Modified Regression Correlation Coefficient for Poisson Regression Model
NASA Astrophysics Data System (ADS)
Kaengthong, Nattacha; Domthong, Uthumporn
2017-09-01
This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).
Bayesian Estimation of Multivariate Latent Regression Models: Gauss versus Laplace
ERIC Educational Resources Information Center
Culpepper, Steven Andrew; Park, Trevor
2017-01-01
A latent multivariate regression model is developed that employs a generalized asymmetric Laplace (GAL) prior distribution for regression coefficients. The model is designed for high-dimensional applications where an approximate sparsity condition is satisfied, such that many regression coefficients are near zero after accounting for all the model…
Penalized spline estimation for functional coefficient regression models.
Cao, Yanrong; Lin, Haiqun; Wu, Tracy Z; Yu, Yan
2010-04-01
The functional coefficient regression models assume that the regression coefficients vary with some "threshold" variable, providing appreciable flexibility in capturing the underlying dynamics in data and avoiding the so-called "curse of dimensionality" in multivariate nonparametric estimation. We first investigate the estimation, inference, and forecasting for the functional coefficient regression models with dependent observations via penalized splines. The P-spline approach, as a direct ridge regression shrinkage type global smoothing method, is computationally efficient and stable. With established fixed-knot asymptotics, inference is readily available. Exact inference can be obtained for fixed smoothing parameter λ, which is most appealing for finite samples. Our penalized spline approach gives an explicit model expression, which also enables multi-step-ahead forecasting via simulations. Furthermore, we examine different methods of choosing the important smoothing parameter λ: modified multi-fold cross-validation (MCV), generalized cross-validation (GCV), and an extension of empirical bias bandwidth selection (EBBS) to P-splines. In addition, we implement smoothing parameter selection using mixed model framework through restricted maximum likelihood (REML) for P-spline functional coefficient regression models with independent observations. The P-spline approach also easily allows different smoothness for different functional coefficients, which is enabled by assigning different penalty λ accordingly. We demonstrate the proposed approach by both simulation examples and a real data application.
Ridge: a computer program for calculating ridge regression estimates
Donald E. Hilt; Donald W. Seegrist
1977-01-01
Least-squares coefficients for multiple-regression models may be unstable when the independent variables are highly correlated. Ridge regression is a biased estimation procedure that produces stable estimates of the coefficients. Ridge regression is discussed, and a computer program for calculating the ridge coefficients is presented.
NASA Astrophysics Data System (ADS)
Pradhan, Biswajeet
2010-05-01
This paper presents the results of the cross-validation of a multivariate logistic regression model using remote sensing data and GIS for landslide hazard analysis on the Penang, Cameron, and Selangor areas in Malaysia. Landslide locations in the study areas were identified by interpreting aerial photographs and satellite images, supported by field surveys. SPOT 5 and Landsat TM satellite imagery were used to map landcover and vegetation index, respectively. Maps of topography, soil type, lineaments and land cover were constructed from the spatial datasets. Ten factors which influence landslide occurrence, i.e., slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, soil type, landcover, rainfall precipitation, and normalized difference vegetation index (ndvi), were extracted from the spatial database and the logistic regression coefficient of each factor was computed. Then the landslide hazard was analysed using the multivariate logistic regression coefficients derived not only from the data for the respective area but also using the logistic regression coefficients calculated from each of the other two areas (nine hazard maps in all) as a cross-validation of the model. For verification of the model, the results of the analyses were then compared with the field-verified landslide locations. Among the three cases of the application of logistic regression coefficient in the same study area, the case of Selangor based on the Selangor logistic regression coefficients showed the highest accuracy (94%), where as Penang based on the Penang coefficients showed the lowest accuracy (86%). Similarly, among the six cases from the cross application of logistic regression coefficient in other two areas, the case of Selangor based on logistic coefficient of Cameron showed highest (90%) prediction accuracy where as the case of Penang based on the Selangor logistic regression coefficients showed the lowest accuracy (79%). Qualitatively, the cross application model yields reasonable results which can be used for preliminary landslide hazard mapping.
ERIC Educational Resources Information Center
Yan, Jun; Aseltine, Robert H., Jr.; Harel, Ofer
2013-01-01
Comparing regression coefficients between models when one model is nested within another is of great practical interest when two explanations of a given phenomenon are specified as linear models. The statistical problem is whether the coefficients associated with a given set of covariates change significantly when other covariates are added into…
Investigating bias in squared regression structure coefficients
Nimon, Kim F.; Zientek, Linda R.; Thompson, Bruce
2015-01-01
The importance of structure coefficients and analogs of regression weights for analysis within the general linear model (GLM) has been well-documented. The purpose of this study was to investigate bias in squared structure coefficients in the context of multiple regression and to determine if a formula that had been shown to correct for bias in squared Pearson correlation coefficients and coefficients of determination could be used to correct for bias in squared regression structure coefficients. Using data from a Monte Carlo simulation, this study found that squared regression structure coefficients corrected with Pratt's formula produced less biased estimates and might be more accurate and stable estimates of population squared regression structure coefficients than estimates with no such corrections. While our findings are in line with prior literature that identified multicollinearity as a predictor of bias in squared regression structure coefficients but not coefficients of determination, the findings from this study are unique in that the level of predictive power, number of predictors, and sample size were also observed to contribute bias in squared regression structure coefficients. PMID:26217273
Hidden Connections between Regression Models of Strain-Gage Balance Calibration Data
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert
2013-01-01
Hidden connections between regression models of wind tunnel strain-gage balance calibration data are investigated. These connections become visible whenever balance calibration data is supplied in its design format and both the Iterative and Non-Iterative Method are used to process the data. First, it is shown how the regression coefficients of the fitted balance loads of a force balance can be approximated by using the corresponding regression coefficients of the fitted strain-gage outputs. Then, data from the manual calibration of the Ames MK40 six-component force balance is chosen to illustrate how estimates of the regression coefficients of the fitted balance loads can be obtained from the regression coefficients of the fitted strain-gage outputs. The study illustrates that load predictions obtained by applying the Iterative or the Non-Iterative Method originate from two related regression solutions of the balance calibration data as long as balance loads are given in the design format of the balance, gage outputs behave highly linear, strict statistical quality metrics are used to assess regression models of the data, and regression model term combinations of the fitted loads and gage outputs can be obtained by a simple variable exchange.
Adjusting for Confounding in Early Postlaunch Settings: Going Beyond Logistic Regression Models.
Schmidt, Amand F; Klungel, Olaf H; Groenwold, Rolf H H
2016-01-01
Postlaunch data on medical treatments can be analyzed to explore adverse events or relative effectiveness in real-life settings. These analyses are often complicated by the number of potential confounders and the possibility of model misspecification. We conducted a simulation study to compare the performance of logistic regression, propensity score, disease risk score, and stabilized inverse probability weighting methods to adjust for confounding. Model misspecification was induced in the independent derivation dataset. We evaluated performance using relative bias confidence interval coverage of the true effect, among other metrics. At low events per coefficient (1.0 and 0.5), the logistic regression estimates had a large relative bias (greater than -100%). Bias of the disease risk score estimates was at most 13.48% and 18.83%. For the propensity score model, this was 8.74% and >100%, respectively. At events per coefficient of 1.0 and 0.5, inverse probability weighting frequently failed or reduced to a crude regression, resulting in biases of -8.49% and 24.55%. Coverage of logistic regression estimates became less than the nominal level at events per coefficient ≤5. For the disease risk score, inverse probability weighting, and propensity score, coverage became less than nominal at events per coefficient ≤2.5, ≤1.0, and ≤1.0, respectively. Bias of misspecified disease risk score models was 16.55%. In settings with low events/exposed subjects per coefficient, disease risk score methods can be useful alternatives to logistic regression models, especially when propensity score models cannot be used. Despite better performance of disease risk score methods than logistic regression and propensity score models in small events per coefficient settings, bias, and coverage still deviated from nominal.
Interpreting Regression Results: beta Weights and Structure Coefficients are Both Important.
ERIC Educational Resources Information Center
Thompson, Bruce
Various realizations have led to less frequent use of the "OVA" methods (analysis of variance--ANOVA--among others) and to more frequent use of general linear model approaches such as regression. However, too few researchers understand all the various coefficients produced in regression. This paper explains these coefficients and their…
SPSS macros to compare any two fitted values from a regression model.
Weaver, Bruce; Dubois, Sacha
2012-12-01
In regression models with first-order terms only, the coefficient for a given variable is typically interpreted as the change in the fitted value of Y for a one-unit increase in that variable, with all other variables held constant. Therefore, each regression coefficient represents the difference between two fitted values of Y. But the coefficients represent only a fraction of the possible fitted value comparisons that might be of interest to researchers. For many fitted value comparisons that are not captured by any of the regression coefficients, common statistical software packages do not provide the standard errors needed to compute confidence intervals or carry out statistical tests-particularly in more complex models that include interactions, polynomial terms, or regression splines. We describe two SPSS macros that implement a matrix algebra method for comparing any two fitted values from a regression model. The !OLScomp and !MLEcomp macros are for use with models fitted via ordinary least squares and maximum likelihood estimation, respectively. The output from the macros includes the standard error of the difference between the two fitted values, a 95% confidence interval for the difference, and a corresponding statistical test with its p-value.
NASA Astrophysics Data System (ADS)
Zhan, Liwei; Li, Chengwei
2017-02-01
A hybrid PSO-SVM-based model is proposed to predict the friction coefficient between aircraft tire and coating. The presented hybrid model combines a support vector machine (SVM) with particle swarm optimization (PSO) technique. SVM has been adopted to solve regression problems successfully. Its regression accuracy is greatly related to optimizing parameters such as the regularization constant C , the parameter gamma γ corresponding to RBF kernel and the epsilon parameter \\varepsilon in the SVM training procedure. However, the friction coefficient which is predicted based on SVM has yet to be explored between aircraft tire and coating. The experiment reveals that drop height and tire rotational speed are the factors affecting friction coefficient. Bearing in mind, the friction coefficient can been predicted using the hybrid PSO-SVM-based model by the measured friction coefficient between aircraft tire and coating. To compare regression accuracy, a grid search (GS) method and a genetic algorithm (GA) are used to optimize the relevant parameters (C , γ and \\varepsilon ), respectively. The regression accuracy could be reflected by the coefficient of determination ({{R}2} ). The result shows that the hybrid PSO-RBF-SVM-based model has better accuracy compared with the GS-RBF-SVM- and GA-RBF-SVM-based models. The agreement of this model (PSO-RBF-SVM) with experiment data confirms its good performance.
Yoneoka, Daisuke; Henmi, Masayuki
2017-11-30
Recently, the number of clinical prediction models sharing the same regression task has increased in the medical literature. However, evidence synthesis methodologies that use the results of these regression models have not been sufficiently studied, particularly in meta-analysis settings where only regression coefficients are available. One of the difficulties lies in the differences between the categorization schemes of continuous covariates across different studies. In general, categorization methods using cutoff values are study specific across available models, even if they focus on the same covariates of interest. Differences in the categorization of covariates could lead to serious bias in the estimated regression coefficients and thus in subsequent syntheses. To tackle this issue, we developed synthesis methods for linear regression models with different categorization schemes of covariates. A 2-step approach to aggregate the regression coefficient estimates is proposed. The first step is to estimate the joint distribution of covariates by introducing a latent sampling distribution, which uses one set of individual participant data to estimate the marginal distribution of covariates with categorization. The second step is to use a nonlinear mixed-effects model with correction terms for the bias due to categorization to estimate the overall regression coefficients. Especially in terms of precision, numerical simulations show that our approach outperforms conventional methods, which only use studies with common covariates or ignore the differences between categorization schemes. The method developed in this study is also applied to a series of WHO epidemiologic studies on white blood cell counts. Copyright © 2017 John Wiley & Sons, Ltd.
SCI model structure determination program (OSR) user's guide. [optimal subset regression
NASA Technical Reports Server (NTRS)
1979-01-01
The computer program, OSR (Optimal Subset Regression) which estimates models for rotorcraft body and rotor force and moment coefficients is described. The technique used is based on the subset regression algorithm. Given time histories of aerodynamic coefficients, aerodynamic variables, and control inputs, the program computes correlation between various time histories. The model structure determination is based on these correlations. Inputs and outputs of the program are given.
Detection of Cutting Tool Wear using Statistical Analysis and Regression Model
NASA Astrophysics Data System (ADS)
Ghani, Jaharah A.; Rizal, Muhammad; Nuawi, Mohd Zaki; Haron, Che Hassan Che; Ramli, Rizauddin
2010-10-01
This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals. A statistical-based method called Integrated Kurtosis-based Algorithm for Z-Filter technique, called I-kaz was used for developing a regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out using a CNC turning machine Colchester Master Tornado T4 in dry cutting condition. A Kistler 9255B dynamometer was used to measure the cutting force signals, which were transmitted, analyzed, and displayed in the DasyLab software. Various force signals from machining operation were analyzed, and each has its own I-kaz 3D coefficient. This coefficient was examined and its relationship with flank wear lands (VB) was determined. A regression model was developed due to this relationship, and results of the regression model shows that the I-kaz 3D coefficient value decreases as tool wear increases. The result then is used for real time tool wear monitoring.
Yamazaki, Takeshi; Takeda, Hisato; Hagiya, Koichi; Yamaguchi, Satoshi; Sasaki, Osamu
2018-03-13
Because lactation periods in dairy cows lengthen with increasing total milk production, it is important to predict individual productivities after 305 days in milk (DIM) to determine the optimal lactation period. We therefore examined whether the random regression (RR) coefficient from 306 to 450 DIM (M2) can be predicted from those during the first 305 DIM (M1) by using a random regression model. We analyzed test-day milk records from 85690 Holstein cows in their first lactations and 131727 cows in their later (second to fifth) lactations. Data in M1 and M2 were analyzed separately by using different single-trait RR animal models. We then performed a multiple regression analysis of the RR coefficients of M2 on those of M1 during the first and later lactations. The first-order Legendre polynomials were practical covariates of random regression for the milk yields of M2. All RR coefficients for the additive genetic (AG) effect and the intercept for the permanent environmental (PE) effect of M2 had moderate to strong correlations with the intercept for the AG effect of M1. The coefficients of determination for multiple regression of the combined intercepts for the AG and PE effects of M2 on the coefficients for the AG effect of M1 were moderate to high. The daily milk yields of M2 predicted by using the RR coefficients for the AG effect of M1 were highly correlated with those obtained by using the coefficients of M2. Milk production after 305 DIM can be predicted by using the RR coefficient estimates of the AG effect during the first 305 DIM.
NASA Astrophysics Data System (ADS)
Wheeler, David C.; Waller, Lance A.
2009-03-01
In this paper, we compare and contrast a Bayesian spatially varying coefficient process (SVCP) model with a geographically weighted regression (GWR) model for the estimation of the potentially spatially varying regression effects of alcohol outlets and illegal drug activity on violent crime in Houston, Texas. In addition, we focus on the inherent coefficient shrinkage properties of the Bayesian SVCP model as a way to address increased coefficient variance that follows from collinearity in GWR models. We outline the advantages of the Bayesian model in terms of reducing inflated coefficient variance, enhanced model flexibility, and more formal measuring of model uncertainty for prediction. We find spatially varying effects for alcohol outlets and drug violations, but the amount of variation depends on the type of model used. For the Bayesian model, this variation is controllable through the amount of prior influence placed on the variance of the coefficients. For example, the spatial pattern of coefficients is similar for the GWR and Bayesian models when a relatively large prior variance is used in the Bayesian model.
NASA Astrophysics Data System (ADS)
Setiyorini, Anis; Suprijadi, Jadi; Handoko, Budhi
2017-03-01
Geographically Weighted Regression (GWR) is a regression model that takes into account the spatial heterogeneity effect. In the application of the GWR, inference on regression coefficients is often of interest, as is estimation and prediction of the response variable. Empirical research and studies have demonstrated that local correlation between explanatory variables can lead to estimated regression coefficients in GWR that are strongly correlated, a condition named multicollinearity. It later results on a large standard error on estimated regression coefficients, and, hence, problematic for inference on relationships between variables. Geographically Weighted Lasso (GWL) is a method which capable to deal with spatial heterogeneity and local multicollinearity in spatial data sets. GWL is a further development of GWR method, which adds a LASSO (Least Absolute Shrinkage and Selection Operator) constraint in parameter estimation. In this study, GWL will be applied by using fixed exponential kernel weights matrix to establish a poverty modeling of Java Island, Indonesia. The results of applying the GWL to poverty datasets show that this method stabilizes regression coefficients in the presence of multicollinearity and produces lower prediction and estimation error of the response variable than GWR does.
The microcomputer scientific software series 2: general linear model--regression.
Harold M. Rauscher
1983-01-01
The general linear model regression (GLMR) program provides the microcomputer user with a sophisticated regression analysis capability. The output provides a regression ANOVA table, estimators of the regression model coefficients, their confidence intervals, confidence intervals around the predicted Y-values, residuals for plotting, a check for multicollinearity, a...
Parametric regression model for survival data: Weibull regression model as an example
2016-01-01
Weibull regression model is one of the most popular forms of parametric regression model that it provides estimate of baseline hazard function, as well as coefficients for covariates. Because of technical difficulties, Weibull regression model is seldom used in medical literature as compared to the semi-parametric proportional hazard model. To make clinical investigators familiar with Weibull regression model, this article introduces some basic knowledge on Weibull regression model and then illustrates how to fit the model with R software. The SurvRegCensCov package is useful in converting estimated coefficients to clinical relevant statistics such as hazard ratio (HR) and event time ratio (ETR). Model adequacy can be assessed by inspecting Kaplan-Meier curves stratified by categorical variable. The eha package provides an alternative method to model Weibull regression model. The check.dist() function helps to assess goodness-of-fit of the model. Variable selection is based on the importance of a covariate, which can be tested using anova() function. Alternatively, backward elimination starting from a full model is an efficient way for model development. Visualization of Weibull regression model after model development is interesting that it provides another way to report your findings. PMID:28149846
Zhao, Yu Xi; Xie, Ping; Sang, Yan Fang; Wu, Zi Yi
2018-04-01
Hydrological process evaluation is temporal dependent. Hydrological time series including dependence components do not meet the data consistency assumption for hydrological computation. Both of those factors cause great difficulty for water researches. Given the existence of hydrological dependence variability, we proposed a correlationcoefficient-based method for significance evaluation of hydrological dependence based on auto-regression model. By calculating the correlation coefficient between the original series and its dependence component and selecting reasonable thresholds of correlation coefficient, this method divided significance degree of dependence into no variability, weak variability, mid variability, strong variability, and drastic variability. By deducing the relationship between correlation coefficient and auto-correlation coefficient in each order of series, we found that the correlation coefficient was mainly determined by the magnitude of auto-correlation coefficient from the 1 order to p order, which clarified the theoretical basis of this method. With the first-order and second-order auto-regression models as examples, the reasonability of the deduced formula was verified through Monte-Carlo experiments to classify the relationship between correlation coefficient and auto-correlation coefficient. This method was used to analyze three observed hydrological time series. The results indicated the coexistence of stochastic and dependence characteristics in hydrological process.
Ecotoxicology of phenylphosphonothioates.
Francis, B M; Hansen, L G; Fukuto, T R; Lu, P Y; Metcalf, R L
1980-01-01
The phenylphosphonothioate insecticides EPN and leptophos, and several analogs, were evaluated with respect to their delayed neurotoxic effects in hens and their environmental behavior in a terrestrial-aquatic model ecosystem. Acute toxicity to insects was highly correlated with sigma sigma of the substituted phenyl group (regression coefficient r = -0.91) while acute toxicity to mammals was slightly less well correlated (regression coefficient r = -0.71), and neurotoxicity was poorly correlated with sigma sigma (regression coefficient r = -0.35). Both EPN and leptophos were markedly more persistent and bioaccumulative in the model ecosystem than parathion. Desbromoleptophos, a contaminant and metabolite of leptophos, was seen to be a highly stable and persistent terminal residue of leptophos. PMID:6159210
NASA Astrophysics Data System (ADS)
Wilson, Barry T.; Knight, Joseph F.; McRoberts, Ronald E.
2018-03-01
Imagery from the Landsat Program has been used frequently as a source of auxiliary data for modeling land cover, as well as a variety of attributes associated with tree cover. With ready access to all scenes in the archive since 2008 due to the USGS Landsat Data Policy, new approaches to deriving such auxiliary data from dense Landsat time series are required. Several methods have previously been developed for use with finer temporal resolution imagery (e.g. AVHRR and MODIS), including image compositing and harmonic regression using Fourier series. The manuscript presents a study, using Minnesota, USA during the years 2009-2013 as the study area and timeframe. The study examined the relative predictive power of land cover models, in particular those related to tree cover, using predictor variables based solely on composite imagery versus those using estimated harmonic regression coefficients. The study used two common non-parametric modeling approaches (i.e. k-nearest neighbors and random forests) for fitting classification and regression models of multiple attributes measured on USFS Forest Inventory and Analysis plots using all available Landsat imagery for the study area and timeframe. The estimated Fourier coefficients developed by harmonic regression of tasseled cap transformation time series data were shown to be correlated with land cover, including tree cover. Regression models using estimated Fourier coefficients as predictor variables showed a two- to threefold increase in explained variance for a small set of continuous response variables, relative to comparable models using monthly image composites. Similarly, the overall accuracies of classification models using the estimated Fourier coefficients were approximately 10-20 percentage points higher than the models using the image composites, with corresponding individual class accuracies between six and 45 percentage points higher.
Interpretation of commonly used statistical regression models.
Kasza, Jessica; Wolfe, Rory
2014-01-01
A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.
NASA Astrophysics Data System (ADS)
Mitra, Ashis; Majumdar, Prabal Kumar; Bannerjee, Debamalya
2013-03-01
This paper presents a comparative analysis of two modeling methodologies for the prediction of air permeability of plain woven handloom cotton fabrics. Four basic fabric constructional parameters namely ends per inch, picks per inch, warp count and weft count have been used as inputs for artificial neural network (ANN) and regression models. Out of the four regression models tried, interaction model showed very good prediction performance with a meager mean absolute error of 2.017 %. However, ANN models demonstrated superiority over the regression models both in terms of correlation coefficient and mean absolute error. The ANN model with 10 nodes in the single hidden layer showed very good correlation coefficient of 0.982 and 0.929 and mean absolute error of only 0.923 and 2.043 % for training and testing data respectively.
Yoneoka, Daisuke; Henmi, Masayuki
2017-06-01
Recently, the number of regression models has dramatically increased in several academic fields. However, within the context of meta-analysis, synthesis methods for such models have not been developed in a commensurate trend. One of the difficulties hindering the development is the disparity in sets of covariates among literature models. If the sets of covariates differ across models, interpretation of coefficients will differ, thereby making it difficult to synthesize them. Moreover, previous synthesis methods for regression models, such as multivariate meta-analysis, often have problems because covariance matrix of coefficients (i.e. within-study correlations) or individual patient data are not necessarily available. This study, therefore, proposes a brief explanation regarding a method to synthesize linear regression models under different covariate sets by using a generalized least squares method involving bias correction terms. Especially, we also propose an approach to recover (at most) threecorrelations of covariates, which is required for the calculation of the bias term without individual patient data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Zhao, Yang; Zhang, Xue Qing; Bian, Xiao Dong
2018-01-01
To investigate the early supplementary processes of fishre sources in the Bohai Sea, the geographically weighted regression (GWR) was introduced to the habitat suitability index (HSI) model. The Bohai Sea larval Japanese Halfbeak HSI GWR model was established with four environmental variables, including sea surface temperature (SST), sea surface salinity (SSS), water depth (DEP), and chlorophyll a concentration (Chl a). Results of the simulation showed that the four variables had different performances in August 2015. SST and Chl a were global variables, and had little impacts on HSI, with the regression coefficients of -0.027 and 0.006, respectively. SSS and DEP were local variables, and had larger impacts on HSI, while the average values of absolute values of their regression coefficients were 0.075 and 0.129, respectively. In the central Bohai Sea, SSS showed a negative correlation with HSI, and the most negative correlation coefficient was -0.3. In contrast, SSS was correlated positively but weakly with HSI in the three bays of Bohai Sea, and the largest correlation coefficient was 0.1. In particular, DEP and HSI were negatively correlated in the entire Bohai Sea, while they were more negatively correlated in the three bays of Bohai than in the central Bohai Sea, and the most negative correlation coefficient was -0.16 in the three bays. The Poisson regression coefficient of the HSI GWR model was 0.705, consistent with field measurements. Therefore, it could provide a new method for the research on fish habitats in the future.
Exact Analysis of Squared Cross-Validity Coefficient in Predictive Regression Models
ERIC Educational Resources Information Center
Shieh, Gwowen
2009-01-01
In regression analysis, the notion of population validity is of theoretical interest for describing the usefulness of the underlying regression model, whereas the presumably more important concept of population cross-validity represents the predictive effectiveness for the regression equation in future research. It appears that the inference…
NASA Astrophysics Data System (ADS)
Zhai, Mengting; Chen, Yan; Li, Jing; Zhou, Jun
2017-12-01
The molecular electrongativity distance vector (MEDV-13) was used to describe the molecular structure of benzyl ether diamidine derivatives in this paper, Based on MEDV-13, The three-parameter (M 3, M 15, M 47) QSAR model of insecticidal activity (pIC 50) for 60 benzyl ether diamidine derivatives was constructed by leaps-and-bounds regression (LBR) . The traditional correlation coefficient (R) and the cross-validation correlation coefficient (R CV ) were 0.975 and 0.971, respectively. The robustness of the regression model was validated by Jackknife method, the correlation coefficient R were between 0.971 and 0.983. Meanwhile, the independent variables in the model were tested to be no autocorrelation. The regression results indicate that the model has good robust and predictive capabilities. The research would provide theoretical guidance for the development of new generation of anti African trypanosomiasis drugs with efficiency and low toxicity.
[From clinical judgment to linear regression model.
Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O
2013-01-01
When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R 2 ) indicates the importance of independent variables in the outcome.
Moderation analysis using a two-level regression model.
Yuan, Ke-Hai; Cheng, Ying; Maxwell, Scott
2014-10-01
Moderation analysis is widely used in social and behavioral research. The most commonly used model for moderation analysis is moderated multiple regression (MMR) in which the explanatory variables of the regression model include product terms, and the model is typically estimated by least squares (LS). This paper argues for a two-level regression model in which the regression coefficients of a criterion variable on predictors are further regressed on moderator variables. An algorithm for estimating the parameters of the two-level model by normal-distribution-based maximum likelihood (NML) is developed. Formulas for the standard errors (SEs) of the parameter estimates are provided and studied. Results indicate that, when heteroscedasticity exists, NML with the two-level model gives more efficient and more accurate parameter estimates than the LS analysis of the MMR model. When error variances are homoscedastic, NML with the two-level model leads to essentially the same results as LS with the MMR model. Most importantly, the two-level regression model permits estimating the percentage of variance of each regression coefficient that is due to moderator variables. When applied to data from General Social Surveys 1991, NML with the two-level model identified a significant moderation effect of race on the regression of job prestige on years of education while LS with the MMR model did not. An R package is also developed and documented to facilitate the application of the two-level model.
NASA Technical Reports Server (NTRS)
Stolzer, Alan J.; Halford, Carl
2007-01-01
In a previous study, multiple regression techniques were applied to Flight Operations Quality Assurance-derived data to develop parsimonious model(s) for fuel consumption on the Boeing 757 airplane. The present study examined several data mining algorithms, including neural networks, on the fuel consumption problem and compared them to the multiple regression results obtained earlier. Using regression methods, parsimonious models were obtained that explained approximately 85% of the variation in fuel flow. In general data mining methods were more effective in predicting fuel consumption. Classification and Regression Tree methods reported correlation coefficients of .91 to .92, and General Linear Models and Multilayer Perceptron neural networks reported correlation coefficients of about .99. These data mining models show great promise for use in further examining large FOQA databases for operational and safety improvements.
QSAR modeling of flotation collectors using principal components extracted from topological indices.
Natarajan, R; Nirdosh, Inderjit; Basak, Subhash C; Mills, Denise R
2002-01-01
Several topological indices were calculated for substituted-cupferrons that were tested as collectors for the froth flotation of uranium. The principal component analysis (PCA) was used for data reduction. Seven principal components (PC) were found to account for 98.6% of the variance among the computed indices. The principal components thus extracted were used in stepwise regression analyses to construct regression models for the prediction of separation efficiencies (Es) of the collectors. A two-parameter model with a correlation coefficient of 0.889 and a three-parameter model with a correlation coefficient of 0.913 were formed. PCs were found to be better than partition coefficient to form regression equations, and inclusion of an electronic parameter such as Hammett sigma or quantum mechanically derived electronic charges on the chelating atoms did not improve the correlation coefficient significantly. The method was extended to model the separation efficiencies of mercaptobenzothiazoles (MBT) and aminothiophenols (ATP) used in the flotation of lead and zinc ores, respectively. Five principal components were found to explain 99% of the data variability in each series. A three-parameter equation with correlation coefficient of 0.985 and a two-parameter equation with correlation coefficient of 0.926 were obtained for MBT and ATP, respectively. The amenability of separation efficiencies of chelating collectors to QSAR modeling using PCs based on topological indices might lead to the selection of collectors for synthesis and testing from a virtual database.
Cruz, Antonio M; Barr, Cameron; Puñales-Pozo, Elsa
2008-01-01
This research's main goals were to build a predictor for a turnaround time (TAT) indicator for estimating its values and use a numerical clustering technique for finding possible causes of undesirable TAT values. The following stages were used: domain understanding, data characterisation and sample reduction and insight characterisation. Building the TAT indicator multiple linear regression predictor and clustering techniques were used for improving corrective maintenance task efficiency in a clinical engineering department (CED). The indicator being studied was turnaround time (TAT). Multiple linear regression was used for building a predictive TAT value model. The variables contributing to such model were clinical engineering department response time (CE(rt), 0.415 positive coefficient), stock service response time (Stock(rt), 0.734 positive coefficient), priority level (0.21 positive coefficient) and service time (0.06 positive coefficient). The regression process showed heavy reliance on Stock(rt), CE(rt) and priority, in that order. Clustering techniques revealed the main causes of high TAT values. This examination has provided a means for analysing current technical service quality and effectiveness. In doing so, it has demonstrated a process for identifying areas and methods of improvement and a model against which to analyse these methods' effectiveness.
A SEMIPARAMETRIC BAYESIAN MODEL FOR CIRCULAR-LINEAR REGRESSION
We present a Bayesian approach to regress a circular variable on a linear predictor. The regression coefficients are assumed to have a nonparametric distribution with a Dirichlet process prior. The semiparametric Bayesian approach gives added flexibility to the model and is usefu...
Li, Zhenghua; Cheng, Fansheng; Xia, Zhining
2011-01-01
The chemical structures of 114 polycyclic aromatic sulfur heterocycles (PASHs) have been studied by molecular electronegativity-distance vector (MEDV). The linear relationships between gas chromatographic retention index and the MEDV have been established by a multiple linear regression (MLR) model. The results of variable selection by stepwise multiple regression (SMR) and the powerful predictive abilities of the optimization model appraised by leave-one-out cross-validation showed that the optimization model with the correlation coefficient (R) of 0.994 7 and the cross-validated correlation coefficient (Rcv) of 0.994 0 possessed the best statistical quality. Furthermore, when the 114 PASHs compounds were divided into calibration and test sets in the ratio of 2:1, the statistical analysis showed our models possesses almost equal statistical quality, the very similar regression coefficients and the good robustness. The quantitative structure-retention relationship (QSRR) model established may provide a convenient and powerful method for predicting the gas chromatographic retention of PASHs.
Population heterogeneity in the salience of multiple risk factors for adolescent delinquency.
Lanza, Stephanie T; Cooper, Brittany R; Bray, Bethany C
2014-03-01
To present mixture regression analysis as an alternative to more standard regression analysis for predicting adolescent delinquency. We demonstrate how mixture regression analysis allows for the identification of population subgroups defined by the salience of multiple risk factors. We identified population subgroups (i.e., latent classes) of individuals based on their coefficients in a regression model predicting adolescent delinquency from eight previously established risk indices drawn from the community, school, family, peer, and individual levels. The study included N = 37,763 10th-grade adolescents who participated in the Communities That Care Youth Survey. Standard, zero-inflated, and mixture Poisson and negative binomial regression models were considered. Standard and mixture negative binomial regression models were selected as optimal. The five-class regression model was interpreted based on the class-specific regression coefficients, indicating that risk factors had varying salience across classes of adolescents. Standard regression showed that all risk factors were significantly associated with delinquency. Mixture regression provided more nuanced information, suggesting a unique set of risk factors that were salient for different subgroups of adolescents. Implications for the design of subgroup-specific interventions are discussed. Copyright © 2014 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Linear regression metamodeling as a tool to summarize and present simulation model results.
Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M
2013-10-01
Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.
Tools to Support Interpreting Multiple Regression in the Face of Multicollinearity
Kraha, Amanda; Turner, Heather; Nimon, Kim; Zientek, Linda Reichwein; Henson, Robin K.
2012-01-01
While multicollinearity may increase the difficulty of interpreting multiple regression (MR) results, it should not cause undue problems for the knowledgeable researcher. In the current paper, we argue that rather than using one technique to investigate regression results, researchers should consider multiple indices to understand the contributions that predictors make not only to a regression model, but to each other as well. Some of the techniques to interpret MR effects include, but are not limited to, correlation coefficients, beta weights, structure coefficients, all possible subsets regression, commonality coefficients, dominance weights, and relative importance weights. This article will review a set of techniques to interpret MR effects, identify the elements of the data on which the methods focus, and identify statistical software to support such analyses. PMID:22457655
Tools to support interpreting multiple regression in the face of multicollinearity.
Kraha, Amanda; Turner, Heather; Nimon, Kim; Zientek, Linda Reichwein; Henson, Robin K
2012-01-01
While multicollinearity may increase the difficulty of interpreting multiple regression (MR) results, it should not cause undue problems for the knowledgeable researcher. In the current paper, we argue that rather than using one technique to investigate regression results, researchers should consider multiple indices to understand the contributions that predictors make not only to a regression model, but to each other as well. Some of the techniques to interpret MR effects include, but are not limited to, correlation coefficients, beta weights, structure coefficients, all possible subsets regression, commonality coefficients, dominance weights, and relative importance weights. This article will review a set of techniques to interpret MR effects, identify the elements of the data on which the methods focus, and identify statistical software to support such analyses.
Precision Efficacy Analysis for Regression.
ERIC Educational Resources Information Center
Brooks, Gordon P.
When multiple linear regression is used to develop a prediction model, sample size must be large enough to ensure stable coefficients. If the derivation sample size is inadequate, the model may not predict well for future subjects. The precision efficacy analysis for regression (PEAR) method uses a cross- validity approach to select sample sizes…
Testing a single regression coefficient in high dimensional linear models
Zhong, Ping-Shou; Li, Runze; Wang, Hansheng; Tsai, Chih-Ling
2017-01-01
In linear regression models with high dimensional data, the classical z-test (or t-test) for testing the significance of each single regression coefficient is no longer applicable. This is mainly because the number of covariates exceeds the sample size. In this paper, we propose a simple and novel alternative by introducing the Correlated Predictors Screening (CPS) method to control for predictors that are highly correlated with the target covariate. Accordingly, the classical ordinary least squares approach can be employed to estimate the regression coefficient associated with the target covariate. In addition, we demonstrate that the resulting estimator is consistent and asymptotically normal even if the random errors are heteroscedastic. This enables us to apply the z-test to assess the significance of each covariate. Based on the p-value obtained from testing the significance of each covariate, we further conduct multiple hypothesis testing by controlling the false discovery rate at the nominal level. Then, we show that the multiple hypothesis testing achieves consistent model selection. Simulation studies and empirical examples are presented to illustrate the finite sample performance and the usefulness of the proposed method, respectively. PMID:28663668
Testing a single regression coefficient in high dimensional linear models.
Lan, Wei; Zhong, Ping-Shou; Li, Runze; Wang, Hansheng; Tsai, Chih-Ling
2016-11-01
In linear regression models with high dimensional data, the classical z -test (or t -test) for testing the significance of each single regression coefficient is no longer applicable. This is mainly because the number of covariates exceeds the sample size. In this paper, we propose a simple and novel alternative by introducing the Correlated Predictors Screening (CPS) method to control for predictors that are highly correlated with the target covariate. Accordingly, the classical ordinary least squares approach can be employed to estimate the regression coefficient associated with the target covariate. In addition, we demonstrate that the resulting estimator is consistent and asymptotically normal even if the random errors are heteroscedastic. This enables us to apply the z -test to assess the significance of each covariate. Based on the p -value obtained from testing the significance of each covariate, we further conduct multiple hypothesis testing by controlling the false discovery rate at the nominal level. Then, we show that the multiple hypothesis testing achieves consistent model selection. Simulation studies and empirical examples are presented to illustrate the finite sample performance and the usefulness of the proposed method, respectively.
Background stratified Poisson regression analysis of cohort data.
Richardson, David B; Langholz, Bryan
2012-03-01
Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models.
ERIC Educational Resources Information Center
Waller, Niels; Jones, Jeff
2011-01-01
We describe methods for assessing all possible criteria (i.e., dependent variables) and subsets of criteria for regression models with a fixed set of predictors, x (where x is an n x 1 vector of independent variables). Our methods build upon the geometry of regression coefficients (hereafter called regression weights) in n-dimensional space. For a…
Su, Liyun; Zhao, Yanyong; Yan, Tianshun; Li, Fenglan
2012-01-01
Multivariate local polynomial fitting is applied to the multivariate linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to non-parametric technique of local polynomial estimation, it is unnecessary to know the form of heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we verify that the regression coefficients is asymptotic normal based on numerical simulations and normal Q-Q plots of residuals. Finally, the simulation results and the local polynomial estimation of real data indicate that our approach is surely effective in finite-sample situations.
Incremental Net Effects in Multiple Regression
ERIC Educational Resources Information Center
Lipovetsky, Stan; Conklin, Michael
2005-01-01
A regular problem in regression analysis is estimating the comparative importance of the predictors in the model. This work considers the 'net effects', or shares of the predictors in the coefficient of the multiple determination, which is a widely used characteristic of the quality of a regression model. Estimation of the net effects can be a…
Panel regressions to estimate low-flow response to rainfall variability in ungaged basins
Bassiouni, Maoya; Vogel, Richard M.; Archfield, Stacey A.
2016-01-01
Multicollinearity and omitted-variable bias are major limitations to developing multiple linear regression models to estimate streamflow characteristics in ungaged areas and varying rainfall conditions. Panel regression is used to overcome limitations of traditional regression methods, and obtain reliable model coefficients, in particular to understand the elasticity of streamflow to rainfall. Using annual rainfall and selected basin characteristics at 86 gaged streams in the Hawaiian Islands, regional regression models for three stream classes were developed to estimate the annual low-flow duration discharges. Three panel-regression structures (random effects, fixed effects, and pooled) were compared to traditional regression methods, in which space is substituted for time. Results indicated that panel regression generally was able to reproduce the temporal behavior of streamflow and reduce the standard errors of model coefficients compared to traditional regression, even for models in which the unobserved heterogeneity between streams is significant and the variance inflation factor for rainfall is much greater than 10. This is because both spatial and temporal variability were better characterized in panel regression. In a case study, regional rainfall elasticities estimated from panel regressions were applied to ungaged basins on Maui, using available rainfall projections to estimate plausible changes in surface-water availability and usable stream habitat for native species. The presented panel-regression framework is shown to offer benefits over existing traditional hydrologic regression methods for developing robust regional relations to investigate streamflow response in a changing climate.
Panel regressions to estimate low-flow response to rainfall variability in ungaged basins
NASA Astrophysics Data System (ADS)
Bassiouni, Maoya; Vogel, Richard M.; Archfield, Stacey A.
2016-12-01
Multicollinearity and omitted-variable bias are major limitations to developing multiple linear regression models to estimate streamflow characteristics in ungaged areas and varying rainfall conditions. Panel regression is used to overcome limitations of traditional regression methods, and obtain reliable model coefficients, in particular to understand the elasticity of streamflow to rainfall. Using annual rainfall and selected basin characteristics at 86 gaged streams in the Hawaiian Islands, regional regression models for three stream classes were developed to estimate the annual low-flow duration discharges. Three panel-regression structures (random effects, fixed effects, and pooled) were compared to traditional regression methods, in which space is substituted for time. Results indicated that panel regression generally was able to reproduce the temporal behavior of streamflow and reduce the standard errors of model coefficients compared to traditional regression, even for models in which the unobserved heterogeneity between streams is significant and the variance inflation factor for rainfall is much greater than 10. This is because both spatial and temporal variability were better characterized in panel regression. In a case study, regional rainfall elasticities estimated from panel regressions were applied to ungaged basins on Maui, using available rainfall projections to estimate plausible changes in surface-water availability and usable stream habitat for native species. The presented panel-regression framework is shown to offer benefits over existing traditional hydrologic regression methods for developing robust regional relations to investigate streamflow response in a changing climate.
Testing for gene-environment interaction under exposure misspecification.
Sun, Ryan; Carroll, Raymond J; Christiani, David C; Lin, Xihong
2017-11-09
Complex interplay between genetic and environmental factors characterizes the etiology of many diseases. Modeling gene-environment (GxE) interactions is often challenged by the unknown functional form of the environment term in the true data-generating mechanism. We study the impact of misspecification of the environmental exposure effect on inference for the GxE interaction term in linear and logistic regression models. We first examine the asymptotic bias of the GxE interaction regression coefficient, allowing for confounders as well as arbitrary misspecification of the exposure and confounder effects. For linear regression, we show that under gene-environment independence and some confounder-dependent conditions, when the environment effect is misspecified, the regression coefficient of the GxE interaction can be unbiased. However, inference on the GxE interaction is still often incorrect. In logistic regression, we show that the regression coefficient is generally biased if the genetic factor is associated with the outcome directly or indirectly. Further, we show that the standard robust sandwich variance estimator for the GxE interaction does not perform well in practical GxE studies, and we provide an alternative testing procedure that has better finite sample properties. © 2017, The International Biometric Society.
The importance of regional models in assessing canine cancer incidences in Switzerland
Leyk, Stefan; Brunsdon, Christopher; Graf, Ramona; Pospischil, Andreas; Fabrikant, Sara Irina
2018-01-01
Fitting canine cancer incidences through a conventional regression model assumes constant statistical relationships across the study area in estimating the model coefficients. However, it is often more realistic to consider that these relationships may vary over space. Such a condition, known as spatial non-stationarity, implies that the model coefficients need to be estimated locally. In these kinds of local models, the geographic scale, or spatial extent, employed for coefficient estimation may also have a pervasive influence. This is because important variations in the local model coefficients across geographic scales may impact the understanding of local relationships. In this study, we fitted canine cancer incidences across Swiss municipal units through multiple regional models. We computed diagnostic summaries across the different regional models, and contrasted them with the diagnostics of the conventional regression model, using value-by-alpha maps and scalograms. The results of this comparative assessment enabled us to identify variations in the goodness-of-fit and coefficient estimates. We detected spatially non-stationary relationships, in particular, for the variables related to biological risk factors. These variations in the model coefficients were more important at small geographic scales, making a case for the need to model canine cancer incidences locally in contrast to more conventional global approaches. However, we contend that prior to undertaking local modeling efforts, a deeper understanding of the effects of geographic scale is needed to better characterize and identify local model relationships. PMID:29652921
The importance of regional models in assessing canine cancer incidences in Switzerland.
Boo, Gianluca; Leyk, Stefan; Brunsdon, Christopher; Graf, Ramona; Pospischil, Andreas; Fabrikant, Sara Irina
2018-01-01
Fitting canine cancer incidences through a conventional regression model assumes constant statistical relationships across the study area in estimating the model coefficients. However, it is often more realistic to consider that these relationships may vary over space. Such a condition, known as spatial non-stationarity, implies that the model coefficients need to be estimated locally. In these kinds of local models, the geographic scale, or spatial extent, employed for coefficient estimation may also have a pervasive influence. This is because important variations in the local model coefficients across geographic scales may impact the understanding of local relationships. In this study, we fitted canine cancer incidences across Swiss municipal units through multiple regional models. We computed diagnostic summaries across the different regional models, and contrasted them with the diagnostics of the conventional regression model, using value-by-alpha maps and scalograms. The results of this comparative assessment enabled us to identify variations in the goodness-of-fit and coefficient estimates. We detected spatially non-stationary relationships, in particular, for the variables related to biological risk factors. These variations in the model coefficients were more important at small geographic scales, making a case for the need to model canine cancer incidences locally in contrast to more conventional global approaches. However, we contend that prior to undertaking local modeling efforts, a deeper understanding of the effects of geographic scale is needed to better characterize and identify local model relationships.
