martijn W

    2017-09-01

    Statistical mediation analysis is an often used method in trials, to unravel the pathways underlying the effect of an intervention on a particular outcome variable. Throughout the years, several methods have been proposed, such as ordinary least square (OLS) regression, structural equation modeling (SEM), and the potential outcomes framework. Most applied researchers do not know that these methods are mathematically equivalent when applied to mediation models with a continuous mediator and outcome variable. Therefore, the aim of this paper was to demonstrate the similarities between OLS regression, SEM, and the potential outcomes framework in three mediation models: 1) a crude model, 2) a confounder-adjusted model, and 3) a model with an interaction term for exposure-mediator interaction. Secondary data analysis of a randomized controlled trial that included 546 schoolchildren. In our data example, the mediator and outcome variable were both continuous. We compared the estimates of the total, direct and indirect effects, proportion mediated, and 95% confidence intervals (CIs) for the indirect effect across OLS regression, SEM, and the potential outcomes framework. OLS regression, SEM, and the potential outcomes framework yielded the same effect estimates in the crude mediation model, the confounder-adjusted mediation model, and the mediation model with an interaction term for exposure-mediator interaction. Since OLS regression, SEM, and the potential outcomes framework yield the same results in three mediation models with a continuous mediator and outcome variable, researchers can continue using the method that is most convenient to them.

  17. OAO battery data analysis

    NASA Technical Reports Server (NTRS)

    Gaston, S.; Wertheim, M.; Orourke, J. A.

    1973-01-01

    Summary, consolidation and analysis of specifications, manufacturing process and test controls, and performance results for OAO-2 and OAO-3 lot 20 Amp-Hr sealed nickel cadmium cells and batteries are reported. Correlation of improvements in control requirements with performance is a key feature. Updates for a cell/battery computer model to improve performance prediction capability are included. Applicability of regression analysis computer techniques to relate process controls to performance is checked.

  18. Discriminating between adaptive and carcinogenic liver hypertrophy in rat studies using logistic ridge regression analysis of toxicogenomic data: The mode of action and predictive models.

    PubMed

    Liu, Shujie; Kawamoto, Taisuke; Morita, Osamu; Yoshinari, Kouichi; Honda, Hiroshi

    2017-03-01

    Chemical exposure often results in liver hypertrophy in animal tests, characterized by increased liver weight, hepatocellular hypertrophy, and/or cell proliferation. While most of these changes are considered adaptive responses, there is concern that they may be associated with carcinogenesis. In this study, we have employed a toxicogenomic approach using a logistic ridge regression model to identify genes responsible for liver hypertrophy and hypertrophic hepatocarcinogenesis and to develop a predictive model for assessing hypertrophy-inducing compounds. Logistic regression models have previously been used in the quantification of epidemiological risk factors. DNA microarray data from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System were used to identify hypertrophy-related genes that are expressed differently in hypertrophy induced by carcinogens and non-carcinogens. Data were collected for 134 chemicals (72 non-hypertrophy-inducing chemicals, 27 hypertrophy-inducing non-carcinogenic chemicals, and 15 hypertrophy-inducing carcinogenic compounds). After applying logistic ridge regression analysis, 35 genes for liver hypertrophy (e.g., Acot1 and Abcc3) and 13 genes for hypertrophic hepatocarcinogenesis (e.g., Asns and Gpx2) were selected. The predictive models built using these genes were 94.8% and 82.7% accurate, respectively. Pathway analysis of the genes indicates that, aside from a xenobiotic metabolism-related pathway as an adaptive response for liver hypertrophy, amino acid biosynthesis and oxidative responses appear to be involved in hypertrophic hepatocarcinogenesis. Early detection and toxicogenomic characterization of liver hypertrophy using our models may be useful for predicting carcinogenesis. In addition, the identified genes provide novel insight into discrimination between adverse hypertrophy associated with carcinogenesis and adaptive hypertrophy in risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Nonparametric methods for drought severity estimation at ungauged sites

    NASA Astrophysics Data System (ADS)

    Sadri, S.; Burn, D. H.

    2012-12-01

    The objective in frequency analysis is, given extreme events such as drought severity or duration, to estimate the relationship between that event and the associated return periods at a catchment. Neural networks and other artificial intelligence approaches in function estimation and regression analysis are relatively new techniques in engineering, providing an attractive alternative to traditional statistical models. There are, however, few applications of neural networks and support vector machines in the area of severity quantile estimation for drought frequency analysis. In this paper, we compare three methods for this task: multiple linear regression, radial basis function neural networks, and least squares support vector regression (LS-SVR). The area selected for this study includes 32 catchments in the Canadian Prairies. From each catchment drought severities are extracted and fitted to a Pearson type III distribution, which act as observed values. For each method-duration pair, we use a jackknife algorithm to produce estimated values at each site. The results from these three approaches are compared and analyzed, and it is found that LS-SVR provides the best quantile estimates and extrapolating capacity.

  20. A logistic regression analysis of factors related to the treatment compliance of infertile patients with polycystic ovary syndrome.

    PubMed

    Li, Saijiao; He, Aiyan; Yang, Jing; Yin, TaiLang; Xu, Wangming

    2011-01-01

    To investigate factors that can affect compliance with treatment of polycystic ovary syndrome (PCOS) in infertile patients and to provide a basis for clinical treatment, specialist consultation and health education. Patient compliance was assessed via a questionnaire based on the Morisky-Green test and the treatment principles of PCOS. Then interviews were conducted with 99 infertile patients diagnosed with PCOS at Renmin Hospital of Wuhan University in China, from March to September 2009. Finally, these data were analyzed using logistic regression analysis. Logistic regression analysis revealed that a total of 23 (25.6%) of the participants showed good compliance. Factors that significantly (p < 0.05) affected compliance with treatment were the patient's body mass index, convenience of medical treatment and concerns about adverse drug reactions. Patients who are obese, experience inconvenient medical treatment or are concerned about adverse drug reactions are more likely to exhibit noncompliance. Treatment education and intervention aimed at these patients should be strengthened in the clinic to improve treatment compliance. Further research is needed to better elucidate the compliance behavior of patients with PCOS.

  1. Prevalence of rapid eye movement sleep behavior disorder (RBD) in Parkinson's disease: a meta and meta-regression analysis.

    PubMed

    Zhang, Xiaona; Sun, Xiaoxuan; Wang, Junhong; Tang, Liou; Xie, Anmu

    2017-01-01

    Rapid eye movement sleep behavior disorder (RBD) is thought to be one of the most frequent preceding symptoms of Parkinson's disease (PD). However, the prevalence of RBD in PD stated in the published studies is still inconsistent. We conducted a meta and meta-regression analysis in this paper to estimate the pooled prevalence. We searched the electronic databases of PubMed, ScienceDirect, EMBASE and EBSCO up to June 2016 for related articles. STATA 12.0 statistics software was used to calculate the available data from each research. The prevalence of RBD in PD patients in each study was combined to a pooled prevalence with a 95 % confidence interval (CI). Subgroup analysis and meta-regression analysis were performed to search for the causes of the heterogeneity. A total of 28 studies with 6869 PD cases were deemed eligible and included in our meta-analysis based on the inclusion and exclusion criteria. The pooled prevalence of RBD in PD was 42.3 % (95 % CI 37.4-47.1 %). In subgroup analysis and meta-regression analysis, we found that the important causes of heterogeneity were the diagnosis criteria of RBD and age of PD patients (P = 0.016, P = 0.019, respectively). The results indicate that nearly half of the PD patients are suffering from RBD. Older age and longer duration are risk factors for RBD in PD. We can use the minimal diagnosis criteria for RBD according to the International Classification of Sleep Disorders to diagnose RBD patients in our daily work if polysomnography is not necessary.

  2. Racial/ethnic and educational differences in the estimated odds of recent nitrite use among adult household residents in the United States: an illustration of matching and conditional logistic regression.

    PubMed

    Delva, J; Spencer, M S; Lin, J K

    2000-01-01

    This article compares estimates of the relative odds of nitrite use obtained from weighted unconditional logistic regression with estimates obtained from conditional logistic regression after post-stratification and matching of cases with controls by neighborhood of residence. We illustrate these methods by comparing the odds associated with nitrite use among adults of four racial/ethnic groups, with and without a high school education. We used aggregated data from the 1994-B through 1996 National Household Survey on Drug Abuse (NHSDA). Difference between the methods and implications for analysis and inference are discussed.

  3. Aggregating the response in time series regression models, applied to weather-related cardiovascular mortality

    NASA Astrophysics Data System (ADS)

    Masselot, Pierre; Chebana, Fateh; Bélanger, Diane; St-Hilaire, André; Abdous, Belkacem; Gosselin, Pierre; Ouarda, Taha B. M. J.

    2018-07-01

    In environmental epidemiology studies, health response data (e.g. hospitalization or mortality) are often noisy because of hospital organization and other social factors. The noise in the data can hide the true signal related to the exposure. The signal can be unveiled by performing a temporal aggregation on health data and then using it as the response in regression analysis. From aggregated series, a general methodology is introduced to account for the particularities of an aggregated response in a regression setting. This methodology can be used with usually applied regression models in weather-related health studies, such as generalized additive models (GAM) and distributed lag nonlinear models (DLNM). In particular, the residuals are modelled using an autoregressive-moving average (ARMA) model to account for the temporal dependence. The proposed methodology is illustrated by modelling the influence of temperature on cardiovascular mortality in Canada. A comparison with classical DLNMs is provided and several aggregation methods are compared. Results show that there is an increase in the fit quality when the response is aggregated, and that the estimated relationship focuses more on the outcome over several days than the classical DLNM. More precisely, among various investigated aggregation schemes, it was found that an aggregation with an asymmetric Epanechnikov kernel is more suited for studying the temperature-mortality relationship.

  4. Improving Space Project Cost Estimating with Engineering Management Variables

    NASA Technical Reports Server (NTRS)

    Hamaker, Joseph W.; Roth, Axel (Technical Monitor)

    2001-01-01

    Current space project cost models attempt to predict space flight project cost via regression equations, which relate the cost of projects to technical performance metrics (e.g. weight, thrust, power, pointing accuracy, etc.). This paper examines the introduction of engineering management parameters to the set of explanatory variables. A number of specific engineering management variables are considered and exploratory regression analysis is performed to determine if there is statistical evidence for cost effects apart from technical aspects of the projects. It is concluded that there are other non-technical effects at work and that further research is warranted to determine if it can be shown that these cost effects are definitely related to engineering management.

  5. [Associated factors in newborns with intrauterine growth retardation].

    PubMed

    Thompson-Chagoyán, Oscar C; Vega-Franco, Leopoldo

    2008-01-01

    To identify the risk factors implicated in the intrauterine growth retardation (IUGR) of neonates born in a social security institution. Case controls design study in 376 neonates: 188 with IUGR (weight < 10 percentile) and 188 without IUGR. When they born, information about 30 variables of risk for IUGR were obtained from mothers. Risk analysis and logistical regression (stepwise) were used. Odds ratios were significant for 12 of the variables. The model obtains by stepwise regression included: weight gain at pregnancy, prenatal care attendance, toxemia, chocolate ingestion, father's weight, and the environmental house. Must of the variables included in the model are related to socioeconomic disadvantages related to the risk of RCIU in the population.

  6. [Correlation between gaseous exchange rate, body temperature, and mitochondrial protein content in the liver of mice].

    PubMed

    Muradian, Kh K; Utko, N O; Mozzhukhina, T H; Pishel', I M; Litoshenko, O Ia; Bezrukov, V V; Fraĭfel'd, V E

    2002-01-01

    Correlative and regressive relations between the gaseous exchange, thermoregulation and mitochondrial protein content were analyzed by two- and three-dimensional statistics in mice. It has been shown that the pair wise linear methods of analysis did not reveal any significant correlation between the parameters under exploration. However, it became evident at three-dimensional and non-linear plotting for which the coefficients of multivariable correlation reached and even exceeded 0.7-0.8. The calculations based on partial differentiation of the multivariable regression equations allow to conclude that at certain values of VO2, VCO2 and body temperature negative relations between the systems of gaseous exchange and thermoregulation become dominating.

  7. Is investigator background related to outcome in head to head trials of psychotherapy and pharmacotherapy for adult depression? A systematic review and meta-analysis

    PubMed Central

    Gentili, Claudio; Pietrini, Pietro; Cuijpers, Pim

    2017-01-01

    Background The influence of factors related to the background of investigators conducting trials comparing psychotherapy and pharmacotherapy has remained largely unstudied. Specializations emphasizing biological determinants of mental disorders, like psychiatry, might favor pharmacotherapy, while others stressing psychosocial factors, like psychology, could promote psychotherapy. Yet financial conflict of interest (COI) could be a confounding factor as authors with a medical specialization might receive more sponsoring from the pharmaceutical industry. Method We conducted a meta-analysis with subgroup and meta-regression analysis examining whether the specialization and affiliation of trial authors were associated to outcomes in the direct comparison of psychotherapy and pharmacotherapy for the acute treatment of depression. Meta-regression analysis also included trial risk of bias and author conflict of interest in relationship to the pharmaceutical industry. Results We included 45 trials. In half, the first author was psychologist. The last author was psychiatrist/MD in half of the trials, and a psychologist or statistician/other technical in the rest. Most lead authors had medical affiliations. Subgroup analysis indicated that studies with last authors statisticians favored pharmacotherapy. Univariate analysis showed a negative relationship between the presence of statisticians and outcomes favoring psychotherapy. Multivariate analysis showed that trials including authors with financial COI reported findings more favorable to pharmacotherapy. Discussion We report the first detailed overview of the background of authors conducting head to head trials for depression. Trials co-authored by statisticians appear to subtly favor pharmacotherapy. Receiving funding from the industry is more closely related to finding better outcomes for the industry’s elective treatment than are factors related to authors’ background. Limitations For a minority of authors we could not retrieve background information. The number of trials was insufficient to evidence subtler effects. PMID:28158281

  8. Association of Protein Translation and Extracellular Matrix Gene Sets with Breast Cancer Metastasis: Findings Uncovered on Analysis of Multiple Publicly Available Datasets Using Individual Patient Data Approach.

    PubMed

    Chowdhury, Nilotpal; Sapru, Shantanu

    2015-01-01

    Microarray analysis has revolutionized the role of genomic prognostication in breast cancer. However, most studies are single series studies, and suffer from methodological problems. We sought to use a meta-analytic approach in combining multiple publicly available datasets, while correcting for batch effects, to reach a more robust oncogenomic analysis. The aim of the present study was to find gene sets associated with distant metastasis free survival (DMFS) in systemically untreated, node-negative breast cancer patients, from publicly available genomic microarray datasets. Four microarray series (having 742 patients) were selected after a systematic search and combined. Cox regression for each gene was done for the combined dataset (univariate, as well as multivariate - adjusted for expression of Cell cycle related genes) and for the 4 major molecular subtypes. The centre and microarray batch effects were adjusted by including them as random effects variables. The Cox regression coefficients for each analysis were then ranked and subjected to a Gene Set Enrichment Analysis (GSEA). Gene sets representing protein translation were independently negatively associated with metastasis in the Luminal A and Luminal B subtypes, but positively associated with metastasis in Basal tumors. Proteinaceous extracellular matrix (ECM) gene set expression was positively associated with metastasis, after adjustment for expression of cell cycle related genes on the combined dataset. Finally, the positive association of the proliferation-related genes with metastases was confirmed. To the best of our knowledge, the results depicting mixed prognostic significance of protein translation in breast cancer subtypes are being reported for the first time. We attribute this to our study combining multiple series and performing a more robust meta-analytic Cox regression modeling on the combined dataset, thus discovering 'hidden' associations. This methodology seems to yield new and interesting results and may be used as a tool to guide new research.

  9. Association of Protein Translation and Extracellular Matrix Gene Sets with Breast Cancer Metastasis: Findings Uncovered on Analysis of Multiple Publicly Available Datasets Using Individual Patient Data Approach

    PubMed Central

    Chowdhury, Nilotpal; Sapru, Shantanu

    2015-01-01

    Introduction Microarray analysis has revolutionized the role of genomic prognostication in breast cancer. However, most studies are single series studies, and suffer from methodological problems. We sought to use a meta-analytic approach in combining multiple publicly available datasets, while correcting for batch effects, to reach a more robust oncogenomic analysis. Aim The aim of the present study was to find gene sets associated with distant metastasis free survival (DMFS) in systemically untreated, node-negative breast cancer patients, from publicly available genomic microarray datasets. Methods Four microarray series (having 742 patients) were selected after a systematic search and combined. Cox regression for each gene was done for the combined dataset (univariate, as well as multivariate – adjusted for expression of Cell cycle related genes) and for the 4 major molecular subtypes. The centre and microarray batch effects were adjusted by including them as random effects variables. The Cox regression coefficients for each analysis were then ranked and subjected to a Gene Set Enrichment Analysis (GSEA). Results Gene sets representing protein translation were independently negatively associated with metastasis in the Luminal A and Luminal B subtypes, but positively associated with metastasis in Basal tumors. Proteinaceous extracellular matrix (ECM) gene set expression was positively associated with metastasis, after adjustment for expression of cell cycle related genes on the combined dataset. Finally, the positive association of the proliferation-related genes with metastases was confirmed. Conclusion To the best of our knowledge, the results depicting mixed prognostic significance of protein translation in breast cancer subtypes are being reported for the first time. We attribute this to our study combining multiple series and performing a more robust meta-analytic Cox regression modeling on the combined dataset, thus discovering 'hidden' associations. This methodology seems to yield new and interesting results and may be used as a tool to guide new research. PMID:26080057

  10. Can the provision of a home help service for the elderly population reduce the incidence of fall-related injuries? A quasi-experimental study of the community-level effects on hospital admissions in Swedish municipalities.

    PubMed

    Bonander, Carl; Gustavsson, Johanna; Nilson, Finn

    2016-12-01

    Fall-related injuries are a global public health problem, especially in elderly populations. The effect of an intervention aimed at reducing the risk of falls in the homes of community-dwelling elderly persons was evaluated. The intervention mainly involves the performance of complicated tasks and hazards assessment by a trained assessor, and has been adopted gradually over the last decade by 191 of 290 Swedish municipalities. A quasi-experimental design was used where intention-to-treat effect estimates were derived using panel regression analysis and a regression discontinuity (RD) design. The outcome measure was the incidence of fall-related hospitalisations in the treatment population, the age of which varied by municipality (≥65 years, ≥67 years, ≥70 years or ≥75 years). We found no statistically significant reductions in injury incidence in the panel regression (IRR 1.01 (95% CI 0.98 to 1.05)) or RD (IRR 1.00 (95% CI 0.97 to 1.03)) analyses. The results are robust to several different model specifications, including segmented panel regression analysis with linear trend change and community fixed effects parameters. It is unclear whether the absence of an effect is due to a low efficacy of the services provided, or a result of low adherence. Additional studies of the effects on other quality-of-life measures are recommended before conclusions are drawn regarding the cost-effectiveness of the provision of home help service programmes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. A study of home deaths in Japan from 1951 to 2002

    PubMed Central

    Yang, Limin; Sakamoto, Naoko; Marui, Eiji

    2006-01-01

    Background Several surveys in Japan have indicated that most terminally ill Japanese patients would prefer to die at home or in a homelike setting. However, there is a great disparity between this stated preference and the reality, since most Japanese die in hospital. We report here national changes in home deaths in Japan over the last 5 decades. Using prefecture data, we also examined the factors in the medical service associated with home death in Japan. Methods Published data on place of death was obtained from the vital statistics compiled by the Ministry of Health, Labor and Welfare of Japan. We analyzed trends of home deaths from 1951 to 2002, and describe the changes in the proportion of home deaths by region, sex, age, and cause of death. Joinpoint regression analysis was used for trend analysis. Logistic regression analysis was performed to identify secular trends in home deaths, and the impact of age, sex, year of deaths and cause of deaths on home death. We also examined the association between home death and medical service factors by multiple regression analysis, using home death rate by prefectures in 2002 as a dependent variable. Results A significant decrease in the percentage of patients dying at home was observed in the results of joinpoint regression analysis. Older patients and males were more likely to die at home. Patients who died from cancer were less likely to die at home. The results of multiple regression analysis indicated that home death was related to the number of beds in hospital, ratio of daily occupied beds in general hospital, the number of families in which the elderly were living alone, and dwelling rooms. Conclusion The pattern of the place of death has not only been determined by social and demographic characteristics of the decedent, but also associated with the medical service in the community. PMID:16524485

  12. Individual risk factors for deep infection and compromised fracture healing after intramedullary nailing of tibial shaft fractures: a single centre experience of 480 patients.

    PubMed

    Metsemakers, W-J; Handojo, K; Reynders, P; Sermon, A; Vanderschot, P; Nijs, S

    2015-04-01

    Despite modern advances in the treatment of tibial shaft fractures, complications including nonunion, malunion, and infection remain relatively frequent. A better understanding of these injuries and its complications could lead to prevention rather than treatment strategies. A retrospective study was performed to identify risk factors for deep infection and compromised fracture healing after intramedullary nailing (IMN) of tibial shaft fractures. Between January 2000 and January 2012, 480 consecutive patients with 486 tibial shaft fractures were enrolled in the study. Statistical analysis was performed to determine predictors of deep infection and compromised fracture healing. Compromised fracture healing was subdivided in delayed union and nonunion. The following independent variables were selected for analysis: age, sex, smoking, obesity, diabetes, American Society of Anaesthesiologists (ASA) classification, polytrauma, fracture type, open fractures, Gustilo type, primary external fixation (EF), time to nailing (TTN) and reaming. As primary statistical evaluation we performed a univariate analysis, followed by a multiple logistic regression model. Univariate regression analysis revealed similar risk factors for delayed union and nonunion, including fracture type, open fractures and Gustilo type. Factors affecting the occurrence of deep infection in this model were primary EF, a prolonged TTN, open fractures and Gustilo type. Multiple logistic regression analysis revealed polytrauma as the single risk factor for nonunion. With respect to delayed union, no risk factors could be identified. In the same statistical model, deep infection was correlated with primary EF. The purpose of this study was to evaluate risk factors of poor outcome after IMN of tibial shaft fractures. The univariate regression analysis showed that the nature of complications after tibial shaft nailing could be multifactorial. This was not confirmed in a multiple logistic regression model, which only revealed polytrauma and primary EF as risk factors for nonunion and deep infection, respectively. Future strategies should focus on prevention in high-risk populations such as polytrauma patients treated with EF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Blastocoele expansion degree predicts live birth after single blastocyst transfer for fresh and vitrified/warmed single blastocyst transfer cycles.

    PubMed

    Du, Qing-Yun; Wang, En-Yin; Huang, Yan; Guo, Xiao-Yi; Xiong, Yu-Jing; Yu, Yi-Ping; Yao, Gui-Dong; Shi, Sen-Lin; Sun, Ying-Pu

    2016-04-01

    To evaluate the independent effects of the degree of blastocoele expansion and re-expansion and the inner cell mass (ICM) and trophectoderm (TE) grades on predicting live birth after fresh and vitrified/warmed single blastocyst transfer. Retrospective study. Reproductive medical center. Women undergoing 844 fresh and 370 vitrified/warmed single blastocyst transfer cycles. None. Live-birth rate correlated with blastocyst morphology parameters by logistic regression analysis and Spearman correlations analysis. The degree of blastocoele expansion and re-expansion was the only blastocyst morphology parameter that exhibited a significant ability to predict live birth in both fresh and vitrified/warmed single blastocyst transfer cycles respectively by multivariate logistic regression and Spearman correlations analysis. Although the ICM grade was significantly related to live birth in fresh cycles according to the univariate model, its effect was not maintained in the multivariate logistic analysis. In vitrified/warmed cycles, neither ICM nor TE grade was correlated with live birth by logistic regression analysis. This study is the first to confirm that the degree of blastocoele expansion and re-expansion is a better predictor of live birth after both fresh and vitrified/warmed single blastocyst transfer cycles than ICM or TE grade. Copyright © 2016. Published by Elsevier Inc.

  14. Association Between Smartphone Use and Musculoskeletal Discomfort in Adolescent Students.

    PubMed

    Yang, Shang-Yu; Chen, Ming-De; Huang, Yueh-Chu; Lin, Chung-Ying; Chang, Jer-Hao

    2017-06-01

    Despite the substantial increase in the number of adolescent smartphone users, few studies have investigated the behavioural effects of smartphone use on adolescent students as it relates to musculoskeletal discomfort. The purpose of this study was to explore the association between smartphone use and musculoskeletal discomfort in students at a Taiwanese junior college. We hypothesised that the duration of smartphone use would be associated with increased instances of musculoskeletal discomfort in these students. This cross-sectional study employed a convenience sampling method to recruit students from a junior college in southern Taiwan. All the students (n = 315) were asked to answer questionnaires on smartphone use. A descriptive analysis, stepwise regression, and logistic regression were used to examine specific components of smartphone use and their relationship to musculoskeletal discomfort. Nearly half of the participants experienced neck and shoulder discomfort. The stepwise regression results indicated that the number of body parts with discomfort (F = 6.009, p < 0.05) increased with hours spent using ancillary smartphone functions. The logistic regression analysis showed that the students who talked on the phone >3 h/day had a higher risk of upper back discomfort than did those who talked on the phone <1 h/day [odds ratio (OR) = 4.23, p < 0.05]. This study revealed that the relationship between smartphone use and musculoskeletal discomfort is related to the duration of smartphone ancillary function use. Moreover, hours spent talking on the phone was a predictor of upper back discomfort.

  15. Changes in aerobic power of women, ages 20-64 yr

    NASA Technical Reports Server (NTRS)

    Jackson, A. S.; Wier, L. T.; Ayers, G. W.; Beard, E. F.; Stuteville, J. E.; Blair, S. N.

    1996-01-01

    This study quantified and compared the cross-sectional and longitudinal influence of age, self-report physical activity (SR-PA), and body composition (%fat) on the decline of maximal aerobic power (VO2peak) of women. The cross-sectional sample consisted of 409 healthy women, ages 20-64 yr. The 43 women of the longitudinal sample were from the same population and examined twice, the mean time between tests was 3.7 (+/-2.2) yr. Peak oxygen uptake was determined by indirect calorimetry during a maximal treadmill test. The zero-order correlation of -0.742 between VO2peak and %fat was significantly (P < 0.05) higher then the SR-PA (r = 0.626) and age correlations (r = -0.633). Linear regression defined the cross-sectional age-related decline in VO2peak at 0.537 ml.kg-1.min-1.yr-1. Multiple regression analysis (R = 0.851) showed that adding %fat and SR-PA and their interaction to the regression model reduced the age regression weight of -0.537, to -0.265 ml.kg-1.min-1.yr-1. Statistically controlling for time differences between tests, general linear models analysis showed that longitudinal changes in aerobic power were due to independent changes in %fat and SR-PA, confirming the cross-sectional results. These findings are consistent with men's data from the same lab showing that about 50% of the cross-sectional age-related decline in VO2peak was due to %fat and SR-PA.

  16. Trait Mindfulness as a Limiting Factor for Residual Depressive Symptoms: An Explorative Study Using Quantile Regression

    PubMed Central

    Radford, Sholto; Eames, Catrin; Brennan, Kate; Lambert, Gwladys; Crane, Catherine; Williams, J. Mark G.; Duggan, Danielle S.; Barnhofer, Thorsten

    2014-01-01

    Mindfulness has been suggested to be an important protective factor for emotional health. However, this effect might vary with regard to context. This study applied a novel statistical approach, quantile regression, in order to investigate the relation between trait mindfulness and residual depressive symptoms in individuals with a history of recurrent depression, while taking into account symptom severity and number of episodes as contextual factors. Rather than fitting to a single indicator of central tendency, quantile regression allows exploration of relations across the entire range of the response variable. Analysis of self-report data from 274 participants with a history of three or more previous episodes of depression showed that relatively higher levels of mindfulness were associated with relatively lower levels of residual depressive symptoms. This relationship was most pronounced near the upper end of the response distribution and moderated by the number of previous episodes of depression at the higher quantiles. The findings suggest that with lower levels of mindfulness, residual symptoms are less constrained and more likely to be influenced by other factors. Further, the limiting effect of mindfulness on residual symptoms is most salient in those with higher numbers of episodes. PMID:24988072

  17. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong W. Lee

    2004-10-01

    The systematic tests of the gasifier simulator on the clean thermocouple were completed in this reporting period. Within the systematic tests on the clean thermocouple, five (5) factors were considered as the experimental parameters including air flow rate, water flow rate, fine dust particle amount, ammonia addition and high/low frequency device (electric motor). The fractional factorial design method was used in the experiment design with sixteen (16) data sets of readings. Analysis of Variances (ANOVA) was applied to the results from systematic tests. The ANOVA results show that the un-balanced motor vibration frequency did not have the significant impact onmore » the temperature changes in the gasifier simulator. For the fine dust particles testing, the amount of fine dust particles has significant impact to the temperature measurements in the gasifier simulator. The effects of the air and water on the temperature measurements show the same results as reported in the previous report. The ammonia concentration was included as an experimental parameter for the reducing environment in this reporting period. The ammonia concentration does not seem to be a significant factor on the temperature changes. The linear regression analysis was applied to the temperature reading with five (5) factors. The accuracy of the linear regression is relatively low, which is less than 10% accuracy. Nonlinear regression was also conducted to the temperature reading with the same factors. Since the experiments were designed in two (2) levels, the nonlinear regression is not very effective with the dataset (16 readings). An extra central point test was conducted. With the data of the center point testing, the accuracy of the nonlinear regression is much better than the linear regression.« less

  18. K-12 System Reforms across Studies: The Significance of Change, Meta-Analysis, and Logistics Regression

    ERIC Educational Resources Information Center

    Almutairi, Mashal

    2013-01-01

    The main purpose of this research was to survey the literature about the U.S. education system and synthesize the important conclusions that could be identified as the main features of the education system in general as they relate to student achievement. The criteria were set and the meta-analysis procedures were carefully followed. This process…

  19. Psychosocial correlates of HIV protection motivation among black adolescents in Venda, South Africa.

    PubMed

    Boer, Henk; Mashamba, M Tshilidzi

    2005-12-01

    We assessed the usefulness of the theory of planned behavior (TPB) and protection motivation theory (PMT) to predict intended condom use among 201 adolescents from Venda, South Africa. Results indicated that both the TPB and the PMT could significantly predict intended condom use, although the level of explained variance was limited. Hierarchical regression analysis indicated that there was considerable overlap between the TPB and the PMT in predicting condom use intention. In the regression analysis that used both the TPB and the PMT variables subjective norms and response efficacy were positively related to intended condom use. The results indicated that both the TPB and the PMT were valuable in explaining intended condom use among African adolescents. The TPB made clear that the social environment is an important contextual factor, whereas the PMT made clear that response efficacy is positively related to condom use intention. The results of this study indicated that social cognition models have some value in the analysis of condom use intention of African adolescents, but the role of other factors like myths about condoms should be further examined.

  20. The perception of the relationship between environment and health according to data from Italian Behavioural Risk Factor Surveillance System (PASSI).

    PubMed

    Sampaolo, Letizia; Tommaso, Giulia; Gherardi, Bianca; Carrozzi, Giuliano; Freni Sterrantino, Anna; Ottone, Marta; Goldoni, Carlo Alberto; Bertozzi, Nicoletta; Scaringi, Meri; Bolognesi, Lara; Masocco, Maria; Salmaso, Stefania; Lauriola, Paolo

    2017-01-01

    "OBJECTIVES: to identify groups of people in relation to the perception of environmental risk and to assess the main characteristics using data collected in the environmental module of the surveillance network Italian Behavioral Risk Factor Surveillance System (PASSI). perceptive profiles were identified using a latent class analysis; later they were included as outcome in multinomial logistic regression models to assess the association between environmental risk perception and demographic, health, socio-economic and behavioural variables. the latent class analysis allowed to split the sample in "worried", "indifferent", and "positive" people. The multinomial logistic regression model showed that the "worried" profile typically includes people of Italian nationality, living in highly urbanized areas, with a high level of education, and with economic difficulties; they pay special attention to their own health and fitness, but they have a negative perception of their own psychophysical state. the application of advanced statistical analysis enable to appraise PASSI data in order to characterize the perception of environmental risk, making the planning of interventions related to risk communication possible. ".

  1. Improving the accuracy of Density Functional Theory (DFT) calculation for homolysis bond dissociation energies of Y-NO bond: generalized regression neural network based on grey relational analysis and principal component analysis.

    PubMed

    Li, Hong Zhi; Tao, Wei; Gao, Ting; Li, Hui; Lu, Ying Hua; Su, Zhong Min

    2011-01-01

    We propose a generalized regression neural network (GRNN) approach based on grey relational analysis (GRA) and principal component analysis (PCA) (GP-GRNN) to improve the accuracy of density functional theory (DFT) calculation for homolysis bond dissociation energies (BDE) of Y-NO bond. As a demonstration, this combined quantum chemistry calculation with the GP-GRNN approach has been applied to evaluate the homolysis BDE of 92 Y-NO organic molecules. The results show that the ull-descriptor GRNN without GRA and PCA (F-GRNN) and with GRA (G-GRNN) approaches reduce the root-mean-square (RMS) of the calculated homolysis BDE of 92 organic molecules from 5.31 to 0.49 and 0.39 kcal mol(-1) for the B3LYP/6-31G (d) calculation. Then the newly developed GP-GRNN approach further reduces the RMS to 0.31 kcal mol(-1). Thus, the GP-GRNN correction on top of B3LYP/6-31G (d) can improve the accuracy of calculating the homolysis BDE in quantum chemistry and can predict homolysis BDE which cannot be obtained experimentally.

  2. Tuberculosis-related knowledge is associated with patient outcomes in shantytown residents; results from a cohort study, Peru.

    PubMed

    Westerlund, Emma E; Tovar, Marco A; Lönnermark, Elisabet; Montoya, Rosario; Evans, Carlton A

    2015-09-01

    Tuberculosis is frequent among poor and marginalized people whose limited tuberculosis-related knowledge may impair healthcare access. We characterised tuberculosis-related knowledge and associations with delayed treatment and treatment outcome. Tuberculosis patients (n = 943), people being tested for suspected tuberculosis (n = 2020), and randomly selected healthy controls (n = 476) in 16 periurban shantytowns were interviewed characterizing: socio-demographic factors; tuberculosis risk-factors; and patients' treatment delay. Principle component analysis was used to generate a tuberculosis-related knowledge score. Patients were followed-up for median 7.7 years. Factors associated with tuberculosis treatment delay, treatment outcome and tuberculosis recurrence were assessed using linear, logistic and Cox regression. Tuberculosis-related knowledge was poor, especially in older people who had not completed schooling and had never been diagnosed with tuberculosis. Tuberculosis treatment delay was median 60 days and was more delayed for patients who were poorer, older, had more severe tuberculosis and in only unadjusted analysis with incomplete schooling and low tuberculosis-related knowledge (all p ≤ 0.03). Lower than median tuberculosis-related knowledge was associated with tuberculosis recurrence (unadjusted hazard ratio = 2.1, p = 0.008), and this association was independent of co-morbidities, disease severity and demographic factors (multiple regression adjusted hazard ratio = 2.6, p = 0.008). Low tuberculosis-related knowledge independently predicted tuberculosis recurrence. Thus health education may improve tuberculosis prognosis. Copyright © 2015. Published by Elsevier Ltd.

  3. Using Dual Regression to Investigate Network Shape and Amplitude in Functional Connectivity Analyses

    PubMed Central

    Nickerson, Lisa D.; Smith, Stephen M.; Öngür, Döst; Beckmann, Christian F.

    2017-01-01

    Independent Component Analysis (ICA) is one of the most popular techniques for the analysis of resting state FMRI data because it has several advantageous properties when compared with other techniques. Most notably, in contrast to a conventional seed-based correlation analysis, it is model-free and multivariate, thus switching the focus from evaluating the functional connectivity of single brain regions identified a priori to evaluating brain connectivity in terms of all brain resting state networks (RSNs) that simultaneously engage in oscillatory activity. Furthermore, typical seed-based analysis characterizes RSNs in terms of spatially distributed patterns of correlation (typically by means of simple Pearson's coefficients) and thereby confounds together amplitude information of oscillatory activity and noise. ICA and other regression techniques, on the other hand, retain magnitude information and therefore can be sensitive to both changes in the spatially distributed nature of correlations (differences in the spatial pattern or “shape”) as well as the amplitude of the network activity. Furthermore, motion can mimic amplitude effects so it is crucial to use a technique that retains such information to ensure that connectivity differences are accurately localized. In this work, we investigate the dual regression approach that is frequently applied with group ICA to assess group differences in resting state functional connectivity of brain networks. We show how ignoring amplitude effects and how excessive motion corrupts connectivity maps and results in spurious connectivity differences. We also show how to implement the dual regression to retain amplitude information and how to use dual regression outputs to identify potential motion effects. Two key findings are that using a technique that retains magnitude information, e.g., dual regression, and using strict motion criteria are crucial for controlling both network amplitude and motion-related amplitude effects, respectively, in resting state connectivity analyses. We illustrate these concepts using realistic simulated resting state FMRI data and in vivo data acquired in healthy subjects and patients with bipolar disorder and schizophrenia. PMID:28348512

  4. Multivariate logistic regression analysis of postoperative complications and risk model establishment of gastrectomy for gastric cancer: A single-center cohort report.

    PubMed

    Zhou, Jinzhe; Zhou, Yanbing; Cao, Shougen; Li, Shikuan; Wang, Hao; Niu, Zhaojian; Chen, Dong; Wang, Dongsheng; Lv, Liang; Zhang, Jian; Li, Yu; Jiao, Xuelong; Tan, Xiaojie; Zhang, Jianli; Wang, Haibo; Zhang, Bingyuan; Lu, Yun; Sun, Zhenqing

    2016-01-01

    Reporting of surgical complications is common, but few provide information about the severity and estimate risk factors of complications. If have, but lack of specificity. We retrospectively analyzed data on 2795 gastric cancer patients underwent surgical procedure at the Affiliated Hospital of Qingdao University between June 2007 and June 2012, established multivariate logistic regression model to predictive risk factors related to the postoperative complications according to the Clavien-Dindo classification system. Twenty-four out of 86 variables were identified statistically significant in univariate logistic regression analysis, 11 significant variables entered multivariate analysis were employed to produce the risk model. Liver cirrhosis, diabetes mellitus, Child classification, invasion of neighboring organs, combined resection, introperative transfusion, Billroth II anastomosis of reconstruction, malnutrition, surgical volume of surgeons, operating time and age were independent risk factors for postoperative complications after gastrectomy. Based on logistic regression equation, p=Exp∑BiXi / (1+Exp∑BiXi), multivariate logistic regression predictive model that calculated the risk of postoperative morbidity was developed, p = 1/(1 + e((4.810-1.287X1-0.504X2-0.500X3-0.474X4-0.405X5-0.318X6-0.316X7-0.305X8-0.278X9-0.255X10-0.138X11))). The accuracy, sensitivity and specificity of the model to predict the postoperative complications were 86.7%, 76.2% and 88.6%, respectively. This risk model based on Clavien-Dindo grading severity of complications system and logistic regression analysis can predict severe morbidity specific to an individual patient's risk factors, estimate patients' risks and benefits of gastric surgery as an accurate decision-making tool and may serve as a template for the development of risk models for other surgical groups.

  5. [Influencing factors on depression among medical staff in Hunan province under ordinal regression analysis].

    PubMed

    Liu, Zhi-yu; Zhong, Meng; Hai, Yan; Du, Qi-yun; Wang, Ai-hua; Xie, Dong-hua

    2012-11-01

    To understand the situation of depression and its related influencing factors among medical staff in Hunan province. Data were collected through random sampling with multi-stage stratified cluster. Wilcoxon rank sum test, Kruskal-Wallis H test and Ordinal regression analysis were used for data analysis by SPSS 17.0 software. This survey was including 16,000 medical personnel with 14, 988 valid questionnaires and the effective rate was 93.68%. from the single factor analysis showed that factors as: level of the hospital grading, gender, education background, age, occupation, title, departments, the number of continue education, income, working overtime every week, the frequency of night work, the number of patients treated in the emergency room etc., had statistical significances (P < 0.05). Data from ordinal regression showed that the probabilities related to depression that clinicians and nurses suffering from were 1.58 times more than the pharmacists (OR = 1.58, 95%CI: 1.30 - 1.92). The probability among those whose income was less than 2000 Yuan/month was 2.19 times of the ones whose earned more than 3000 Yuan/month (OR = 2.19, 95%CI: 2.05 - 2.35). The higher the numbers of days with working overtime every week, the frequencies of night work, and the numbers of patients being treated at the emergency room, with more probabilities of the people with depression seen in our study. Depression seemed to be common among doctors and nurses. We suggested that the government need to increase the monthly income and to reduce the workload and intensity, lessen the overworking time, etc.

  6. Using Case-Mix Adjustment Methods To Measure the Effectiveness of Substance Abuse Treatment: Three Examples Using Client Employment Outcomes.

    ERIC Educational Resources Information Center

    Koenig, Lane; Fields, Errol L.; Dall, Timothy M.; Ameen, Ansari Z.; Harwood, Henrick J.

    This report demonstrates three applications of case-mix methods using regression analysis. The results are used to assess the relative effectiveness of substance abuse treatment providers. The report also examines the ability of providers to improve client employment outcomes, an outcome domain relatively unexamined in the assessment of provider…

  7. Photosynthesis, water relations, and growth of planted Pinus strobus L. on burned sites in the southern Appalachians

    Treesearch

    Katherine J. Elliott; James M. Vose

    1994-01-01

    We measured net photosynthesis,leaf conductance, xylem water potential, and growth of Pinus strbus L. seedlings two years after planting on two clear-cut and burned sites in the southern Appalachians. Multiple regression analysis was used to relate seedling net pholosynthesis to vapor pressure deficit, seedling crown temperature, photosynthetically active radiation (...