Li, Ji; Gray, B.R.; Bates, D.M.
2008-01-01
Partitioning the variance of a response by design levels is challenging for binomial and other discrete outcomes. Goldstein (2003) proposed four definitions for variance partitioning coefficients (VPC) under a two-level logistic regression model. In this study, we explicitly derived formulae for multi-level logistic regression model and subsequently studied the distributional properties of the calculated VPCs. Using simulations and a vegetation dataset, we demonstrated associations between different VPC definitions, the importance of methods for estimating VPCs (by comparing VPC obtained using Laplace and penalized quasilikehood methods), and bivariate dependence between VPCs calculated at different levels. Such an empirical study lends an immediate support to wider applications of VPC in scientific data analysis.
Improvement of Storm Forecasts Using Gridded Bayesian Linear Regression for Northeast United States
NASA Astrophysics Data System (ADS)
Yang, J.; Astitha, M.; Schwartz, C. S.
2017-12-01
Bayesian linear regression (BLR) is a post-processing technique in which regression coefficients are derived and used to correct raw forecasts based on pairs of observation-model values. This study presents the development and application of a gridded Bayesian linear regression (GBLR) as a new post-processing technique to improve numerical weather prediction (NWP) of rain and wind storm forecasts over northeast United States. Ten controlled variables produced from ten ensemble members of the National Center for Atmospheric Research (NCAR) real-time prediction system are used for a GBLR model. In the GBLR framework, leave-one-storm-out cross-validation is utilized to study the performances of the post-processing technique in a database composed of 92 storms. To estimate the regression coefficients of the GBLR, optimization procedures that minimize the systematic and random error of predicted atmospheric variables (wind speed, precipitation, etc.) are implemented for the modeled-observed pairs of training storms. The regression coefficients calculated for meteorological stations of the National Weather Service are interpolated back to the model domain. An analysis of forecast improvements based on error reductions during the storms will demonstrate the value of GBLR approach. This presentation will also illustrate how the variances are optimized for the training partition in GBLR and discuss the verification strategy for grid points where no observations are available. The new post-processing technique is successful in improving wind speed and precipitation storm forecasts using past event-based data and has the potential to be implemented in real-time.
NASA Astrophysics Data System (ADS)
Mansouri, Edris; Feizi, Faranak; Jafari Rad, Alireza; Arian, Mehran
2018-03-01
This paper uses multivariate regression to create a mathematical model for iron skarn exploration in the Sarvian area, central Iran, using multivariate regression for mineral prospectivity mapping (MPM). The main target of this paper is to apply multivariate regression analysis (as an MPM method) to map iron outcrops in the northeastern part of the study area in order to discover new iron deposits in other parts of the study area. Two types of multivariate regression models using two linear equations were employed to discover new mineral deposits. This method is one of the reliable methods for processing satellite images. ASTER satellite images (14 bands) were used as unique independent variables (UIVs), and iron outcrops were mapped as dependent variables for MPM. According to the results of the probability value (p value), coefficient of determination value (R2) and adjusted determination coefficient (Radj2), the second regression model (which consistent of multiple UIVs) fitted better than other models. The accuracy of the model was confirmed by iron outcrops map and geological observation. Based on field observation, iron mineralization occurs at the contact of limestone and intrusive rocks (skarn type).
Guenole, Nigel; Brown, Anna
2014-01-01
We report a Monte Carlo study examining the effects of two strategies for handling measurement non-invariance – modeling and ignoring non-invariant items – on structural regression coefficients between latent variables measured with item response theory models for categorical indicators. These strategies were examined across four levels and three types of non-invariance – non-invariant loadings, non-invariant thresholds, and combined non-invariance on loadings and thresholds – in simple, partial, mediated and moderated regression models where the non-invariant latent variable occupied predictor, mediator, and criterion positions in the structural regression models. When non-invariance is ignored in the latent predictor, the focal group regression parameters are biased in the opposite direction to the difference in loadings and thresholds relative to the referent group (i.e., lower loadings and thresholds for the focal group lead to overestimated regression parameters). With criterion non-invariance, the focal group regression parameters are biased in the same direction as the difference in loadings and thresholds relative to the referent group. While unacceptable levels of parameter bias were confined to the focal group, bias occurred at considerably lower levels of ignored non-invariance than was previously recognized in referent and focal groups. PMID:25278911
Zheng, Qi; Peng, Limin
2016-01-01
Quantile regression provides a flexible platform for evaluating covariate effects on different segments of the conditional distribution of response. As the effects of covariates may change with quantile level, contemporaneously examining a spectrum of quantiles is expected to have a better capacity to identify variables with either partial or full effects on the response distribution, as compared to focusing on a single quantile. Under this motivation, we study a general adaptively weighted LASSO penalization strategy in the quantile regression setting, where a continuum of quantile index is considered and coefficients are allowed to vary with quantile index. We establish the oracle properties of the resulting estimator of coefficient function. Furthermore, we formally investigate a BIC-type uniform tuning parameter selector and show that it can ensure consistent model selection. Our numerical studies confirm the theoretical findings and illustrate an application of the new variable selection procedure. PMID:28008212
Interquantile Shrinkage in Regression Models
Jiang, Liewen; Wang, Huixia Judy; Bondell, Howard D.
2012-01-01
Conventional analysis using quantile regression typically focuses on fitting the regression model at different quantiles separately. However, in situations where the quantile coefficients share some common feature, joint modeling of multiple quantiles to accommodate the commonality often leads to more efficient estimation. One example of common features is that a predictor may have a constant effect over one region of quantile levels but varying effects in other regions. To automatically perform estimation and detection of the interquantile commonality, we develop two penalization methods. When the quantile slope coefficients indeed do not change across quantile levels, the proposed methods will shrink the slopes towards constant and thus improve the estimation efficiency. We establish the oracle properties of the two proposed penalization methods. Through numerical investigations, we demonstrate that the proposed methods lead to estimations with competitive or higher efficiency than the standard quantile regression estimation in finite samples. Supplemental materials for the article are available online. PMID:24363546
Modeling maximum daily temperature using a varying coefficient regression model
Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith
2014-01-01
Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...
Multicollinearity and Regression Analysis
NASA Astrophysics Data System (ADS)
Daoud, Jamal I.
2017-12-01
In regression analysis it is obvious to have a correlation between the response and predictor(s), but having correlation among predictors is something undesired. The number of predictors included in the regression model depends on many factors among which, historical data, experience, etc. At the end selection of most important predictors is something objective due to the researcher. Multicollinearity is a phenomena when two or more predictors are correlated, if this happens, the standard error of the coefficients will increase [8]. Increased standard errors means that the coefficients for some or all independent variables may be found to be significantly different from In other words, by overinflating the standard errors, multicollinearity makes some variables statistically insignificant when they should be significant. In this paper we focus on the multicollinearity, reasons and consequences on the reliability of the regression model.
Wang, Xiaojing; Chen, Ming-Hui; Yan, Jun
2013-07-01
Cox models with time-varying coefficients offer great flexibility in capturing the temporal dynamics of covariate effects on event times, which could be hidden from a Cox proportional hazards model. Methodology development for varying coefficient Cox models, however, has been largely limited to right censored data; only limited work on interval censored data has been done. In most existing methods for varying coefficient models, analysts need to specify which covariate coefficients are time-varying and which are not at the time of fitting. We propose a dynamic Cox regression model for interval censored data in a Bayesian framework, where the coefficient curves are piecewise constant but the number of pieces and the jump points are covariate specific and estimated from the data. The model automatically determines the extent to which the temporal dynamics is needed for each covariate, resulting in smoother and more stable curve estimates. The posterior computation is carried out via an efficient reversible jump Markov chain Monte Carlo algorithm. Inference of each coefficient is based on an average of models with different number of pieces and jump points. A simulation study with three covariates, each with a coefficient of different degree in temporal dynamics, confirmed that the dynamic model is preferred to the existing time-varying model in terms of model comparison criteria through conditional predictive ordinate. When applied to a dental health data of children with age between 7 and 12 years, the dynamic model reveals that the relative risk of emergence of permanent tooth 24 between children with and without an infected primary predecessor is the highest at around age 7.5, and that it gradually reduces to one after age 11. These findings were not seen from the existing studies with Cox proportional hazards models.
Remote sensing of PM2.5 from ground-based optical measurements
NASA Astrophysics Data System (ADS)
Li, S.; Joseph, E.; Min, Q.
2014-12-01
Remote sensing of particulate matter concentration with aerodynamic diameter smaller than 2.5 um(PM2.5) by using ground-based optical measurements of aerosols is investigated based on 6 years of hourly average measurements of aerosol optical properties, PM2.5, ceilometer backscatter coefficients and meteorological factors from Howard University Beltsville Campus facility (HUBC). The accuracy of quantitative retrieval of PM2.5 using aerosol optical depth (AOD) is limited due to changes in aerosol size distribution and vertical distribution. In this study, ceilometer backscatter coefficients are used to provide vertical information of aerosol. It is found that the PM2.5-AOD ratio can vary largely for different aerosol vertical distributions. The ratio is also sensitive to mode parameters of bimodal lognormal aerosol size distribution when the geometric mean radius for the fine mode is small. Using two Angstrom exponents calculated at three wavelengths of 415, 500, 860nm are found better representing aerosol size distributions than only using one Angstrom exponent. A regression model is proposed to assess the impacts of different factors on the retrieval of PM2.5. Compared to a simple linear regression model, the new model combining AOD and ceilometer backscatter can prominently improve the fitting of PM2.5. The contribution of further introducing Angstrom coefficients is apparent. Using combined measurements of AOD, ceilometer backscatter, Angstrom coefficients and meteorological parameters in the regression model can get a correlation coefficient of 0.79 between fitted and expected PM2.5.
Advanced statistics: linear regression, part II: multiple linear regression.
Marill, Keith A
2004-01-01
The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.
Estimation Methods for Non-Homogeneous Regression - Minimum CRPS vs Maximum Likelihood
NASA Astrophysics Data System (ADS)
Gebetsberger, Manuel; Messner, Jakob W.; Mayr, Georg J.; Zeileis, Achim
2017-04-01
Non-homogeneous regression models are widely used to statistically post-process numerical weather prediction models. Such regression models correct for errors in mean and variance and are capable to forecast a full probability distribution. In order to estimate the corresponding regression coefficients, CRPS minimization is performed in many meteorological post-processing studies since the last decade. In contrast to maximum likelihood estimation, CRPS minimization is claimed to yield more calibrated forecasts. Theoretically, both scoring rules used as an optimization score should be able to locate a similar and unknown optimum. Discrepancies might result from a wrong distributional assumption of the observed quantity. To address this theoretical concept, this study compares maximum likelihood and minimum CRPS estimation for different distributional assumptions. First, a synthetic case study shows that, for an appropriate distributional assumption, both estimation methods yield to similar regression coefficients. The log-likelihood estimator is slightly more efficient. A real world case study for surface temperature forecasts at different sites in Europe confirms these results but shows that surface temperature does not always follow the classical assumption of a Gaussian distribution. KEYWORDS: ensemble post-processing, maximum likelihood estimation, CRPS minimization, probabilistic temperature forecasting, distributional regression models
NASA Astrophysics Data System (ADS)
Gholizadeh, H.; Robeson, S. M.
2015-12-01
Empirical models have been widely used to estimate global chlorophyll content from remotely sensed data. Here, we focus on the standard NASA empirical models that use blue-green band ratios. These band ratio ocean color (OC) algorithms are in the form of fourth-order polynomials and the parameters of these polynomials (i.e. coefficients) are estimated from the NASA bio-Optical Marine Algorithm Data set (NOMAD). Most of the points in this data set have been sampled from tropical and temperate regions. However, polynomial coefficients obtained from this data set are used to estimate chlorophyll content in all ocean regions with different properties such as sea-surface temperature, salinity, and downwelling/upwelling patterns. Further, the polynomial terms in these models are highly correlated. In sum, the limitations of these empirical models are as follows: 1) the independent variables within the empirical models, in their current form, are correlated (multicollinear), and 2) current algorithms are global approaches and are based on the spatial stationarity assumption, so they are independent of location. Multicollinearity problem is resolved by using partial least squares (PLS). PLS, which transforms the data into a set of independent components, can be considered as a combined form of principal component regression (PCR) and multiple regression. Geographically weighted regression (GWR) is also used to investigate the validity of spatial stationarity assumption. GWR solves a regression model over each sample point by using the observations within its neighbourhood. PLS results show that the empirical method underestimates chlorophyll content in high latitudes, including the Southern Ocean region, when compared to PLS (see Figure 1). Cluster analysis of GWR coefficients also shows that the spatial stationarity assumption in empirical models is not likely a valid assumption.
Genetic parameters for stayability to consecutive calvings in Zebu cattle.
Silva, D O; Santana, M L; Ayres, D R; Menezes, G R O; Silva, L O C; Nobre, P R C; Pereira, R J
2017-12-22
Longer-lived cows tend to be more profitable and the stayability trait is a selection criterion correlated to longevity. An alternative to the traditional approach to evaluate stayability is its definition based on consecutive calvings, whose main advantage is the more accurate evaluation of young bulls. However, no study using this alternative approach has been conducted for Zebu breeds. Therefore, the objective of this study was to compare linear random regression models to fit stayability to consecutive calvings of Guzerá, Nelore and Tabapuã cows and to estimate genetic parameters for this trait in the respective breeds. Data up to the eighth calving were used. The models included the fixed effects of age at first calving and year-season of birth of the cow and the random effects of contemporary group, additive genetic, permanent environmental and residual. Random regressions were modeled by orthogonal Legendre polynomials of order 1 to 4 (2 to 5 coefficients) for contemporary group, additive genetic and permanent environmental effects. Using Deviance Information Criterion as the selection criterion, the model with 4 regression coefficients for each effect was the most adequate for the Nelore and Tabapuã breeds and the model with 5 coefficients is recommended for the Guzerá breed. For Guzerá, heritabilities ranged from 0.05 to 0.08, showing a quadratic trend with a peak between the fourth and sixth calving. For the Nelore and Tabapuã breeds, the estimates ranged from 0.03 to 0.07 and from 0.03 to 0.08, respectively, and increased with increasing calving number. The additive genetic correlations exhibited a similar trend among breeds and were higher for stayability between closer calvings. Even between more distant calvings (second v. eighth), stayability showed a moderate to high genetic correlation, which was 0.77, 0.57 and 0.79 for the Guzerá, Nelore and Tabapuã breeds, respectively. For Guzerá, when the models with 4 or 5 regression coefficients were compared, the rank correlations between predicted breeding values for the intercept were always higher than 0.99, indicating the possibility of practical application of the least parameterized model. In conclusion, the model with 4 random regression coefficients is recommended for the genetic evaluation of stayability to consecutive calvings in Zebu cattle.
Bowen, Stephen R; Chappell, Richard J; Bentzen, Søren M; Deveau, Michael A; Forrest, Lisa J; Jeraj, Robert
2012-01-01
Purpose To quantify associations between pre-radiotherapy and post-radiotherapy PET parameters via spatially resolved regression. Materials and methods Ten canine sinonasal cancer patients underwent PET/CT scans of [18F]FDG (FDGpre), [18F]FLT (FLTpre), and [61Cu]Cu-ATSM (Cu-ATSMpre). Following radiotherapy regimens of 50 Gy in 10 fractions, veterinary patients underwent FDG PET/CT scans at three months (FDGpost). Regression of standardized uptake values in baseline FDGpre, FLTpre and Cu-ATSMpre tumour voxels to those in FDGpost images was performed for linear, log-linear, generalized-linear and mixed-fit linear models. Goodness-of-fit in regression coefficients was assessed by R2. Hypothesis testing of coefficients over the patient population was performed. Results Multivariate linear model fits of FDGpre to FDGpost were significantly positive over the population (FDGpost~0.17 FDGpre, p=0.03), and classified slopes of RECIST non-responders and responders to be different (0.37 vs. 0.07, p=0.01). Generalized-linear model fits related FDGpre to FDGpost by a linear power law (FDGpost~FDGpre0.93, p<0.001). Univariate mixture model fits of FDGpre improved R2 from 0.17 to 0.52. Neither baseline FLT PET nor Cu-ATSM PET uptake contributed statistically significant multivariate regression coefficients. Conclusions Spatially resolved regression analysis indicates that pre-treatment FDG PET uptake is most strongly associated with three-month post-treatment FDG PET uptake in this patient population, though associations are histopathology-dependent. PMID:22682748
Determination of suitable drying curve model for bread moisture loss during baking
NASA Astrophysics Data System (ADS)
Soleimani Pour-Damanab, A. R.; Jafary, A.; Rafiee, S.
2013-03-01
This study presents mathematical modelling of bread moisture loss or drying during baking in a conventional bread baking process. In order to estimate and select the appropriate moisture loss curve equation, 11 different models, semi-theoretical and empirical, were applied to the experimental data and compared according to their correlation coefficients, chi-squared test and root mean square error which were predicted by nonlinear regression analysis. Consequently, of all the drying models, a Page model was selected as the best one, according to the correlation coefficients, chi-squared test, and root mean square error values and its simplicity. Mean absolute estimation error of the proposed model by linear regression analysis for natural and forced convection modes was 2.43, 4.74%, respectively.
Innovating patient care delivery: DSRIP's interrupted time series analysis paradigm.
Shenoy, Amrita G; Begley, Charles E; Revere, Lee; Linder, Stephen H; Daiger, Stephen P
2017-12-08
Adoption of Medicaid Section 1115 waiver is one of the many ways of innovating healthcare delivery system. The Delivery System Reform Incentive Payment (DSRIP) pool, one of the two funding pools of the waiver has four categories viz. infrastructure development, program innovation and redesign, quality improvement reporting and lastly, bringing about population health improvement. A metric of the fourth category, preventable hospitalization (PH) rate was analyzed in the context of eight conditions for two time periods, pre-reporting years (2010-2012) and post-reporting years (2013-2015) for two hospital cohorts, DSRIP participating and non-participating hospitals. The study explains how DSRIP impacted Preventable Hospitalization (PH) rates of eight conditions for both hospital cohorts within two time periods. Eight PH rates were regressed as the dependent variable with time, intervention and post-DSRIP Intervention as independent variables. PH rates of eight conditions were then consolidated into one rate for regressing with the above independent variables to evaluate overall impact of DSRIP. An interrupted time series regression was performed after accounting for auto-correlation, stationarity and seasonality in the dataset. In the individual regression model, PH rates showed statistically significant coefficients for seven out of eight conditions in DSRIP participating hospitals. In the combined regression model, the coefficient of the PH rate showed a statistically significant decrease with negative p-values for regression coefficients in DSRIP participating hospitals compared to positive/increased p-values for regression coefficients in DSRIP non-participating hospitals. Several macro- and micro-level factors may have likely contributed DSRIP hospitals outperforming DSRIP non-participating hospitals. Healthcare organization/provider collaboration, support from healthcare professionals, DSRIP's design, state reimbursement and coordination in care delivery methods may have led to likely success of DSRIP. IV, a retrospective cohort study based on longitudinal data. Copyright © 2017 Elsevier Inc. All rights reserved.
Estimation of variance in Cox's regression model with shared gamma frailties.
Andersen, P K; Klein, J P; Knudsen, K M; Tabanera y Palacios, R
1997-12-01
The Cox regression model with a shared frailty factor allows for unobserved heterogeneity or for statistical dependence between the observed survival times. Estimation in this model when the frailties are assumed to follow a gamma distribution is reviewed, and we address the problem of obtaining variance estimates for regression coefficients, frailty parameter, and cumulative baseline hazards using the observed nonparametric information matrix. A number of examples are given comparing this approach with fully parametric inference in models with piecewise constant baseline hazards.
NASA Astrophysics Data System (ADS)
Shafizadeh-Moghadam, Hossein; Helbich, Marco
2015-03-01
The rapid growth of megacities requires special attention among urban planners worldwide, and particularly in Mumbai, India, where growth is very pronounced. To cope with the planning challenges this will bring, developing a retrospective understanding of urban land-use dynamics and the underlying driving-forces behind urban growth is a key prerequisite. This research uses regression-based land-use change models - and in particular non-spatial logistic regression models (LR) and auto-logistic regression models (ALR) - for the Mumbai region over the period 1973-2010, in order to determine the drivers behind spatiotemporal urban expansion. Both global models are complemented by a local, spatial model, the so-called geographically weighted logistic regression (GWLR) model, one that explicitly permits variations in driving-forces across space. The study comes to two main conclusions. First, both global models suggest similar driving-forces behind urban growth over time, revealing that LRs and ALRs result in estimated coefficients with comparable magnitudes. Second, all the local coefficients show distinctive temporal and spatial variations. It is therefore concluded that GWLR aids our understanding of urban growth processes, and so can assist context-related planning and policymaking activities when seeking to secure a sustainable urban future.
van Mil, Anke C C M; Greyling, Arno; Zock, Peter L; Geleijnse, Johanna M; Hopman, Maria T; Mensink, Ronald P; Reesink, Koen D; Green, Daniel J; Ghiadoni, Lorenzo; Thijssen, Dick H
2016-09-01
Brachial artery flow-mediated dilation (FMD) is a popular technique to examine endothelial function in humans. Identifying volunteer and methodological factors related to variation in FMD is important to improve measurement accuracy and applicability. Volunteer-related and methodology-related parameters were collected in 672 volunteers from eight affiliated centres worldwide who underwent repeated measures of FMD. All centres adopted contemporary expert-consensus guidelines for FMD assessment. After calculating the coefficient of variation (%) of the FMD for each individual, we constructed quartiles (n = 168 per quartile). Based on two regression models (volunteer-related factors and methodology-related factors), statistically significant components of these two models were added to a final regression model (calculated as β-coefficient and R). This allowed us to identify factors that independently contributed to the variation in FMD%. Median coefficient of variation was 17.5%, with healthy volunteers demonstrating a coefficient of variation 9.3%. Regression models revealed age (β = 0.248, P < 0.001), hypertension (β = 0.104, P < 0.001), dyslipidemia (β = 0.331, P < 0.001), time between measurements (β = 0.318, P < 0.001), lab experience (β = -0.133, P < 0.001) and baseline FMD% (β = 0.082, P < 0.05) as contributors to the coefficient of variation. After including all significant factors in the final model, we found that time between measurements, hypertension, baseline FMD% and lab experience with FMD independently predicted brachial artery variability (total R = 0.202). Although FMD% showed good reproducibility, larger variation was observed in conditions with longer time between measurements, hypertension, less experience and lower baseline FMD%. Accounting for these factors may improve FMD% variability.
Regression Simulation Model. Appendix X. Users Manual,
1981-03-01
change as the prediction equations become refined. Whereas no notice will be provided when the changes are made, the programs will be modified such that...NATIONAL BUREAU Of STANDARDS 1963 A ___,_ __ _ __ _ . APPENDIX X ( R4/ EGRESSION IMULATION ’jDEL. Ape’A ’) 7 USERS MANUA submitted to The Great River...regression analysis and to establish a prediction equation (model). The prediction equation contains the partial regression coefficients (B-weights) which
Analyzing degradation data with a random effects spline regression model
Fugate, Michael Lynn; Hamada, Michael Scott; Weaver, Brian Phillip
2017-03-17
This study proposes using a random effects spline regression model to analyze degradation data. Spline regression avoids having to specify a parametric function for the true degradation of an item. A distribution for the spline regression coefficients captures the variation of the true degradation curves from item to item. We illustrate the proposed methodology with a real example using a Bayesian approach. The Bayesian approach allows prediction of degradation of a population over time and estimation of reliability is easy to perform.
Analyzing degradation data with a random effects spline regression model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fugate, Michael Lynn; Hamada, Michael Scott; Weaver, Brian Phillip
This study proposes using a random effects spline regression model to analyze degradation data. Spline regression avoids having to specify a parametric function for the true degradation of an item. A distribution for the spline regression coefficients captures the variation of the true degradation curves from item to item. We illustrate the proposed methodology with a real example using a Bayesian approach. The Bayesian approach allows prediction of degradation of a population over time and estimation of reliability is easy to perform.
Campbell, J Elliott; Moen, Jeremie C; Ney, Richard A; Schnoor, Jerald L
2008-03-01
Estimates of forest soil organic carbon (SOC) have applications in carbon science, soil quality studies, carbon sequestration technologies, and carbon trading. Forest SOC has been modeled using a regression coefficient methodology that applies mean SOC densities (mass/area) to broad forest regions. A higher resolution model is based on an approach that employs a geographic information system (GIS) with soil databases and satellite-derived landcover images. Despite this advancement, the regression approach remains the basis of current state and federal level greenhouse gas inventories. Both approaches are analyzed in detail for Wisconsin forest soils from 1983 to 2001, applying rigorous error-fixing algorithms to soil databases. Resulting SOC stock estimates are 20% larger when determined using the GIS method rather than the regression approach. Average annual rates of increase in SOC stocks are 3.6 and 1.0 million metric tons of carbon per year for the GIS and regression approaches respectively.
NASA Astrophysics Data System (ADS)
Mekanik, F.; Imteaz, M. A.; Gato-Trinidad, S.; Elmahdi, A.
2013-10-01
In this study, the application of Artificial Neural Networks (ANN) and Multiple regression analysis (MR) to forecast long-term seasonal spring rainfall in Victoria, Australia was investigated using lagged El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) as potential predictors. The use of dual (combined lagged ENSO-IOD) input sets for calibrating and validating ANN and MR Models is proposed to investigate the simultaneous effect of past values of these two major climate modes on long-term spring rainfall prediction. The MR models that did not violate the limits of statistical significance and multicollinearity were selected for future spring rainfall forecast. The ANN was developed in the form of multilayer perceptron using Levenberg-Marquardt algorithm. Both MR and ANN modelling were assessed statistically using mean square error (MSE), mean absolute error (MAE), Pearson correlation (r) and Willmott index of agreement (d). The developed MR and ANN models were tested on out-of-sample test sets; the MR models showed very poor generalisation ability for east Victoria with correlation coefficients of -0.99 to -0.90 compared to ANN with correlation coefficients of 0.42-0.93; ANN models also showed better generalisation ability for central and west Victoria with correlation coefficients of 0.68-0.85 and 0.58-0.97 respectively. The ability of multiple regression models to forecast out-of-sample sets is compatible with ANN for Daylesford in central Victoria and Kaniva in west Victoria (r = 0.92 and 0.67 respectively). The errors of the testing sets for ANN models are generally lower compared to multiple regression models. The statistical analysis suggest the potential of ANN over MR models for rainfall forecasting using large scale climate modes.
Suppressor Variables: The Difference between "Is" versus "Acting As"
ERIC Educational Resources Information Center
Ludlow, Larry; Klein, Kelsey
2014-01-01
Correlated predictors in regression models are a fact of life in applied social science research. The extent to which they are correlated will influence the estimates and statistics associated with the other variables they are modeled along with. These effects, for example, may include enhanced regression coefficients for the other variables--a…
Causal Models with Unmeasured Variables: An Introduction to LISREL.
ERIC Educational Resources Information Center
Wolfle, Lee M.
Whenever one uses ordinary least squares regression, one is making an implicit assumption that all of the independent variables have been measured without error. Such an assumption is obviously unrealistic for most social data. One approach for estimating such regression models is to measure implied coefficients between latent variables for which…
Standards for Standardized Logistic Regression Coefficients
ERIC Educational Resources Information Center
Menard, Scott
2011-01-01
Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…
Smooth Scalar-on-Image Regression via Spatial Bayesian Variable Selection
Goldsmith, Jeff; Huang, Lei; Crainiceanu, Ciprian M.
2013-01-01
We develop scalar-on-image regression models when images are registered multidimensional manifolds. We propose a fast and scalable Bayes inferential procedure to estimate the image coefficient. The central idea is the combination of an Ising prior distribution, which controls a latent binary indicator map, and an intrinsic Gaussian Markov random field, which controls the smoothness of the nonzero coefficients. The model is fit using a single-site Gibbs sampler, which allows fitting within minutes for hundreds of subjects with predictor images containing thousands of locations. The code is simple and is provided in less than one page in the Appendix. We apply this method to a neuroimaging study where cognitive outcomes are regressed on measures of white matter microstructure at every voxel of the corpus callosum for hundreds of subjects. PMID:24729670
ERIC Educational Resources Information Center
Kane, Michael T.; Mroch, Andrew A.
2010-01-01
In evaluating the relationship between two measures across different groups (i.e., in evaluating "differential validity") it is necessary to examine differences in correlation coefficients and in regression lines. Ordinary least squares (OLS) regression is the standard method for fitting lines to data, but its criterion for optimal fit…
Revisiting crash spatial heterogeneity: A Bayesian spatially varying coefficients approach.
Xu, Pengpeng; Huang, Helai; Dong, Ni; Wong, S C
2017-01-01
This study was performed to investigate the spatially varying relationships between crash frequency and related risk factors. A Bayesian spatially varying coefficients model was elaborately introduced as a methodological alternative to simultaneously account for the unstructured and spatially structured heterogeneity of the regression coefficients in predicting crash frequencies. The proposed method was appealing in that the parameters were modeled via a conditional autoregressive prior distribution, which involved a single set of random effects and a spatial correlation parameter with extreme values corresponding to pure unstructured or pure spatially correlated random effects. A case study using a three-year crash dataset from the Hillsborough County, Florida, was conducted to illustrate the proposed model. Empirical analysis confirmed the presence of both unstructured and spatially correlated variations in the effects of contributory factors on severe crash occurrences. The findings also suggested that ignoring spatially structured heterogeneity may result in biased parameter estimates and incorrect inferences, while assuming the regression coefficients to be spatially clustered only is probably subject to the issue of over-smoothness. Copyright © 2016 Elsevier Ltd. All rights reserved.
Posa, Mihalj; Pilipović, Ana; Lalić, Mladena; Popović, Jovan
2011-02-15
Linear dependence between temperature (t) and retention coefficient (k, reversed phase HPLC) of bile acids is obtained. Parameters (a, intercept and b, slope) of the linear function k=f(t) highly correlate with bile acids' structures. Investigated bile acids form linear congeneric groups on a principal component (calculated from k=f(t)) score plot that are in accordance with conformations of the hydroxyl and oxo groups in a bile acid steroid skeleton. Partition coefficient (K(p)) of nitrazepam in bile acids' micelles is investigated. Nitrazepam molecules incorporated in micelles show modified bioavailability (depo effect, higher permeability, etc.). Using multiple linear regression method QSAR models of nitrazepams' partition coefficient, K(p) are derived on the temperatures of 25°C and 37°C. For deriving linear regression models on both temperatures experimentally obtained lipophilicity parameters are included (PC1 from data k=f(t)) and in silico descriptors of the shape of a molecule while on the higher temperature molecular polarisation is introduced. This indicates the fact that the incorporation mechanism of nitrazepam in BA micelles changes on the higher temperatures. QSAR models are derived using partial least squares method as well. Experimental parameters k=f(t) are shown to be significant predictive variables. Both QSAR models are validated using cross validation and internal validation method. PLS models have slightly higher predictive capability than MLR models. Copyright © 2010 Elsevier B.V. All rights reserved.
Kaneko, Hiromasa; Funatsu, Kimito
2013-09-23
We propose predictive performance criteria for nonlinear regression models without cross-validation. The proposed criteria are the determination coefficient and the root-mean-square error for the midpoints between k-nearest-neighbor data points. These criteria can be used to evaluate predictive ability after the regression models are updated, whereas cross-validation cannot be performed in such a situation. The proposed method is effective and helpful in handling big data when cross-validation cannot be applied. By analyzing data from numerical simulations and quantitative structural relationships, we confirm that the proposed criteria enable the predictive ability of the nonlinear regression models to be appropriately quantified.
Influence of soil pH on the sorption of ionizable chemicals: modeling advances.
Franco, Antonio; Fu, Wenjing; Trapp, Stefan
2009-03-01
The soil-water distribution coefficient of ionizable chemicals (K(d)) depends on the soil acidity, mainly because the pH governs speciation. Using pH-specific K(d) values normalized to organic carbon (K(OC)) from the literature, a method was developed to estimate the K(OC) of monovalent organic acids and bases. The regression considers pH-dependent speciation and species-specific partition coefficients, calculated from the dissociation constant (pK(a)) and the octanol-water partition coefficient of the neutral molecule (log P(n)). Probably because of the lower pH near the organic colloid-water interface, the optimal pH to model dissociation was lower than the bulk soil pH. The knowledge of the soil pH allows calculation of the fractions of neutral and ionic molecules in the system, thus improving the existing regression for acids. The same approach was not successful with bases, for which the impact of pH on the total sorption is contrasting. In fact, the shortcomings of the model assumptions affect the predictive power for acids and for bases differently. We evaluated accuracy and limitations of the regressions for their use in the environmental fate assessment of ionizable chemicals.
Boligon, A A; Baldi, F; Mercadante, M E Z; Lobo, R B; Pereira, R J; Albuquerque, L G
2011-06-28
We quantified the potential increase in accuracy of expected breeding value for weights of Nelore cattle, from birth to mature age, using multi-trait and random regression models on Legendre polynomials and B-spline functions. A total of 87,712 weight records from 8144 females were used, recorded every three months from birth to mature age from the Nelore Brazil Program. For random regression analyses, all female weight records from birth to eight years of age (data set I) were considered. From this general data set, a subset was created (data set II), which included only nine weight records: at birth, weaning, 365 and 550 days of age, and 2, 3, 4, 5, and 6 years of age. Data set II was analyzed using random regression and multi-trait models. The model of analysis included the contemporary group as fixed effects and age of dam as a linear and quadratic covariable. In the random regression analyses, average growth trends were modeled using a cubic regression on orthogonal polynomials of age. Residual variances were modeled by a step function with five classes. Legendre polynomials of fourth and sixth order were utilized to model the direct genetic and animal permanent environmental effects, respectively, while third-order Legendre polynomials were considered for maternal genetic and maternal permanent environmental effects. Quadratic polynomials were applied to model all random effects in random regression models on B-spline functions. Direct genetic and animal permanent environmental effects were modeled using three segments or five coefficients, and genetic maternal and maternal permanent environmental effects were modeled with one segment or three coefficients in the random regression models on B-spline functions. For both data sets (I and II), animals ranked differently according to expected breeding value obtained by random regression or multi-trait models. With random regression models, the highest gains in accuracy were obtained at ages with a low number of weight records. The results indicate that random regression models provide more accurate expected breeding values than the traditionally finite multi-trait models. Thus, higher genetic responses are expected for beef cattle growth traits by replacing a multi-trait model with random regression models for genetic evaluation. B-spline functions could be applied as an alternative to Legendre polynomials to model covariance functions for weights from birth to mature age.
Guo, Changning; Doub, William H; Kauffman, John F
2010-08-01
Monte Carlo simulations were applied to investigate the propagation of uncertainty in both input variables and response measurements on model prediction for nasal spray product performance design of experiment (DOE) models in the first part of this study, with an initial assumption that the models perfectly represent the relationship between input variables and the measured responses. In this article, we discard the initial assumption, and extended the Monte Carlo simulation study to examine the influence of both input variable variation and product performance measurement variation on the uncertainty in DOE model coefficients. The Monte Carlo simulations presented in this article illustrate the importance of careful error propagation during product performance modeling. Our results show that the error estimates based on Monte Carlo simulation result in smaller model coefficient standard deviations than those from regression methods. This suggests that the estimated standard deviations from regression may overestimate the uncertainties in the model coefficients. Monte Carlo simulations provide a simple software solution to understand the propagation of uncertainty in complex DOE models so that design space can be specified with statistically meaningful confidence levels. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Large signal-to-noise ratio quantification in MLE for ARARMAX models
NASA Astrophysics Data System (ADS)
Zou, Yiqun; Tang, Xiafei
2014-06-01
It has been shown that closed-loop linear system identification by indirect method can be generally transferred to open-loop ARARMAX (AutoRegressive AutoRegressive Moving Average with eXogenous input) estimation. For such models, the gradient-related optimisation with large enough signal-to-noise ratio (SNR) can avoid the potential local convergence in maximum likelihood estimation. To ease the application of this condition, the threshold SNR needs to be quantified. In this paper, we build the amplitude coefficient which is an equivalence to the SNR and prove the finiteness of the threshold amplitude coefficient within the stability region. The quantification of threshold is achieved by the minimisation of an elaborately designed multi-variable cost function which unifies all the restrictions on the amplitude coefficient. The corresponding algorithm based on two sets of physically realisable system input-output data details the minimisation and also points out how to use the gradient-related method to estimate ARARMAX parameters when local minimum is present as the SNR is small. Then, the algorithm is tested on a theoretical AutoRegressive Moving Average with eXogenous input model for the derivation of the threshold and a gas turbine engine real system for model identification, respectively. Finally, the graphical validation of threshold on a two-dimensional plot is discussed.
Sharma, Ashok K; Srivastava, Gopal N; Roy, Ankita; Sharma, Vineet K
2017-01-01
The experimental methods for the prediction of molecular toxicity are tedious and time-consuming tasks. Thus, the computational approaches could be used to develop alternative methods for toxicity prediction. We have developed a tool for the prediction of molecular toxicity along with the aqueous solubility and permeability of any molecule/metabolite. Using a comprehensive and curated set of toxin molecules as a training set, the different chemical and structural based features such as descriptors and fingerprints were exploited for feature selection, optimization and development of machine learning based classification and regression models. The compositional differences in the distribution of atoms were apparent between toxins and non-toxins, and hence, the molecular features were used for the classification and regression. On 10-fold cross-validation, the descriptor-based, fingerprint-based and hybrid-based classification models showed similar accuracy (93%) and Matthews's correlation coefficient (0.84). The performances of all the three models were comparable (Matthews's correlation coefficient = 0.84-0.87) on the blind dataset. In addition, the regression-based models using descriptors as input features were also compared and evaluated on the blind dataset. Random forest based regression model for the prediction of solubility performed better ( R 2 = 0.84) than the multi-linear regression (MLR) and partial least square regression (PLSR) models, whereas, the partial least squares based regression model for the prediction of permeability (caco-2) performed better ( R 2 = 0.68) in comparison to the random forest and MLR based regression models. The performance of final classification and regression models was evaluated using the two validation datasets including the known toxins and commonly used constituents of health products, which attests to its accuracy. The ToxiM web server would be a highly useful and reliable tool for the prediction of toxicity, solubility, and permeability of small molecules.
Sharma, Ashok K.; Srivastava, Gopal N.; Roy, Ankita; Sharma, Vineet K.
2017-01-01
The experimental methods for the prediction of molecular toxicity are tedious and time-consuming tasks. Thus, the computational approaches could be used to develop alternative methods for toxicity prediction. We have developed a tool for the prediction of molecular toxicity along with the aqueous solubility and permeability of any molecule/metabolite. Using a comprehensive and curated set of toxin molecules as a training set, the different chemical and structural based features such as descriptors and fingerprints were exploited for feature selection, optimization and development of machine learning based classification and regression models. The compositional differences in the distribution of atoms were apparent between toxins and non-toxins, and hence, the molecular features were used for the classification and regression. On 10-fold cross-validation, the descriptor-based, fingerprint-based and hybrid-based classification models showed similar accuracy (93%) and Matthews's correlation coefficient (0.84). The performances of all the three models were comparable (Matthews's correlation coefficient = 0.84–0.87) on the blind dataset. In addition, the regression-based models using descriptors as input features were also compared and evaluated on the blind dataset. Random forest based regression model for the prediction of solubility performed better (R2 = 0.84) than the multi-linear regression (MLR) and partial least square regression (PLSR) models, whereas, the partial least squares based regression model for the prediction of permeability (caco-2) performed better (R2 = 0.68) in comparison to the random forest and MLR based regression models. The performance of final classification and regression models was evaluated using the two validation datasets including the known toxins and commonly used constituents of health products, which attests to its accuracy. The ToxiM web server would be a highly useful and reliable tool for the prediction of toxicity, solubility, and permeability of small molecules. PMID:29249969
Raman spectroscopy-based screening of hepatitis C and associated molecular changes
NASA Astrophysics Data System (ADS)
Bilal, Maria; Bilal, M.; Saleem, M.; Khan, Saranjam; Ullah, Rahat; Fatima, Kiran; Ahmed, M.; Hayat, Abbas; Shahzada, Shaista; Ullah Khan, Ehsan
2017-09-01
This study presents the optical screening of hepatitis C and its associated molecular changes in human blood sera using a partial least-squares regression model based on their Raman spectra. In total, 152 samples were tested through enzyme-linked immunosorbent assay for confirmation. This model utilizes minor spectral variations in the Raman spectra of the positive and control groups. Regression coefficients of this model were analyzed with reference to the variations in concentration of associated molecules in these two groups. It was found that trehalose, chitin, ammonia, and cytokines are positively correlated while lipids, beta structures of proteins, and carbohydrate-binding proteins are negatively correlated with hepatitis C. The regression vector yielded by this model is utilized to predict hepatitis C in unknown samples. This model has been evaluated by a cross-validation method, which yielded a correlation coefficient of 0.91. Moreover, 30 unknown samples were screened for hepatitis C infection using this model to test its performance. Sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve from these predictions were found to be 93.3%, 100%, 96.7%, and 1, respectively.
A New Test of Linear Hypotheses in OLS Regression under Heteroscedasticity of Unknown Form
ERIC Educational Resources Information Center
Cai, Li; Hayes, Andrew F.
2008-01-01
When the errors in an ordinary least squares (OLS) regression model are heteroscedastic, hypothesis tests involving the regression coefficients can have Type I error rates that are far from the nominal significance level. Asymptotically, this problem can be rectified with the use of a heteroscedasticity-consistent covariance matrix (HCCM)…
Qing, Si-han; Chang, Yun-feng; Dong, Xiao-ai; Li, Yuan; Chen, Xiao-gang; Shu, Yong-kang; Deng, Zhen-hua
2013-10-01
To establish the mathematical models of stature estimation for Sichuan Han female with measurement of lumbar vertebrae by X-ray to provide essential data for forensic anthropology research. The samples, 206 Sichuan Han females, were divided into three groups including group A, B and C according to the ages. Group A (206 samples) consisted of all ages, group B (116 samples) were 20-45 years old and 90 samples over 45 years old were group C. All the samples were examined lumbar vertebrae through CR technology, including the parameters of five centrums (L1-L5) as anterior border, posterior border and central heights (x1-x15), total central height of lumbar spine (x16), and the real height of every sample. The linear regression analysis was produced using the parameters to establish the mathematical models of stature estimation. Sixty-two trained subjects were tested to verify the accuracy of the mathematical models. The established mathematical models by hypothesis test of linear regression equation model were statistically significant (P<0.05). The standard errors of the equation were 2.982-5.004 cm, while correlation coefficients were 0.370-0.779 and multiple correlation coefficients were 0.533-0.834. The return tests of the highest correlation coefficient and multiple correlation coefficient of each group showed that the highest accuracy of the multiple regression equation, y = 100.33 + 1.489 x3 - 0.548 x6 + 0.772 x9 + 0.058 x12 + 0.645 x15, in group A were 80.6% (+/- lSE) and 100% (+/- 2SE). The established mathematical models in this study could be applied for the stature estimation for Sichuan Han females.
NASA Astrophysics Data System (ADS)
He, Anhua; Singh, Ramesh P.; Sun, Zhaohua; Ye, Qing; Zhao, Gang
2016-07-01
The earth tide, atmospheric pressure, precipitation and earthquake fluctuations, especially earthquake greatly impacts water well levels, thus anomalous co-seismic changes in ground water levels have been observed. In this paper, we have used four different models, simple linear regression (SLR), multiple linear regression (MLR), principal component analysis (PCA) and partial least squares (PLS) to compute the atmospheric pressure and earth tidal effects on water level. Furthermore, we have used the Akaike information criterion (AIC) to study the performance of various models. Based on the lowest AIC and sum of squares for error values, the best estimate of the effects of atmospheric pressure and earth tide on water level is found using the MLR model. However, MLR model does not provide multicollinearity between inputs, as a result the atmospheric pressure and earth tidal response coefficients fail to reflect the mechanisms associated with the groundwater level fluctuations. On the premise of solving serious multicollinearity of inputs, PLS model shows the minimum AIC value. The atmospheric pressure and earth tidal response coefficients show close response with the observation using PLS model. The atmospheric pressure and the earth tidal response coefficients are found to be sensitive to the stress-strain state using the observed data for the period 1 April-8 June 2008 of Chuan 03# well. The transient enhancement of porosity of rock mass around Chuan 03# well associated with the Wenchuan earthquake (Mw = 7.9 of 12 May 2008) that has taken its original pre-seismic level after 13 days indicates that the co-seismic sharp rise of water well could be induced by static stress change, rather than development of new fractures.
ERIC Educational Resources Information Center
Choi, Kilchan; Seltzer, Michael
2010-01-01
In studies of change in education and numerous other fields, interest often centers on how differences in the status of individuals at the start of a period of substantive interest relate to differences in subsequent change. In this article, the authors present a fully Bayesian approach to estimating three-level Hierarchical Models in which latent…
Mechanisms behind the estimation of photosynthesis traits from leaf reflectance observations
NASA Astrophysics Data System (ADS)
Dechant, Benjamin; Cuntz, Matthias; Doktor, Daniel; Vohland, Michael
2016-04-01
Many studies have investigated the reflectance-based estimation of leaf chlorophyll, water and dry matter contents of plants. Only few studies focused on photosynthesis traits, however. The maximum potential uptake of carbon dioxide under given environmental conditions is determined mainly by RuBisCO activity, limiting carboxylation, or the speed of photosynthetic electron transport. These two main limitations are represented by the maximum carboxylation capacity, V cmax,25, and the maximum electron transport rate, Jmax,25. These traits were estimated from leaf reflectance before but the mechanisms underlying the estimation remain rather speculative. The aim of this study was therefore to reveal the mechanisms behind reflectance-based estimation of V cmax,25 and Jmax,25. Leaf reflectance, photosynthetic response curves as well as nitrogen content per area, Narea, and leaf mass per area, LMA, were measured on 37 deciduous tree species. V cmax,25 and Jmax,25 were determined from the response curves. Partial Least Squares (PLS) regression models for the two photosynthesis traits V cmax,25 and Jmax,25 as well as Narea and LMA were studied using a cross-validation approach. Analyses of linear regression models based on Narea and other leaf traits estimated via PROSPECT inversion, PLS regression coefficients and model residuals were conducted in order to reveal the mechanisms behind the reflectance-based estimation. We found that V cmax,25 and Jmax,25 can be estimated from leaf reflectance with good to moderate accuracy for a large number of species and different light conditions. The dominant mechanism behind the estimations was the strong relationship between photosynthesis traits and leaf nitrogen content. This was concluded from very strong relationships between PLS regression coefficients, the model residuals as well as the prediction performance of Narea- based linear regression models compared to PLS regression models. While the PLS regression model for V cmax,25 was fully based on the correlation to Narea, the PLS regression model for Jmax,25 was not entirely based on it. Analyses of the contributions of different parts of the reflectance spectrum revealed that the information contributing to the Jmax,25 PLS regression model in addition to the main source of information, Narea, was mainly located in the visible part of the spectrum (500-900 nm). Estimated chlorophyll content could be excluded as potential source of this extra information. The PLS regression coefficients of the Jmax,25 model indicated possible contributions from chlorophyll fluorescence and cytochrome f content. In summary, we found that the main mechanism behind the estimation of V cmax,25 and Jmax,25 from leaf reflectance observations is the correlation to Narea but that there is additional information related to Jmax,25 mainly in the visible part of the spectrum.
Model averaging and muddled multimodel inferences.
Cade, Brian S
2015-09-01
Three flawed practices associated with model averaging coefficients for predictor variables in regression models commonly occur when making multimodel inferences in analyses of ecological data. Model-averaged regression coefficients based on Akaike information criterion (AIC) weights have been recommended for addressing model uncertainty but they are not valid, interpretable estimates of partial effects for individual predictors when there is multicollinearity among the predictor variables. Multicollinearity implies that the scaling of units in the denominators of the regression coefficients may change across models such that neither the parameters nor their estimates have common scales, therefore averaging them makes no sense. The associated sums of AIC model weights recommended to assess relative importance of individual predictors are really a measure of relative importance of models, with little information about contributions by individual predictors compared to other measures of relative importance based on effects size or variance reduction. Sometimes the model-averaged regression coefficients for predictor variables are incorrectly used to make model-averaged predictions of the response variable when the models are not linear in the parameters. I demonstrate the issues with the first two practices using the college grade point average example extensively analyzed by Burnham and Anderson. I show how partial standard deviations of the predictor variables can be used to detect changing scales of their estimates with multicollinearity. Standardizing estimates based on partial standard deviations for their variables can be used to make the scaling of the estimates commensurate across models, a necessary but not sufficient condition for model averaging of the estimates to be sensible. A unimodal distribution of estimates and valid interpretation of individual parameters are additional requisite conditions. The standardized estimates or equivalently the t statistics on unstandardized estimates also can be used to provide more informative measures of relative importance than sums of AIC weights. Finally, I illustrate how seriously compromised statistical interpretations and predictions can be for all three of these flawed practices by critiquing their use in a recent species distribution modeling technique developed for predicting Greater Sage-Grouse (Centrocercus urophasianus) distribution in Colorado, USA. These model averaging issues are common in other ecological literature and ought to be discontinued if we are to make effective scientific contributions to ecological knowledge and conservation of natural resources.
Model averaging and muddled multimodel inferences
Cade, Brian S.
2015-01-01
Three flawed practices associated with model averaging coefficients for predictor variables in regression models commonly occur when making multimodel inferences in analyses of ecological data. Model-averaged regression coefficients based on Akaike information criterion (AIC) weights have been recommended for addressing model uncertainty but they are not valid, interpretable estimates of partial effects for individual predictors when there is multicollinearity among the predictor variables. Multicollinearity implies that the scaling of units in the denominators of the regression coefficients may change across models such that neither the parameters nor their estimates have common scales, therefore averaging them makes no sense. The associated sums of AIC model weights recommended to assess relative importance of individual predictors are really a measure of relative importance of models, with little information about contributions by individual predictors compared to other measures of relative importance based on effects size or variance reduction. Sometimes the model-averaged regression coefficients for predictor variables are incorrectly used to make model-averaged predictions of the response variable when the models are not linear in the parameters. I demonstrate the issues with the first two practices using the college grade point average example extensively analyzed by Burnham and Anderson. I show how partial standard deviations of the predictor variables can be used to detect changing scales of their estimates with multicollinearity. Standardizing estimates based on partial standard deviations for their variables can be used to make the scaling of the estimates commensurate across models, a necessary but not sufficient condition for model averaging of the estimates to be sensible. A unimodal distribution of estimates and valid interpretation of individual parameters are additional requisite conditions. The standardized estimates or equivalently the tstatistics on unstandardized estimates also can be used to provide more informative measures of relative importance than sums of AIC weights. Finally, I illustrate how seriously compromised statistical interpretations and predictions can be for all three of these flawed practices by critiquing their use in a recent species distribution modeling technique developed for predicting Greater Sage-Grouse (Centrocercus urophasianus) distribution in Colorado, USA. These model averaging issues are common in other ecological literature and ought to be discontinued if we are to make effective scientific contributions to ecological knowledge and conservation of natural resources.
Prediction of dimethyl disulfide levels from biosolids using statistical modeling.
Gabriel, Steven A; Vilalai, Sirapong; Arispe, Susanna; Kim, Hyunook; McConnell, Laura L; Torrents, Alba; Peot, Christopher; Ramirez, Mark
2005-01-01
Two statistical models were used to predict the concentration of dimethyl disulfide (DMDS) released from biosolids produced by an advanced wastewater treatment plant (WWTP) located in Washington, DC, USA. The plant concentrates sludge from primary sedimentation basins in gravity thickeners (GT) and sludge from secondary sedimentation basins in dissolved air flotation (DAF) thickeners. The thickened sludge is pumped into blending tanks and then fed into centrifuges for dewatering. The dewatered sludge is then conditioned with lime before trucking out from the plant. DMDS, along with other volatile sulfur and nitrogen-containing chemicals, is known to contribute to biosolids odors. These models identified oxidation/reduction potential (ORP) values of a GT and DAF, the amount of sludge dewatered by centrifuges, and the blend ratio between GT thickened sludge and DAF thickened sludge in blending tanks as control variables. The accuracy of the developed regression models was evaluated by checking the adjusted R2 of the regression as well as the signs of coefficients associated with each variable. In general, both models explained observed DMDS levels in sludge headspace samples. The adjusted R2 value of the regression models 1 and 2 were 0.79 and 0.77, respectively. Coefficients for each regression model also had the correct sign. Using the developed models, plant operators can adjust the controllable variables to proactively decrease this odorant. Therefore, these models are a useful tool in biosolids management at WWTPs.
Merchantable sawlog and bole-length equations for the Northeastern United States
Daniel A. Yaussy; Martin E. Dale; Martin E. Dale
1991-01-01
A modified Richards growth model is used to develop species-specific coefficients for equations estimating the merchantable sawlog and bole lengths of trees from 25 species groups common to the Northeastern United States. These regression coefficients have been incorporated into the growth-and-yield simulation software, NE-TWIGS.
Advanced colorectal neoplasia risk stratification by penalized logistic regression.
Lin, Yunzhi; Yu, Menggang; Wang, Sijian; Chappell, Richard; Imperiale, Thomas F
2016-08-01
Colorectal cancer is the second leading cause of death from cancer in the United States. To facilitate the efficiency of colorectal cancer screening, there is a need to stratify risk for colorectal cancer among the 90% of US residents who are considered "average risk." In this article, we investigate such risk stratification rules for advanced colorectal neoplasia (colorectal cancer and advanced, precancerous polyps). We use a recently completed large cohort study of subjects who underwent a first screening colonoscopy. Logistic regression models have been used in the literature to estimate the risk of advanced colorectal neoplasia based on quantifiable risk factors. However, logistic regression may be prone to overfitting and instability in variable selection. Since most of the risk factors in our study have several categories, it was tempting to collapse these categories into fewer risk groups. We propose a penalized logistic regression method that automatically and simultaneously selects variables, groups categories, and estimates their coefficients by penalizing the [Formula: see text]-norm of both the coefficients and their differences. Hence, it encourages sparsity in the categories, i.e. grouping of the categories, and sparsity in the variables, i.e. variable selection. We apply the penalized logistic regression method to our data. The important variables are selected, with close categories simultaneously grouped, by penalized regression models with and without the interactions terms. The models are validated with 10-fold cross-validation. The receiver operating characteristic curves of the penalized regression models dominate the receiver operating characteristic curve of naive logistic regressions, indicating a superior discriminative performance. © The Author(s) 2013.
Shrinkage regression-based methods for microarray missing value imputation.
Wang, Hsiuying; Chiu, Chia-Chun; Wu, Yi-Ching; Wu, Wei-Sheng
2013-01-01
Missing values commonly occur in the microarray data, which usually contain more than 5% missing values with up to 90% of genes affected. Inaccurate missing value estimation results in reducing the power of downstream microarray data analyses. Many types of methods have been developed to estimate missing values. Among them, the regression-based methods are very popular and have been shown to perform better than the other types of methods in many testing microarray datasets. To further improve the performances of the regression-based methods, we propose shrinkage regression-based methods. Our methods take the advantage of the correlation structure in the microarray data and select similar genes for the target gene by Pearson correlation coefficients. Besides, our methods incorporate the least squares principle, utilize a shrinkage estimation approach to adjust the coefficients of the regression model, and then use the new coefficients to estimate missing values. Simulation results show that the proposed methods provide more accurate missing value estimation in six testing microarray datasets than the existing regression-based methods do. Imputation of missing values is a very important aspect of microarray data analyses because most of the downstream analyses require a complete dataset. Therefore, exploring accurate and efficient methods for estimating missing values has become an essential issue. Since our proposed shrinkage regression-based methods can provide accurate missing value estimation, they are competitive alternatives to the existing regression-based methods.
Golmohammadi, Hassan
2009-11-30
A quantitative structure-property relationship (QSPR) study was performed to develop models those relate the structure of 141 organic compounds to their octanol-water partition coefficients (log P(o/w)). A genetic algorithm was applied as a variable selection tool. Modeling of log P(o/w) of these compounds as a function of theoretically derived descriptors was established by multiple linear regression (MLR), partial least squares (PLS), and artificial neural network (ANN). The best selected descriptors that appear in the models are: atomic charge weighted partial positively charged surface area (PPSA-3), fractional atomic charge weighted partial positive surface area (FPSA-3), minimum atomic partial charge (Qmin), molecular volume (MV), total dipole moment of molecule (mu), maximum antibonding contribution of a molecule orbital in the molecule (MAC), and maximum free valency of a C atom in the molecule (MFV). The result obtained showed the ability of developed artificial neural network to prediction of partition coefficients of organic compounds. Also, the results revealed the superiority of ANN over the MLR and PLS models. Copyright 2009 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Li, Wang; Niu, Zheng; Gao, Shuai; Wang, Cheng
2014-11-01
Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar (SAR) are two competitive active remote sensing techniques in forest above ground biomass estimation, which is important for forest management and global climate change study. This study aims to further explore their capabilities in temperate forest above ground biomass (AGB) estimation by emphasizing the spatial auto-correlation of variables obtained from these two remote sensing tools, which is a usually overlooked aspect in remote sensing applications to vegetation studies. Remote sensing variables including airborne LiDAR metrics, backscattering coefficient for different SAR polarizations and their ratio variables for Radarsat-2 imagery were calculated. First, simple linear regression models (SLR) was established between the field-estimated above ground biomass and the remote sensing variables. Pearson's correlation coefficient (R2) was used to find which LiDAR metric showed the most significant correlation with the regression residuals and could be selected as co-variable in regression co-kriging (RCoKrig). Second, regression co-kriging was conducted by choosing the regression residuals as dependent variable and the LiDAR metric (Hmean) with highest R2 as co-variable. Third, above ground biomass over the study area was estimated using SLR model and RCoKrig model, respectively. The results for these two models were validated using the same ground points. Results showed that both of these two methods achieved satisfactory prediction accuracy, while regression co-kriging showed the lower estimation error. It is proved that regression co-kriging model is feasible and effective in mapping the spatial pattern of AGB in the temperate forest using Radarsat-2 data calibrated by airborne LiDAR metrics.
Fast function-on-scalar regression with penalized basis expansions.
Reiss, Philip T; Huang, Lei; Mennes, Maarten
2010-01-01
Regression models for functional responses and scalar predictors are often fitted by means of basis functions, with quadratic roughness penalties applied to avoid overfitting. The fitting approach described by Ramsay and Silverman in the 1990 s amounts to a penalized ordinary least squares (P-OLS) estimator of the coefficient functions. We recast this estimator as a generalized ridge regression estimator, and present a penalized generalized least squares (P-GLS) alternative. We describe algorithms by which both estimators can be implemented, with automatic selection of optimal smoothing parameters, in a more computationally efficient manner than has heretofore been available. We discuss pointwise confidence intervals for the coefficient functions, simultaneous inference by permutation tests, and model selection, including a novel notion of pointwise model selection. P-OLS and P-GLS are compared in a simulation study. Our methods are illustrated with an analysis of age effects in a functional magnetic resonance imaging data set, as well as a reanalysis of a now-classic Canadian weather data set. An R package implementing the methods is publicly available.
Crane, Paul K; Gibbons, Laura E; Jolley, Lance; van Belle, Gerald
2006-11-01
We present an ordinal logistic regression model for identification of items with differential item functioning (DIF) and apply this model to a Mini-Mental State Examination (MMSE) dataset. We employ item response theory ability estimation in our models. Three nested ordinal logistic regression models are applied to each item. Model testing begins with examination of the statistical significance of the interaction term between ability and the group indicator, consistent with nonuniform DIF. Then we turn our attention to the coefficient of the ability term in models with and without the group term. If including the group term has a marked effect on that coefficient, we declare that it has uniform DIF. We examined DIF related to language of test administration in addition to self-reported race, Hispanic ethnicity, age, years of education, and sex. We used PARSCALE for IRT analyses and STATA for ordinal logistic regression approaches. We used an iterative technique for adjusting IRT ability estimates on the basis of DIF findings. Five items were found to have DIF related to language. These same items also had DIF related to other covariates. The ordinal logistic regression approach to DIF detection, when combined with IRT ability estimates, provides a reasonable alternative for DIF detection. There appear to be several items with significant DIF related to language of test administration in the MMSE. More attention needs to be paid to the specific criteria used to determine whether an item has DIF, not just the technique used to identify DIF.
The Use of Structure Coefficients to Address Multicollinearity in Sport and Exercise Science
ERIC Educational Resources Information Center
Yeatts, Paul E.; Barton, Mitch; Henson, Robin K.; Martin, Scott B.
2017-01-01
A common practice in general linear model (GLM) analyses is to interpret regression coefficients (e.g., standardized ß weights) as indicators of variable importance. However, focusing solely on standardized beta weights may provide limited or erroneous information. For example, ß weights become increasingly unreliable when predictor variables are…
Variable selection and model choice in geoadditive regression models.
Kneib, Thomas; Hothorn, Torsten; Tutz, Gerhard
2009-06-01
Model choice and variable selection are issues of major concern in practical regression analyses, arising in many biometric applications such as habitat suitability analyses, where the aim is to identify the influence of potentially many environmental conditions on certain species. We describe regression models for breeding bird communities that facilitate both model choice and variable selection, by a boosting algorithm that works within a class of geoadditive regression models comprising spatial effects, nonparametric effects of continuous covariates, interaction surfaces, and varying coefficients. The major modeling components are penalized splines and their bivariate tensor product extensions. All smooth model terms are represented as the sum of a parametric component and a smooth component with one degree of freedom to obtain a fair comparison between the model terms. A generic representation of the geoadditive model allows us to devise a general boosting algorithm that automatically performs model choice and variable selection.
NASA Astrophysics Data System (ADS)
Ari, I. R. D.; Hasyim, A. W.; Pratama, B. A.; Helmy, M.; Sheilla, M. N.
2017-06-01
Poverty is a problem that requires attention from the government especially in developing countries such as Indonesia. This Research takes Place at Kasembon District because it has 53,19% family below poverty line in the region. The purpose of this research is to measure poverty based on 3 poverty indicators published by World Bank and 1 multidimensional poverty index. Furthermore, this research invesitigas the relationship between poverty with social and infrastructure in Kasembon District. This study using social network analysis, hot spots analysis, and regression analysis with ordinary least squares. From the poverty indicators known that Pondokagung Village has the highest poverty rate compared to another region. Results from regression model indicate that social and infrastructure affecting poverty in Kasembon District. Social parameter that affecting poverty is density. Infrastructure parameter that affecting poverty is length of paved road. Coefficient value of density is the largest in the model. Therefore it can be concluded that social factors can give more opportunity to reduce poverty rates in Kasembon District. In the local model of paved road coefficient, it is known that the coefficient for each village has not much different value from the global model.
Kolasa-Wiecek, Alicja
2015-04-01
The energy sector in Poland is the source of 81% of greenhouse gas (GHG) emissions. Poland, among other European Union countries, occupies a leading position with regard to coal consumption. Polish energy sector actively participates in efforts to reduce GHG emissions to the atmosphere, through a gradual decrease of the share of coal in the fuel mix and development of renewable energy sources. All evidence which completes the knowledge about issues related to GHG emissions is a valuable source of information. The article presents the results of modeling of GHG emissions which are generated by the energy sector in Poland. For a better understanding of the quantitative relationship between total consumption of primary energy and greenhouse gas emission, multiple stepwise regression model was applied. The modeling results of CO2 emissions demonstrate a high relationship (0.97) with the hard coal consumption variable. Adjustment coefficient of the model to actual data is high and equal to 95%. The backward step regression model, in the case of CH4 emission, indicated the presence of hard coal (0.66), peat and fuel wood (0.34), solid waste fuels, as well as other sources (-0.64) as the most important variables. The adjusted coefficient is suitable and equals R2=0.90. For N2O emission modeling the obtained coefficient of determination is low and equal to 43%. A significant variable influencing the amount of N2O emission is the peat and wood fuel consumption. Copyright © 2015. Published by Elsevier B.V.
The Bayesian group lasso for confounded spatial data
Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin E.; Walsh, Daniel P.
2017-01-01
Generalized linear mixed models for spatial processes are widely used in applied statistics. In many applications of the spatial generalized linear mixed model (SGLMM), the goal is to obtain inference about regression coefficients while achieving optimal predictive ability. When implementing the SGLMM, multicollinearity among covariates and the spatial random effects can make computation challenging and influence inference. We present a Bayesian group lasso prior with a single tuning parameter that can be chosen to optimize predictive ability of the SGLMM and jointly regularize the regression coefficients and spatial random effect. We implement the group lasso SGLMM using efficient Markov chain Monte Carlo (MCMC) algorithms and demonstrate how multicollinearity among covariates and the spatial random effect can be monitored as a derived quantity. To test our method, we compared several parameterizations of the SGLMM using simulated data and two examples from plant ecology and disease ecology. In all examples, problematic levels multicollinearity occurred and influenced sampling efficiency and inference. We found that the group lasso prior resulted in roughly twice the effective sample size for MCMC samples of regression coefficients and can have higher and less variable predictive accuracy based on out-of-sample data when compared to the standard SGLMM.
ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL
Huang, Jian; Sun, Tingni; Ying, Zhiliang; Yu, Yi; Zhang, Cun-Hui
2013-01-01
We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities. PMID:24086091
ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL.
Huang, Jian; Sun, Tingni; Ying, Zhiliang; Yu, Yi; Zhang, Cun-Hui
2013-06-01
We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities.
Li, Min; Zhang, Lu; Yao, Xiaolong; Jiang, Xingyu
2017-01-01
The emerging membrane introduction mass spectrometry technique has been successfully used to detect benzene, toluene, ethyl benzene and xylene (BTEX), while overlapped spectra have unfortunately hindered its further application to the analysis of mixtures. Multivariate calibration, an efficient method to analyze mixtures, has been widely applied. In this paper, we compared univariate and multivariate analyses for quantification of the individual components of mixture samples. The results showed that the univariate analysis creates poor models with regression coefficients of 0.912, 0.867, 0.440 and 0.351 for BTEX, respectively. For multivariate analysis, a comparison to the partial-least squares (PLS) model shows that the orthogonal partial-least squares (OPLS) regression exhibits an optimal performance with regression coefficients of 0.995, 0.999, 0.980 and 0.976, favorable calibration parameters (RMSEC and RMSECV) and a favorable validation parameter (RMSEP). Furthermore, the OPLS exhibits a good recovery of 73.86 - 122.20% and relative standard deviation (RSD) of the repeatability of 1.14 - 4.87%. Thus, MIMS coupled with the OPLS regression provides an optimal approach for a quantitative BTEX mixture analysis in monitoring and predicting water pollution.
A semi-nonparametric Poisson regression model for analyzing motor vehicle crash data.
Ye, Xin; Wang, Ke; Zou, Yajie; Lord, Dominique
2018-01-01
This paper develops a semi-nonparametric Poisson regression model to analyze motor vehicle crash frequency data collected from rural multilane highway segments in California, US. Motor vehicle crash frequency on rural highway is a topic of interest in the area of transportation safety due to higher driving speeds and the resultant severity level. Unlike the traditional Negative Binomial (NB) model, the semi-nonparametric Poisson regression model can accommodate an unobserved heterogeneity following a highly flexible semi-nonparametric (SNP) distribution. Simulation experiments are conducted to demonstrate that the SNP distribution can well mimic a large family of distributions, including normal distributions, log-gamma distributions, bimodal and trimodal distributions. Empirical estimation results show that such flexibility offered by the SNP distribution can greatly improve model precision and the overall goodness-of-fit. The semi-nonparametric distribution can provide a better understanding of crash data structure through its ability to capture potential multimodality in the distribution of unobserved heterogeneity. When estimated coefficients in empirical models are compared, SNP and NB models are found to have a substantially different coefficient for the dummy variable indicating the lane width. The SNP model with better statistical performance suggests that the NB model overestimates the effect of lane width on crash frequency reduction by 83.1%.
Meteorological adjustment of yearly mean values for air pollutant concentration comparison
NASA Technical Reports Server (NTRS)
Sidik, S. M.; Neustadter, H. E.
1976-01-01
Using multiple linear regression analysis, models which estimate mean concentrations of Total Suspended Particulate (TSP), sulfur dioxide, and nitrogen dioxide as a function of several meteorologic variables, two rough economic indicators, and a simple trend in time are studied. Meteorologic data were obtained and do not include inversion heights. The goodness of fit of the estimated models is partially reflected by the squared coefficient of multiple correlation which indicates that, at the various sampling stations, the models accounted for about 23 to 47 percent of the total variance of the observed TSP concentrations. If the resulting model equations are used in place of simple overall means of the observed concentrations, there is about a 20 percent improvement in either: (1) predicting mean concentrations for specified meteorological conditions; or (2) adjusting successive yearly averages to allow for comparisons devoid of meteorological effects. An application to source identification is presented using regression coefficients of wind velocity predictor variables.
Modeling Data Containing Outliers using ARIMA Additive Outlier (ARIMA-AO)
NASA Astrophysics Data System (ADS)
Saleh Ahmar, Ansari; Guritno, Suryo; Abdurakhman; Rahman, Abdul; Awi; Alimuddin; Minggi, Ilham; Arif Tiro, M.; Kasim Aidid, M.; Annas, Suwardi; Utami Sutiksno, Dian; Ahmar, Dewi S.; Ahmar, Kurniawan H.; Abqary Ahmar, A.; Zaki, Ahmad; Abdullah, Dahlan; Rahim, Robbi; Nurdiyanto, Heri; Hidayat, Rahmat; Napitupulu, Darmawan; Simarmata, Janner; Kurniasih, Nuning; Andretti Abdillah, Leon; Pranolo, Andri; Haviluddin; Albra, Wahyudin; Arifin, A. Nurani M.
2018-01-01
The aim this study is discussed on the detection and correction of data containing the additive outlier (AO) on the model ARIMA (p, d, q). The process of detection and correction of data using an iterative procedure popularized by Box, Jenkins, and Reinsel (1994). By using this method we obtained an ARIMA models were fit to the data containing AO, this model is added to the original model of ARIMA coefficients obtained from the iteration process using regression methods. In the simulation data is obtained that the data contained AO initial models are ARIMA (2,0,0) with MSE = 36,780, after the detection and correction of data obtained by the iteration of the model ARIMA (2,0,0) with the coefficients obtained from the regression Zt = 0,106+0,204Z t-1+0,401Z t-2-329X 1(t)+115X 2(t)+35,9X 3(t) and MSE = 19,365. This shows that there is an improvement of forecasting error rate data.
Quantitative prediction of ionization effect on human skin permeability.
Baba, Hiromi; Ueno, Yusuke; Hashida, Mitsuru; Yamashita, Fumiyoshi
2017-04-30
Although skin permeability of an active ingredient can be severely affected by its ionization in a dose solution, most of the existing prediction models cannot predict such impacts. To provide reliable predictors, we curated a novel large dataset of in vitro human skin permeability coefficients for 322 entries comprising chemically diverse permeants whose ionization fractions can be calculated. Subsequently, we generated thousands of computational descriptors, including LogD (octanol-water distribution coefficient at a specific pH), and analyzed the dataset using nonlinear support vector regression (SVR) and Gaussian process regression (GPR) combined with greedy descriptor selection. The SVR model was slightly superior to the GPR model, with externally validated squared correlation coefficient, root mean square error, and mean absolute error values of 0.94, 0.29, and 0.21, respectively. These models indicate that Log D is effective for a comprehensive prediction of ionization effects on skin permeability. In addition, the proposed models satisfied the statistical criteria endorsed in recent model validation studies. These models can evaluate virtually generated compounds at any pH; therefore, they can be used for high-throughput evaluations of numerous active ingredients and optimization of their skin permeability with respect to permeant ionization. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wibowo, Wahyu; Wene, Chatrien; Budiantara, I. Nyoman; Permatasari, Erma Oktania
2017-03-01
Multiresponse semiparametric regression is simultaneous equation regression model and fusion of parametric and nonparametric model. The regression model comprise several models and each model has two components, parametric and nonparametric. The used model has linear function as parametric and polynomial truncated spline as nonparametric component. The model can handle both linearity and nonlinearity relationship between response and the sets of predictor variables. The aim of this paper is to demonstrate the application of the regression model for modeling of effect of regional socio-economic on use of information technology. More specific, the response variables are percentage of households has access to internet and percentage of households has personal computer. Then, predictor variables are percentage of literacy people, percentage of electrification and percentage of economic growth. Based on identification of the relationship between response and predictor variable, economic growth is treated as nonparametric predictor and the others are parametric predictors. The result shows that the multiresponse semiparametric regression can be applied well as indicate by the high coefficient determination, 90 percent.
NASA Technical Reports Server (NTRS)
Trejo, Leonard J.; Shensa, Mark J.; Remington, Roger W. (Technical Monitor)
1998-01-01
This report describes the development and evaluation of mathematical models for predicting human performance from discrete wavelet transforms (DWT) of event-related potentials (ERP) elicited by task-relevant stimuli. The DWT was compared to principal components analysis (PCA) for representation of ERPs in linear regression and neural network models developed to predict a composite measure of human signal detection performance. Linear regression models based on coefficients of the decimated DWT predicted signal detection performance with half as many f ree parameters as comparable models based on PCA scores. In addition, the DWT-based models were more resistant to model degradation due to over-fitting than PCA-based models. Feed-forward neural networks were trained using the backpropagation,-, algorithm to predict signal detection performance based on raw ERPs, PCA scores, or high-power coefficients of the DWT. Neural networks based on high-power DWT coefficients trained with fewer iterations, generalized to new data better, and were more resistant to overfitting than networks based on raw ERPs. Networks based on PCA scores did not generalize to new data as well as either the DWT network or the raw ERP network. The results show that wavelet expansions represent the ERP efficiently and extract behaviorally important features for use in linear regression or neural network models of human performance. The efficiency of the DWT is discussed in terms of its decorrelation and energy compaction properties. In addition, the DWT models provided evidence that a pattern of low-frequency activity (1 to 3.5 Hz) occurring at specific times and scalp locations is a reliable correlate of human signal detection performance.
NASA Technical Reports Server (NTRS)
Trejo, L. J.; Shensa, M. J.
1999-01-01
This report describes the development and evaluation of mathematical models for predicting human performance from discrete wavelet transforms (DWT) of event-related potentials (ERP) elicited by task-relevant stimuli. The DWT was compared to principal components analysis (PCA) for representation of ERPs in linear regression and neural network models developed to predict a composite measure of human signal detection performance. Linear regression models based on coefficients of the decimated DWT predicted signal detection performance with half as many free parameters as comparable models based on PCA scores. In addition, the DWT-based models were more resistant to model degradation due to over-fitting than PCA-based models. Feed-forward neural networks were trained using the backpropagation algorithm to predict signal detection performance based on raw ERPs, PCA scores, or high-power coefficients of the DWT. Neural networks based on high-power DWT coefficients trained with fewer iterations, generalized to new data better, and were more resistant to overfitting than networks based on raw ERPs. Networks based on PCA scores did not generalize to new data as well as either the DWT network or the raw ERP network. The results show that wavelet expansions represent the ERP efficiently and extract behaviorally important features for use in linear regression or neural network models of human performance. The efficiency of the DWT is discussed in terms of its decorrelation and energy compaction properties. In addition, the DWT models provided evidence that a pattern of low-frequency activity (1 to 3.5 Hz) occurring at specific times and scalp locations is a reliable correlate of human signal detection performance. Copyright 1999 Academic Press.
The intermediate endpoint effect in logistic and probit regression
MacKinnon, DP; Lockwood, CM; Brown, CH; Wang, W; Hoffman, JM
2010-01-01
Background An intermediate endpoint is hypothesized to be in the middle of the causal sequence relating an independent variable to a dependent variable. The intermediate variable is also called a surrogate or mediating variable and the corresponding effect is called the mediated, surrogate endpoint, or intermediate endpoint effect. Clinical studies are often designed to change an intermediate or surrogate endpoint and through this intermediate change influence the ultimate endpoint. In many intermediate endpoint clinical studies the dependent variable is binary, and logistic or probit regression is used. Purpose The purpose of this study is to describe a limitation of a widely used approach to assessing intermediate endpoint effects and to propose an alternative method, based on products of coefficients, that yields more accurate results. Methods The intermediate endpoint model for a binary outcome is described for a true binary outcome and for a dichotomization of a latent continuous outcome. Plots of true values and a simulation study are used to evaluate the different methods. Results Distorted estimates of the intermediate endpoint effect and incorrect conclusions can result from the application of widely used methods to assess the intermediate endpoint effect. The same problem occurs for the proportion of an effect explained by an intermediate endpoint, which has been suggested as a useful measure for identifying intermediate endpoints. A solution to this problem is given based on the relationship between latent variable modeling and logistic or probit regression. Limitations More complicated intermediate variable models are not addressed in the study, although the methods described in the article can be extended to these more complicated models. Conclusions Researchers are encouraged to use an intermediate endpoint method based on the product of regression coefficients. A common method based on difference in coefficient methods can lead to distorted conclusions regarding the intermediate effect. PMID:17942466
van Mierlo, Trevor; Hyatt, Douglas; Ching, Andrew T
2016-01-01
Digital Health Social Networks (DHSNs) are common; however, there are few metrics that can be used to identify participation inequality. The objective of this study was to investigate whether the Gini coefficient, an economic measure of statistical dispersion traditionally used to measure income inequality, could be employed to measure DHSN inequality. Quarterly Gini coefficients were derived from four long-standing DHSNs. The combined data set included 625,736 posts that were generated from 15,181 actors over 18,671 days. The range of actors (8-2323), posts (29-28,684), and Gini coefficients (0.15-0.37) varied. Pearson correlations indicated statistically significant associations between number of actors and number of posts (0.527-0.835, p < .001), and Gini coefficients and number of posts (0.342-0.725, p < .001). However, the association between Gini coefficient and number of actors was only statistically significant for the addiction networks (0.619 and 0.276, p < .036). Linear regression models had positive but mixed R 2 results (0.333-0.527). In all four regression models, the association between Gini coefficient and posts was statistically significant ( t = 3.346-7.381, p < .002). However, unlike the Pearson correlations, the association between Gini coefficient and number of actors was only statistically significant in the two mental health networks ( t = -4.305 and -5.934, p < .000). The Gini coefficient is helpful in measuring shifts in DHSN inequality. However, as a standalone metric, the Gini coefficient does not indicate optimal numbers or ratios of actors to posts, or effective network engagement. Further, mixed-methods research investigating quantitative performance metrics is required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dierauf, Timothy; Kurtz, Sarah; Riley, Evan
This paper provides a recommended method for evaluating the AC capacity of a photovoltaic (PV) generating station. It also presents companion guidance on setting the facilitys capacity guarantee value. This is a principles-based approach that incorporates plant fundamental design parameters such as loss factors, module coefficients, and inverter constraints. This method has been used to prove contract guarantees for over 700 MW of installed projects. The method is transparent, and the results are deterministic. In contrast, current industry practices incorporate statistical regression where the empirical coefficients may only characterize the collected data. Though these methods may work well when extrapolationmore » is not required, there are other situations where the empirical coefficients may not adequately model actual performance.This proposed Fundamentals Approach method provides consistent results even where regression methods start to lose fidelity.« less
ERIC Educational Resources Information Center
Dolan, Conor V.; Wicherts, Jelte M.; Molenaar, Peter C. M.
2004-01-01
We consider the question of how variation in the number and reliability of indicators affects the power to reject the hypothesis that the regression coefficients are zero in latent linear regression analysis. We show that power remains constant as long as the coefficient of determination remains unchanged. Any increase in the number of indicators…
Raj, Retheep; Sivanandan, K S
2017-01-01
Estimation of elbow dynamics has been the object of numerous investigations. In this work a solution is proposed for estimating elbow movement velocity and elbow joint angle from Surface Electromyography (SEMG) signals. Here the Surface Electromyography signals are acquired from the biceps brachii muscle of human hand. Two time-domain parameters, Integrated EMG (IEMG) and Zero Crossing (ZC), are extracted from the Surface Electromyography signal. The relationship between the time domain parameters, IEMG and ZC with elbow angular displacement and elbow angular velocity during extension and flexion of the elbow are studied. A multiple input-multiple output model is derived for identifying the kinematics of elbow. A Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural network (MLPNN) model is proposed for the estimation of elbow joint angle and elbow angular velocity. The proposed NARX MLPNN model is trained using Levenberg-marquardt based algorithm. The proposed model is estimating the elbow joint angle and elbow movement angular velocity with appreciable accuracy. The model is validated using regression coefficient value (R). The average regression coefficient value (R) obtained for elbow angular displacement prediction is 0.9641 and for the elbow anglular velocity prediction is 0.9347. The Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural networks (MLPNN) model can be used for the estimation of angular displacement and movement angular velocity of the elbow with good accuracy.
Gas Chromatography Data Classification Based on Complex Coefficients of an Autoregressive Model
Zhao, Weixiang; Morgan, Joshua T.; Davis, Cristina E.
2008-01-01
This paper introduces autoregressive (AR) modeling as a novel method to classify outputs from gas chromatography (GC). The inverse Fourier transformation was applied to the original sensor data, and then an AR model was applied to transform data to generate AR model complex coefficients. This series of coefficients effectively contains a compressed version of all of the information in the original GC signal output. We applied this method to chromatograms resulting from proliferating bacteria species grown in culture. Three types of neural networks were used to classify the AR coefficients: backward propagating neural network (BPNN), radial basis function-principal component analysismore » (RBF-PCA) approach, and radial basis function-partial least squares regression (RBF-PLSR) approach. This exploratory study demonstrates the feasibility of using complex root coefficient patterns to distinguish various classes of experimental data, such as those from the different bacteria species. This cognition approach also proved to be robust and potentially useful for freeing us from time alignment of GC signals.« less
Modeling individualized coefficient alpha to measure quality of test score data.
Liu, Molei; Hu, Ming; Zhou, Xiao-Hua
2018-05-23
Individualized coefficient alpha is defined. It is item and subject specific and is used to measure the quality of test score data with heterogenicity among the subjects and items. A regression model is developed based on 3 sets of generalized estimating equations. The first set of generalized estimating equation models the expectation of the responses, the second set models the response's variance, and the third set is proposed to estimate the individualized coefficient alpha, defined and used to measure individualized internal consistency of the responses. We also use different techniques to extend our method to handle missing data. Asymptotic property of the estimators is discussed, based on which inference on the coefficient alpha is derived. Performance of our method is evaluated through simulation study and real data analysis. The real data application is from a health literacy study in Hunan province of China. Copyright © 2018 John Wiley & Sons, Ltd.
Sun, Lili; Zhou, Liping; Yu, Yu; Lan, Yukun; Li, Zhiliang
2007-01-01
Polychlorinated diphenyl ethers (PCDEs) have received more and more concerns as a group of ubiquitous potential persistent organic pollutants (POPs). By using molecular electronegativity distance vector (MEDV-4), multiple linear regression (MLR) models are developed for sub-cooled liquid vapor pressures (P(L)), n-octanol/water partition coefficients (K(OW)) and sub-cooled liquid water solubilities (S(W,L)) of 209 PCDEs and diphenyl ether. The correlation coefficients (R) and the leave-one-out cross-validation (LOO) correlation coefficients (R(CV)) of all the 6-descriptor models for logP(L), logK(OW) and logS(W,L) are more than 0.98. By using stepwise multiple regression (SMR), the descriptors are selected and the resulting models are 5-descriptor model for logP(L), 4-descriptor model for logK(OW), and 6-descriptor model for logS(W,L), respectively. All these models exhibit excellent estimate capabilities for internal sample set and good predictive capabilities for external samples set. The consistency between observed and estimated/predicted values for logP(L) is the best (R=0.996, R(CV)=0.996), followed by logK(OW) (R=0.992, R(CV)=0.992) and logS(W,L) (R=0.983, R(CV)=0.980). By using MEDV-4 descriptors, the QSPR models can be used for prediction and the model predictions can hence extend the current database of experimental values.
Mean centering, multicollinearity, and moderators in multiple regression: The reconciliation redux.
Iacobucci, Dawn; Schneider, Matthew J; Popovich, Deidre L; Bakamitsos, Georgios A
2017-02-01
In this article, we attempt to clarify our statements regarding the effects of mean centering. In a multiple regression with predictors A, B, and A × B (where A × B serves as an interaction term), mean centering A and B prior to computing the product term can clarify the regression coefficients (which is good) and the overall model fit R 2 will remain undisturbed (which is also good).
Auras, Silke; Ostermann, Thomas; de Cruppé, Werner; Bitzer, Eva-Maria; Diel, Franziska; Geraedts, Max
2016-12-01
The study aimed to illustrate the effect of the patients' sex, age, self-rated health and medical practice specialization on patient satisfaction. Secondary analysis of patient survey data using multilevel analysis (generalized linear mixed model, medical practice as random effect) using a sequential modelling strategy. We examined the effects of the patients' sex, age, self-rated health and medical practice specialization on four patient satisfaction dimensions: medical practice organization, information, interaction, professional competence. The study was performed in 92 German medical practices providing ambulatory care in general medicine, internal medicine or gynaecology. In total, 9888 adult patients participated in a patient survey using the validated 'questionnaire on satisfaction with ambulatory care-quality from the patient perspective [ZAP]'. We calculated four models for each satisfaction dimension, revealing regression coefficients with 95% confidence intervals (CIs) for all independent variables, and using Wald Chi-Square statistic for each modelling step (model validity) and LR-Tests to compare the models of each step with the previous model. The patients' sex and age had a weak effect (maximum regression coefficient 1.09, CI 0.39; 1.80), and the patients' self-rated health had the strongest positive effect (maximum regression coefficient 7.66, CI 6.69; 8.63) on satisfaction ratings. The effect of medical practice specialization was heterogeneous. All factors studied, specifically the patients' self-rated health, affected patient satisfaction. Adjustment should always be considered because it improves the comparability of patient satisfaction in medical practices with atypically varying patient populations and increases the acceptance of comparisons. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Wang, Yan-Cang; Yang, Gui-Jun; Zhu, Jin-Shan; Gu, Xiao-He; Xu, Peng; Liao, Qin-Hong
2014-07-01
For improving the estimation accuracy of soil organic matter content of the north fluvo-aquic soil, wavelet transform technology is introduced. The soil samples were collected from Tongzhou district and Shunyi district in Beijing city. And the data source is from soil hyperspectral data obtained under laboratory condition. First, discrete wavelet transform efficiently decomposes hyperspectral into approximate coefficients and detail coefficients. Then, the correlation between approximate coefficients, detail coefficients and organic matter content was analyzed, and the sensitive bands of the organic matter were screened. Finally, models were established to estimate the soil organic content by using the partial least squares regression (PLSR). Results show that the NIR bands made more contributions than the visible band in estimating organic matter content models; the ability of approximate coefficients to estimate organic matter content is better than that of detail coefficients; The estimation precision of the detail coefficients fir soil organic matter content decreases with the spectral resolution being lower; Compared with the commonly used three types of soil spectral reflectance transforms, the wavelet transform can improve the estimation ability of soil spectral fir organic content; The accuracy of the best model established by the approximate coefficients or detail coefficients is higher, and the coefficient of determination (R2) and the root mean square error (RMSE) of the best model for approximate coefficients are 0.722 and 0.221, respectively. The R2 and RMSE of the best model for detail coefficients are 0.670 and 0.255, respectively.
2014-01-01
Background Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of electroanalytical experimental data to estimate diffusion coefficients. Results For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of typical voltammetric peak features decreased the performance of both regression algorithms compared to a reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for three organometallic complexes. Conclusions Estimated diffusion coefficients closely matched the values determined by the parameter fitting method, but reduced the required computational time considerably for one of the reaction mechanisms. The automated processing of voltammograms according to the regression algorithms yields better results than the conventional analysis of peak-related data. PMID:24987463
Statistical procedures for evaluating daily and monthly hydrologic model predictions
Coffey, M.E.; Workman, S.R.; Taraba, J.L.; Fogle, A.W.
2004-01-01
The overall study objective was to evaluate the applicability of different qualitative and quantitative methods for comparing daily and monthly SWAT computer model hydrologic streamflow predictions to observed data, and to recommend statistical methods for use in future model evaluations. Statistical methods were tested using daily streamflows and monthly equivalent runoff depths. The statistical techniques included linear regression, Nash-Sutcliffe efficiency, nonparametric tests, t-test, objective functions, autocorrelation, and cross-correlation. None of the methods specifically applied to the non-normal distribution and dependence between data points for the daily predicted and observed data. Of the tested methods, median objective functions, sign test, autocorrelation, and cross-correlation were most applicable for the daily data. The robust coefficient of determination (CD*) and robust modeling efficiency (EF*) objective functions were the preferred methods for daily model results due to the ease of comparing these values with a fixed ideal reference value of one. Predicted and observed monthly totals were more normally distributed, and there was less dependence between individual monthly totals than was observed for the corresponding predicted and observed daily values. More statistical methods were available for comparing SWAT model-predicted and observed monthly totals. The 1995 monthly SWAT model predictions and observed data had a regression Rr2 of 0.70, a Nash-Sutcliffe efficiency of 0.41, and the t-test failed to reject the equal data means hypothesis. The Nash-Sutcliffe coefficient and the R r2 coefficient were the preferred methods for monthly results due to the ability to compare these coefficients to a set ideal value of one.