  8. A Multiple Regression Analysis of Factors Concerning Superintendent Longevity and Continuity Relative to Student Achievement

    ERIC Educational Resources Information Center

    Plotts, Timothy

    2011-01-01

    The purpose of this quantitative study was to examine the relationship between the length of superintendent tenure, longevity, and continuity relative to student achievement as evidenced by the 2008-2009 3rd Grade New Jersey Assessment of Skills and Knowledge (NJASK) in language arts. Achievement in the study was defined as those students who…

  9. A latent class regression analysis of men's conformity to masculine norms and psychological distress.

    PubMed

    Wong, Y Joel; Owen, Jesse; Shea, Munyi

    2012-01-01

    How are specific dimensions of masculinity related to psychological distress in specific groups of men? To address this question, the authors used latent class regression to assess the optimal number of latent classes that explained differential relationships between conformity to masculine norms and psychological distress in a racially diverse sample of 223 men. The authors identified a 2-class solution. Both latent classes demonstrated very different associations between conformity to masculine norms and psychological distress. In Class 1 (labeled risk avoiders; n = 133), conformity to the masculine norm of risk-taking was negatively related to psychological distress. In Class 2 (labeled detached risk-takers; n = 90), conformity to the masculine norms of playboy, self-reliance, and risk-taking was positively related to psychological distress, whereas conformity to the masculine norm of violence was negatively related to psychological distress. A post hoc analysis revealed that younger men and Asian American men (compared with Latino and White American men) had significantly greater odds of being in Class 2 versus Class 1. The implications of these findings for future research and clinical practice are examined. (c) 2012 APA, all rights reserved.

  10. Harmonic regression of Landsat time series for modeling attributes from national forest inventory data

    NASA Astrophysics Data System (ADS)

    Wilson, Barry T.; Knight, Joseph F.; McRoberts, Ronald E.

    2018-03-01

    Imagery from the Landsat Program has been used frequently as a source of auxiliary data for modeling land cover, as well as a variety of attributes associated with tree cover. With ready access to all scenes in the archive since 2008 due to the USGS Landsat Data Policy, new approaches to deriving such auxiliary data from dense Landsat time series are required. Several methods have previously been developed for use with finer temporal resolution imagery (e.g. AVHRR and MODIS), including image compositing and harmonic regression using Fourier series. The manuscript presents a study, using Minnesota, USA during the years 2009-2013 as the study area and timeframe. The study examined the relative predictive power of land cover models, in particular those related to tree cover, using predictor variables based solely on composite imagery versus those using estimated harmonic regression coefficients. The study used two common non-parametric modeling approaches (i.e. k-nearest neighbors and random forests) for fitting classification and regression models of multiple attributes measured on USFS Forest Inventory and Analysis plots using all available Landsat imagery for the study area and timeframe. The estimated Fourier coefficients developed by harmonic regression of tasseled cap transformation time series data were shown to be correlated with land cover, including tree cover. Regression models using estimated Fourier coefficients as predictor variables showed a two- to threefold increase in explained variance for a small set of continuous response variables, relative to comparable models using monthly image composites. Similarly, the overall accuracies of classification models using the estimated Fourier coefficients were approximately 10-20 percentage points higher than the models using the image composites, with corresponding individual class accuracies between six and 45 percentage points higher.

  11. Neighborhood food environment and body mass index among Japanese older adults: results from the Aichi Gerontological Evaluation Study (AGES)

    PubMed Central

    2011-01-01

    Background The majority of studies of the local food environment in relation to obesity risk have been conducted in the US, UK, and Australia. The evidence remains limited to western societies. The aim of this paper is to examine the association of local food environment to body mass index (BMI) in a study of older Japanese individuals. Methods The analysis was based on 12,595 respondents from cross-sectional data of the Aichi Gerontological Evaluation Study (AGES), conducted in 2006 and 2007. Using Geographic Information Systems (GIS), we mapped respondents' access to supermarkets, convenience stores, and fast food outlets, based on a street network (both the distance to the nearest stores and the number of stores within 500 m of the respondents' home). Multiple linear regression and logistic regression analyses were performed to examine the association between food environment and BMI. Results In contrast to previous reports, we found that better access to supermarkets was related to higher BMI. Better access to fast food outlets or convenience stores was also associated with higher BMI, but only among those living alone. The logistic regression analysis, using categorized BMI, showed that the access to supermarkets was only related to being overweight or obese, but not related to being underweight. Conclusions Our findings provide mixed support for the types of food environment measures previously used in western settings. Importantly, our results suggest the need to develop culture-specific approaches to characterizing neighborhood contexts when hypotheses are extrapolated across national borders. PMID:21777439

  12. Exploring relationships between Dairy Herd Improvement monitors of performance and the Transition Cow Index in Wisconsin dairy herds.

    PubMed

    Schultz, K K; Bennett, T B; Nordlund, K V; Döpfer, D; Cook, N B

    2016-09-01

    Transition cow management has been tracked via the Transition Cow Index (TCI; AgSource Cooperative Services, Verona, WI) since 2006. Transition Cow Index was developed to measure the difference between actual and predicted milk yield at first test day to evaluate the relative success of the transition period program. This project aimed to assess TCI in relation to all commonly used Dairy Herd Improvement (DHI) metrics available through AgSource Cooperative Services. Regression analysis was used to isolate variables that were relevant to TCI, and then principal components analysis and network analysis were used to determine the relative strength and relatedness among variables. Finally, cluster analysis was used to segregate herds based on similarity of relevant variables. The DHI data were obtained from 2,131 Wisconsin dairy herds with test-day mean ≥30 cows, which were tested ≥10 times throughout the 2014 calendar year. The original list of 940 DHI variables was reduced through expert-driven selection and regression analysis to 23 variables. The K-means cluster analysis produced 5 distinct clusters. Descriptive statistics were calculated for the 23 variables per cluster grouping. Using principal components analysis, cluster analysis, and network analysis, 4 parameters were isolated as most relevant to TCI; these were energy-corrected milk, 3 measures of intramammary infection (dry cow cure rate, linear somatic cell count score in primiparous cows, and new infection rate), peak ratio, and days in milk at peak milk production. These variables together with cow and newborn calf survival measures form a group of metrics that can be used to assist in the evaluation of overall transition period performance. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Cognitive and physical functions related to the level of supervision and dependence in the toileting of stroke patients.

    PubMed

    Sato, Atsushi; Okuda, Yutaka; Fujita, Takaaki; Kimura, Norihiko; Hoshina, Noriyuki; Kato, Sayaka; Tanaka, Shigenari

    2016-01-01

    This study aimed to clarify which cognitive and physical factors are associated with the need for toileting assistance in stroke patients and to calculate cut-off values for discriminating between independent supervision and dependent toileting ability. This cross-sectional study included 163 first-stroke patients in nine convalescent rehabilitation wards. Based on their FIM Ⓡ instrument score for toileting, the patients were divided into an independent-supervision group and a dependent group. Multiple logistic regression analysis and receiver operating characteristic analysis were performed to identify factors related to toileting performance. The Minimental State Examination (MMSE); the Stroke Impairment Assessment Set (SIAS) score for the affected lower limb, speech, and visuospatial functions; and the Functional Assessment for Control of Trunk (FACT) were analyzed as independent variables. The multiple logistic regression analysis showed that the FIM Ⓡ instrument score for toileting was associated with the SIAS score for the affected lower limb function, MMSE, and FACT. On receiver operating characteristic analysis, the SIAS score for the affected lower limb function cut-off value was 8/7 points, the MMSE cut-off value was 25/24 points, and the FACT cut-off value was 14/13 points. Affected lower limb function, cognitive function, and trunk function were related with the need for toileting assistance. These cut-off values may be useful for judging whether toileting assistance is needed in stroke patients.

  14. Biostatistics Series Module 10: Brief Overview of Multivariate Methods.

    PubMed

    Hazra, Avijit; Gogtay, Nithya

    2017-01-01

    Multivariate analysis refers to statistical techniques that simultaneously look at three or more variables in relation to the subjects under investigation with the aim of identifying or clarifying the relationships between them. These techniques have been broadly classified as dependence techniques, which explore the relationship between one or more dependent variables and their independent predictors, and interdependence techniques, that make no such distinction but treat all variables equally in a search for underlying relationships. Multiple linear regression models a situation where a single numerical dependent variable is to be predicted from multiple numerical independent variables. Logistic regression is used when the outcome variable is dichotomous in nature. The log-linear technique models count type of data and can be used to analyze cross-tabulations where more than two variables are included. Analysis of covariance is an extension of analysis of variance (ANOVA), in which an additional independent variable of interest, the covariate, is brought into the analysis. It tries to examine whether a difference persists after "controlling" for the effect of the covariate that can impact the numerical dependent variable of interest. Multivariate analysis of variance (MANOVA) is a multivariate extension of ANOVA used when multiple numerical dependent variables have to be incorporated in the analysis. Interdependence techniques are more commonly applied to psychometrics, social sciences and market research. Exploratory factor analysis and principal component analysis are related techniques that seek to extract from a larger number of metric variables, a smaller number of composite factors or components, which are linearly related to the original variables. Cluster analysis aims to identify, in a large number of cases, relatively homogeneous groups called clusters, without prior information about the groups. The calculation intensive nature of multivariate analysis has so far precluded most researchers from using these techniques routinely. The situation is now changing with wider availability, and increasing sophistication of statistical software and researchers should no longer shy away from exploring the applications of multivariate methods to real-life data sets.

  15. Body sway, aim point fluctuation and performance in rifle shooters: inter- and intra-individual analysis.

    PubMed

    Ball, Kevin A; Best, Russell J; Wrigley, Tim V

    2003-07-01

    In this study, we examined the relationships between body sway, aim point fluctuation and performance in rifle shooting on an inter- and intra-individual basis. Six elite shooters performed 20 shots under competition conditions. For each shot, body sway parameters and four aim point fluctuation parameters were quantified for the time periods 5 s to shot, 3 s to shot and 1 s to shot. Three parameters were used to indicate performance. An AMTI LG6-4 force plate was used to measure body sway parameters, while a SCATT shooting analysis system was used to measure aim point fluctuation and shooting performance. Multiple regression analysis indicated that body sway was related to performance for four shooters. Also, body sway was related to aim point fluctuation for all shooters. These relationships were specific to the individual, with the strength of association, parameters of importance and time period of importance different for different shooters. Correlation analysis of significant regressions indicated that, as body sway increased, performance decreased and aim point fluctuation increased for most relationships. We conclude that body sway and aim point fluctuation are important in elite rifle shooting and performance errors are highly individual-specific at this standard. Individual analysis should be a priority when examining elite sports performance.

  16. Stepwise Distributed Open Innovation Contests for Software Development: Acceleration of Genome-Wide Association Analysis

    PubMed Central

    Hill, Andrew; Loh, Po-Ru; Bharadwaj, Ragu B.; Pons, Pascal; Shang, Jingbo; Guinan, Eva; Lakhani, Karim; Kilty, Iain

    2017-01-01

    Abstract Background: The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets. Results: Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in <6 months by providing rapid access to highly skilled programmers with specialized, difficult-to-find skill sets. Through a crowd-based contest a combination of computational, numeric, and algorithmic approaches was identified that accelerated the logistic regression in PLINK 1.07 by 18- to 45-fold. Combining contest-derived logistic regression code with coarse-grained parallelization, multithreading, and associated changes to data initialization code further developed through distributed innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project. Conclusions: Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics. PMID:28327993

  17. Stepwise Distributed Open Innovation Contests for Software Development: Acceleration of Genome-Wide Association Analysis.

    PubMed

    Hill, Andrew; Loh, Po-Ru; Bharadwaj, Ragu B; Pons, Pascal; Shang, Jingbo; Guinan, Eva; Lakhani, Karim; Kilty, Iain; Jelinsky, Scott A

    2017-05-01

    The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets. Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in <6 months by providing rapid access to highly skilled programmers with specialized, difficult-to-find skill sets. Through a crowd-based contest a combination of computational, numeric, and algorithmic approaches was identified that accelerated the logistic regression in PLINK 1.07 by 18- to 45-fold. Combining contest-derived logistic regression code with coarse-grained parallelization, multithreading, and associated changes to data initialization code further developed through distributed innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project. Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics. © The Author 2017. Published by Oxford University Press.

  18. Granger causality--statistical analysis under a configural perspective.

    PubMed

    von Eye, Alexander; Wiedermann, Wolfgang; Mun, Eun-Young

    2014-03-01

    The concept of Granger causality can be used to examine putative causal relations between two series of scores. Based on regression models, it is asked whether one series can be considered the cause for the second series. In this article, we propose extending the pool of methods available for testing hypotheses that are compatible with Granger causation by adopting a configural perspective. This perspective allows researchers to assume that effects exist for specific categories only or for specific sectors of the data space, but not for other categories or sectors. Configural Frequency Analysis (CFA) is proposed as the method of analysis from a configural perspective. CFA base models are derived for the exploratory analysis of Granger causation. These models are specified so that they parallel the regression models used for variable-oriented analysis of hypotheses of Granger causation. An example from the development of aggression in adolescence is used. The example shows that only one pattern of change in aggressive impulses over time Granger-causes change in physical aggression against peers.

  19. Comparison of two occurrence risk assessment methods for collapse gully erosion ——A case study in Guangdong province

    NASA Astrophysics Data System (ADS)

    Sun, K.; Cheng, D. B.; He, J. J.; Zhao, Y. L.

    2018-02-01

    Collapse gully erosion is a specific type of soil erosion in the red soil region of southern China, and early warning and prevention of the occurrence of collapse gully erosion is very important. Based on the idea of risk assessment, this research, taking Guangdong province as an example, adopt the information acquisition analysis and the logistic regression analysis, to discuss the feasibility for collapse gully erosion risk assessment in regional scale, and compare the applicability of the different risk assessment methods. The results show that in the Guangdong province, the risk degree of collapse gully erosion occurrence is high in northeastern and western area, and relatively low in southwestern and central part. The comparing analysis of the different risk assessment methods on collapse gully also indicated that the risk distribution patterns from the different methods were basically consistent. However, the accuracy of risk map from the information acquisition analysis method was slightly better than that from the logistic regression analysis method.

  20. Association of vitamin C with the risk of age-related cataract: a meta-analysis.

    PubMed

    Wei, Lin; Liang, Ge; Cai, Chunmei; Lv, Jin

    2016-05-01

    Whether vitamin C is a protective factor for age-related cataract remains unclear. Thus, we conducted a meta-analysis to summarize the evidence from epidemiological studies of vitamin C and the risk of age-related cataract. Pertinent studies were identified by searching in PubMed and in Webscience. The random effect model was used to combine the results. Meta-regression and subgroups analyses were used to explore potential sources of between-study heterogeneity. Publication bias was estimated using Egger's regression asymmetry test. Finally, 15 articles with 20 studies for vitamin C intake and eight articles with 10 studies for serum ascorbate were included in this meta-analysis. The relative risk (RR) and 95% confidence interval of cataract for the highest versus the lowest category of vitamin C intake was 0.814 (0.707-0.938), and the associations were significant in America and Asia. Significant association of cataract risk with highest versus the lowest category of serum ascorbate was found in general [0.704 (0.564-0.879)]. Inverse associations were also found between serum ascorbate and nuclear cataract and posterior subcapsular cataract. Higher vitamin C intake and serum ascorbate might be inversely associated with risk of cataract. Vitamin C intake should be advocated for the primary prevention of cataract. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  1. BAYESIAN LARGE-SCALE MULTIPLE REGRESSION WITH SUMMARY STATISTICS FROM GENOME-WIDE ASSOCIATION STUDIES1

    PubMed Central

    Zhu, Xiang; Stephens, Matthew

    2017-01-01

    Bayesian methods for large-scale multiple regression provide attractive approaches to the analysis of genome-wide association studies (GWAS). For example, they can estimate heritability of complex traits, allowing for both polygenic and sparse models; and by incorporating external genomic data into the priors, they can increase power and yield new biological insights. However, these methods require access to individual genotypes and phenotypes, which are often not easily available. Here we provide a framework for performing these analyses without individual-level data. Specifically, we introduce a “Regression with Summary Statistics” (RSS) likelihood, which relates the multiple regression coefficients to univariate regression results that are often easily available. The RSS likelihood requires estimates of correlations among covariates (SNPs), which also can be obtained from public databases. We perform Bayesian multiple regression analysis by combining the RSS likelihood with previously proposed prior distributions, sampling posteriors by Markov chain Monte Carlo. In a wide range of simulations RSS performs similarly to analyses using the individual data, both for estimating heritability and detecting associations. We apply RSS to a GWAS of human height that contains 253,288 individuals typed at 1.06 million SNPs, for which analyses of individual-level data are practically impossible. Estimates of heritability (52%) are consistent with, but more precise, than previous results using subsets of these data. We also identify many previously unreported loci that show evidence for association with height in our analyses. Software is available at https://github.com/stephenslab/rss. PMID:29399241

  2. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis.

    PubMed

    Zheng, Jie; Erzurumluoglu, A Mesut; Elsworth, Benjamin L; Kemp, John P; Howe, Laurence; Haycock, Philip C; Hemani, Gibran; Tansey, Katherine; Laurin, Charles; Pourcain, Beate St; Warrington, Nicole M; Finucane, Hilary K; Price, Alkes L; Bulik-Sullivan, Brendan K; Anttila, Verneri; Paternoster, Lavinia; Gaunt, Tom R; Evans, David M; Neale, Benjamin M

    2017-01-15

    LD score regression is a reliable and efficient method of using genome-wide association study (GWAS) summary-level results data to estimate the SNP heritability of complex traits and diseases, partition this heritability into functional categories, and estimate the genetic correlation between different phenotypes. Because the method relies on summary level results data, LD score regression is computationally tractable even for very large sample sizes. However, publicly available GWAS summary-level data are typically stored in different databases and have different formats, making it difficult to apply LD score regression to estimate genetic correlations across many different traits simultaneously. In this manuscript, we describe LD Hub - a centralized database of summary-level GWAS results for 173 diseases/traits from different publicly available resources/consortia and a web interface that automates the LD score regression analysis pipeline. To demonstrate functionality and validate our software, we replicated previously reported LD score regression analyses of 49 traits/diseases using LD Hub; and estimated SNP heritability and the genetic correlation across the different phenotypes. We also present new results obtained by uploading a recent atopic dermatitis GWAS meta-analysis to examine the genetic correlation between the condition and other potentially related traits. In response to the growing availability of publicly accessible GWAS summary-level results data, our database and the accompanying web interface will ensure maximal uptake of the LD score regression methodology, provide a useful database for the public dissemination of GWAS results, and provide a method for easily screening hundreds of traits for overlapping genetic aetiologies. The web interface and instructions for using LD Hub are available at http://ldsc.broadinstitute.org/ CONTACT: jie.zheng@bristol.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  3. Quality of life of patients who undergo breast reconstruction after mastectomy: effects of personality characteristics.

    PubMed

    Bellino, Silvio; Fenocchio, Marina; Zizza, Monica; Rocca, Giuseppe; Bogetti, Paolo; Bogetto, Filippo

    2011-01-01

    Reconstruction after mastectomy has become an integral part of breast cancer treatment. The effects of psychological factors on quality of life after reconstruction have been poorly investigated. The authors examined clinical and personality characteristics related to quality of life in patients receiving reconstructive surgery. All patients received immediate reconstruction and were evaluated in the week before tissue expander implantation (T0) with a semistructured interview for demographic and clinical characteristics, the Temperament and Character Inventory, the Inventory of Interpersonal Problems, the Short Form Health Survey, the Severity Item of the Clinical Global Impression, the Hamilton Depression Rating Scale, and the Hamilton Anxiety Rating Scale. Assessment with the Short Form was repeated 3 months after expander placement (T1). Statistics were calculated with univariate regression and analysis of variance. Significant variables were included in a multiple regression analysis to identify factors related to the change T1-T0 of the mean of the Short Form-transformed scores. Results were significant when p was less than or equal to 0.05. Fifty-seven women were enrolled. Results of multiple regression analysis showed that the Temperament and Character Inventory personality dimension harm avoidance and the Inventory of Interpersonal Problems domain vindictive/self-centered were significantly and independently related to the change in Short Form mean score. Personality dimensions and patterns of interpersonal functioning produce significant effects on patients' quality of life during breast reconstruction. Patients with high harm avoidance are apprehensive and doubtful. Restoration of body image could help them to reduce social anxiety and insecurity. Vindictive/self-centered patients are resentful and aggressive. Breast reconstruction could symbolize the conclusion of a reparative process and fulfill the desire of revenge on cancer.

  4. Poisson Regression Analysis of Illness and Injury Surveillance Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frome E.L., Watkins J.P., Ellis E.D.

    2012-12-12

    The Department of Energy (DOE) uses illness and injury surveillance to monitor morbidity and assess the overall health of the work force. Data collected from each participating site include health events and a roster file with demographic information. The source data files are maintained in a relational data base, and are used to obtain stratified tables of health event counts and person time at risk that serve as the starting point for Poisson regression analysis. The explanatory variables that define these tables are age, gender, occupational group, and time. Typical response variables of interest are the number of absences duemore » to illness or injury, i.e., the response variable is a count. Poisson regression methods are used to describe the effect of the explanatory variables on the health event rates using a log-linear main effects model. Results of fitting the main effects model are summarized in a tabular and graphical form and interpretation of model parameters is provided. An analysis of deviance table is used to evaluate the importance of each of the explanatory variables on the event rate of interest and to determine if interaction terms should be considered in the analysis. Although Poisson regression methods are widely used in the analysis of count data, there are situations in which over-dispersion occurs. This could be due to lack-of-fit of the regression model, extra-Poisson variation, or both. A score test statistic and regression diagnostics are used to identify over-dispersion. A quasi-likelihood method of moments procedure is used to evaluate and adjust for extra-Poisson variation when necessary. Two examples are presented using respiratory disease absence rates at two DOE sites to illustrate the methods and interpretation of the results. In the first example the Poisson main effects model is adequate. In the second example the score test indicates considerable over-dispersion and a more detailed analysis attributes the over-dispersion to extra-Poisson variation. The R open source software environment for statistical computing and graphics is used for analysis. Additional details about R and the data that were used in this report are provided in an Appendix. Information on how to obtain R and utility functions that can be used to duplicate results in this report are provided.« less

  5. Application of linear regression analysis in accuracy assessment of rolling force calculations

    NASA Astrophysics Data System (ADS)

    Poliak, E. I.; Shim, M. K.; Kim, G. S.; Choo, W. Y.

    1998-10-01

    Efficient operation of the computational models employed in process control systems require periodical assessment of the accuracy of their predictions. Linear regression is proposed as a tool which allows separate systematic and random prediction errors from those related to measurements. A quantitative characteristic of the model predictive ability is introduced in addition to standard statistical tests for model adequacy. Rolling force calculations are considered as an example for the application. However, the outlined approach can be used to assess the performance of any computational model.

  6. Water quality and relation to taste-and-odor compounds in North Fork Ninnescah River and Cheney Reservoir, south-central Kansas, 1997-2003

    USGS Publications Warehouse

    Christensen, Victoria G.; Graham, Jennifer L.; Milligan, Chad R.; Pope, Larry M.; Ziegler, Andrew C.

    2006-01-01

    Regression models were developed between geosmin and the physical property measurements continuously recorded by water-quality monitors at each site. The geosmin regression model was applied to water-quality monitor measurements, providing a continuous estimate of geosmin for 2003. The city of Wichita will be able to use this type of analysis to determine the probability of when concentrations of geosmin are likely to be at or above the human detection level of 0.01 microgram per liter.

  7. High-throughput quantitative biochemical characterization of algal biomass by NIR spectroscopy; multiple linear regression and multivariate linear regression analysis.

    PubMed

    Laurens, L M L; Wolfrum, E J

    2013-12-18

    One of the challenges associated with microalgal biomass characterization and the comparison of microalgal strains and conversion processes is the rapid determination of the composition of algae. We have developed and applied a high-throughput screening technology based on near-infrared (NIR) spectroscopy for the rapid and accurate determination of algal biomass composition. We show that NIR spectroscopy can accurately predict the full composition using multivariate linear regression analysis of varying lipid, protein, and carbohydrate content of algal biomass samples from three strains. We also demonstrate a high quality of predictions of an independent validation set. A high-throughput 96-well configuration for spectroscopy gives equally good prediction relative to a ring-cup configuration, and thus, spectra can be obtained from as little as 10-20 mg of material. We found that lipids exhibit a dominant, distinct, and unique fingerprint in the NIR spectrum that allows for the use of single and multiple linear regression of respective wavelengths for the prediction of the biomass lipid content. This is not the case for carbohydrate and protein content, and thus, the use of multivariate statistical modeling approaches remains necessary.

  8. Mapping the Structure-Function Relationship in Glaucoma and Healthy Patients Measured with Spectralis OCT and Humphrey Perimetry

    PubMed Central

    Muñoz–Negrete, Francisco J.; Oblanca, Noelia; Rebolleda, Gema

    2018-01-01

    Purpose To study the structure-function relationship in glaucoma and healthy patients assessed with Spectralis OCT and Humphrey perimetry using new statistical approaches. Materials and Methods Eighty-five eyes were prospectively selected and divided into 2 groups: glaucoma (44) and healthy patients (41). Three different statistical approaches were carried out: (1) factor analysis of the threshold sensitivities (dB) (automated perimetry) and the macular thickness (μm) (Spectralis OCT), subsequently applying Pearson's correlation to the obtained regions, (2) nonparametric regression analysis relating the values in each pair of regions that showed significant correlation, and (3) nonparametric spatial regressions using three models designed for the purpose of this study. Results In the glaucoma group, a map that relates structural and functional damage was drawn. The strongest correlation with visual fields was observed in the peripheral nasal region of both superior and inferior hemigrids (r = 0.602 and r = 0.458, resp.). The estimated functions obtained with the nonparametric regressions provided the mean sensitivity that corresponds to each given macular thickness. These functions allowed for accurate characterization of the structure-function relationship. Conclusions Both maps and point-to-point functions obtained linking structure and function damage contribute to a better understanding of this relationship and may help in the future to improve glaucoma diagnosis. PMID:29850196

  9. Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship.

    PubMed

    Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A

    2014-08-01

    Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Visuoconstructional Impairment in Subtypes of Mild Cognitive Impairment

    PubMed Central

    Ahmed, Samrah; Brennan, Laura; Eppig, Joel; Price, Catherine C.; Lamar, Melissa; Delano-Wood, Lisa; Bangen, Katherine J.; Edmonds, Emily C.; Clark, Lindsey; Nation, Daniel A.; Jak, Amy; Au, Rhoda; Swenson, Rodney; Bondi, Mark W.; Libon, David J.

    2018-01-01

    Clock Drawing Test performance was examined alongside other neuropsychological tests in mild cognitive impairment (MCI). We tested the hypothesis that clock-drawing errors are related to executive impairment. The current research examined 86 patients with MCI for whom, in prior research, cluster analysis was used to sort patients into dysexecutive (dMCI, n=22), amnestic (aMCI, n=13), and multi-domain (mMCI, n=51) subtypes. First, principal components analysis (PCA) and linear regression examined relations between clock-drawing errors and neuropsychological test performance independent of MCI subtype. Second, between-group differences were assessed with analysis of variance (ANOVA) where MCI subgroups were compared to normal controls (NC). PCA yielded a 3-group solution. Contrary to expectations, clock-drawing errors loaded with lower performance on naming/lexical retrieval, rather than with executive tests. Regression analyses found increasing clock-drawing errors to command were associated with worse performance only on naming/lexical retrieval tests. ANOVAs revealed no differences in clock-drawing errors between dMCI versus mMCI or aMCI versus NCs. Both the dMCI and mMCI groups generated more clock-drawing errors than the aMCI and NC groups in the command condition. In MCI, language-related skills contribute to clock-drawing impairment. PMID:26397732

  11. Determinants of the lethality of climate-related disasters in the Caribbean Community (CARICOM): a cross-country analysis

    PubMed Central

    Andrewin, Aisha N.; Rodriguez-Llanes, Jose M.; Guha-Sapir, Debarati

    2015-01-01

    Floods and storms are climate-related hazards posing high mortality risk to Caribbean Community (CARICOM) nations. However risk factors for their lethality remain untested. We conducted an ecological study investigating risk factors for flood and storm lethality in CARICOM nations for the period 1980–2012. Lethality - deaths versus no deaths per disaster event- was the outcome. We examined biophysical and social vulnerability proxies and a decadal effect as predictors. We developed our regression model via multivariate analysis using a generalized logistic regression model with quasi-binomial distribution; removal of multi-collinear variables and backward elimination. Robustness was checked through subset analysis. We found significant positive associations between lethality, percentage of total land dedicated to agriculture (odds ratio [OR] 1.032; 95% CI: 1.013–1.053) and percentage urban population (OR 1.029, 95% CI 1.003–1.057). Deaths were more likely in the 2000–2012 period versus 1980–1989 (OR 3.708, 95% CI 1.615–8.737). Robustness checks revealed similar coefficients and directions of association. Population health in CARICOM nations is being increasingly impacted by climate-related disasters connected to increasing urbanization and land use patterns. Our findings support the evidence base for setting sustainable development goals (SDG). PMID:26153115

  12. Identifying Flood-Related Infectious Diseases in Anhui Province, China: A Spatial and Temporal Analysis

    PubMed Central

    Gao, Lu; Zhang, Ying; Ding, Guoyong; Liu, Qiyong; Jiang, Baofa

    2016-01-01

    The aim of this study was to explore infectious diseases related to the 2007 Huai River flood in Anhui Province, China. The study was based on the notified incidences of infectious diseases between June 29 and July 25 from 2004 to 2011. Daily incidences of notified diseases in 2007 were compared with the corresponding daily incidences during the same period in the other years (from 2004 to 2011, except 2007) by Poisson regression analysis. Spatial autocorrelation analysis was used to test the distribution pattern of the diseases. Spatial regression models were then performed to examine the association between the incidence of each disease and flood, considering lag effects and other confounders. After controlling the other meteorological and socioeconomic factors, malaria (odds ratio [OR] = 3.67, 95% confidence interval [CI] = 1.77–7.61), diarrhea (OR = 2.16, 95% CI = 1.24–3.78), and hepatitis A virus (HAV) infection (OR = 6.11, 95% CI = 1.04–35.84) were significantly related to the 2007 Huai River flood both from the spatial and temporal analyses. Special attention should be given to develop public health preparation and interventions with a focus on malaria, diarrhea, and HAV infection, in the study region. PMID:26903612

  13. Managing more than the mean: Using quantile regression to identify factors related to large elk groups

    USGS Publications Warehouse

    Brennan, Angela K.; Cross, Paul C.; Creely, Scott

    2015-01-01

    Synthesis and applications. Our analysis of elk group size distributions using quantile regression suggests that private land, irrigation, open habitat, elk density and wolf abundance can affect large elk group sizes. Thus, to manage larger groups by removal or dispersal of individuals, we recommend incentivizing hunting on private land (particularly if irrigated) during the regular and late hunting seasons, promoting tolerance of wolves on private land (if elk aggregate in these areas to avoid wolves) and creating more winter range and varied habitats. Relationships to the variables of interest also differed by quantile, highlighting the importance of using quantile regression to examine response variables more completely to uncover relationships important to conservation and management.

  14. Analysis of the labor productivity of enterprises via quantile regression

    NASA Astrophysics Data System (ADS)

    Türkan, Semra

    2017-07-01

    In this study, we have analyzed the factors that affect the performance of Turkey's Top 500 Industrial Enterprises using quantile regression. The variable about labor productivity of enterprises is considered as dependent variable, the variableabout assets is considered as independent variable. The distribution of labor productivity of enterprises is right-skewed. If the dependent distribution is skewed, linear regression could not catch important aspects of the relationships between the dependent variable and its predictors due to modeling only the conditional mean. Hence, the quantile regression, which allows modelingany quantilesof the dependent distribution, including the median,appears to be useful. It examines whether relationships between dependent and independent variables are different for low, medium, and high percentiles. As a result of analyzing data, the effect of total assets is relatively constant over the entire distribution, except the upper tail. It hasa moderately stronger effect in the upper tail.

  15. Multiple regression for physiological data analysis: the problem of multicollinearity.

    PubMed

    Slinker, B K; Glantz, S A

    1985-07-01

    Multiple linear regression, in which several predictor variables are related to a response variable, is a powerful statistical tool for gaining quantitative insight into complex in vivo physiological systems. For these insights to be correct, all predictor variables must be uncorrelated. However, in many physiological experiments the predictor variables cannot be precisely controlled and thus change in parallel (i.e., they are highly correlated). There is a redundancy of information about the response, a situation called multicollinearity, that leads to numerical problems in estimating the parameters in regression equations; the parameters are often of incorrect magnitude or sign or have large standard errors. Although multicollinearity can be avoided with good experimental design, not all interesting physiological questions can be studied without encountering multicollinearity. In these cases various ad hoc procedures have been proposed to mitigate multicollinearity. Although many of these procedures are controversial, they can be helpful in applying multiple linear regression to some physiological problems.

  16. Applied Multiple Linear Regression: A General Research Strategy

    ERIC Educational Resources Information Center

    Smith, Brandon B.

    1969-01-01

    Illustrates some of the basic concepts and procedures for using regression analysis in experimental design, analysis of variance, analysis of covariance, and curvilinear regression. Applications to evaluation of instruction and vocational education programs are illustrated. (GR)

  17. Resilience and positive affect contribute to lower cancer-related fatigue among Chinese patients with gastric cancer.

    PubMed

    Zou, Guiyuan; Li, Ye; Xu, Ruicai; Li, Ping

    2018-04-01

    To investigate the prevalence of cancer-related fatigue and explore the relationship between resilience, positive affect, and fatigue among Chinese patients with gastric cancer. Cancer-related fatigue is the most distressing symptom reported frequently by cancer patients during both treatment and survival phases. Resilience and positive affect as vital protective factors against cancer-related fatigue have been examined, but the underlying psychological mechanisms are not well understood. A cross-sectional study. Two hundred and three gastric cancer patients were enrolled from three hospitals in China. The Cancer Fatigue Scale, the positive affect subscale of the Positive and Negative Affect Schedule and the Connor-Davidson Resilience Scale (CD-RISC10) were administered. Hierarchical linear regression modelling was conducted to examine the association between resilience and cancer-related fatigue, and the mediating effect of positive affect. The incidence of clinically relevant fatigue among patients with gastric cancer was 91.6%. Regression analysis showed that resilience was negatively associated with cancer-related fatigue, explaining 15.4% of variance in cancer-related fatigue. Mediation analysis showed that high resilience was associated with increased positive affect, which was associated with decreased cancer-related fatigue. Cancer-related fatigue is prevalent among patients with gastric cancer. Positive affect may mediate the relationship between resilience and cancer-related fatigue. Interventions that attend to resilience training and promotion of positive affect may be the focus for future clinical and research endeavours. © 2017 John Wiley & Sons Ltd.

  18. The Necessity-Concerns-Framework: A Multidimensional Theory Benefits from Multidimensional Analysis

    PubMed Central

    Phillips, L. Alison; Diefenbach, Michael; Kronish, Ian M.; Negron, Rennie M.; Horowitz, Carol R.

    2014-01-01

    Background Patients’ medication-related concerns and necessity-beliefs predict adherence. Evaluation of the potentially complex interplay of these two dimensions has been limited because of methods that reduce them to a single dimension (difference scores). Purpose We use polynomial regression to assess the multidimensional effect of stroke-event survivors’ medication-related concerns and necessity-beliefs on their adherence to stroke-prevention medication. Methods Survivors (n=600) rated their concerns, necessity-beliefs, and adherence to medication. Confirmatory and exploratory polynomial regression determined the best-fitting multidimensional model. Results As posited by the Necessity-Concerns Framework (NCF), the greatest and lowest adherence was reported by those with strong necessity-beliefs/weak concerns and strong concerns/weak necessity-beliefs, respectively. However, as could not be assessed using a difference-score model, patients with ambivalent beliefs were less adherent than those exhibiting indifference. Conclusions Polynomial regression allows for assessment of the multidimensional nature of the NCF. Clinicians/Researchers should be aware that concerns and necessity dimensions are not polar opposites. PMID:24500078

  19. The necessity-concerns framework: a multidimensional theory benefits from multidimensional analysis.

    PubMed

    Phillips, L Alison; Diefenbach, Michael A; Kronish, Ian M; Negron, Rennie M; Horowitz, Carol R

    2014-08-01

    Patients' medication-related concerns and necessity-beliefs predict adherence. Evaluation of the potentially complex interplay of these two dimensions has been limited because of methods that reduce them to a single dimension (difference scores). We use polynomial regression to assess the multidimensional effect of stroke-event survivors' medication-related concerns and necessity beliefs on their adherence to stroke-prevention medication. Survivors (n = 600) rated their concerns, necessity beliefs, and adherence to medication. Confirmatory and exploratory polynomial regression determined the best-fitting multidimensional model. As posited by the necessity-concerns framework (NCF), the greatest and lowest adherence was reported by those necessity weak concerns and strong concerns/weak Necessity-Beliefs, respectively. However, as could not be assessed using a difference-score model, patients with ambivalent beliefs were less adherent than those exhibiting indifference. Polynomial regression allows for assessment of the multidimensional nature of the NCF. Clinicians/Researchers should be aware that concerns and necessity dimensions are not polar opposites.

  20. Non-Invasive Methodology to Estimate Polyphenol Content in Extra Virgin Olive Oil Based on Stepwise Multilinear Regression.

    PubMed

    Martínez Gila, Diego Manuel; Cano Marchal, Pablo; Gómez Ortega, Juan; Gámez García, Javier

    2018-03-25

    Normally the olive oil quality is assessed by chemical analysis according to international standards. These norms define chemical and organoleptic markers, and depending on the markers, the olive oil can be labelled as lampante, virgin, or extra virgin olive oil (EVOO), the last being an indicator of top quality. The polyphenol content is related to EVOO organoleptic features, and different scientific works have studied the positive influence that these compounds have on human health. The works carried out in this paper are focused on studying relations between the polyphenol content in olive oil samples and its spectral response in the near infrared spectra. In this context, several acquisition parameters have been assessed to optimize the measurement process within the virgin olive oil production process. The best regression model reached a mean error value of 156.14 mg/kg in leave one out cross validation, and the higher regression coefficient was 0.81 through holdout validation.

  1. A Modified Double Multiple Nonlinear Regression Constitutive Equation for Modeling and Prediction of High Temperature Flow Behavior of BFe10-1-2 Alloy

    NASA Astrophysics Data System (ADS)

    Cai, Jun; Wang, Kuaishe; Shi, Jiamin; Wang, Wen; Liu, Yingying

    2018-01-01

    Constitutive analysis for hot working of BFe10-1-2 alloy was carried out by using experimental stress-strain data from isothermal hot compression tests, in a wide range of temperature of 1,023 1,273 K, and strain rate range of 0.001 10 s-1. A constitutive equation based on modified double multiple nonlinear regression was proposed considering the independent effects of strain, strain rate, temperature and their interrelation. The predicted flow stress data calculated from the developed equation was compared with the experimental data. Correlation coefficient (R), average absolute relative error (AARE) and relative errors were introduced to verify the validity of the developed constitutive equation. Subsequently, a comparative study was made on the capability of strain-compensated Arrhenius-type constitutive model. The results showed that the developed constitutive equation based on modified double multiple nonlinear regression could predict flow stress of BFe10-1-2 alloy with good correlation and generalization.

  2. Non-Invasive Methodology to Estimate Polyphenol Content in Extra Virgin Olive Oil Based on Stepwise Multilinear Regression

    PubMed Central

    Cano Marchal, Pablo; Gómez Ortega, Juan; Gámez García, Javier

    2018-01-01

    Normally the olive oil quality is assessed by chemical analysis according to international standards. These norms define chemical and organoleptic markers, and depending on the markers, the olive oil can be labelled as lampante, virgin, or extra virgin olive oil (EVOO), the last being an indicator of top quality. The polyphenol content is related to EVOO organoleptic features, and different scientific works have studied the positive influence that these compounds have on human health. The works carried out in this paper are focused on studying relations between the polyphenol content in olive oil samples and its spectral response in the near infrared spectra. In this context, several acquisition parameters have been assessed to optimize the measurement process within the virgin olive oil production process. The best regression model reached a mean error value of 156.14 mg/kg in leave one out cross validation, and the higher regression coefficient was 0.81 through holdout validation. PMID:29587403

  3. Calorimetric analysis of fungal degraded wood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blankenhorn, P.R.; Baldwin, R.C.; Merrill, W. Jr.

    1980-01-01

    Endothermic transition and gross heat of combustion of aspenwood subjected to degradation by Lenzites trabea and Polyporus versicolor were determined by using differential scanning calorimetry (DSC) and an adiabatic O bomb. Endothermic peak areas of undegraded and fungi-degraded wood differed from each other at all levels of weight loss. The regression analysis of the DSC data vs. weight loss revealed a significant relations, although not highly correlated, for P. versicolor-degraded specimens and a nonsignificant relation for L. trabea-degraded specimens; weight loss and gross heat of combustion values of degraded specimens were significantly correlated.

  4. Social motivation in Qatari schools and their relation to school achievement.

    PubMed

    Nasser, Ramzi

    2014-10-01

    This study assessed the relation between school-social motivation and student academic achievement. A factor analysis was performed on a set of school-social items selected a priori from three measures of school motivation: the Inventory of School Motivation, the General Achievement Goals Orientation Scale, and the Facilitating Conditions Scale. Three factors with fewer items represented Global Motivation, Peer Help, and Social Power. Hierarchical regression analysis showed social motivation measures were weak predictors of achievement scores in the various content areas. Findings are discussed in the context of Qatari education and culture.