Analysis of oscillatory motion of a light airplane at high values of lift coefficient
NASA Technical Reports Server (NTRS)
Batterson, J. G.
1983-01-01
A modified stepwise regression is applied to flight data from a light research air-plane operating at high angles at attack. The well-known phenomenon referred to as buckling or porpoising is analyzed and modeled using both power series and spline expansions of the aerodynamic force and moment coefficients associated with the longitudinal equations of motion.
ERIC Educational Resources Information Center
Marland, Eric; Bossé, Michael J.; Rhoads, Gregory
2018-01-01
Rounding is a necessary step in many mathematical processes. We are taught early in our education about significant figures and how to properly round a number. So when we are given a data set and asked to find a regression line, we are inclined to offer the line with rounded coefficients to reflect our model. However, the effects are not as…
Predicting Quantitative Traits With Regression Models for Dense Molecular Markers and Pedigree
de los Campos, Gustavo; Naya, Hugo; Gianola, Daniel; Crossa, José; Legarra, Andrés; Manfredi, Eduardo; Weigel, Kent; Cotes, José Miguel
2009-01-01
The availability of genomewide dense markers brings opportunities and challenges to breeding programs. An important question concerns the ways in which dense markers and pedigrees, together with phenotypic records, should be used to arrive at predictions of genetic values for complex traits. If a large number of markers are included in a regression model, marker-specific shrinkage of regression coefficients may be needed. For this reason, the Bayesian least absolute shrinkage and selection operator (LASSO) (BL) appears to be an interesting approach for fitting marker effects in a regression model. This article adapts the BL to arrive at a regression model where markers, pedigrees, and covariates other than markers are considered jointly. Connections between BL and other marker-based regression models are discussed, and the sensitivity of BL with respect to the choice of prior distributions assigned to key parameters is evaluated using simulation. The proposed model was fitted to two data sets from wheat and mouse populations, and evaluated using cross-validation methods. Results indicate that inclusion of markers in the regression further improved the predictive ability of models. An R program that implements the proposed model is freely available. PMID:19293140
The regionalization of national-scale SPARROW models for stream nutrients
Schwarz, Gregory E.; Alexander, Richard B.; Smith, Richard A.; Preston, Stephen D.
2011-01-01
This analysis modifies the parsimonious specification of recently published total nitrogen (TN) and total phosphorus (TP) national-scale SPAtially Referenced Regressions On Watershed attributes models to allow each model coefficient to vary geographically among three major river basins of the conterminous United States. Regionalization of the national models reduces the standard errors in the prediction of TN and TP loads, expressed as a percentage of the predicted load, by about 6 and 7%. We develop and apply a method for combining national-scale and regional-scale information to estimate a hybrid model that imposes cross-region constraints that limit regional variation in model coefficients, effectively reducing the number of free model parameters as compared to a collection of independent regional models. The hybrid TN and TP regional models have improved model fit relative to the respective national models, reducing the standard error in the prediction of loads, expressed as a percentage of load, by about 5 and 4%. Only 19% of the TN hybrid model coefficients and just 2% of the TP hybrid model coefficients show evidence of substantial regional specificity (more than ±100% deviation from the national model estimate). The hybrid models have much greater precision in the estimated coefficients than do the unconstrained regional models, demonstrating the efficacy of pooling information across regions to improve regional models.
Correlation and prediction of dynamic human isolated joint strength from lean body mass
NASA Technical Reports Server (NTRS)
Pandya, Abhilash K.; Hasson, Scott M.; Aldridge, Ann M.; Maida, James C.; Woolford, Barbara J.
1992-01-01
A relationship between a person's lean body mass and the amount of maximum torque that can be produced with each isolated joint of the upper extremity was investigated. The maximum dynamic isolated joint torque (upper extremity) on 14 subjects was collected using a dynamometer multi-joint testing unit. These data were reduced to a table of coefficients of second degree polynomials, computed using a least squares regression method. All the coefficients were then organized into look-up tables, a compact and convenient storage/retrieval mechanism for the data set. Data from each joint, direction and velocity, were normalized with respect to that joint's average and merged into files (one for each curve for a particular joint). Regression was performed on each one of these files to derive a table of normalized population curve coefficients for each joint axis, direction, and velocity. In addition, a regression table which included all upper extremity joints was built which related average torque to lean body mass for an individual. These two tables are the basis of the regression model which allows the prediction of dynamic isolated joint torques from an individual's lean body mass.
Biases and Standard Errors of Standardized Regression Coefficients
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Chan, Wai
2011-01-01
The paper obtains consistent standard errors (SE) and biases of order O(1/n) for the sample standardized regression coefficients with both random and given predictors. Analytical results indicate that the formulas for SEs given in popular text books are consistent only when the population value of the regression coefficient is zero. The sample…
Hierarchical Bayesian Logistic Regression to forecast metabolic control in type 2 DM patients.
Dagliati, Arianna; Malovini, Alberto; Decata, Pasquale; Cogni, Giulia; Teliti, Marsida; Sacchi, Lucia; Cerra, Carlo; Chiovato, Luca; Bellazzi, Riccardo
2016-01-01
In this work we present our efforts in building a model able to forecast patients' changes in clinical conditions when repeated measurements are available. In this case the available risk calculators are typically not applicable. We propose a Hierarchical Bayesian Logistic Regression model, which allows taking into account individual and population variability in model parameters estimate. The model is used to predict metabolic control and its variation in type 2 diabetes mellitus. In particular we have analyzed a population of more than 1000 Italian type 2 diabetic patients, collected within the European project Mosaic. The results obtained in terms of Matthews Correlation Coefficient are significantly better than the ones gathered with standard logistic regression model, based on data pooling.
Sung, Sheng-Feng; Hsieh, Cheng-Yang; Kao Yang, Yea-Huei; Lin, Huey-Juan; Chen, Chih-Hung; Chen, Yu-Wei; Hu, Ya-Han
2015-11-01
Case-mix adjustment is difficult for stroke outcome studies using administrative data. However, relevant prescription, laboratory, procedure, and service claims might be surrogates for stroke severity. This study proposes a method for developing a stroke severity index (SSI) by using administrative data. We identified 3,577 patients with acute ischemic stroke from a hospital-based registry and analyzed claims data with plenty of features. Stroke severity was measured using the National Institutes of Health Stroke Scale (NIHSS). We used two data mining methods and conventional multiple linear regression (MLR) to develop prediction models, comparing the model performance according to the Pearson correlation coefficient between the SSI and the NIHSS. We validated these models in four independent cohorts by using hospital-based registry data linked to a nationwide administrative database. We identified seven predictive features and developed three models. The k-nearest neighbor model (correlation coefficient, 0.743; 95% confidence interval: 0.737, 0.749) performed slightly better than the MLR model (0.742; 0.736, 0.747), followed by the regression tree model (0.737; 0.731, 0.742). In the validation cohorts, the correlation coefficients were between 0.677 and 0.725 for all three models. The claims-based SSI enables adjusting for disease severity in stroke studies using administrative data. Copyright © 2015 Elsevier Inc. All rights reserved.
Three-parameter modeling of the soil sorption of acetanilide and triazine herbicide derivatives.
Freitas, Mirlaine R; Matias, Stella V B G; Macedo, Renato L G; Freitas, Matheus P; Venturin, Nelson
2014-02-01
Herbicides have widely variable toxicity and many of them are persistent soil contaminants. Acetanilide and triazine family of herbicides have widespread use, but increasing interest for the development of new herbicides has been rising to increase their effectiveness and to diminish environmental hazard. The environmental risk of new herbicides can be accessed by estimating their soil sorption (logKoc), which is usually correlated to the octanol/water partition coefficient (logKow). However, earlier findings have shown that this correlation is not valid for some acetanilide and triazine herbicides. Thus, easily accessible quantitative structure-property relationship models are required to predict logKoc of analogues of the these compounds. Octanol/water partition coefficient, molecular weight and volume were calculated and then regressed against logKoc for two series of acetanilide and triazine herbicides using multiple linear regression, resulting in predictive and validated models.
Regression analysis of sparse asynchronous longitudinal data.
Cao, Hongyuan; Zeng, Donglin; Fine, Jason P
2015-09-01
We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus.
Evaluation of Regression Models of Balance Calibration Data Using an Empirical Criterion
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert; Volden, Thomas R.
2012-01-01
An empirical criterion for assessing the significance of individual terms of regression models of wind tunnel strain gage balance outputs is evaluated. The criterion is based on the percent contribution of a regression model term. It considers a term to be significant if its percent contribution exceeds the empirical threshold of 0.05%. The criterion has the advantage that it can easily be computed using the regression coefficients of the gage outputs and the load capacities of the balance. First, a definition of the empirical criterion is provided. Then, it is compared with an alternate statistical criterion that is widely used in regression analysis. Finally, calibration data sets from a variety of balances are used to illustrate the connection between the empirical and the statistical criterion. A review of these results indicated that the empirical criterion seems to be suitable for a crude assessment of the significance of a regression model term as the boundary between a significant and an insignificant term cannot be defined very well. Therefore, regression model term reduction should only be performed by using the more universally applicable statistical criterion.
On the Asymptotic Relative Efficiency of Planned Missingness Designs.
Rhemtulla, Mijke; Savalei, Victoria; Little, Todd D
2016-03-01
In planned missingness (PM) designs, certain data are set a priori to be missing. PM designs can increase validity and reduce cost; however, little is known about the loss of efficiency that accompanies these designs. The present paper compares PM designs to reduced sample (RN) designs that have the same total number of data points concentrated in fewer participants. In 4 studies, we consider models for both observed and latent variables, designs that do or do not include an "X set" of variables with complete data, and a full range of between- and within-set correlation values. All results are obtained using asymptotic relative efficiency formulas, and thus no data are generated; this novel approach allows us to examine whether PM designs have theoretical advantages over RN designs removing the impact of sampling error. Our primary findings are that (a) in manifest variable regression models, estimates of regression coefficients have much lower relative efficiency in PM designs as compared to RN designs, (b) relative efficiency of factor correlation or latent regression coefficient estimates is maximized when the indicators of each latent variable come from different sets, and (c) the addition of an X set improves efficiency in manifest variable regression models only for the parameters that directly involve the X-set variables, but it substantially improves efficiency of most parameters in latent variable models. We conclude that PM designs can be beneficial when the model of interest is a latent variable model; recommendations are made for how to optimize such a design.
Simple and multiple linear regression: sample size considerations.
Hanley, James A
2016-11-01
The suggested "two subjects per variable" (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing "exposure" (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or "profiles." It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres. Copyright © 2016 Elsevier Inc. All rights reserved.
An Excellent Pilot Model for the Korean Air Force.
1988-12-01
Address i cirv, state, and ZIP c^-de 10 Source of Funding Numbers Proeram Element No Protect No Task No Work Inn Accession N i Title...undergraduate pilots in the Korean Air Force. ui ^t Accession Fcr • - • - ORAJcI i; U": it : • in .’ H J . m _ . ; . • fr A...Squares (OLS) method. Table 22. RESULTS OF THE REGRESSION MODEL Variables Coefficient Prob>|t| Beta Coefficient Intercept 516. SS7 (56.2S6) APT
NASA Astrophysics Data System (ADS)
Gusriani, N.; Firdaniza
2018-03-01
The existence of outliers on multiple linear regression analysis causes the Gaussian assumption to be unfulfilled. If the Least Square method is forcedly used on these data, it will produce a model that cannot represent most data. For that, we need a robust regression method against outliers. This paper will compare the Minimum Covariance Determinant (MCD) method and the TELBS method on secondary data on the productivity of phytoplankton, which contains outliers. Based on the robust determinant coefficient value, MCD method produces a better model compared to TELBS method.
Misleading Betas: An Educational Example
ERIC Educational Resources Information Center
Chong, James; Halcoussis, Dennis; Phillips, G. Michael
2012-01-01
The dual-beta model is a generalization of the CAPM model. In the dual-beta model, separate beta estimates are provided for up-market and down-market days. This paper uses the historical "Anscombe quartet" results which illustrated how very different datasets can produce the same regression coefficients to motivate a discussion of the…
Vesicular stomatitis forecasting based on Google Trends
Lu, Yi; Zhou, GuangYa; Chen, Qin
2018-01-01
Background Vesicular stomatitis (VS) is an important viral disease of livestock. The main feature of VS is irregular blisters that occur on the lips, tongue, oral mucosa, hoof crown and nipple. Humans can also be infected with vesicular stomatitis and develop meningitis. This study analyses 2014 American VS outbreaks in order to accurately predict vesicular stomatitis outbreak trends. Methods American VS outbreaks data were collected from OIE. The data for VS keywords were obtained by inputting 24 disease-related keywords into Google Trends. After calculating the Pearson and Spearman correlation coefficients, it was found that there was a relationship between outbreaks and keywords derived from Google Trends. Finally, the predicted model was constructed based on qualitative classification and quantitative regression. Results For the regression model, the Pearson correlation coefficients between the predicted outbreaks and actual outbreaks are 0.953 and 0.948, respectively. For the qualitative classification model, we constructed five classification predictive models and chose the best classification predictive model as the result. The results showed, SN (sensitivity), SP (specificity) and ACC (prediction accuracy) values of the best classification predictive model are 78.52%,72.5% and 77.14%, respectively. Conclusion This study applied Google search data to construct a qualitative classification model and a quantitative regression model. The results show that the method is effective and that these two models obtain more accurate forecast. PMID:29385198
NASA Astrophysics Data System (ADS)
Bloomfield, J. P.; Allen, D. J.; Griffiths, K. J.
2009-06-01
SummaryLinear regression methods can be used to quantify geological controls on baseflow index (BFI). This is illustrated using an example from the Thames Basin, UK. Two approaches have been adopted. The areal extents of geological classes based on lithostratigraphic and hydrogeological classification schemes have been correlated with BFI for 44 'natural' catchments from the Thames Basin. When regression models are built using lithostratigraphic classes that include a constant term then the model is shown to have some physical meaning and the relative influence of the different geological classes on BFI can be quantified. For example, the regression constants for two such models, 0.64 and 0.69, are consistent with the mean observed BFI (0.65) for the Thames Basin, and the signs and relative magnitudes of the regression coefficients for each of the lithostratigraphic classes are consistent with the hydrogeology of the Basin. In addition, regression coefficients for the lithostratigraphic classes scale linearly with estimates of log 10 hydraulic conductivity for each lithological class. When a regression is built using a hydrogeological classification scheme with no constant term, the model does not have any physical meaning, but it has a relatively high adjusted R2 value and because of the continuous coverage of the hydrogeological classification scheme, the model can be used for predictive purposes. A model calibrated on the 44 'natural' catchments and using four hydrogeological classes (low-permeability surficial deposits, consolidated aquitards, fractured aquifers and intergranular aquifers) is shown to perform as well as a model based on a hydrology of soil types (BFIHOST) scheme in predicting BFI in the Thames Basin. Validation of this model using 110 other 'variably impacted' catchments in the Basin shows that there is a correlation between modelled and observed BFI. Where the observed BFI is significantly higher than modelled BFI the deviations can be explained by an exogenous factor, catchment urban area. It is inferred that this is may be due influences from sewage discharge, mains leakage, and leakage from septic tanks.
[Hyperspectral Estimation of Apple Tree Canopy LAI Based on SVM and RF Regression].
Han, Zhao-ying; Zhu, Xi-cun; Fang, Xian-yi; Wang, Zhuo-yuan; Wang, Ling; Zhao, Geng-Xing; Jiang, Yuan-mao
2016-03-01
Leaf area index (LAI) is the dynamic index of crop population size. Hyperspectral technology can be used to estimate apple canopy LAI rapidly and nondestructively. It can be provide a reference for monitoring the tree growing and yield estimation. The Red Fuji apple trees of full bearing fruit are the researching objects. Ninety apple trees canopies spectral reflectance and LAI values were measured by the ASD Fieldspec3 spectrometer and LAI-2200 in thirty orchards in constant two years in Qixia research area of Shandong Province. The optimal vegetation indices were selected by the method of correlation analysis of the original spectral reflectance and vegetation indices. The models of predicting the LAI were built with the multivariate regression analysis method of support vector machine (SVM) and random forest (RF). The new vegetation indices, GNDVI527, ND-VI676, RVI682, FD-NVI656 and GRVI517 and the previous two main vegetation indices, NDVI670 and NDVI705, are in accordance with LAI. In the RF regression model, the calibration set decision coefficient C-R2 of 0.920 and validation set decision coefficient V-R2 of 0.889 are higher than the SVM regression model by 0.045 and 0.033 respectively. The root mean square error of calibration set C-RMSE of 0.249, the root mean square error validation set V-RMSE of 0.236 are lower than that of the SVM regression model by 0.054 and 0.058 respectively. Relative analysis of calibrating error C-RPD and relative analysis of validation set V-RPD reached 3.363 and 2.520, 0.598 and 0.262, respectively, which were higher than the SVM regression model. The measured and predicted the scatterplot trend line slope of the calibration set and validation set C-S and V-S are close to 1. The estimation result of RF regression model is better than that of the SVM. RF regression model can be used to estimate the LAI of red Fuji apple trees in full fruit period.
Contemporary New Zealand coefficients for the Trauma Injury Severity Score: TRISS(NZ).
Schluter, Philip J; Cameron, Cate M; Davey, Tamzyn M; Civil, Ian; Orchard, Jodie; Dansey, Rangi; Hamill, James; Naylor, Helen; James, Carolyn; Dorrian, Jenny; Christey, Grant; Pollard, Cliff; McClure, Rod J
2009-09-11
To develop local contemporary coefficients for the Trauma Injury Severity Score in New Zealand, TRISS(NZ), and to evaluate their performance at predicting survival against the original TRISS coefficients. Retrospective cohort study of adults who sustained a serious traumatic injury, and who survived until presentation at Auckland City, Middlemore, Waikato, or North Shore Hospitals between 2002 and 2006. Coefficients were estimated using ordinary and multilevel mixed-effects logistic regression models. 1735 eligible patients were identified, 1672 (96%) injured from a blunt mechanism and 63 (4%) from a penetrating mechanism. For blunt mechanism trauma, 1250 (75%) were male and average age was 38 years (range: 15-94 years). TRISS information was available for 1565 patients of whom 204 (13%) died. Area under the Receiver Operating Characteristic (ROC) curves was 0.901 (95%CI: 0.879-0.923) for the TRISS(NZ) model and 0.890 (95% CI: 0.866-0.913) for TRISS (P<0.001). Insufficient data were available to determine coefficients for penetrating mechanism TRISS(NZ) models. Both TRISS models accurately predicted survival for blunt mechanism trauma. However, TRISS(NZ) coefficients were statistically superior to TRISS coefficients. A strong case exists for replacing TRISS coefficients in the New Zealand benchmarking software with these updated TRISS(NZ) estimates.
Aziz, Shamsul Akmar Ab; Nuawi, Mohd Zaki; Nor, Mohd Jailani Mohd
2015-01-01
The objective of this study was to present a new method for determination of hand-arm vibration (HAV) in Malaysian Army (MA) three-tonne truck steering wheels based on changes in vehicle speed using regression model and the statistical analysis method known as Integrated Kurtosis-Based Algorithm for Z-Notch Filter Technique Vibro (I-kaz Vibro). The test was conducted for two different road conditions, tarmac and dirt roads. HAV exposure was measured using a Brüel & Kjær Type 3649 vibration analyzer, which is capable of recording HAV exposures from steering wheels. The data was analyzed using I-kaz Vibro to determine the HAV values in relation to varying speeds of a truck and to determine the degree of data scattering for HAV data signals. Based on the results obtained, HAV experienced by drivers can be determined using the daily vibration exposure A(8), I-kaz Vibro coefficient (Ƶ(v)(∞)), and the I-kaz Vibro display. The I-kaz Vibro displays also showed greater scatterings, indicating that the values of Ƶ(v)(∞) and A(8) were increasing. Prediction of HAV exposure was done using the developed regression model and graphical representations of Ƶ(v)(∞). The results of the regression model showed that Ƶ(v)(∞) increased when the vehicle speed and HAV exposure increased. For model validation, predicted and measured noise exposures were compared, and high coefficient of correlation (R(2)) values were obtained, indicating that good agreement was obtained between them. By using the developed regression model, we can easily predict HAV exposure from steering wheels for HAV exposure monitoring.
Rovadoscki, Gregori A; Petrini, Juliana; Ramirez-Diaz, Johanna; Pertile, Simone F N; Pertille, Fábio; Salvian, Mayara; Iung, Laiza H S; Rodriguez, Mary Ana P; Zampar, Aline; Gaya, Leila G; Carvalho, Rachel S B; Coelho, Antonio A D; Savino, Vicente J M; Coutinho, Luiz L; Mourão, Gerson B
2016-09-01
Repeated measures from the same individual have been analyzed by using repeatability and finite dimension models under univariate or multivariate analyses. However, in the last decade, the use of random regression models for genetic studies with longitudinal data have become more common. Thus, the aim of this research was to estimate genetic parameters for body weight of four experimental chicken lines by using univariate random regression models. Body weight data from hatching to 84 days of age (n = 34,730) from four experimental free-range chicken lines (7P, Caipirão da ESALQ, Caipirinha da ESALQ and Carijó Barbado) were used. The analysis model included the fixed effects of contemporary group (gender and rearing system), fixed regression coefficients for age at measurement, and random regression coefficients for permanent environmental effects and additive genetic effects. Heterogeneous variances for residual effects were considered, and one residual variance was assigned for each of six subclasses of age at measurement. Random regression curves were modeled by using Legendre polynomials of the second and third orders, with the best model chosen based on the Akaike Information Criterion, Bayesian Information Criterion, and restricted maximum likelihood. Multivariate analyses under the same animal mixed model were also performed for the validation of the random regression models. The Legendre polynomials of second order were better for describing the growth curves of the lines studied. Moderate to high heritabilities (h(2) = 0.15 to 0.98) were estimated for body weight between one and 84 days of age, suggesting that selection for body weight at all ages can be used as a selection criteria. Genetic correlations among body weight records obtained through multivariate analyses ranged from 0.18 to 0.96, 0.12 to 0.89, 0.06 to 0.96, and 0.28 to 0.96 in 7P, Caipirão da ESALQ, Caipirinha da ESALQ, and Carijó Barbado chicken lines, respectively. Results indicate that genetic gain for body weight can be achieved by selection. Also, selection for body weight at 42 days of age can be maintained as a selection criterion. © 2016 Poultry Science Association Inc.
Shui, Wei; DU, Yong; Chen, Yi Ping; Jian, Xiao Mei; Fan, Bing Xiong
2017-04-18
Anxi County, specializing in tea cultivation, was taken as a case in this research. Pearson correlation analysis, ordinary least squares model (OLS) and geographically weighted regression model (GWR) were used to select four primary influence factors of specialization in tea cultivation (i.e., the average elevation, net income per capita, proportion of agricultural population, and the distance from roads) by analyzing the specialization degree of each town of Anxi County. Meanwhile, the spatial patterns of specialization in tea cultivation of Anxi County were evaluated. The results indicated that specialization in tea cultivation of Anxi County showed an obvious spatial auto-correlation, and a spatial pattern with "low-middle-high" circle structure, which was similar to Von Thünen's circle structure model, appeared from the county town to its surrounding region. Meanwhile, GWR (0.624) had a better fitting degree than OLS (0.595), and GWR could reasonably expound the spatial data. Contrary to the agricultural location theory of Von Thünen's model, which indicated that distance from market was a determination factor, the specialization degree of tea cultivation in Anxi was mainly decided by natural conditions of mountain area, instead of the social factors. Specialization degree of tea cultivation was positively correlated with the average elevation, net income per capita and the proportion of agricultural population, while a negative correlation was found between the distance from roads and specialization degree of tea cultivation. Coefficients of regression between the specialization degree of tea cultivation and two factors (i.e., the average elevation and net income per capita) showed a spatial pattern of higher level in the north direction and lower level in the south direction. On the contrary, the regression coefficients for the proportion of agricultural population increased from south to north of Anxi County. Furthermore, regression coefficient for the distance from roads showed a spatial pattern of higher level in the northeast direction and lower level in the southwest direction of Anxi County.
On the Occurrence of Standardized Regression Coefficients Greater than One.
ERIC Educational Resources Information Center
Deegan, John, Jr.
1978-01-01
It is demonstrated here that standardized regression coefficients greater than one can legitimately occur. Furthermore, the relationship between the occurrence of such coefficients and the extent of multicollinearity present among the set of predictor variables in an equation is examined. Comments on the interpretation of these coefficients are…
NASA Technical Reports Server (NTRS)
Kalton, G.
1983-01-01
A number of surveys were conducted to study the relationship between the level of aircraft or traffic noise exposure experienced by people living in a particular area and their annoyance with it. These surveys generally employ a clustered sample design which affects the precision of the survey estimates. Regression analysis of annoyance on noise measures and other variables is often an important component of the survey analysis. Formulae are presented for estimating the standard errors of regression coefficients and ratio of regression coefficients that are applicable with a two- or three-stage clustered sample design. Using a simple cost function, they also determine the optimum allocation of the sample across the stages of the sample design for the estimation of a regression coefficient.
The Outlier Detection for Ordinal Data Using Scalling Technique of Regression Coefficients
NASA Astrophysics Data System (ADS)
Adnan, Arisman; Sugiarto, Sigit
2017-06-01
The aims of this study is to detect the outliers by using coefficients of Ordinal Logistic Regression (OLR) for the case of k category responses where the score from 1 (the best) to 8 (the worst). We detect them by using the sum of moduli of the ordinal regression coefficients calculated by jackknife technique. This technique is improved by scalling the regression coefficients to their means. R language has been used on a set of ordinal data from reference distribution. Furthermore, we compare this approach by using studentised residual plots of jackknife technique for ANOVA (Analysis of Variance) and OLR. This study shows that the jackknifing technique along with the proper scaling may lead us to reveal outliers in ordinal regression reasonably well.
A Functional Varying-Coefficient Single-Index Model for Functional Response Data
Li, Jialiang; Huang, Chao; Zhu, Hongtu
2016-01-01
Motivated by the analysis of imaging data, we propose a novel functional varying-coefficient single index model (FVCSIM) to carry out the regression analysis of functional response data on a set of covariates of interest. FVCSIM represents a new extension of varying-coefficient single index models for scalar responses collected from cross-sectional and longitudinal studies. An efficient estimation procedure is developed to iteratively estimate varying coefficient functions, link functions, index parameter vectors, and the covariance function of individual functions. We systematically examine the asymptotic properties of all estimators including the weak convergence of the estimated varying coefficient functions, the asymptotic distribution of the estimated index parameter vectors, and the uniform convergence rate of the estimated covariance function and their spectrum. Simulation studies are carried out to assess the finite-sample performance of the proposed procedure. We apply FVCSIM to investigating the development of white matter diffusivities along the corpus callosum skeleton obtained from Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. PMID:29200540
A Functional Varying-Coefficient Single-Index Model for Functional Response Data.
Li, Jialiang; Huang, Chao; Zhu, Hongtu
2017-01-01
Motivated by the analysis of imaging data, we propose a novel functional varying-coefficient single index model (FVCSIM) to carry out the regression analysis of functional response data on a set of covariates of interest. FVCSIM represents a new extension of varying-coefficient single index models for scalar responses collected from cross-sectional and longitudinal studies. An efficient estimation procedure is developed to iteratively estimate varying coefficient functions, link functions, index parameter vectors, and the covariance function of individual functions. We systematically examine the asymptotic properties of all estimators including the weak convergence of the estimated varying coefficient functions, the asymptotic distribution of the estimated index parameter vectors, and the uniform convergence rate of the estimated covariance function and their spectrum. Simulation studies are carried out to assess the finite-sample performance of the proposed procedure. We apply FVCSIM to investigating the development of white matter diffusivities along the corpus callosum skeleton obtained from Alzheimer's Disease Neuroimaging Initiative (ADNI) study.
Measuring Productivity of Depot-Level Aircraft Maintenance in the Air Force Logistics Command.
1985-09-01
of Figures...... . . . . . . . . . . . . vi List of Tables . . . . . . . . . ............ vii Abstract . . . ...................... viii I...59 6. DEA Efficiency Values (Third DEA Model) . .... 62 7. DMU 5 Input Efficiencies ................ 64 vi F "-’ List of Tables Table Page I. DEA...Regression Results for 20 Months . . . ..... 68 V. Regression Results for 7 Quarters . . ..... 70 VI . Coefficients of Correlation (Using Quarterly Data
Erosion and soil displacement related to timber harvesting in northwestern California, U.S.A.
R.M. Rice; D.J. Furbish
1984-01-01
The relationship between measures of site disturbance and erosion resulting from timber harvest was studied by regression analyses. None of the 12 regression models developed and tested yielded a coefficient of determination (R2) greater than 0.60. The results indicated that the poor fits to the data were due, in part, to unexplained qualitative...
"Erosion and soil displacement related to timber harvesting in northwestern California, U.S.A."
R. M. Rice; D. J. Furbish
1984-01-01
The relationship between measures of site disturbance and erosion resulting from timber harvest was studied by regression analyses. None of the 12 regression models developed and tested yielded a coefficient of determination (R 2) greater than 0.60. The results indicated that the poor fits to the data were due, in part, to unexplained qualitative differences in...
Nikol'skii, A A
2017-11-01
Dependence of the sound-signal frequency on the animal body length was studied in 14 ground squirrel species (genus Spermophilus) of Eurasia. Regression analysis of the total sample yielded a low determination coefficient (R 2 = 26%), because the total sample proved to be heterogeneous in terms of signal frequency within the dimension classes of animals. When the total sample was divided into two groups according to signal frequency, two statistically significant models (regression equations) were obtained in which signal frequency depended on the body size at high determination coefficients (R 2 = 73 and 94% versus 26% for the total sample). Thus, the problem of correlation between animal body size and the frequency of their vocal signals does not have a unique solution.
Applicability of Cameriere's and Drusini's age estimation methods to a sample of Turkish adults.
Hatice, Boyacioglu Dogru; Nihal, Avcu; Nursel, Akkaya; Humeyra Ozge, Yilanci; Goksuluk, Dincer
2017-10-01
The aim of this study was to investigate the applicability of Drusini's and Cameriere's methods to a sample of Turkish people. Panoramic images of 200 individuals were allocated into two groups as study and test groups and examined by two observers. Tooth coronal indexes (TCI), which is the ratio between coronal pulp cavity height and crown height, were calculated in the mandibular first and second premolars and molars. Pulp/tooth area ratios (ARs) were calculated in the maxillary and mandibular canine teeth. Study group measurements were used to derive a regression model. Test group measurements were used to evaluate the accuracy of the regression model. Pearson's correlation coefficients and regression analysis were used. The correlations between TCIs and age were -0.230, -0.301, -0.344 and -0.257 for mandibular first premolar, second premolar, first molar and second molar, respectively. Those for the maxillary canine (MX) and mandibular canine (MN) ARs were -0.716 and -0.514, respectively. The MX ARs were used to build the linear regression model that explained 51.2% of the total variation, with a standard error of 9.23 years. The mean error of the estimates in test group was 8 years and age of 64% of the individuals were estimated with an error of <±10 years which is acceptable in forensic age prediction. The low correlation coefficients between age and TCI indicate that Drusini's method was not applicable to the estimation of age in a Turkish population. Using Cameriere's method, we derived a regression model.
NASA Astrophysics Data System (ADS)
Keat, Sim Chong; Chun, Beh Boon; San, Lim Hwee; Jafri, Mohd Zubir Mat
2015-04-01
Climate change due to carbon dioxide (CO2) emissions is one of the most complex challenges threatening our planet. This issue considered as a great and international concern that primary attributed from different fossil fuels. In this paper, regression model is used for analyzing the causal relationship among CO2 emissions based on the energy consumption in Malaysia using time series data for the period of 1980-2010. The equations were developed using regression model based on the eight major sources that contribute to the CO2 emissions such as non energy, Liquefied Petroleum Gas (LPG), diesel, kerosene, refinery gas, Aviation Turbine Fuel (ATF) and Aviation Gasoline (AV Gas), fuel oil and motor petrol. The related data partly used for predict the regression model (1980-2000) and partly used for validate the regression model (2001-2010). The results of the prediction model with the measured data showed a high correlation coefficient (R2=0.9544), indicating the model's accuracy and efficiency. These results are accurate and can be used in early warning of the population to comply with air quality standards.
Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William
2016-01-01
Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p < 0.001) when using a linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p < 0.001) and slopes (p < 0.001) of the individual growth trajectories. We also identified important serial correlation within the structure of the data (ρ = 0.66; 95 % CI 0.64 to 0.68; p < 0.001), which we modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19,598, respectively). While the regression parameters are more complex to interpret in the former, we argue that inference for any problem depends more on the estimated curve or differences in curves rather than the coefficients. Moreover, use of cubic regression splines provides biological meaningful growth velocity and acceleration curves despite increased complexity in coefficient interpretation. Through this stepwise approach, we provide a set of tools to model longitudinal childhood data for non-statisticians using linear mixed-effect models.
Kamruzzaman, Mohammed; Sun, Da-Wen; ElMasry, Gamal; Allen, Paul
2013-01-15
Many studies have been carried out in developing non-destructive technologies for predicting meat adulteration, but there is still no endeavor for non-destructive detection and quantification of adulteration in minced lamb meat. The main goal of this study was to develop and optimize a rapid analytical technique based on near-infrared (NIR) hyperspectral imaging to detect the level of adulteration in minced lamb. Initial investigation was carried out using principal component analysis (PCA) to identify the most potential adulterate in minced lamb. Minced lamb meat samples were then adulterated with minced pork in the range 2-40% (w/w) at approximately 2% increments. Spectral data were used to develop a partial least squares regression (PLSR) model to predict the level of adulteration in minced lamb. Good prediction model was obtained using the whole spectral range (910-1700 nm) with a coefficient of determination (R(2)(cv)) of 0.99 and root-mean-square errors estimated by cross validation (RMSECV) of 1.37%. Four important wavelengths (940, 1067, 1144 and 1217 nm) were selected using weighted regression coefficients (Bw) and a multiple linear regression (MLR) model was then established using these important wavelengths to predict adulteration. The MLR model resulted in a coefficient of determination (R(2)(cv)) of 0.98 and RMSECV of 1.45%. The developed MLR model was then applied to each pixel in the image to obtain prediction maps to visualize the distribution of adulteration of the tested samples. The results demonstrated that the laborious and time-consuming tradition analytical techniques could be replaced by spectral data in order to provide rapid, low cost and non-destructive testing technique for adulterate detection in minced lamb meat. Copyright © 2012 Elsevier B.V. All rights reserved.
Design of experiments enhanced statistical process control for wind tunnel check standard testing
NASA Astrophysics Data System (ADS)
Phillips, Ben D.
The current wind tunnel check standard testing program at NASA Langley Research Center is focused on increasing data quality, uncertainty quantification and overall control and improvement of wind tunnel measurement processes. The statistical process control (SPC) methodology employed in the check standard testing program allows for the tracking of variations in measurements over time as well as an overall assessment of facility health. While the SPC approach can and does provide researchers with valuable information, it has certain limitations in the areas of process improvement and uncertainty quantification. It is thought by utilizing design of experiments methodology in conjunction with the current SPC practices that one can efficiently and more robustly characterize uncertainties and develop enhanced process improvement procedures. In this research, methodologies were developed to generate regression models for wind tunnel calibration coefficients, balance force coefficients and wind tunnel flow angularities. The coefficients of these regression models were then tracked in statistical process control charts, giving a higher level of understanding of the processes. The methodology outlined is sufficiently generic such that this research can be applicable to any wind tunnel check standard testing program.
Viability estimation of pepper seeds using time-resolved photothermal signal characterization
NASA Astrophysics Data System (ADS)
Kim, Ghiseok; Kim, Geon-Hee; Lohumi, Santosh; Kang, Jum-Soon; Cho, Byoung-Kwan
2014-11-01
We used infrared thermal signal measurement system and photothermal signal and image reconstruction techniques for viability estimation of pepper seeds. Photothermal signals from healthy and aged seeds were measured for seven periods (24, 48, 72, 96, 120, 144, and 168 h) using an infrared camera and analyzed by a regression method. The photothermal signals were regressed using a two-term exponential decay curve with two amplitudes and two time variables (lifetime) as regression coefficients. The regression coefficients of the fitted curve showed significant differences for each seed groups, depending on the aging times. In addition, the viability of a single seed was estimated by imaging of its regression coefficient, which was reconstructed from the measured photothermal signals. The time-resolved photothermal characteristics, along with the regression coefficient images, can be used to discriminate the aged or dead pepper seeds from the healthy seeds.
Wei, Wang; Yuan-Yuan, Jin; Ci, Yan; Ahan, Alayi; Ming-Qin, Cao
2016-10-06
The spatial interplay between socioeconomic factors and tuberculosis (TB) cases contributes to the understanding of regional tuberculosis burdens. Historically, local Poisson Geographically Weighted Regression (GWR) has allowed for the identification of the geographic disparities of TB cases and their relevant socioeconomic determinants, thereby forecasting local regression coefficients for the relations between the incidence of TB and its socioeconomic determinants. Therefore, the aims of this study were to: (1) identify the socioeconomic determinants of geographic disparities of smear positive TB in Xinjiang, China (2) confirm if the incidence of smear positive TB and its associated socioeconomic determinants demonstrate spatial variability (3) compare the performance of two main models: one is Ordinary Least Square Regression (OLS), and the other local GWR model. Reported smear-positive TB cases in Xinjiang were extracted from the TB surveillance system database during 2004-2010. The average number of smear-positive TB cases notified in Xinjiang was collected from 98 districts/counties. The population density (POPden), proportion of minorities (PROmin), number of infectious disease network reporting agencies (NUMagen), proportion of agricultural population (PROagr), and per capita annual gross domestic product (per capita GDP) were gathered from the Xinjiang Statistical Yearbook covering a period from 2004 to 2010. The OLS model and GWR model were then utilized to investigate socioeconomic determinants of smear-positive TB cases. Geoda 1.6.7, and GWR 4.0 software were used for data analysis. Our findings indicate that the relations between the average number of smear-positive TB cases notified in Xinjiang and their socioeconomic determinants (POPden, PROmin, NUMagen, PROagr, and per capita GDP) were significantly spatially non-stationary. This means that in some areas more smear-positive TB cases could be related to higher socioeconomic determinant regression coefficients, but in some areas more smear-positive TB cases were found to do with lower socioeconomic determinant regression coefficients. We also found out that the GWR model could be better exploited to geographically differentiate the relationships between the average number of smear-positive TB cases and their socioeconomic determinants, which could interpret the dataset better (adjusted R 2 = 0.912, AICc = 1107.22) than the OLS model (adjusted R 2 = 0.768, AICc = 1196.74). POPden, PROmin, NUMagen, PROagr, and per capita GDP are socioeconomic determinants of smear-positive TB cases. Comprehending the spatial heterogeneity of POPden, PROmin, NUMagen, PROagr, per capita GDP, and smear-positive TB cases could provide valuable information for TB precaution and control strategies.
Advanced Statistical Analyses to Reduce Inconsistency of Bond Strength Data.
Minamino, T; Mine, A; Shintani, A; Higashi, M; Kawaguchi-Uemura, A; Kabetani, T; Hagino, R; Imai, D; Tajiri, Y; Matsumoto, M; Yatani, H
2017-11-01
This study was designed to clarify the interrelationship of factors that affect the value of microtensile bond strength (µTBS), focusing on nondestructive testing by which information of the specimens can be stored and quantified. µTBS test specimens were prepared from 10 noncarious human molars. Six factors of µTBS test specimens were evaluated: presence of voids at the interface, X-ray absorption coefficient of resin, X-ray absorption coefficient of dentin, length of dentin part, size of adhesion area, and individual differences of teeth. All specimens were observed nondestructively by optical coherence tomography and micro-computed tomography before µTBS testing. After µTBS testing, the effect of these factors on µTBS data was analyzed by the general linear model, linear mixed effects regression model, and nonlinear regression model with 95% confidence intervals. By the general linear model, a significant difference in individual differences of teeth was observed ( P < 0.001). A significantly positive correlation was shown between µTBS and length of dentin part ( P < 0.001); however, there was no significant nonlinearity ( P = 0.157). Moreover, a significantly negative correlation was observed between µTBS and size of adhesion area ( P = 0.001), with significant nonlinearity ( P = 0.014). No correlation was observed between µTBS and X-ray absorption coefficient of resin ( P = 0.147), and there was no significant nonlinearity ( P = 0.089). Additionally, a significantly positive correlation was observed between µTBS and X-ray absorption coefficient of dentin ( P = 0.022), with significant nonlinearity ( P = 0.036). A significant difference was also observed between the presence and absence of voids by linear mixed effects regression analysis. Our results showed correlations between various parameters of tooth specimens and µTBS data. To evaluate the performance of the adhesive more precisely, the effect of tooth variability and a method to reduce variation in bond strength values should also be considered.
Zhu, Yu; Xia, Jie-lai; Wang, Jing
2009-09-01
Application of the 'single auto regressive integrated moving average (ARIMA) model' and the 'ARIMA-generalized regression neural network (GRNN) combination model' in the research of the incidence of scarlet fever. Establish the auto regressive integrated moving average model based on the data of the monthly incidence on scarlet fever of one city, from 2000 to 2006. The fitting values of the ARIMA model was used as input of the GRNN, and the actual values were used as output of the GRNN. After training the GRNN, the effect of the single ARIMA model and the ARIMA-GRNN combination model was then compared. The mean error rate (MER) of the single ARIMA model and the ARIMA-GRNN combination model were 31.6%, 28.7% respectively and the determination coefficient (R(2)) of the two models were 0.801, 0.872 respectively. The fitting efficacy of the ARIMA-GRNN combination model was better than the single ARIMA, which had practical value in the research on time series data such as the incidence of scarlet fever.
Regression-based adaptive sparse polynomial dimensional decomposition for sensitivity analysis
NASA Astrophysics Data System (ADS)
Tang, Kunkun; Congedo, Pietro; Abgrall, Remi
2014-11-01
Polynomial dimensional decomposition (PDD) is employed in this work for global sensitivity analysis and uncertainty quantification of stochastic systems subject to a large number of random input variables. Due to the intimate structure between PDD and Analysis-of-Variance, PDD is able to provide simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to polynomial chaos (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of the standard method unaffordable for real engineering applications. In order to address this problem of curse of dimensionality, this work proposes a variance-based adaptive strategy aiming to build a cheap meta-model by sparse-PDD with PDD coefficients computed by regression. During this adaptive procedure, the model representation by PDD only contains few terms, so that the cost to resolve repeatedly the linear system of the least-square regression problem is negligible. The size of the final sparse-PDD representation is much smaller than the full PDD, since only significant terms are eventually retained. Consequently, a much less number of calls to the deterministic model is required to compute the final PDD coefficients.
Zhong-xiang, Feng; Shi-sheng, Lu; Wei-hua, Zhang; Nan-nan, Zhang
2014-01-01
In order to build a combined model which can meet the variation rule of death toll data for road traffic accidents and can reflect the influence of multiple factors on traffic accidents and improve prediction accuracy for accidents, the Verhulst model was built based on the number of death tolls for road traffic accidents in China from 2002 to 2011; and car ownership, population, GDP, highway freight volume, highway passenger transportation volume, and highway mileage were chosen as the factors to build the death toll multivariate linear regression model. Then the two models were combined to be a combined prediction model which has weight coefficient. Shapley value method was applied to calculate the weight coefficient by assessing contributions. Finally, the combined model was used to recalculate the number of death tolls from 2002 to 2011, and the combined model was compared with the Verhulst and multivariate linear regression models. The results showed that the new model could not only characterize the death toll data characteristics but also quantify the degree of influence to the death toll by each influencing factor and had high accuracy as well as strong practicability. PMID:25610454
Feng, Zhong-xiang; Lu, Shi-sheng; Zhang, Wei-hua; Zhang, Nan-nan
2014-01-01
In order to build a combined model which can meet the variation rule of death toll data for road traffic accidents and can reflect the influence of multiple factors on traffic accidents and improve prediction accuracy for accidents, the Verhulst model was built based on the number of death tolls for road traffic accidents in China from 2002 to 2011; and car ownership, population, GDP, highway freight volume, highway passenger transportation volume, and highway mileage were chosen as the factors to build the death toll multivariate linear regression model. Then the two models were combined to be a combined prediction model which has weight coefficient. Shapley value method was applied to calculate the weight coefficient by assessing contributions. Finally, the combined model was used to recalculate the number of death tolls from 2002 to 2011, and the combined model was compared with the Verhulst and multivariate linear regression models. The results showed that the new model could not only characterize the death toll data characteristics but also quantify the degree of influence to the death toll by each influencing factor and had high accuracy as well as strong practicability.