  5. TV watching, soap opera and happiness.

    PubMed

    Lu, L; Argyle, M

    1993-09-01

    One hundred and fourteen subjects reported the amount of time they spent watching television in general, and soap opera in particular. They also completed scales measuring happiness and other personality variables, such as extraversion and cooperativeness. In the multiple regression analysis, having controlled for the demographic variables, watching TV was related to unhappiness, whereas watching soap opera was related to happiness. Discriminant analysis showed that females, higher happiness and extraversion distinguished regular soap watchers (who nevertheless watched little TV in general) from irregular soap watchers (who nevertheless watched a lot of TV in general).

  6. Effects of land cover, topography, and built structure on seasonal water quality at multiple spatial scales.

    PubMed

    Pratt, Bethany; Chang, Heejun

    2012-03-30

    The relationship among land cover, topography, built structure and stream water quality in the Portland Metro region of Oregon and Clark County, Washington areas, USA, is analyzed using ordinary least squares (OLS) and geographically weighted (GWR) multiple regression models. Two scales of analysis, a sectional watershed and a buffer, offered a local and a global investigation of the sources of stream pollutants. Model accuracy, measured by R(2) values, fluctuated according to the scale, season, and regression method used. While most wet season water quality parameters are associated with urban land covers, most dry season water quality parameters are related topographic features such as elevation and slope. GWR models, which take into consideration local relations of spatial autocorrelation, had stronger results than OLS regression models. In the multiple regression models, sectioned watershed results were consistently better than the sectioned buffer results, except for dry season pH and stream temperature parameters. This suggests that while riparian land cover does have an effect on water quality, a wider contributing area needs to be included in order to account for distant sources of pollutants. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Independent contrasts and PGLS regression estimators are equivalent.

    PubMed

    Blomberg, Simon P; Lefevre, James G; Wells, Jessie A; Waterhouse, Mary

    2012-05-01

    We prove that the slope parameter of the ordinary least squares regression of phylogenetically independent contrasts (PICs) conducted through the origin is identical to the slope parameter of the method of generalized least squares (GLSs) regression under a Brownian motion model of evolution. This equivalence has several implications: 1. Understanding the structure of the linear model for GLS regression provides insight into when and why phylogeny is important in comparative studies. 2. The limitations of the PIC regression analysis are the same as the limitations of the GLS model. In particular, phylogenetic covariance applies only to the response variable in the regression and the explanatory variable should be regarded as fixed. Calculation of PICs for explanatory variables should be treated as a mathematical idiosyncrasy of the PIC regression algorithm. 3. Since the GLS estimator is the best linear unbiased estimator (BLUE), the slope parameter estimated using PICs is also BLUE. 4. If the slope is estimated using different branch lengths for the explanatory and response variables in the PIC algorithm, the estimator is no longer the BLUE, so this is not recommended. Finally, we discuss whether or not and how to accommodate phylogenetic covariance in regression analyses, particularly in relation to the problem of phylogenetic uncertainty. This discussion is from both frequentist and Bayesian perspectives.

  8. Parental education predicts change in intelligence quotient after childhood epilepsy surgery.

    PubMed

    Meekes, Joost; van Schooneveld, Monique M J; Braams, Olga B; Jennekens-Schinkel, Aag; van Rijen, Peter C; Hendriks, Marc P H; Braun, Kees P J; van Nieuwenhuizen, Onno

    2015-04-01

    To know whether change in the intelligence quotient (IQ) of children who undergo epilepsy surgery is associated with the educational level of their parents. Retrospective analysis of data obtained from a cohort of children who underwent epilepsy surgery between January 1996 and September 2010. We performed simple and multiple regression analyses to identify predictors associated with IQ change after surgery. In addition to parental education, six variables previously demonstrated to be associated with IQ change after surgery were included as predictors: age at surgery, duration of epilepsy, etiology, presurgical IQ, reduction of antiepileptic drugs, and seizure freedom. We used delta IQ (IQ 2 years after surgery minus IQ shortly before surgery) as the primary outcome variable, but also performed analyses with pre- and postsurgical IQ as outcome variables to support our findings. To validate the results we performed simple regression analysis with parental education as the predictor in specific subgroups. The sample for regression analysis included 118 children (60 male; median age at surgery 9.73 years). Parental education was significantly associated with delta IQ in simple regression analysis (p = 0.004), and also contributed significantly to postsurgical IQ in multiple regression analysis (p = 0.008). Additional analyses demonstrated that parental education made a unique contribution to prediction of delta IQ, that is, it could not be replaced by the illness-related variables. Subgroup analyses confirmed the association of parental education with IQ change after surgery for most groups. Children whose parents had higher education demonstrate on average a greater increase in IQ after surgery and a higher postsurgical--but not presurgical--IQ than children whose parents completed at most lower secondary education. Parental education--and perhaps other environmental variables--should be considered in the prognosis of cognitive function after childhood epilepsy surgery. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  9. Use of Gene Expression Programming in regionalization of flow duration curve

    NASA Astrophysics Data System (ADS)

    Hashmi, Muhammad Z.; Shamseldin, Asaad Y.

    2014-06-01

    In this paper, a recently introduced artificial intelligence technique known as Gene Expression Programming (GEP) has been employed to perform symbolic regression for developing a parametric scheme of flow duration curve (FDC) regionalization, to relate selected FDC characteristics to catchment characteristics. Stream flow records of selected catchments located in the Auckland Region of New Zealand were used. FDCs of the selected catchments were normalised by dividing the ordinates by their median value. Input for the symbolic regression analysis using GEP was (a) selected characteristics of normalised FDCs; and (b) 26 catchment characteristics related to climate, morphology, soil properties and land cover properties obtained using the observed data and GIS analysis. Our study showed that application of this artificial intelligence technique expedites the selection of a set of the most relevant independent variables out of a large set, because these are automatically selected through the GEP process. Values of the FDC characteristics obtained from the developed relationships have high correlations with the observed values.

  10. Calibration of an M L scale for South Africa using tectonic earthquake data recorded by the South African National Seismograph Network: 2006 to 2009

    NASA Astrophysics Data System (ADS)

    Saunders, Ian; Ottemöller, Lars; Brandt, Martin B. C.; Fourie, Christoffel J. S.

    2013-04-01

    A relation to determine local magnitude ( M L) based on the original Richter definition is empirically derived from synthetic Wood-Anderson seismograms recorded by the South African National Seismograph Network. In total, 263 earthquakes in the distance range 10 to 1,000 km, representing 1,681 trace amplitudes measured in nanometers from synthesized Wood-Anderson records on the vertical channel were considered to derive an attenuation relation appropriate for South Africa through multiple regression analysis. Additionally, station corrections were determined for 26 stations during the regression analysis resulting in values ranging between -0.31 and 0.50. The most appropriate M L scale for South Africa from this study satisfies the equation: {M_{{{L}}}} = {{lo}}{{{g}}_{{10}}}(A) + 1.149{{lo}}{{{g}}_{{10}}}(R) + 0.00063R + 2.04 - S The anelastic attenuation term derived from this study indicates that ground motion attenuation is significantly different from Southern California but comparable with stable continental regions.

  11. Prediction of all-cause death in hemodialysis patients using elevated postdialysis pulse wave velocity.

    PubMed

    Fu, Xiaohong; Yang, Jihong; Fan, Zhaoxin; Chen, Xianguang; Wu, Jie; Li, Jie; Wu, Hua

    2016-02-01

    To identify the relationship between predialysis pulse wave velocity (PWV), postdialysis PWV during 1 hemodialysis (HD) session, and deaths in maintenance HD patients. 43 patients were recruited. PWV was measured before and after one HD session and dialysis- related data were recorded. Clinical data such as blood pressure, blood lipids, and blood glucose, were carefully observed and managed in a 5-year follow-up. The association between all-cause death, predialysis PWV, postdialysis PWV, change of PWV (ΔPWV), and other related variables were analyzed. After 5 years, 17 patients (39.5%) died. Univariate Cox regression analysis showed that all-cause death of the patients significantly correlated with age, postdialysis PWV, and ΔPWV. Multivariate Cox regression analysis revealed that postdialysis PWV was an independent predictor for all-cause death in these patients (HR: 1.377, 95% CI: 1.146 - 1.656, p = 0.001). Elevated postdialysis PWV significantly correlated with and was an independent predictor for all-cause death in maintenance HD patients.

  12. Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement

    USGS Publications Warehouse

    Bonilla, M.G.; Mark, R.K.; Lienkaemper, J.J.

    1984-01-01

    In order to refine correlations of surface-wave magnitude, fault rupture length at the ground surface, and fault displacement at the surface by including the uncertainties in these variables, the existing data were critically reviewed and a new data base was compiled. Earthquake magnitudes were redetermined as necessary to make them as consistent as possible with the Gutenberg methods and results, which necessarily make up much of the data base. Measurement errors were estimated for the three variables for 58 moderate to large shallow-focus earthquakes. Regression analyses were then made utilizing the estimated measurement errors. The regression analysis demonstrates that the relations among the variables magnitude, length, and displacement are stochastic in nature. The stochastic variance, introduced in part by incomplete surface expression of seismogenic faulting, variation in shear modulus, and regional factors, dominates the estimated measurement errors. Thus, it is appropriate to use ordinary least squares for the regression models, rather than regression models based upon an underlying deterministic relation with the variance resulting from measurement errors. Significant differences exist in correlations of certain combinations of length, displacement, and magnitude when events are qrouped by fault type or by region, including attenuation regions delineated by Evernden and others. Subdivision of the data results in too few data for some fault types and regions, and for these only regressions using all of the data as a group are reported. Estimates of the magnitude and the standard deviation of the magnitude of a prehistoric or future earthquake associated with a fault can be made by correlating M with the logarithms of rupture length, fault displacement, or the product of length and displacement. Fault rupture area could be reliably estimated for about 20 of the events in the data set. Regression of MS on rupture area did not result in a marked improvement over regressions that did not involve rupture area. Because no subduction-zone earthquakes are included in this study, the reported results do not apply to such zones.

  13. External Tank Liquid Hydrogen (LH2) Prepress Regression Analysis Independent Review Technical Consultation Report

    NASA Technical Reports Server (NTRS)

    Parsons, Vickie s.

    2009-01-01

    The request to conduct an independent review of regression models, developed for determining the expected Launch Commit Criteria (LCC) External Tank (ET)-04 cycle count for the Space Shuttle ET tanking process, was submitted to the NASA Engineering and Safety Center NESC on September 20, 2005. The NESC team performed an independent review of regression models documented in Prepress Regression Analysis, Tom Clark and Angela Krenn, 10/27/05. This consultation consisted of a peer review by statistical experts of the proposed regression models provided in the Prepress Regression Analysis. This document is the consultation's final report.

  14. Aggregating the response in time series regression models, applied to weather-related cardiovascular mortality.

    PubMed

    Masselot, Pierre; Chebana, Fateh; Bélanger, Diane; St-Hilaire, André; Abdous, Belkacem; Gosselin, Pierre; Ouarda, Taha B M J

    2018-07-01

    In environmental epidemiology studies, health response data (e.g. hospitalization or mortality) are often noisy because of hospital organization and other social factors. The noise in the data can hide the true signal related to the exposure. The signal can be unveiled by performing a temporal aggregation on health data and then using it as the response in regression analysis. From aggregated series, a general methodology is introduced to account for the particularities of an aggregated response in a regression setting. This methodology can be used with usually applied regression models in weather-related health studies, such as generalized additive models (GAM) and distributed lag nonlinear models (DLNM). In particular, the residuals are modelled using an autoregressive-moving average (ARMA) model to account for the temporal dependence. The proposed methodology is illustrated by modelling the influence of temperature on cardiovascular mortality in Canada. A comparison with classical DLNMs is provided and several aggregation methods are compared. Results show that there is an increase in the fit quality when the response is aggregated, and that the estimated relationship focuses more on the outcome over several days than the classical DLNM. More precisely, among various investigated aggregation schemes, it was found that an aggregation with an asymmetric Epanechnikov kernel is more suited for studying the temperature-mortality relationship. Copyright © 2018. Published by Elsevier B.V.

  15. Exploring the Factors Related to Acceptance of Evolutionary Theory among Turkish Preservice Biology Teachers: Toward a More Informative Conceptual Ecology for Biological Evolution

    ERIC Educational Resources Information Center

    Deniz, Hasan; Donnelly, Lisa A.; Yilmaz, Irfan

    2008-01-01

    In this study, using multiple regression analysis, we aimed to explore the factors related to acceptance of evolutionary theory among preservice Turkish biology teachers using conceptual ecology for biological evolution as a theoretical lens. We aimed to determine the extent to which we can account for the variance in acceptance of evolutionary…

  16. The Relative Value of Growth in Math Fact Skills across Late Elementary and Middle School

    ERIC Educational Resources Information Center

    Nelson, Peter M.; Parker, David C.; Zaslofsky, Anne F.

    2016-01-01

    The purpose of the current study was to evaluate the importance of growth in math fact skills within the context of overall math proficiency. Data for 1,493 elementary and middle school students were included for analysis. Regression models were fit to examine the relative value of math fact fluency growth, prior state test performance, and a fall…

  17. Isolated and synergistic effects of PM10 and average temperature on cardiovascular and respiratory mortality.

    PubMed

    Pinheiro, Samya de Lara Lins de Araujo; Saldiva, Paulo Hilário Nascimento; Schwartz, Joel; Zanobetti, Antonella

    2014-12-01

    OBJECTIVE To analyze the effect of air pollution and temperature on mortality due to cardiovascular and respiratory diseases. METHODS We evaluated the isolated and synergistic effects of temperature and particulate matter with aerodynamic diameter < 10 µm (PM10) on the mortality of individuals > 40 years old due to cardiovascular disease and that of individuals > 60 years old due to respiratory diseases in Sao Paulo, SP, Southeastern Brazil, between 1998 and 2008. Three methodologies were used to evaluate the isolated association: time-series analysis using Poisson regression model, bidirectional case-crossover analysis matched by period, and case-crossover analysis matched by the confounding factor, i.e., average temperature or pollutant concentration. The graphical representation of the response surface, generated by the interaction term between these factors added to the Poisson regression model, was interpreted to evaluate the synergistic effect of the risk factors. RESULTS No differences were observed between the results of the case-crossover and time-series analyses. The percentage change in the relative risk of cardiovascular and respiratory mortality was 0.85% (0.45;1.25) and 1.60% (0.74;2.46), respectively, due to an increase of 10 μg/m3 in the PM10 concentration. The pattern of correlation of the temperature with cardiovascular mortality was U-shaped and that with respiratory mortality was J-shaped, indicating an increased relative risk at high temperatures. The values for the interaction term indicated a higher relative risk for cardiovascular and respiratory mortalities at low temperatures and high temperatures, respectively, when the pollution levels reached approximately 60 μg/m3. CONCLUSIONS The positive association standardized in the Poisson regression model for pollutant concentration is not confounded by temperature, and the effect of temperature is not confounded by the pollutant levels in the time-series analysis. The simultaneous exposure to different levels of environmental factors can create synergistic effects that are as disturbing as those caused by extreme concentrations.

  18. The 2011 heat wave in Greater Houston: Effects of land use on temperature.

    PubMed

    Zhou, Weihe; Ji, Shuang; Chen, Tsun-Hsuan; Hou, Yi; Zhang, Kai

    2014-11-01

    Effects of land use on temperatures during severe heat waves have been rarely studied. This paper examines land use-temperature associations during the 2011 heat wave in Greater Houston. We obtained high resolution of satellite-derived land use data from the US National Land Cover Database, and temperature observations at 138 weather stations from Weather Underground, Inc (WU) during the August of 2011, which was the hottest month in Houston since 1889. Land use regression and quantile regression methods were applied to the monthly averages of daily maximum/mean/minimum temperatures and 114 land use-related predictors. Although selected variables vary with temperature metric, distance to the coastline consistently appears among all models. Other variables are generally related to high developed intensity, open water or wetlands. In addition, our quantile regression analysis shows that distance to the coastline and high developed intensity areas have larger impacts on daily average temperatures at higher quantiles, and open water area has greater impacts on daily minimum temperatures at lower quantiles. By utilizing both land use regression and quantile regression on a recent heat wave in one of the largest US metropolitan areas, this paper provides a new perspective on the impacts of land use on temperatures. Our models can provide estimates of heat exposures for epidemiological studies, and our findings can be combined with demographic variables, air conditioning and relevant diseases information to identify 'hot spots' of population vulnerability for public health interventions to reduce heat-related health effects during heat waves. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Red River of the North, Fargo, North Dakota, 2003-05

    USGS Publications Warehouse

    Ryberg, Karen R.

    2006-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Bureau of Reclamation, U.S. Department of the Interior, to estimate water-quality constituent concentrations in the Red River of the North at Fargo, North Dakota. Regression analysis of water-quality data collected in 2003-05 was used to estimate concentrations and loads for alkalinity, dissolved solids, sulfate, chloride, total nitrite plus nitrate, total nitrogen, total phosphorus, and suspended sediment. The explanatory variables examined for regression relation were continuously monitored physical properties of water-streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen. For the conditions observed in 2003-05, streamflow was a significant explanatory variable for all estimated constituents except dissolved solids. pH, water temperature, and dissolved oxygen were not statistically significant explanatory variables for any of the constituents in this study. Specific conductance was a significant explanatory variable for alkalinity, dissolved solids, sulfate, and chloride. Turbidity was a significant explanatory variable for total phosphorus and suspended sediment. For the nutrients, total nitrite plus nitrate, total nitrogen, and total phosphorus, cosine and sine functions of time also were used to explain the seasonality in constituent concentrations. The regression equations were evaluated using common measures of variability, including R2, or the proportion of variability in the estimated constituent explained by the regression equation. R2 values ranged from 0.703 for total nitrogen concentration to 0.990 for dissolved-solids concentration. The regression equations also were evaluated by calculating the median relative percentage difference (RPD) between measured constituent concentration and the constituent concentration estimated by the regression equations. Median RPDs ranged from 1.1 for dissolved solids to 35.2 for total nitrite plus nitrate. Regression equations also were used to estimate daily constituent loads. Load estimates can be used by water-quality managers for comparison of current water-quality conditions to water-quality standards expressed as total maximum daily loads (TMDLs). TMDLs are a measure of the maximum amount of chemical constituents that a water body can receive and still meet established water-quality standards. The peak loads generally occurred in June and July when streamflow also peaked.

  20. Assessing host-specificity of Escherichia coli using a supervised learning logic-regression-based analysis of single nucleotide polymorphisms in intergenic regions.

    PubMed

    Zhi, Shuai; Li, Qiaozhi; Yasui, Yutaka; Edge, Thomas; Topp, Edward; Neumann, Norman F

    2015-11-01

    Host specificity in E. coli is widely debated. Herein, we used supervised learning logic-regression-based analysis of intergenic DNA sequence variability in E. coli in an attempt to identify single nucleotide polymorphism (SNP) biomarkers of E. coli that are associated with natural selection and evolution toward host specificity. Seven-hundred and eighty strains of E. coli were isolated from 15 different animal hosts. We utilized logic regression for analyzing DNA sequence data of three intergenic regions (flanked by the genes uspC-flhDC, csgBAC-csgDEFG, and asnS-ompF) to identify genetic biomarkers that could potentially discriminate E. coli based on host sources. Across 15 different animal hosts, logic regression successfully discriminated E. coli based on animal host source with relatively high specificity (i.e., among the samples of the non-target animal host, the proportion that correctly did not have the host-specific marker pattern) and sensitivity (i.e., among the samples from a given animal host, the proportion that correctly had the host-specific marker pattern), even after fivefold cross validation. Permutation tests confirmed that for most animals, host specific intergenic biomarkers identified by logic regression in E. coli were significantly associated with animal host source. The highest level of biomarker sensitivity was observed in deer isolates, with 82% of all deer E. coli isolates displaying a unique SNP pattern that was 98% specific to deer. Fifty-three percent of human isolates displayed a unique biomarker pattern that was 98% specific to humans. Twenty-nine percent of cattle isolates displayed a unique biomarker that was 97% specific to cattle. Interestingly, even within a related host group (i.e., Family: Canidae [domestic dogs and coyotes]), highly specific SNP biomarkers (98% and 99% specificity for dog and coyotes, respectively) were observed, with 21% of dog E. coli isolates displaying a unique dog biomarker and 61% of coyote isolates displaying a unique coyote biomarker. Application of a supervised learning method, such as logic regression, to DNA sequence analysis at certain intergenic regions demonstrates that some E. coli strains may evolve to become host-specific. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. A Systematic Review and Meta-Regression Analysis of Lung Cancer Risk and Inorganic Arsenic in Drinking Water.

    PubMed

    Lamm, Steven H; Ferdosi, Hamid; Dissen, Elisabeth K; Li, Ji; Ahn, Jaeil

    2015-12-07

    High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1-1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100-150 µg/L arsenic.

  2. A Systematic Review and Meta-Regression Analysis of Lung Cancer Risk and Inorganic Arsenic in Drinking Water

    PubMed Central

    Lamm, Steven H.; Ferdosi, Hamid; Dissen, Elisabeth K.; Li, Ji; Ahn, Jaeil

    2015-01-01

    High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1–1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100–150 µg/L arsenic. PMID:26690190

  3. MicroCT angiography detects vascular formation and regression in skin wound healing

    PubMed Central

    Urao, Norifumi; Okonkwo, Uzoagu A.; Fang, Milie M.; Zhuang, Zhen W.; Koh, Timothy J.; DiPietro, Luisa A.

    2016-01-01

    Properly regulated angiogenesis and arteriogenesis are essential for effective wound healing. Tissue injury induces robust new vessel formation and subsequent vessel maturation, which involves vessel regression and remodeling. Although formation of functional vasculature is essential for healing, alterations in vascular structure over the time course of skin wound healing are not well understood. Here, using high-resolution ex vivo X-ray micro-computed tomography (microCT), we describe the vascular network during healing of skin excisional wounds with highly detailed three-dimensional (3D) reconstructed images and associated quantitative analysis. We found that relative vessel volume, surface area and branching number are significantly decreased in wounds from day 7 to day 14 and 21. Segmentation and skeletonization analysis of selected branches from high-resolution images as small as 2.5 μm voxel size show that branching orders are decreased in the wound vessels during healing. In histological analysis, we found that the contrast agent fills mainly arterioles, but not small capillaries nor large veins. In summary, high-resolution microCT revealed dynamic alterations of vessel structures during wound healing. This technique may be useful as a key tool in the study of the formation and regression of wound vessels. PMID:27009591

  4. Role of social support in adolescent suicidal ideation and suicide attempts.

    PubMed

    Miller, Adam Bryant; Esposito-Smythers, Christianne; Leichtweis, Richard N

    2015-03-01

    The present study examined the relative contributions of perceptions of social support from parents, close friends, and school on current suicidal ideation (SI) and suicide attempt (SA) history in a clinical sample of adolescents. Participants were 143 adolescents (64% female; 81% white; range, 12-18 years; M = 15.38; standard deviation = 1.43) admitted to a partial hospitalization program. Data were collected with well-validated assessments and a structured clinical interview. Main and interactive effects of perceptions of social support on SI were tested with linear regression. Main and interactive effects of social support on the odds of SA were tested with logistic regression. Results from the linear regression analysis revealed that perceptions of lower school support independently predicted greater severity of SI, accounting for parent and close friend support. Further, the relationship between lower perceived school support and SI was the strongest among those who perceived lower versus higher parental support. Results from the logistic regression analysis revealed that perceptions of lower parental support independently predicted SA history, accounting for school and close friend support. Further, those who perceived lower support from school and close friends reported the greatest odds of an SA history. Results address a significant gap in the social support and suicide literature by demonstrating that perceptions of parent and school support are relatively more important than peer support in understanding suicidal thoughts and history of suicidal behavior. Results suggest that improving social support across these domains may be important in suicide prevention efforts. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  5. Utility of correlation techniques in gravity and magnetic interpretation

    NASA Technical Reports Server (NTRS)

    Chandler, V. W.; Koski, J. S.; Braice, L. W.; Hinze, W. J.

    1977-01-01

    Internal correspondence uses Poisson's Theorem in a moving-window linear regression analysis between the anomalous first vertical derivative of gravity and total magnetic field reduced to the pole. The regression parameters provide critical information on source characteristics. The correlation coefficient indicates the strength of the relation between magnetics and gravity. Slope value gives delta j/delta sigma estimates of the anomalous source. The intercept furnishes information on anomaly interference. Cluster analysis consists of the classification of subsets of data into groups of similarity based on correlation of selected characteristics of the anomalies. Model studies are used to illustrate implementation and interpretation procedures of these methods, particularly internal correspondence. Analysis of the results of applying these methods to data from the midcontinent and a transcontinental profile shows they can be useful in identifying crustal provinces, providing information on horizontal and vertical variations of physical properties over province size zones, validating long wavelength anomalies, and isolating geomagnetic field removal problems.

  6. Mangrove canopy density analysis using Sentinel-2A imagery satellite data

    NASA Astrophysics Data System (ADS)

    Wachid, M. N.; Hapsara, R. P.; Cahyo, R. D.; Wahyu, G. N.; Syarif, A. M.; Umarhadi, D. A.; Fitriani, A. N.; Ramadhanningrum, D. P.; Widyatmanti, W.

    2017-06-01

    Teluk Jor has alluvium surface sediment that came from volcanic materials. Sea wave that relatively calm and the closed beach shape support the existence of mangrove forest at Teluk Jor. Sentinel-2A imagery has a good spatial and spectral resolution for mangrove density study. The regression between samples and the NDVI values of Sentinel-2A used to analyze the mangrove canopy density. Mangrove canopy density was identified using field survey with transect method. The regression analysis shows field data and NDVI value has correlation R=0.7739 and coefficient of determination R2=0.5989. The result of the analysis shows area of low density 397,900 m2, moderate density 336,200 m2, the high density has 110,300 m2 and very high density has 500 m2. This research also found that mangrove genus in Teluk Jor consists of Rhizopora, Ceriops, Aegiceras and Sonneratia.

  7. Maintenance Operations in Mission Oriented Protective Posture Level IV (MOPPIV)

    DTIC Science & Technology

    1987-10-01

    Repair FADAC Printed Circuit Board ............. 6 3. Data Analysis Techniques ............................. 6 a. Multiple Linear Regression... ANALYSIS /DISCUSSION ............................... 12 1. Exa-ple of Regression Analysis ..................... 12 S2. Regression results for all tasks...6 * TABLE 9. Task Grouping for Analysis ........................ 7 "TABXLE 10. Remove/Replace H60A3 Power Pack................. 8 TABLE

  8. The Relative Impact of Educational Attainment and Fatherlessness on Criminality.

    ERIC Educational Resources Information Center

    Koski, Douglas D.

    1996-01-01

    Regression analysis of 40 years of data on median income, education, divorce rate, and female-headed households was conducted to determine their influence on crime rates, especially homicide. Educational attainment had a significant bearing on criminality. Single parenting was less significant than low income. (SK)

  9. Creep-Rupture Data Analysis - Engineering Application of Regression Techniques. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Rummler, D. R.

    1976-01-01

    The results are presented of investigations to apply regression techniques to the development of methodology for creep-rupture data analysis. Regression analysis techniques are applied to the explicit description of the creep behavior of materials for space shuttle thermal protection systems. A regression analysis technique is compared with five parametric methods for analyzing three simulated and twenty real data sets, and a computer program for the evaluation of creep-rupture data is presented.

  10. Resting-state functional magnetic resonance imaging: the impact of regression analysis.

    PubMed

    Yeh, Chia-Jung; Tseng, Yu-Sheng; Lin, Yi-Ru; Tsai, Shang-Yueh; Huang, Teng-Yi

    2015-01-01

    To investigate the impact of regression methods on resting-state functional magnetic resonance imaging (rsfMRI). During rsfMRI preprocessing, regression analysis is considered effective for reducing the interference of physiological noise on the signal time course. However, it is unclear whether the regression method benefits rsfMRI analysis. Twenty volunteers (10 men and 10 women; aged 23.4 ± 1.5 years) participated in the experiments. We used node analysis and functional connectivity mapping to assess the brain default mode network by using five combinations of regression methods. The results show that regressing the global mean plays a major role in the preprocessing steps. When a global regression method is applied, the values of functional connectivity are significantly lower (P ≤ .01) than those calculated without a global regression. This step increases inter-subject variation and produces anticorrelated brain areas. rsfMRI data processed using regression should be interpreted carefully. The significance of the anticorrelated brain areas produced by global signal removal is unclear. Copyright © 2014 by the American Society of Neuroimaging.

  11. The association of lung function and St. George's respiratory questionnaire with exacerbations in COPD: a systematic literature review and regression analysis.

    PubMed

    Martin, Amber L; Marvel, Jessica; Fahrbach, Kyle; Cadarette, Sarah M; Wilcox, Teresa K; Donohue, James F

    2016-04-16

    This study investigated the relationship between changes in lung function (as measured by forced expiratory volume in one second [FEV1]) and the St. George's Respiratory Questionnaire (SGRQ) and economically significant outcomes of exacerbations and health resource utilization, with an aim to provide insight into whether the effects of COPD treatment on lung function and health status relate to a reduced risk for exacerbations. A systematic literature review was conducted in MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials to identify randomized controlled trials of adult COPD patients published in English since 2002 in order to relate mean change in FEV1 and SGRQ total score to exacerbations and hospitalizations. These predictor/outcome pairs were analyzed using sample-size weighted regression analyses, which estimated a regression slope relating the two treatment effects, as well as a confidence interval and a test of statistical significance. Sixty-seven trials were included in the analysis. Significant relationships were seen between: FEV1 and any exacerbation (time to first exacerbation or patients with at least one exacerbation, p = 0.001); between FEV1 and moderate-to-severe exacerbations (time to first exacerbation, patients with at least one exacerbation, or annualized rate, p = 0.045); between SGRQ score and any exacerbation (time to first exacerbation or patients with at least one exacerbation, p = 0.0002) and between SGRQ score and moderate-to-severe exacerbations (time to first exacerbation or patients with at least one exacerbation, p = 0.0279; annualized rate, p = 0.0024). Relationships between FEV1 or SGRQ score and annualized exacerbation rate for any exacerbation or hospitalized exacerbations were not significant. The regression analysis demonstrated a significant association between improvements in FEV1 and SGRQ score and lower risk for COPD exacerbations. Even in cases of non-significant relationships, results were in the expected direction with few exceptions. The results of this analysis offer health care providers and payers a broader picture of the relationship between exacerbations and mean change in FEV1 as well as SGRQ score, and will help inform clinical and formulary-making decisions while stimulating new research questions for future prospective studies.

  12. HIV-related ocular microangiopathic syndrome and color contrast sensitivity.

    PubMed

    Geier, S A; Hammel, G; Bogner, J R; Kronawitter, U; Berninger, T; Goebel, F D

    1994-06-01

    Color vision deficits in patients with acquired immunodeficiency syndrome (AIDS) or human immunodeficiency virus (HIV) disease were reported, and a retinal pathogenic mechanism was proposed. The purpose of this study was to evaluate the association of color vision deficits with HIV-related retinal microangiopathy. A computer graphics system was used to measure protan, deutan, and tritan color contrast sensitivity (CCS) thresholds in 60 HIV-infected patients. Retinal microangiopathy was measured by counting the number of cotton-wool spots, and conjunctival blood-flow sludging was determined. Additional predictors were CD4+ count, age, time on aerosolized pentamidine, time on zidovudine, and Walter Reed staging. The relative influence of each predictor was calculated by stepwise multiple regression analysis (inclusion criterion; incremental P value = < 0.05) using data for the right eyes (RE). The results were validated by using data for the left eyes (LE) and both eyes (BE). The only included predictors in multiple regression analyses for the RE were number of cotton-wool spots (tritan: R = .70; deutan: R = .46; and protan: R = .58; P < .0001 for all axes) and age (tritan: increment of R [Ri] = .05, P = .002; deutan: Ri = .10, P = .004; and protan: Ri = .05, P = .002). The predictors time on zidovudine (Ri = .05, P = .002) and Walter Reed staging (Ri = .03, P = .01) were additionally included in multiple regression analysis for tritan LE. The results for deutan LE were comparable to those for the RE. In the analysis for protan LE, the only included predictor was number of cotton-wool spots. In the analyses for BE, no further predictors were included. The predictors Walter Reed staging and CD4+ count showed a significant association with all three criteria in univariate analysis. Additionally, tritan CCS was significantly associated with conjunctival blood-flow sludging. CCS deficits in patients with HIV disease are primarily associated with the number of cotton-wool spots. Results of this study are in accordance with the hypothesis that CCS deficits are in a relevant part caused by neuroretinal damage secondary to HIV-related microangiopathy.

  13. Interactions between cadmium and decabrominated diphenyl ether on blood cells count in rats-Multiple factorial regression analysis.

    PubMed

    Curcic, Marijana; Buha, Aleksandra; Stankovic, Sanja; Milovanovic, Vesna; Bulat, Zorica; Đukić-Ćosić, Danijela; Antonijević, Evica; Vučinić, Slavica; Matović, Vesna; Antonijevic, Biljana

    2017-02-01

    The objective of this study was to assess toxicity of Cd and BDE-209 mixture on haematological parameters in subacutely exposed rats and to determine the presence and type of interactions between these two chemicals using multiple factorial regression analysis. Furthermore, for the assessment of interaction type, an isobologram based methodology was applied and compared with multiple factorial regression analysis. Chemicals were given by oral gavage to the male Wistar rats weighing 200-240g for 28days. Animals were divided in 16 groups (8/group): control vehiculum group, three groups of rats were treated with 2.5, 7.5 or 15mg Cd/kg/day. These doses were chosen on the bases of literature data and reflect relatively high Cd environmental exposure, three groups of rats were treated with 1000, 2000 or 4000mg BDE-209/kg/bw/day, doses proved to induce toxic effects in rats. Furthermore, nine groups of animals were treated with different mixtures of Cd and BDE-209 containing doses of Cd and BDE-209 stated above. Blood samples were taken at the end of experiment and red blood cells, white blood cells and platelets counts were determined. For interaction assessment multiple factorial regression analysis and fitted isobologram approach were used. In this study, we focused on multiple factorial regression analysis as a method for interaction assessment. We also investigated the interactions between Cd and BDE-209 by the derived model for the description of the obtained fitted isobologram curves. Current study indicated that co-exposure to Cd and BDE-209 can result in significant decrease in RBC count, increase in WBC count and decrease in PLT count, when compared with controls. Multiple factorial regression analysis used for the assessment of interactions type between Cd and BDE-209 indicated synergism for the effect on RBC count and no interactions i.e. additivity for the effects on WBC and PLT counts. On the other hand, isobologram based approach showed slight antagonism for the effects on RBC and WBC while no interactions were proved for the joint effect on PLT count. These results confirm that the assessment of interactions between chemicals in the mixture greatly depends on the concept or method used for this evaluation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Demonstration of a Fiber Optic Regression Probe in a High-Temperature Flow

    NASA Technical Reports Server (NTRS)

    Korman, Valentin; Polzin, Kurt

    2011-01-01

    The capability to provide localized, real-time monitoring of material regression rates in various applications has the potential to provide a new stream of data for development testing of various components and systems, as well as serving as a monitoring tool in flight applications. These applications include, but are not limited to, the regression of a combusting solid fuel surface, the ablation of the throat in a chemical rocket or the heat shield of an aeroshell, and the monitoring of erosion in long-life plasma thrusters. The rate of regression in the first application is very fast, while the second and third are increasingly slower. A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor is optical, using two different, co-located fiber-optics to perform the regression measurement. The disparate optical transmission properties of the two fiber-optics makes it possible to measure the regression rate by monitoring the relative light attenuation through the fibers. As the fibers regress along with the parent material in which they are embedded, the relative light intensities through the two fibers changes, providing a measure of the regression rate. The optical nature of the system makes it relatively easy to use in a variety of harsh, high temperature environments, and it is also unaffected by the presence of electric and magnetic fields. In addition, the sensor could be used to perform optical spectroscopy on the light emitted by a process and collected by fibers, giving localized measurements of various properties. The capability to perform an in-situ measurement of material regression rates is useful in addressing a variety of physical issues in various applications. An in-situ measurement allows for real-time data regarding the erosion rates, providing a quick method for empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over an operating envelope could also be useful in the modeling detailed physical processes. The sensor has been embedded in many regressing media to demonstrate the capabilities in a number of regressing environments. In the present work, sensors were installed in the eroding/regressing throat region of a converging-diverging flow, with the working gas heated to high temperatures by means of a high-pressure arc discharge at steady-state discharge power levels up to 500 kW. The amount of regression observed in each material sample was quantified using a later profilometer, which was compared to the in-situ erosion measurements to demonstrate the efficacy of the measurement technique in very harsh, high-temperature environments.

  15. Diagnostic accuracy of the aspartate aminotransferase-to-platelet ratio index for the prediction of hepatitis B-related fibrosis: a leading meta-analysis

    PubMed Central

    2012-01-01

    Background The aspartate aminotransferase-to-platelet ratio index (APRI), a tool with limited expense and widespread availability, is a promising noninvasive alternative to liver biopsy for detecting hepatic fibrosis. The objective of this study was to systematically review the performance of the APRI in predicting significant fibrosis and cirrhosis in hepatitis B-related fibrosis. Methods Areas under summary receiver operating characteristic curves (AUROC), sensitivity and specificity were used to examine the accuracy of the APRI for the diagnosis of hepatitis B-related significant fibrosis and cirrhosis. Heterogeneity was explored using meta-regression. Results Nine studies were included in this meta-analysis (n = 1,798). Prevalence of significant fibrosis and cirrhosis were 53.1% and 13.5%, respectively. The summary AUCs of the APRI for significant fibrosis and cirrhosis were 0.79 and 0.75, respectively. For significant fibrosis, an APRI threshold of 0.5 was 84% sensitive and 41% specific. At the cutoff of 1.5, the summary sensitivity and specificity were 49% and 84%, respectively. For cirrhosis, an APRI threshold of 1.0-1.5 was 54% sensitive and 78% specific. At the cutoff of 2.0, the summary sensitivity and specificity were 28% and 87%, respectively. Meta-regression analysis indicated that the APRI accuracy for both significant fibrosis and cirrhosis was affected by histological classification systems, but not influenced by the interval between Biopsy & APRI or blind biopsy. Conclusion Our meta-analysis suggests that APRI show limited value in identifying hepatitis B-related significant fibrosis and cirrhosis. PMID:22333407

  16. A local equation for differential diagnosis of β-thalassemia trait and iron deficiency anemia by logistic regression analysis in Southeast Iran.

    PubMed

    Sargolzaie, Narjes; Miri-Moghaddam, Ebrahim

    2014-01-01

    The most common differential diagnosis of β-thalassemia (β-thal) trait is iron deficiency anemia. Several red blood cell equations were introduced during different studies for differential diagnosis between β-thal trait and iron deficiency anemia. Due to genetic variations in different regions, these equations cannot be useful in all population. The aim of this study was to determine a native equation with high accuracy for differential diagnosis of β-thal trait and iron deficiency anemia for the Sistan and Baluchestan population by logistic regression analysis. We selected 77 iron deficiency anemia and 100 β-thal trait cases. We used binary logistic regression analysis and determined best equations for probability prediction of β-thal trait against iron deficiency anemia in our population. We compared diagnostic values and receiver operative characteristic (ROC) curve related to this equation and another 10 published equations in discriminating β-thal trait and iron deficiency anemia. The binary logistic regression analysis determined the best equation for best probability prediction of β-thal trait against iron deficiency anemia with area under curve (AUC) 0.998. Based on ROC curves and AUC, Green & King, England & Frazer, and then Sirdah indices, respectively, had the most accuracy after our equation. We suggest that to get the best equation and cut-off in each region, one needs to evaluate specific information of each region, specifically in areas where populations are homogeneous, to provide a specific formula for differentiating between β-thal trait and iron deficiency anemia.

  17. Vascular Disease, ESRD, and Death: Interpreting Competing Risk Analyses

    PubMed Central

    Coresh, Josef; Segev, Dorry L.; Kucirka, Lauren M.; Tighiouart, Hocine; Sarnak, Mark J.

    2012-01-01

    Summary Background and objectives Vascular disease, a common condition in CKD, is a risk factor for mortality and ESRD. Optimal patient care requires accurate estimation and ordering of these competing risks. Design, setting, participants, & measurements This is a prospective cohort study of screened (n=885) and randomized participants (n=837) in the Modification of Diet in Renal Disease study (original study enrollment, 1989–1992), evaluating the association of vascular disease with ESRD and pre-ESRD mortality using standard survival analysis and competing risk regression. Results The method of analysis resulted in markedly different estimates. Cumulative incidence by standard analysis (censoring at the competing event) implied that, with vascular disease, the 15-year incidence was 66% and 51% for ESRD and pre-ESRD death, respectively. A more accurate representation of absolute risk was estimated with competing risk regression: 15-year incidence was 54% and 29% for ESRD and pre-ESRD death, respectively. For the association of vascular disease with pre-ESRD death, estimates of relative risk by the two methods were similar (standard survival analysis adjusted hazard ratio, 1.63; 95% confidence interval, 1.20–2.20; competing risk regression adjusted subhazard ratio, 1.57; 95% confidence interval, 1.15–2.14). In contrast, the hazard and subhazard ratios differed substantially for other associations, such as GFR and pre-ESRD mortality. Conclusions When competing events exist, absolute risk is better estimated using competing risk regression, but etiologic associations by this method must be carefully interpreted. The presence of vascular disease in CKD decreases the likelihood of survival to ESRD, independent of age and other risk factors. PMID:22859747

  18. Vascular disease, ESRD, and death: interpreting competing risk analyses.

    PubMed

    Grams, Morgan E; Coresh, Josef; Segev, Dorry L; Kucirka, Lauren M; Tighiouart, Hocine; Sarnak, Mark J

    2012-10-01

    Vascular disease, a common condition in CKD, is a risk factor for mortality and ESRD. Optimal patient care requires accurate estimation and ordering of these competing risks. This is a prospective cohort study of screened (n=885) and randomized participants (n=837) in the Modification of Diet in Renal Disease study (original study enrollment, 1989-1992), evaluating the association of vascular disease with ESRD and pre-ESRD mortality using standard survival analysis and competing risk regression. The method of analysis resulted in markedly different estimates. Cumulative incidence by standard analysis (censoring at the competing event) implied that, with vascular disease, the 15-year incidence was 66% and 51% for ESRD and pre-ESRD death, respectively. A more accurate representation of absolute risk was estimated with competing risk regression: 15-year incidence was 54% and 29% for ESRD and pre-ESRD death, respectively. For the association of vascular disease with pre-ESRD death, estimates of relative risk by the two methods were similar (standard survival analysis adjusted hazard ratio, 1.63; 95% confidence interval, 1.20-2.20; competing risk regression adjusted subhazard ratio, 1.57; 95% confidence interval, 1.15-2.14). In contrast, the hazard and subhazard ratios differed substantially for other associations, such as GFR and pre-ESRD mortality. When competing events exist, absolute risk is better estimated using competing risk regression, but etiologic associations by this method must be carefully interpreted. The presence of vascular disease in CKD decreases the likelihood of survival to ESRD, independent of age and other risk factors.