[How to fit and interpret multilevel models using SPSS].
Pardo, Antonio; Ruiz, Miguel A; San Martín, Rafael
2007-05-01
Hierarchic or multilevel models are used to analyse data when cases belong to known groups and sample units are selected both from the individual level and from the group level. In this work, the multilevel models most commonly discussed in the statistic literature are described, explaining how to fit these models using the SPSS program (any version as of the 11 th ) and how to interpret the outcomes of the analysis. Five particular models are described, fitted, and interpreted: (1) one-way analysis of variance with random effects, (2) regression analysis with means-as-outcomes, (3) one-way analysis of covariance with random effects, (4) regression analysis with random coefficients, and (5) regression analysis with means- and slopes-as-outcomes. All models are explained, trying to make them understandable to researchers in health and behaviour sciences.
Deletion Diagnostics for Alternating Logistic Regressions
Preisser, John S.; By, Kunthel; Perin, Jamie; Qaqish, Bahjat F.
2013-01-01
Deletion diagnostics are introduced for the regression analysis of clustered binary outcomes estimated with alternating logistic regressions, an implementation of generalized estimating equations (GEE) that estimates regression coefficients in a marginal mean model and in a model for the intracluster association given by the log odds ratio. The diagnostics are developed within an estimating equations framework that recasts the estimating functions for association parameters based upon conditional residuals into equivalent functions based upon marginal residuals. Extensions of earlier work on GEE diagnostics follow directly, including computational formulae for one-step deletion diagnostics that measure the influence of a cluster of observations on the estimated regression parameters and on the overall marginal mean or association model fit. The diagnostic formulae are evaluated with simulations studies and with an application concerning an assessment of factors associated with health maintenance visits in primary care medical practices. The application and the simulations demonstrate that the proposed cluster-deletion diagnostics for alternating logistic regressions are good approximations of their exact fully iterated counterparts. PMID:22777960
Determination of mean gravity anomalies in the Taiwan Island
NASA Technical Reports Server (NTRS)
Chang, Ruey-Gang
1989-01-01
The fitting and proper regression coefficients were made of one hundred seventeen 10 x 10' blocks with observed gravity data and corresponding elevation in the Taiwan Island. To compare five different predicted models, and the proper one for the mean gravity anomalies were determined. The predicted gravity anomalies of the non-observed gravity blocks were decided when the coefficients obtained through the model with the weighted mean method. It was suggested that the mean gravity anomalies of 10 x 10' blocks should be made when comprehensive the observed and predicted data.
Finite Element Vibration Modeling and Experimental Validation for an Aircraft Engine Casing
NASA Astrophysics Data System (ADS)
Rabbitt, Christopher
This thesis presents a procedure for the development and validation of a theoretical vibration model, applies this procedure to a pair of aircraft engine casings, and compares select parameters from experimental testing of those casings to those from a theoretical model using the Modal Assurance Criterion (MAC) and linear regression coefficients. A novel method of determining the optimal MAC between axisymmetric results is developed and employed. It is concluded that the dynamic finite element models developed as part of this research are fully capable of modelling the modal parameters within the frequency range of interest. Confidence intervals calculated in this research for correlation coefficients provide important information regarding the reliability of predictions, and it is recommended that these intervals be calculated for all comparable coefficients. The procedure outlined for aligning mode shapes around an axis of symmetry proved useful, and the results are promising for the development of further optimization techniques.
USDA-ARS?s Scientific Manuscript database
Illegal use of nitrogen-rich melamine (C3H6N6) to boost perceived protein content of food products such as milk, infant formula, frozen yogurt, pet food, biscuits, and coffee drinks has caused serious food safety problems. Conventional methods to detect melamine in foods, such as Enzyme-linked immun...
Restoration of Monotonicity Respecting in Dynamic Regression
Huang, Yijian
2017-01-01
Dynamic regression models, including the quantile regression model and Aalen’s additive hazards model, are widely adopted to investigate evolving covariate effects. Yet lack of monotonicity respecting with standard estimation procedures remains an outstanding issue. Advances have recently been made, but none provides a complete resolution. In this article, we propose a novel adaptive interpolation method to restore monotonicity respecting, by successively identifying and then interpolating nearest monotonicity-respecting points of an original estimator. Under mild regularity conditions, the resulting regression coefficient estimator is shown to be asymptotically equivalent to the original. Our numerical studies have demonstrated that the proposed estimator is much more smooth and may have better finite-sample efficiency than the original as well as, when available as only in special cases, other competing monotonicity-respecting estimators. Illustration with a clinical study is provided. PMID:29430068
Modeling of adipose/blood partition coefficient for environmental chemicals.
Papadaki, K C; Karakitsios, S P; Sarigiannis, D A
2017-12-01
A Quantitative Structure Activity Relationship (QSAR) model was developed in order to predict the adipose/blood partition coefficient of environmental chemical compounds. The first step of QSAR modeling was the collection of inputs. Input data included the experimental values of adipose/blood partition coefficient and two sets of molecular descriptors for 67 organic chemical compounds; a) the descriptors from Linear Free Energy Relationship (LFER) and b) the PaDEL descriptors. The datasets were split to training and prediction set and were analysed using two statistical methods; Genetic Algorithm based Multiple Linear Regression (GA-MLR) and Artificial Neural Networks (ANN). The models with LFER and PaDEL descriptors, coupled with ANN, produced satisfying performance results. The fitting performance (R 2 ) of the models, using LFER and PaDEL descriptors, was 0.94 and 0.96, respectively. The Applicability Domain (AD) of the models was assessed and then the models were applied to a large number of chemical compounds with unknown values of adipose/blood partition coefficient. In conclusion, the proposed models were checked for fitting, validity and applicability. It was demonstrated that they are stable, reliable and capable to predict the values of adipose/blood partition coefficient of "data poor" chemical compounds that fall within the applicability domain. Copyright © 2017. Published by Elsevier Ltd.
Zhou, Yang; Fu, Xiaping; Ying, Yibin; Fang, Zhenhuan
2015-06-23
A fiber-optic probe system was developed to estimate the optical properties of turbid media based on spatially resolved diffuse reflectance. Because of the limitations in numerical calculation of radiative transfer equation (RTE), diffusion approximation (DA) and Monte Carlo simulations (MC), support vector regression (SVR) was introduced to model the relationship between diffuse reflectance values and optical properties. The SVR models of four collection fibers were trained by phantoms in calibration set with a wide range of optical properties which represented products of different applications, then the optical properties of phantoms in prediction set were predicted after an optimal searching on SVR models. The results indicated that the SVR model was capable of describing the relationship with little deviation in forward validation. The correlation coefficient (R) of reduced scattering coefficient μ'(s) and absorption coefficient μ(a) in the prediction set were 0.9907 and 0.9980, respectively. The root mean square errors of prediction (RMSEP) of μ'(s) and μ(a) in inverse validation were 0.411 cm(-1) and 0.338 cm(-1), respectively. The results indicated that the integrated fiber-optic probe system combined with SVR model were suitable for fast and accurate estimation of optical properties of turbid media based on spatially resolved diffuse reflectance. Copyright © 2015 Elsevier B.V. All rights reserved.
Ham, Joo-ho; Park, Hun-Young; Kim, Youn-ho; Bae, Sang-kon; Ko, Byung-hoon
2017-01-01
[Purpose] The purpose of this study was to develop a regression model to estimate the heart rate at the lactate threshold (HRLT) and the heart rate at the ventilatory threshold (HRVT) using the heart rate threshold (HRT), and to test the validity of the regression model. [Methods] We performed a graded exercise test with a treadmill in 220 normal individuals (men: 112, women: 108) aged 20–59 years. HRT, HRLT, and HRVT were measured in all subjects. A regression model was developed to estimate HRLT and HRVT using HRT with 70% of the data (men: 79, women: 76) through randomization (7:3), with the Bernoulli trial. The validity of the regression model developed with the remaining 30% of the data (men: 33, women: 32) was also examined. [Results] Based on the regression coefficient, we found that the independent variable HRT was a significant variable in all regression models. The adjusted R2 of the developed regression models averaged about 70%, and the standard error of estimation of the validity test results was 11 bpm, which is similar to that of the developed model. [Conclusion] These results suggest that HRT is a useful parameter for predicting HRLT and HRVT. PMID:29036765
Ham, Joo-Ho; Park, Hun-Young; Kim, Youn-Ho; Bae, Sang-Kon; Ko, Byung-Hoon; Nam, Sang-Seok
2017-09-30
The purpose of this study was to develop a regression model to estimate the heart rate at the lactate threshold (HRLT) and the heart rate at the ventilatory threshold (HRVT) using the heart rate threshold (HRT), and to test the validity of the regression model. We performed a graded exercise test with a treadmill in 220 normal individuals (men: 112, women: 108) aged 20-59 years. HRT, HRLT, and HRVT were measured in all subjects. A regression model was developed to estimate HRLT and HRVT using HRT with 70% of the data (men: 79, women: 76) through randomization (7:3), with the Bernoulli trial. The validity of the regression model developed with the remaining 30% of the data (men: 33, women: 32) was also examined. Based on the regression coefficient, we found that the independent variable HRT was a significant variable in all regression models. The adjusted R2 of the developed regression models averaged about 70%, and the standard error of estimation of the validity test results was 11 bpm, which is similar to that of the developed model. These results suggest that HRT is a useful parameter for predicting HRLT and HRVT. ©2017 The Korean Society for Exercise Nutrition
Fischer, A; Friggens, N C; Berry, D P; Faverdin, P
2018-07-01
The ability to properly assess and accurately phenotype true differences in feed efficiency among dairy cows is key to the development of breeding programs for improving feed efficiency. The variability among individuals in feed efficiency is commonly characterised by the residual intake approach. Residual feed intake is represented by the residuals of a linear regression of intake on the corresponding quantities of the biological functions that consume (or release) energy. However, the residuals include both, model fitting and measurement errors as well as any variability in cow efficiency. The objective of this study was to isolate the individual animal variability in feed efficiency from the residual component. Two separate models were fitted, in one the standard residual energy intake (REI) was calculated as the residual of a multiple linear regression of lactation average net energy intake (NEI) on lactation average milk energy output, average metabolic BW, as well as lactation loss and gain of body condition score. In the other, a linear mixed model was used to simultaneously fit fixed linear regressions and random cow levels on the biological traits and intercept using fortnight repeated measures for the variables. This method split the predicted NEI in two parts: one quantifying the population mean intercept and coefficients, and one quantifying cow-specific deviations in the intercept and coefficients. The cow-specific part of predicted NEI was assumed to isolate true differences in feed efficiency among cows. NEI and associated energy expenditure phenotypes were available for the first 17 fortnights of lactation from 119 Holstein cows; all fed a constant energy-rich diet. Mixed models fitting cow-specific intercept and coefficients to different combinations of the aforementioned energy expenditure traits, calculated on a fortnightly basis, were compared. The variance of REI estimated with the lactation average model represented only 8% of the variance of measured NEI. Among all compared mixed models, the variance of the cow-specific part of predicted NEI represented between 53% and 59% of the variance of REI estimated from the lactation average model or between 4% and 5% of the variance of measured NEI. The remaining 41% to 47% of the variance of REI estimated with the lactation average model may therefore reflect model fitting errors or measurement errors. In conclusion, the use of a mixed model framework with cow-specific random regressions seems to be a promising method to isolate the cow-specific component of REI in dairy cows.
NASA Astrophysics Data System (ADS)
Sulistianingsih, E.; Kiftiah, M.; Rosadi, D.; Wahyuni, H.
2017-04-01
Gross Domestic Product (GDP) is an indicator of economic growth in a region. GDP is a panel data, which consists of cross-section and time series data. Meanwhile, panel regression is a tool which can be utilised to analyse panel data. There are three models in panel regression, namely Common Effect Model (CEM), Fixed Effect Model (FEM) and Random Effect Model (REM). The models will be chosen based on results of Chow Test, Hausman Test and Lagrange Multiplier Test. This research analyses palm oil about production, export, and government consumption to five district GDP are in West Kalimantan, namely Sanggau, Sintang, Sambas, Ketapang and Bengkayang by panel regression. Based on the results of analyses, it concluded that REM, which adjusted-determination-coefficient is 0,823, is the best model in this case. Also, according to the result, only Export and Government Consumption that influence GDP of the districts.
Carreon, Leah Y; Bratcher, Kelly R; Das, Nandita; Nienhuis, Jacob B; Glassman, Steven D
2014-09-01
The Neck Disability Index (NDI) and numeric rating scales (0 to 10) for neck pain and arm pain are widely used cervical spine disease-specific measures. Recent studies have shown that there is a strong relationship between the SF-6D and the NDI such that using a simple linear regression allows for the estimation of an SF-6D value from the NDI alone. Due to ease of administration and scoring, the EQ-5D is increasingly being used as a measure of utility in the clinical setting. The purpose of this study is to determine if the EQ-5D values can be estimated from commonly available cervical spine disease-specific health-related quality of life measures, much like the SF-6D. The EQ-5D, NDI, neck pain score, and arm pain score were prospectively collected in 3732 patients who presented to the authors' clinic with degenerative cervical spine disorders. Correlation coefficients for paired observations from multiple time points between the NDI, neck pain and arm pain scores, and EQ-5D were determined. Regression models were built to estimate the EQ-5D values from the NDI, neck pain, and arm pain scores. The mean age of the 3732 patients was 53.3 ± 12.2 years, and 43% were male. Correlations between the EQ-5D and the NDI, neck pain score, and arm pain score were statistically significant (p < 0.0001), with correlation coefficients of -0.77, -0.62, and -0.50, respectively. The regression equation 0.98947 + (-0.00705 × NDI) + (-0.00875 × arm pain score) + (-0.00877 × neck pain score) to predict EQ-5D had an R-square of 0.62 and a root mean square error (RMSE) of 0.146. The model using NDI alone had an R-square of 0.59 and a RMSE of 0.150. The model using the individual NDI items had an R-square of 0.46 and an RMSE of 0.172. The correlation coefficient between the observed and estimated EQ-5D scores was 0.79. There was no statistically significant difference between the actual EQ-5D score (0.603 ± 0.235) and the estimated EQ-5D score (0.603 ± 0.185) using the NDI, neck pain score, and arm pain score regression model. However, rounding off the coefficients to fewer than 5 decimal places produced less accurate results. The regression model estimating the EQ-5D from the NDI, neck pain score, and arm pain score accounted for 60% of the variability of the EQ-5D with a relatively large RMSE. This regression model may not be sufficient to accurately or reliably estimate actual EQ-5D values.
Impact of multicollinearity on small sample hydrologic regression models
NASA Astrophysics Data System (ADS)
Kroll, Charles N.; Song, Peter
2013-06-01
Often hydrologic regression models are developed with ordinary least squares (OLS) procedures. The use of OLS with highly correlated explanatory variables produces multicollinearity, which creates highly sensitive parameter estimators with inflated variances and improper model selection. It is not clear how to best address multicollinearity in hydrologic regression models. Here a Monte Carlo simulation is developed to compare four techniques to address multicollinearity: OLS, OLS with variance inflation factor screening (VIF), principal component regression (PCR), and partial least squares regression (PLS). The performance of these four techniques was observed for varying sample sizes, correlation coefficients between the explanatory variables, and model error variances consistent with hydrologic regional regression models. The negative effects of multicollinearity are magnified at smaller sample sizes, higher correlations between the variables, and larger model error variances (smaller R2). The Monte Carlo simulation indicates that if the true model is known, multicollinearity is present, and the estimation and statistical testing of regression parameters are of interest, then PCR or PLS should be employed. If the model is unknown, or if the interest is solely on model predictions, is it recommended that OLS be employed since using more complicated techniques did not produce any improvement in model performance. A leave-one-out cross-validation case study was also performed using low-streamflow data sets from the eastern United States. Results indicate that OLS with stepwise selection generally produces models across study regions with varying levels of multicollinearity that are as good as biased regression techniques such as PCR and PLS.
Wang, Shuang; Jiang, Xiaoqian; Wu, Yuan; Cui, Lijuan; Cheng, Samuel; Ohno-Machado, Lucila
2013-01-01
We developed an EXpectation Propagation LOgistic REgRession (EXPLORER) model for distributed privacy-preserving online learning. The proposed framework provides a high level guarantee for protecting sensitive information, since the information exchanged between the server and the client is the encrypted posterior distribution of coefficients. Through experimental results, EXPLORER shows the same performance (e.g., discrimination, calibration, feature selection etc.) as the traditional frequentist Logistic Regression model, but provides more flexibility in model updating. That is, EXPLORER can be updated one point at a time rather than having to retrain the entire data set when new observations are recorded. The proposed EXPLORER supports asynchronized communication, which relieves the participants from coordinating with one another, and prevents service breakdown from the absence of participants or interrupted communications. PMID:23562651
Montesinos-López, Abelardo; Montesinos-López, Osval A; Cuevas, Jaime; Mata-López, Walter A; Burgueño, Juan; Mondal, Sushismita; Huerta, Julio; Singh, Ravi; Autrique, Enrique; González-Pérez, Lorena; Crossa, José
2017-01-01
Modern agriculture uses hyperspectral cameras that provide hundreds of reflectance data at discrete narrow bands in many environments. These bands often cover the whole visible light spectrum and part of the infrared and ultraviolet light spectra. With the bands, vegetation indices are constructed for predicting agronomically important traits such as grain yield and biomass. However, since vegetation indices only use some wavelengths (referred to as bands), we propose using all bands simultaneously as predictor variables for the primary trait grain yield; results of several multi-environment maize (Aguate et al. in Crop Sci 57(5):1-8, 2017) and wheat (Montesinos-López et al. in Plant Methods 13(4):1-23, 2017) breeding trials indicated that using all bands produced better prediction accuracy than vegetation indices. However, until now, these prediction models have not accounted for the effects of genotype × environment (G × E) and band × environment (B × E) interactions incorporating genomic or pedigree information. In this study, we propose Bayesian functional regression models that take into account all available bands, genomic or pedigree information, the main effects of lines and environments, as well as G × E and B × E interaction effects. The data set used is comprised of 976 wheat lines evaluated for grain yield in three environments (Drought, Irrigated and Reduced Irrigation). The reflectance data were measured in 250 discrete narrow bands ranging from 392 to 851 nm (nm). The proposed Bayesian functional regression models were implemented using two types of basis: B-splines and Fourier. Results of the proposed Bayesian functional regression models, including all the wavelengths for predicting grain yield, were compared with results from conventional models with and without bands. We observed that the models with B × E interaction terms were the most accurate models, whereas the functional regression models (with B-splines and Fourier basis) and the conventional models performed similarly in terms of prediction accuracy. However, the functional regression models are more parsimonious and computationally more efficient because the number of beta coefficients to be estimated is 21 (number of basis), rather than estimating the 250 regression coefficients for all bands. In this study adding pedigree or genomic information did not increase prediction accuracy.
Heddam, Salim
2014-11-01
The prediction of colored dissolved organic matter (CDOM) using artificial neural network approaches has received little attention in the past few decades. In this study, colored dissolved organic matter (CDOM) was modeled using generalized regression neural network (GRNN) and multiple linear regression (MLR) models as a function of Water temperature (TE), pH, specific conductance (SC), and turbidity (TU). Evaluation of the prediction accuracy of the models is based on the root mean square error (RMSE), mean absolute error (MAE), coefficient of correlation (CC), and Willmott's index of agreement (d). The results indicated that GRNN can be applied successfully for prediction of colored dissolved organic matter (CDOM).
The Study of Rain Specific Attenuation for the Prediction of Satellite Propagation in Malaysia
NASA Astrophysics Data System (ADS)
Mandeep, J. S.; Ng, Y. Y.; Abdullah, H.; Abdullah, M.
2010-06-01
Specific attenuation is the fundamental quantity in the calculation of rain attenuation for terrestrial path and slant paths representing as rain attenuation per unit distance (dB/km). Specific attenuation is an important element in developing the predicted rain attenuation model. This paper deals with the empirical determination of the power law coefficients which allow calculating the specific attenuation in dB/km from the knowledge of the rain rate in mm/h. The main purpose of the paper is to obtain the coefficients of k and α of power law relationship between specific attenuation. Three years (from 1st January 2006 until 31st December 2008) rain gauge and beacon data taken from USM, Nibong Tebal have been used to do the empirical procedure analysis of rain specific attenuation. The data presented are semi-empirical in nature. A year-to-year variation of the coefficients has been indicated and the empirical measured data was compared with ITU-R provided regression coefficient. The result indicated that the USM empirical measured data was significantly vary from ITU-R predicted value. Hence, ITU-R recommendation for regression coefficients of rain specific attenuation is not suitable for predicting rain attenuation at Malaysia.
Regression analysis of sparse asynchronous longitudinal data
Cao, Hongyuan; Zeng, Donglin; Fine, Jason P.
2015-01-01
Summary We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus. PMID:26568699
Overcoming multicollinearity in multiple regression using correlation coefficient
NASA Astrophysics Data System (ADS)
Zainodin, H. J.; Yap, S. J.
2013-09-01
Multicollinearity happens when there are high correlations among independent variables. In this case, it would be difficult to distinguish between the contributions of these independent variables to that of the dependent variable as they may compete to explain much of the similar variance. Besides, the problem of multicollinearity also violates the assumption of multiple regression: that there is no collinearity among the possible independent variables. Thus, an alternative approach is introduced in overcoming the multicollinearity problem in achieving a well represented model eventually. This approach is accomplished by removing the multicollinearity source variables on the basis of the correlation coefficient values based on full correlation matrix. Using the full correlation matrix can facilitate the implementation of Excel function in removing the multicollinearity source variables. It is found that this procedure is easier and time-saving especially when dealing with greater number of independent variables in a model and a large number of all possible models. Hence, in this paper detailed insight of the procedure is shown, compared and implemented.
Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades
Lee, J.K.; Roig, L.C.; Jenter, H.L.; Visser, H.M.
2004-01-01
Hydraulic data collected in a flume fitted with pans of sawgrass were analyzed to determine the vertically averaged drag coefficient as a function of vegetation characteristics. The drag coefficient is required for modeling flow through emergent vegetation at low Reynolds numbers in the Florida Everglades. Parameters of the vegetation, such as the stem population per unit bed area and the average stem/leaf width, were measured for five fixed vegetation layers. The vertically averaged vegetation parameters for each experiment were then computed by weighted average over the submerged portion of the vegetation. Only laminar flow through emergent vegetation was considered, because this is the dominant flow regime of the inland Everglades. A functional form for the vegetation drag coefficient was determined by linear regression of the logarithmic transforms of measured resistance force and Reynolds number. The coefficients of the drag coefficient function were then determined for the Everglades, using extensive flow and vegetation measurements taken in the field. The Everglades data show that the stem spacing and the Reynolds number are important parameters for the determination of vegetation drag coefficient. ?? 2004 Elsevier B.V. All rights reserved.
A critical re-evaluation of the regression model specification in the US D1 EQ-5D value function
2012-01-01
Background The EQ-5D is a generic health-related quality of life instrument (five dimensions with three levels, 243 health states), used extensively in cost-utility/cost-effectiveness analyses. EQ-5D health states are assigned values on a scale anchored in perfect health (1) and death (0). The dominant procedure for defining values for EQ-5D health states involves regression modeling. These regression models have typically included a constant term, interpreted as the utility loss associated with any movement away from perfect health. The authors of the United States EQ-5D valuation study replaced this constant with a variable, D1, which corresponds to the number of impaired dimensions beyond the first. The aim of this study was to illustrate how the use of the D1 variable in place of a constant is problematic. Methods We compared the original D1 regression model with a mathematically equivalent model with a constant term. Comparisons included implications for the magnitude and statistical significance of the coefficients, multicollinearity (variance inflation factors, or VIFs), number of calculation steps needed to determine tariff values, and consequences for tariff interpretation. Results Using the D1 variable in place of a constant shifted all dummy variable coefficients away from zero by the value of the constant, greatly increased the multicollinearity of the model (maximum VIF of 113.2 vs. 21.2), and increased the mean number of calculation steps required to determine health state values. Discussion Using the D1 variable in place of a constant constitutes an unnecessary complication of the model, obscures the fact that at least two of the main effect dummy variables are statistically nonsignificant, and complicates and biases interpretation of the tariff algorithm. PMID:22244261
A critical re-evaluation of the regression model specification in the US D1 EQ-5D value function.
Rand-Hendriksen, Kim; Augestad, Liv A; Dahl, Fredrik A
2012-01-13
The EQ-5D is a generic health-related quality of life instrument (five dimensions with three levels, 243 health states), used extensively in cost-utility/cost-effectiveness analyses. EQ-5D health states are assigned values on a scale anchored in perfect health (1) and death (0).The dominant procedure for defining values for EQ-5D health states involves regression modeling. These regression models have typically included a constant term, interpreted as the utility loss associated with any movement away from perfect health. The authors of the United States EQ-5D valuation study replaced this constant with a variable, D1, which corresponds to the number of impaired dimensions beyond the first. The aim of this study was to illustrate how the use of the D1 variable in place of a constant is problematic. We compared the original D1 regression model with a mathematically equivalent model with a constant term. Comparisons included implications for the magnitude and statistical significance of the coefficients, multicollinearity (variance inflation factors, or VIFs), number of calculation steps needed to determine tariff values, and consequences for tariff interpretation. Using the D1 variable in place of a constant shifted all dummy variable coefficients away from zero by the value of the constant, greatly increased the multicollinearity of the model (maximum VIF of 113.2 vs. 21.2), and increased the mean number of calculation steps required to determine health state values. Using the D1 variable in place of a constant constitutes an unnecessary complication of the model, obscures the fact that at least two of the main effect dummy variables are statistically nonsignificant, and complicates and biases interpretation of the tariff algorithm.
NASA Astrophysics Data System (ADS)
Visser, H.; Molenaar, J.
1995-05-01
The detection of trends in climatological data has become central to the discussion on climate change due to the enhanced greenhouse effect. To prove detection, a method is needed (i) to make inferences on significant rises or declines in trends, (ii) to take into account natural variability in climate series, and (iii) to compare output from GCMs with the trends in observed climate data. To meet these requirements, flexible mathematical tools are needed. A structural time series model is proposed with which a stochastic trend, a deterministic trend, and regression coefficients can be estimated simultaneously. The stochastic trend component is described using the class of ARIMA models. The regression component is assumed to be linear. However, the regression coefficients corresponding with the explanatory variables may be time dependent to validate this assumption. The mathematical technique used to estimate this trend-regression model is the Kaiman filter. The main features of the filter are discussed.Examples of trend estimation are given using annual mean temperatures at a single station in the Netherlands (1706-1990) and annual mean temperatures at Northern Hemisphere land stations (1851-1990). The inclusion of explanatory variables is shown by regressing the latter temperature series on four variables: Southern Oscillation index (SOI), volcanic dust index (VDI), sunspot numbers (SSN), and a simulated temperature signal, induced by increasing greenhouse gases (GHG). In all analyses, the influence of SSN on global temperatures is found to be negligible. The correlations between temperatures and SOI and VDI appear to be negative. For SOI, this correlation is significant, but for VDI it is not, probably because of a lack of volcanic eruptions during the sample period. The relation between temperatures and GHG is positive, which is in agreement with the hypothesis of a warming climate because of increasing levels of greenhouse gases. The prediction performance of the model is rather poor, and possible explanations are discussed.
Lim, Jongguk; Kim, Giyoung; Mo, Changyeun; Kim, Moon S; Chao, Kuanglin; Qin, Jianwei; Fu, Xiaping; Baek, Insuck; Cho, Byoung-Kwan
2016-05-01
Illegal use of nitrogen-rich melamine (C3H6N6) to boost perceived protein content of food products such as milk, infant formula, frozen yogurt, pet food, biscuits, and coffee drinks has caused serious food safety problems. Conventional methods to detect melamine in foods, such as Enzyme-linked immunosorbent assay (ELISA), High-performance liquid chromatography (HPLC), and Gas chromatography-mass spectrometry (GC-MS), are sensitive but they are time-consuming, expensive, and labor-intensive. In this research, near-infrared (NIR) hyperspectral imaging technique combined with regression coefficient of partial least squares regression (PLSR) model was used to detect melamine particles in milk powders easily and quickly. NIR hyperspectral reflectance imaging data in the spectral range of 990-1700nm were acquired from melamine-milk powder mixture samples prepared at various concentrations ranging from 0.02% to 1%. PLSR models were developed to correlate the spectral data (independent variables) with melamine concentration (dependent variables) in melamine-milk powder mixture samples. PLSR models applying various pretreatment methods were used to reconstruct the two-dimensional PLS images. PLS images were converted to the binary images to detect the suspected melamine pixels in milk powder. As the melamine concentration was increased, the numbers of suspected melamine pixels of binary images were also increased. These results suggested that NIR hyperspectral imaging technique and the PLSR model can be regarded as an effective tool to detect melamine particles in milk powders. Copyright © 2016 Elsevier B.V. All rights reserved.
Ito, Yukiko; Hattori, Reiko; Mase, Hiroki; Watanabe, Masako; Shiotani, Itaru
2008-12-01
Pollen information is indispensable for allergic individuals and clinicians. This study aimed to develop forecasting models for the total annual count of airborne pollen grains based on data monitored over the last 20 years at the Mie Chuo Medical Center, Tsu, Mie, Japan. Airborne pollen grains were collected using a Durham sampler. Total annual pollen count and pollen count from October to December (OD pollen count) of the previous year were transformed to logarithms. Regression analysis of the total pollen count was performed using variables such as the OD pollen count and the maximum temperature for mid-July of the previous year. Time series analysis revealed an alternate rhythm of the series of total pollen count. The alternate rhythm consisted of a cyclic alternation of an "on" year (high pollen count) and an "off" year (low pollen count). This rhythm was used as a dummy variable in regression equations. Of the three models involving the OD pollen count, a multiple regression equation that included the alternate rhythm variable and the interaction of this rhythm with OD pollen count showed a high coefficient of determination (0.844). Of the three models involving the maximum temperature for mid-July, those including the alternate rhythm variable and the interaction of this rhythm with maximum temperature had the highest coefficient of determination (0.925). An alternate pollen dispersal rhythm represented by a dummy variable in the multiple regression analysis plays a key role in improving forecasting models for the total annual sugi pollen count.
Wrong Signs in Regression Coefficients
NASA Technical Reports Server (NTRS)
McGee, Holly
1999-01-01
When using parametric cost estimation, it is important to note the possibility of the regression coefficients having the wrong sign. A wrong sign is defined as a sign on the regression coefficient opposite to the researcher's intuition and experience. Some possible causes for the wrong sign discussed in this paper are a small range of x's, leverage points, missing variables, multicollinearity, and computational error. Additionally, techniques for determining the cause of the wrong sign are given.
Miller, Justin B; Axelrod, Bradley N; Schutte, Christian
2012-01-01
The recent release of the Wechsler Memory Scale Fourth Edition contains many improvements from a theoretical and administration perspective, including demographic corrections using the Advanced Clinical Solutions. Although the administration time has been reduced from previous versions, a shortened version may be desirable in certain situations given practical time limitations in clinical practice. The current study evaluated two- and three-subtest estimations of demographically corrected Immediate and Delayed Memory index scores using both simple arithmetic prorating and regression models. All estimated values were significantly associated with observed index scores. Use of Lin's Concordance Correlation Coefficient as a measure of agreement showed a high degree of precision and virtually zero bias in the models, although the regression models showed a stronger association than prorated models. Regression-based models proved to be more accurate than prorated estimates with less dispersion around observed values, particularly when using three subtest regression models. Overall, the present research shows strong support for estimating demographically corrected index scores on the WMS-IV in clinical practice with an adequate performance using arithmetically prorated models and a stronger performance using regression models to predict index scores.
NASA Astrophysics Data System (ADS)
Sanchez Rivera, Yamil
The purpose of this study is to add to what we know about the affective domain and to create a valid instrument for future studies. The Motivation to Learn Science (MLS) Inventory is based on Krathwohl's Taxonomy of Affective Behaviors (Krathwohl et al., 1964). The results of the Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA) demonstrated that the MLS Inventory is a valid and reliable instrument. Therefore, the MLS Inventory is a uni-dimensional instrument composed of 9 items with convergent validity (no divergence). The instrument had a high Chronbach Alpha value of .898 during the EFA analysis and .919 with the CFA analysis. Factor loadings on the 9 items ranged from .617 to .800. Standardized regression weights ranged from .639 to .835 in the CFA analysis. Various indices (RMSEA = .033; NFI = .987; GFI = .985; CFI = 1.000) demonstrated a good fitness of the proposed model. Hierarchical linear modeling was used to statistical analyze data where students' motivation to learn science scores (level-1) were nested within teachers (level-2). The analysis was geared toward identifying if teachers' use of affective behavior (a level-2 classroom variable) was significantly related with students' MLS scores (level-1 criterion variable). Model testing proceeded in three phases: intercept-only model, means-as-outcome model, and a random-regression coefficient model. The intercept-only model revealed an intra-class correlation coefficient of .224 with an estimated reliability of .726. Therefore, data suggested that only 22.4% of the variance in MLS scores is between-classes and the remaining 77.6% is at the student-level. Due to the significant variance in MLS scores, X2(62.756, p<.0001), teachers' TAB scores were added as a level-2 predictor. The regression coefficient was non-significant (p>.05). Therefore, the teachers' self-reported use of affective behaviors was not a significant predictor of students' motivation to learn science.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Wiswadarma, Aditya; Hase, Yota; Tanaka, Noriyuki; Maeda, Takaaki; Niizeki, Kyuichi; Aizu, Yoshihisa
2011-08-01
In order to visualize melanin and blood concentrations and oxygen saturation in human skin tissue, a simple imaging technique based on multispectral diffuse reflectance images acquired at six wavelengths (500, 520, 540, 560, 580 and 600nm) was developed. The technique utilizes multiple regression analysis aided by Monte Carlo simulation for diffuse reflectance spectra. Using the absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are deduced numerically in advance, while oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments with human skin of the human hand during upper limb occlusion and of the inner forearm exposed to UV irradiation demonstrated the ability of the method to evaluate physiological reactions of human skin tissue.
Temperature-viscosity models reassessed.
Peleg, Micha
2017-05-04
The temperature effect on viscosity of liquid and semi-liquid foods has been traditionally described by the Arrhenius equation, a few other mathematical models, and more recently by the WLF and VTF (or VFT) equations. The essence of the Arrhenius equation is that the viscosity is proportional to the absolute temperature's reciprocal and governed by a single parameter, namely, the energy of activation. However, if the absolute temperature in K in the Arrhenius equation is replaced by T + b where both T and the adjustable b are in °C, the result is a two-parameter model, which has superior fit to experimental viscosity-temperature data. This modified version of the Arrhenius equation is also mathematically equal to the WLF and VTF equations, which are known to be equal to each other. Thus, despite their dissimilar appearances all three equations are essentially the same model, and when used to fit experimental temperature-viscosity data render exactly the same very high regression coefficient. It is shown that three new hybrid two-parameter mathematical models, whose formulation bears little resemblance to any of the conventional models, can also have excellent fit with r 2 ∼ 1. This is demonstrated by comparing the various models' regression coefficients to published viscosity-temperature relationships of 40% sucrose solution, soybean oil, and 70°Bx pear juice concentrate at different temperature ranges. Also compared are reconstructed temperature-viscosity curves using parameters calculated directly from 2 or 3 data points and fitted curves obtained by nonlinear regression using a larger number of experimental viscosity measurements.
The Regionalization of National-Scale SPARROW Models for Stream Nutrients
Schwarz, G.E.; Alexander, R.B.; Smith, R.A.; Preston, S.D.
2011-01-01
This analysis modifies the parsimonious specification of recently published total nitrogen (TN) and total phosphorus (TP) national-scale SPAtially Referenced Regressions On Watershed attributes models to allow each model coefficient to vary geographically among three major river basins of the conterminous United States. Regionalization of the national models reduces the standard errors in the prediction of TN and TP loads, expressed as a percentage of the predicted load, by about 6 and 7%. We develop and apply a method for combining national-scale and regional-scale information to estimate a hybrid model that imposes cross-region constraints that limit regional variation in model coefficients, effectively reducing the number of free model parameters as compared to a collection of independent regional models. The hybrid TN and TP regional models have improved model fit relative to the respective national models, reducing the standard error in the prediction of loads, expressed as a percentage of load, by about 5 and 4%. Only 19% of the TN hybrid model coefficients and just 2% of the TP hybrid model coefficients show evidence of substantial regional specificity (more than ??100% deviation from the national model estimate). The hybrid models have much greater precision in the estimated coefficients than do the unconstrained regional models, demonstrating the efficacy of pooling information across regions to improve regional models. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Ben Shabat, Yael; Shitzer, Avraham
2012-07-01
Facial heat exchange convection coefficients were estimated from experimental data in cold and windy ambient conditions applicable to wind chill calculations. Measured facial temperature datasets, that were made available to this study, originated from 3 separate studies involving 18 male and 6 female subjects. Most of these data were for a -10°C ambient environment and wind speeds in the range of 0.2 to 6 m s-1. Additional single experiments were for -5°C, 0°C and 10°C environments and wind speeds in the same range. Convection coefficients were estimated for all these conditions by means of a numerical facial heat exchange model, applying properties of biological tissues and a typical facial diameter of 0.18 m. Estimation was performed by adjusting the guessed convection coefficients in the computed facial temperatures, while comparing them to measured data, to obtain a satisfactory fit ( r 2 > 0.98, in most cases). In one of the studies, heat flux meters were additionally used. Convection coefficients derived from these meters closely approached the estimated values for only the male subjects. They differed significantly, by about 50%, when compared to the estimated female subjects' data. Regression analysis was performed for just the -10°C ambient temperature, and the range of experimental wind speeds, due to the limited availability of data for other ambient temperatures. The regressed equation was assumed in the form of the equation underlying the "new" wind chill chart. Regressed convection coefficients, which closely duplicated the measured data, were consistently higher than those calculated by this equation, except for one single case. The estimated and currently used convection coefficients are shown to diverge exponentially from each other, as wind speed increases. This finding casts considerable doubts on the validity of the convection coefficients that are used in the computation of the "new" wind chill chart and their applicability to humans in cold and windy environments.
Ben Shabat, Yael; Shitzer, Avraham
2012-07-01
Facial heat exchange convection coefficients were estimated from experimental data in cold and windy ambient conditions applicable to wind chill calculations. Measured facial temperature datasets, that were made available to this study, originated from 3 separate studies involving 18 male and 6 female subjects. Most of these data were for a -10°C ambient environment and wind speeds in the range of 0.2 to 6 m s(-1). Additional single experiments were for -5°C, 0°C and 10°C environments and wind speeds in the same range. Convection coefficients were estimated for all these conditions by means of a numerical facial heat exchange model, applying properties of biological tissues and a typical facial diameter of 0.18 m. Estimation was performed by adjusting the guessed convection coefficients in the computed facial temperatures, while comparing them to measured data, to obtain a satisfactory fit (r(2) > 0.98, in most cases). In one of the studies, heat flux meters were additionally used. Convection coefficients derived from these meters closely approached the estimated values for only the male subjects. They differed significantly, by about 50%, when compared to the estimated female subjects' data. Regression analysis was performed for just the -10°C ambient temperature, and the range of experimental wind speeds, due to the limited availability of data for other ambient temperatures. The regressed equation was assumed in the form of the equation underlying the "new" wind chill chart. Regressed convection coefficients, which closely duplicated the measured data, were consistently higher than those calculated by this equation, except for one single case. The estimated and currently used convection coefficients are shown to diverge exponentially from each other, as wind speed increases. This finding casts considerable doubts on the validity of the convection coefficients that are used in the computation of the "new" wind chill chart and their applicability to humans in cold and windy environments.
Simulation of land use change in the three gorges reservoir area based on CART-CA
NASA Astrophysics Data System (ADS)
Yuan, Min
2018-05-01
This study proposes a new method to simulate spatiotemporal complex multiple land uses by using classification and regression tree algorithm (CART) based CA model. In this model, we use classification and regression tree algorithm to calculate land class conversion probability, and combine neighborhood factor, random factor to extract cellular transformation rules. The overall Kappa coefficient is 0.8014 and the overall accuracy is 0.8821 in the land dynamic simulation results of the three gorges reservoir area from 2000 to 2010, and the simulation results are satisfactory.
Space shuttle propulsion parameter estimation using optional estimation techniques
NASA Technical Reports Server (NTRS)
1983-01-01
A regression analyses on tabular aerodynamic data provided. A representative aerodynamic model for coefficient estimation. It also reduced the storage requirements for the "normal' model used to check out the estimation algorithms. The results of the regression analyses are presented. The computer routines for the filter portion of the estimation algorithm and the :"bringing-up' of the SRB predictive program on the computer was developed. For the filter program, approximately 54 routines were developed. The routines were highly subsegmented to facilitate overlaying program segments within the partitioned storage space on the computer.
Belief in complementary and alternative medicine is related to age and paranormal beliefs in adults.
Van den Bulck, Jan; Custers, Kathleen
2010-04-01
The use of complementary and alternative medicine (CAM) is widespread, even among people who use conventional medicine. Positive beliefs about CAM are common among physicians and medical students. Little is known about the beliefs regarding CAM among the general public. Among science students, belief in CAM was predicted by belief in the paranormal. In a cross-sectional study, 712 randomly selected adults (>18 years old) responded to the CAM Health Belief Questionnaire (CHBQ) and a paranormal beliefs scale. CAM beliefs were very prevalent in this sample of adult Flemish men and women. Zero-order correlations indicated that belief in CAM was associated with age (r = 0.173 P < 0.001) level of education (r = -0.079 P = 0.039) social desirability (r = -0.119 P = 0.002) and paranormal belief (r = 0.365 P < 0.001). In a multivariate model, two variables predicted CAM beliefs. Support for CAM increased with age (regression coefficient: 0.01; 95% confidence interval (CI): 0.006 to 0.014), but the strongest relationship existed between support for CAM and beliefs in the paranormal. Paranormal beliefs accounted for 14% of the variance of the CAM beliefs (regression coefficient: 0.376; 95%: CI 0.30-0.44). The level of education (regression coefficient: 0.06; 95% CI: -0.014-0.129) and social desirability (regression coefficient: -0.023; 95% CI: -0.048-0.026) did not make a significant contribution to the explained variance (<0.1%, P = 0.867). Support of CAM was very prevalent in this Flemish adult population. CAM beliefs were strongly associated with paranormal beliefs.
Preliminary Survey on TRY Forest Traits and Growth Index Relations - New Challenges
NASA Astrophysics Data System (ADS)
Lyubenova, Mariyana; Kattge, Jens; van Bodegom, Peter; Chikalanov, Alexandre; Popova, Silvia; Zlateva, Plamena; Peteva, Simona
2016-04-01
Forest ecosystems provide critical ecosystem goods and services, including food, fodder, water, shelter, nutrient cycling, and cultural and recreational value. Forests also store carbon, provide habitat for a wide range of species and help alleviate land degradation and desertification. Thus they have a potentially significant role to play in climate change adaptation planning through maintaining ecosystem services and providing livelihood options. Therefore the study of forest traits is such an important issue not just for individual countries but for the planet as a whole. We need to know what functional relations between forest traits exactly can express TRY data base and haw it will be significant for the global modeling and IPBES. The study of the biodiversity characteristics at all levels and functional links between them is extremely important for the selection of key indicators for assessing biodiversity and ecosystem services for sustainable natural capital control. By comparing the available information in tree data bases: TRY, ITR (International Tree Ring) and SP-PAM the 42 tree species are selected for the traits analyses. The dependence between location characteristics (latitude, longitude, altitude, annual precipitation, annual temperature and soil type) and forest traits (specific leaf area, leaf weight ratio, wood density and growth index) is studied by by multiply regression analyses (RDA) using the statistical software package Canoco 4.5. The Pearson correlation coefficient (measure of linear correlation), Kendal rank correlation coefficient (non parametric measure of statistical dependence) and Spearman correlation coefficient (monotonic function relationship between two variables) are calculated for each pair of variables (indexes) and species. After analysis of above mentioned correlation coefficients the dimensional linear regression models, multidimensional linear and nonlinear regression models and multidimensional neural networks models are built. The strongest dependence between It and WD was obtained. The research will support the work on: Strategic Plan for Biodiversity 2011-2020, modelling and implementation of ecosystem-based approaches to climate change adaptation and disaster risk reduction. Key words: Specific leaf area (SLA), Leaf weight ratio (LWR), Wood density (WD), Growth index (It)
Automated time series forecasting for biosurveillance.