  19. Using regression analysis to predict emergency patient volume at the Indianapolis 500 mile race.

    PubMed

    Bowdish, G E; Cordell, W H; Bock, H C; Vukov, L F

    1992-10-01

    Emergency physicians often plan and provide on-site medical care for mass gatherings. Most of the mass gathering literature is descriptive. Only a few studies have looked at factors such as crowd size, event characteristics, or weather in predicting numbers and types of patients at mass gatherings. We used regression analysis to relate patient volume on Race Day at the Indianapolis Motor Speedway to weather conditions and race characteristics. Race Day weather data for the years 1983 to 1989 were obtained from the National Oceanic and Atmospheric Administration. Data regarding patients treated on 1983 to 1989 Race Days were obtained from the facility hospital (Hannah Emergency Medical Center) data base. Regression analysis was performed using weather factors and race characteristics as independent variables and number of patients seen as the dependent variable. Data from 1990 were used to test the validity of the model. There was a significant relationship between dew point (which is calculated from temperature and humidity) and patient load (P less than .01). Dew point, however, failed to predict patient load during the 1990 race. No relationships could be established between humidity, sunshine, wind, or race characteristics and number of patients. Although higher dew point was associated with higher patient load during the 1983 to 1989 races, dew point was a poor predictor of patient load during the 1990 race. Regression analysis may be useful in identifying relationships between event characteristics and patient load but is probably inadequate to explain the complexities of crowd behavior and too simplified to use as a prediction tool.

  20. [Value of the albumin to globulin ratio in predicting severity and prognosis in myasthenia gravis patients].

    PubMed

    Yang, D H; Su, Z Q; Chen, Y; Chen, Z B; Ding, Z N; Weng, Y Y; Li, J; Li, X; Tong, Q L; Han, Y X; Zhang, X

    2016-03-08

    To assess the predictive value of the albumin to globulin ratio (AGR) in evaluation of disease severity and prognosis in myasthenia gravis patients. A total of 135 myasthenia gravis (MG) patients were enrolled between February 2009 and March 2015. The AGR was detected on the first day of hospitalization and ranked from lowest to highest, and the patients were divided into three equal tertiles according to the AGR values, which were T1 (AGR <1.34), T2 (1.34≤AGR≤1.53) and T3 (AGR>1.53). The Kaplan-Meier curve was used to evaluate the prognostic value of AGR. Cox model analysis was used to evaluate the relevant factors. Multivariate Logistic regression analysis was used to find the predictors of myasthenia crisis during hospitalization. The median length of hospital stay for each tertile was: for the T1 21 days (15-35.5), T2 18 days (14-27.5), and T3 16 days (12-22.5) (P<0.01), and Kaplan-Meier curves showed significant difference among the three groups. In the univariate model, serum albumin, creatinine, AGR and MGFA clinical classification were related to prognosis of myasthenia gravis. At the multivariate Cox regression analysis, the AGR (P<0.001) and MGFA clinical classification (P<0.001) were independent predictive factors of disease severity and prognosis in myasthenia gravis patients. Respectively, the hazard ratio (HR) were 4.655 (95% CI: 2.355-9.202) and 0.596 (95% CI: 0.492-0.723). Multivariate Logistic regression analysis showed the AGR (P<0.001) and MGFA clinical classification were related to myasthenia crisis. The AGR may represent a simple, potentially useful predictive biomarker for evaluating the disease severity and prognosis of patients with myasthenia gravis.

  1. Hepatitis B virus mutation may play a role in hepatocellular carcinoma recurrence: A systematic review and meta-regression analysis.

    PubMed

    Zhou, Hua-ying; Luo, Yue; Chen, Wen-dong; Gong, Guo-zhong

    2015-06-01

    A number of studies have confirmed that antiviral therapy with nucleotide analogs (NAs) can improve the prognosis of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) after curative therapy. However, what factors affected the prognosis of HBV-HCC after removal of the primary tumor and inhibition of HBV replication? A meta-regression analysis was conducted to explore the prognostic factor for this subgroup of patients. MEDLINE, EMBASE, Web of Science, and Cochrane library were searched from January 1995 to February 2014 for clinical trials evaluating the effect of NAs on the prognosis of HBV-HCC after curative therapy. Data were extracted for host, viral, and intervention information. Single-arm meta-analysis was performed to assess overall survival (OS) rates and HCC recurrence. Meta-regression analysis was carried out to explore risk factors for 1-year OS rate and HCC recurrence for HBV-HCC patients after curative therapy and antiviral therapy. Fourteen observational studies with 1284 patients met the inclusion criteria. Influential factors for prognosis of HCC were mainly baseline HBeAg positivity, cirrhotic stage, advanced Tumor-Node-Metastasis (TNM) stage, macrovascular invasion, and antiviral agent type. The 1-year OS rate decreased by more than four times (coefficient -4.45, P<0.001) and the 1-year HCC recurrence increased by more than one time (coefficient 1.20, P=0.003) when lamivudine was chosen for HCC after curative therapy, relative to entecavir for HCC. HBV mutation may play a role in HCC recurrence. Entecavir or tenofovir, a high genetic barrier to resistance, should be recommended for HBV-HCC patients. © 2015 The Authors. Journal of Gastroenterology and Hepatology published by Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  2. Model parameter uncertainty analysis for an annual field-scale P loss model

    NASA Astrophysics Data System (ADS)

    Bolster, Carl H.; Vadas, Peter A.; Boykin, Debbie

    2016-08-01

    Phosphorous (P) fate and transport models are important tools for developing and evaluating conservation practices aimed at reducing P losses from agricultural fields. Because all models are simplifications of complex systems, there will exist an inherent amount of uncertainty associated with their predictions. It is therefore important that efforts be directed at identifying, quantifying, and communicating the different sources of model uncertainties. In this study, we conducted an uncertainty analysis with the Annual P Loss Estimator (APLE) model. Our analysis included calculating parameter uncertainties and confidence and prediction intervals for five internal regression equations in APLE. We also estimated uncertainties of the model input variables based on values reported in the literature. We then predicted P loss for a suite of fields under different management and climatic conditions while accounting for uncertainties in the model parameters and inputs and compared the relative contributions of these two sources of uncertainty to the overall uncertainty associated with predictions of P loss. Both the overall magnitude of the prediction uncertainties and the relative contributions of the two sources of uncertainty varied depending on management practices and field characteristics. This was due to differences in the number of model input variables and the uncertainties in the regression equations associated with each P loss pathway. Inspection of the uncertainties in the five regression equations brought attention to a previously unrecognized limitation with the equation used to partition surface-applied fertilizer P between leaching and runoff losses. As a result, an alternate equation was identified that provided similar predictions with much less uncertainty. Our results demonstrate how a thorough uncertainty and model residual analysis can be used to identify limitations with a model. Such insight can then be used to guide future data collection and model development and evaluation efforts.

  3. Standards for Standardized Logistic Regression Coefficients

    ERIC Educational Resources Information Center

    Menard, Scott

    2011-01-01

    Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…

  4. Beyond Reading Alone: The Relationship Between Aural Literacy And Asthma Management

    PubMed Central

    Rosenfeld, Lindsay; Rudd, Rima; Emmons, Karen M.; Acevedo-García, Dolores; Martin, Laurie; Buka, Stephen

    2010-01-01

    Objectives To examine the relationship between literacy and asthma management with a focus on the oral exchange. Methods Study participants, all of whom reported asthma, were drawn from the New England Family Study (NEFS), an examination of links between education and health. NEFS data included reading, oral (speaking), and aural (listening) literacy measures. An additional survey was conducted with this group of study participants related to asthma issues, particularly asthma management. Data analysis focused on bivariate and multivariable logistic regression. Results In bivariate logistic regression models exploring aural literacy, there was a statistically significant association between those participants with lower aural literacy skills and less successful asthma management (OR:4.37, 95%CI:1.11, 17.32). In multivariable logistic regression analyses, controlling for gender, income, and race in separate models (one-at-a-time), there remained a statistically significant association between those participants with lower aural literacy skills and less successful asthma management. Conclusion Lower aural literacy skills seem to complicate asthma management capabilities. Practice Implications Greater attention to the oral exchange, in particular the listening skills highlighted by aural literacy, as well as other related literacy skills may help us develop strategies for clear communication related to asthma management. PMID:20399060

  5. Linear regression analysis: part 14 of a series on evaluation of scientific publications.

    PubMed

    Schneider, Astrid; Hommel, Gerhard; Blettner, Maria

    2010-11-01

    Regression analysis is an important statistical method for the analysis of medical data. It enables the identification and characterization of relationships among multiple factors. It also enables the identification of prognostically relevant risk factors and the calculation of risk scores for individual prognostication. This article is based on selected textbooks of statistics, a selective review of the literature, and our own experience. After a brief introduction of the uni- and multivariable regression models, illustrative examples are given to explain what the important considerations are before a regression analysis is performed, and how the results should be interpreted. The reader should then be able to judge whether the method has been used correctly and interpret the results appropriately. The performance and interpretation of linear regression analysis are subject to a variety of pitfalls, which are discussed here in detail. The reader is made aware of common errors of interpretation through practical examples. Both the opportunities for applying linear regression analysis and its limitations are presented.

  6. Psychosocial factors influencing smokeless tobacco use by teen-age military dependents.

    PubMed

    Lee, S; Raker, T; Chisick, M C

    1994-02-01

    Using bivariate and logistic regression analysis, we explored psychosocial correlates of smokeless tobacco (SLT) use in a sample of 2,257 teenage military dependents. We built separate regression models for males and females to explain triers and users of SLT. Results show female and male triers share five factors regarding SLT use--parental and peer approval, trying smoking, relatives using SLT, and athletic team membership. Male trial of SLT was additionally associated with race, difficulty in purchasing SLT, relatives who smoke, current smoking, and belief that SLT can cause mouth cancer. Male use of SLT was associated with race, seeing a dentist regularly, SLT counseling by a dentist, parental approval, trying and current smoking, and grade level. In all models, trying smoking was the strongest explanatory variable. Relatives and peers exert considerable influence on SLT use. Few triers or users had received SLT counseling from their dentist despite high dental utilization rates.

  7. A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet.

    PubMed

    Brown, A M

    2001-06-01

    The objective of this present study was to introduce a simple, easily understood method for carrying out non-linear regression analysis based on user input functions. While it is relatively straightforward to fit data with simple functions such as linear or logarithmic functions, fitting data with more complicated non-linear functions is more difficult. Commercial specialist programmes are available that will carry out this analysis, but these programmes are expensive and are not intuitive to learn. An alternative method described here is to use the SOLVER function of the ubiquitous spreadsheet programme Microsoft Excel, which employs an iterative least squares fitting routine to produce the optimal goodness of fit between data and function. The intent of this paper is to lead the reader through an easily understood step-by-step guide to implementing this method, which can be applied to any function in the form y=f(x), and is well suited to fast, reliable analysis of data in all fields of biology.

  8. Using aggregate data to estimate the standard error of a treatment-covariate interaction in an individual patient data meta-analysis.

    PubMed

    Kovalchik, Stephanie A; Cumberland, William G

    2012-05-01

    Subgroup analyses are important to medical research because they shed light on the heterogeneity of treatment effectts. A treatment-covariate interaction in an individual patient data (IPD) meta-analysis is the most reliable means to estimate how a subgroup factor modifies a treatment's effectiveness. However, owing to the challenges in collecting participant data, an approach based on aggregate data might be the only option. In these circumstances, it would be useful to assess the relative efficiency and power loss of a subgroup analysis without patient-level data. We present methods that use aggregate data to estimate the standard error of an IPD meta-analysis' treatment-covariate interaction for regression models of a continuous or dichotomous patient outcome. Numerical studies indicate that the estimators have good accuracy. An application to a previously published meta-regression illustrates the practical utility of the methodology. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Logistic regression analysis of risk factors for postoperative recurrence of spinal tumors and analysis of prognostic factors.

    PubMed

    Zhang, Shanyong; Yang, Lili; Peng, Chuangang; Wu, Minfei

    2018-02-01

    The aim of the present study was to investigate the risk factors for postoperative recurrence of spinal tumors by logistic regression analysis and analysis of prognostic factors. In total, 77 male and 48 female patients with spinal tumor were selected in our hospital from January, 2010 to December, 2015 and divided into the benign (n=76) and malignant groups (n=49). All the patients underwent microsurgical resection of spinal tumors and were reviewed regularly 3 months after operation. The McCormick grading system was used to evaluate the postoperative spinal cord function. Data were subjected to statistical analysis. Of the 125 cases, 63 cases showed improvement after operation, 50 cases were stable, and deterioration was found in 12 cases. The improvement rate of patients with cervical spine tumor, which reached 56.3%, was the highest. Fifty-two cases of sensory disturbance, 34 cases of pain, 30 cases of inability to exercise, 26 cases of ataxia, and 12 cases of sphincter disorders were found after operation. Seventy-two cases (57.6%) underwent total resection, 18 cases (14.4%) received subtotal resection, 23 cases (18.4%) received partial resection, and 12 cases (9.6%) were only treated with biopsy/decompression. Postoperative recurrence was found in 57 cases (45.6%). The mean recurrence time of patients in the malignant group was 27.49±6.09 months, and the mean recurrence time of patients in the benign group was 40.62±4.34. The results were significantly different (P<0.001). Recurrence was found in 18 cases of the benign group and 39 cases of the malignant group, and results were significantly different (P<0.001). Tumor recurrence was shorter in patients with a higher McCormick grade (P<0.001). Recurrence was found in 13 patients with resection and all the patients with partial resection or biopsy/decompression. The results were significantly different (P<0.001). Logistic regression analysis of total resection-related factors showed that total resection should be the preferred treatment for patients with benign tumors, thoracic and lumbosacral tumors, and lower McCormick grade, as well as patients without syringomyelia and intramedullary tumors. Logistic regression analysis of recurrence-related factors revealed that the recurrence rate was relatively higher in patients with malignant, cervical, thoracic and lumbosacral, intramedullary tumors, and higher McCormick grade and patient received partial resection or biopsy. Tumor property, tumor location, McCormick grade, tumor resection, and intramedullary tumors are risk factors for the recurrence of spinal tumors. Clinical assessment of these risk factors may be helpful in selecting appropriate treatment strategies.

  10. Logistic regression analysis of risk factors for postoperative recurrence of spinal tumors and analysis of prognostic factors

    PubMed Central

    Zhang, Shanyong; Yang, Lili; Peng, Chuangang; Wu, Minfei

    2018-01-01

    The aim of the present study was to investigate the risk factors for postoperative recurrence of spinal tumors by logistic regression analysis and analysis of prognostic factors. In total, 77 male and 48 female patients with spinal tumor were selected in our hospital from January, 2010 to December, 2015 and divided into the benign (n=76) and malignant groups (n=49). All the patients underwent microsurgical resection of spinal tumors and were reviewed regularly 3 months after operation. The McCormick grading system was used to evaluate the postoperative spinal cord function. Data were subjected to statistical analysis. Of the 125 cases, 63 cases showed improvement after operation, 50 cases were stable, and deterioration was found in 12 cases. The improvement rate of patients with cervical spine tumor, which reached 56.3%, was the highest. Fifty-two cases of sensory disturbance, 34 cases of pain, 30 cases of inability to exercise, 26 cases of ataxia, and 12 cases of sphincter disorders were found after operation. Seventy-two cases (57.6%) underwent total resection, 18 cases (14.4%) received subtotal resection, 23 cases (18.4%) received partial resection, and 12 cases (9.6%) were only treated with biopsy/decompression. Postoperative recurrence was found in 57 cases (45.6%). The mean recurrence time of patients in the malignant group was 27.49±6.09 months, and the mean recurrence time of patients in the benign group was 40.62±4.34. The results were significantly different (P<0.001). Recurrence was found in 18 cases of the benign group and 39 cases of the malignant group, and results were significantly different (P<0.001). Tumor recurrence was shorter in patients with a higher McCormick grade (P<0.001). Recurrence was found in 13 patients with resection and all the patients with partial resection or biopsy/decompression. The results were significantly different (P<0.001). Logistic regression analysis of total resection-related factors showed that total resection should be the preferred treatment for patients with benign tumors, thoracic and lumbosacral tumors, and lower McCormick grade, as well as patients without syringomyelia and intramedullary tumors. Logistic regression analysis of recurrence-related factors revealed that the recurrence rate was relatively higher in patients with malignant, cervical, thoracic and lumbosacral, intramedullary tumors, and higher McCormick grade and patient received partial resection or biopsy. Tumor property, tumor location, McCormick grade, tumor resection, and intramedullary tumors are risk factors for the recurrence of spinal tumors. Clinical assessment of these risk factors may be helpful in selecting appropriate treatment strategies. PMID:29434866

  11. An improved multiple linear regression and data analysis computer program package

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.

    1972-01-01

    NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.

  12. A Data Analysis Approach to Evaluating Achievement Outcomes of Instruction. Technical Report No. 338. Report from the Project on Conditions of School Learning and Instructional Strategies.

    ERIC Educational Resources Information Center

    Quilling, Mary Rintoul

    The purpose of the present study is to demonstrate the utility of data analysis methodology in evaluative research relating pupil and curriculum variables to pupil achievement. Regression models which account for achievement will result from the application of the methodology to two evaluative problems--one of curriculum comparison and another…

  13. How Bias Reduction Is Affected by Covariate Choice, Unreliability, and Mode of Data Analysis: Results from Two Types of within-Study Comparisons

    ERIC Educational Resources Information Center

    Cook, Thomas D.; Steiner, Peter M.; Pohl, Steffi

    2009-01-01

    This study uses within-study comparisons to assess the relative importance of covariate choice, unreliability in the measurement of these covariates, and whether regression or various forms of propensity score analysis are used to analyze the outcome data. Two of the within-study comparisons are of the four-arm type, and many more are of the…

  14. Reliability analysis of structural ceramic components using a three-parameter Weibull distribution

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Powers, Lynn M.; Starlinger, Alois

    1992-01-01

    Described here are nonlinear regression estimators for the three-Weibull distribution. Issues relating to the bias and invariance associated with these estimators are examined numerically using Monte Carlo simulation methods. The estimators were used to extract parameters from sintered silicon nitride failure data. A reliability analysis was performed on a turbopump blade utilizing the three-parameter Weibull distribution and the estimates from the sintered silicon nitride data.

  15. Role of Surgical Services in Profitability of Hospitals in California: An Analysis of Office of Statewide Health Planning and Development Annual Financial Data.

    PubMed

    Moazzez, Ashkan; de Virgilio, Christian

    2016-10-01

    With constant changes in health-care laws and payment methods, profitability, and financial sustainability of hospitals are of utmost importance. The purpose of this study is to determine the relationship between surgical services and hospital profitability. The Office of Statewide Health Planning and Development annual financial databases for the years 2009 to 2011 were used for this study. The hospitals' characteristics and income statement elements were extracted for statistical analysis using bivariate and multivariate linear regression. A total of 989 financial records of 339 hospitals were included. On bivariate analysis, the number of inpatient and ambulatory operating rooms (ORs), the number of cases done both as inpatient and outpatient in each OR, and the average minutes used in inpatient ORs were significantly related with the net income of the hospital. On multivariate regression analysis, when controlling for hospitals' payer mix and the study year, only the number of inpatient cases done in the inpatient ORs (β = 832, P = 0.037), and the number of ambulatory ORs (β = 1,485, 466, P = 0.001) were significantly related with the net income of the hospital. These findings suggest that hospitals can maximize their profitability by diverting and allocating outpatient surgeries to ambulatory ORs, to allow for more inpatient surgeries.

  16. EMG-Torque Relation in Chronic Stroke: A Novel EMG Complexity Representation With a Linear Electrode Array.

    PubMed

    Zhang, Xu; Wang, Dongqing; Yu, Zaiyang; Chen, Xiang; Li, Sheng; Zhou, Ping

    2017-11-01

    This study examines the electromyogram (EMG)-torque relation for chronic stroke survivors using a novel EMG complexity representation. Ten stroke subjects performed a series of submaximal isometric elbow flexion tasks using their affected and contralateral arms, respectively, while a 20-channel linear electrode array was used to record surface EMG from the biceps brachii muscles. The sample entropy (SampEn) of surface EMG signals was calculated with both global and local tolerance schemes. A regression analysis was performed between SampEn of each channel's surface EMG and elbow flexion torque. It was found that a linear regression can be used to well describe the relation between surface EMG SampEn and the torque. Each channel's root mean square (RMS) amplitude of surface EMG signal in the different torque level was computed to determine the channel with the highest EMG amplitude. The slope of the regression (observed from the channel with the highest EMG amplitude) was smaller on the impaired side than on the nonimpaired side in 8 of the 10 subjects, regardless of the tolerance scheme (global or local) and the range of torques (full or matched range) used for comparison. The surface EMG signals from the channels above the estimated muscle innervation zones demonstrated significantly lower levels of complexity compared with other channels between innervation zones and muscle tendons. The study provides a novel point of view of the EMG-torque relation in the complexity domain, and reveals its alterations post stroke, which are associated with complex neural and muscular changes post stroke. The slope difference between channels with regard to innervation zones also confirms the relevance of electrode position in surface EMG analysis.

  17. [A SAS marco program for batch processing of univariate Cox regression analysis for great database].

    PubMed

    Yang, Rendong; Xiong, Jie; Peng, Yangqin; Peng, Xiaoning; Zeng, Xiaomin

    2015-02-01

    To realize batch processing of univariate Cox regression analysis for great database by SAS marco program. We wrote a SAS macro program, which can filter, integrate, and export P values to Excel by SAS9.2. The program was used for screening survival correlated RNA molecules of ovarian cancer. A SAS marco program could finish the batch processing of univariate Cox regression analysis, the selection and export of the results. The SAS macro program has potential applications in reducing the workload of statistical analysis and providing a basis for batch processing of univariate Cox regression analysis.

  18. Predictors of hospital re-admissions among Hispanics with hepatitis C-related cirrhosis.

    PubMed

    Atla, Pradeep R; Sheikh, Muhammad Y; Gill, Firdose; Kundu, Rabindra; Choudhury, Jayanta

    2016-01-01

    Hospital re-admissions in decompensated cirrhosis are associated with worse patient outcomes. Hispanics have a disproportionately high prevalence of hepatitis C virus (HCV)-related morbidity and mortality. The goal of this study was to evaluate the factors affecting re-admission rates among Hispanics with HCV-related cirrhosis. A total of 292 consecutive HCV-related cirrhosis admissions (Hispanics 189, non-Hispanics 103) from January 2009 to December 2012 were retrospectively reviewed; 132 were cirrhosis-related re-admissions. The statistical analysis was performed using STATA version 11.1. Chi-square/Fisher's exact and Student's t-tests were used to compare categorical and continuous variables, respectively. Multivariate logistic regression analysis was performed to identify predictors for hospital readmissions. Among the 132 cirrhosis-related readmissions, 71% were Hispanics while 29% were non-Hispanics (P=0.035). Hepatic encephalopathy (HE) and esophageal variceal hemorrhage were the most frequent causes of the first and subsequent readmissions. Hispanics with readmissions had a higher Child-Turcotte-Pugh (CTP) class (B and C) and higher model for end-stage liver disease (MELD) scores (≥15), as well as a higher incidence of alcohol use, HE, spontaneous bacterial peritonitis, hepatocellular carcinoma, and varices (P<0.05). The majority of the study patients (81%) had MELD scores <15. Multivariate regression analysis identified alcohol use (OR 2.63; 95%CI 1.1-6.4), HE (OR 5.5; 95%CI 2-15.3), varices (OR 3.2; 95%CI 1.3-8.2), and CTP class (OR 3.3; 95%CI 1.4-8.1) as predictors for readmissions among Hispanics. CTP classes B and C, among other factors, were the major predictors for hospital readmissions in Hispanics with HCV-related cirrhosis. The majority of these readmissions were due to HE and variceal hemorrhage.

  19. Exact Analysis of Squared Cross-Validity Coefficient in Predictive Regression Models

    ERIC Educational Resources Information Center

    Shieh, Gwowen

    2009-01-01

    In regression analysis, the notion of population validity is of theoretical interest for describing the usefulness of the underlying regression model, whereas the presumably more important concept of population cross-validity represents the predictive effectiveness for the regression equation in future research. It appears that the inference…

  20. Selective principal component regression analysis of fluorescence hyperspectral image to assess aflatoxin contamination in corn

    USDA-ARS?s Scientific Manuscript database

    Selective principal component regression analysis (SPCR) uses a subset of the original image bands for principal component transformation and regression. For optimal band selection before the transformation, this paper used genetic algorithms (GA). In this case, the GA process used the regression co...

  1. Increased risk for complications following removal of hardware in patients with liver disease, pilon or pelvic fractures: A regression analysis.

    PubMed

    Brown, Bryan D; Steinert, Justin N; Stelzer, John W; Yoon, Richard S; Langford, Joshua R; Koval, Kenneth J

    2017-12-01

    Indications for removing orthopedic hardware on an elective basis varies widely. Although viewed as a relatively benign procedure, there is a lack of data regarding overall complication rates after fracture fixation. The purpose of this study is to determine the overall short-term complication rate for elective removal of orthopedic hardware after fracture fixation and to identify associated risk factors. Adult patients indicated for elective hardware removal after fracture fixation between July 2012 and July 2016 were screened for inclusion. Inclusion criteria included patients with hardware related pain and/or impaired cosmesis with complete medical and radiographic records and at least 3-month follow-up. Exclusion criteria were those patients indicated for hardware removal for a diagnosis of malunion, non-union, and/or infection. Data collected included patient age, gender, anatomic location of hardware removed, body mass index, ASA score, and comorbidities. Overall complications, as well as complications requiring revision surgery were recorded. Statistical analysis was performed with SPSS 20.0, and included univariate and multivariate regression analysis. 391 patients (418 procedures) were included for analysis. Overall complication rates were 8.4%, with a 3.6% revision surgery rate. Univariate regression analysis revealed that patients who had liver disease were at significant risk for complication (p=0.001) and revision surgery (p=0.036). Multivariate regression analysis showed that: 1) patients who had liver disease were at significant risk of overall complication (p=0.001) and revision surgery (p=0.039); 2) Removal of hardware following fixation for a pilon had significantly increased risk for complication (p=0.012), but not revision surgery (p=0.43); and 3) Removal of hardware for pelvic fixation had a significantly increased risk for revision surgery (p=0.017). Removal of hardware following fracture fixation is not a risk-free procedure. Patients with liver disease are at increased risk for complications, including increased risk for needing revision surgery following hardware removal. Patients having hardware removed following fixation for pilon fractures also are at increased risk for complication, although they may not require a return trip to the operating room. Finally, removal of pelvic hardware is associated with a higher return to the operating room. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Spatially resolved regression analysis of pre-treatment FDG, FLT and Cu-ATSM PET from post-treatment FDG PET: an exploratory study

    PubMed Central

    Bowen, Stephen R; Chappell, Richard J; Bentzen, Søren M; Deveau, Michael A; Forrest, Lisa J; Jeraj, Robert

    2012-01-01

    Purpose To quantify associations between pre-radiotherapy and post-radiotherapy PET parameters via spatially resolved regression. Materials and methods Ten canine sinonasal cancer patients underwent PET/CT scans of [18F]FDG (FDGpre), [18F]FLT (FLTpre), and [61Cu]Cu-ATSM (Cu-ATSMpre). Following radiotherapy regimens of 50 Gy in 10 fractions, veterinary patients underwent FDG PET/CT scans at three months (FDGpost). Regression of standardized uptake values in baseline FDGpre, FLTpre and Cu-ATSMpre tumour voxels to those in FDGpost images was performed for linear, log-linear, generalized-linear and mixed-fit linear models. Goodness-of-fit in regression coefficients was assessed by R2. Hypothesis testing of coefficients over the patient population was performed. Results Multivariate linear model fits of FDGpre to FDGpost were significantly positive over the population (FDGpost~0.17 FDGpre, p=0.03), and classified slopes of RECIST non-responders and responders to be different (0.37 vs. 0.07, p=0.01). Generalized-linear model fits related FDGpre to FDGpost by a linear power law (FDGpost~FDGpre0.93, p<0.001). Univariate mixture model fits of FDGpre improved R2 from 0.17 to 0.52. Neither baseline FLT PET nor Cu-ATSM PET uptake contributed statistically significant multivariate regression coefficients. Conclusions Spatially resolved regression analysis indicates that pre-treatment FDG PET uptake is most strongly associated with three-month post-treatment FDG PET uptake in this patient population, though associations are histopathology-dependent. PMID:22682748

  3. Adolescent religiosity and attitudes to HIV and AIDS in Ghana.

    PubMed

    Amoako-Agyeman, Kofi Nyame

    2012-11-01

    This study investigated the relationships between adolescent religiosity and attitudes to HIV/AIDS based on two major techniques of analysis, factor and regression analysis towards informing preventive school education strategies. Using cross-sectional data of 448 adolescents in junior high school, the study incorporated survey in a self-administered questionnaire and sought to identify underlying factors that affect pupils' responses, delineate the pattern of relationships between variables and select models which best explain and predict relationships among variables. A seven-factor solution described the 'attitude' construct including abstinence and protection, and six for 'religiosity'. The results showed relatively high levels of religiosity and a preference for private religiosity as opposed to organisational religiosity. The regression analysis produced significant relationships between factors of attitudes to HIV/AIDS and of religiosity. Adolescent with very high private religiosity are more likely to abstain from sex but less likely to use condoms once they initiate: protection is inversely related to religiosity. The findings suggest that religious-based adolescent interventions should focus on intrinsic religiosity. Additionally, increasing HIV prevention information and incorporating culturally relevant and socially acceptable values might lend support to improved adolescent school-based HIV/AIDS prevention programmes.

  4. A Neighborhood Analysis of Public Library Use in New York City

    ERIC Educational Resources Information Center

    Japzon, Andrea C.; Gong, Hongmian

    2005-01-01

    The use of 200 public libraries in New York City was analyzed according to their neighborhood characteristics. In addition to demographic, economic, and cultural factors traditionally considered, the social and spatial interactions within a neighborhood were related to public library use. Correlation and regression analyses were implemented for…

  5. Stress, Self-Esteem, and Suicidal Ideation in Late Adolescents

    ERIC Educational Resources Information Center

    Wilburn, Victor R.; Smith, Delores E.

    2005-01-01

    The relationships among stress, self-esteem, and suicidal ideation in late adolescents were examined in a group of college students. Multiple regression analysis indicated that both stress and self-esteem were significantly related to suicidal ideation; low self-esteem and stressful life events significantly predicted suicidal ideation. The…

  6. Personality and Physical Correlates of Bulimic Symptomatology among Mexican American Female College Students.

    ERIC Educational Resources Information Center

    Lester, Regan; Petrie, Trent A.

    1995-01-01

    Examined the relationship of personality and physical variables to bulimic symptoms. Hierarchical regression analysis of a sample of Mexican American female students revealed that body mass and endorsement of United States societal values concerning attractiveness were related positively to bulimic symptomatology; age, body satisfaction, and…

  7. Factors Influencing Willingness to Move: An Examination of Nonmetropolitan Residents.

    ERIC Educational Resources Information Center

    Swanson, Louis E., Jr.; And Others

    1979-01-01

    Examining relationships between social restraints and economic incentives on individuals' willingness to move, special attention was given to labor force participation relative to social factors. Regression Analysis found age and community tenure correlated negatively with willingness to move; people who were employed or not yet retired showed…

  8. A Model of Reading Comprehension in Chinese Elementary School Children

    ERIC Educational Resources Information Center

    Yeung, Pui-sze; Ho, Connie Suk-han; Chan, David Wai-ock; Chung, Kevin Kien-hoa; Wong, Yau-kai

    2013-01-01

    The relationships of reading-related skills (rapid naming, morphological awareness, syntactic skills, discourse skills, and verbal working memory) and word reading to reading comprehension were examined among 248 Chinese fourth graders in Hong Kong. Multiple regression analysis results showed that syntactic skills (word order knowledge,…

  9. Religiosity and Authoritarianism as Predictors of Attitude toward the Disabled: A Regression Analysis.

    ERIC Educational Resources Information Center

    Tunick, Roy H.; And Others

    1979-01-01

    This study identifies predictors and correlates of attitudes toward the disabled. Authoritarianism, church attendance, religious orthodoxy, age, and education were significantly related to these attitudes of people in a Rocky Mountain Community. Significant predictors of the criterion were authoritarianism, religiosity, and age. Recommendations…

  10. First-Year College Students' Strengths Awareness and Perceived Leadership Development

    ERIC Educational Resources Information Center

    Soria, Krista M.; Roberts, Julia E.; Reinhard, Alex P.

    2015-01-01

    The purpose of this study was to examine whether first-year college students' strengths awareness is associated with their perceived leadership development. The institution in this study offered all first-year students the Clifton StrengthsFinder assessment and strengths-related programming. The results of hierarchical regression analysis of two…

  11. The Impact of Consumer Credentialism on Employee and Entrepreneur Returns to Higher Education.

    ERIC Educational Resources Information Center

    Tucker, Irvin B., III

    1987-01-01

    Examines the relative importance of education credentials in consumer perceptions of self-employed business people. Using 1980 national cross-sectional data on goods- and service-producing occupations, the regression analysis shows that highly educated entrepreneurs are not influenced by consumer credentialism. Includes 17 references. (MLH)

  12. A Logistic Regression Analysis of Score Sending and College Matching among High School Students

    ERIC Educational Resources Information Center

    Oates, Krystle S.

    2015-01-01

    College decisions are often the result of a variety of influences related to student background characteristics, academic characteristics, college preferences and college aspirations. College counselors recommend that students choose a variety of schools, especially schools where the general student body matches the academic achievement of…

  13. Predicting Adaptive Functioning of Mentally Retarded Persons in Community Settings.

    ERIC Educational Resources Information Center

    Hull, John T.; Thompson, Joy C.

    1980-01-01

    The impact of a variety of individual, residential, and community variables on adaptive functioning of 369 retarded persons (18 to 73 years old) was examined using a multiple regression analysis. Individual characteristics (especially IQ) accounted for 21 percent of the variance, while environmental variables, primarily those related to…

  14. Bacterial diversity in saliva and oral health-related conditions: the Hisayama Study

    NASA Astrophysics Data System (ADS)

    Takeshita, Toru; Kageyama, Shinya; Furuta, Michiko; Tsuboi, Hidenori; Takeuchi, Kenji; Shibata, Yukie; Shimazaki, Yoshihiro; Akifusa, Sumio; Ninomiya, Toshiharu; Kiyohara, Yutaka; Yamashita, Yoshihisa

    2016-02-01

    This population-based study determined the salivary microbiota composition of 2,343 adult residents of Hisayama town, Japan, using 16S rRNA gene next-generation high-throughput sequencing. Of 550 identified species-level operational taxonomic units (OTUs), 72 were common, in ≥75% of all individuals, as well as in ≥75% of the individuals in the lowest quintile of phylogenetic diversity (PD). These “core” OTUs constituted 90.9 ± 6.1% of each microbiome. The relative abundance profiles of 22 of the core OTUs with mean relative abundances ≥1% were stratified into community type I and community type II by partitioning around medoids clustering. Multiple regression analysis revealed that a lower PD was associated with better conditions for oral health, including a lower plaque index, absence of decayed teeth, less gingival bleeding, shallower periodontal pockets and not smoking, and was also associated with tooth loss. By contrast, multiple Poisson regression analysis demonstrated that community type II, as characterized by a higher ratio of the nine dominant core OTUs, including Neisseria flavescens, was implicated in younger age, lower body mass index, fewer teeth with caries experience, and not smoking. Our large-scale data analyses reveal variation in the salivary microbiome among Japanese adults and oral health-related conditions associated with the salivary microbiome.

  15. Evaluation of the prediction precision capability of partial least squares regression approach for analysis of high alloy steel by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarkar, Arnab; Karki, Vijay; Aggarwal, Suresh K.; Maurya, Gulab S.; Kumar, Rohit; Rai, Awadhesh K.; Mao, Xianglei; Russo, Richard E.

    2015-06-01

    Laser induced breakdown spectroscopy (LIBS) was applied for elemental characterization of high alloy steel using partial least squares regression (PLSR) with an objective to evaluate the analytical performance of this multivariate approach. The optimization of the number of principle components for minimizing error in PLSR algorithm was investigated. The effect of different pre-treatment procedures on the raw spectral data before PLSR analysis was evaluated based on several statistical (standard error of prediction, percentage relative error of prediction etc.) parameters. The pre-treatment with "NORM" parameter gave the optimum statistical results. The analytical performance of PLSR model improved by increasing the number of laser pulses accumulated per spectrum as well as by truncating the spectrum to appropriate wavelength region. It was found that the statistical benefit of truncating the spectrum can also be accomplished by increasing the number of laser pulses per accumulation without spectral truncation. The constituents (Co and Mo) present in hundreds of ppm were determined with relative precision of 4-9% (2σ), whereas the major constituents Cr and Ni (present at a few percent levels) were determined with a relative precision of ~ 2%(2σ).

  16. Independent risk factors of morbidity in penetrating colon injuries.

    PubMed

    Girgin, Sadullah; Gedik, Ercan; Uysal, Ersin; Taçyildiz, Ibrahim Halil

    2009-05-01

    The present study explored the factors effective on colon-related morbidity in patients with penetrating injury of the colon. The medical records of 196 patients were reviewed for variables including age, gender, factor of trauma, time between injury and operation, shock, duration of operation, Penetrating Abdominal Trauma Index (PATI), Injury Severity Score (ISS), site of colon injury, Colon Injury Score, fecal contamination, number of associated intra- and extraabdominal organ injuries, units of transfused blood within the first 24 hours, and type of surgery. In order to determine the independent risk factors, multivariate logistic regression analysis was performed. Gunshot wounds, interval between injury and operation > or =6 hours, shock, duration of the operation > or =6 hours, PATI > or =25, ISS > or =20, Colon Injury Score > or = grade 3, major fecal contamination, number of associated intraabdominal organ injuries >2, number of associated extraabdominal organ injuries >2, multiple blood transfusions, and diversion were significantly associated with morbidity. Multivariate logistic regression analysis showed diversion and transfusion of > or =4 units in the first 24 hours as independent risk factors affecting colon-related morbidity. Diversion and transfusion of > or =4 units in the first 24 hours were determined to be independent risk factors for colon-related morbidity.

  17. Support for smoke-free policies in the Cyprus hospitality industry.

    PubMed

    Lazuras, Lambros; Savva, Christos S; Talias, Michael A; Soteriades, Elpidoforos S

    2015-12-01

    The present study used attitudinal and behavioural indicators to measure support for smoke-free policies among employers and employees in the hospitality industry in Cyprus. A representative sample of 600 participants (95 % response rate) completed anonymous structured questionnaires on demographic variables, smoking status, exposure to second-hand smoke at work and related health beliefs, social norms, and smoke-free policy support. Participants were predominantly males (68.3 %), with a mean age of 40 years (SD = 12.69), and 39.7 % were employers/owners of the hospitality venue. Analysis of variance showed that employers and smokers were less supportive of smoke-free policies, as compared to employees and non-smokers. Linear regression models showed that attitudes towards smoke-free policy were predicted by smoking status, SHS exposure and related health beliefs, and social norm variables. Logistic regression analysis showed that willingness to confront a policy violator was predicted by SHS exposure, perceived prevalence of smoker clients, and smoke-free policy attitudes. SHS exposure and related health beliefs, and normative factors should be targeted by interventions aiming to promote policy support in the hospitality industry in Cyprus.

  18. Gender and literacy: factors related to diagnostic delay and unsuccessful treatment of tuberculosis in the mountainous area of Yemen.

    PubMed

    Date, J; Okita, K

    2005-06-01

    People in the mountainous area of Yemen, having maintained their traditional lifestyle, generally believe that uneducated women are unsuccessful in using modern medical care. Whether this belief applies to tuberculosis (TB) diagnosis and treatment has not been researched in Yemen. To examine how gender and literacy influence TB diagnosis and treatment. Individual interviews and data collection were conducted for 74 smear-positive pulmonary TB patients visiting the National Tuberculosis Institute in Sana'a from December 2001 to March 2002. The treatment outcome for each patient was checked from September 2002 to March 2003. Illiterate patients had a longer diagnostic delay than literate patients (P = 0.006, univariate logistic regression analysis). They also maintained their traditional view of illness, not the illness 'TB'. More females than males completed treatment (P = 0.046, univariate logistic regression analysis). Supervision by male relatives contributed to completion of treatment among female patients. Lack of education does not hinder women from receiving TB diagnosis and treatment. The concept of traditional illness, however, causes a longer diagnostic delay among illiterate patients, and the role of male relatives positively influences treatment outcomes for female patients.

  19. Linear regression metamodeling as a tool to summarize and present simulation model results.

    PubMed

    Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M

    2013-10-01

    Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.

  20. Error minimization algorithm for comparative quantitative PCR analysis: Q-Anal.

    PubMed

    OConnor, William; Runquist, Elizabeth A

    2008-07-01

    Current methods for comparative quantitative polymerase chain reaction (qPCR) analysis, the threshold and extrapolation methods, either make assumptions about PCR efficiency that require an arbitrary threshold selection process or extrapolate to estimate relative levels of messenger RNA (mRNA) transcripts. Here we describe an algorithm, Q-Anal, that blends elements from current methods to by-pass assumptions regarding PCR efficiency and improve the threshold selection process to minimize error in comparative qPCR analysis. This algorithm uses iterative linear regression to identify the exponential phase for both target and reference amplicons and then selects, by minimizing linear regression error, a fluorescence threshold where efficiencies for both amplicons have been defined. From this defined fluorescence threshold, cycle time (Ct) and the error for both amplicons are calculated and used to determine the expression ratio. Ratios in complementary DNA (cDNA) dilution assays from qPCR data were analyzed by the Q-Anal method and compared with the threshold method and an extrapolation method. Dilution ratios determined by the Q-Anal and threshold methods were 86 to 118% of the expected cDNA ratios, but relative errors for the Q-Anal method were 4 to 10% in comparison with 4 to 34% for the threshold method. In contrast, ratios determined by an extrapolation method were 32 to 242% of the expected cDNA ratios, with relative errors of 67 to 193%. Q-Anal will be a valuable and quick method for minimizing error in comparative qPCR analysis.

  1. Dietary consumption patterns and laryngeal cancer risk.

    PubMed

    Vlastarakos, Petros V; Vassileiou, Andrianna; Delicha, Evie; Kikidis, Dimitrios; Protopapas, Dimosthenis; Nikolopoulos, Thomas P

    2016-06-01

    We conducted a case-control study to investigate the effect of diet on laryngeal carcinogenesis. Our study population was made up of 140 participants-70 patients with laryngeal cancer (LC) and 70 controls with a non-neoplastic condition that was unrelated to diet, smoking, or alcohol. A food-frequency questionnaire determined the mean consumption of 113 different items during the 3 years prior to symptom onset. Total energy intake and cooking mode were also noted. The relative risk, odds ratio (OR), and 95% confidence interval (CI) were estimated by multiple logistic regression analysis. We found that the total energy intake was significantly higher in the LC group (p < 0.001), and that the difference remained statistically significant after logistic regression analysis (p < 0.001; OR: 118.70). Notably, meat consumption was higher in the LC group (p < 0.001), and the difference remained significant after logistic regression analysis (p = 0.029; OR: 1.16). LC patients also consumed significantly more fried food (p = 0.036); this difference also remained significant in the logistic regression model (p = 0.026; OR: 5.45). The LC group also consumed significantly more seafood (p = 0.012); the difference persisted after logistic regression analysis (p = 0.009; OR: 2.48), with the consumption of shrimp proving detrimental (p = 0.049; OR: 2.18). Finally, the intake of zinc was significantly higher in the LC group before and after logistic regression analysis (p = 0.034 and p = 0.011; OR: 30.15, respectively). Cereal consumption (including pastas) was also higher among the LC patients (p = 0.043), with logistic regression analysis showing that their negative effect was possibly associated with the sauces and dressings that traditionally accompany pasta dishes (p = 0.006; OR: 4.78). Conversely, a higher consumption of dairy products was found in controls (p < 0.05); logistic regression analysis showed that calcium appeared to be protective at the micronutrient level (p < 0.001; OR: 0.27). We found no difference in the overall consumption of fruits and vegetables between the LC patients and controls; however, the LC patients did have a greater consumption of cooked tomatoes and cooked root vegetables (p = 0.039 for both), and the controls had more consumption of leeks (p = 0.042) and, among controls younger than 65 years, cooked beans (p = 0.037). Lemon (p = 0.037), squeezed fruit juice (p = 0.032), and watermelon (p = 0.018) were also more frequently consumed by the controls. Other differences at the micronutrient level included greater consumption by the LC patients of retinol (p = 0.044), polyunsaturated fats (p = 0.041), and linoleic acid (p = 0.008); LC patients younger than 65 years also had greater intake of riboflavin (p = 0.045). We conclude that the differences in dietary consumption patterns between LC patients and controls indicate a possible role for lifestyle modifications involving nutritional factors as a means of decreasing the risk of laryngeal cancer.

  2. Time series regression-based pairs trading in the Korean equities market

    NASA Astrophysics Data System (ADS)

    Kim, Saejoon; Heo, Jun

    2017-07-01

    Pairs trading is an instance of statistical arbitrage that relies on heavy quantitative data analysis to profit by capitalising low-risk trading opportunities provided by anomalies of related assets. A key element in pairs trading is the rule by which open and close trading triggers are defined. This paper investigates the use of time series regression to define the rule which has previously been identified with fixed threshold-based approaches. Empirical results indicate that our approach may yield significantly increased excess returns compared to ones obtained by previous approaches on large capitalisation stocks in the Korean equities market.

  3. The association of health-related fitness with indicators of academic performance in Texas schools.

    PubMed

    Welk, Gregory J; Jackson, Allen W; Morrow, James R; Haskell, William H; Meredith, Marilu D; Cooper, Kenneth H

    2010-09-01

    This study examined the associations between indicators of health-related physical fitness (cardiovascular fitness and body mass index) and academic performance (Texas Assessment of Knowledge and Skills). Partial correlations were generally stronger for cardiovascular fitness than body mass index and consistently stronger in the middle school grades. Mixed-model regression analyses revealed modest associations between fitness and academic achievement after controlling for potentially confounding variables. The effects of fitness on academic achievement were positive but small. A separate logistic regression analysis indicated that higher fitness rates increased the odds of schools achieving exemplary/recognized school status within the state. School fitness attainment is an indicator of higher performing schools. Direction of causality cannot be inferred due to the cross-sectional nature of the data.

  4. Estimation of streamflow for selected sites on the Carson and Truckee rivers in California and Nevada, 1944-80

    USGS Publications Warehouse

    Blodgett, J.C.; Oltmann, R.N.; Poeschel, K.R.

    1984-01-01

    Daily mean and monthly discharges were estimated for 10 sites on the Carson and Truckee Rivers for periods of incomplete records and for tributary sites affected by reservoir regulation. On the basis of the hydrologic characteristics, stream-flow data for a water year were grouped by month or season for subsequent regression analysis. In most cases, simple linear regressions adequately defined a relation of streamflow between gaging stations, but in some instances a nonlinear relation for several months of the water year was derived. Statistical data are presented to indicate the reliability of the estimated streamflow data. Records of discharges including historical and estimated data for the gaging stations for the water years 1944-80 are presented. (USGS)

  5. Novel Index (Hepatic Receptor: IHR) to Evaluate Hepatic Functional Reserve Using (99m)Tc-GSA Scintigraphy.

    PubMed

    Hasegawa, Daisuke; Onishi, Hideo; Matsutomo, Norikazu

    2016-02-01

    This study aimed to evaluate the novel index of hepatic receptor (IHR) on the regression analysis derived from time activity curve of the liver for hepatic functional reserve. Sixty patients had undergone (99m)Tc-galactosyl serum albumin ((99m)Tc-GSA) scintigraphy in the retrospective clinical study. Time activity curves for liver were obtained by region of interest (ROI) on the whole liver. A novel hepatic functional predictor was calculated with multiple regression analysis of time activity curves. In the multiple regression function, the objective variables were the indocyanine green (ICG) retention rate at 15 min, and the explanatory variables were the liver counts in 3-min intervals until end from beginning. Then, this result was defined by IHR, and we analyzed the correlation between IHR and ICG, uptake ratio of the heart at 15 minutes to that at 3 minutes (HH15), uptake ratio of the liver to the liver plus heart at 15 minutes (LHL15), and index of convexity (IOC). Regression function of IHR was derived as follows: IHR=0.025×L(6)-0.052×L(12)+0.027×L(27). The multiple regression analysis indicated that liver counts at 6 min, 12 min, and 27 min were significantly related to objective variables. The correlation coefficient between IHR and ICG was 0.774, and the correlation coefficient between ICG and conventional indices (HH15, LHL15, and IOC) were 0.837, 0.773, and 0.793, respectively. IHR had good correlation with HH15, LHL15, and IOC. The finding results suggested that IHR would provide clinical benefit for hepatic functional assessment in the (99m)Tc-GSA scintigraphy.

  6. Sleep disorder risk factors among student athletes.

    PubMed

    Monma, Takafumi; Ando, Akira; Asanuma, Tohru; Yoshitake, Yutaka; Yoshida, Goichiro; Miyazawa, Taiki; Ebine, Naoyuki; Takeda, Satoko; Omi, Naomi; Satoh, Makoto; Tokuyama, Kumpei; Takeda, Fumi

    2018-04-01

    To clarify sleep disorder risk factors among student athletes, this study examined the relationship between lifestyle habits, competition activities, psychological distress, and sleep disorders. Student athletes (N = 906; male: 70.1%; average age: 19.1 ± 0.8 years) in five university sports departments from four Japanese regions were targeted for analysis. Survey items were attributes (age, gender, and body mass index), sleep disorders (recorded through the Pittsburgh Sleep Quality Index), lifestyle habits (bedtime, wake-up time, smoking, drinking alcohol, meals, part-time jobs, and use of electronics after lights out), competition activities (activity contents and competition stressors), and psychological distress (recorded through the K6 scale). The relation between lifestyle habits, competition activities, psychological distress, and sleep disorders was explored using logistic regression analysis. Results of multivariate logistic regression analysis with attributes as adjustment variables showed that "bedtime," "wake-up time," "psychological distress," "part-time jobs," "smartphone/cellphone use after lights out," "morning practices," and "motivation loss stressors," were risk factors that were independently related to sleep disorders. Sleep disorders among student athletes are related to lifestyle habits such as late bedtime, early wake-up time, late night part-time jobs, and use of smartphones/cellphones after lights out; psychological distress; and competition activities such as morning practices and motivation loss stressors related to competition. Therefore, this study suggests the importance of improving these lifestyle habits, mental health, and competition activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A Quantile Regression Approach to Understanding the Relations Between Morphological Awareness, Vocabulary, and Reading Comprehension in Adult Basic Education Students

    PubMed Central

    Tighe, Elizabeth L.; Schatschneider, Christopher

    2015-01-01

    The purpose of this study was to investigate the joint and unique contributions of morphological awareness and vocabulary knowledge at five reading comprehension levels in Adult Basic Education (ABE) students. We introduce the statistical technique of multiple quantile regression, which enabled us to assess the predictive utility of morphological awareness and vocabulary knowledge at multiple points (quantiles) along the continuous distribution of reading comprehension. To demonstrate the efficacy of our multiple quantile regression analysis, we compared and contrasted our results with a traditional multiple regression analytic approach. Our results indicated that morphological awareness and vocabulary knowledge accounted for a large portion of the variance (82-95%) in reading comprehension skills across all quantiles. Morphological awareness exhibited the greatest unique predictive ability at lower levels of reading comprehension whereas vocabulary knowledge exhibited the greatest unique predictive ability at higher levels of reading comprehension. These results indicate the utility of using multiple quantile regression to assess trajectories of component skills across multiple levels of reading comprehension. The implications of our findings for ABE programs are discussed. PMID:25351773

  8. Multiple regression analysis in modelling of carbon dioxide emissions by energy consumption use in Malaysia

    NASA Astrophysics Data System (ADS)

    Keat, Sim Chong; Chun, Beh Boon; San, Lim Hwee; Jafri, Mohd Zubir Mat

    2015-04-01

    Climate change due to carbon dioxide (CO2) emissions is one of the most complex challenges threatening our planet. This issue considered as a great and international concern that primary attributed from different fossil fuels. In this paper, regression model is used for analyzing the causal relationship among CO2 emissions based on the energy consumption in Malaysia using time series data for the period of 1980-2010. The equations were developed using regression model based on the eight major sources that contribute to the CO2 emissions such as non energy, Liquefied Petroleum Gas (LPG), diesel, kerosene, refinery gas, Aviation Turbine Fuel (ATF) and Aviation Gasoline (AV Gas), fuel oil and motor petrol. The related data partly used for predict the regression model (1980-2000) and partly used for validate the regression model (2001-2010). The results of the prediction model with the measured data showed a high correlation coefficient (R2=0.9544), indicating the model's accuracy and efficiency. These results are accurate and can be used in early warning of the population to comply with air quality standards.

  9. Meta-regression approximations to reduce publication selection bias.

    PubMed

    Stanley, T D; Doucouliagos, Hristos

    2014-03-01

    Publication selection bias is a serious challenge to the integrity of all empirical sciences. We derive meta-regression approximations to reduce this bias. Our approach employs Taylor polynomial approximations to the conditional mean of a truncated distribution. A quadratic approximation without a linear term, precision-effect estimate with standard error (PEESE), is shown to have the smallest bias and mean squared error in most cases and to outperform conventional meta-analysis estimators, often by a great deal. Monte Carlo simulations also demonstrate how a new hybrid estimator that conditionally combines PEESE and the Egger regression intercept can provide a practical solution to publication selection bias. PEESE is easily expanded to accommodate systematic heterogeneity along with complex and differential publication selection bias that is related to moderator variables. By providing an intuitive reason for these approximations, we can also explain why the Egger regression works so well and when it does not. These meta-regression methods are applied to several policy-relevant areas of research including antidepressant effectiveness, the value of a statistical life, the minimum wage, and nicotine replacement therapy. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Development of a User Interface for a Regression Analysis Software Tool

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert Manfred; Volden, Thomas R.

    2010-01-01

    An easy-to -use user interface was implemented in a highly automated regression analysis tool. The user interface was developed from the start to run on computers that use the Windows, Macintosh, Linux, or UNIX operating system. Many user interface features were specifically designed such that a novice or inexperienced user can apply the regression analysis tool with confidence. Therefore, the user interface s design minimizes interactive input from the user. In addition, reasonable default combinations are assigned to those analysis settings that influence the outcome of the regression analysis. These default combinations will lead to a successful regression analysis result for most experimental data sets. The user interface comes in two versions. The text user interface version is used for the ongoing development of the regression analysis tool. The official release of the regression analysis tool, on the other hand, has a graphical user interface that is more efficient to use. This graphical user interface displays all input file names, output file names, and analysis settings for a specific software application mode on a single screen which makes it easier to generate reliable analysis results and to perform input parameter studies. An object-oriented approach was used for the development of the graphical user interface. This choice keeps future software maintenance costs to a reasonable limit. Examples of both the text user interface and graphical user interface are discussed in order to illustrate the user interface s overall design approach.

  11. Regression Analysis and the Sociological Imagination

    ERIC Educational Resources Information Center

    De Maio, Fernando

    2014-01-01

    Regression analysis is an important aspect of most introductory statistics courses in sociology but is often presented in contexts divorced from the central concerns that bring students into the discipline. Consequently, we present five lesson ideas that emerge from a regression analysis of income inequality and mortality in the USA and Canada.

  12. Gambling disorder-related illegal acts: Regression model of associated factors

    PubMed Central

    Gorsane, Mohamed Ali; Reynaud, Michel; Vénisse, Jean-Luc; Legauffre, Cindy; Valleur, Marc; Magalon, David; Fatséas, Mélina; Chéreau-Boudet, Isabelle; Guilleux, Alice; JEU Group; Challet-Bouju, Gaëlle; Grall-Bronnec, Marie

    2017-01-01

    Background and aims Gambling disorder-related illegal acts (GDRIA) are often crucial events for gamblers and/or their entourage. This study was designed to determine the predictive factors of GDRIA. Methods Participants were 372 gamblers reporting at least three DSM-IV-TR (American Psychiatric Association, 2000) criteria. They were assessed on the basis of sociodemographic characteristics, gambling-related characteristics, their personality profile, and psychiatric comorbidities. A multiple logistic regression was performed to identify the relevant predictors of GDRIA and their relative contribution to the prediction of the presence of GDRIA. Results Multivariate analysis revealed a higher South Oaks Gambling Scale score, comorbid addictive disorders, and a lower level of income as GDRIA predictors. Discussion and conclusion An original finding of this study was that the comorbid addictive disorder effect might be mediated by a disinhibiting effect of stimulant substances on GDRIA. Further studies are necessary to replicate these results, especially in a longitudinal design, and to explore specific therapeutic interventions. PMID:28198636

  13. Gambling disorder-related illegal acts: Regression model of associated factors.

    PubMed

    Gorsane, Mohamed Ali; Reynaud, Michel; Vénisse, Jean-Luc; Legauffre, Cindy; Valleur, Marc; Magalon, David; Fatséas, Mélina; Chéreau-Boudet, Isabelle; Guilleux, Alice; Challet-Bouju, Gaëlle; Grall-Bronnec, Marie

    2017-03-01

    Background and aims Gambling disorder-related illegal acts (GDRIA) are often crucial events for gamblers and/or their entourage. This study was designed to determine the predictive factors of GDRIA. Methods Participants were 372 gamblers reporting at least three DSM-IV-TR (American Psychiatric Association, 2000) criteria. They were assessed on the basis of sociodemographic characteristics, gambling-related characteristics, their personality profile, and psychiatric comorbidities. A multiple logistic regression was performed to identify the relevant predictors of GDRIA and their relative contribution to the prediction of the presence of GDRIA. Results Multivariate analysis revealed a higher South Oaks Gambling Scale score, comorbid addictive disorders, and a lower level of income as GDRIA predictors. Discussion and conclusion An original finding of this study was that the comorbid addictive disorder effect might be mediated by a disinhibiting effect of stimulant substances on GDRIA. Further studies are necessary to replicate these results, especially in a longitudinal design, and to explore specific therapeutic interventions.

  14. Further comments on sensitivities, parameter estimation, and sampling design in one-dimensional analysis of solute transport in porous media

    USGS Publications Warehouse

    Knopman, Debra S.; Voss, Clifford I.

    1988-01-01

    Sensitivities of solute concentration to parameters associated with first-order chemical decay, boundary conditions, initial conditions, and multilayer transport are examined in one-dimensional analytical models of transient solute transport in porous media. A sensitivity is a change in solute concentration resulting from a change in a model parameter. Sensitivity analysis is important because minimum information required in regression on chemical data for the estimation of model parameters by regression is expressed in terms of sensitivities. Nonlinear regression models of solute transport were tested on sets of noiseless observations from known models that exceeded the minimum sensitivity information requirements. Results demonstrate that the regression models consistently converged to the correct parameters when the initial sets of parameter values substantially deviated from the correct parameters. On the basis of the sensitivity analysis, several statements may be made about design of sampling for parameter estimation for the models examined: (1) estimation of parameters associated with solute transport in the individual layers of a multilayer system is possible even when solute concentrations in the individual layers are mixed in an observation well; (2) when estimating parameters in a decaying upstream boundary condition, observations are best made late in the passage of the front near a time chosen by adding the inverse of an hypothesized value of the source decay parameter to the estimated mean travel time at a given downstream location; (3) estimation of a first-order chemical decay parameter requires observations to be made late in the passage of the front, preferably near a location corresponding to a travel time of √2 times the half-life of the solute; and (4) estimation of a parameter relating to spatial variability in an initial condition requires observations to be made early in time relative to passage of the solute front.

  15. Association between Daily Hospital Outpatient Visits for Accidents and Daily Ambient Air Temperatures in an Industrial City.

    PubMed

    Chau, Tang-Tat; Wang, Kuo-Ying

    2016-01-01

    An accident is an unwanted hazard to a person. However, accidents occur. In this work, we search for correlations between daily accident rates and environmental factors. To study daily hospital outpatients who were admitted for accidents during a 5-year period, 2007-2011, we analyzed data regarding 168,366 outpatients using univariate regression models; we also used multivariable regression models to account for confounding factors. Our analysis indicates that the number of male outpatients admitted for accidents was approximately 1.31 to 1.47 times the number of female outpatients (P < 0.0001). Of the 12 parameters (regarding air pollution and meteorology) considered, only daily temperature exhibited consistent and significant correlations with the daily number of hospital outpatient visits for accidents throughout the 5-year analysis period. The univariate regression models indicate that older people (greater than 66 years old) had the fewest accidents per 1-degree increase in temperature, followed by young people (0-15 years old). Middle-aged people (16-65 years old) were the group of outpatients that were more prone to accidents, with an increase in accident rates of 0.8-1.2 accidents per degree increase in temperature. The multivariable regression models also reveal that the temperature variation was the dominant factor in determining the daily number of outpatient visits for accidents. Our further multivariable model analysis of temperature with respect to air pollution variables show that, through the increases in emissions and concentrations of CO, photochemical O3 production and NO2 loss in the ambient air, increases in vehicular emissions are associated with increases in temperatures. As such, increases in hospital visits for accidents are related to vehicular emissions and usage. This finding is consistent with clinical experience which shows about 60% to 80% of accidents are related to traffic, followed by accidents occurred in work place.

  16. Association between Daily Hospital Outpatient Visits for Accidents and Daily Ambient Air Temperatures in an Industrial City

    PubMed Central

    Chau, Tang-Tat; Wang, Kuo-Ying

    2016-01-01

    An accident is an unwanted hazard to a person. However, accidents occur. In this work, we search for correlations between daily accident rates and environmental factors. To study daily hospital outpatients who were admitted for accidents during a 5-year period, 2007–2011, we analyzed data regarding 168,366 outpatients using univariate regression models; we also used multivariable regression models to account for confounding factors. Our analysis indicates that the number of male outpatients admitted for accidents was approximately 1.31 to 1.47 times the number of female outpatients (P < 0.0001). Of the 12 parameters (regarding air pollution and meteorology) considered, only daily temperature exhibited consistent and significant correlations with the daily number of hospital outpatient visits for accidents throughout the 5-year analysis period. The univariate regression models indicate that older people (greater than 66 years old) had the fewest accidents per 1-degree increase in temperature, followed by young people (0–15 years old). Middle-aged people (16–65 years old) were the group of outpatients that were more prone to accidents, with an increase in accident rates of 0.8–1.2 accidents per degree increase in temperature. The multivariable regression models also reveal that the temperature variation was the dominant factor in determining the daily number of outpatient visits for accidents. Our further multivariable model analysis of temperature with respect to air pollution variables show that, through the increases in emissions and concentrations of CO, photochemical O3 production and NO2 loss in the ambient air, increases in vehicular emissions are associated with increases in temperatures. As such, increases in hospital visits for accidents are related to vehicular emissions and usage. This finding is consistent with clinical experience which shows about 60% to 80% of accidents are related to traffic, followed by accidents occurred in work place. PMID:26815039

  17. Assessment of triglyceride and cholesterol in overweight people based on multiple linear regression and artificial intelligence model.

    PubMed

    Ma, Jing; Yu, Jiong; Hao, Guangshu; Wang, Dan; Sun, Yanni; Lu, Jianxin; Cao, Hongcui; Lin, Feiyan

    2017-02-20

    The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people. A total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC. The results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function (P < 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant (P < 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch. In conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people.

  18. The Management Standards Indicator Tool and evaluation of burnout.

    PubMed

    Ravalier, J M; McVicar, A; Munn-Giddings, C

    2013-03-01

    Psychosocial hazards in the workplace can impact upon employee health. The UK Health and Safety Executive's (HSE) Management Standards Indicator Tool (MSIT) appears to have utility in relation to health impacts but we were unable to find studies relating it to burnout. To explore the utility of the MSIT in evaluating risk of burnout assessed by the Maslach Burnout Inventory-General Survey (MBI-GS). This was a cross-sectional survey of 128 borough council employees. MSIT data were analysed according to MSIT and MBI-GS threshold scores and by using multivariate linear regression with MBI-GS factors as dependent variables. MSIT factor scores were gradated according to categories of risk of burnout according to published MBI-GS thresholds, and identified priority workplace concerns as demands, relationships, role and change. These factors also featured as significant independent variables, with control, in outcomes of the regression analysis. Exhaustion was associated with demands and control (adjusted R (2) = 0.331); cynicism was associated with change, role and demands (adjusted R (2) =0.429); and professional efficacy was associated with managerial support, role, control and demands (adjusted R (2) = 0.413). MSIT analysis generally has congruence with MBI-GS assessment of burnout. The identification of control within regression models but not as a priority concern in the MSIT analysis could suggest an issue of the setting of the MSIT thresholds for this factor, but verification requires a much larger study. Incorporation of relationship, role and change into the MSIT, missing from other conventional tools, appeared to add to its validity.

  19. On Becoming Trauma-Informed: Role of the Adverse Childhood Experiences Survey in Tertiary Child and Adolescent Mental Health Services and the Association with Standard Measures of Impairment and Severity.

    PubMed

    Rahman, Abdul; Perri, Andrea; Deegan, Avril; Kuntz, Jennifer; Cawthorpe, David

    2018-01-01

    There is a movement toward trauma-informed, trauma-focused psychiatric treatment. To examine Adverse Childhood Experiences (ACE) survey items by sex and by total scores by sex vs clinical measures of impairment to examine the clinical utility of the ACE survey as an index of trauma in a child and adolescent mental health care setting. Descriptive, polychoric factor analysis and regression analyses were employed to analyze cross-sectional ACE surveys (N = 2833) and registration-linked data using past admissions (N = 10,400) collected from November 2016 to March 2017 related to clinical data (28 independent variables), taking into account multicollinearity. Distinct ACE items emerged for males, females, and those with self-identified sex and for ACE total scores in regression analysis. In hierarchical regression analysis, the final models consisting of standard clinical measures and demographic and system variables (eg, repeated admissions) were associated with substantial ACE total score variance for females (44%) and males (38%). Inadequate sample size foreclosed on developing a reduced multivariable model for the self-identified sex group. The ACE scores relate to independent clinical measures and system and demographic variables. There are implications for clinical practice. For example, a child presenting with anxiety and a high ACE score likely requires treatment that is different from a child presenting with anxiety and an ACE score of zero. The ACE survey score is an important index of presenting clinical status that guides patient care planning and intervention in the progress toward a trauma-focused system of care.

  20. Patient casemix classification for medicare psychiatric prospective payment.

    PubMed

    Drozd, Edward M; Cromwell, Jerry; Gage, Barbara; Maier, Jan; Greenwald, Leslie M; Goldman, Howard H

    2006-04-01

    For a proposed Medicare prospective payment system for inpatient psychiatric facility treatment, the authors developed a casemix classification to capture differences in patients' real daily resource use. Primary data on patient characteristics and daily time spent in various activities were collected in a survey of 696 patients from 40 inpatient psychiatric facilities. Survey data were combined with Medicare claims data to estimate intensity-adjusted daily cost. Classification and Regression Trees (CART) analysis of average daily routine and ancillary costs yielded several hierarchical classification groupings. Regression analysis was used to control for facility and day-of-stay effects in order to compare hierarchical models with models based on the recently proposed payment system of the Centers for Medicare & Medicaid Services. CART analysis identified a small set of patient characteristics strongly associated with higher daily costs, including age, psychiatric diagnosis, deficits in daily living activities, and detox or ECT use. A parsimonious, 16-group, fully interactive model that used five major DSM-IV categories and stratified by age, illness severity, deficits in daily living activities, dangerousness, and use of ECT explained 40% (out of a possible 76%) of daily cost variation not attributable to idiosyncratic daily changes within patients. A noninteractive model based on diagnosis-related groups, age, and medical comorbidity had explanatory power of only 32%. A regression model with 16 casemix groups restricted to using "appropriate" payment variables (i.e., those with clinical face validity and low administrative burden that are easily validated and provide proper care incentives) produced more efficient and equitable payments than did a noninteractive system based on diagnosis-related groups.

  1. A regional classification scheme for estimating reference water quality in streams using land-use-adjusted spatial regression-tree analysis

    USGS Publications Warehouse

    Robertson, Dale M.; Saad, D.A.; Heisey, D.M.

    2006-01-01

    Various approaches are used to subdivide large areas into regions containing streams that have similar reference or background water quality and that respond similarly to different factors. For many applications, such as establishing reference conditions, it is preferable to use physical characteristics that are not affected by human activities to delineate these regions. However, most approaches, such as ecoregion classifications, rely on land use to delineate regions or have difficulties compensating for the effects of land use. Land use not only directly affects water quality, but it is often correlated with the factors used to define the regions. In this article, we describe modifications to SPARTA (spatial regression-tree analysis), a relatively new approach applied to water-quality and environmental characteristic data to delineate zones with similar factors affecting water quality. In this modified approach, land-use-adjusted (residualized) water quality and environmental characteristics are computed for each site. Regression-tree analysis is applied to the residualized data to determine the most statistically important environmental characteristics describing the distribution of a specific water-quality constituent. Geographic information for small basins throughout the study area is then used to subdivide the area into relatively homogeneous environmental water-quality zones. For each zone, commonly used approaches are subsequently used to define its reference water quality and how its water quality responds to changes in land use. SPARTA is used to delineate zones of similar reference concentrations of total phosphorus and suspended sediment throughout the upper Midwestern part of the United States. ?? 2006 Springer Science+Business Media, Inc.

  2. Secondhand Smoking Is Associated with Poor Mental Health in Korean Adolescents.

    PubMed

    Bang, Inho; Jeong, Young-Jin; Park, Young-Yoon; Moon, Na-Yeon; Lee, Junyong; Jeon, Tae-Hee

    2017-08-01

    In Korea, the prevalence of depression is increasing in adolescents and the most common cause of death of adolescents has been reported as suicide. At a time of increasing predicament of mental health of adolescents, there are few studies on whether secondhand smoking is associated with mental health in adolescents. The objective of this study was to determine whether exposure to secondhand smoke is associated with mental health-related variables, such as depression, stress, and suicide, in Korean adolescents. Data from the eleventh Korea youth risk behavior web-based survey, a nationally representative survey of 62,708 participants (30,964 males and 31,744 females), were analyzed. For students of aged 12 to 18 years, extensive data including secondhand smoking, mental health, sociodemographic variables, and physical health were collected. Chi-square analysis, multiple logistic regression analysis and ordered logistic regression analysis were performed to estimate the association and dose-response relation between secondhand smoking and mental health. Compared with the non-exposed group, the odds ratios (OR) of depression, stress, suicidal ideation, suicidal planning and suicidal attempt in the secondhand smoking exposed group were 1.339, 1.192, 1.303, 1.437 and 1.505, respectively (all P < 0.001). When subjects were classified into two secondhand smoke exposure groups, with increasing secondhand smoking experience, higher was the OR for each mental health related variable, in a dose-response relation. Our findings suggest that secondhand smoking is associated with poor mental health such as depression, stress, and suicide, showing a dose-response relation in Korean adolescents.

  3. Migration and symptom reporting at menopause: a comparative survey of migrant women from Turkey in Berlin, German women in Berlin, and women in Istanbul.

    PubMed

    Boral, Şengül; Borde, Theda; Kentenich, Heribert; Wernecke, Klaus D; David, Matthias

    2013-02-01

    The goal of this study was to compare perceptions of menopausal symptoms among migrant women from Turkey in Berlin (TB), German women in Berlin (GB), and women in Istanbul (TI). The aim was to analyze findings in light of the possible influences of sociodemographic, psychosocial, and migration-related aspects. The study participants (aged 45-60 y) were recruited via random and snowball sampling and surveyed with a structured questionnaire in the German and Turkish languages, which contained questions about their experiences with the menopausal phase and related symptoms (Menopause Rating Scale II), menopausal hormone therapy, and sociodemographic, psychosocial, and migration-related aspects. Statistical analysis was performed with univariate Fisher's exact test, factor analysis, and multivariate logistic regression. A total of 963 women participated in the study. Premenopausal/perimenopausal migrant women from Turkey in Berlin most frequently reported severe vegetative complaints (TB, 49.9%; GB, 34.9%; TI, 34.9%) and genital complaints (TB, 39.2%; GB, 32.3%; TI, 29.4%), as defined by factor analysis. In postmenopausal migrant women from Turkey in Berlin, the most frequently reported symptoms belonged to the domain of psychological complaints (TB, 52.7% vs GB, 24.0%; TI, 55.7%). Gradual multivariate logistic regression revealed sociodemographic and health-related risk factors as predictive factors for the defined menopausal complaints. Migration-related factors might be decisive for women's experience of menopause. Improvement of population-tailored access to factual information about menopause and treatment options is an area of great potential to support women in this phase.

  4. Approximate median regression for complex survey data with skewed response.

    PubMed

    Fraser, Raphael André; Lipsitz, Stuart R; Sinha, Debajyoti; Fitzmaurice, Garrett M; Pan, Yi

    2016-12-01

    The ready availability of public-use data from various large national complex surveys has immense potential for the assessment of population characteristics using regression models. Complex surveys can be used to identify risk factors for important diseases such as cancer. Existing statistical methods based on estimating equations and/or utilizing resampling methods are often not valid with survey data due to complex survey design features. That is, stratification, multistage sampling, and weighting. In this article, we accommodate these design features in the analysis of highly skewed response variables arising from large complex surveys. Specifically, we propose a double-transform-both-sides (DTBS)'based estimating equations approach to estimate the median regression parameters of the highly skewed response; the DTBS approach applies the same Box-Cox type transformation twice to both the outcome and regression function. The usual sandwich variance estimate can be used in our approach, whereas a resampling approach would be needed for a pseudo-likelihood based on minimizing absolute deviations (MAD). Furthermore, the approach is relatively robust to the true underlying distribution, and has much smaller mean square error than a MAD approach. The method is motivated by an analysis of laboratory data on urinary iodine (UI) concentration from the National Health and Nutrition Examination Survey. © 2016, The International Biometric Society.

  5. Non-ignorable missingness in logistic regression.

    PubMed

    Wang, Joanna J J; Bartlett, Mark; Ryan, Louise

    2017-08-30

    Nonresponses and missing data are common in observational studies. Ignoring or inadequately handling missing data may lead to biased parameter estimation, incorrect standard errors and, as a consequence, incorrect statistical inference and conclusions. We present a strategy for modelling non-ignorable missingness where the probability of nonresponse depends on the outcome. Using a simple case of logistic regression, we quantify the bias in regression estimates and show the observed likelihood is non-identifiable under non-ignorable missing data mechanism. We then adopt a selection model factorisation of the joint distribution as the basis for a sensitivity analysis to study changes in estimated parameters and the robustness of study conclusions against different assumptions. A Bayesian framework for model estimation is used as it provides a flexible approach for incorporating different missing data assumptions and conducting sensitivity analysis. Using simulated data, we explore the performance of the Bayesian selection model in correcting for bias in a logistic regression. We then implement our strategy using survey data from the 45 and Up Study to investigate factors associated with worsening health from the baseline to follow-up survey. Our findings have practical implications for the use of the 45 and Up Study data to answer important research questions relating to health and quality-of-life. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Approximate Median Regression for Complex Survey Data with Skewed Response

    PubMed Central

    Fraser, Raphael André; Lipsitz, Stuart R.; Sinha, Debajyoti; Fitzmaurice, Garrett M.; Pan, Yi

    2016-01-01

    Summary The ready availability of public-use data from various large national complex surveys has immense potential for the assessment of population characteristics using regression models. Complex surveys can be used to identify risk factors for important diseases such as cancer. Existing statistical methods based on estimating equations and/or utilizing resampling methods are often not valid with survey data due to complex survey design features. That is, stratification, multistage sampling and weighting. In this paper, we accommodate these design features in the analysis of highly skewed response variables arising from large complex surveys. Specifically, we propose a double-transform-both-sides (DTBS) based estimating equations approach to estimate the median regression parameters of the highly skewed response; the DTBS approach applies the same Box-Cox type transformation twice to both the outcome and regression function. The usual sandwich variance estimate can be used in our approach, whereas a resampling approach would be needed for a pseudo-likelihood based on minimizing absolute deviations (MAD). Furthermore, the approach is relatively robust to the true underlying distribution, and has much smaller mean square error than a MAD approach. The method is motivated by an analysis of laboratory data on urinary iodine (UI) concentration from the National Health and Nutrition Examination Survey. PMID:27062562

  7. Changes in aerobic power of men, ages 25-70 yr

    NASA Technical Reports Server (NTRS)

    Jackson, A. S.; Beard, E. F.; Wier, L. T.; Ross, R. M.; Stuteville, J. E.; Blair, S. N.

    1995-01-01

    This study quantified and compared the cross-sectional and longitudinal influence of age, self-report physical activity (SR-PA), and body composition (%fat) on the decline of maximal aerobic power (VO2peak). The cross-sectional sample consisted of 1,499 healthy men ages 25-70 yr. The 156 men of the longitudinal sample were from the same population and examined twice, the mean time between tests was 4.1 (+/- 1.2) yr. Peak oxygen uptake was determined by indirect calorimetry during a maximal treadmill exercise test. The zero-order correlations between VO2peak and %fat (r = -0.62) and SR-PA (r = 0.58) were significantly (P < 0.05) higher that the age correlation (r = -0.45). Linear regression defined the cross-sectional age-related decline in VO2peak at 0.46 ml.kg-1.min-1.yr-1. Multiple regression analysis (R = 0.79) showed that nearly 50% of this cross-sectional decline was due to %fat and SR-PA, adding these lifestyle variables to the multiple regression model reduced the age regression weight to -0.26 ml.kg-1.min-1.yr-1. Statistically controlling for time differences between tests, general linear models analysis showed that longitudinal changes in aerobic power were due to independent changes in %fat and SR-PA, confirming the cross-sectional results.

  8. Influence of Health Behaviors and Occupational Stress on Prediabetic State among Male Office Workers.

    PubMed

    Ryu, Hosihn; Moon, Jihyeon; Jung, Jiyeon

    2018-06-14

    This study examined the influence of health behaviors and occupational stress on the prediabetic state of male office workers, and identified related risks and influencing factors. The study used a cross-sectional design and performed an integrative analysis on data from regular health checkups, health questionnaires, and a health behavior-related survey of employees of a company, using Spearman’s correlation coefficients and multiple logistic regression analysis. The results showed significant relationships of prediabetic state with health behaviors and occupational stress. Among health behaviors, a diet without vegetables and fruits (Odds Ratio (OR) = 3.74, 95% Confidence Interval (CI) = 1.93⁻7.66) was associated with a high risk of prediabetic state. In the subscales on occupational stress, organizational system in the 4th quartile (OR = 4.83, 95% CI = 2.40⁻9.70) was significantly associated with an increased likelihood of prediabetic state. To identify influencing factors of prediabetic state, the multiple logistic regression was performed using regression models. The results showed that dietary habits (β = 1.20, p = 0.002), total occupational stress score (β = 1.33, p = 0.024), and organizational system (β = 1.13, p = 0.009) were significant influencing factors. The present findings indicate that active interventions are needed at workplace for the systematic and comprehensive management of health behaviors and occupational stress that influence prediabetic state of office workers.

  9. Correlates of health-related quality of life in children with drug resistant epilepsy.

    PubMed

    Conway, Lauryn; Smith, Mary Lou; Ferro, Mark A; Speechley, Kathy N; Connoly, Mary B; Snead, O Carter; Widjaja, Elysa

    2016-08-01

    Health-related quality of life (HRQL) is compromised in children with epilepsy. The current study aimed to identify correlates of HRQL in children with drug resistant epilepsy. Data came from 115 children enrolled in the Impact of Pediatric Epilepsy Surgery on Health-Related Quality of Life Study (PEPSQOL), a multicenter prospective cohort study. Individual, clinical, and family factors were evaluated. HRQL was measured using the Quality of Life in Childhood Epilepsy Questionnaire (QOLCE), a parent-rated epilepsy-specific instrument, with composite scores ranging from 0 to 100. A series of univariable linear regression analyses were conducted to identify significant associations with HRQL, followed by a multivariable regression analysis. Children had a mean age of 11.85 ± 3.81 years and 65 (56.5%) were male. The mean composite QOLCE score was 60.18 ± 16.69. Child age, sex, age at seizure onset, duration of epilepsy, caregiver age, caregiver education, and income were not significantly associated with HRQL. Univariable regression analyses revealed that a higher number of anti-seizure medications (p = 0.020), lower IQ (p = 0.002), greater seizure frequency (p = 0.048), caregiver unemployment (p = 0.010), higher caregiver depressive and anxiety symptoms (p < 0.001 for both), poorer family adaptation, fewer family resources, and a greater number of family demands (p < 0.001 for all) were associated with lower HRQL. Multivariable regression analysis showed that lower child IQ (β = 0.20, p = 0.004), fewer family resources (β = 0.43, p = 0.012), and caregiver unemployment (β = 6.53, p = 0.018) were associated with diminished HRQL in children. The results emphasize the importance of child cognition and family variables in the HRQL of children with drug-resistant epilepsy. The findings speak to the importance of offering comprehensive care to children and their families to address the nonmedical features that impact on HRQL. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  10. Biostatistics Series Module 6: Correlation and Linear Regression.

    PubMed

    Hazra, Avijit; Gogtay, Nithya

    2016-01-01

    Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient ( r ). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P < 0.05. A 95% confidence interval of the correlation coefficient can also be calculated for an idea of the correlation in the population. The value r 2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation ( y = a + bx ), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous.