Burkom, Howard S; Murphy, Sean Patrick; Shmueli, Galit
2007-09-30
For robust detection performance, traditional control chart monitoring for biosurveillance is based on input data free of trends, day-of-week effects, and other systematic behaviour. Time series forecasting methods may be used to remove this behaviour by subtracting forecasts from observations to form residuals for algorithmic input. We describe three forecast methods and compare their predictive accuracy on each of 16 authentic syndromic data streams. The methods are (1) a non-adaptive regression model using a long historical baseline, (2) an adaptive regression model with a shorter, sliding baseline, and (3) the Holt-Winters method for generalized exponential smoothing. Criteria for comparing the forecasts were the root-mean-square error, the median absolute per cent error (MedAPE), and the median absolute deviation. The median-based criteria showed best overall performance for the Holt-Winters method. The MedAPE measures over the 16 test series averaged 16.5, 11.6, and 9.7 for the non-adaptive regression, adaptive regression, and Holt-Winters methods, respectively. The non-adaptive regression forecasts were degraded by changes in the data behaviour in the fixed baseline period used to compute model coefficients. The mean-based criterion was less conclusive because of the effects of poor forecasts on a small number of calendar holidays. The Holt-Winters method was also most effective at removing serial autocorrelation, with most 1-day-lag autocorrelation coefficients below 0.15. The forecast methods were compared without tuning them to the behaviour of individual series. We achieved improved predictions with such tuning of the Holt-Winters method, but practical use of such improvements for routine surveillance will require reliable data classification methods.
Weakly Informative Prior for Point Estimation of Covariance Matrices in Hierarchical Models
ERIC Educational Resources Information Center
Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent
2015-01-01
When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix (S) of group-level varying coefficients are often degenerate. One can do better, even from…
Influence of droplet spacing on drag coefficient in nonevaporating, monodisperse streams
NASA Astrophysics Data System (ADS)
Mulholland, J. A.; Srivastava, R. K.; Wendt, J. O. L.
1988-10-01
Trajectory measurements on single, monodisperse, nonevaporating droplet streams whose droplet size, velocity, and spacing were varied to yield initial Re numbers in the 90-290 range are presently used to ascertain the influence of droplet spacing on the drag coefficient of individual drops injected into a quiescent environment. A trajectory model containing the local drag coefficient was fitted to the experimental data by a nonlinear regression; over 40 additional trajectories were predicted with acceptable accuracy. This formulation will aid the computation of waste-droplet drag in flames for improved combustion-generated pollutant predictions.
Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; ...
2015-12-04
Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalizedmore » linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.« less
Soyiri, Ireneous N; Reidpath, Daniel D
2013-01-01
Forecasting higher than expected numbers of health events provides potentially valuable insights in its own right, and may contribute to health services management and syndromic surveillance. This study investigates the use of quantile regression to predict higher than expected respiratory deaths. Data taken from 70,830 deaths occurring in New York were used. Temporal, weather and air quality measures were fitted using quantile regression at the 90th-percentile with half the data (in-sample). Four QR models were fitted: an unconditional model predicting the 90th-percentile of deaths (Model 1), a seasonal/temporal (Model 2), a seasonal, temporal plus lags of weather and air quality (Model 3), and a seasonal, temporal model with 7-day moving averages of weather and air quality. Models were cross-validated with the out of sample data. Performance was measured as proportionate reduction in weighted sum of absolute deviations by a conditional, over unconditional models; i.e., the coefficient of determination (R1). The coefficient of determination showed an improvement over the unconditional model between 0.16 and 0.19. The greatest improvement in predictive and forecasting accuracy of daily mortality was associated with the inclusion of seasonal and temporal predictors (Model 2). No gains were made in the predictive models with the addition of weather and air quality predictors (Models 3 and 4). However, forecasting models that included weather and air quality predictors performed slightly better than the seasonal and temporal model alone (i.e., Model 3 > Model 4 > Model 2) This study provided a new approach to predict higher than expected numbers of respiratory related-deaths. The approach, while promising, has limitations and should be treated at this stage as a proof of concept.
Soyiri, Ireneous N.; Reidpath, Daniel D.
2013-01-01
Forecasting higher than expected numbers of health events provides potentially valuable insights in its own right, and may contribute to health services management and syndromic surveillance. This study investigates the use of quantile regression to predict higher than expected respiratory deaths. Data taken from 70,830 deaths occurring in New York were used. Temporal, weather and air quality measures were fitted using quantile regression at the 90th-percentile with half the data (in-sample). Four QR models were fitted: an unconditional model predicting the 90th-percentile of deaths (Model 1), a seasonal / temporal (Model 2), a seasonal, temporal plus lags of weather and air quality (Model 3), and a seasonal, temporal model with 7-day moving averages of weather and air quality. Models were cross-validated with the out of sample data. Performance was measured as proportionate reduction in weighted sum of absolute deviations by a conditional, over unconditional models; i.e., the coefficient of determination (R1). The coefficient of determination showed an improvement over the unconditional model between 0.16 and 0.19. The greatest improvement in predictive and forecasting accuracy of daily mortality was associated with the inclusion of seasonal and temporal predictors (Model 2). No gains were made in the predictive models with the addition of weather and air quality predictors (Models 3 and 4). However, forecasting models that included weather and air quality predictors performed slightly better than the seasonal and temporal model alone (i.e., Model 3 > Model 4 > Model 2) This study provided a new approach to predict higher than expected numbers of respiratory related-deaths. The approach, while promising, has limitations and should be treated at this stage as a proof of concept. PMID:24147122
Adjusted variable plots for Cox's proportional hazards regression model.
Hall, C B; Zeger, S L; Bandeen-Roche, K J
1996-01-01
Adjusted variable plots are useful in linear regression for outlier detection and for qualitative evaluation of the fit of a model. In this paper, we extend adjusted variable plots to Cox's proportional hazards model for possibly censored survival data. We propose three different plots: a risk level adjusted variable (RLAV) plot in which each observation in each risk set appears, a subject level adjusted variable (SLAV) plot in which each subject is represented by one point, and an event level adjusted variable (ELAV) plot in which the entire risk set at each failure event is represented by a single point. The latter two plots are derived from the RLAV by combining multiple points. In each point, the regression coefficient and standard error from a Cox proportional hazards regression is obtained by a simple linear regression through the origin fit to the coordinates of the pictured points. The plots are illustrated with a reanalysis of a dataset of 65 patients with multiple myeloma.
Bootstrap evaluation of a young Douglas-fir height growth model for the Pacific Northwest
Nicholas R. Vaughn; Eric C. Turnblom; Martin W. Ritchie
2010-01-01
We evaluated the stability of a complex regression model developed to predict the annual height growth of young Douglas-fir. This model is highly nonlinear and is fit in an iterative manner for annual growth coefficients from data with multiple periodic remeasurement intervals. The traditional methods for such a sensitivity analysis either involve laborious math or...
Chad Babcock; Andrew O. Finley; John B. Bradford; Randy Kolka; Richard Birdsey; Michael G. Ryan
2015-01-01
Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both...
Wang, Shuang; Jiang, Xiaoqian; Wu, Yuan; Cui, Lijuan; Cheng, Samuel; Ohno-Machado, Lucila
2013-06-01
We developed an EXpectation Propagation LOgistic REgRession (EXPLORER) model for distributed privacy-preserving online learning. The proposed framework provides a high level guarantee for protecting sensitive information, since the information exchanged between the server and the client is the encrypted posterior distribution of coefficients. Through experimental results, EXPLORER shows the same performance (e.g., discrimination, calibration, feature selection, etc.) as the traditional frequentist logistic regression model, but provides more flexibility in model updating. That is, EXPLORER can be updated one point at a time rather than having to retrain the entire data set when new observations are recorded. The proposed EXPLORER supports asynchronized communication, which relieves the participants from coordinating with one another, and prevents service breakdown from the absence of participants or interrupted communications. Copyright © 2013 Elsevier Inc. All rights reserved.
Random effects coefficient of determination for mixed and meta-analysis models
Demidenko, Eugene; Sargent, James; Onega, Tracy
2011-01-01
The key feature of a mixed model is the presence of random effects. We have developed a coefficient, called the random effects coefficient of determination, Rr2, that estimates the proportion of the conditional variance of the dependent variable explained by random effects. This coefficient takes values from 0 to 1 and indicates how strong the random effects are. The difference from the earlier suggested fixed effects coefficient of determination is emphasized. If Rr2 is close to 0, there is weak support for random effects in the model because the reduction of the variance of the dependent variable due to random effects is small; consequently, random effects may be ignored and the model simplifies to standard linear regression. The value of Rr2 apart from 0 indicates the evidence of the variance reduction in support of the mixed model. If random effects coefficient of determination is close to 1 the variance of random effects is very large and random effects turn into free fixed effects—the model can be estimated using the dummy variable approach. We derive explicit formulas for Rr2 in three special cases: the random intercept model, the growth curve model, and meta-analysis model. Theoretical results are illustrated with three mixed model examples: (1) travel time to the nearest cancer center for women with breast cancer in the U.S., (2) cumulative time watching alcohol related scenes in movies among young U.S. teens, as a risk factor for early drinking onset, and (3) the classic example of the meta-analysis model for combination of 13 studies on tuberculosis vaccine. PMID:23750070
A regularization corrected score method for nonlinear regression models with covariate error.
Zucker, David M; Gorfine, Malka; Li, Yi; Tadesse, Mahlet G; Spiegelman, Donna
2013-03-01
Many regression analyses involve explanatory variables that are measured with error, and failing to account for this error is well known to lead to biased point and interval estimates of the regression coefficients. We present here a new general method for adjusting for covariate error. Our method consists of an approximate version of the Stefanski-Nakamura corrected score approach, using the method of regularization to obtain an approximate solution of the relevant integral equation. We develop the theory in the setting of classical likelihood models; this setting covers, for example, linear regression, nonlinear regression, logistic regression, and Poisson regression. The method is extremely general in terms of the types of measurement error models covered, and is a functional method in the sense of not involving assumptions on the distribution of the true covariate. We discuss the theoretical properties of the method and present simulation results in the logistic regression setting (univariate and multivariate). For illustration, we apply the method to data from the Harvard Nurses' Health Study concerning the relationship between physical activity and breast cancer mortality in the period following a diagnosis of breast cancer. Copyright © 2013, The International Biometric Society.
Semisupervised Clustering by Iterative Partition and Regression with Neuroscience Applications
Qian, Guoqi; Wu, Yuehua; Ferrari, Davide; Qiao, Puxue; Hollande, Frédéric
2016-01-01
Regression clustering is a mixture of unsupervised and supervised statistical learning and data mining method which is found in a wide range of applications including artificial intelligence and neuroscience. It performs unsupervised learning when it clusters the data according to their respective unobserved regression hyperplanes. The method also performs supervised learning when it fits regression hyperplanes to the corresponding data clusters. Applying regression clustering in practice requires means of determining the underlying number of clusters in the data, finding the cluster label of each data point, and estimating the regression coefficients of the model. In this paper, we review the estimation and selection issues in regression clustering with regard to the least squares and robust statistical methods. We also provide a model selection based technique to determine the number of regression clusters underlying the data. We further develop a computing procedure for regression clustering estimation and selection. Finally, simulation studies are presented for assessing the procedure, together with analyzing a real data set on RGB cell marking in neuroscience to illustrate and interpret the method. PMID:27212939
Sullivan, Sarah; Lewis, Glyn; Mohr, Christine; Herzig, Daniela; Corcoran, Rhiannon; Drake, Richard; Evans, Jonathan
2014-01-01
There is some cross-sectional evidence that theory of mind ability is associated with social functioning in those with psychosis but the direction of this relationship is unknown. This study investigates the longitudinal association between both theory of mind and psychotic symptoms and social functioning outcome in first-episode psychosis. Fifty-four people with first-episode psychosis were followed up at 6 and 12 months. Random effects regression models were used to estimate the stability of theory of mind over time and the association between baseline theory of mind and psychotic symptoms and social functioning outcome. Neither baseline theory of mind ability (regression coefficients: Hinting test 1.07 95% CI -0.74, 2.88; Visual Cartoon test -2.91 95% CI -7.32, 1.51) nor baseline symptoms (regression coefficients: positive symptoms -0.04 95% CI -1.24, 1.16; selected negative symptoms -0.15 95% CI -2.63, 2.32) were associated with social functioning outcome. There was evidence that theory of mind ability was stable over time, (regression coefficients: Hinting test 5.92 95% CI -6.66, 8.92; Visual Cartoon test score 0.13 95% CI -0.17, 0.44). Neither baseline theory of mind ability nor psychotic symptoms are associated with social functioning outcome. Further longitudinal work is needed to understand the origin of social functioning deficits in psychosis.
Feng, Yao-Ze; Elmasry, Gamal; Sun, Da-Wen; Scannell, Amalia G M; Walsh, Des; Morcy, Noha
2013-06-01
Bacterial pathogens are the main culprits for outbreaks of food-borne illnesses. This study aimed to use the hyperspectral imaging technique as a non-destructive tool for quantitative and direct determination of Enterobacteriaceae loads on chicken fillets. Partial least squares regression (PLSR) models were established and the best model using full wavelengths was obtained in the spectral range 930-1450 nm with coefficients of determination R(2)≥ 0.82 and root mean squared errors (RMSEs) ≤ 0.47 log(10)CFUg(-1). In further development of simplified models, second derivative spectra and weighted PLS regression coefficients (BW) were utilised to select important wavelengths. However, the three wavelengths (930, 1121 and 1345 nm) selected from BW were competent and more preferred for predicting Enterobacteriaceae loads with R(2) of 0.89, 0.86 and 0.87 and RMSEs of 0.33, 0.40 and 0.45 log(10)CFUg(-1) for calibration, cross-validation and prediction, respectively. Besides, the constructed prediction map provided the distribution of Enterobacteriaceae bacteria on chicken fillets, which cannot be achieved by conventional methods. It was demonstrated that hyperspectral imaging is a potential tool for determining food sanitation and detecting bacterial pathogens on food matrix without using complicated laboratory regimes. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Regression Framework for Effect Size Assessments in Longitudinal Modeling of Group Differences
Feingold, Alan
2013-01-01
The use of growth modeling analysis (GMA)--particularly multilevel analysis and latent growth modeling--to test the significance of intervention effects has increased exponentially in prevention science, clinical psychology, and psychiatry over the past 15 years. Model-based effect sizes for differences in means between two independent groups in GMA can be expressed in the same metric (Cohen’s d) commonly used in classical analysis and meta-analysis. This article first reviews conceptual issues regarding calculation of d for findings from GMA and then introduces an integrative framework for effect size assessments that subsumes GMA. The new approach uses the structure of the linear regression model, from which effect sizes for findings from diverse cross-sectional and longitudinal analyses can be calculated with familiar statistics, such as the regression coefficient, the standard deviation of the dependent measure, and study duration. PMID:23956615
Chaurasia, Ashok; Harel, Ofer
2015-02-10
Tests for regression coefficients such as global, local, and partial F-tests are common in applied research. In the framework of multiple imputation, there are several papers addressing tests for regression coefficients. However, for simultaneous hypothesis testing, the existing methods are computationally intensive because they involve calculation with vectors and (inversion of) matrices. In this paper, we propose a simple method based on the scalar entity, coefficient of determination, to perform (global, local, and partial) F-tests with multiply imputed data. The proposed method is evaluated using simulated data and applied to suicide prevention data. Copyright © 2014 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Kunkun, E-mail: ktg@illinois.edu; Inria Bordeaux – Sud-Ouest, Team Cardamom, 200 avenue de la Vieille Tour, 33405 Talence; Congedo, Pietro M.
The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable formore » real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.« less
Marginalized zero-inflated negative binomial regression with application to dental caries
Preisser, John S.; Das, Kalyan; Long, D. Leann; Divaris, Kimon
2015-01-01
The zero-inflated negative binomial regression model (ZINB) is often employed in diverse fields such as dentistry, health care utilization, highway safety, and medicine to examine relationships between exposures of interest and overdispersed count outcomes exhibiting many zeros. The regression coefficients of ZINB have latent class interpretations for a susceptible subpopulation at risk for the disease/condition under study with counts generated from a negative binomial distribution and for a non-susceptible subpopulation that provides only zero counts. The ZINB parameters, however, are not well-suited for estimating overall exposure effects, specifically, in quantifying the effect of an explanatory variable in the overall mixture population. In this paper, a marginalized zero-inflated negative binomial regression (MZINB) model for independent responses is proposed to model the population marginal mean count directly, providing straightforward inference for overall exposure effects based on maximum likelihood estimation. Through simulation studies, the finite sample performance of MZINB is compared to marginalized zero-inflated Poisson, Poisson, and negative binomial regression. The MZINB model is applied in the evaluation of a school-based fluoride mouthrinse program on dental caries in 677 children. PMID:26568034
Assessing risk factors for periodontitis using regression
NASA Astrophysics Data System (ADS)
Lobo Pereira, J. A.; Ferreira, Maria Cristina; Oliveira, Teresa
2013-10-01
Multivariate statistical analysis is indispensable to assess the associations and interactions between different factors and the risk of periodontitis. Among others, regression analysis is a statistical technique widely used in healthcare to investigate and model the relationship between variables. In our work we study the impact of socio-demographic, medical and behavioral factors on periodontal health. Using regression, linear and logistic models, we can assess the relevance, as risk factors for periodontitis disease, of the following independent variables (IVs): Age, Gender, Diabetic Status, Education, Smoking status and Plaque Index. The multiple linear regression analysis model was built to evaluate the influence of IVs on mean Attachment Loss (AL). Thus, the regression coefficients along with respective p-values will be obtained as well as the respective p-values from the significance tests. The classification of a case (individual) adopted in the logistic model was the extent of the destruction of periodontal tissues defined by an Attachment Loss greater than or equal to 4 mm in 25% (AL≥4mm/≥25%) of sites surveyed. The association measures include the Odds Ratios together with the correspondent 95% confidence intervals.
Liu, Ruixin; Zhang, Xiaodong; Zhang, Lu; Gao, Xiaojie; Li, Huiling; Shi, Junhan; Li, Xuelin
2014-06-01
The aim of this study was to predict the bitterness intensity of a drug using an electronic tongue (e-tongue). The model drug of berberine hydrochloride was used to establish a bitterness prediction model (BPM), based on the taste evaluation of bitterness intensity by a taste panel, the data provided by the e-tongue and a genetic algorithm-back-propagation neural network (GA-BP) modeling method. The modeling characteristics of the GA-BP were compared with those of multiple linear regression, partial least square regression and BP methods. The determination coefficient of the BPM was 0.99965±0.00004, the root mean square error of cross-validation was 0.1398±0.0488 and the correlation coefficient of the cross-validation between the true and predicted values was 0.9959±0.0027. The model is superior to the other three models based on these indicators. In conclusion, the model established in this study has a high fitting degree and may be used for the bitterness prediction modeling of berberine hydrochloride of different concentrations. The model also provides a reference for the generation of BPMs of other drugs. Additionally, the algorithm of the study is able to conduct a rapid and accurate quantitative analysis of the data provided by the e-tongue.
LIU, RUIXIN; ZHANG, XIAODONG; ZHANG, LU; GAO, XIAOJIE; LI, HUILING; SHI, JUNHAN; LI, XUELIN
2014-01-01
The aim of this study was to predict the bitterness intensity of a drug using an electronic tongue (e-tongue). The model drug of berberine hydrochloride was used to establish a bitterness prediction model (BPM), based on the taste evaluation of bitterness intensity by a taste panel, the data provided by the e-tongue and a genetic algorithm-back-propagation neural network (GA-BP) modeling method. The modeling characteristics of the GA-BP were compared with those of multiple linear regression, partial least square regression and BP methods. The determination coefficient of the BPM was 0.99965±0.00004, the root mean square error of cross-validation was 0.1398±0.0488 and the correlation coefficient of the cross-validation between the true and predicted values was 0.9959±0.0027. The model is superior to the other three models based on these indicators. In conclusion, the model established in this study has a high fitting degree and may be used for the bitterness prediction modeling of berberine hydrochloride of different concentrations. The model also provides a reference for the generation of BPMs of other drugs. Additionally, the algorithm of the study is able to conduct a rapid and accurate quantitative analysis of the data provided by the e-tongue. PMID:24926369
Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat
2015-01-01
Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.
Mager, P P; Rothe, H
1990-10-01
Multicollinearity of physicochemical descriptors leads to serious consequences in quantitative structure-activity relationship (QSAR) analysis, such as incorrect estimators and test statistics of regression coefficients of the ordinary least-squares (OLS) model applied usually to QSARs. Beside the diagnosis of the known simple collinearity, principal component regression analysis (PCRA) also allows the diagnosis of various types of multicollinearity. Only if the absolute values of PCRA estimators are order statistics that decrease monotonically, the effects of multicollinearity can be circumvented. Otherwise, obscure phenomena may be observed, such as good data recognition but low predictive model power of a QSAR model.
Novel risk score of contrast-induced nephropathy after percutaneous coronary intervention.
Ji, Ling; Su, XiaoFeng; Qin, Wei; Mi, XuHua; Liu, Fei; Tang, XiaoHong; Li, Zi; Yang, LiChuan
2015-08-01
Contrast-induced nephropathy (CIN) post-percutaneous coronary intervention (PCI) is a major cause of acute kidney injury. In this study, we established a comprehensive risk score model to assess risk of CIN after PCI procedure, which could be easily used in a clinical environment. A total of 805 PCI patients, divided into analysis cohort (70%) and validation cohort (30%), were enrolled retrospectively in this study. Risk factors for CIN were identified using univariate analysis and multivariate logistic regression in the analysis cohort. Risk score model was developed based on multiple regression coefficients. Sensitivity and specificity of the new risk score system was validated in the validation cohort. Comparisons between the new risk score model and previous reported models were applied. The incidence of post-PCI CIN in the analysis cohort (n = 565) was 12%. Considerably high CIN incidence (50%) was observed in patients with chronic kidney disease (CKD). Age >75, body mass index (BMI) >25, myoglobin level, cardiac function level, hypoalbuminaemia, history of chronic kidney disease (CKD), Intra-aortic balloon pump (IABP) and peripheral vascular disease (PVD) were identified as independent risk factors of post-PCI CIN. A novel risk score model was established using multivariate regression coefficients, which showed highest sensitivity and specificity (0.917, 95%CI 0.877-0.957) compared with previous models. A new post-PCI CIN risk score model was developed based on a retrospective study of 805 patients. Application of this model might be helpful to predict CIN in patients undergoing PCI procedure. © 2015 Asian Pacific Society of Nephrology.
Determining the response of sea level to atmospheric pressure forcing using TOPEX/POSEIDON data
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng; Pihos, Greg
1994-01-01
The static response of sea level to the forcing of atmospheric pressure, the so-called inverted barometer (IB) effect, is investigated using TOPEX/POSEIDON data. This response, characterized by the rise and fall of sea level to compensate for the change of atmospheric pressure at a rate of -1 cm/mbar, is not associated with any ocean currents and hence is normally treated as an error to be removed from sea level observation. Linear regression and spectral transfer function analyses are applied to sea level and pressure to examine the validity of the IB effect. In regions outside the tropics, the regression coefficient is found to be consistently close to the theoretical value except for the regions of western boundary currents, where the mesoscale variability interferes with the IB effect. The spectral transfer function shows near IB response at periods of 30 degrees is -0.84 +/- 0.29 cm/mbar (1 standard deviation). The deviation from = 1 cm /mbar is shown to be caused primarily by the effect of wind forcing on sea level, based on multivariate linear regression model involving both pressure and wind forcing. The regression coefficient for pressure resulting from the multivariate analysis is -0.96 +/- 0.32 cm/mbar. In the tropics the multivariate analysis fails because sea level in the tropics is primarily responding to remote wind forcing. However, after removing from the data the wind-forced sea level estimated by a dynamic model of the tropical Pacific, the pressure regression coefficient improves from -1.22 +/- 0.69 cm/mbar to -0.99 +/- 0.46 cm/mbar, clearly revealing an IB response. The result of the study suggests that with a proper removal of the effect of wind forcing the IB effect is valid in most of the open ocean at periods longer than 20 days and spatial scales larger than 500 km.
Censored quantile regression with recursive partitioning-based weights
Wey, Andrew; Wang, Lan; Rudser, Kyle
2014-01-01
Censored quantile regression provides a useful alternative to the Cox proportional hazards model for analyzing survival data. It directly models the conditional quantile of the survival time and hence is easy to interpret. Moreover, it relaxes the proportionality constraint on the hazard function associated with the popular Cox model and is natural for modeling heterogeneity of the data. Recently, Wang and Wang (2009. Locally weighted censored quantile regression. Journal of the American Statistical Association 103, 1117–1128) proposed a locally weighted censored quantile regression approach that allows for covariate-dependent censoring and is less restrictive than other censored quantile regression methods. However, their kernel smoothing-based weighting scheme requires all covariates to be continuous and encounters practical difficulty with even a moderate number of covariates. We propose a new weighting approach that uses recursive partitioning, e.g. survival trees, that offers greater flexibility in handling covariate-dependent censoring in moderately high dimensions and can incorporate both continuous and discrete covariates. We prove that this new weighting scheme leads to consistent estimation of the quantile regression coefficients and demonstrate its effectiveness via Monte Carlo simulations. We also illustrate the new method using a widely recognized data set from a clinical trial on primary biliary cirrhosis. PMID:23975800
Antropov, K M; Varaksin, A N
2013-01-01
This paper provides the description of Land Use Regression (LUR) modeling and the result of its application in the study of nitrogen dioxide air pollution in Ekaterinburg. The paper describes the difficulties of the modeling for air pollution caused by motor vehicles exhaust, and the ways to address these challenges. To create LUR model of the NO2 air pollution in Ekaterinburg, concentrations of NO2 were measured, data on factors affecting air pollution were collected, a statistical analysis of the data were held. A statistical model of NO2 air pollution (coefficient of determination R2 = 0.70) and a map of pollution were created.
NASA Astrophysics Data System (ADS)
Tang, Kunkun; Congedo, Pietro M.; Abgrall, Rémi
2016-06-01
The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable for real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.
NASA Technical Reports Server (NTRS)
Tomberlin, T. J.
1985-01-01
Research studies of residents' responses to noise consist of interviews with samples of individuals who are drawn from a number of different compact study areas. The statistical techniques developed provide a basis for those sample design decisions. These techniques are suitable for a wide range of sample survey applications. A sample may consist of a random sample of residents selected from a sample of compact study areas, or in a more complex design, of a sample of residents selected from a sample of larger areas (e.g., cities). The techniques may be applied to estimates of the effects on annoyance of noise level, numbers of noise events, the time-of-day of the events, ambient noise levels, or other factors. Methods are provided for determining, in advance, how accurately these effects can be estimated for different sample sizes and study designs. Using a simple cost function, they also provide for optimum allocation of the sample across the stages of the design for estimating these effects. These techniques are developed via a regression model in which the regression coefficients are assumed to be random, with components of variance associated with the various stages of a multi-stage sample design.
Element enrichment factor calculation using grain-size distribution and functional data regression.
Sierra, C; Ordóñez, C; Saavedra, A; Gallego, J R
2015-01-01
In environmental geochemistry studies it is common practice to normalize element concentrations in order to remove the effect of grain size. Linear regression with respect to a particular grain size or conservative element is a widely used method of normalization. In this paper, the utility of functional linear regression, in which the grain-size curve is the independent variable and the concentration of pollutant the dependent variable, is analyzed and applied to detrital sediment. After implementing functional linear regression and classical linear regression models to normalize and calculate enrichment factors, we concluded that the former regression technique has some advantages over the latter. First, functional linear regression directly considers the grain-size distribution of the samples as the explanatory variable. Second, as the regression coefficients are not constant values but functions depending on the grain size, it is easier to comprehend the relationship between grain size and pollutant concentration. Third, regularization can be introduced into the model in order to establish equilibrium between reliability of the data and smoothness of the solutions. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Small and Slim Coaxial Probe for Single Rice Grain Moisture Sensing
You, Kok Yeow; Mun, Hou Kit; You, Li Ling; Salleh, Jamaliah; Abbas, Zulkifly
2013-01-01
A moisture detection of single rice grains using a slim and small open-ended coaxial probe is presented. The coaxial probe is suitable for the nondestructive measurement of moisture values in the rice grains ranging from from 9.5% to 26%. Empirical polynomial models are developed to predict the gravimetric moisture content of rice based on measured reflection coefficients using a vector network analyzer. The relationship between the reflection coefficient and relative permittivity were also created using a regression method and expressed in a polynomial model, whose model coefficients were obtained by fitting the data from Finite Element-based simulation. Besides, the designed single rice grain sample holder and experimental set-up were shown. The measurement of single rice grains in this study is more precise compared to the measurement in conventional bulk rice grains, as the random air gap present in the bulk rice grains is excluded. PMID:23493127
Influence diagnostics in meta-regression model.
Shi, Lei; Zuo, ShanShan; Yu, Dalei; Zhou, Xiaohua
2017-09-01
This paper studies the influence diagnostics in meta-regression model including case deletion diagnostic and local influence analysis. We derive the subset deletion formulae for the estimation of regression coefficient and heterogeneity variance and obtain the corresponding influence measures. The DerSimonian and Laird estimation and maximum likelihood estimation methods in meta-regression are considered, respectively, to derive the results. Internal and external residual and leverage measure are defined. The local influence analysis based on case-weights perturbation scheme, responses perturbation scheme, covariate perturbation scheme, and within-variance perturbation scheme are explored. We introduce a method by simultaneous perturbing responses, covariate, and within-variance to obtain the local influence measure, which has an advantage of capable to compare the influence magnitude of influential studies from different perturbations. An example is used to illustrate the proposed methodology. Copyright © 2017 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghazali, Amirul Syafiq Mohd; Ali, Zalila; Noor, Norlida Mohd
Multinomial logistic regression is widely used to model the outcomes of a polytomous response variable, a categorical dependent variable with more than two categories. The model assumes that the conditional mean of the dependent categorical variables is the logistic function of an affine combination of predictor variables. Its procedure gives a number of logistic regression models that make specific comparisons of the response categories. When there are q categories of the response variable, the model consists of q-1 logit equations which are fitted simultaneously. The model is validated by variable selection procedures, tests of regression coefficients, a significant test ofmore » the overall model, goodness-of-fit measures, and validation of predicted probabilities using odds ratio. This study used the multinomial logistic regression model to investigate obesity and overweight among primary school students in a rural area on the basis of their demographic profiles, lifestyles and on the diet and food intake. The results indicated that obesity and overweight of students are related to gender, religion, sleep duration, time spent on electronic games, breakfast intake in a week, with whom meals are taken, protein intake, and also, the interaction between breakfast intake in a week with sleep duration, and the interaction between gender and protein intake.« less
NASA Astrophysics Data System (ADS)
Ghazali, Amirul Syafiq Mohd; Ali, Zalila; Noor, Norlida Mohd; Baharum, Adam
2015-10-01
Multinomial logistic regression is widely used to model the outcomes of a polytomous response variable, a categorical dependent variable with more than two categories. The model assumes that the conditional mean of the dependent categorical variables is the logistic function of an affine combination of predictor variables. Its procedure gives a number of logistic regression models that make specific comparisons of the response categories. When there are q categories of the response variable, the model consists of q-1 logit equations which are fitted simultaneously. The model is validated by variable selection procedures, tests of regression coefficients, a significant test of the overall model, goodness-of-fit measures, and validation of predicted probabilities using odds ratio. This study used the multinomial logistic regression model to investigate obesity and overweight among primary school students in a rural area on the basis of their demographic profiles, lifestyles and on the diet and food intake. The results indicated that obesity and overweight of students are related to gender, religion, sleep duration, time spent on electronic games, breakfast intake in a week, with whom meals are taken, protein intake, and also, the interaction between breakfast intake in a week with sleep duration, and the interaction between gender and protein intake.
Punzo, Antonio; Ingrassia, Salvatore; Maruotti, Antonello
2018-04-22
A time-varying latent variable model is proposed to jointly analyze multivariate mixed-support longitudinal data. The proposal can be viewed as an extension of hidden Markov regression models with fixed covariates (HMRMFCs), which is the state of the art for modelling longitudinal data, with a special focus on the underlying clustering structure. HMRMFCs are inadequate for applications in which a clustering structure can be identified in the distribution of the covariates, as the clustering is independent from the covariates distribution. Here, hidden Markov regression models with random covariates are introduced by explicitly specifying state-specific distributions for the covariates, with the aim of improving the recovering of the clusters in the data with respect to a fixed covariates paradigm. The hidden Markov regression models with random covariates class is defined focusing on the exponential family, in a generalized linear model framework. Model identifiability conditions are sketched, an expectation-maximization algorithm is outlined for parameter estimation, and various implementation and operational issues are discussed. Properties of the estimators of the regression coefficients, as well as of the hidden path parameters, are evaluated through simulation experiments and compared with those of HMRMFCs. The method is applied to physical activity data. Copyright © 2018 John Wiley & Sons, Ltd.
Soil sail content estimation in the yellow river delta with satellite hyperspectral data
Weng, Yongling; Gong, Peng; Zhu, Zhi-Liang
2008-01-01
Soil salinization is one of the most common land degradation processes and is a severe environmental hazard. The primary objective of this study is to investigate the potential of predicting salt content in soils with hyperspectral data acquired with EO-1 Hyperion. Both partial least-squares regression (PLSR) and conventional multiple linear regression (MLR), such as stepwise regression (SWR), were tested as the prediction model. PLSR is commonly used to overcome the problem caused by high-dimensional and correlated predictors. Chemical analysis of 95 samples collected from the top layer of soils in the Yellow River delta area shows that salt content was high on average, and the dominant chemicals in the saline soil were NaCl and MgCl2. Multivariate models were established between soil contents and hyperspectral data. Our results indicate that the PLSR technique with laboratory spectral data has a strong prediction capacity. Spectral bands at 1487-1527, 1971-1991, 2032-2092, and 2163-2355 nm possessed large absolute values of regression coefficients, with the largest coefficient at 2203 nm. We obtained a root mean squared error (RMSE) for calibration (with 61 samples) of RMSEC = 0.753 (R2 = 0.893) and a root mean squared error for validation (with 30 samples) of RMSEV = 0.574. The prediction model was applied on a pixel-by-pixel basis to a Hyperion reflectance image to yield a quantitative surface distribution map of soil salt content. The result was validated successfully from 38 sampling points. We obtained an RMSE estimate of 1.037 (R2 = 0.784) for the soil salt content map derived by the PLSR model. The salinity map derived from the SWR model shows that the predicted value is higher than the true value. These results demonstrate that the PLSR method is a more suitable technique than stepwise regression for quantitative estimation of soil salt content in a large area. ?? 2008 CASI.
Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part II
Bechtel, Kate L.; Shih, Wei-Chuan; Feld, Michael S.
2009-01-01
We demonstrate the effectiveness of intrinsic Raman spectroscopy (IRS) at reducing errors caused by absorption and scattering. Physical tissue models, solutions of varying absorption and scattering coefficients with known concentrations of Raman scatterers, are studied. We show significant improvement in prediction error by implementing IRS to predict concentrations of Raman scatterers using both ordinary least squares regression (OLS) and partial least squares regression (PLS). In particular, we show that IRS provides a robust calibration model that does not increase in error when applied to samples with optical properties outside the range of calibration. PMID:18711512
Efficient least angle regression for identification of linear-in-the-parameters models
Beach, Thomas H.; Rezgui, Yacine
2017-01-01
Least angle regression, as a promising model selection method, differentiates itself from conventional stepwise and stagewise methods, in that it is neither too greedy nor too slow. It is closely related to L1 norm optimization, which has the advantage of low prediction variance through sacrificing part of model bias property in order to enhance model generalization capability. In this paper, we propose an efficient least angle regression algorithm for model selection for a large class of linear-in-the-parameters models with the purpose of accelerating the model selection process. The entire algorithm works completely in a recursive manner, where the correlations between model terms and residuals, the evolving directions and other pertinent variables are derived explicitly and updated successively at every subset selection step. The model coefficients are only computed when the algorithm finishes. The direct involvement of matrix inversions is thereby relieved. A detailed computational complexity analysis indicates that the proposed algorithm possesses significant computational efficiency, compared with the original approach where the well-known efficient Cholesky decomposition is involved in solving least angle regression. Three artificial and real-world examples are employed to demonstrate the effectiveness, efficiency and numerical stability of the proposed algorithm. PMID:28293140
Cox Regression Models with Functional Covariates for Survival Data.
Gellar, Jonathan E; Colantuoni, Elizabeth; Needham, Dale M; Crainiceanu, Ciprian M
2015-06-01
We extend the Cox proportional hazards model to cases when the exposure is a densely sampled functional process, measured at baseline. The fundamental idea is to combine penalized signal regression with methods developed for mixed effects proportional hazards models. The model is fit by maximizing the penalized partial likelihood, with smoothing parameters estimated by a likelihood-based criterion such as AIC or EPIC. The model may be extended to allow for multiple functional predictors, time varying coefficients, and missing or unequally-spaced data. Methods were inspired by and applied to a study of the association between time to death after hospital discharge and daily measures of disease severity collected in the intensive care unit, among survivors of acute respiratory distress syndrome.
A robust nonparametric framework for reconstruction of stochastic differential equation models
NASA Astrophysics Data System (ADS)
Rajabzadeh, Yalda; Rezaie, Amir Hossein; Amindavar, Hamidreza
2016-05-01
In this paper, we employ a nonparametric framework to robustly estimate the functional forms of drift and diffusion terms from discrete stationary time series. The proposed method significantly improves the accuracy of the parameter estimation. In this framework, drift and diffusion coefficients are modeled through orthogonal Legendre polynomials. We employ the least squares regression approach along with the Euler-Maruyama approximation method to learn coefficients of stochastic model. Next, a numerical discrete construction of mean squared prediction error (MSPE) is established to calculate the order of Legendre polynomials in drift and diffusion terms. We show numerically that the new method is robust against the variation in sample size and sampling rate. The performance of our method in comparison with the kernel-based regression (KBR) method is demonstrated through simulation and real data. In case of real dataset, we test our method for discriminating healthy electroencephalogram (EEG) signals from epilepsy ones. We also demonstrate the efficiency of the method through prediction in the financial data. In both simulation and real data, our algorithm outperforms the KBR method.
Random effects coefficient of determination for mixed and meta-analysis models.
Demidenko, Eugene; Sargent, James; Onega, Tracy
2012-01-01
The key feature of a mixed model is the presence of random effects. We have developed a coefficient, called the random effects coefficient of determination, [Formula: see text], that estimates the proportion of the conditional variance of the dependent variable explained by random effects. This coefficient takes values from 0 to 1 and indicates how strong the random effects are. The difference from the earlier suggested fixed effects coefficient of determination is emphasized. If [Formula: see text] is close to 0, there is weak support for random effects in the model because the reduction of the variance of the dependent variable due to random effects is small; consequently, random effects may be ignored and the model simplifies to standard linear regression. The value of [Formula: see text] apart from 0 indicates the evidence of the variance reduction in support of the mixed model. If random effects coefficient of determination is close to 1 the variance of random effects is very large and random effects turn into free fixed effects-the model can be estimated using the dummy variable approach. We derive explicit formulas for [Formula: see text] in three special cases: the random intercept model, the growth curve model, and meta-analysis model. Theoretical results are illustrated with three mixed model examples: (1) travel time to the nearest cancer center for women with breast cancer in the U.S., (2) cumulative time watching alcohol related scenes in movies among young U.S. teens, as a risk factor for early drinking onset, and (3) the classic example of the meta-analysis model for combination of 13 studies on tuberculosis vaccine.
Morfeld, Peter; Spallek, Michael
2015-01-01
Vermeulen et al. 2014 published a meta-regression analysis of three relevant epidemiological US studies (Steenland et al. 1998, Garshick et al. 2012, Silverman et al. 2012) that estimated the association between occupational diesel engine exhaust (DEE) exposure and lung cancer mortality. The DEE exposure was measured as cumulative exposure to estimated respirable elemental carbon in μg/m(3)-years. Vermeulen et al. 2014 found a statistically significant dose-response association and described elevated lung cancer risks even at very low exposures. We performed an extended re-analysis using different modelling approaches (fixed and random effects regression analyses, Greenland/Longnecker method) and explored the impact of varying input data (modified coefficients of Garshick et al. 2012, results from Crump et al. 2015 replacing Silverman et al. 2012, modified analysis of Moehner et al. 2013). We reproduced the individual and main meta-analytical results of Vermeulen et al. 2014. However, our analysis demonstrated a heterogeneity of the baseline relative risk levels between the three studies. This heterogeneity was reduced after the coefficients of Garshick et al. 2012 were modified while the dose coefficient dropped by an order of magnitude for this study and was far from being significant (P = 0.6). A (non-significant) threshold estimate for the cumulative DEE exposure was found at 150 μg/m(3)-years when extending the meta-analyses of the three studies by hockey-stick regression modelling (including the modified coefficients for Garshick et al. 2012). The data used by Vermeulen and colleagues led to the highest relative risk estimate across all sensitivity analyses performed. The lowest relative risk estimate was found after exclusion of the explorative study by Steenland et al. 1998 in a meta-regression analysis of Garshick et al. 2012 (modified), Silverman et al. 2012 (modified according to Crump et al. 2015) and Möhner et al. 2013. The meta-coefficient was estimated to be about 10-20 % of the main effect estimate in Vermeulen et al. 2014 in this analysis. The findings of Vermeulen et al. 2014 should not be used without reservations in any risk assessments. This is particularly true for the low end of the exposure scale.
Liu, Jinbao; Han, Jichang; Zhang, Yang; Wang, Huanyuan; Kong, Hui; Shi, Lei
2018-06-05
The storage of soil organic carbon (SOC) should improve soil fertility. Conventional determination of SOC is expensive and tedious. Visible-near infrared reflectance spectroscopy is a practical and cost-effective approach that has been successfully used SOC concentration. Soil spectral inversion model could quickly and efficiently determine SOC content. This paper presents a study dealing with SOC estimation through the combination of soil spectroscopy and stepwise multiple linear regression (SMLR), partial least squares regression (PLSR), principal component regression (PCR). Spectral measurements for 106 soil samples were acquired using an ASD FieldSpec 4 standard-res spectroradiometer (350-2500 nm). Six types of transformations and three regression methods were applied to build for the quantification of different parent materials development soil. The results show that (1)the basaltic volcanic clastics development of SOC spectral response bands located in 500 nm, 800 nm; Trachyte spectral response of the soil quality, and the volcanic clastics development at 405 nm, 465 nm, 575 nm, 1105 nm. (2) Basaltic volcanic debris soil development, first deviation of maximum correlation coefficient is 0.8898; thick surface soil of the development of rocky volcanic debris from bottom reflectivity logarithm of first deviation of maximum correlation coefficient is 0.9029. (3) Soil organic matter content of basaltic volcanic clastics development optimal prediction model based on spectral reflectance inverse logarithms of first deviation of SMLR. Independent variable number is 7, Rv 2 = 0.9720, RMSEP = 2.0590, sig = 0.003. Trachyte qualitative volcanic clastics developed soil organic matter content of the optimal prediction model based on spectral reflectance inverse logarithms of first deviation of PLSR. Model number of the independent variables Pc = 5, Rc = 0.9872, Rc 2 = 0.9745, RMSEC = 0.4821, SEC = 0.4906, forecasts determine coefficient Rv 2 = 0.9702, RMSEP = 0.9563, SEP = 0.9711, Bias = 0.0637. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowley, R.L.; Adams, M.E.; Marshall, T.L.
1997-03-01
Natural gas processors use amine treating processes to remove the acid gases H{sub 2}S and CO{sub 2} from gas streams. Absorption rates of gaseous CO{sub 2} into aqueous N-methyldiethanolamine (MDEA) solutions were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. The absorption rate was found to be insensitive to the diffusion coefficient of CO{sub 2} in solution but very sensitive to the diffusion rate of bicarbonate and protonated MDEA ions. Evidence also suggested that chemical reaction equilibrium is rapid relative to diffusion. A numerical model was developed on the basis of these observations. The modelmore » was used to regress diffusion coefficients of bicarbonate and protonated amine, which must be equivalent by electroneutrality arguments, from measured absorption rates. Complete modeling of the absorption process also required data for the diffusion coefficient of MDEA in water. These were measured using a Taylor dispersion apparatus. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate and protonated MDEA were obtained at 298.2 K and 318.2 K in solutions containing 20, 35, and 50 mass % MDEA in water.« less
Regression rate study of porous axial-injection, endburning hybrid fuel grains
NASA Astrophysics Data System (ADS)
Hitt, Matthew A.
This experimental and theoretical work examines the effects of gaseous oxidizer flow rates and pressure on the regression rates of porous fuels for hybrid rocket applications. Testing was conducted using polyethylene as the porous fuel and both gaseous oxygen and nitrous oxide as the oxidizer. Nominal test articles were tested using 200, 100, 50, and 15 micron fuel pore sizes. Pressures tested ranged from atmospheric to 1160 kPa for the gaseous oxygen tests and from 207 kPa to 1054 kPa for the nitrous oxide tests, and oxidizer injection velocities ranged from 35 m/s to 80 m/s for the gaseous oxygen tests and from 7.5 m/s to 16.8 m/s for the nitrous oxide tests. Regression rates were determined using pretest and posttest length measurements of the solid fuel. Experimental results demonstrated that the regression rate of the porous axial-injection, end-burning hybrid was a function of the chamber pressure, as opposed to the oxidizer mass flux typical in conventional hybrids. Regression rates ranged from approximately 0.75 mm/s at atmospheric pressure to 8.89 mm/s at 1160 kPa for the gaseous oxygen tests and 0.21 mm/s at 207 kPa to 1.44 mm/s at 1054 kPa for the nitrous oxide tests. The analytical model was developed based on a standard ablative model modified to include oxidizer flow through the grain. The heat transfer from the flame was primarily modeled using an empirically determined flame coefficient that included all heat transfer mechanisms in one term. An exploratory flame model based on the Granular Diffusion Flame model used for solid rocket motors was also adapted for comparison with the empirical flame coefficient. This model was then evaluated quantitatively using the experimental results of the gaseous oxygen tests as well as qualitatively using the experimental results of the nitrous oxide tests. The model showed agreement with the experimental results indicating it has potential for giving insight into the flame structure in this motor configuration. Results from the model suggested that both kinetic and diffusion processes could be relevant to the combustion depending on the chamber pressure.
Robust, Adaptive Functional Regression in Functional Mixed Model Framework.
Zhu, Hongxiao; Brown, Philip J; Morris, Jeffrey S
2011-09-01
Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient enough to handle large data sets, and yields posterior samples of all model parameters that can be used to perform desired Bayesian estimation and inference. Although we present details for a specific implementation of the R-FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet transforms, the method can be applied more generally using other heavy-tailed distributions, higher dimensional functions (e.g. images), and using other invertible transformations as alternatives to wavelets.
Robust, Adaptive Functional Regression in Functional Mixed Model Framework
Zhu, Hongxiao; Brown, Philip J.; Morris, Jeffrey S.
2012-01-01
Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient enough to handle large data sets, and yields posterior samples of all model parameters that can be used to perform desired Bayesian estimation and inference. Although we present details for a specific implementation of the R-FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet transforms, the method can be applied more generally using other heavy-tailed distributions, higher dimensional functions (e.g. images), and using other invertible transformations as alternatives to wavelets. PMID:22308015
Mapping health outcome measures from a stroke registry to EQ-5D weights.
Ghatnekar, Ola; Eriksson, Marie; Glader, Eva-Lotta
2013-03-07
To map health outcome related variables from a national register, not part of any validated instrument, with EQ-5D weights among stroke patients. We used two cross-sectional data sets including patient characteristics, outcome variables and EQ-5D weights from the national Swedish stroke register. Three regression techniques were used on the estimation set (n=272): ordinary least squares (OLS), Tobit, and censored least absolute deviation (CLAD). The regression coefficients for "dressing", "toileting", "mobility", "mood", "general health" and "proxy-responders" were applied to the validation set (n=272), and the performance was analysed with mean absolute error (MAE) and mean square error (MSE). The number of statistically significant coefficients varied by model, but all models generated consistent coefficients in terms of sign. Mean utility was underestimated in all models (least in OLS) and with lower variation (least in OLS) compared to the observed. The maximum attainable EQ-5D weight ranged from 0.90 (OLS) to 1.00 (Tobit and CLAD). Health states with utility weights <0.5 had greater errors than those with weights ≥ 0.5 (P<0.01). This study indicates that it is possible to map non-validated health outcome measures from a stroke register into preference-based utilities to study the development of stroke care over time, and to compare with other conditions in terms of utility.
Geographically weighted regression model on poverty indicator
NASA Astrophysics Data System (ADS)
Slamet, I.; Nugroho, N. F. T. A.; Muslich
2017-12-01
In this research, we applied geographically weighted regression (GWR) for analyzing the poverty in Central Java. We consider Gaussian Kernel as weighted function. The GWR uses the diagonal matrix resulted from calculating kernel Gaussian function as a weighted function in the regression model. The kernel weights is used to handle spatial effects on the data so that a model can be obtained for each location. The purpose of this paper is to model of poverty percentage data in Central Java province using GWR with Gaussian kernel weighted function and to determine the influencing factors in each regency/city in Central Java province. Based on the research, we obtained geographically weighted regression model with Gaussian kernel weighted function on poverty percentage data in Central Java province. We found that percentage of population working as farmers, population growth rate, percentage of households with regular sanitation, and BPJS beneficiaries are the variables that affect the percentage of poverty in Central Java province. In this research, we found the determination coefficient R2 are 68.64%. There are two categories of district which are influenced by different of significance factors.
Evaluation of spatial, radiometric and spectral Thematic Mapper performance for coastal studies
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator)
1984-01-01
The effect different wetland plant canopies have upon observed reflectance in Thematic Mapper bands is examined. The three major vegetation canopy types (broadleaf, gramineous and leafless) produce unique spectral responses for a similar quantity of live biomass. Biomass estimates computed from spectral data were most similar to biomass estimates determined from harvest data when models developed for a specific canopy were used. Precise determination of regression coefficients for each canopy type and modeling changes in the coefficients with various combinations of canopy types are being tested. The multispectral band scanner vegetation index estimates are very similar to the vegetation index estimates.
NASA Astrophysics Data System (ADS)
Chardon, Jérémy; Hingray, Benoit; Favre, Anne-Catherine
2018-01-01
Statistical downscaling models (SDMs) are often used to produce local weather scenarios from large-scale atmospheric information. SDMs include transfer functions which are based on a statistical link identified from observations between local weather and a set of large-scale predictors. As physical processes driving surface weather vary in time, the most relevant predictors and the regression link are likely to vary in time too. This is well known for precipitation for instance and the link is thus often estimated after some seasonal stratification of the data. In this study, we present a two-stage analog/regression model where the regression link is estimated from atmospheric analogs of the current prediction day. Atmospheric analogs are identified from fields of geopotential heights at 1000 and 500 hPa. For the regression stage, two generalized linear models are further used to model the probability of precipitation occurrence and the distribution of non-zero precipitation amounts, respectively. The two-stage model is evaluated for the probabilistic prediction of small-scale precipitation over France. It noticeably improves the skill of the prediction for both precipitation occurrence and amount. As the analog days vary from one prediction day to another, the atmospheric predictors selected in the regression stage and the value of the corresponding regression coefficients can vary from one prediction day to another. The model allows thus for a day-to-day adaptive and tailored downscaling. It can also reveal specific predictors for peculiar and non-frequent weather configurations.
Effects of Medical Insurance on the Health Status and Life Satisfaction of the Elderly
GU, Liubao; FENG, Huihui; JIN, Jian
2017-01-01
Background: Population aging has become increasingly serious in China. The demand for medical insurance of the elderly is increasing, and their health status and life satisfaction are becoming significant issues. This study investigates the effects of medical insurance on the health status and life satisfaction of the elderly. Methods: The national baseline survey data of the China Health and Retirement Longitudinal Survey in 2013 were adopted. The Ordered Probit Model was established. The effects of the medical insurance for urban employees, medical insurance for urban residents, and new rural cooperative medical insurance on the health status and life satisfaction of the elderly were investigated. Results: Medical insurance could facilitate the improvement of the health status and life satisfaction of the elderly. Accordingly, the health status and life satisfaction of the elderly who have medical insurance for urban residents improved significantly. The regression coefficients were 0.348 and 0.307. The corresponding regression coefficients of the medical insurance for urban employees were 0.189 and 0.236. The regression coefficients of the new rural cooperative medical insurance were 0.170 and 0.188. Conclusion: Medical insurance can significantly improve the health status and life satisfaction of the elderly. This development is of immense significance for the formulation of equal medical security. PMID:29026784
ERIC Educational Resources Information Center
Quinino, Roberto C.; Reis, Edna A.; Bessegato, Lupercio F.
2013-01-01
This article proposes the use of the coefficient of determination as a statistic for hypothesis testing in multiple linear regression based on distributions acquired by beta sampling. (Contains 3 figures.)
NASA Astrophysics Data System (ADS)
Cheng, Jun-Hu; Jin, Huali; Liu, Zhiwei
2018-01-01
The feasibility of developing a multispectral imaging method using important wavelengths from hyperspectral images selected by genetic algorithm (GA), successive projection algorithm (SPA) and regression coefficient (RC) methods for modeling and predicting protein content in peanut kernel was investigated for the first time. Partial least squares regression (PLSR) calibration model was established between the spectral data from the selected optimal wavelengths and the reference measured protein content ranged from 23.46% to 28.43%. The RC-PLSR model established using eight key wavelengths (1153, 1567, 1972, 2143, 2288, 2339, 2389 and 2446 nm) showed the best predictive results with the coefficient of determination of prediction (R2P) of 0.901, and root mean square error of prediction (RMSEP) of 0.108 and residual predictive deviation (RPD) of 2.32. Based on the obtained best model and image processing algorithms, the distribution maps of protein content were generated. The overall results of this study indicated that developing a rapid and online multispectral imaging system using the feature wavelengths and PLSR analysis is potential and feasible for determination of the protein content in peanut kernels.
NASA Astrophysics Data System (ADS)
Lee, Kang Il
2012-08-01
The present study aims to provide insight into the relationships of the phase velocity with the microarchitectural parameters in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 22 bovine femoral trabecular bone samples by using a pair of transducers with a diameter of 25.4 mm and a center frequency of 0.5 MHz. The phase velocity exhibited positive correlation coefficients of 0.48 and 0.32 with the ratio of bone volume to total volume and the trabecular thickness, respectively, but a negative correlation coefficient of -0.62 with the trabecular separation. The best univariate predictor of the phase velocity was the trabecular separation, yielding an adjusted squared correlation coefficient of 0.36. The multivariate regression models yielded adjusted squared correlation coefficients of 0.21-0.36. The theoretical phase velocity predicted by using a stratified model for wave propagation in periodically stratified media consisting of alternating parallel solid-fluid layers showed reasonable agreements with the experimental measurements.
An improved multiple linear regression and data analysis computer program package
NASA Technical Reports Server (NTRS)
Sidik, S. M.
1972-01-01
NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.
Su, Peng-Hao; Tomy, Gregg T; Hou, Chun-Yan; Yin, Fang; Feng, Dao-Lun; Ding, Yong-Sheng; Li, Yi-Fan
2018-04-01
A size-segregated gas/particle partitioning coefficient K Pi was proposed and evaluated in the predicting models on the basis of atmospheric polybrominated diphenyl ether (PBDE) field data comparing with the bulk coefficient K P . Results revealed that the characteristics of atmospheric PBDEs in southeast Shanghai rural area were generally consistent with previous investigations, suggesting that this investigation was representative to the present pollution status of atmospheric PBDEs. K Pi was generally greater than bulk K P , indicating an overestimate of TSP (the mass concentration of total suspended particles) in the expression of bulk K P . In predicting models, K Pi led to a significant shift in regression lines as compared to K P , thus it should be more cautious to investigate sorption mechanisms using the regression lines. The differences between the performances of K Pi and K P were helpful to explain some phenomenon in predicting investigations, such as P L 0 and K OA models overestimate the particle fractions of PBDEs and the models work better at high temperature than at low temperature. Our findings are important because they enabled an insight into the influence of particle size on predicting models. Copyright © 2018 Elsevier Ltd. All rights reserved.
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
NASA Astrophysics Data System (ADS)
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-03-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-01-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254
Rea, A.H.; Tortorelli, R.L.
1997-01-01
This digital report contains two digital-map grids of data that were used to develop peak-flow regression equations in Tortorelli, 1997, 'Techniques for estimating peak-streamflow frequency for unregulated streams and streams regulated by small floodwater retarding structures in Oklahoma,' U.S. Geological Survey Water-Resources Investigations Report 97-4202. One data set is a grid of mean annual precipitation, in inches, based on the period 1961-90, for Oklahoma. The data set was derived from the PRISM (Parameter-elevation Regressions on Independent Slopes Model) mean annual precipitation grid for the United States, developed by Daly, Neilson, and Phillips (1994, 'A statistical-topographic model for mapping climatological precipitation over mountainous terrain:' Journal of Applied Meteorology, v. 33, no. 2, p. 140-158). The second data set is a grid of generalized skew coefficients of logarithms of annual maximum streamflow for Oklahoma streams less than or equal to 2,510 square miles in drainage area. This grid of skew coefficients is taken from figure 11 of Tortorelli and Bergman, 1985, 'Techniques for estimating flood peak discharges for unregulated streams and streams regulated by small floodwater retarding structures in Oklahoma,' U.S. Geological Survey Water-Resources Investigations Report 84-4358. To save disk space, the skew coefficient values have been multiplied by 100 and rounded to integers with two significant digits. The data sets are provided in an ASCII grid format.
Optimization of Regression Models of Experimental Data Using Confirmation Points
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2010-01-01
A new search metric is discussed that may be used to better assess the predictive capability of different math term combinations during the optimization of a regression model of experimental data. The new search metric can be determined for each tested math term combination if the given experimental data set is split into two subsets. The first subset consists of data points that are only used to determine the coefficients of the regression model. The second subset consists of confirmation points that are exclusively used to test the regression model. The new search metric value is assigned after comparing two values that describe the quality of the fit of each subset. The first value is the standard deviation of the PRESS residuals of the data points. The second value is the standard deviation of the response residuals of the confirmation points. The greater of the two values is used as the new search metric value. This choice guarantees that both standard deviations are always less or equal to the value that is used during the optimization. Experimental data from the calibration of a wind tunnel strain-gage balance is used to illustrate the application of the new search metric. The new search metric ultimately generates an optimized regression model that was already tested at regression model independent confirmation points before it is ever used to predict an unknown response from a set of regressors.
Improved model of the retardance in citric acid coated ferrofluids using stepwise regression
NASA Astrophysics Data System (ADS)
Lin, J. F.; Qiu, X. R.
2017-06-01
Citric acid (CA) coated Fe3O4 ferrofluids (FFs) have been conducted for biomedical application. The magneto-optical retardance of CA coated FFs was measured by a Stokes polarimeter. Optimization and multiple regression of retardance in FFs were executed by Taguchi method and Microsoft Excel previously, and the F value of regression model was large enough. However, the model executed by Excel was not systematic. Instead we adopted the stepwise regression to model the retardance of CA coated FFs. From the results of stepwise regression by MATLAB, the developed model had highly predictable ability owing to F of 2.55897e+7 and correlation coefficient of one. The average absolute error of predicted retardances to measured retardances was just 0.0044%. Using the genetic algorithm (GA) in MATLAB, the optimized parametric combination was determined as [4.709 0.12 39.998 70.006] corresponding to the pH of suspension, molar ratio of CA to Fe3O4, CA volume, and coating temperature. The maximum retardance was found as 31.712°, close to that obtained by evolutionary solver in Excel and a relative error of -0.013%. Above all, the stepwise regression method was successfully used to model the retardance of CA coated FFs, and the maximum global retardance was determined by the use of GA.
Oliveira, André; Cabral, António J R; Mendes, Jorge M; Martins, Maria R O; Cabral, Pedro
2015-11-04
Stroke risk has been shown to display varying patterns of geographic distribution amongst countries but also between regions of the same country. Traditionally a disease of older persons, a global 25% increase in incidence instead was noticed between 1990 and 2010 in persons aged 20-≤64 years, particularly in low- and medium-income countries. Understanding spatial disparities in the association between socioeconomic factors and stroke is critical to target public health initiatives aiming to mitigate or prevent this disease, including in younger persons. We aimed to identify socioeconomic determinants of geographic disparities of stroke risk in people <65 years old, in municipalities of mainland Portugal, and the spatiotemporal variation of the association between these determinants and stroke risk during two study periods (1992-1996 and 2002-2006). Poisson and negative binomial global regression models were used to explore determinants of disease risk. Geographically weighted regression (GWR) represents a distinctive approach, allowing estimation of local regression coefficients. Models for both study periods were identified. Significant variables included education attainment, work hours per week and unemployment. Local Poisson GWR models achieved the best fit and evidenced spatially varying regression coefficients. Spatiotemporal inequalities were observed in significant variables, with dissimilarities between men and women. This study contributes to a better understanding of the relationship between stroke and socioeconomic factors in the population <65 years of age, one age group seldom analysed separately. It can thus help to improve the targeting of public health initiatives, even more in a context of economic crisis.
Boosting structured additive quantile regression for longitudinal childhood obesity data.
Fenske, Nora; Fahrmeir, Ludwig; Hothorn, Torsten; Rzehak, Peter; Höhle, Michael
2013-07-25
Childhood obesity and the investigation of its risk factors has become an important public health issue. Our work is based on and motivated by a German longitudinal study including 2,226 children with up to ten measurements on their body mass index (BMI) and risk factors from birth to the age of 10 years. We introduce boosting of structured additive quantile regression as a novel distribution-free approach for longitudinal quantile regression. The quantile-specific predictors of our model include conventional linear population effects, smooth nonlinear functional effects, varying-coefficient terms, and individual-specific effects, such as intercepts and slopes. Estimation is based on boosting, a computer intensive inference method for highly complex models. We propose a component-wise functional gradient descent boosting algorithm that allows for penalized estimation of the large variety of different effects, particularly leading to individual-specific effects shrunken toward zero. This concept allows us to flexibly estimate the nonlinear age curves of upper quantiles of the BMI distribution, both on population and on individual-specific level, adjusted for further risk factors and to detect age-varying effects of categorical risk factors. Our model approach can be regarded as the quantile regression analog of Gaussian additive mixed models (or structured additive mean regression models), and we compare both model classes with respect to our obesity data.
Elder abuse and socioeconomic inequalities: a multilevel study in 7 European countries.
Fraga, Sílvia; Lindert, Jutta; Barros, Henrique; Torres-González, Francisco; Ioannidi-Kapolou, Elisabeth; Melchiorre, Maria Gabriella; Stankunas, Mindaugas; Soares, Joaquim F
2014-04-01
To compare the prevalence of elder abuse using a multilevel approach that takes into account the characteristics of participants as well as socioeconomic indicators at city and country level. In 2009, the project on abuse of elderly in Europe (ABUEL) was conducted in seven cities (Stuttgart, Germany; Ancona, Italy; Kaunas, Lithuania, Stockholm, Sweden; Porto, Portugal; Granada, Spain; Athens, Greece) comprising 4467 individuals aged 60-84 years. We used a 3-level hierarchical structure of data: 1) characteristics of participants; 2) mean of tertiary education of each city; and 3) country inequality indicator (Gini coefficient). Multilevel logistic regression was used and proportional changes in Intraclass Correlation Coefficient (ICC) were inspected to assert explained variance between models. The prevalence of elder abuse showed large variations across sites. Adding tertiary education to the regression model reduced the country level variance for psychological abuse (ICC=3.4%), with no significant decrease in the explained variance for the other types of abuse. When the Gini coefficient was considered, the highest drop in ICC was observed for financial abuse (from 9.5% to 4.3%). There is a societal and community level dimension that adds information to individual variability in explaining country differences in elder abuse, highlighting underlying socioeconomic inequalities leading to such behavior. Copyright © 2014 Elsevier Inc. All rights reserved.
Forster, Jeri E.; MaWhinney, Samantha; Ball, Erika L.; Fairclough, Diane
2011-01-01
Dropout is common in longitudinal clinical trials and when the probability of dropout depends on unobserved outcomes even after conditioning on available data, it is considered missing not at random and therefore nonignorable. To address this problem, mixture models can be used to account for the relationship between a longitudinal outcome and dropout. We propose a Natural Spline Varying-coefficient mixture model (NSV), which is a straightforward extension of the parametric Conditional Linear Model (CLM). We assume that the outcome follows a varying-coefficient model conditional on a continuous dropout distribution. Natural cubic B-splines are used to allow the regression coefficients to semiparametrically depend on dropout and inference is therefore more robust. Additionally, this method is computationally stable and relatively simple to implement. We conduct simulation studies to evaluate performance and compare methodologies in settings where the longitudinal trajectories are linear and dropout time is observed for all individuals. Performance is assessed under conditions where model assumptions are both met and violated. In addition, we compare the NSV to the CLM and a standard random-effects model using an HIV/AIDS clinical trial with probable nonignorable dropout. The simulation studies suggest that the NSV is an improvement over the CLM when dropout has a nonlinear dependence on the outcome. PMID:22101223
Qidwai, Tabish; Yadav, Dharmendra K; Khan, Feroz; Dhawan, Sangeeta; Bhakuni, R S
2012-01-01
This work presents the development of quantitative structure activity relationship (QSAR) model to predict the antimalarial activity of artemisinin derivatives. The structures of the molecules are represented by chemical descriptors that encode topological, geometric, and electronic structure features. Screening through QSAR model suggested that compounds A24, A24a, A53, A54, A62 and A64 possess significant antimalarial activity. Linear model is developed by the multiple linear regression method to link structures to their reported antimalarial activity. The correlation in terms of regression coefficient (r(2)) was 0.90 and prediction accuracy of model in terms of cross validation regression coefficient (rCV(2)) was 0.82. This study indicates that chemical properties viz., atom count (all atoms), connectivity index (order 1, standard), ring count (all rings), shape index (basic kappa, order 2), and solvent accessibility surface area are well correlated with antimalarial activity. The docking study showed high binding affinity of predicted active compounds against antimalarial target Plasmepsins (Plm-II). Further studies for oral bioavailability, ADMET and toxicity risk assessment suggest that compound A24, A24a, A53, A54, A62 and A64 exhibits marked antimalarial activity comparable to standard antimalarial drugs. Later one of the predicted active compound A64 was chemically synthesized, structure elucidated by NMR and in vivo tested in multidrug resistant strain of Plasmodium yoelii nigeriensis infected mice. The experimental results obtained agreed well with the predicted values.
No rationale for 1 variable per 10 events criterion for binary logistic regression analysis.
van Smeden, Maarten; de Groot, Joris A H; Moons, Karel G M; Collins, Gary S; Altman, Douglas G; Eijkemans, Marinus J C; Reitsma, Johannes B
2016-11-24
Ten events per variable (EPV) is a widely advocated minimal criterion for sample size considerations in logistic regression analysis. Of three previous simulation studies that examined this minimal EPV criterion only one supports the use of a minimum of 10 EPV. In this paper, we examine the reasons for substantial differences between these extensive simulation studies. The current study uses Monte Carlo simulations to evaluate small sample bias, coverage of confidence intervals and mean square error of logit coefficients. Logistic regression models fitted by maximum likelihood and a modified estimation procedure, known as Firth's correction, are compared. The results show that besides EPV, the problems associated with low EPV depend on other factors such as the total sample size. It is also demonstrated that simulation results can be dominated by even a few simulated data sets for which the prediction of the outcome by the covariates is perfect ('separation'). We reveal that different approaches for identifying and handling separation leads to substantially different simulation results. We further show that Firth's correction can be used to improve the accuracy of regression coefficients and alleviate the problems associated with separation. The current evidence supporting EPV rules for binary logistic regression is weak. Given our findings, there is an urgent need for new research to provide guidance for supporting sample size considerations for binary logistic regression analysis.
Data mining-based coefficient of influence factors optimization of test paper reliability
NASA Astrophysics Data System (ADS)
Xu, Peiyao; Jiang, Huiping; Wei, Jieyao
2018-05-01
Test is a significant part of the teaching process. It demonstrates the final outcome of school teaching through teachers' teaching level and students' scores. The analysis of test paper is a complex operation that has the characteristics of non-linear relation in the length of the paper, time duration and the degree of difficulty. It is therefore difficult to optimize the coefficient of influence factors under different conditions in order to get text papers with clearly higher reliability with general methods [1]. With data mining techniques like Support Vector Regression (SVR) and Genetic Algorithm (GA), we can model the test paper analysis and optimize the coefficient of impact factors for higher reliability. It's easy to find that the combination of SVR and GA can get an effective advance in reliability from the test results. The optimal coefficient of influence factors optimization has a practicability in actual application, and the whole optimizing operation can offer model basis for test paper analysis.
Forecast of future aviation fuels: The model
NASA Technical Reports Server (NTRS)
Ayati, M. B.; Liu, C. Y.; English, J. M.
1981-01-01
A conceptual models of the commercial air transportation industry is developed which can be used to predict trends in economics, demand, and consumption. The methodology is based on digraph theory, which considers the interaction of variables and propagation of changes. Air transportation economics are treated by examination of major variables, their relationships, historic trends, and calculation of regression coefficients. A description of the modeling technique and a compilation of historic airline industry statistics used to determine interaction coefficients are included. Results of model validations show negligible difference between actual and projected values over the twenty-eight year period of 1959 to 1976. A limited application of the method presents forecasts of air tranportation industry demand, growth, revenue, costs, and fuel consumption to 2020 for two scenarios of future economic growth and energy consumption.
Furmanchuk, Al'ona; Saal, James E; Doak, Jeff W; Olson, Gregory B; Choudhary, Alok; Agrawal, Ankit
2018-02-05
The regression model-based tool is developed for predicting the Seebeck coefficient of crystalline materials in the temperature range from 300 K to 1000 K. The tool accounts for the single crystal versus polycrystalline nature of the compound, the production method, and properties of the constituent elements in the chemical formula. We introduce new descriptive features of crystalline materials relevant for the prediction the Seebeck coefficient. To address off-stoichiometry in materials, the predictive tool is trained on a mix of stoichiometric and nonstoichiometric materials. The tool is implemented into a web application (http://info.eecs.northwestern.edu/SeebeckCoefficientPredictor) to assist field scientists in the discovery of novel thermoelectric materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Solar energy distribution over Egypt using cloudiness from Meteosat photos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosalam Shaltout, M.A.; Hassen, A.H.
1990-01-01
In Egypt, there are 10 ground stations for measuring the global solar radiation, and five stations for measuring the diffuse solar radiation. Every day at noon, the Meteorological Authority in Cairo receives three photographs of cloudiness over Egypt from the Meteosat satellite, one in the visible, and two in the infra-red bands (10.5-12.5 {mu}m) and (5.7-7.1 {mu}m). The monthly average cloudiness for 24 sites over Egypt are measured and calculated from Meteosat observations during the period 1985-1986. Correlation analysis between the cloudiness observed by Meteosat and global solar radiation measured from the ground stations is carried out. It is foundmore » that, the correlation coefficients are about 0.90 for the simple linear regression, and increase for the second and third degree regressions. Also, the correlation coefficients for the cloudiness with the diffuse solar radiation are about 0.80 for the simple linear regression, and increase for the second and third degree regression. Models and empirical relations for estimating the global and diffuse solar radiation from Meteosat cloudiness data over Egypt are deduced and tested. Seasonal maps for the global and diffuse radiation over Egypt are carried out.« less
NASA Astrophysics Data System (ADS)
de Oliveira, Isadora R. N.; Roque, Jussara V.; Maia, Mariza P.; Stringheta, Paulo C.; Teófilo, Reinaldo F.
2018-04-01
A new method was developed to determine the antioxidant properties of red cabbage extract (Brassica oleracea) by mid (MID) and near (NIR) infrared spectroscopies and partial least squares (PLS) regression. A 70% (v/v) ethanolic extract of red cabbage was concentrated to 9° Brix and further diluted (12 to 100%) in water. The dilutions were used as external standards for the building of PLS models. For the first time, this strategy was applied for building multivariate regression models. Reference analyses and spectral data were obtained from diluted extracts. The determinate properties were total and monomeric anthocyanins, total polyphenols and antioxidant capacity by ABTS (2,2-azino-bis(3-ethyl-benzothiazoline-6-sulfonate)) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods. Ordered predictors selection (OPS) and genetic algorithm (GA) were used for feature selection before PLS regression (PLS-1). In addition, a PLS-2 regression was applied to all properties simultaneously. PLS-1 models provided more predictive models than did PLS-2 regression. PLS-OPS and PLS-GA models presented excellent prediction results with a correlation coefficient higher than 0.98. However, the best models were obtained using PLS and variable selection with the OPS algorithm and the models based on NIR spectra were considered more predictive for all properties. Then, these models provided a simple, rapid and accurate method for determination of red cabbage extract antioxidant properties and its suitability for use in the food industry.
MANCOVA for one way classification with homogeneity of regression coefficient vectors
NASA Astrophysics Data System (ADS)
Mokesh Rayalu, G.; Ravisankar, J.; Mythili, G. Y.
2017-11-01
The MANOVA and MANCOVA are the extensions of the univariate ANOVA and ANCOVA techniques to multidimensional or vector valued observations. The assumption of a Gaussian distribution has been replaced with the Multivariate Gaussian distribution for the vectors data and residual term variables in the statistical models of these techniques. The objective of MANCOVA is to determine if there are statistically reliable mean differences that can be demonstrated between groups later modifying the newly created variable. When randomization assignment of samples or subjects to groups is not possible, multivariate analysis of covariance (MANCOVA) provides statistical matching of groups by adjusting dependent variables as if all subjects scored the same on the covariates. In this research article, an extension has been made to the MANCOVA technique with more number of covariates and homogeneity of regression coefficient vectors is also tested.
Madaniyazi, Lina; Guo, Yuming; Chen, Renjie; Kan, Haidong; Tong, Shilu
2016-01-01
Estimating the burden of mortality associated with particulates requires knowledge of exposure-response associations. However, the evidence on exposure-response associations is limited in many cities, especially in developing countries. In this study, we predicted associations of particulates smaller than 10 μm in aerodynamic diameter (PM10) with mortality in 73 Chinese cities. The meta-regression model was used to test and quantify which city-specific characteristics contributed significantly to the heterogeneity of PM10-mortality associations for 16 Chinese cities. Then, those city-specific characteristics with statistically significant regression coefficients were treated as independent variables to build multivariate meta-regression models. The model with the best fitness was used to predict PM10-mortality associations in 73 Chinese cities in 2010. Mean temperature, PM10 concentration and green space per capita could best explain the heterogeneity in PM10-mortality associations. Based on city-specific characteristics, we were able to develop multivariate meta-regression models to predict associations between air pollutants and health outcomes reasonably well. Copyright © 2015 Elsevier Ltd. All rights reserved.
Guan, Yongtao; Li, Yehua; Sinha, Rajita
2011-01-01
In a cocaine dependence treatment study, we use linear and nonlinear regression models to model posttreatment cocaine craving scores and first cocaine relapse time. A subset of the covariates are summary statistics derived from baseline daily cocaine use trajectories, such as baseline cocaine use frequency and average daily use amount. These summary statistics are subject to estimation error and can therefore cause biased estimators for the regression coefficients. Unlike classical measurement error problems, the error we encounter here is heteroscedastic with an unknown distribution, and there are no replicates for the error-prone variables or instrumental variables. We propose two robust methods to correct for the bias: a computationally efficient method-of-moments-based method for linear regression models and a subsampling extrapolation method that is generally applicable to both linear and nonlinear regression models. Simulations and an application to the cocaine dependence treatment data are used to illustrate the efficacy of the proposed methods. Asymptotic theory and variance estimation for the proposed subsampling extrapolation method and some additional simulation results are described in the online supplementary material. PMID:21984854
Tu, Yu-Kang; Krämer, Nicole; Lee, Wen-Chung
2012-07-01
In the analysis of trends in health outcomes, an ongoing issue is how to separate and estimate the effects of age, period, and cohort. As these 3 variables are perfectly collinear by definition, regression coefficients in a general linear model are not unique. In this tutorial, we review why identification is a problem, and how this problem may be tackled using partial least squares and principal components regression analyses. Both methods produce regression coefficients that fulfill the same collinearity constraint as the variables age, period, and cohort. We show that, because the constraint imposed by partial least squares and principal components regression is inherent in the mathematical relation among the 3 variables, this leads to more interpretable results. We use one dataset from a Taiwanese health-screening program to illustrate how to use partial least squares regression to analyze the trends in body heights with 3 continuous variables for age, period, and cohort. We then use another dataset of hepatocellular carcinoma mortality rates for Taiwanese men to illustrate how to use partial least squares regression to analyze tables with aggregated data. We use the second dataset to show the relation between the intrinsic estimator, a recently proposed method for the age-period-cohort analysis, and partial least squares regression. We also show that the inclusion of all indicator variables provides a more consistent approach. R code for our analyses is provided in the eAppendix.
To, Minh-Son; Prakash, Shivesh; Poonnoose, Santosh I; Bihari, Shailesh
2018-05-01
The study uses meta-regression analysis to quantify the dose-dependent effects of statin pharmacotherapy on vasospasm, delayed ischemic neurologic deficits (DIND), and mortality in aneurysmal subarachnoid hemorrhage. Prospective, retrospective observational studies, and randomized controlled trials (RCTs) were retrieved by a systematic database search. Summary estimates were expressed as absolute risk (AR) for a given statin dose or control (placebo). Meta-regression using inverse variance weighting and robust variance estimation was performed to assess the effect of statin dose on transformed AR in a random effects model. Dose-dependence of predicted AR with 95% confidence interval (CI) was recovered by using Miller's Freeman-Tukey inverse. The database search and study selection criteria yielded 18 studies (2594 patients) for analysis. These included 12 RCTs, 4 retrospective observational studies, and 2 prospective observational studies. Twelve studies investigated simvastatin, whereas the remaining studies investigated atorvastatin, pravastatin, or pitavastatin, with simvastatin-equivalent doses ranging from 20 to 80 mg. Meta-regression revealed dose-dependent reductions in Freeman-Tukey-transformed AR of vasospasm (slope coefficient -0.00404, 95% CI -0.00720 to -0.00087; P = 0.0321), DIND (slope coefficient -0.00316, 95% CI -0.00586 to -0.00047; P = 0.0392), and mortality (slope coefficient -0.00345, 95% CI -0.00623 to -0.00067; P = 0.0352). The present meta-regression provides weak evidence for dose-dependent reductions in vasospasm, DIND and mortality associated with acute statin use after aneurysmal subarachnoid hemorrhage. However, the analysis was limited by substantial heterogeneity among individual studies. Greater dosing strategies are a potential consideration for future RCTs. Copyright © 2018 Elsevier Inc. All rights reserved.
Lu, Lee-Jane W.; Nishino, Thomas K.; Khamapirad, Tuenchit; Grady, James J; Leonard, Morton H.; Brunder, Donald G.
2009-01-01
Breast density (the percentage of fibroglandular tissue in the breast) has been suggested to be a useful surrogate marker for breast cancer risk. It is conventionally measured using screen-film mammographic images by a labor intensive histogram segmentation method (HSM). We have adapted and modified the HSM for measuring breast density from raw digital mammograms acquired by full-field digital mammography. Multiple regression model analyses showed that many of the instrument parameters for acquiring the screening mammograms (e.g. breast compression thickness, radiological thickness, radiation dose, compression force, etc) and image pixel intensity statistics of the imaged breasts were strong predictors of the observed threshold values (model R2=0.93) and %density (R2=0.84). The intra-class correlation coefficient of the %-density for duplicate images was estimated to be 0.80, using the regression model-derived threshold values, and 0.94 if estimated directly from the parameter estimates of the %-density prediction regression model. Therefore, with additional research, these mathematical models could be used to compute breast density objectively, automatically bypassing the HSM step, and could greatly facilitate breast cancer research studies. PMID:17671343
NASA Astrophysics Data System (ADS)
Chen, Hua-cai; Chen, Xing-dan; Lu, Yong-jun; Cao, Zhi-qiang
2006-01-01
Near infrared (NIR) reflectance spectroscopy was used to develop a fast determination method for total ginsenosides in Ginseng (Panax Ginseng) powder. The spectra were analyzed with multiplicative signal correction (MSC) correlation method. The best correlative spectra region with the total ginsenosides content was 1660 nm~1880 nm and 2230nm~2380 nm. The NIR calibration models of ginsenosides were built with multiple linear regression (MLR), principle component regression (PCR) and partial least squares (PLS) regression respectively. The results showed that the calibration model built with PLS combined with MSC and the optimal spectrum region was the best one. The correlation coefficient and the root mean square error of correction validation (RMSEC) of the best calibration model were 0.98 and 0.15% respectively. The optimal spectrum region for calibration was 1204nm~2014nm. The result suggested that using NIR to rapidly determinate the total ginsenosides content in ginseng powder were feasible.
Forecast model applications of retrieved three dimensional liquid water fields
NASA Technical Reports Server (NTRS)
Raymond, William H.; Olson, William S.
1990-01-01
Forecasts are made for tropical storm Emily using heating rates derived from the SSM/I physical retrievals described in chapters 2 and 3. Average values of the latent heating rates from the convective and stratiform cloud simulations, used in the physical retrieval, are obtained for individual 1.1 km thick vertical layers. Then, the layer-mean latent heating rates are regressed against the slant path-integrated liquid and ice precipitation water contents to determine the best fit two parameter regression coefficients for each layer. The regression formulae and retrieved precipitation water contents are utilized to infer the vertical distribution of heating rates for forecast model applications. In the forecast model, diabatic temperature contributions are calculated and used in a diabatic initialization, or in a diabatic initialization combined with a diabatic forcing procedure. Our forecasts show that the time needed to spin-up precipitation processes in tropical storm Emily is greatly accelerated through the application of the data.
Straub, David E.; Ebner, Andrew D.
2011-01-01
The USGS, in cooperation with the Chippewa Subdistrict of the Muskingum Watershed Conservancy District, performed hydrologic and hydraulic analyses for selected reaches of three streams in Medina, Wayne, Stark, and Summit Counties in northeast Ohio: Chippewa Creek, Little Chippewa Creek, and River Styx. This study was done to facilitate assessment of various alternatives for mitigating flood hazards in the Chippewa Creek basin. StreamStats regional regression equations were used to estimate instantaneous peak discharges approximately corresponding to bankfull flows. Explanatory variables used in the regression equations were drainage area, main-channel slope, and storage area. Hydraulic models were developed to determine water-surface profiles along the three stream reaches studied for the bankfull discharges established in the hydrologic analyses. The HEC-RAS step-backwater hydraulic analysis model was used to determine water-surface profiles for the three streams. Starting water-surface elevations for all streams were established using normal depth computations in the HEC-RAS models. Cross-sectional elevation data, hydraulic-structure geometries, and roughness coefficients were collected in the field and (along with peak-discharge estimates) used as input for the models. Reach-averaged reductions in water-surface elevations ranged from 0.11 to 1.29 feet over the four roughness coefficient reduction scenarios.
Towards molecular design using 2D-molecular contour maps obtained from PLS regression coefficients
NASA Astrophysics Data System (ADS)
Borges, Cleber N.; Barigye, Stephen J.; Freitas, Matheus P.
2017-12-01
The multivariate image analysis descriptors used in quantitative structure-activity relationships are direct representations of chemical structures as they are simply numerical decodifications of pixels forming the 2D chemical images. These MDs have found great utility in the modeling of diverse properties of organic molecules. Given the multicollinearity and high dimensionality of the data matrices generated with the MIA-QSAR approach, modeling techniques that involve the projection of the data space onto orthogonal components e.g. Partial Least Squares (PLS) have been generally used. However, the chemical interpretation of the PLS-based MIA-QSAR models, in terms of the structural moieties affecting the modeled bioactivity has not been straightforward. This work describes the 2D-contour maps based on the PLS regression coefficients, as a means of assessing the relevance of single MIA predictors to the response variable, and thus allowing for the structural, electronic and physicochemical interpretation of the MIA-QSAR models. A sample study to demonstrate the utility of the 2D-contour maps to design novel drug-like molecules is performed using a dataset of some anti-HIV-1 2-amino-6-arylsulfonylbenzonitriles and derivatives, and the inferences obtained are consistent with other reports in the literature. In addition, the different schemes for encoding atomic properties in molecules are discussed and evaluated.
The Evaluation on the Cadmium Net Concentration for Soil Ecosystems.
Yao, Yu; Wang, Pei-Fang; Wang, Chao; Hou, Jun; Miao, Ling-Zhan
2017-03-12
Yixing, known as the "City of Ceramics", is facing a new dilemma: a raw material crisis. Cadmium (Cd) exists in extremely high concentrations in soil due to the considerable input of industrial wastewater into the soil ecosystem. The in situ technique of diffusive gradients in thin film (DGT), the ex situ static equilibrium approach (HAc, EDTA and CaCl2), and the dissolved concentration in soil solution, as well as microwave digestion, were applied to predict the Cd bioavailability of soil, aiming to provide a robust and accurate method for Cd bioavailability evaluation in Yixing. Moreover, the typical local cash crops-paddy and zizania aquatica-were selected for Cd accumulation, aiming to select the ideal plants with tolerance to the soil Cd contamination. The results indicated that the biomasses of the two applied plants were sufficiently sensitive to reflect the stark regional differences of different sampling sites. The zizania aquatica could effectively reduce the total Cd concentration, as indicated by the high accumulation coefficients. However, the fact that the zizania aquatica has extremely high transfer coefficients, and its stem, as the edible part, might accumulate large amounts of Cd, led to the conclusion that zizania aquatica was not an ideal cash crop in Yixing. Furthermore, the labile Cd concentrations which were obtained by the DGT technique and dissolved in the soil solution showed a significant correlation with the Cd concentrations of the biota accumulation. However, the ex situ methods and the microwave digestion-obtained Cd concentrations showed a poor correlation with the accumulated Cd concentration in plant tissue. Correspondingly, the multiple linear regression models were built for fundamental analysis of the performance of different methods available for Cd bioavailability evaluation. The correlation coefficients of DGT obtained by the improved multiple linear regression model have not significantly improved compared to the coefficients obtained by the simple linear regression model. The results revealed that DGT was a robust measurement, which could obtain the labile Cd concentrations independent of the physicochemical features' variation in the soil ecosystem. Consequently, these findings provide stronger evidence that DGT is an effective and ideal tool for labile Cd evaluation in Yixing.
The Evaluation on the Cadmium Net Concentration for Soil Ecosystems
Yao, Yu; Wang, Pei-Fang; Wang, Chao; Hou, Jun; Miao, Ling-Zhan
2017-01-01
Yixing, known as the “City of Ceramics”, is facing a new dilemma: a raw material crisis. Cadmium (Cd) exists in extremely high concentrations in soil due to the considerable input of industrial wastewater into the soil ecosystem. The in situ technique of diffusive gradients in thin film (DGT), the ex situ static equilibrium approach (HAc, EDTA and CaCl2), and the dissolved concentration in soil solution, as well as microwave digestion, were applied to predict the Cd bioavailability of soil, aiming to provide a robust and accurate method for Cd bioavailability evaluation in Yixing. Moreover, the typical local cash crops—paddy and zizania aquatica—were selected for Cd accumulation, aiming to select the ideal plants with tolerance to the soil Cd contamination. The results indicated that the biomasses of the two applied plants were sufficiently sensitive to reflect the stark regional differences of different sampling sites. The zizania aquatica could effectively reduce the total Cd concentration, as indicated by the high accumulation coefficients. However, the fact that the zizania aquatica has extremely high transfer coefficients, and its stem, as the edible part, might accumulate large amounts of Cd, led to the conclusion that zizania aquatica was not an ideal cash crop in Yixing. Furthermore, the labile Cd concentrations which were obtained by the DGT technique and dissolved in the soil solution showed a significant correlation with the Cd concentrations of the biota accumulation. However, the ex situ methods and the microwave digestion-obtained Cd concentrations showed a poor correlation with the accumulated Cd concentration in plant tissue. Correspondingly, the multiple linear regression models were built for fundamental analysis of the performance of different methods available for Cd bioavailability evaluation. The correlation coefficients of DGT obtained by the improved multiple linear regression model have not significantly improved compared to the coefficients obtained by the simple linear regression model. The results revealed that DGT was a robust measurement, which could obtain the labile Cd concentrations independent of the physicochemical features’ variation in the soil ecosystem. Consequently, these findings provide stronger evidence that DGT is an effective and ideal tool for labile Cd evaluation in Yixing. PMID:28287500
Huang, L; Fantke, P; Ernstoff, A; Jolliet, O
2017-11-01
Indoor releases of organic chemicals encapsulated in solid materials are major contributors to human exposures and are directly related to the internal diffusion coefficient in solid materials. Existing correlations to estimate the diffusion coefficient are only valid for a limited number of chemical-material combinations. This paper develops and evaluates a quantitative property-property relationship (QPPR) to predict diffusion coefficients for a wide range of organic chemicals and materials. We first compiled a training dataset of 1103 measured diffusion coefficients for 158 chemicals in 32 consolidated material types. Following a detailed analysis of the temperature influence, we developed a multiple linear regression model to predict diffusion coefficients as a function of chemical molecular weight (MW), temperature, and material type (adjusted R 2 of .93). The internal validations showed the model to be robust, stable and not a result of chance correlation. The external validation against two separate prediction datasets demonstrated the model has good predicting ability within its applicability domain (Rext2>.8), namely MW between 30 and 1178 g/mol and temperature between 4 and 180°C. By covering a much wider range of organic chemicals and materials, this QPPR facilitates high-throughput estimates of human exposures for chemicals encapsulated in solid materials. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A hierarchical estimator development for estimation of tire-road friction coefficient
Zhang, Xudong; Göhlich, Dietmar
2017-01-01
The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN) and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified “magic formula” tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method. PMID:28178332
A hierarchical estimator development for estimation of tire-road friction coefficient.