  11. Biostatistics Series Module 6: Correlation and Linear Regression

    PubMed Central

    Hazra, Avijit; Gogtay, Nithya

    2016-01-01

    Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient (r). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P < 0.05. A 95% confidence interval of the correlation coefficient can also be calculated for an idea of the correlation in the population. The value r2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation (y = a + bx), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous. PMID:27904175

  12. Anesthesia-Related and Perioperative Cardiac Arrest in Low- and High-Income Countries: A Systematic Review With Meta-Regression and Proportional Meta-Analysis.

    PubMed

    Koga, Fernando A; El Dib, Regina; Wakasugui, William; Roça, Cairo T; Corrente, José E; Braz, Mariana G; Braz, José R C; Braz, Leandro G

    2015-09-01

    The anesthesia-related cardiac arrest (CA) rate is a quality indicator to improve patient safety in the perioperative period. A systematic review with meta-analysis of the worldwide literature related to anesthesia-related CA rate has not yet been performed.This study aimed to analyze global data on anesthesia-related and perioperative CA rates according to country's Human Development Index (HDI) and by time. In addition, we compared the anesthesia-related and perioperative CA rates in low- and high-income countries in 2 time periods.A systematic review was performed using electronic databases to identify studies in which patients underwent anesthesia with anesthesia-related and/or perioperative CA rates. Meta-regression and proportional meta-analysis were performed with 95% confidence intervals (CIs) to evaluate global data on anesthesia-related and perioperative CA rates according to country's HDI and by time, and to compare the anesthesia-related and perioperative CA rates by country's HDI status (low HDI vs high HDI) and by time period (pre-1990s vs 1990s-2010s), respectively.Fifty-three studies from 21 countries assessing 11.9 million anesthetic administrations were included. Meta-regression showed that anesthesia-related (slope: -3.5729; 95% CI: -6.6306 to -0.5152; P = 0.024) and perioperative (slope: -2.4071; 95% CI: -4.0482 to -0.7659; P = 0.005) CA rates decreased with increasing HDI, but not with time. Meta-analysis showed per 10,000 anesthetics that anesthesia-related and perioperative CA rates declined in high HDI (2.3 [95% CI: 1.2-3.7] before the 1990s to 0.7 [95% CI: 0.5-1.0] in the 1990s-2010s, P < 0.001; and 8.1 [95% CI: 5.1-11.9] before the 1990s to 6.2 [95% CI: 5.1-7.4] in the 1990s-2010s, P < 0.001, respectively). In low-HDI countries, anesthesia-related CA rates did not alter significantly (9.2 [95% CI: 2.0-21.7] before the 1990s to 4.5 [95% CI: 2.4-7.2] in the 1990s-2010s, P = 0.14), whereas perioperative CA rates increased significantly (16.4 [95% CI: 1.5-47.1] before the 1990s to 19.9 [95% CI: 10.9-31.7] in the 1990s-2010s, P = 0.03).Both anesthesia-related and perioperative CA rates decrease with increasing HDI but not with time. There is a clear and consistent reduction in anesthesia-related and perioperative CA rates in high-HDI countries, but an increase in perioperative CA rates without significant alteration in the anesthesia-related CA rates in low-HDI countries comparing the 2 time periods.

  13. Simultaneous determination of estrogens (ethinylestradiol and norgestimate) concentrations in human and bovine serum albumin by use of fluorescence spectroscopy and multivariate regression analysis.

    PubMed

    Hordge, LaQuana N; McDaniel, Kiara L; Jones, Derick D; Fakayode, Sayo O

    2016-05-15

    The endocrine disruption property of estrogens necessitates the immediate need for effective monitoring and development of analytical protocols for their analyses in biological and human specimens. This study explores the first combined utility of a steady-state fluorescence spectroscopy and multivariate partial-least-square (PLS) regression analysis for the simultaneous determination of two estrogens (17α-ethinylestradiol (EE) and norgestimate (NOR)) concentrations in bovine serum albumin (BSA) and human serum albumin (HSA) samples. The influence of EE and NOR concentrations and temperature on the emission spectra of EE-HSA EE-BSA, NOR-HSA, and NOR-BSA complexes was also investigated. The binding of EE with HSA and BSA resulted in increase in emission characteristics of HSA and BSA and a significant blue spectra shift. In contrast, the interaction of NOR with HSA and BSA quenched the emission characteristics of HSA and BSA. The observed emission spectral shifts preclude the effective use of traditional univariate regression analysis of fluorescent data for the determination of EE and NOR concentrations in HSA and BSA samples. Multivariate partial-least-squares (PLS) regression analysis was utilized to correlate the changes in emission spectra with EE and NOR concentrations in HSA and BSA samples. The figures-of-merit of the developed PLS regression models were excellent, with limits of detection as low as 1.6×10(-8) M for EE and 2.4×10(-7) M for NOR and good linearity (R(2)>0.994985). The PLS models correctly predicted EE and NOR concentrations in independent validation HSA and BSA samples with a root-mean-square-percent-relative-error (RMS%RE) of less than 6.0% at physiological condition. On the contrary, the use of univariate regression resulted in poor predictions of EE and NOR in HSA and BSA samples, with RMS%RE larger than 40% at physiological conditions. High accuracy, low sensitivity, simplicity, low-cost with no prior analyte extraction or separation required makes this method promising, compelling, and attractive alternative for the rapid determination of estrogen concentrations in biomedical and biological specimens, pharmaceuticals, or environmental samples. Published by Elsevier B.V.

  14. Multivariate Regression Analysis and Slaughter Livestock,

    DTIC Science & Technology

    AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY

  15. [Life satisfaction and related socio-demographic factors during female midlife].

    PubMed

    Cuadros, José Luis; Pérez-Roncero, Gonzalo R; López-Baena, María Teresa; Cuadros-Celorrio, Angela M; Fernández-Alonso, Ana María

    2014-01-01

    To assess life satisfaction and related factors in middle-aged Spanish women. This was a cross-sectional study including 235 women aged 40 to 65, living in Granada (Spain), healthy companions of patients visiting the obstetrics and gynecology clinics. They completed the Diener Satisfaction with Life Scale, the Menopause Rating Scale, the Perceived Stress Scale, the Insomnia Severity Index and a sociodemographic questionnaire containing personal and partner data. Internal consistency of each tool was also calculated. Almost two-thirds (61.3%) of the women were postmenopausal, and 43.8% had abdominal obesity, 36.6% had insomnia, 18.7% had poor menopause-related quality of life, 31.9% performed regular exercise, and 5.1% had severe financial problems. Life satisfaction showed significant positive correlations (Spearman's test) with female and male age, and inverse correlations with menopause-related quality of life, perceived stress and insomnia. In the multiple linear regression analysis, high life satisfaction is positively correlated with having a partner who performed exercise, and inversely with having work problems, perceived stress and the suspicion of partner infidelity. These factors explained 40% of the variance of the multiple regression analysis for life satisfaction in middle-aged women. Life satisfaction is a construct related to perceived stress, work problems, and having a partner, while aspects of menopause and general health had no significant influence. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  16. Risk factors for 2009 pandemic influenza A (H1N1)-related hospitalization and death among racial/ethnic groups in New Mexico.

    PubMed

    Thompson, Deborah L; Jungk, Jessica; Hancock, Emily; Smelser, Chad; Landen, Michael; Nichols, Megin; Selvage, David; Baumbach, Joan; Sewell, Mack

    2011-09-01

    We assessed risk factors for 2009 pandemic influenza A (H1N1)-related hospitalization, mechanical ventilation, and death among New Mexico residents. We calculated population rate ratios using Poisson regression to analyze risk factors for H1N1-related hospitalization. We performed a cross-sectional analysis of hospitalizations during September 14, 2009 through January 13, 2010, using logistic regression to assess risk factors for mechanical ventilation and death among those hospitalized. During the study period, 926 laboratory-confirmed H1N1-related hospitalizations were identified. H1N1-related hospitalization was significantly higher among American Indians (risk ratio [RR] = 2.6; 95% confidence interval [CI] = 2.2, 3.2), Blacks (RR = 1.7; 95% CI = 1.2, 2.4), and Hispanics (RR = 1.8; 95% CI = 1.5, 2.0) than it was among non-Hispanic Whites, and also was higher among persons of younger age and lower household income. Mechanical ventilation was significantly associated with age 25 years and older, obesity, and lack of or delayed antiviral treatment. Death was significantly associated with male gender, cancer during the previous 12 months, and liver disorder. This analysis supports recent national efforts to include American Indian/Alaska Native race as a group at high risk for complications of influenza with respect to vaccination and antiviral treatment recommendations.

  17. Digital histologic analysis reveals morphometric patterns of age-related involution in breast epithelium and stroma.

    PubMed

    Sandhu, Rupninder; Chollet-Hinton, Lynn; Kirk, Erin L; Midkiff, Bentley; Troester, Melissa A

    2016-02-01

    Complete age-related regression of mammary epithelium, often termed postmenopausal involution, is associated with decreased breast cancer risk. However, most studies have qualitatively assessed involution. We quantitatively analyzed epithelium, stroma, and adipose tissue from histologically normal breast tissue of 454 patients in the Normal Breast Study. High-resolution digital images of normal breast hematoxylin and eosin-stained slides were partitioned into epithelium, adipose tissue, and nonfatty stroma. Percentage area and nuclei per unit area (nuclear density) were calculated for each component. Quantitative data were evaluated in association with age using linear regression and cubic spline models. Stromal area decreased (P = 0.0002), and adipose tissue area increased (P < 0.0001), with an approximate 0.7% change in area for each component, until age 55 years when these area measures reached a steady state. Although epithelial area did not show linear changes with age, epithelial nuclear density decreased linearly beginning in the third decade of life. No significant age-related trends were observed for stromal or adipose nuclear density. Digital image analysis offers a high-throughput method for quantitatively measuring tissue morphometry and for objectively assessing age-related changes in adipose tissue, stroma, and epithelium. Epithelial nuclear density is a quantitative measure of age-related breast involution that begins to decline in the early premenopausal period. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Practical aspects of estimating energy components in rodents

    PubMed Central

    van Klinken, Jan B.; van den Berg, Sjoerd A. A.; van Dijk, Ko Willems

    2013-01-01

    Recently there has been an increasing interest in exploiting computational and statistical techniques for the purpose of component analysis of indirect calorimetry data. Using these methods it becomes possible to dissect daily energy expenditure into its components and to assess the dynamic response of the resting metabolic rate (RMR) to nutritional and pharmacological manipulations. To perform robust component analysis, however, is not straightforward and typically requires the tuning of parameters and the preprocessing of data. Moreover the degree of accuracy that can be attained by these methods depends on the configuration of the system, which must be properly taken into account when setting up experimental studies. Here, we review the methods of Kalman filtering, linear, and penalized spline regression, and minimal energy expenditure estimation in the context of component analysis and discuss their results on high resolution datasets from mice and rats. In addition, we investigate the effect of the sample time, the accuracy of the activity sensor, and the washout time of the chamber on the estimation accuracy. We found that on the high resolution data there was a strong correlation between the results of Kalman filtering and penalized spline (P-spline) regression, except for the activity respiratory quotient (RQ). For low resolution data the basal metabolic rate (BMR) and resting RQ could still be estimated accurately with P-spline regression, having a strong correlation with the high resolution estimate (R2 > 0.997; sample time of 9 min). In contrast, the thermic effect of food (TEF) and activity related energy expenditure (AEE) were more sensitive to a reduction in the sample rate (R2 > 0.97). In conclusion, for component analysis on data generated by single channel systems with continuous data acquisition both Kalman filtering and P-spline regression can be used, while for low resolution data from multichannel systems P-spline regression gives more robust results. PMID:23641217

  19. Regression Verification Using Impact Summaries

    NASA Technical Reports Server (NTRS)

    Backes, John; Person, Suzette J.; Rungta, Neha; Thachuk, Oksana

    2013-01-01

    Regression verification techniques are used to prove equivalence of syntactically similar programs. Checking equivalence of large programs, however, can be computationally expensive. Existing regression verification techniques rely on abstraction and decomposition techniques to reduce the computational effort of checking equivalence of the entire program. These techniques are sound but not complete. In this work, we propose a novel approach to improve scalability of regression verification by classifying the program behaviors generated during symbolic execution as either impacted or unimpacted. Our technique uses a combination of static analysis and symbolic execution to generate summaries of impacted program behaviors. The impact summaries are then checked for equivalence using an o-the-shelf decision procedure. We prove that our approach is both sound and complete for sequential programs, with respect to the depth bound of symbolic execution. Our evaluation on a set of sequential C artifacts shows that reducing the size of the summaries can help reduce the cost of software equivalence checking. Various reduction, abstraction, and compositional techniques have been developed to help scale software verification techniques to industrial-sized systems. Although such techniques have greatly increased the size and complexity of systems that can be checked, analysis of large software systems remains costly. Regression analysis techniques, e.g., regression testing [16], regression model checking [22], and regression verification [19], restrict the scope of the analysis by leveraging the differences between program versions. These techniques are based on the idea that if code is checked early in development, then subsequent versions can be checked against a prior (checked) version, leveraging the results of the previous analysis to reduce analysis cost of the current version. Regression verification addresses the problem of proving equivalence of closely related program versions [19]. These techniques compare two programs with a large degree of syntactic similarity to prove that portions of one program version are equivalent to the other. Regression verification can be used for guaranteeing backward compatibility, and for showing behavioral equivalence in programs with syntactic differences, e.g., when a program is refactored to improve its performance, maintainability, or readability. Existing regression verification techniques leverage similarities between program versions by using abstraction and decomposition techniques to improve scalability of the analysis [10, 12, 19]. The abstractions and decomposition in the these techniques, e.g., summaries of unchanged code [12] or semantically equivalent methods [19], compute an over-approximation of the program behaviors. The equivalence checking results of these techniques are sound but not complete-they may characterize programs as not functionally equivalent when, in fact, they are equivalent. In this work we describe a novel approach that leverages the impact of the differences between two programs for scaling regression verification. We partition program behaviors of each version into (a) behaviors impacted by the changes and (b) behaviors not impacted (unimpacted) by the changes. Only the impacted program behaviors are used during equivalence checking. We then prove that checking equivalence of the impacted program behaviors is equivalent to checking equivalence of all program behaviors for a given depth bound. In this work we use symbolic execution to generate the program behaviors and leverage control- and data-dependence information to facilitate the partitioning of program behaviors. The impacted program behaviors are termed as impact summaries. The dependence analyses that facilitate the generation of the impact summaries, we believe, could be used in conjunction with other abstraction and decomposition based approaches, [10, 12], as a complementary reduction technique. An evaluation of our regression verification technique shows that our approach is capable of leveraging similarities between program versions to reduce the size of the queries and the time required to check for logical equivalence. The main contributions of this work are: - A regression verification technique to generate impact summaries that can be checked for functional equivalence using an off-the-shelf decision procedure. - A proof that our approach is sound and complete with respect to the depth bound of symbolic execution. - An implementation of our technique using the LLVMcompiler infrastructure, the klee Symbolic Virtual Machine [4], and a variety of Satisfiability Modulo Theory (SMT) solvers, e.g., STP [7] and Z3 [6]. - An empirical evaluation on a set of C artifacts which shows that the use of impact summaries can reduce the cost of regression verification.

  20. Mean annual runoff and peak flow estimates based on channel geometry of streams in northeastern and western Montana

    USGS Publications Warehouse

    Parrett, Charles; Omang, R.J.; Hull, J.A.

    1983-01-01

    Equations for estimating mean annual runoff and peak discharge from measurements of channel geometry were developed for western and northeastern Montana. The study area was divided into two regions for the mean annual runoff analysis, and separate multiple-regression equations were developed for each region. The active-channel width was determined to be the most important independent variable in each region. The standard error of estimate for the estimating equation using active-channel width was 61 percent in the Northeast Region and 38 percent in the West region. The study area was divided into six regions for the peak discharge analysis, and multiple regression equations relating channel geometry and basin characteristics to peak discharges having recurrence intervals of 2, 5, 10, 25, 50 and 100 years were developed for each region. The standard errors of estimate for the regression equations using only channel width as an independent variable ranged from 35 to 105 percent. The standard errors improved in four regions as basin characteristics were added to the estimating equations. (USGS)

  1. Regression analysis of case K interval-censored failure time data in the presence of informative censoring.

    PubMed

    Wang, Peijie; Zhao, Hui; Sun, Jianguo

    2016-12-01

    Interval-censored failure time data occur in many fields such as demography, economics, medical research, and reliability and many inference procedures on them have been developed (Sun, 2006; Chen, Sun, and Peace, 2012). However, most of the existing approaches assume that the mechanism that yields interval censoring is independent of the failure time of interest and it is clear that this may not be true in practice (Zhang et al., 2007; Ma, Hu, and Sun, 2015). In this article, we consider regression analysis of case K interval-censored failure time data when the censoring mechanism may be related to the failure time of interest. For the problem, an estimated sieve maximum-likelihood approach is proposed for the data arising from the proportional hazards frailty model and for estimation, a two-step procedure is presented. In the addition, the asymptotic properties of the proposed estimators of regression parameters are established and an extensive simulation study suggests that the method works well. Finally, we apply the method to a set of real interval-censored data that motivated this study. © 2016, The International Biometric Society.

  2. Multiple correlates of cigarette use among high school students.

    PubMed

    McDermott, R J; Sarvela, P D; Hoalt, P N; Bajracharya, S M; Marty, P J; Emery, E M

    1992-04-01

    A cross-sectional survey research design measured factors related to cigarette use among 2,212 senior high school students. Results showed 14.3% of the sample smoked cigarettes at least occasionally, with 5.3% reporting they were daily smokers. About 12.8% indicated they were ex-smokers. Males and females smoked at almost equal rates, and the percentage of 10th grade student smokers was slightly higher (16.4%) than the percentage of juniors and seniors who smoked. Approximately 22% of Hispanic students, 15% of Caucasian students, and 4.5% of African-American students reported smoking cigarettes at least occasionally. An initial regression analysis used 21 variables to predict cigarette smoking. A more parsimonious regression model (R2 = .28), using variables from the initial regression analysis with significance levels of .01 or less, indicated the most important predictors of cigarette use were ethnic group, attitude toward females who smoke, close friends' use of cigarettes, personal use of marijuana, best friend's use of cigarettes, personal use of alcohol, and school self-esteem. Implications for school health programs are addressed.

  3. [In vitro testing of yeast resistance to antimycotic substances].

    PubMed

    Potel, J; Arndt, K

    1982-01-01

    Investigations have been carried out in order to clarify the antibiotic susceptibility determination of yeasts. 291 yeast strains of different species were tested for sensitivity to 7 antimycotics: amphotericin B, flucytosin, nystatin, pimaricin, clotrimazol, econazol and miconazol. Additionally to the evaluation of inhibition zone diameters and MIC-values the influence of pH was examined. 1. The dependence of inhibition zone diameters upon pH-values varies due to the antimycotic tested. For standardizing purposes the pH 6.0 is proposed; moreover, further experimental parameters, such as nutrient composition, agar depth, cell density, incubation time and -temperature, have to be normed. 2. The relation between inhibition zone size and logarythmic MIC does not fit a linear regression analysis when all species are considered together. Therefore regression functions have to be calculated selecting the individual species. In case of the antimycotics amphotericin B, nystatin and pimaricin the low scattering of the MIC-values does not allow regression analysis. 3. A quantitative susceptibility determination of yeasts--particularly to the fungistatical substances with systemic applicability, flucytosin and miconazol, -- is advocated by the results of the MIC-tests.

  4. Cognitive, emotive, and cognitive-behavioral correlates of suicidal ideation among Chinese adolescents in Hong Kong.

    PubMed

    Kwok, Sylvia Lai Yuk Ching; Shek, Daniel Tan Lei

    2010-03-05

    Utilizing Daniel Goleman's theory of emotional competence, Beck's cognitive theory, and Rudd's cognitive-behavioral theory of suicidality, the relationships between hopelessness (cognitive component), social problem solving (cognitive-behavioral component), emotional competence (emotive component), and adolescent suicidal ideation were examined. Based on the responses of 5,557 Secondary 1 to Secondary 4 students from 42 secondary schools in Hong Kong, results showed that suicidal ideation was positively related to adolescent hopelessness, but negatively related to emotional competence and social problem solving. While standard regression analyses showed that all the above variables were significant predictors of suicidal ideation, hierarchical regression analyses showed that hopelessness was the most important predictor of suicidal ideation, followed by social problem solving and emotional competence. Further regression analyses found that all four subscales of emotional competence, i.e., empathy, social skills, self-management of emotions, and utilization of emotions, were important predictors of male adolescent suicidal ideation. However, the subscale of social skills was not a significant predictor of female adolescent suicidal ideation. Standard regression analysis also revealed that all three subscales of social problem solving, i.e., negative problem orientation, rational problem solving, and impulsiveness/carelessness style, were important predictors of suicidal ideation. Theoretical and practice implications of the findings are discussed.

  5. Investigation of the UK37' vs. SST relationship for Atlantic Ocean suspended particulate alkenones: An alternative regression model and discussion of possible sampling bias

    NASA Astrophysics Data System (ADS)

    Gould, Jessica; Kienast, Markus; Dowd, Michael

    2017-05-01

    Alkenone unsaturation, expressed as the UK37' index, is closely related to growth temperature of prymnesiophytes, thus providing a reliable proxy to infer past sea surface temperatures (SSTs). Here we address two lingering uncertainties related to this SST proxy. First, calibration models developed for core-top sediments and those developed for surface suspended particulates organic material (SPOM) show systematic offsets, raising concerns regarding the transfer of the primary signal into the sedimentary record. Second, questions remain regarding changes in slope of the UK37' vs. growth temperature relationship at the temperature extremes. Based on (re)analysis of 31 new and 394 previously published SPOM UK37' data from the Atlantic Ocean, a new regression model to relate UK37' to SST is introduced; the Richards curve (Richards, 1959). This non-linear regression model provides a robust calibration of the UK37' vs. SST relationship for Atlantic SPOM samples and uniquely accounts for both the fact that the UK37' index is a proportion, and so must lie between 0 and 1, as well as for the observed reduction in slope at the warm and cold ends of the temperature range. As with prior fits of SPOM UK37' vs. SST, the Richards model is offset from traditional regression models of sedimentary UK37' vs. SST. We posit that (some of) this offset can be attributed to the seasonally and depth biased sampling of SPOM material.

  6. Regression Analysis: Legal Applications in Institutional Research

    ERIC Educational Resources Information Center

    Frizell, Julie A.; Shippen, Benjamin S., Jr.; Luna, Andrew L.

    2008-01-01

    This article reviews multiple regression analysis, describes how its results should be interpreted, and instructs institutional researchers on how to conduct such analyses using an example focused on faculty pay equity between men and women. The use of multiple regression analysis will be presented as a method with which to compare salaries of…

  7. RAWS II: A MULTIPLE REGRESSION ANALYSIS PROGRAM,

    DTIC Science & Technology

    This memorandum gives instructions for the use and operation of a revised version of RAWS, a multiple regression analysis program. The program...of preprocessed data, the directed retention of variable, listing of the matrix of the normal equations and its inverse, and the bypassing of the regression analysis to provide the input variable statistics only. (Author)

  8. Analysis of cost regression and post-accident absence

    NASA Astrophysics Data System (ADS)

    Wojciech, Drozd

    2017-07-01

    The article presents issues related with costs of work safety. It proves the thesis that economic aspects cannot be overlooked in effective management of occupational health and safety and that adequate expenditures on safety can bring tangible benefits to the company. Reliable analysis of this problem is essential for the description the problem of safety the work. In the article attempts to carry it out using the procedures of mathematical statistics [1, 2, 3].

  9. Mortality in patients with TIMI 3 flow after PCI in relation to time delay to reperfusion.

    PubMed

    Vichova, Teodora; Maly, Marek; Ulman, Jaroslav; Motovska, Zuzana

    2016-03-01

    Percutaneous coronary intervention (PCI) performed within 12 h from symptom onset enables complete blood flow restoration in infarct-related artery in 90% of patients. Nevertheless, even with complete restoration of epicardial blood flow in culprit vessel (postprocedural Thrombolysis in Myocardial Infarction (TIMI) flow grade 3), myocardial perfusion at tissue level may be insufficient. We hypothesized that the outcome of patients with STEMI/bundle branch block (BBB)-myocardial infarction and post-PCI TIMI 3 flow is related to the time to reperfusion. Observational study based on a retrospective analysis of population of 635 consecutive patients with STEMI/BBB-MI and post-PCI TIMI 3 flow from January 2009 to December 2011 (mean age 63 years, 69.6% males). Mortality of patients was evaluated in relation to the time from symptom onset to reperfusion. A total of 83 patients (13.07%) with postprocedural TIMI 3 flow after PCI had died at 1-year follow-up. Median TD in patients who survived was 3.92 h (iqr 5.43), in patients who died 6.0 h (iqr 11.42), P = 0.004. Multiple logistic regression analysis identified time delay ≥ 9 h as significantly related to 1-year mortality of patients with STEMI/BBB-MI and post-PCI TIMI 3 flow (OR 1.958, P = 0.026). Other significant variables associated with mortality in multivariate regression analysis were: left ventricle ejection fraction < 30% (P = 0.006), age > 65 years (P < 0.001), Killip class >2 (P <0.001), female gender (P = 0.019), and creatinine clearance < 30 mL/min (P < 0.001). Time delay to reperfusion is significantly related to 1-year mortality of patients with STEMI/BBB-MI and complete restoration of epicardial blood flow in culprit vessel after PCI.

  10. Segmented regression analysis of interrupted time series data to assess outcomes of a South American road traffic alcohol policy change.

    PubMed

    Nistal-Nuño, Beatriz

    2017-09-01

    In Chile, a new law introduced in March 2012 decreased the legal blood alcohol concentration (BAC) limit for driving while impaired from 1 to 0.8 g/l and the legal BAC limit for driving under the influence of alcohol from 0.5 to 0.3 g/l. The goal is to assess the impact of this new law on mortality and morbidity outcomes in Chile. A review of national databases in Chile was conducted from January 2003 to December 2014. Segmented regression analysis of interrupted time series was used for analyzing the data. In a series of multivariable linear regression models, the change in intercept and slope in the monthly incidence rate of traffic deaths and injuries and association with alcohol per 100,000 inhabitants was estimated from pre-intervention to postintervention, while controlling for secular changes. In nested regression models, potential confounding seasonal effects were accounted for. All analyses were performed at a two-sided significance level of 0.05. Immediate level drops in all the monthly rates were observed after the law from the end of the prelaw period in the majority of models and in all the de-seasonalized models, although statistical significance was reached only in the model for injures related to alcohol. After the law, the estimated monthly rate dropped abruptly by -0.869 for injuries related to alcohol and by -0.859 adjusting for seasonality (P < 0.001). Regarding the postlaw long-term trends, it was evidenced a steeper decreasing trend after the law in the models for deaths related to alcohol, although these differences were not statistically significant. A strong evidence of a reduction in traffic injuries related to alcohol was found following the law in Chile. Although insufficient evidence was found of a statistically significant effect for the beneficial effects seen on deaths and overall injuries, potential clinically important effects cannot be ruled out. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  11. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Red River of the North at Fargo and Grand Forks, North Dakota, 2003-12

    USGS Publications Warehouse

    Galloway, Joel M.

    2014-01-01

    The Red River of the North (hereafter referred to as “Red River”) Basin is an important hydrologic region where water is a valuable resource for the region’s economy. Continuous water-quality monitors have been operated by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, Minnesota Pollution Control Agency, City of Fargo, City of Moorhead, City of Grand Forks, and City of East Grand Forks at the Red River at Fargo, North Dakota, from 2003 through 2012 and at Grand Forks, N.Dak., from 2007 through 2012. The purpose of the monitoring was to provide a better understanding of the water-quality dynamics of the Red River and provide a way to track changes in water quality. Regression equations were developed that can be used to estimate concentrations and loads for dissolved solids, sulfate, chloride, nitrate plus nitrite, total phosphorus, and suspended sediment using explanatory variables such as streamflow, specific conductance, and turbidity. Specific conductance was determined to be a significant explanatory variable for estimating dissolved solids concentrations at the Red River at Fargo and Grand Forks. The regression equations provided good relations between dissolved solid concentrations and specific conductance for the Red River at Fargo and at Grand Forks, with adjusted coefficients of determination of 0.99 and 0.98, respectively. Specific conductance, log-transformed streamflow, and a seasonal component were statistically significant explanatory variables for estimating sulfate in the Red River at Fargo and Grand Forks. Regression equations provided good relations between sulfate concentrations and the explanatory variables, with adjusted coefficients of determination of 0.94 and 0.89, respectively. For the Red River at Fargo and Grand Forks, specific conductance, streamflow, and a seasonal component were statistically significant explanatory variables for estimating chloride. For the Red River at Grand Forks, a time component also was a statistically significant explanatory variable for estimating chloride. The regression equations for chloride at the Red River at Fargo provided a fair relation between chloride concentrations and the explanatory variables, with an adjusted coefficient of determination of 0.66 and the equation for the Red River at Grand Forks provided a relatively good relation between chloride concentrations and the explanatory variables, with an adjusted coefficient of determination of 0.77. Turbidity and streamflow were statistically significant explanatory variables for estimating nitrate plus nitrite concentrations at the Red River at Fargo and turbidity was the only statistically significant explanatory variable for estimating nitrate plus nitrite concentrations at Grand Forks. The regression equation for the Red River at Fargo provided a relatively poor relation between nitrate plus nitrite concentrations, turbidity, and streamflow, with an adjusted coefficient of determination of 0.46. The regression equation for the Red River at Grand Forks provided a fair relation between nitrate plus nitrite concentrations and turbidity, with an adjusted coefficient of determination of 0.73. Some of the variability that was not explained by the equations might be attributed to different sources contributing nitrates to the stream at different times. Turbidity, streamflow, and a seasonal component were statistically significant explanatory variables for estimating total phosphorus at the Red River at Fargo and Grand Forks. The regression equation for the Red River at Fargo provided a relatively fair relation between total phosphorus concentrations, turbidity, streamflow, and season, with an adjusted coefficient of determination of 0.74. The regression equation for the Red River at Grand Forks provided a good relation between total phosphorus concentrations, turbidity, streamflow, and season, with an adjusted coefficient of determination of 0.87. For the Red River at Fargo, turbidity and streamflow were statistically significant explanatory variables for estimating suspended-sediment concentrations. For the Red River at Grand Forks, turbidity was the only statistically significant explanatory variable for estimating suspended-sediment concentration. The regression equation at the Red River at Fargo provided a good relation between suspended-sediment concentration, turbidity, and streamflow, with an adjusted coefficient of determination of 0.95. The regression equation for the Red River at Grand Forks provided a good relation between suspended-sediment concentration and turbidity, with an adjusted coefficient of determination of 0.96.

  12. [Comparison of application of Cochran-Armitage trend test and linear regression analysis for rate trend analysis in epidemiology study].

    PubMed

    Wang, D Z; Wang, C; Shen, C F; Zhang, Y; Zhang, H; Song, G D; Xue, X D; Xu, Z L; Zhang, S; Jiang, G H

    2017-05-10

    We described the time trend of acute myocardial infarction (AMI) from 1999 to 2013 in Tianjin incidence rate with Cochran-Armitage trend (CAT) test and linear regression analysis, and the results were compared. Based on actual population, CAT test had much stronger statistical power than linear regression analysis for both overall incidence trend and age specific incidence trend (Cochran-Armitage trend P value

  13. Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement

    USGS Publications Warehouse

    Bonilla, Manuel G.; Mark, Robert K.; Lienkaemper, James J.

    1984-01-01

    In order to refine correlations of surface-wave magnitude, fault rupture length at the ground surface, and fault displacement at the surface by including the uncertainties in these variables, the existing data were critically reviewed and a new data base was compiled. Earthquake magnitudes were redetermined as necessary to make them as consistent as possible with the Gutenberg methods and results, which make up much of the data base. Measurement errors were estimated for the three variables for 58 moderate to large shallow-focus earthquakes. Regression analyses were then made utilizing the estimated measurement errors.The regression analysis demonstrates that the relations among the variables magnitude, length, and displacement are stochastic in nature. The stochastic variance, introduced in part by incomplete surface expression of seismogenic faulting, variation in shear modulus, and regional factors, dominates the estimated measurement errors. Thus, it is appropriate to use ordinary least squares for the regression models, rather than regression models based upon an underlying deterministic relation in which the variance results primarily from measurement errors.Significant differences exist in correlations of certain combinations of length, displacement, and magnitude when events are grouped by fault type or by region, including attenuation regions delineated by Evernden and others.Estimates of the magnitude and the standard deviation of the magnitude of a prehistoric or future earthquake associated with a fault can be made by correlating Ms with the logarithms of rupture length, fault displacement, or the product of length and displacement.Fault rupture area could be reliably estimated for about 20 of the events in the data set. Regression of Ms on rupture area did not result in a marked improvement over regressions that did not involve rupture area. Because no subduction-zone earthquakes are included in this study, the reported results do not apply to such zones.

  14. Reference-Free Removal of EEG-fMRI Ballistocardiogram Artifacts with Harmonic Regression

    PubMed Central

    Krishnaswamy, Pavitra; Bonmassar, Giorgio; Poulsen, Catherine; Pierce, Eric T; Purdon, Patrick L.; Brown, Emery N.

    2016-01-01

    Combining electroencephalogram (EEG) recording and functional magnetic resonance imaging (fMRI) offers the potential for imaging brain activity with high spatial and temporal resolution. This potential remains limited by the significant ballistocardiogram (BCG) artifacts induced in the EEG by cardiac pulsation-related head movement within the magnetic field. We model the BCG artifact using a harmonic basis, pose the artifact removal problem as a local harmonic regression analysis, and develop an efficient maximum likelihood algorithm to estimate and remove BCG artifacts. Our analysis paradigm accounts for time-frequency overlap between the BCG artifacts and neurophysiologic EEG signals, and tracks the spatiotemporal variations in both the artifact and the signal. We evaluate performance on: simulated oscillatory and evoked responses constructed with realistic artifacts; actual anesthesia-induced oscillatory recordings; and actual visual evoked potential recordings. In each case, the local harmonic regression analysis effectively removes the BCG artifacts, and recovers the neurophysiologic EEG signals. We further show that our algorithm outperforms commonly used reference-based and component analysis techniques, particularly in low SNR conditions, the presence of significant time-frequency overlap between the artifact and the signal, and/or large spatiotemporal variations in the BCG. Because our algorithm does not require reference signals and has low computational complexity, it offers a practical tool for removing BCG artifacts from EEG data recorded in combination with fMRI. PMID:26151100

  15. A comparison of radiometric correction techniques in the evaluation of the relationship between LST and NDVI in Landsat imagery.

    PubMed

    Tan, Kok Chooi; Lim, Hwee San; Matjafri, Mohd Zubir; Abdullah, Khiruddin

    2012-06-01

    Atmospheric corrections for multi-temporal optical satellite images are necessary, especially in change detection analyses, such as normalized difference vegetation index (NDVI) rationing. Abrupt change detection analysis using remote-sensing techniques requires radiometric congruity and atmospheric correction to monitor terrestrial surfaces over time. Two atmospheric correction methods were used for this study: relative radiometric normalization and the simplified method for atmospheric correction (SMAC) in the solar spectrum. A multi-temporal data set consisting of two sets of Landsat images from the period between 1991 and 2002 of Penang Island, Malaysia, was used to compare NDVI maps, which were generated using the proposed atmospheric correction methods. Land surface temperature (LST) was retrieved using ATCOR3_T in PCI Geomatica 10.1 image processing software. Linear regression analysis was utilized to analyze the relationship between NDVI and LST. This study reveals that both of the proposed atmospheric correction methods yielded high accuracy through examination of the linear correlation coefficients. To check for the accuracy of the equation obtained through linear regression analysis for every single satellite image, 20 points were randomly chosen. The results showed that the SMAC method yielded a constant value (in terms of error) to predict the NDVI value from linear regression analysis-derived equation. The errors (average) from both proposed atmospheric correction methods were less than 10%.

  16. A primer for biomedical scientists on how to execute model II linear regression analysis.

    PubMed

    Ludbrook, John

    2012-04-01

    1. There are two very different ways of executing linear regression analysis. One is Model I, when the x-values are fixed by the experimenter. The other is Model II, in which the x-values are free to vary and are subject to error. 2. I have received numerous complaints from biomedical scientists that they have great difficulty in executing Model II linear regression analysis. This may explain the results of a Google Scholar search, which showed that the authors of articles in journals of physiology, pharmacology and biochemistry rarely use Model II regression analysis. 3. I repeat my previous arguments in favour of using least products linear regression analysis for Model II regressions. I review three methods for executing ordinary least products (OLP) and weighted least products (WLP) regression analysis: (i) scientific calculator and/or computer spreadsheet; (ii) specific purpose computer programs; and (iii) general purpose computer programs. 4. Using a scientific calculator and/or computer spreadsheet, it is easy to obtain correct values for OLP slope and intercept, but the corresponding 95% confidence intervals (CI) are inaccurate. 5. Using specific purpose computer programs, the freeware computer program smatr gives the correct OLP regression coefficients and obtains 95% CI by bootstrapping. In addition, smatr can be used to compare the slopes of OLP lines. 6. When using general purpose computer programs, I recommend the commercial programs systat and Statistica for those who regularly undertake linear regression analysis and I give step-by-step instructions in the Supplementary Information as to how to use loss functions. © 2011 The Author. Clinical and Experimental Pharmacology and Physiology. © 2011 Blackwell Publishing Asia Pty Ltd.

  17. Water quality parameter measurement using spectral signatures

    NASA Technical Reports Server (NTRS)

    White, P. E.

    1973-01-01

    Regression analysis is applied to the problem of measuring water quality parameters from remote sensing spectral signature data. The equations necessary to perform regression analysis are presented and methods of testing the strength and reliability of a regression are described. An efficient algorithm for selecting an optimal subset of the independent variables available for a regression is also presented.

  18. Determining Directional Dependency in Causal Associations

    PubMed Central

    Pornprasertmanit, Sunthud; Little, Todd D.

    2014-01-01

    Directional dependency is a method to determine the likely causal direction of effect between two variables. This article aims to critique and improve upon the use of directional dependency as a technique to infer causal associations. We comment on several issues raised by von Eye and DeShon (2012), including: encouraging the use of the signs of skewness and excessive kurtosis of both variables, discouraging the use of D’Agostino’s K2, and encouraging the use of directional dependency to compare variables only within time points. We offer improved steps for determining directional dependency that fix the problems we note. Next, we discuss how to integrate directional dependency into longitudinal data analysis with two variables. We also examine the accuracy of directional dependency evaluations when several regression assumptions are violated. Directional dependency can suggest the direction of a relation if (a) the regression error in population is normal, (b) an unobserved explanatory variable correlates with any variables equal to or less than .2, (c) a curvilinear relation between both variables is not strong (standardized regression coefficient ≤ .2), (d) there are no bivariate outliers, and (e) both variables are continuous. PMID:24683282

  19. A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction.

    PubMed

    Abulnaga, S Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M; Onyike, Chiadi U; Ying, Sarah H; Prince, Jerry L

    2016-02-27

    The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.

  20. A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction

    NASA Astrophysics Data System (ADS)

    Abulnaga, S. Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M.; Onyike, Chiadi U.; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.

  1. Beyond logistic regression: structural equations modelling for binary variables and its application to investigating unobserved confounders.

    PubMed

    Kupek, Emil

    2006-03-15

    Structural equation modelling (SEM) has been increasingly used in medical statistics for solving a system of related regression equations. However, a great obstacle for its wider use has been its difficulty in handling categorical variables within the framework of generalised linear models. A large data set with a known structure among two related outcomes and three independent variables was generated to investigate the use of Yule's transformation of odds ratio (OR) into Q-metric by (OR-1)/(OR+1) to approximate Pearson's correlation coefficients between binary variables whose covariance structure can be further analysed by SEM. Percent of correctly classified events and non-events was compared with the classification obtained by logistic regression. The performance of SEM based on Q-metric was also checked on a small (N = 100) random sample of the data generated and on a real data set. SEM successfully recovered the generated model structure. SEM of real data suggested a significant influence of a latent confounding variable which would have not been detectable by standard logistic regression. SEM classification performance was broadly similar to that of the logistic regression. The analysis of binary data can be greatly enhanced by Yule's transformation of odds ratios into estimated correlation matrix that can be further analysed by SEM. The interpretation of results is aided by expressing them as odds ratios which are the most frequently used measure of effect in medical statistics.

  2. Regression of esophageal varices and splenomegaly in two patients with hepatitis-C-related liver cirrhosis after interferon and ribavirin combination therapy.

    PubMed

    Lee, Soon Jae; Cho, Yoo-Kyung; Na, Soo-Young; Choi, Eun Kwang; Boo, Sun Jin; Jeong, Seung Uk; Song, Hyung Joo; Kim, Heung Up; Kim, Bong Soo; Song, Byung-Cheol

    2016-09-01

    Some recent studies have found regression of liver cirrhosis after antiviral therapy in patients with hepatitis C virus (HCV)-related liver cirrhosis, but there have been no reports of complete regression of esophageal varices after interferon/peg-interferon and ribavirin combination therapy. We describe two cases of complete regression of esophageal varices and splenomegaly after interferon-alpha and ribavirin combination therapy in patients with HCV-related liver cirrhosis. Esophageal varices and splenomegaly regressed after 3 and 8 years of sustained virologic responses in cases 1 and 2, respectively. To our knowledge, this is the first study demonstrating that complications of liver cirrhosis, such as esophageal varices and splenomegaly, can regress after antiviral therapy in patients with HCV-related liver cirrhosis.

  3. Multiplication factor versus regression analysis in stature estimation from hand and foot dimensions.

    PubMed

    Krishan, Kewal; Kanchan, Tanuj; Sharma, Abhilasha

    2012-05-01

    Estimation of stature is an important parameter in identification of human remains in forensic examinations. The present study is aimed to compare the reliability and accuracy of stature estimation and to demonstrate the variability in estimated stature and actual stature using multiplication factor and regression analysis methods. The study is based on a sample of 246 subjects (123 males and 123 females) from North India aged between 17 and 20 years. Four anthropometric measurements; hand length, hand breadth, foot length and foot breadth taken on the left side in each subject were included in the study. Stature was measured using standard anthropometric techniques. Multiplication factors were calculated and linear regression models were derived for estimation of stature from hand and foot dimensions. Derived multiplication factors and regression formula were applied to the hand and foot measurements in the study sample. The estimated stature from the multiplication factors and regression analysis was compared with the actual stature to find the error in estimated stature. The results indicate that the range of error in estimation of stature from regression analysis method is less than that of multiplication factor method thus, confirming that the regression analysis method is better than multiplication factor analysis in stature estimation. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  4. The isoform A of reticulon-4 (Nogo-A) in cerebrospinal fluid of primary brain tumor patients: influencing factors.

    PubMed

    Koper, Olga Martyna; Kamińska, Joanna; Milewska, Anna; Sawicki, Karol; Mariak, Zenon; Kemona, Halina; Matowicka-Karna, Joanna

    2018-05-18

    The influence of isoform A of reticulon-4 (Nogo-A), also known as neurite outgrowth inhibitor, on primary brain tumor development was reported. Therefore the aim was the evaluation of Nogo-A concentrations in cerebrospinal fluid (CSF) and serum of brain tumor patients compared with non-tumoral individuals. All serum results, except for two cases, obtained both in brain tumors and non-tumoral individuals, were below the lower limit of ELISA detection. Cerebrospinal fluid Nogo-A concentrations were significantly lower in primary brain tumor patients compared to non-tumoral individuals. The univariate linear regression analysis found that if white blood cell count increases by 1 × 10 3 /μL, the mean cerebrospinal fluid Nogo-A concentration value decreases 1.12 times. In the model of multiple linear regression analysis predictor variables influencing cerebrospinal fluid Nogo-A concentrations included: diagnosis, sex, and sodium level. The mean cerebrospinal fluid Nogo-A concentration value was 1.9 times higher for women in comparison to men. In the astrocytic brain tumor group higher sodium level occurs with lower cerebrospinal fluid Nogo-A concentrations. We found the opposite situation in non-tumoral individuals. Univariate linear regression analysis revealed, that cerebrospinal fluid Nogo-A concentrations change in relation to white blood cell count. In the created model of multiple linear regression analysis we found, that within predictor variables influencing CSF Nogo-A concentrations were diagnosis, sex, and sodium level. Results may be relevant to the search for cerebrospinal fluid biomarkers and potential therapeutic targets in primary brain tumor patients. Nogo-A concentrations were tested by means of enzyme-linked immunosorbent assay (ELISA).

  5. Handling nonnormality and variance heterogeneity for quantitative sublethal toxicity tests.

    PubMed

    Ritz, Christian; Van der Vliet, Leana

    2009-09-01

    The advantages of using regression-based techniques to derive endpoints from environmental toxicity data are clear, and slowly, this superior analytical technique is gaining acceptance. As use of regression-based analysis becomes more widespread, some of the associated nuances and potential problems come into sharper focus. Looking at data sets that cover a broad spectrum of standard test species, we noticed that some model fits to data failed to meet two key assumptions-variance homogeneity and normality-that are necessary for correct statistical analysis via regression-based techniques. Failure to meet these assumptions often is caused by reduced variance at the concentrations showing severe adverse effects. Although commonly used with linear regression analysis, transformation of the response variable only is not appropriate when fitting data using nonlinear regression techniques. Through analysis of sample data sets, including Lemna minor, Eisenia andrei (terrestrial earthworm), and algae, we show that both the so-called Box-Cox transformation and use of the Poisson distribution can help to correct variance heterogeneity and nonnormality and so allow nonlinear regression analysis to be implemented. Both the Box-Cox transformation and the Poisson distribution can be readily implemented into existing protocols for statistical analysis. By correcting for nonnormality and variance heterogeneity, these two statistical tools can be used to encourage the transition to regression-based analysis and the depreciation of less-desirable and less-flexible analytical techniques, such as linear interpolation.

  6. Impact of some types of mass gatherings on current suicide risk in an urban population: statistical and negative binominal regression analysis of time series.

    PubMed

    Usenko, Vasiliy S; Svirin, Sergey N; Shchekaturov, Yan N; Ponarin, Eduard D

    2014-04-04

    Many studies have investigated the impact of a wide range of social events on suicide-related behaviour. However, these studies have predominantly examined national events. The aim of this study is to provide a statistical evaluation of the relationship between mass gatherings in some relatively small urban sub-populations and the general suicide rates of a major city. The data were gathered in the Ukrainian city of Dnipropetrovsk, with a population of 1 million people, in 2005-2010. Suicide attempts, suicides, and the total amount of suicide-related behaviours were registered daily for each sex. Bivariate and multivariate statistical analysis, including negative binomial regression, were applied to assess the risk of suicide-related behaviour in the city's general population for 7 days before and after 427 mass gatherings, such as concerts, football games, and non-regular mass events organized by the Orthodox Church and new religious movements. The bivariate and multivariate statistical analyses found significant changes in some suicide-related behaviour rates in the city's population after certain kinds of mass gatherings. In particular, we observed an increased relative risk (RR) of male suicide-related behaviour after a home defeat of the local football team (RR = 1.32, p = 0.047; regression coefficient beta = 0.371, p = 0.002), and an increased risk of male suicides (RR = 1.29, p = 0.006; beta =0.255, p = 0.002), male suicide-related behaviour (RR = 1.25, p = 0.019; beta =0.251, p < 0.001), and total suicide-related behaviour (RR = 1.23 p < 0.001; beta =0.187, p < 0.001) after events organized by the new religious movements. Although football games and mass events organized by new religious movements involved a relatively small part of an urban population (1.6 and 0.3%, respectively), we observed a significant increase of the some suicide-related behaviour rates in the whole population. It is likely that the observed effect on suicide-related behaviour is related to one's personal presence at the event rather than to its broadcast. Our findings can be explained largely in terms of Gabennesch's theory of the 'broken-promises effect' with regard to intra- and interpersonal conflict and, in terms of crowd behaviour effects.

  7. Understanding the Acculturation Experience of Chinese Adolescent Students: Sociocultural Adaptation Strategies and a Positive Bicultural and Bilingual Identity

    ERIC Educational Resources Information Center

    Tong, Virginia M.

    2014-01-01

    The acculturation of Chinese immigrant high school students was examined as it relates to students' level of interaction with teachers and peers and participation in American school activities. Findings from a regression analysis revealed five variables (sociocultural adaptation strategies) that facilitate students' adjustment process:…

  8. Trade-Off between Effectiveness and Equity? An Analysis of Social Sorting between Classrooms and between Schools

    ERIC Educational Resources Information Center

    Ferrer-Esteban, Gerard

    2016-01-01

    This article analyzes whether school social segregation, derived from policies and practices of both between-school student allocation and within-school streaming, is related to the effectiveness of the Italian education system. Hierarchical regression models are used to set out territorially aggregated factors of social sorting influencing…

  9. Forecasting gypsy moth egg-mass density

    Treesearch

    Robert W. Campbell; Robert W. Campbell

    1973-01-01

    Several multiple regression models for gypsy moth egg-mass density were developed from data accumulated in eastern New England between 1911 and 1931. Analysis of these models indicates that: (1) The gypsy moth population system was relatively stable in either the OUTBREAK phase or the INNOCUOUS one; (2) Several naturally occurring processes that could terminate the...

  10. School Climate: The Controllable and the Uncontrollable

    ERIC Educational Resources Information Center

    Sulak, Tracey N.

    2018-01-01

    A positive school climate impacts students by promoting positive relations among students, staff and faculty of the school. The current study used latent class analysis and multinomial regression with R3STEP to analyse patterns of negative behaviours in schools and test the association of these patterns with structural variables like school size,…

  11. An Analysis on the Effect of Computer Self-Efficacy over Scientific Research Self-Efficacy and Information Literacy Self-Efficacy

    ERIC Educational Resources Information Center

    Tuncer, Murat

    2013-01-01

    Present research investigates reciprocal relations amidst computer self-efficacy, scientific research and information literacy self-efficacy. Research findings have demonstrated that according to standardized regression coefficients, computer self-efficacy has a positive effect on information literacy self-efficacy. Likewise it has been detected…

  12. A mass transfer model of ethanol emission from thin layers of corn silage

    USDA-ARS?s Scientific Manuscript database

    A mass transfer model of ethanol emission from thin layers of corn silage was developed and validated. The model was developed based on data from wind tunnel experiments conducted at different temperatures and air velocities. Multiple regression analysis was used to derive an equation that related t...

  13. The Production of Health, An Exploratory Study

    ERIC Educational Resources Information Center

    Auster, Richard; and others

    1969-01-01

    The relationship of mortality of whites to both medical care and environmental variables is examined in a regression analysis. Environmental factors are found to be more important in relation to death rate than medical care. High education is associated with low death rates and high income is associated with high death rates. (Author/AP)

  14. Quality Curriculum for Under-Threes: The Impact of Structural Standards

    ERIC Educational Resources Information Center

    Wertfein, Monika; Spies-Kofler, Anita; Becker-Stoll, Fabienne

    2009-01-01

    The purpose of this study conducted in 36 infant-toddler centres ("Kinderkrippen") in the city of Munich in Bavaria/Germany was to explore structural characteristics of early child care and education and their effects on child care quality. Stepwise regressions and variance analysis (Manova) examined the relation between quality of care…

  15. Visualizing Confidence Bands for Semiparametrically Estimated Nonlinear Relations among Latent Variables

    ERIC Educational Resources Information Center

    Pek, Jolynn; Chalmers, R. Philip; Kok, Bethany E.; Losardo, Diane

    2015-01-01

    Structural equation mixture models (SEMMs), when applied as a semiparametric model (SPM), can adequately recover potentially nonlinear latent relationships without their specification. This SPM is useful for exploratory analysis when the form of the latent regression is unknown. The purpose of this article is to help users familiar with structural…

  16. The Influence of Loneliness and Interpersonal Relations on Latina/o Middle School Students' Wellbeing

    ERIC Educational Resources Information Center

    Heredia, Dagoberto, Jr.; Sanchéz Gonzalez, Mayra L.; Rosner, Christine M.; He, Xiao; Castillo, Linda G.; Ojeda, Lizette

    2017-01-01

    This study examined associations of loneliness and relationships (e.g., teacher/student relationships, peer support, and family support) with wellbeing among Latina/o middle school students. A hierarchical regression analysis demonstrated that age and loneliness predicted wellbeing; older students and students with high levels of loneliness…

  17. Identifying Aspects of Parental Involvement that Affect the Academic Achievement of High School Students

    ERIC Educational Resources Information Center

    Roulette-McIntyre, Ovella; Bagaka's, Joshua G.; Drake, Daniel D.

    2005-01-01

    This study identified parental practices that relate positively to high school students' academic performance. Parents of 643 high school students participated in the study. Data analysis, using a multiple linear regression model, shows parent-school connection, student gender, and race are significant predictors of student academic performance.…

  18. Modelling Student Satisfaction and Motivation in the Integrated Educational Environment: An Empirical study

    ERIC Educational Resources Information Center

    Stukalina, Yulia

    2016-01-01

    Purpose: The purpose of this paper is to explore some issues related to enhancing the quality of educational services provided by a university in the agenda of integrating quality assurance activities and strategic management procedures. Design/methodology/approach: Employing multiple regression analysis the author has examined some factors that…

  19. Revisiting the Relationship between Marketing Education and Marketing Career Success

    ERIC Educational Resources Information Center

    Bacon, Donald R.

    2017-01-01

    In a replication of a classic article by Hunt, Chonko, and Wood, regression analysis was conducted using data from a sample of 864 marketing professionals. In contrast to Hunt, Chonko, and Wood, an undergraduate degree in marketing was positively related to income in marketing jobs, but surprisingly, respondents with some nonmarketing majors…

  20. School Principals' Job Satisfaction: The Effects of Work Intensification

    ERIC Educational Resources Information Center

    Wang, Fei; Pollock, Katina; Hauseman, Cameron

    2018-01-01

    This study examines principals' job satisfaction in relation to their work intensification. Frederick Herzberg's two-factor theory was used to shed light on how motivating and maintenance factors affect principals' job satisfaction. Logistic multiple regressions were used in the analysis of survey data that were collected from 2,701 elementary and…

  1. Influence of ozone and meteorological parameters on levels of polycyclic aromatic hydrocarbons in the air

    NASA Astrophysics Data System (ADS)

    Pehnec, Gordana; Jakovljević, Ivana; Šišović, Anica; Bešlić, Ivan; Vađić, Vladimira

    2016-04-01

    Concentrations of ten polycyclic aromatic hydrocarbons (PAHs) in the PM10 particle fraction were measured together with ozone and meteorological parameters at an urban site (Zagreb, Croatia) over a one-year period. Data were subjected to regression analysis in order to determine the relationship between the measured pollutants and selected meteorological variables. All of the PAHs showed seasonal variations with high concentrations in winter and autumn and very low concentrations during summer and spring. All of the ten PAHs concentrations also correlated well with each other. A statistically significant negative correlation was found between the concentrations of PAHs and ozone concentrations and concentrations of PAHs and temperature, as well as a positive correlation between concentrations of PAHs and PM10 mass concentration and relative humidity. Multiple regression analysis showed that concentrations of PM10 and ozone, temperature, relative humidity and pressure accounted for 43-70% of PAHs variability. Concentrations of PM10 and temperature were significant variables for all of the measured PAH's concentrations in all seasons. Ozone concentrations were significant for only some of the PAHs, particularly 6-ring PAHs.

  2. Factors influencing consumer satisfaction with health care.

    PubMed

    Deshpande, Satish P; Deshpande, Samir S

    2014-01-01

    The purpose of this study was to examine factors that impact consumer satisfaction with health care. This is a secondary analysis of the Center for Studying Health System Change's 2010 Health Tracking Household Survey. Regression analysis was used to examine the impact of treatment issues, financial issues, family-related issues, sources of health care information, location, and demographics-related factors on satisfaction with health care. The study involved 12280 subjects, 56% of whom were very satisfied with their health care, whereas 66% were very satisfied with their primary care physician. Fourteen percent of the subjects had no health insurance; 34% of the subjects got their health care information from the Web. Satisfaction with primary care physician, general health status, promptness of visit to doctor, insurance type, medical cost per family, annual income, persons in family, health care information from friends, and age significantly impacted satisfaction with health care. The regression models accounted for 23% of the variance in health care satisfaction. Satisfaction with primary care physicians, health insurance, and general health status are the 3 most significant indicators of an individual's satisfaction with health care.

  3. Effects of eye artifact removal methods on single trial P300 detection, a comparative study.

    PubMed

    Ghaderi, Foad; Kim, Su Kyoung; Kirchner, Elsa Andrea

    2014-01-15

    Electroencephalographic signals are commonly contaminated by eye artifacts, even if recorded under controlled conditions. The objective of this work was to quantitatively compare standard artifact removal methods (regression, filtered regression, Infomax, and second order blind identification (SOBI)) and two artifact identification approaches for independent component analysis (ICA) methods, i.e. ADJUST and correlation. To this end, eye artifacts were removed and the cleaned datasets were used for single trial classification of P300 (a type of event related potentials elicited using the oddball paradigm). Statistical analysis of the results confirms that the combination of Infomax and ADJUST provides a relatively better performance (0.6% improvement on average of all subject) while the combination of SOBI and correlation performs the worst. Low-pass filtering the data at lower cutoffs (here 4 Hz) can also improve the classification accuracy. Without requiring any artifact reference channel, the combination of Infomax and ADJUST improves the classification performance more than the other methods for both examined filtering cutoffs, i.e., 4 Hz and 25 Hz. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. A quantitative study of factors influencing quality of life in rural Mexican women diagnosed with HIV.

    PubMed

    Holtz, Carol; Sowell, Richard; VanBrackle, Lewis; Velasquez, Gabriela; Hernandez-Alonso, Virginia

    2014-01-01

    This quantitative study explored the level of Quality of Life (QoL) in indigenous Mexican women and identified psychosocial factors that significantly influenced their QoL, using face-to-face interviews with 101 women accessing care in an HIV clinic in Oaxaca, Mexico. Variables included demographic characteristics, levels of depression, coping style, family functioning, HIV-related beliefs, and QoL. Descriptive statistics were used to analyze participant characteristics, and women's scores on data collection instruments. Pearson's R correlational statistics were used to determine the level of significance between study variables. Multiple regression analysis examined all variables that were significantly related to QoL. Pearson's correlational analysis of relationships between Spirituality, Educating Self about HIV, Family Functioning, Emotional Support, Physical Care, and Staying Positive demonstrated positive correlation to QoL. Stigma, depression, and avoidance coping were significantly and negatively associated with QoL. The final regression model indicated that depression and avoidance coping were the best predictor variables for QoL. Copyright © 2014 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.

  5. Impact of fall-related behaviors as risk factors for falls among the elderly patients with dementia in a geriatric facility in Japan.

    PubMed

    Suzuki, Mizue; Kurata, Sadami; Yamamoto, Emiko; Makino, Kumiko; Kanamori, Masao

    2012-09-01

    The purpose of this study was to clarify potential fall-related behaviors as fall risk factors that may predict the potential for falls among the elderly patients with dementia at a geriatric facility in Japan. This study was conducted from April 2008 to May 2009. A baseline study was conducted in April 2008 to evaluate Mini-Mental State Examination, Physical Self-Maintenance Scale, fall-related behaviors, and other factors. For statistical analysis, paired t test and logistic analysis were used to compare each item between fallers and nonfallers. A total of 135 participants were followed up for 1 year; 50 participants (37.04%) fell during that period. Results of multiple logistic regression analysis showed that the total score for fall-related behaviors was significantly related to falls. It was suggested that 11 fall-related behaviors may be effective indicators to predict falls among the elderly patients with dementia.

  6. Voxel-wise motion artifacts in population-level whole-brain connectivity analysis of resting-state FMRI.

    PubMed

    Spisák, Tamás; Jakab, András; Kis, Sándor A; Opposits, Gábor; Aranyi, Csaba; Berényi, Ervin; Emri, Miklós

    2014-01-01

    Functional Magnetic Resonance Imaging (fMRI) based brain connectivity analysis maps the functional networks of the brain by estimating the degree of synchronous neuronal activity between brain regions. Recent studies have demonstrated that "resting-state" fMRI-based brain connectivity conclusions may be erroneous when motion artifacts have a differential effect on fMRI BOLD signals for between group comparisons. A potential explanation could be that in-scanner displacement, due to rotational components, is not spatially constant in the whole brain. However, this localized nature of motion artifacts is poorly understood and is rarely considered in brain connectivity studies. In this study, we initially demonstrate the local correspondence between head displacement and the changes in the resting-state fMRI BOLD signal. Than, we investigate how connectivity strength is affected by the population-level variation in the spatial pattern of regional displacement. We introduce Regional Displacement Interaction (RDI), a new covariate parameter set for second-level connectivity analysis and demonstrate its effectiveness in reducing motion related confounds in comparisons of groups with different voxel-vise displacement pattern and preprocessed using various nuisance regression methods. The effect of using RDI as second-level covariate is than demonstrated in autism-related group comparisons. The relationship between the proposed method and some of the prevailing subject-level nuisance regression techniques is evaluated. Our results show that, depending on experimental design, treating in-scanner head motion as a global confound may not be appropriate. The degree of displacement is highly variable among various brain regions, both within and between subjects. These regional differences bias correlation-based measures of brain connectivity. The inclusion of the proposed second-level covariate into the analysis successfully reduces artifactual motion-related group differences and preserves real neuronal differences, as demonstrated by the autism-related comparisons.

  7. Neural correlates of gait variability in people with multiple sclerosis with fall history.

    PubMed

    Kalron, Alon; Allali, Gilles; Achiron, Anat

    2018-05-28

    Investigate the association between step time variability and related brain structures in accordance with fall status in people with multiple sclerosis (PwMS). The study included 225 PwMS. A whole-brain MRI was performed by a high-resolution 3.0-Telsa MR scanner in addition to volumetric analysis based on 3D T1-weighted images using the FreeSurfer image analysis suite. Step time variability was measured by an electronic walkway. Participants were defined as "fallers" (at least two falls during the previous year) and "non-fallers". One hundred and five PwMS were defined as fallers and had a greater step time variability compared to non-fallers (5.6% (S.D.=3.4) vs. 3.4% (S.D.=1.5); p=0.001). MS fallers exhibited a reduced volume in the left caudate and both cerebellum hemispheres compared to non-fallers. By using a linear regression analysis no association was found between gait variability and related brain structures in the total cohort and non-fallers group. However, the analysis found an association between the left hippocampus and left putamen volumes with step time variability in the faller group; p=0.031, 0.048, respectively, controlling for total cranial volume, walking speed, disability, age and gender. Nevertheless, according to the hierarchical regression model, the contribution of these brain measures to predict gait variability was relatively small compared to walking speed. An association between low left hippocampal, putamen volumes and step time variability was found in PwMS with a history of falls, suggesting brain structural characteristics may be related to falls and increased gait variability in PwMS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Multiple regression analysis of factors influencing dominant hand grip strength in an adult Malaysian population.

    PubMed

    Hossain, M G; Zyroul, R; Pereira, B P; Kamarul, T

    2012-01-01

    Grip strength is an important measure used to monitor the progression of a condition, and to evaluate outcomes of treatment. We assessed how various physical and social factors predict normal grip strength in an adult Malaysian population of mixed Asian ethnicity (254 men, 246 women). Grip strength was recorded using the Jamar dynamometer. The mean grip strength for the dominant hand was 29.8 kg for men and 17.6 kg for women. Multiple regression analysis demonstrated that the dominant hand grip strength was positively associated with height and body mass index, and negatively associated with age for both sexes. Dominant hand grip strength was related to work status for men (p < 0.05) but not for women. However, there was no difference in grip strength among ethnic groups.

  9. Using Robust Standard Errors to Combine Multiple Regression Estimates with Meta-Analysis

    ERIC Educational Resources Information Center

    Williams, Ryan T.

    2012-01-01

    Combining multiple regression estimates with meta-analysis has continued to be a difficult task. A variety of methods have been proposed and used to combine multiple regression slope estimates with meta-analysis, however, most of these methods have serious methodological and practical limitations. The purpose of this study was to explore the use…

  10. A Quality Assessment Tool for Non-Specialist Users of Regression Analysis

    ERIC Educational Resources Information Center

    Argyrous, George

    2015-01-01

    This paper illustrates the use of a quality assessment tool for regression analysis. It is designed for non-specialist "consumers" of evidence, such as policy makers. The tool provides a series of questions such consumers of evidence can ask to interrogate regression analysis, and is illustrated with reference to a recent study published…

  11. Research on Influence and Prediction Model of Urban Traffic Link Tunnel curvature on Fire Temperature Based on Pyrosim--SPSS Multiple Regression Analysis

    NASA Astrophysics Data System (ADS)

    Li, Xiao Ju; Yao, Kun; Dai, Jun Yu; Song, Yun Long

    2018-05-01

    The underground space, also known as the “fourth dimension” of the city, reflects the efficient use of urban development intensive. Urban traffic link tunnel is a typical underground limited-length space. Due to the geographical location, the special structure of space and the curvature of the tunnel, high-temperature smoke can easily form the phenomenon of “smoke turning” and the fire risk is extremely high. This paper takes an urban traffic link tunnel as an example to focus on the relationship between curvature and the temperature near the fire source, and use the pyrosim built different curvature fire model to analyze the influence of curvature on the temperature of the fire, then using SPSS Multivariate regression analysis simulate curvature of the tunnel and fire temperature data. Finally, a prediction model of urban traffic link tunnel curvature on fire temperature was proposed. The regression model analysis and test show that the curvature is negatively correlated with the tunnel temperature. This model is feasible and can provide a theoretical reference for the urban traffic link tunnel fire protection design and the preparation of the evacuation plan. And also, it provides some reference for other related curved tunnel curvature design and smoke control measures.

  12. Application of Regression-Discontinuity Analysis in Pharmaceutical Health Services Research

    PubMed Central

    Zuckerman, Ilene H; Lee, Euni; Wutoh, Anthony K; Xue, Zhenyi; Stuart, Bruce

    2006-01-01

    Objective To demonstrate how a relatively underused design, regression-discontinuity (RD), can provide robust estimates of intervention effects when stronger designs are impossible to implement. Data Sources/Study Setting Administrative claims from a Mid-Atlantic state Medicaid program were used to evaluate the effectiveness of an educational drug utilization review intervention. Study Design Quasi-experimental design. Data Collection/Extraction Methods A drug utilization review study was conducted to evaluate a letter intervention to physicians treating Medicaid children with potentially excessive use of short-acting β2-agonist inhalers (SAB). The outcome measure is change in seasonally-adjusted SAB use 5 months pre- and postintervention. To determine if the intervention reduced monthly SAB utilization, results from an RD analysis are compared to findings from a pretest–posttest design using repeated-measure ANOVA. Principal Findings Both analyses indicated that the intervention significantly reduced SAB use among the high users. Average monthly SAB use declined by 0.9 canisters per month (p<.001) according to the repeated-measure ANOVA and by 0.2 canisters per month (p<.001) from RD analysis. Conclusions Regression-discontinuity design is a useful quasi-experimental methodology that has significant advantages in internal validity compared to other pre–post designs when assessing interventions in which subjects' assignment is based on cutoff scores for a critical variable. PMID:16584464

  13. Creep analysis of silicone for podiatry applications.

    PubMed

    Janeiro-Arocas, Julia; Tarrío-Saavedra, Javier; López-Beceiro, Jorge; Naya, Salvador; López-Canosa, Adrián; Heredia-García, Nicolás; Artiaga, Ramón

    2016-10-01

    This work shows an effective methodology to characterize the creep-recovery behavior of silicones before their application in podiatry. The aim is to characterize, model and compare the creep-recovery properties of different types of silicone used in podiatry orthotics. Creep-recovery phenomena of silicones used in podiatry orthotics is characterized by dynamic mechanical analysis (DMA). Silicones provided by Herbitas are compared by observing their viscoelastic properties by Functional Data Analysis (FDA) and nonlinear regression. The relationship between strain and time is modeled by fixed and mixed effects nonlinear regression to compare easily and intuitively podiatry silicones. Functional ANOVA and Kohlrausch-Willians-Watts (KWW) model with fixed and mixed effects allows us to compare different silicones observing the values of fitting parameters and their physical meaning. The differences between silicones are related to the variations of breadth of creep-recovery time distribution and instantaneous deformation-permanent strain. Nevertheless, the mean creep-relaxation time is the same for all the studied silicones. Silicones used in palliative orthoses have higher instantaneous deformation-permanent strain and narrower creep-recovery distribution. The proposed methodology based on DMA, FDA and nonlinear regression is an useful tool to characterize and choose the proper silicone for each podiatry application according to their viscoelastic properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Hyperspectral analysis of soil organic matter in coal mining regions using wavelets, correlations, and partial least squares regression.

    PubMed

    Lin, Lixin; Wang, Yunjia; Teng, Jiyao; Wang, Xuchen

    2016-02-01

    Hyperspectral estimation of soil organic matter (SOM) in coal mining regions is an important tool for enhancing fertilization in soil restoration programs. The correlation--partial least squares regression (PLSR) method effectively solves the information loss problem of correlation--multiple linear stepwise regression, but results of the correlation analysis must be optimized to improve precision. This study considers the relationship between spectral reflectance and SOM based on spectral reflectance curves of soil samples collected from coal mining regions. Based on the major absorption troughs in the 400-1006 nm spectral range, PLSR analysis was performed using 289 independent bands of the second derivative (SDR) with three levels and measured SOM values. A wavelet-correlation-PLSR (W-C-PLSR) model was then constructed. By amplifying useful information that was previously obscured by noise, the W-C-PLSR model was optimal for estimating SOM content, with smaller prediction errors in both calibration (R(2) = 0.970, root mean square error (RMSEC) = 3.10, and mean relative error (MREC) = 8.75) and validation (RMSEV = 5.85 and MREV = 14.32) analyses, as compared with other models. Results indicate that W-C-PLSR has great potential to estimate SOM in coal mining regions.

  15. Analyzing the Impact of Ambient Temperature Indicators on Transformer Life in Different Regions of Chinese Mainland

    PubMed Central

    Bai, Cui-fen; Gao, Wen-Sheng; Liu, Tong

    2013-01-01

    Regression analysis is applied to quantitatively analyze the impact of different ambient temperature characteristics on the transformer life at different locations of Chinese mainland. 200 typical locations in Chinese mainland are selected for the study. They are specially divided into six regions so that the subsequent analysis can be done in a regional context. For each region, the local historical ambient temperature and load data are provided as inputs variables of the life consumption model in IEEE Std. C57.91-1995 to estimate the transformer life at every location. Five ambient temperature indicators related to the transformer life are involved into the partial least squares regression to describe their impact on the transformer life. According to a contribution measurement criterion of partial least squares regression, three indicators are conclusively found to be the most important factors influencing the transformer life, and an explicit expression is provided to describe the relationship between the indicators and the transformer life for every region. The analysis result is applicable to the area where the temperature characteristics are similar to Chinese mainland, and the expressions obtained can be applied to the other locations that are not included in this paper if these three indicators are known. PMID:23843729

  16. Analyzing the impact of ambient temperature indicators on transformer life in different regions of Chinese mainland.

    PubMed

    Bai, Cui-fen; Gao, Wen-Sheng; Liu, Tong

    2013-01-01

    Regression analysis is applied to quantitatively analyze the impact of different ambient temperature characteristics on the transformer life at different locations of Chinese mainland. 200 typical locations in Chinese mainland are selected for the study. They are specially divided into six regions so that the subsequent analysis can be done in a regional context. For each region, the local historical ambient temperature and load data are provided as inputs variables of the life consumption model in IEEE Std. C57.91-1995 to estimate the transformer life at every location. Five ambient temperature indicators related to the transformer life are involved into the partial least squares regression to describe their impact on the transformer life. According to a contribution measurement criterion of partial least squares regression, three indicators are conclusively found to be the most important factors influencing the transformer life, and an explicit expression is provided to describe the relationship between the indicators and the transformer life for every region. The analysis result is applicable to the area where the temperature characteristics are similar to Chinese mainland, and the expressions obtained can be applied to the other locations that are not included in this paper if these three indicators are known.

  17. Early Parallel Activation of Semantics and Phonology in Picture Naming: Evidence from a Multiple Linear Regression MEG Study

    PubMed Central

    Miozzo, Michele; Pulvermüller, Friedemann; Hauk, Olaf

    2015-01-01

    The time course of brain activation during word production has become an area of increasingly intense investigation in cognitive neuroscience. The predominant view has been that semantic and phonological processes are activated sequentially, at about 150 and 200–400 ms after picture onset. Although evidence from prior studies has been interpreted as supporting this view, these studies were arguably not ideally suited to detect early brain activation of semantic and phonological processes. We here used a multiple linear regression approach to magnetoencephalography (MEG) analysis of picture naming in order to investigate early effects of variables specifically related to visual, semantic, and phonological processing. This was combined with distributed minimum-norm source estimation and region-of-interest analysis. Brain activation associated with visual image complexity appeared in occipital cortex at about 100 ms after picture presentation onset. At about 150 ms, semantic variables became physiologically manifest in left frontotemporal regions. In the same latency range, we found an effect of phonological variables in the left middle temporal gyrus. Our results demonstrate that multiple linear regression analysis is sensitive to early effects of multiple psycholinguistic variables in picture naming. Crucially, our results suggest that access to phonological information might begin in parallel with semantic processing around 150 ms after picture onset. PMID:25005037

  18. MicroCT angiography detects vascular formation and regression in skin wound healing.

    PubMed

    Urao, Norifumi; Okonkwo, Uzoagu A; Fang, Milie M; Zhuang, Zhen W; Koh, Timothy J; DiPietro, Luisa A

    2016-07-01

    Properly regulated angiogenesis and arteriogenesis are essential for effective wound healing. Tissue injury induces robust new vessel formation and subsequent vessel maturation, which involves vessel regression and remodeling. Although formation of functional vasculature is essential for healing, alterations in vascular structure over the time course of skin wound healing are not well understood. Here, using high-resolution ex vivo X-ray micro-computed tomography (microCT), we describe the vascular network during healing of skin excisional wounds with highly detailed three-dimensional (3D) reconstructed images and associated quantitative analysis. We found that relative vessel volume, surface area and branching number are significantly decreased in wounds from day 7 to days 14 and 21. Segmentation and skeletonization analysis of selected branches from high-resolution images as small as 2.5μm voxel size show that branching orders are decreased in the wound vessels during healing. In histological analysis, we found that the contrast agent fills mainly arterioles, but not small capillaries nor large veins. In summary, high-resolution microCT revealed dynamic alterations of vessel structures during wound healing. This technique may be useful as a key tool in the study of the formation and regression of wound vessels. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. A retrospective analysis to identify the factors affecting infection in patients undergoing chemotherapy.

    PubMed

    Park, Ji Hyun; Kim, Hyeon-Young; Lee, Hanna; Yun, Eun Kyoung

    2015-12-01

    This study compares the performance of the logistic regression and decision tree analysis methods for assessing the risk factors for infection in cancer patients undergoing chemotherapy. The subjects were 732 cancer patients who were receiving chemotherapy at K university hospital in Seoul, Korea. The data were collected between March 2011 and February 2013 and were processed for descriptive analysis, logistic regression and decision tree analysis using the IBM SPSS Statistics 19 and Modeler 15.1 programs. The most common risk factors for infection in cancer patients receiving chemotherapy were identified as alkylating agents, vinca alkaloid and underlying diabetes mellitus. The logistic regression explained 66.7% of the variation in the data in terms of sensitivity and 88.9% in terms of specificity. The decision tree analysis accounted for 55.0% of the variation in the data in terms of sensitivity and 89.0% in terms of specificity. As for the overall classification accuracy, the logistic regression explained 88.0% and the decision tree analysis explained 87.2%. The logistic regression analysis showed a higher degree of sensitivity and classification accuracy. Therefore, logistic regression analysis is concluded to be the more effective and useful method for establishing an infection prediction model for patients undergoing chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Applications of Some Artificial Intelligence Methods to Satellite Soundings

    NASA Technical Reports Server (NTRS)

    Munteanu, M. J.; Jakubowicz, O.

    1985-01-01

    Hard clustering of temperature profiles and regression temperature retrievals were used to refine the method using the probabilities of membership of each pattern vector in each of the clusters derived with discriminant analysis. In hard clustering the maximum probability is taken and the corresponding cluster as the correct cluster are considered discarding the rest of the probabilities. In fuzzy partitioned clustering these probabilities are kept and the final regression retrieval is a weighted regression retrieval of several clusters. This method was used in the clustering of brightness temperatures where the purpose was to predict tropopause height. A further refinement is the division of temperature profiles into three major regions for classification purposes. The results are summarized in the tables total r.m.s. errors are displayed. An approach based on fuzzy logic which is intimately related to artificial intelligence methods is recommended.

  1. Visual grading characteristics and ordinal regression analysis during optimisation of CT head examinations.

    PubMed

    Zarb, Francis; McEntee, Mark F; Rainford, Louise

    2015-06-01

    To evaluate visual grading characteristics (VGC) and ordinal regression analysis during head CT optimisation as a potential alternative to visual grading assessment (VGA), traditionally employed to score anatomical visualisation. Patient images (n = 66) were obtained using current and optimised imaging protocols from two CT suites: a 16-slice scanner at the national Maltese centre for trauma and a 64-slice scanner in a private centre. Local resident radiologists (n = 6) performed VGA followed by VGC and ordinal regression analysis. VGC alone indicated that optimised protocols had similar image quality as current protocols. Ordinal logistic regression analysis provided an in-depth evaluation, criterion by criterion allowing the selective implementation of the protocols. The local radiology review panel supported the implementation of optimised protocols for brain CT examinations (including trauma) in one centre, achieving radiation dose reductions ranging from 24 % to 36 %. In the second centre a 29 % reduction in radiation dose was achieved for follow-up cases. The combined use of VGC and ordinal logistic regression analysis led to clinical decisions being taken on the implementation of the optimised protocols. This improved method of image quality analysis provided the evidence to support imaging protocol optimisation, resulting in significant radiation dose savings. • There is need for scientifically based image quality evaluation during CT optimisation. • VGC and ordinal regression analysis in combination led to better informed clinical decisions. • VGC and ordinal regression analysis led to dose reductions without compromising diagnostic efficacy.

  2. REGRESSION ANALYSIS OF SEA-SURFACE-TEMPERATURE PATTERNS FOR THE NORTH PACIFIC OCEAN.

    DTIC Science & Technology

    SEA WATER, *SURFACE TEMPERATURE, *OCEANOGRAPHIC DATA, PACIFIC OCEAN, REGRESSION ANALYSIS , STATISTICAL ANALYSIS, UNDERWATER EQUIPMENT, DETECTION, UNDERWATER COMMUNICATIONS, DISTRIBUTION, THERMAL PROPERTIES, COMPUTERS.

  3. Physical activity volume in relation to risk of atrial fibrillation. A non-linear meta-regression analysis.

    PubMed

    Ricci, Cristian; Gervasi, Federico; Gaeta, Maddalena; Smuts, Cornelius M; Schutte, Aletta E; Leitzmann, Michael F

    2018-05-01

    Background Light physical activity is known to reduce atrial fibrillation risk, whereas moderate to vigorous physical activity may result in an increased risk. However, the question of what volume of physical activity can be considered beneficial remains poorly understood. The scope of the present work was to examine the relation between physical activity volume and atrial fibrillation risk. Design A comprehensive systematic review was performed following the PRISMA guidelines. Methods A non-linear meta-regression considering the amount of energy spent in physical activity was carried out. The first derivative of the non-linear relation between physical activity and atrial fibrillation risk was evaluated to determine the volume of physical activity that carried the minimum atrial fibrillation risk. Results The dose-response analysis of the relation between physical activity and atrial fibrillation risk showed that physical activity at volumes of 5-20 metabolic equivalents per week (MET-h/week) was associated with significant reduction in atrial fibrillation risk (relative risk for 19 MET-h/week = 0.92 (0.87, 0.98). By comparison, physical activity volumes exceeding 20 MET-h/week were unrelated to atrial fibrillation risk (relative risk for 21 MET-h/week = 0.95 (0.88, 1.02). Conclusion These data show a J-shaped relation between physical activity volume and atrial fibrillation risk. Physical activity at volumes of up to 20 MET-h/week is associated with reduced atrial fibrillation risk, whereas volumes exceeding 20 MET-h/week show no relation with risk.

  4. Examining geological controls on baseflow index (BFI) using regression analysis: An illustration from the Thames Basin, UK

    NASA Astrophysics Data System (ADS)

    Bloomfield, J. P.; Allen, D. J.; Griffiths, K. J.

    2009-06-01

    SummaryLinear regression methods can be used to quantify geological controls on baseflow index (BFI). This is illustrated using an example from the Thames Basin, UK. Two approaches have been adopted. The areal extents of geological classes based on lithostratigraphic and hydrogeological classification schemes have been correlated with BFI for 44 'natural' catchments from the Thames Basin. When regression models are built using lithostratigraphic classes that include a constant term then the model is shown to have some physical meaning and the relative influence of the different geological classes on BFI can be quantified. For example, the regression constants for two such models, 0.64 and 0.69, are consistent with the mean observed BFI (0.65) for the Thames Basin, and the signs and relative magnitudes of the regression coefficients for each of the lithostratigraphic classes are consistent with the hydrogeology of the Basin. In addition, regression coefficients for the lithostratigraphic classes scale linearly with estimates of log 10 hydraulic conductivity for each lithological class. When a regression is built using a hydrogeological classification scheme with no constant term, the model does not have any physical meaning, but it has a relatively high adjusted R2 value and because of the continuous coverage of the hydrogeological classification scheme, the model can be used for predictive purposes. A model calibrated on the 44 'natural' catchments and using four hydrogeological classes (low-permeability surficial deposits, consolidated aquitards, fractured aquifers and intergranular aquifers) is shown to perform as well as a model based on a hydrology of soil types (BFIHOST) scheme in predicting BFI in the Thames Basin. Validation of this model using 110 other 'variably impacted' catchments in the Basin shows that there is a correlation between modelled and observed BFI. Where the observed BFI is significantly higher than modelled BFI the deviations can be explained by an exogenous factor, catchment urban area. It is inferred that this is may be due influences from sewage discharge, mains leakage, and leakage from septic tanks.

  5. Status of tuberculosis-related stigma and associated factors: a cross-sectional study in central China.

    PubMed

    Yin, Xiaoxv; Yan, Shijiao; Tong, Yeqing; Peng, Xin; Yang, Tingting; Lu, Zuxun; Gong, Yanhong

    2018-02-01

    Tuberculosis (TB) poses a significant challenge to public health worldwide. Stigma is a major obstacle to TB control by leading to delay in diagnosis and treatment non-adherence. This study aimed to evaluate the status of TB-related stigma and its associated factors among TB patients in China. Cross-sectional survey. Thus, 1342 TB patients were recruited from TB dispensaries in three counties in Hubei Province using a multistage sampling method and surveyed using a structured anonymous questionnaire including validated scales to measure TB-related stigma. A generalised linear regression model was used to identify the factors associated with TB-related stigma. The average score on the TB-related Stigma Scale was 9.33 (SD = 4.25). Generalised linear regression analysis revealed that knowledge about TB (ß = -0.18, P = 0.0025), family function (ß = -0.29, P < 0.0001) and doctor-patient communication (ß = -0.32, P = 0.0005) were negatively associated with TB-related stigma. TB-related stigma was high among TB patients in China. Interventions concentrating on reducing TB patients' stigma in China should focus on improving patients' family function and patients' knowledge about TB. © 2017 John Wiley & Sons Ltd.

  6. Reporting quality of statistical methods in surgical observational studies: protocol for systematic review.

    PubMed

    Wu, Robert; Glen, Peter; Ramsay, Tim; Martel, Guillaume

    2014-06-28

    Observational studies dominate the surgical literature. Statistical adjustment is an important strategy to account for confounders in observational studies. Research has shown that published articles are often poor in statistical quality, which may jeopardize their conclusions. The Statistical Analyses and Methods in the Published Literature (SAMPL) guidelines have been published to help establish standards for statistical reporting.This study will seek to determine whether the quality of statistical adjustment and the reporting of these methods are adequate in surgical observational studies. We hypothesize that incomplete reporting will be found in all surgical observational studies, and that the quality and reporting of these methods will be of lower quality in surgical journals when compared with medical journals. Finally, this work will seek to identify predictors of high-quality reporting. This work will examine the top five general surgical and medical journals, based on a 5-year impact factor (2007-2012). All observational studies investigating an intervention related to an essential component area of general surgery (defined by the American Board of Surgery), with an exposure, outcome, and comparator, will be included in this systematic review. Essential elements related to statistical reporting and quality were extracted from the SAMPL guidelines and include domains such as intent of analysis, primary analysis, multiple comparisons, numbers and descriptive statistics, association and correlation analyses, linear regression, logistic regression, Cox proportional hazard analysis, analysis of variance, survival analysis, propensity analysis, and independent and correlated analyses. Each article will be scored as a proportion based on fulfilling criteria in relevant analyses used in the study. A logistic regression model will be built to identify variables associated with high-quality reporting. A comparison will be made between the scores of surgical observational studies published in medical versus surgical journals. Secondary outcomes will pertain to individual domains of analysis. Sensitivity analyses will be conducted. This study will explore the reporting and quality of statistical analyses in surgical observational studies published in the most referenced surgical and medical journals in 2013 and examine whether variables (including the type of journal) can predict high-quality reporting.

  7. Advantages of the net benefit regression framework for economic evaluations of interventions in the workplace: a case study of the cost-effectiveness of a collaborative mental health care program for people receiving short-term disability benefits for psychiatric disorders.

    PubMed

    Hoch, Jeffrey S; Dewa, Carolyn S

    2014-04-01

    Economic evaluations commonly accompany trials of new treatments or interventions; however, regression methods and their corresponding advantages for the analysis of cost-effectiveness data are not well known. To illustrate regression-based economic evaluation, we present a case study investigating the cost-effectiveness of a collaborative mental health care program for people receiving short-term disability benefits for psychiatric disorders. We implement net benefit regression to illustrate its strengths and limitations. Net benefit regression offers a simple option for cost-effectiveness analyses of person-level data. By placing economic evaluation in a regression framework, regression-based techniques can facilitate the analysis and provide simple solutions to commonly encountered challenges. Economic evaluations of person-level data (eg, from a clinical trial) should use net benefit regression to facilitate analysis and enhance results.

  8. Integrated analysis of DNA-methylation and gene expression using high-dimensional penalized regression: a cohort study on bone mineral density in postmenopausal women.

    PubMed

    Lien, Tonje G; Borgan, Ørnulf; Reppe, Sjur; Gautvik, Kaare; Glad, Ingrid Kristine

    2018-03-07

    Using high-dimensional penalized regression we studied genome-wide DNA-methylation in bone biopsies of 80 postmenopausal women in relation to their bone mineral density (BMD). The women showed BMD varying from severely osteoporotic to normal. Global gene expression data from the same individuals was available, and since DNA-methylation often affects gene expression, the overall aim of this paper was to include both of these omics data sets into an integrated analysis. The classical penalized regression uses one penalty, but we incorporated individual penalties for each of the DNA-methylation sites. These individual penalties were guided by the strength of association between DNA-methylations and gene transcript levels. DNA-methylations that were highly associated to one or more transcripts got lower penalties and were therefore favored compared to DNA-methylations showing less association to expression. Because of the complex pathways and interactions among genes, we investigated both the association between DNA-methylations and their corresponding cis gene, as well as the association between DNA-methylations and trans-located genes. Two integrating penalized methods were used: first, an adaptive group-regularized ridge regression, and secondly, variable selection was performed through a modified version of the weighted lasso. When information from gene expressions was integrated, predictive performance was considerably improved, in terms of predictive mean square error, compared to classical penalized regression without data integration. We found a 14.7% improvement in the ridge regression case and a 17% improvement for the lasso case. Our version of the weighted lasso with data integration found a list of 22 interesting methylation sites. Several corresponded to genes that are known to be important in bone formation. Using BMD as response and these 22 methylation sites as covariates, least square regression analyses resulted in R 2 =0.726, comparable to an average R 2 =0.438 for 10000 randomly selected groups of DNA-methylations with group size 22. Two recent types of penalized regression methods were adapted to integrate DNA-methylation and their association to gene expression in the analysis of bone mineral density. In both cases predictions clearly benefit from including the additional information on gene expressions.

  9. Exploratory Network Meta Regression Analysis of Stroke Prevention in Atrial Fibrillation Fails to Identify Any Interactions with Treatment Effect.

    PubMed

    Batson, Sarah; Sutton, Alex; Abrams, Keith

    2016-01-01

    Patients with atrial fibrillation are at a greater risk of stroke and therefore the main goal for treatment of patients with atrial fibrillation is to prevent stroke from occurring. There are a number of different stroke prevention treatments available to include warfarin and novel oral anticoagulants. Previous network meta-analyses of novel oral anticoagulants for stroke prevention in atrial fibrillation acknowledge the limitation of heterogeneity across the included trials but have not explored the impact of potentially important treatment modifying covariates. To explore potentially important treatment modifying covariates using network meta-regression analyses for stroke prevention in atrial fibrillation. We performed a network meta-analysis for the outcome of ischaemic stroke and conducted an exploratory regression analysis considering potentially important treatment modifying covariates. These covariates included the proportion of patients with a previous stroke, proportion of males, mean age, the duration of study follow-up and the patients underlying risk of ischaemic stroke. None of the covariates explored impacted relative treatment effects relative to placebo. Notably, the exploration of 'study follow-up' as a covariate supported the assumption that difference in trial durations is unimportant in this indication despite the variation across trials in the network. This study is limited by the quantity of data available. Further investigation is warranted, and, as justifying further trials may be difficult, it would be desirable to obtain individual patient level data (IPD) to facilitate an effort to relate treatment effects to IPD covariates in order to investigate heterogeneity. Observational data could also be examined to establish if there are potential trends elsewhere. The approach and methods presented have potentially wide applications within any indication as to highlight the potential benefit of extending decision problems to include additional comparators outside of those of primary interest to allow for the exploration of heterogeneity.

  10. CADDIS Volume 4. Data Analysis: Basic Analyses

    EPA Pesticide Factsheets

    Use of statistical tests to determine if an observation is outside the normal range of expected values. Details of CART, regression analysis, use of quantile regression analysis, CART in causal analysis, simplifying or pruning resulting trees.

  11. Performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data.

    PubMed

    Yelland, Lisa N; Salter, Amy B; Ryan, Philip

    2011-10-15

    Modified Poisson regression, which combines a log Poisson regression model with robust variance estimation, is a useful alternative to log binomial regression for estimating relative risks. Previous studies have shown both analytically and by simulation that modified Poisson regression is appropriate for independent prospective data. This method is often applied to clustered prospective data, despite a lack of evidence to support its use in this setting. The purpose of this article is to evaluate the performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data, by using generalized estimating equations to account for clustering. A simulation study is conducted to compare log binomial regression and modified Poisson regression for analyzing clustered data from intervention and observational studies. Both methods generally perform well in terms of bias, type I error, and coverage. Unlike log binomial regression, modified Poisson regression is not prone to convergence problems. The methods are contrasted by using example data sets from 2 large studies. The results presented in this article support the use of modified Poisson regression as an alternative to log binomial regression for analyzing clustered prospective data when clustering is taken into account by using generalized estimating equations.

  12. Regression estimators for generic health-related quality of life and quality-adjusted life years.

    PubMed

    Basu, Anirban; Manca, Andrea

    2012-01-01

    To develop regression models for outcomes with truncated supports, such as health-related quality of life (HRQoL) data, and account for features typical of such data such as a skewed distribution, spikes at 1 or 0, and heteroskedasticity. Regression estimators based on features of the Beta distribution. First, both a single equation and a 2-part model are presented, along with estimation algorithms based on maximum-likelihood, quasi-likelihood, and Bayesian Markov-chain Monte Carlo methods. A novel Bayesian quasi-likelihood estimator is proposed. Second, a simulation exercise is presented to assess the performance of the proposed estimators against ordinary least squares (OLS) regression for a variety of HRQoL distributions that are encountered in practice. Finally, the performance of the proposed estimators is assessed by using them to quantify the treatment effect on QALYs in the EVALUATE hysterectomy trial. Overall model fit is studied using several goodness-of-fit tests such as Pearson's correlation test, link and reset tests, and a modified Hosmer-Lemeshow test. The simulation results indicate that the proposed methods are more robust in estimating covariate effects than OLS, especially when the effects are large or the HRQoL distribution has a large spike at 1. Quasi-likelihood techniques are more robust than maximum likelihood estimators. When applied to the EVALUATE trial, all but the maximum likelihood estimators produce unbiased estimates of the treatment effect. One and 2-part Beta regression models provide flexible approaches to regress the outcomes with truncated supports, such as HRQoL, on covariates, after accounting for many idiosyncratic features of the outcomes distribution. This work will provide applied researchers with a practical set of tools to model outcomes in cost-effectiveness analysis.

  13. Applying Kaplan-Meier to Item Response Data

    ERIC Educational Resources Information Center

    McNeish, Daniel

    2018-01-01

    Some IRT models can be equivalently modeled in alternative frameworks such as logistic regression. Logistic regression can also model time-to-event data, which concerns the probability of an event occurring over time. Using the relation between time-to-event models and logistic regression and the relation between logistic regression and IRT, this…

  14. Analysis of Young Men: Chapter Two. Determinants of Adult Socioeconomic Attainment in Young Men: An Analysis of the Role of Risk and Social Capital Factors, and the Pathways through Which They Have Their Impacts.

    ERIC Educational Resources Information Center

    Brown, Brett V.

    In this chapter, a series of nested regression models are estimated to analyze three measures of adult socioeconomic attainment measured at age 29: (1) educational attainment; (2) occupational attainment; and (3) earnings. The models seek to relate risk, social capital, social-psychological factors, and life course events in early adulthood, both…

  15. Solvency supervision based on a total balance sheet approach

    NASA Astrophysics Data System (ADS)

    Pitselis, Georgios

    2009-11-01

    In this paper we investigate the adequacy of the own funds a company requires in order to remain healthy and avoid insolvency. Two methods are applied here; the quantile regression method and the method of mixed effects models. Quantile regression is capable of providing a more complete statistical analysis of the stochastic relationship among random variables than least squares estimation. The estimated mixed effects line can be considered as an internal industry equation (norm), which explains a systematic relation between a dependent variable (such as own funds) with independent variables (e.g. financial characteristics, such as assets, provisions, etc.). The above two methods are implemented with two data sets.

  16. The PX-EM algorithm for fast stable fitting of Henderson's mixed model

    PubMed Central

    Foulley, Jean-Louis; Van Dyk, David A

    2000-01-01

    This paper presents procedures for implementing the PX-EM algorithm of Liu, Rubin and Wu to compute REML estimates of variance covariance components in Henderson's linear mixed models. The class of models considered encompasses several correlated random factors having the same vector length e.g., as in random regression models for longitudinal data analysis and in sire-maternal grandsire models for genetic evaluation. Numerical examples are presented to illustrate the procedures. Much better results in terms of convergence characteristics (number of iterations and time required for convergence) are obtained for PX-EM relative to the basic EM algorithm in the random regression. PMID:14736399

  17. Population heterogeneity in the salience of multiple risk factors for adolescent delinquency.

    PubMed

    Lanza, Stephanie T; Cooper, Brittany R; Bray, Bethany C

    2014-03-01

    To present mixture regression analysis as an alternative to more standard regression analysis for predicting adolescent delinquency. We demonstrate how mixture regression analysis allows for the identification of population subgroups defined by the salience of multiple risk factors. We identified population subgroups (i.e., latent classes) of individuals based on their coefficients in a regression model predicting adolescent delinquency from eight previously established risk indices drawn from the community, school, family, peer, and individual levels. The study included N = 37,763 10th-grade adolescents who participated in the Communities That Care Youth Survey. Standard, zero-inflated, and mixture Poisson and negative binomial regression models were considered. Standard and mixture negative binomial regression models were selected as optimal. The five-class regression model was interpreted based on the class-specific regression coefficients, indicating that risk factors had varying salience across classes of adolescents. Standard regression showed that all risk factors were significantly associated with delinquency. Mixture regression provided more nuanced information, suggesting a unique set of risk factors that were salient for different subgroups of adolescents. Implications for the design of subgroup-specific interventions are discussed. Copyright © 2014 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  18. A comparative evaluation of end-emic and non-endemic region of visceral leishmaniasis (Kala-azar) in India with ground survey and space technology.

    PubMed

    Kesari, Shreekant; Bhunia, Gouri Sankar; Kumar, Vijay; Jeyaram, Algarswamy; Ranjan, Alok; Das, Pradeep

    2011-08-01

    In visceral leishmaniasis, phlebotomine vectors are targets for control measures. Understanding the ecosystem of the vectors is a prerequisite for creating these control measures. This study endeavours to delineate the suitable locations of Phlebotomus argentipes with relation to environmental characteristics between endemic and non-endemic districts in India. A cross-sectional survey was conducted on 25 villages in each district. Environmental data were obtained through remote sensing images and vector density was measured using a CDC light trap. Simple linear regression analysis was used to measure the association between climatic parameters and vector density. Using factor analysis, the relationship between land cover classes and P. argentipes density among the villages in both districts was investigated. The results of the regression analysis indicated that indoor temperature and relative humidity are the best predictors for P. argentipes distribution. Factor analysis confirmed breeding preferences for P. argentipes by landscape element. Minimum Normalised Difference Vegetation Index, marshy land and orchard/settlement produced high loading in an endemic region, whereas water bodies and dense forest were preferred in non-endemic sites. Soil properties between the two districts were studied and indicated that soil pH and moisture content is higher in endemic sites compared to non-endemic sites. The present study should be utilised to make critical decisions for vector surveillance and controlling Kala-azar disease vectors.

  19. Job compensable factors and factor weights derived from job analysis data.

    PubMed

    Chi, Chia-Fen; Chang, Tin-Chang; Hsia, Ping-Ling; Song, Jen-Chieh

    2007-06-01

    Government data on 1,039 job titles in Taiwan were analyzed to assess possible relationships between job attributes and compensation. For each job title, 79 specific variables in six major classes (required education and experience, aptitude, interest, work temperament, physical demands, task environment) were coded to derive the statistical predictors of wage for managers, professionals, technical, clerical, service, farm, craft, operatives, and other workers. Of the 79 variables, only 23 significantly related to pay rate were subjected to a factor and multiple regression analysis for predicting monthly wages. Given the heterogeneous nature of collected job titles, a 4-factor solution (occupational knowledge and skills, human relations skills, work schedule hardships, physical hardships) explaining 43.8% of the total variance but predicting only 23.7% of the monthly pay rate was derived. On the other hand, multiple regression with 9 job analysis items (required education, professional training, professional certificate, professional experience, coordinating, leadership and directing, demand on hearing, proportion of shift working indoors, outdoors and others, rotating shift) better predicted pay and explained 32.5% of the variance. A direct comparison of factors and subfactors of job evaluation plans indicated mental effort and responsibility (accountability) had not been measured with the current job analysis data. Cross-validation of job evaluation factors and ratings with the wage rates is required to calibrate both.

  20. Dental computed tomographic imaging as age estimation: morphological analysis of the third molar of a group of Turkish population.

    PubMed

    Cantekin, Kenan; Sekerci, Ahmet Ercan; Buyuk, Suleyman Kutalmis

    2013-12-01

    Computed tomography (CT) is capable of providing accurate and measurable 3-dimensional images of the third molar. The aims of this study were to analyze the development of the mandibular third molar and its relation to chronological age and to create new reference data for a group of Turkish participants aged 9 to 25 years on the basis of cone-beam CT images. All data were obtained from the patients' records including medical, social, and dental anamnesis and cone-beam CT images of 752 patients. Linear regression analysis was performed to obtain regression formulas for dental age calculation with chronological age and to determine the coefficient of determination (r) for each sex. Statistical analysis showed a strong correlation between age and third-molar development for the males (r2 = 0.80) and the females (r2 = 0.78). Computed tomographic images are clinically useful for accurate and reliable estimation of dental ages of children and youth.

  1. Local regression type methods applied to the study of geophysics and high frequency financial data

    NASA Astrophysics Data System (ADS)

    Mariani, M. C.; Basu, K.

    2014-09-01

    In this work we applied locally weighted scatterplot smoothing techniques (Lowess/Loess) to Geophysical and high frequency financial data. We first analyze and apply this technique to the California earthquake geological data. A spatial analysis was performed to show that the estimation of the earthquake magnitude at a fixed location is very accurate up to the relative error of 0.01%. We also applied the same method to a high frequency data set arising in the financial sector and obtained similar satisfactory results. The application of this approach to the two different data sets demonstrates that the overall method is accurate and efficient, and the Lowess approach is much more desirable than the Loess method. The previous works studied the time series analysis; in this paper our local regression models perform a spatial analysis for the geophysics data providing different information. For the high frequency data, our models estimate the curve of best fit where data are dependent on time.

  2. Strengths use as a secret of happiness: Another dimension of visually impaired individuals' psychological state.

    PubMed

    Matsuguma, Shinichiro; Kawashima, Motoko; Negishi, Kazuno; Sano, Fumiya; Mimura, Masaru; Tsubota, Kazuo

    2018-01-01

    It is well recognized that visual impairments (VI) worsen individuals' mental condition. However, little is known about the positive aspects including subjective happiness, positive emotions, and strengths. Therefore, the purpose of this study was to investigate the positive aspects of persons with VI including their subjective happiness, positive emotions, and strengths use. Positive aspects of persons with VI were measured using the Subjective Happiness Scale (SHS), the Scale of Positive and Negative Experience-Balance (SPANE-B), and the Strengths Use Scale (SUS). A cross-sectional analysis was utilized to examine personal information in a Tokyo sample (N = 44). We used a simple regression analysis and found significant relationships between the SHS or SPANE-B and SUS; on the contrary, VI-related variables were not correlated with them. A multiple regression analysis confirmed that SUS was a significant factor associated with both the SHS and SPANE-B. Strengths use might be a possible protective factor from the negative effects of VI.

  3. Analysis of an experiment aimed at improving the reliability of transmission centre shafts.

    PubMed

    Davis, T P

    1995-01-01

    Smith (1991) presents a paper proposing the use of Weibull regression models to establish dependence of failure data (usually times) on covariates related to the design of the test specimens and test procedures. In his article Smith made the point that good experimental design was as important in reliability applications as elsewhere, and in view of the current interest in design inspired by Taguchi and others, we pay some attention in this article to that topic. A real case study from the Ford Motor Company is presented. Our main approach is to utilize suggestions in the literature for applying standard least squares techniques of experimental analysis even when there is likely to be nonnormal error, and censoring. This approach lacks theoretical justification, but its appeal is its simplicity and flexibility. For completeness we also include some analysis based on the proportional hazards model, and in an attempt to link back to Smith (1991), look at a Weibull regression model.

  4. Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert M.

    2013-01-01

    A new regression model search algorithm was developed that may be applied to both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The algorithm is a simplified version of a more complex algorithm that was originally developed for the NASA Ames Balance Calibration Laboratory. The new algorithm performs regression model term reduction to prevent overfitting of data. It has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a regression model search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression model. Therefore, the simplified algorithm is not intended to replace the original algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new search algorithm.

  5. Local spatial variations analysis of smear-positive tuberculosis in Xinjiang using Geographically Weighted Regression model.

    PubMed

    Wei, Wang; Yuan-Yuan, Jin; Ci, Yan; Ahan, Alayi; Ming-Qin, Cao

    2016-10-06

    The spatial interplay between socioeconomic factors and tuberculosis (TB) cases contributes to the understanding of regional tuberculosis burdens. Historically, local Poisson Geographically Weighted Regression (GWR) has allowed for the identification of the geographic disparities of TB cases and their relevant socioeconomic determinants, thereby forecasting local regression coefficients for the relations between the incidence of TB and its socioeconomic determinants. Therefore, the aims of this study were to: (1) identify the socioeconomic determinants of geographic disparities of smear positive TB in Xinjiang, China (2) confirm if the incidence of smear positive TB and its associated socioeconomic determinants demonstrate spatial variability (3) compare the performance of two main models: one is Ordinary Least Square Regression (OLS), and the other local GWR model. Reported smear-positive TB cases in Xinjiang were extracted from the TB surveillance system database during 2004-2010. The average number of smear-positive TB cases notified in Xinjiang was collected from 98 districts/counties. The population density (POPden), proportion of minorities (PROmin), number of infectious disease network reporting agencies (NUMagen), proportion of agricultural population (PROagr), and per capita annual gross domestic product (per capita GDP) were gathered from the Xinjiang Statistical Yearbook covering a period from 2004 to 2010. The OLS model and GWR model were then utilized to investigate socioeconomic determinants of smear-positive TB cases. Geoda 1.6.7, and GWR 4.0 software were used for data analysis. Our findings indicate that the relations between the average number of smear-positive TB cases notified in Xinjiang and their socioeconomic determinants (POPden, PROmin, NUMagen, PROagr, and per capita GDP) were significantly spatially non-stationary. This means that in some areas more smear-positive TB cases could be related to higher socioeconomic determinant regression coefficients, but in some areas more smear-positive TB cases were found to do with lower socioeconomic determinant regression coefficients. We also found out that the GWR model could be better exploited to geographically differentiate the relationships between the average number of smear-positive TB cases and their socioeconomic determinants, which could interpret the dataset better (adjusted R 2  = 0.912, AICc = 1107.22) than the OLS model (adjusted R 2  = 0.768, AICc = 1196.74). POPden, PROmin, NUMagen, PROagr, and per capita GDP are socioeconomic determinants of smear-positive TB cases. Comprehending the spatial heterogeneity of POPden, PROmin, NUMagen, PROagr, per capita GDP, and smear-positive TB cases could provide valuable information for TB precaution and control strategies.

  6. HIV-related stigma in pregnancy and early postpartum of mothers living with HIV in Ontario, Canada.

    PubMed

    Ion, Allyson; Wagner, Anne C; Greene, Saara; Loutfy, Mona R

    2017-02-01

    HIV-related stigma is associated with many psychological challenges; however, minimal research has explored how perceived HIV-related stigma intersects with psychosocial issues that mothers living with HIV may experience including depression, perceived stress and social isolation. The present study aims to describe the correlates and predictors of HIV-related stigma in a cohort of women living with HIV (WLWH) from across Ontario, Canada during pregnancy and early postpartum. From March 2011 to December 2012, WLWH ≥ 18 years (n = 77) completed a study instrument measuring independent variables including sociodemographic characteristics, perceived stress, depression symptoms, social isolation, social support and perceived racism in the third trimester and 3, 6 and 12 months postpartum. Multivariable linear regression was employed to explore the relationship between HIV-related stigma and multiple independent variables. HIV-related stigma generally increased from pregnancy to postpartum; however, there were no significant differences in HIV-related stigma across all study time points. In multivariable regression, depression symptoms and perceived racism were significant predictors of overall HIV-related stigma from pregnancy to postpartum. The present analysis contributes to our understanding of HIV-related stigma throughout the pregnancy-motherhood trajectory for WLWH including the interactional relationship between HIV-related stigma and other psychosocial variables, most notably, depression and racism.

  7. Association of Sociodemographic Factors, Smoking-Related Beliefs, and Smoking Restrictions With Intention to Quit Smoking in Korean Adults: Findings From the ITC Korea Survey

    PubMed Central

    Myung, Seung-Kwon; Seo, Hong Gwan; Cheong, Yoo-Seock; Park, Sohee; Lee, Wonkyong B; Fong, Geoffrey T

    2012-01-01

    Background Few studies have reported the factors associated with intention to quit smoking among Korean adult smokers. This study aimed to examine sociodemographic characteristics, smoking-related beliefs, and smoking-restriction variables associated with intention to quit smoking among Korean adult smokers. Methods We used data from the International Tobacco Control Korea Survey, which was conducted from November through December 2005 by using random-digit dialing and computer-assisted telephone interviewing of male and female smokers aged 19 years or older in 16 metropolitan areas and provinces of Korea. We performed univariate analysis and multiple logistic regression analysis to identify predictors of intention to quit. Results A total of 995 respondents were included in the final analysis. Of those, 74.9% (n = 745) intended to quit smoking. In univariate analyses, smokers with an intention to quit were younger, smoked fewer cigarettes per day, had a higher annual income, were more educated, were more likely to have a religious affiliation, drank less alcohol per week, were less likely to have self-exempting beliefs, and were more likely to have self-efficacy beliefs regarding quitting, to believe that smoking had damaged their health, and to report that smoking was never allowed anywhere in their home. In multiple logistic regression analysis, higher education level, having a religious affiliation, and a higher self-efficacy regarding quitting were significantly associated with intention to quit. Conclusions Sociodemographic factors, smoking-related beliefs, and smoking restrictions at home were associated with intention to quit smoking among Korean adults. PMID:22186157

  8. Association of sociodemographic factors, smoking-related beliefs, and smoking restrictions with intention to quit smoking in Korean adults: findings from the ITC Korea Survey.

    PubMed

    Myung, Seung-Kwon; Seo, Hong Gwan; Cheong, Yoo-Seock; Park, Sohee; Lee, Wonkyong B; Fong, Geoffrey T

    2012-01-01

    Few studies have reported the factors associated with intention to quit smoking among Korean adult smokers. This study aimed to examine sociodemographic characteristics, smoking-related beliefs, and smoking-restriction variables associated with intention to quit smoking among Korean adult smokers. We used data from the International Tobacco Control Korea Survey, which was conducted from November through December 2005 by using random-digit dialing and computer-assisted telephone interviewing of male and female smokers aged 19 years or older in 16 metropolitan areas and provinces of Korea. We performed univariate analysis and multiple logistic regression analysis to identify predictors of intention to quit. A total of 995 respondents were included in the final analysis. Of those, 74.9% (n = 745) intended to quit smoking. In univariate analyses, smokers with an intention to quit were younger, smoked fewer cigarettes per day, had a higher annual income, were more educated, were more likely to have a religious affiliation, drank less alcohol per week, were less likely to have self-exempting beliefs, and were more likely to have self-efficacy beliefs regarding quitting, to believe that smoking had damaged their health, and to report that smoking was never allowed anywhere in their home. In multiple logistic regression analysis, higher education level, having a religious affiliation, and a higher self-efficacy regarding quitting were significantly associated with intention to quit. Sociodemographic factors, smoking-related beliefs, and smoking restrictions at home were associated with intention to quit smoking among Korean adults.

  9. [The related factors of head and neck mocosal melanoma with lymph node metastasis].

    PubMed

    Yin, G F; Guo, W; Chen, X H; Huang, Z G

    2017-12-05

    Objective: To investigate the related factors of mucosal melanoma of head and neck with lymph node metastasis for early diagnosis and further treatments. Method: A retrospective analysis of 117 cases of head and neck mucosal malignant melanoma patients which received surgical treatment was performed. Eleven cases of patients with pathologically confirmed lymph node metastasis and 33 cases without lymph node metastasis (1∶3) were randomly selected to analyze. The related factors of lymph node metastasis of head and neck mucosal melanoma patients including age, gender, whether the existence of recurrence, bone invasion, lesion location were analyzed. The single factor and logistic regression analysis were performed, P <0.05 difference was statistically significant. Result: The lymph node metastasis rate of head and neck mucosal melanoma was 9.40%(11/117), the single factor analysis showed that there were 3 factors to be associated with lymph node metastasis, which was recurrence ( P =0.0000), bone invasion ( P =0.001), primary position ( P =0.007). Recurrence ( P =0.021) was a risk factor for lymph node metastasis according to the Logistic regression analysis, and the impact of bone invasion ( P =0.487) and primary location ( P =0.367) remained to be further explored. Conclusion: The patients of head and neck mucosal melanoma with the presence of recurrent usually accompanied by a further progression of the disease, such as lymph node metastasis, so for recurrent patients should pay special attention to the situation of lymph node and choose the reasonable treatment. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  10. [Relationship between emotional labor and job-related stress among hospital nurses].

    PubMed

    Katayama, Harumi

    2010-09-01

    To clarify the effects of factors of emotional labor, defined as the suppression of own emotions to better maintain other peoples' emotional conditions, on job-related stress responses among hospital nurses, the relationship between emotional labor and job-related stress was analyzed. A self-reported questionnaire was distributed among 147 nurses of five hospitals in Japan. Complete answers were collected from 123 nurses (83.7%, 107 females and 16 males). Emotional labor was assessed by the Emotional Labor Inventory for Nurses (ELIN) (26 items), which consisted of five subscales, i.e., "suppressed expression," "surface adjustment," "deep adjustment," "exploring and understanding" and "expression on caring." Job-related stress was evaluated using the Brief Job Stress Questionnaire (BSQ) consisting of 57 items. Stepwise multiple regression analysis was performed to examine the relationships of stress responses (BSQ) with ELIN and job stressors (BSQ). Subjects working in an inpatient department showed significantly higher total ELIN scores than those working in an outpatient department. The stepwise multiple regression analysis showed the following: Scores on "anger" and "fatigue" in BSQ positively related to "suppressed expression" scores in ELIN; those on "anxiety" positively related to "deep adjustment" scores; and those on "depression" positively related to "surface adjustment" scores. Similarly, scores on negative stress responses (BSQ) such as "anger," "fatigue," "anxiety," "depression," and "somatic stress responses" positively related to scores on job stressors (BSQ), e.g., physical work load, whereas "vigor" scores positively related to "job worthwhileness" in BSQ. The aspects of "suppressed expression," "deep adjustment," and "surface adjustment" of emotional labor seem to be the major occupational stressors for nurses, as well as job-related stressors measured by BSQ. Working in an inpatient department appears to be a potent stressor for nurses.

  11. A Note on the Relationship between the Number of Indicators and Their Reliability in Detecting Regression Coefficients in Latent Regression Analysis

    ERIC Educational Resources Information Center

    Dolan, Conor V.; Wicherts, Jelte M.; Molenaar, Peter C. M.

    2004-01-01

    We consider the question of how variation in the number and reliability of indicators affects the power to reject the hypothesis that the regression coefficients are zero in latent linear regression analysis. We show that power remains constant as long as the coefficient of determination remains unchanged. Any increase in the number of indicators…

  12. Regression: A Bibliography.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…

  13. The relationship between quality of work life and turnover intention of primary health care nurses in Saudi Arabia.

    PubMed

    Almalki, Mohammed J; FitzGerald, Gerry; Clark, Michele

    2012-09-12

    Quality of work life (QWL) has been found to influence the commitment of health professionals, including nurses. However, reliable information on QWL and turnover intention of primary health care (PHC) nurses is limited. The aim of this study was to examine the relationship between QWL and turnover intention of PHC nurses in Saudi Arabia. A cross-sectional survey was used in this study. Data were collected using Brooks' survey of Quality of Nursing Work Life, the Anticipated Turnover Scale and demographic data questions. A total of 508 PHC nurses in the Jazan Region, Saudi Arabia, completed the questionnaire (RR = 87%). Descriptive statistics, t-test, ANOVA, General Linear Model (GLM) univariate analysis, standard multiple regression, and hierarchical multiple regression were applied for analysis using SPSS v17 for Windows. Findings suggested that the respondents were dissatisfied with their work life, with almost 40% indicating a turnover intention from their current PHC centres. Turnover intention was significantly related to QWL. Using standard multiple regression, 26% of the variance in turnover intention was explained by QWL, p < 0.001, with R2 = .263. Further analysis using hierarchical multiple regression found that the total variance explained by the model as a whole (demographics and QWL) was 32.1%, p < 0.001. QWL explained an additional 19% of the variance in turnover intention, after controlling for demographic variables. Creating and maintaining a healthy work life for PHC nurses is very important to improve their work satisfaction, reduce turnover, enhance productivity and improve nursing care outcomes.

  14. Epstein-Barr Virus and Gastric Cancer Risk: A Meta-analysis With Meta-regression of Case-control Studies.

    PubMed

    Bae, Jong-Myon; Kim, Eun Hee

    2016-03-01

    Research on how the risk of gastric cancer increases with Epstein-Barr virus (EBV) infection is lacking. In a systematic review that investigated studies published until September 2014, the authors did not calculate the summary odds ratio (SOR) due to heterogeneity across studies. Therefore, we include here additional studies published until October 2015 and conduct a meta-analysis with meta-regression that controls for the heterogeneity among studies. Using the studies selected in the previously published systematic review, we formulated lists of references, cited articles, and related articles provided by PubMed. From the lists, only case-control studies that detected EBV in tissue samples were selected. In order to control for the heterogeneity among studies, subgroup analysis and meta-regression were performed. In the 33 case-control results with adjacent non-cancer tissue, the total number of test samples in the case and control groups was 5280 and 4962, respectively. In the 14 case-control results with normal tissue, the total number of test samples in case and control groups was 1393 and 945, respectively. Upon meta-regression, the type of control tissue was found to be a statistically significant variable with regard to heterogeneity. When the control tissue was normal tissue of healthy individuals, the SOR was 3.41 (95% CI, 1.78 to 6.51; I-squared, 65.5%). The results of the present study support the argument that EBV infection increases the risk of gastric cancer. In the future, age-matched and sex-matched case-control studies should be conducted.

  15. The relationship between quality of work life and turnover intention of primary health care nurses in Saudi Arabia

    PubMed Central

    2012-01-01

    Background Quality of work life (QWL) has been found to influence the commitment of health professionals, including nurses. However, reliable information on QWL and turnover intention of primary health care (PHC) nurses is limited. The aim of this study was to examine the relationship between QWL and turnover intention of PHC nurses in Saudi Arabia. Methods A cross-sectional survey was used in this study. Data were collected using Brooks’ survey of Quality of Nursing Work Life, the Anticipated Turnover Scale and demographic data questions. A total of 508 PHC nurses in the Jazan Region, Saudi Arabia, completed the questionnaire (RR = 87%). Descriptive statistics, t-test, ANOVA, General Linear Model (GLM) univariate analysis, standard multiple regression, and hierarchical multiple regression were applied for analysis using SPSS v17 for Windows. Results Findings suggested that the respondents were dissatisfied with their work life, with almost 40% indicating a turnover intention from their current PHC centres. Turnover intention was significantly related to QWL. Using standard multiple regression, 26% of the variance in turnover intention was explained by QWL, p < 0.001, with R2 = .263. Further analysis using hierarchical multiple regression found that the total variance explained by the model as a whole (demographics and QWL) was 32.1%, p < 0.001. QWL explained an additional 19% of the variance in turnover intention, after controlling for demographic variables. Conclusions Creating and maintaining a healthy work life for PHC nurses is very important to improve their work satisfaction, reduce turnover, enhance productivity and improve nursing care outcomes. PMID:22970764

  16. Using Logistic Regression To Predict the Probability of Debris Flows Occurring in Areas Recently Burned By Wildland Fires

    USGS Publications Warehouse

    Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.

    2003-01-01

    Logistic regression was used to predict the probability of debris flows occurring in areas recently burned by wildland fires. Multiple logistic regression is conceptually similar to multiple linear regression because statistical relations between one dependent variable and several independent variables are evaluated. In logistic regression, however, the dependent variable is transformed to a binary variable (debris flow did or did not occur), and the actual probability of the debris flow occurring is statistically modeled. Data from 399 basins located within 15 wildland fires that burned during 2000-2002 in Colorado, Idaho, Montana, and New Mexico were evaluated. More than 35 independent variables describing the burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows were delineated from National Elevation Data using a Geographic Information System (GIS). (2) Data describing the burn severity, geology, land surface gradient, rainfall, and soil properties were determined for each basin. These data were then downloaded to a statistics software package for analysis using logistic regression. (3) Relations between the occurrence/non-occurrence of debris flows and burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated and several preliminary multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combination produced the most effective model. The multivariate model that best predicted the occurrence of debris flows was selected. (4) The multivariate logistic regression model was entered into a GIS, and a map showing the probability of debris flows was constructed. The most effective model incorporates the percentage of each basin with slope greater than 30 percent, percentage of land burned at medium and high burn severity in each basin, particle size sorting, average storm intensity (millimeters per hour), soil organic matter content, soil permeability, and soil drainage. The results of this study demonstrate that logistic regression is a valuable tool for predicting the probability of debris flows occurring in recently-burned landscapes.

  17. Factors Related to Depressive Symptoms in Mothers of Technology-Dependent Children.

    PubMed

    Toly, Valerie Boebel; Musil, Carol M

    2015-07-01

    Mothers caring for technology-dependent children at home often suffer clinically significant and unrecognized depressive symptoms. The study aim was to determine factors related to elevated depressive symptoms and provide information to target interventions that assists mothers in self-management of their mental health. Secondary data analysis from a descriptive, correlational study of 75 mothers was performed. Hierarchical multiple regression analysis results indicate that younger, unpartnered mothers with lower normalization efforts and personal resourcefulness, and less care hours, had increased depressive symptoms. The importance of personal resourcefulness and the potential for a resourcefulness training intervention to reduce depressive symptoms are discussed.

  18. Relative effect of socio-economic status on the health-related quality of life in type 2 diabetic patients in Iran.

    PubMed

    Hosseini Nejhad, Zahra; Molavi Vardanjani, Hossein; Abolhasani, Farid; Hadipour, Maryam; Sheikhzadeh, Khodadad

    2013-01-01

    Type II diabetes mellitus (T2DM) is a progressing epidemic and a major cause of mortality and morbidity worldwide. The quality of life (QoL) of diabetic patients has been strongly influenced by socioeconomic status (SES) in developed countries. Therefore, the QoL improvement is considered to be a major goal in diabetes control program. In this context, there is no reliable evidence for developing countries. In this study, the relative association of SES with health-related quality of life (HRQoL) was assessed in patients with T2DM in Iran. The "Cost estimation of Type 2 Diabetes in Iran" was used for secondary data analysis. The socio-economic status has been assessed by Categorical principal component analysis (CATPCA) techniques and HRQoL, using EQ-5D Visual Analog Scale, modified for digit preferences. Age, gender, education, occupation, SES, marital status, residency, education (T2DM related), diagnostic methods, number of annual care, type of treatment and Duration of disease awareness were used as independent variables in the multivariable linear regression model. Statistical analysis was performed using Stata software version 11.2. The response rate was 88.6%. Out of 3472 patients, 2128 were female and about 78.7% were from urban areas. All variables associated with T2DM were significant at the level of 0.05 except, the type of treatment, residency and education. Standardized regression coefficient for SES was estimated as 0.106 (p-value<0.0001). It seems that the SES of households in developing countries has a meaningful effect on the HRQoL of patients with T2DM as well as developed countries. Copyright © 2013 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  19. Factors affecting cognitive function according to gender in community-dwelling elderly individuals.

    PubMed

    Kim, Miwon; Park, Jeong-Mo

    2017-01-01

    This study aimed to identify the factors affecting the cognitive function of elderly people in a community by gender. We obtained 4,878 secondary data of people aged ≥65 years in 2016 at a dementia prevention center in Gyeyang-gu, Incheon. Data were obtained through Mini-Mental Status Examination optimized for screening dementia and a questionnaire. The data were statistically analyzed using analysis of variance, analysis of covariance, and hierarchical regression. There were significant differences in cognitive function according to gender, and the differences were significant even when age was controlled, but gender differences disappeared when education was controlled. Age, education, social activities, number of comorbid diseases, and alcohol drinking affected cognitive function through interaction with gender, but interaction with gender disappeared when education was controlled. Regression analysis showed that depression, cohabitant, social activities etc., had a significant impact on both men and women under controlled education and age. In men, the effect of social activities was greater than that of women, and hyperlipidemia had the effect only in women. The differences in gender-related cognitive functions were due to differences in gender education period. The period of education is considered to have a great influence on cognitive function in relation to the economic level, occupation, and social activity.

  20. Factors affecting cognitive function according to gender in community-dwelling elderly individuals

    PubMed Central

    2017-01-01

    OBJECTIVES This study aimed to identify the factors affecting the cognitive function of elderly people in a community by gender. METHODS We obtained 4,878 secondary data of people aged ≥65 years in 2016 at a dementia prevention center in Gyeyang-gu, Incheon. Data were obtained through Mini-Mental Status Examination optimized for screening dementia and a questionnaire. The data were statistically analyzed using analysis of variance, analysis of covariance, and hierarchical regression. RESULTS There were significant differences in cognitive function according to gender, and the differences were significant even when age was controlled, but gender differences disappeared when education was controlled. Age, education, social activities, number of comorbid diseases, and alcohol drinking affected cognitive function through interaction with gender, but interaction with gender disappeared when education was controlled. Regression analysis showed that depression, cohabitant, social activities etc., had a significant impact on both men and women under controlled education and age. In men, the effect of social activities was greater than that of women, and hyperlipidemia had the effect only in women. CONCLUSIONS The differences in gender-related cognitive functions were due to differences in gender education period. The period of education is considered to have a great influence on cognitive function in relation to the economic level, occupation, and social activity. PMID:29141399

Top