Zhang, Xudong; Göhlich, Dietmar
2017-01-01
The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN) and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified "magic formula" tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method.
A primer for biomedical scientists on how to execute model II linear regression analysis.
Ludbrook, John
2012-04-01
1. There are two very different ways of executing linear regression analysis. One is Model I, when the x-values are fixed by the experimenter. The other is Model II, in which the x-values are free to vary and are subject to error. 2. I have received numerous complaints from biomedical scientists that they have great difficulty in executing Model II linear regression analysis. This may explain the results of a Google Scholar search, which showed that the authors of articles in journals of physiology, pharmacology and biochemistry rarely use Model II regression analysis. 3. I repeat my previous arguments in favour of using least products linear regression analysis for Model II regressions. I review three methods for executing ordinary least products (OLP) and weighted least products (WLP) regression analysis: (i) scientific calculator and/or computer spreadsheet; (ii) specific purpose computer programs; and (iii) general purpose computer programs. 4. Using a scientific calculator and/or computer spreadsheet, it is easy to obtain correct values for OLP slope and intercept, but the corresponding 95% confidence intervals (CI) are inaccurate. 5. Using specific purpose computer programs, the freeware computer program smatr gives the correct OLP regression coefficients and obtains 95% CI by bootstrapping. In addition, smatr can be used to compare the slopes of OLP lines. 6. When using general purpose computer programs, I recommend the commercial programs systat and Statistica for those who regularly undertake linear regression analysis and I give step-by-step instructions in the Supplementary Information as to how to use loss functions. © 2011 The Author. Clinical and Experimental Pharmacology and Physiology. © 2011 Blackwell Publishing Asia Pty Ltd.
Modelling the co-evolution of indirect genetic effects and inherited variability.
Marjanovic, Jovana; Mulder, Han A; Rönnegård, Lars; Bijma, Piter
2018-03-28
When individuals interact, their phenotypes may be affected not only by their own genes but also by genes in their social partners. This phenomenon is known as Indirect Genetic Effects (IGEs). In aquaculture species and some plants, however, competition not only affects trait levels of individuals, but also inflates variability of trait values among individuals. In the field of quantitative genetics, the variability of trait values has been studied as a quantitative trait in itself, and is often referred to as inherited variability. Such studies, however, consider only the genetic effect of the focal individual on trait variability and do not make a connection to competition. Although the observed phenotypic relationship between competition and variability suggests an underlying genetic relationship, the current quantitative genetic models of IGE and inherited variability do not allow for such a relationship. The lack of quantitative genetic models that connect IGEs to inherited variability limits our understanding of the potential of variability to respond to selection, both in nature and agriculture. Models of trait levels, for example, show that IGEs may considerably change heritable variation in trait values. Currently, we lack the tools to investigate whether this result extends to variability of trait values. Here we present a model that integrates IGEs and inherited variability. In this model, the target phenotype, say growth rate, is a function of the genetic and environmental effects of the focal individual and of the difference in trait value between the social partner and the focal individual, multiplied by a regression coefficient. The regression coefficient is a genetic trait, which is a measure of cooperation; a negative value indicates competition, a positive value cooperation, and an increasing value due to selection indicates the evolution of cooperation. In contrast to the existing quantitative genetic models, our model allows for co-evolution of IGEs and variability, as the regression coefficient can respond to selection. Our simulations show that the model results in increased variability of body weight with increasing competition. When competition decreases, i.e., cooperation evolves, variability becomes significantly smaller. Hence, our model facilitates quantitative genetic studies on the relationship between IGEs and inherited variability. Moreover, our findings suggest that we may have been overlooking an entire level of genetic variation in variability, the one due to IGEs.
Assessing LULC changes over Chilika Lake watershed in Eastern India using Driving Force Analysis
NASA Astrophysics Data System (ADS)
Jadav, S.; Syed, T. H.
2017-12-01
Rapid population growth and industrial development has brought about significant changes in Land Use Land Cover (LULC) of many developing countries in the world. This study investigates LULC changes in the Chilika Lake watershed of Eastern India for the period of 1988 to 2016. The methodology involves pre-processing and classification of Landsat satellite images using support vector machine (SVM) supervised classification algorithm. Results reveal that `Cropland', `Emergent Vegetation' and `Settlement' has expanded over the study period by 284.61 km², 106.83 km² and 98.83 km² respectively. Contemporaneously, `Lake Area', `Vegetation' and `Scrub Land' have decreased by 121.62 km², 96.05 km² and 80.29 km² respectively. This study also analyzes five major driving force variables of socio-economic and climatological factors triggering LULC changes through a bivariate logistic regression model. The outcome gives credible relative operating characteristics (ROC) value of 0.76 that indicate goodness fit of logistic regression model. In addition, independent variables like distance to drainage network and average annual rainfall have negative regression coefficient values that represent decreased rate of dependent variable (changed LULC) whereas independent variables (population density, distance to road and distance to railway) have positive regression coefficient indicates increased rate of changed LULC . Results from this study will be crucial for planning and restoration of this vital lake water body that has major implications over the society and environment at large.
NASA Astrophysics Data System (ADS)
Yan, B.; Fang, N. F.; Zhang, P. C.; Shi, Z. H.
2013-03-01
SummaryUnderstanding how changes in individual land use types influence the dynamics of streamflow and sediment yield would greatly improve the predictability of the hydrological consequences of land use changes and could thus help stakeholders to make better decisions. Multivariate statistics are commonly used to compare individual land use types to control the dynamics of streamflow or sediment yields. However, one issue with the use of conventional statistical methods to address relationships between land use types and streamflow or sediment yield is multicollinearity. In this study, an integrated approach involving hydrological modelling and partial least squares regression (PLSR) was used to quantify the contributions of changes in individual land use types to changes in streamflow and sediment yield. In a case study, hydrological modelling was conducted using land use maps from four time periods (1978, 1987, 1999, and 2007) for the Upper Du watershed (8973 km2) in China using the Soil and Water Assessment Tool (SWAT). Changes in streamflow and sediment yield across the two simulations conducted using the land use maps from 2007 to 1978 were found to be related to land use changes according to a PLSR, which was used to quantify the effect of this influence at the sub-basin scale. The major land use changes that affected streamflow in the studied catchment areas were related to changes in the farmland, forest and urban areas between 1978 and 2007; the corresponding regression coefficients were 0.232, -0.147 and 1.256, respectively, and the Variable Influence on Projection (VIP) was greater than 1. The dominant first-order factors affecting the changes in sediment yield in our study were: farmland (the VIP and regression coefficient were 1.762 and 14.343, respectively) and forest (the VIP and regression coefficient were 1.517 and -7.746, respectively). The PLSR methodology presented in this paper is beneficial and novel, as it partially eliminates the co-dependency of the variables and facilitates a more unbiased view of the contribution of the changes in individual land use types to changes in streamflow and sediment yield. This practicable and simple approach could be applied to a variety of other watersheds for which time-sequenced digital land use maps are available.
Mapping health outcome measures from a stroke registry to EQ-5D weights
2013-01-01
Purpose To map health outcome related variables from a national register, not part of any validated instrument, with EQ-5D weights among stroke patients. Methods We used two cross-sectional data sets including patient characteristics, outcome variables and EQ-5D weights from the national Swedish stroke register. Three regression techniques were used on the estimation set (n = 272): ordinary least squares (OLS), Tobit, and censored least absolute deviation (CLAD). The regression coefficients for “dressing“, “toileting“, “mobility”, “mood”, “general health” and “proxy-responders” were applied to the validation set (n = 272), and the performance was analysed with mean absolute error (MAE) and mean square error (MSE). Results The number of statistically significant coefficients varied by model, but all models generated consistent coefficients in terms of sign. Mean utility was underestimated in all models (least in OLS) and with lower variation (least in OLS) compared to the observed. The maximum attainable EQ-5D weight ranged from 0.90 (OLS) to 1.00 (Tobit and CLAD). Health states with utility weights <0.5 had greater errors than those with weights ≥0.5 (P < 0.01). Conclusion This study indicates that it is possible to map non-validated health outcome measures from a stroke register into preference-based utilities to study the development of stroke care over time, and to compare with other conditions in terms of utility. PMID:23496957
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew G. Peterson; J. Timothy Ball; Yiqi Luo
1998-09-25
Estimation of leaf photosynthetic rate (A) from leaf nitrogen content (N) is both conceptually and numerically important in models of plant, ecosystem and biosphere responses to global change. The relationship between A and N has been studied extensively at ambient CO{sub 2} but much less at elevated CO{sub 2}. This study was designed to (1) assess whether the A-N relationship was more similar for species within than between community and vegetation types, and (2) examine how growth at elevated CO{sub 2} affects the A-N relationship. Data were obtained for 39 C{sub 3} species grown at ambient CO{sub 2} and 10more » C{sub 3} species grown at ambient and elevated CO{sub 2}. A regression model was applied to each species as well as to species pooled within different community and vegetation types. Cluster analysis of the regression coefficients indicated that species measured at ambient CO{sub 2} did not separate into distinct groups matching community or vegetation type. Instead, most community and vegetation types shared the same general parameter space for regression coefficients. Growth at elevated CO{sub 2} increased photosynthetic nitrogen use efficiency for pines and deciduous trees. When species were pooled by vegetation type, the A-N relationship for deciduous trees expressed on a leaf-mass bask was not altered by elevated CO{sub 2}, while the intercept increased for pines. When regression coefficients were averaged to give mean responses for different vegetation types, elevated CO{sub 2} increased the intercept and the slope for deciduous trees but increased only the intercept for pines. There were no statistical differences between the pines and deciduous trees for the effect of CO{sub 2}. Generalizations about the effect of elevated CO{sub 2} on the A-N relationship, and differences between pines and deciduous trees will be enhanced as more data become available.« less
Kitagawa, Yasuhisa; Teramoto, Tamio; Daida, Hiroyuki
2012-01-01
We evaluated the impact of adherence to preferable behavior on serum lipid control assessed by a self-reported questionnaire in high-risk patients taking pravastatin for primary prevention of coronary artery disease. High-risk patients taking pravastatin were followed for 2 years. Questionnaire surveys comprising 21 questions, including 18 questions concerning awareness of health, and current status of diet, exercise, and drug therapy, were conducted at baseline and after 1 year. Potential domains were established by factor analysis from the results of questionnaires, and adherence scores were calculated in each domain. The relationship between adherence scores and lipid values during the 1-year treatment period was analyzed by each domain using multiple regression analysis. A total of 5,792 patients taking pravastatin were included in the analysis. Multiple regression analysis showed a significant correlation in terms of "Intake of high fat/cholesterol/sugar foods" (regression coefficient -0.58, p=0.0105) and "Adherence to instructions for drug therapy" (regression coefficient -6.61, p<0.0001). Low-density lipoprotein cholesterol (LDL-C) values were significantly lower in patients who had an increase in the adherence score in the "Awareness of health" domain compared with those with a decreased score. There was a significant correlation between high-density lipoprotein (HDL-C) values and "Awareness of health" (regression coefficient 0.26; p= 0.0037), "Preferable dietary behaviors" (regression coefficient 0.75; p<0.0001), and "Exercise" (regression coefficient 0.73; p= 0.0002). Similar relations were seen with triglycerides. In patients who have a high awareness of their health, a positive attitude toward lipid-lowering treatment including diet, exercise, and high adherence to drug therapy, is related with favorable overall lipid control even in patients under treatment with pravastatin.
Hunter, Paul R
2009-12-01
Household water treatment (HWT) is being widely promoted as an appropriate intervention for reducing the burden of waterborne disease in poor communities in developing countries. A recent study has raised concerns about the effectiveness of HWT, in part because of concerns over the lack of blinding and in part because of considerable heterogeneity in the reported effectiveness of randomized controlled trials. This study set out to attempt to investigate the causes of this heterogeneity and so identify factors associated with good health gains. Studies identified in an earlier systematic review and meta-analysis were supplemented with more recently published randomized controlled trials. A total of 28 separate studies of randomized controlled trials of HWT with 39 intervention arms were included in the analysis. Heterogeneity was studied using the "metareg" command in Stata. Initial analyses with single candidate predictors were undertaken and all variables significant at the P < 0.2 level were included in a final regression model. Further analyses were done to estimate the effect of the interventions over time by MonteCarlo modeling using @Risk and the parameter estimates from the final regression model. The overall effect size of all unblinded studies was relative risk = 0.56 (95% confidence intervals 0.51-0.63), but after adjusting for bias due to lack of blinding the effect size was much lower (RR = 0.85, 95% CI = 0.76-0.97). Four main variables were significant predictors of effectiveness of intervention in a multipredictor meta regression model: Log duration of study follow-up (regression coefficient of log effect size = 0.186, standard error (SE) = 0.072), whether or not the study was blinded (coefficient 0.251, SE 0.066) and being conducted in an emergency setting (coefficient -0.351, SE 0.076) were all significant predictors of effect size in the final model. Compared to the ceramic filter all other interventions were much less effective (Biosand 0.247, 0.073; chlorine and safe waste storage 0.295, 0.061; combined coagulant-chlorine 0.2349, 0.067; SODIS 0.302, 0.068). A Monte Carlo model predicted that over 12 months ceramic filters were likely to be still effective at reducing disease, whereas SODIS, chlorination, and coagulation-chlorination had little if any benefit. Indeed these three interventions are predicted to have the same or less effect than what may be expected due purely to reporting bias in unblinded studies With the currently available evidence ceramic filters are the most effective form of HWT in the longterm, disinfection-only interventions including SODIS appear to have poor if any longterm public health benefit.
Variable-Domain Functional Regression for Modeling ICU Data.
Gellar, Jonathan E; Colantuoni, Elizabeth; Needham, Dale M; Crainiceanu, Ciprian M
2014-12-01
We introduce a class of scalar-on-function regression models with subject-specific functional predictor domains. The fundamental idea is to consider a bivariate functional parameter that depends both on the functional argument and on the width of the functional predictor domain. Both parametric and nonparametric models are introduced to fit the functional coefficient. The nonparametric model is theoretically and practically invariant to functional support transformation, or support registration. Methods were motivated by and applied to a study of association between daily measures of the Intensive Care Unit (ICU) Sequential Organ Failure Assessment (SOFA) score and two outcomes: in-hospital mortality, and physical impairment at hospital discharge among survivors. Methods are generally applicable to a large number of new studies that record a continuous variables over unequal domains.
Performance characterization of complex fuel port geometries for hybrid rocket fuel grains
NASA Astrophysics Data System (ADS)
Bath, Andrew
This research investigated the 3D printing and burning of fuel grains with complex geometry and the development of software capable of modeling and predicting the regression of a cross-section of these complex fuel grains. The software developed did predict the geometry to a fair degree of accuracy, especially when enhanced corner rounding was turned on. The model does have some drawbacks, notably being relatively slow, and does not perfectly predict the regression. If corner rounding is turned off, however, the model does become much faster; although less accurate, this method does still predict a relatively accurate resulting burn geometry, and is fast enough to be used for performance-tuning or genetic algorithms. In addition to the modeling method, preliminary investigations into the burning behavior of fuel grains with a helical flow path were performed. The helix fuel grains have a regression rate of nearly 3 times that of any other fuel grain geometry, primarily due to the enhancement of the friction coefficient between the flow and flow path.
Foglia, L.; Hill, Mary C.; Mehl, Steffen W.; Burlando, P.
2009-01-01
We evaluate the utility of three interrelated means of using data to calibrate the fully distributed rainfall‐runoff model TOPKAPI as applied to the Maggia Valley drainage area in Switzerland. The use of error‐based weighting of observation and prior information data, local sensitivity analysis, and single‐objective function nonlinear regression provides quantitative evaluation of sensitivity of the 35 model parameters to the data, identification of data types most important to the calibration, and identification of correlations among parameters that contribute to nonuniqueness. Sensitivity analysis required only 71 model runs, and regression required about 50 model runs. The approach presented appears to be ideal for evaluation of models with long run times or as a preliminary step to more computationally demanding methods. The statistics used include composite scaled sensitivities, parameter correlation coefficients, leverage, Cook's D, and DFBETAS. Tests suggest predictive ability of the calibrated model typical of hydrologic models.
Daily magnesium intake and serum magnesium concentration among Japanese people.
Akizawa, Yoriko; Koizumi, Sadayuki; Itokawa, Yoshinori; Ojima, Toshiyuki; Nakamura, Yosikazu; Tamura, Tarou; Kusaka, Yukinori
2008-01-01
The vitamins and minerals that are deficient in the daily diet of a normal adult remain unknown. To answer this question, we conducted a population survey focusing on the relationship between dietary magnesium intake and serum magnesium level. The subjects were 62 individuals from Fukui Prefecture who participated in the 1998 National Nutrition Survey. The survey investigated the physical status, nutritional status, and dietary data of the subjects. Holidays and special occasions were avoided, and a day when people are most likely to be on an ordinary diet was selected as the survey date. The mean (+/-standard deviation) daily magnesium intake was 322 (+/-132), 323 (+/-163), and 322 (+/-147) mg/day for men, women, and the entire group, respectively. The mean (+/-standard deviation) serum magnesium concentration was 20.69 (+/-2.83), 20.69 (+/-2.88), and 20.69 (+/-2.83) ppm for men, women, and the entire group, respectively. The distribution of serum magnesium concentration was normal. Dietary magnesium intake showed a log-normal distribution, which was then transformed by logarithmic conversion for examining the regression coefficients. The slope of the regression line between the serum magnesium concentration (Y ppm) and daily magnesium intake (X mg) was determined using the formula Y = 4.93 (log(10)X) + 8.49. The coefficient of correlation (r) was 0.29. A regression line (Y = 14.65X + 19.31) was observed between the daily intake of magnesium (Y mg) and serum magnesium concentration (X ppm). The coefficient of correlation was 0.28. The daily magnesium intake correlated with serum magnesium concentration, and a linear regression model between them was proposed.
The Use of Shrinkage Techniques in the Estimation of Attrition Rates for Large Scale Manpower Models
1988-07-27
auto regressive model combined with a linear program that solves for the coefficients using MAD. But this success has diminished with time (Rowe...8217Harrison-Stevens Forcasting and the Multiprocess Dy- namic Linear Model ", The American Statistician, v.40, pp. 12 9 - 1 3 5 . 1986. 8. Box, G. E. P. and...1950. 40. McCullagh, P. and Nelder, J., Generalized Linear Models , Chapman and Hall. 1983. 41. McKenzie, E. General Exponential Smoothing and the
Gene expression models for prediction of longitudinal dispersion coefficient in streams
NASA Astrophysics Data System (ADS)
Sattar, Ahmed M. A.; Gharabaghi, Bahram
2015-05-01
Longitudinal dispersion is the key hydrologic process that governs transport of pollutants in natural streams. It is critical for spill action centers to be able to predict the pollutant travel time and break-through curves accurately following accidental spills in urban streams. This study presents a novel gene expression model for longitudinal dispersion developed using 150 published data sets of geometric and hydraulic parameters in natural streams in the United States, Canada, Europe, and New Zealand. The training and testing of the model were accomplished using randomly-selected 67% (100 data sets) and 33% (50 data sets) of the data sets, respectively. Gene expression programming (GEP) is used to develop empirical relations between the longitudinal dispersion coefficient and various control variables, including the Froude number which reflects the effect of reach slope, aspect ratio, and the bed material roughness on the dispersion coefficient. Two GEP models have been developed, and the prediction uncertainties of the developed GEP models are quantified and compared with those of existing models, showing improved prediction accuracy in favor of GEP models. Finally, a parametric analysis is performed for further verification of the developed GEP models. The main reason for the higher accuracy of the GEP models compared to the existing regression models is that exponents of the key variables (aspect ratio and bed material roughness) are not constants but a function of the Froude number. The proposed relations are both simple and accurate and can be effectively used to predict the longitudinal dispersion coefficients in natural streams.
Mohd Yusof, Mohd Yusmiaidil Putera; Cauwels, Rita; Deschepper, Ellen; Martens, Luc
2015-08-01
The third molar development (TMD) has been widely utilized as one of the radiographic method for dental age estimation. By using the same radiograph of the same individual, third molar eruption (TME) information can be incorporated to the TMD regression model. This study aims to evaluate the performance of dental age estimation in individual method models and the combined model (TMD and TME) based on the classic regressions of multiple linear and principal component analysis. A sample of 705 digital panoramic radiographs of Malay sub-adults aged between 14.1 and 23.8 years was collected. The techniques described by Gleiser and Hunt (modified by Kohler) and Olze were employed to stage the TMD and TME, respectively. The data was divided to develop three respective models based on the two regressions of multiple linear and principal component analysis. The trained models were then validated on the test sample and the accuracy of age prediction was compared between each model. The coefficient of determination (R²) and root mean square error (RMSE) were calculated. In both genders, adjusted R² yielded an increment in the linear regressions of combined model as compared to the individual models. The overall decrease in RMSE was detected in combined model as compared to TMD (0.03-0.06) and TME (0.2-0.8). In principal component regression, low value of adjusted R(2) and high RMSE except in male were exhibited in combined model. Dental age estimation is better predicted using combined model in multiple linear regression models. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Caduff, Andreas; Talary, Mark S; Mueller, Martin; Dewarrat, Francois; Klisic, Jelena; Donath, Marc; Heinemann, Lutz; Stahel, Werner A
2009-05-15
In vivo variations of blood glucose (BG) are affecting the biophysical characteristics (e.g. dielectric and optical) of skin and underlying tissue (SAUT) at various frequencies. However, the skin impedance spectra for instance can also be affected by other factors, perturbing the glucose related information, factors such as temperature, skin moisture and sweat, blood perfusion as well as body movements affecting the sensor-skin contact. In order to be able to correct for such perturbing factors, a Multisensor system was developed including sensors to measure the identified factors. To evaluate the quality of glucose monitoring, the Multisensor was applied in 10 patients with Type 1 diabetes. Glucose was administered orally to induce hyperglycaemic excursions at two different study visits. For analysis of the sensor signals, a global multiple linear regression model was derived. The respective coefficients of the variables were determined from the sensor signals of this first study visit (R(2)=0.74, MARD=18.0%--mean absolute relative difference). The identical set of modelling coefficients of the first study visit was re-applied to the test data of the second study visit to evaluate the predictive power of the model (R(2)=0.68, MARD=27.3%). It appears as if the Multisensor together with the global linear regression model applied, allows for tracking glucose changes non-invasively in patients with diabetes without requiring new model coefficients for each visit. Confirmation of these findings in a larger study group and under less experimentally controlled conditions is required for understanding whether a global parameterisation routine is feasible.
Mixed conditional logistic regression for habitat selection studies.
Duchesne, Thierry; Fortin, Daniel; Courbin, Nicolas
2010-05-01
1. Resource selection functions (RSFs) are becoming a dominant tool in habitat selection studies. RSF coefficients can be estimated with unconditional (standard) and conditional logistic regressions. While the advantage of mixed-effects models is recognized for standard logistic regression, mixed conditional logistic regression remains largely overlooked in ecological studies. 2. We demonstrate the significance of mixed conditional logistic regression for habitat selection studies. First, we use spatially explicit models to illustrate how mixed-effects RSFs can be useful in the presence of inter-individual heterogeneity in selection and when the assumption of independence from irrelevant alternatives (IIA) is violated. The IIA hypothesis states that the strength of preference for habitat type A over habitat type B does not depend on the other habitat types also available. Secondly, we demonstrate the significance of mixed-effects models to evaluate habitat selection of free-ranging bison Bison bison. 3. When movement rules were homogeneous among individuals and the IIA assumption was respected, fixed-effects RSFs adequately described habitat selection by simulated animals. In situations violating the inter-individual homogeneity and IIA assumptions, however, RSFs were best estimated with mixed-effects regressions, and fixed-effects models could even provide faulty conclusions. 4. Mixed-effects models indicate that bison did not select farmlands, but exhibited strong inter-individual variations in their response to farmlands. Less than half of the bison preferred farmlands over forests. Conversely, the fixed-effect model simply suggested an overall selection for farmlands. 5. Conditional logistic regression is recognized as a powerful approach to evaluate habitat selection when resource availability changes. This regression is increasingly used in ecological studies, but almost exclusively in the context of fixed-effects models. Fitness maximization can imply differences in trade-offs among individuals, which can yield inter-individual differences in selection and lead to departure from IIA. These situations are best modelled with mixed-effects models. Mixed-effects conditional logistic regression should become a valuable tool for ecological research.
NASA Astrophysics Data System (ADS)
Uca; Toriman, Ekhwan; Jaafar, Othman; Maru, Rosmini; Arfan, Amal; Saleh Ahmar, Ansari
2018-01-01
Prediction of suspended sediment discharge in a catchments area is very important because it can be used to evaluation the erosion hazard, management of its water resources, water quality, hydrology project management (dams, reservoirs, and irrigation) and to determine the extent of the damage that occurred in the catchments. Multiple Linear Regression analysis and artificial neural network can be used to predict the amount of daily suspended sediment discharge. Regression analysis using the least square method, whereas artificial neural networks using Radial Basis Function (RBF) and feedforward multilayer perceptron with three learning algorithms namely Levenberg-Marquardt (LM), Scaled Conjugate Descent (SCD) and Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton (BFGS). The number neuron of hidden layer is three to sixteen, while in output layer only one neuron because only one output target. The mean absolute error (MAE), root mean square error (RMSE), coefficient of determination (R2 ) and coefficient of efficiency (CE) of the multiple linear regression (MLRg) value Model 2 (6 input variable independent) has the lowest the value of MAE and RMSE (0.0000002 and 13.6039) and highest R2 and CE (0.9971 and 0.9971). When compared between LM, SCG and RBF, the BFGS model structure 3-7-1 is the better and more accurate to prediction suspended sediment discharge in Jenderam catchment. The performance value in testing process, MAE and RMSE (13.5769 and 17.9011) is smallest, meanwhile R2 and CE (0.9999 and 0.9998) is the highest if it compared with the another BFGS Quasi-Newton model (6-3-1, 9-10-1 and 12-12-1). Based on the performance statistics value, MLRg, LM, SCG, BFGS and RBF suitable and accurately for prediction by modeling the non-linear complex behavior of suspended sediment responses to rainfall, water depth and discharge. The comparison between artificial neural network (ANN) and MLRg, the MLRg Model 2 accurately for to prediction suspended sediment discharge (kg/day) in Jenderan catchment area.
NASA Astrophysics Data System (ADS)
Moura, Ricardo; Sinha, Bimal; Coelho, Carlos A.
2017-06-01
The recent popularity of the use of synthetic data as a Statistical Disclosure Control technique has enabled the development of several methods of generating and analyzing such data, but almost always relying in asymptotic distributions and in consequence being not adequate for small sample datasets. Thus, a likelihood-based exact inference procedure is derived for the matrix of regression coefficients of the multivariate regression model, for multiply imputed synthetic data generated via Posterior Predictive Sampling. Since it is based in exact distributions this procedure may even be used in small sample datasets. Simulation studies compare the results obtained from the proposed exact inferential procedure with the results obtained from an adaptation of Reiters combination rule to multiply imputed synthetic datasets and an application to the 2000 Current Population Survey is discussed.
[Integral assessment of learning subjects difficulties].
Grebniak, N P; Shchudro, S A
2010-01-01
The integral criterion for subject difficulties in senior classes is substantiated in terms of progress in studies, variation coefficient, and subjective and expert appraisals of the difficulty of subjects. The compiled regression models adequately determine the difficulty of academic subjects. According to the root-mean-square deviation, all subjects were found to have 3 degrees of difficulty.
ERIC Educational Resources Information Center
Shieh, Gwowen
2006-01-01
This paper considers the problem of analysis of correlation coefficients from a multivariate normal population. A unified theorem is derived for the regression model with normally distributed explanatory variables and the general results are employed to provide useful expressions for the distributions of simple, multiple, and partial-multiple…
Homogenization Issues in the Combustion of Heterogeneous Solid Propellants
NASA Technical Reports Server (NTRS)
Chen, M.; Buckmaster, J.; Jackson, T. L.; Massa, L.
2002-01-01
We examine random packs of discs or spheres, models for ammonium-perchlorate-in-binder propellants, and discuss their average properties. An analytical strategy is described for calculating the mean or effective heat conduction coefficient in terms of the heat conduction coefficients of the individual components, and the results are verified by comparison with those of direct numerical simulations (dns) for both 2-D (disc) and 3-D (sphere) packs across which a temperature difference is applied. Similarly, when the surface regression speed of each component is related to the surface temperature via a simple Arrhenius law, an analytical strategy is developed for calculating an effective Arrhenius law for the combination, and these results are verified using dns in which a uniform heat flux is applied to the pack surface, causing it to regress. These results are needed for homogenization strategies necessary for fully integrated 2-D or 3-D simulations of heterogeneous propellant combustion.
Pragmatic estimation of a spatio-temporal air quality model with irregular monitoring data
NASA Astrophysics Data System (ADS)
Sampson, Paul D.; Szpiro, Adam A.; Sheppard, Lianne; Lindström, Johan; Kaufman, Joel D.
2011-11-01
Statistical analyses of health effects of air pollution have increasingly used GIS-based covariates for prediction of ambient air quality in "land use" regression models. More recently these spatial regression models have accounted for spatial correlation structure in combining monitoring data with land use covariates. We present a flexible spatio-temporal modeling framework and pragmatic, multi-step estimation procedure that accommodates essentially arbitrary patterns of missing data with respect to an ideally complete space by time matrix of observations on a network of monitoring sites. The methodology incorporates a model for smooth temporal trends with coefficients varying in space according to Partial Least Squares regressions on a large set of geographic covariates and nonstationary modeling of spatio-temporal residuals from these regressions. This work was developed to provide spatial point predictions of PM 2.5 concentrations for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) using irregular monitoring data derived from the AQS regulatory monitoring network and supplemental short-time scale monitoring campaigns conducted to better predict intra-urban variation in air quality. We demonstrate the interpretation and accuracy of this methodology in modeling data from 2000 through 2006 in six U.S. metropolitan areas and establish a basis for likelihood-based estimation.
Granato, Gregory E.
2006-01-01
The Kendall-Theil Robust Line software (KTRLine-version 1.0) is a Visual Basic program that may be used with the Microsoft Windows operating system to calculate parameters for robust, nonparametric estimates of linear-regression coefficients between two continuous variables. The KTRLine software was developed by the U.S. Geological Survey, in cooperation with the Federal Highway Administration, for use in stochastic data modeling with local, regional, and national hydrologic data sets to develop planning-level estimates of potential effects of highway runoff on the quality of receiving waters. The Kendall-Theil robust line was selected because this robust nonparametric method is resistant to the effects of outliers and nonnormality in residuals that commonly characterize hydrologic data sets. The slope of the line is calculated as the median of all possible pairwise slopes between points. The intercept is calculated so that the line will run through the median of input data. A single-line model or a multisegment model may be specified. The program was developed to provide regression equations with an error component for stochastic data generation because nonparametric multisegment regression tools are not available with the software that is commonly used to develop regression models. The Kendall-Theil robust line is a median line and, therefore, may underestimate total mass, volume, or loads unless the error component or a bias correction factor is incorporated into the estimate. Regression statistics such as the median error, the median absolute deviation, the prediction error sum of squares, the root mean square error, the confidence interval for the slope, and the bias correction factor for median estimates are calculated by use of nonparametric methods. These statistics, however, may be used to formulate estimates of mass, volume, or total loads. The program is used to read a two- or three-column tab-delimited input file with variable names in the first row and data in subsequent rows. The user may choose the columns that contain the independent (X) and dependent (Y) variable. A third column, if present, may contain metadata such as the sample-collection location and date. The program screens the input files and plots the data. The KTRLine software is a graphical tool that facilitates development of regression models by use of graphs of the regression line with data, the regression residuals (with X or Y), and percentile plots of the cumulative frequency of the X variable, Y variable, and the regression residuals. The user may individually transform the independent and dependent variables to reduce heteroscedasticity and to linearize data. The program plots the data and the regression line. The program also prints model specifications and regression statistics to the screen. The user may save and print the regression results. The program can accept data sets that contain up to about 15,000 XY data points, but because the program must sort the array of all pairwise slopes, the program may be perceptibly slow with data sets that contain more than about 1,000 points.
Nakatsuka, Haruo; Chiba, Keiko; Watanabe, Takao; Sawatari, Hideyuki; Seki, Takako
2016-11-01
Iodine intake by adults in farming districts in Northeastern Japan was evaluated by two methods: (1) government-approved food composition tables based calculation and (2) instrumental measurement. The correlation between these two values and a regression model for the calibration of calculated values was presented. Iodine intake was calculated, using the values in the Japan Standard Tables of Food Composition (FCT), through the analysis of duplicate samples of complete 24-h food consumption for 90 adult subjects. In cases where the value for iodine content was not available in the FCT, it was assumed to be zero for that food item (calculated values). Iodine content was also measured by ICP-MS (measured values). Calculated and measured values rendered geometric means (GM) of 336 and 279 μg/day, respectively. There was no statistically significant (p > 0.05) difference between calculated and measured values. The correlation coefficient was 0.646 (p < 0.05). With this high correlation coefficient, a simple regression line can be applied to estimate measured value from calculated value. A survey of the literature suggests that the values in this study were similar to values that have been reported to date for Japan, and higher than those for other countries in Asia. Iodine intake of Japanese adults was 336 μg/day (GM, calculated) and 279 μg/day (GM, measured). Both values correlated so well, with a correlation coefficient of 0.646, that a regression model (Y = 130.8 + 1.9479X, where X and Y are measured and calculated values, respectively) could be used to calibrate calculated values.
Cervical Vertebral Body's Volume as a New Parameter for Predicting the Skeletal Maturation Stages.
Choi, Youn-Kyung; Kim, Jinmi; Yamaguchi, Tetsutaro; Maki, Koutaro; Ko, Ching-Chang; Kim, Yong-Il
2016-01-01
This study aimed to determine the correlation between the volumetric parameters derived from the images of the second, third, and fourth cervical vertebrae by using cone beam computed tomography with skeletal maturation stages and to propose a new formula for predicting skeletal maturation by using regression analysis. We obtained the estimation of skeletal maturation levels from hand-wrist radiographs and volume parameters derived from the second, third, and fourth cervical vertebrae bodies from 102 Japanese patients (54 women and 48 men, 5-18 years of age). We performed Pearson's correlation coefficient analysis and simple regression analysis. All volume parameters derived from the second, third, and fourth cervical vertebrae exhibited statistically significant correlations (P < 0.05). The simple regression model with the greatest R-square indicated the fourth-cervical-vertebra volume as an independent variable with a variance inflation factor less than ten. The explanation power was 81.76%. Volumetric parameters of cervical vertebrae using cone beam computed tomography are useful in regression models. The derived regression model has the potential for clinical application as it enables a simple and quantitative analysis to evaluate skeletal maturation level.
Cervical Vertebral Body's Volume as a New Parameter for Predicting the Skeletal Maturation Stages
Choi, Youn-Kyung; Kim, Jinmi; Maki, Koutaro; Ko, Ching-Chang
2016-01-01
This study aimed to determine the correlation between the volumetric parameters derived from the images of the second, third, and fourth cervical vertebrae by using cone beam computed tomography with skeletal maturation stages and to propose a new formula for predicting skeletal maturation by using regression analysis. We obtained the estimation of skeletal maturation levels from hand-wrist radiographs and volume parameters derived from the second, third, and fourth cervical vertebrae bodies from 102 Japanese patients (54 women and 48 men, 5–18 years of age). We performed Pearson's correlation coefficient analysis and simple regression analysis. All volume parameters derived from the second, third, and fourth cervical vertebrae exhibited statistically significant correlations (P < 0.05). The simple regression model with the greatest R-square indicated the fourth-cervical-vertebra volume as an independent variable with a variance inflation factor less than ten. The explanation power was 81.76%. Volumetric parameters of cervical vertebrae using cone beam computed tomography are useful in regression models. The derived regression model has the potential for clinical application as it enables a simple and quantitative analysis to evaluate skeletal maturation level. PMID:27340668
Integrative Analysis of High-throughput Cancer Studies with Contrasted Penalization
Shi, Xingjie; Liu, Jin; Huang, Jian; Zhou, Yong; Shia, BenChang; Ma, Shuangge
2015-01-01
In cancer studies with high-throughput genetic and genomic measurements, integrative analysis provides a way to effectively pool and analyze heterogeneous raw data from multiple independent studies and outperforms “classic” meta-analysis and single-dataset analysis. When marker selection is of interest, the genetic basis of multiple datasets can be described using the homogeneity model or the heterogeneity model. In this study, we consider marker selection under the heterogeneity model, which includes the homogeneity model as a special case and can be more flexible. Penalization methods have been developed in the literature for marker selection. This study advances from the published ones by introducing the contrast penalties, which can accommodate the within- and across-dataset structures of covariates/regression coefficients and, by doing so, further improve marker selection performance. Specifically, we develop a penalization method that accommodates the across-dataset structures by smoothing over regression coefficients. An effective iterative algorithm, which calls an inner coordinate descent iteration, is developed. Simulation shows that the proposed method outperforms the benchmark with more accurate marker identification. The analysis of breast cancer and lung cancer prognosis studies with gene expression measurements shows that the proposed method identifies genes different from those using the benchmark and has better prediction performance. PMID:24395534
Study on Hyperspectral Estimation Model of Total Nitrogen Content in Soil of Shaanxi Province
NASA Astrophysics Data System (ADS)
Liu, Jinbao; Dong, Zhenyu; Chen, Xi
2018-01-01
The development of hyperspectral remote sensing technology has been widely used in soil nutrient prediction. The soil is the representative soil type in Shaanxi Province. In this study, the soil total nitrogen content in Shaanxi soil was used as the research target, and the soil samples were measured by reflectance spectroscopy using ASD method. Pre-treatment, the first order differential, second order differential and reflectance logarithmic transformation of the reflected spectrum after pre-treatment, and the hyperspectral estimation model is established by using the least squares regression method and the principal component regression method. The results show that the correlation between the reflectance spectrum and the total nitrogen content of the soil is significantly improved. The correlation coefficient between the original reflectance and soil total nitrogen content is in the range of 350 ~ 2500nm. The correlation coefficient of soil total nitrogen content and first deviation of reflectance is more than 0.5 at 142nm, 1963nm, 2204nm and 2307nm, the second deviation has a significant positive correlation at 1114nm, 1470nm, 1967nm, 2372nm and 2402nm, respectively. After the reciprocal logarithmic transformation of the reflectance with the total nitrogen content of the correlation analysis found that the effect is not obvious. Rc2 = 0.7102, RMSEC = 0.0788; Rv2 = 0.8480, RMSEP = 0.0663, which can achieve the rapid prediction of the total nitrogen content in the region. The results show that the principal component regression model is the best.
Badgett, Majors J; Boyes, Barry; Orlando, Ron
2018-02-16
A model that predicts retention for peptides using a HALO ® penta-HILIC column and gradient elution was created. Coefficients for each amino acid were derived using linear regression analysis and these coefficients can be summed to predict the retention of peptides. This model has a high correlation between experimental and predicted retention times (0.946), which is on par with previous RP and HILIC models. External validation of the model was performed using a set of H. pylori samples on the same LC-MS system used to create the model, and the deviation from actual to predicted times was low. Apart from amino acid composition, length and location of amino acid residues on a peptide were examined and two site-specific corrections for hydrophobic residues at the N-terminus as well as hydrophobic residues one spot over from the N-terminus were created. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhu, Hongxiao; Morris, Jeffrey S; Wei, Fengrong; Cox, Dennis D
2017-07-01
Many scientific studies measure different types of high-dimensional signals or images from the same subject, producing multivariate functional data. These functional measurements carry different types of information about the scientific process, and a joint analysis that integrates information across them may provide new insights into the underlying mechanism for the phenomenon under study. Motivated by fluorescence spectroscopy data in a cervical pre-cancer study, a multivariate functional response regression model is proposed, which treats multivariate functional observations as responses and a common set of covariates as predictors. This novel modeling framework simultaneously accounts for correlations between functional variables and potential multi-level structures in data that are induced by experimental design. The model is fitted by performing a two-stage linear transformation-a basis expansion to each functional variable followed by principal component analysis for the concatenated basis coefficients. This transformation effectively reduces the intra-and inter-function correlations and facilitates fast and convenient calculation. A fully Bayesian approach is adopted to sample the model parameters in the transformed space, and posterior inference is performed after inverse-transforming the regression coefficients back to the original data domain. The proposed approach produces functional tests that flag local regions on the functional effects, while controlling the overall experiment-wise error rate or false discovery rate. It also enables functional discriminant analysis through posterior predictive calculation. Analysis of the fluorescence spectroscopy data reveals local regions with differential expressions across the pre-cancer and normal samples. These regions may serve as biomarkers for prognosis and disease assessment.
NASA Astrophysics Data System (ADS)
Vieira, Daniel; Krems, Roman
2017-04-01
Fine-structure transitions in collisions of O(3Pj) with atomic hydrogen are an important cooling mechanism in the interstellar medium; knowledge of the rate coefficients for these transitions has a wide range of astrophysical applications. The accuracy of the theoretical calculation is limited by inaccuracy in the ab initio interaction potentials used in the coupled-channel quantum scattering calculations from which the rate coefficients can be obtained. In this work we use the latest ab initio results for the O(3Pj) + H interaction potentials to improve on previous calculations of the rate coefficients. We further present a machine-learning technique based on Gaussian Process regression to determine the sensitivity of the rate coefficients to variations of the underlying adiabatic interaction potentials. To account for the inaccuracy inherent in the ab initio calculations we compute error bars for the rate coefficients corresponding to 20% variation in each of the interaction potentials. We obtain these error bars by fitting a Gaussian Process model to a data set of potential curves and rate constants. We use the fitted model to do sensitivity analysis, determining the relative importance of individual adiabatic potential curves to a given fine-structure transition. NSERC.
Objectively measured sedentary time and academic achievement in schoolchildren.
Lopes, Luís; Santos, Rute; Mota, Jorge; Pereira, Beatriz; Lopes, Vítor
2017-03-01
This study aimed to evaluate the relationship between objectively measured total sedentary time and academic achievement (AA) in Portuguese children. The sample comprised of 213 children (51.6% girls) aged 9.46 ± 0.43 years, from the north of Portugal. Sedentary time was measured with accelerometry, and AA was assessed using the Portuguese Language and Mathematics National Exams results. Multilevel linear regression models were fitted to assess regression coefficients predicting AA. The results showed that objectively measured total sedentary time was not associated with AA, after adjusting for potential confounders.
A Semiparametric Change-Point Regression Model for Longitudinal Observations.
Xing, Haipeng; Ying, Zhiliang
2012-12-01
Many longitudinal studies involve relating an outcome process to a set of possibly time-varying covariates, giving rise to the usual regression models for longitudinal data. When the purpose of the study is to investigate the covariate effects when experimental environment undergoes abrupt changes or to locate the periods with different levels of covariate effects, a simple and easy-to-interpret approach is to introduce change-points in regression coefficients. In this connection, we propose a semiparametric change-point regression model, in which the error process (stochastic component) is nonparametric and the baseline mean function (functional part) is completely unspecified, the observation times are allowed to be subject-specific, and the number, locations and magnitudes of change-points are unknown and need to be estimated. We further develop an estimation procedure which combines the recent advance in semiparametric analysis based on counting process argument and multiple change-points inference, and discuss its large sample properties, including consistency and asymptotic normality, under suitable regularity conditions. Simulation results show that the proposed methods work well under a variety of scenarios. An application to a real data set is also given.
Hsu, David
2015-09-27
Clustering methods are often used to model energy consumption for two reasons. First, clustering is often used to process data and to improve the predictive accuracy of subsequent energy models. Second, stable clusters that are reproducible with respect to non-essential changes can be used to group, target, and interpret observed subjects. However, it is well known that clustering methods are highly sensitive to the choice of algorithms and variables. This can lead to misleading assessments of predictive accuracy and mis-interpretation of clusters in policymaking. This paper therefore introduces two methods to the modeling of energy consumption in buildings: clusterwise regression,more » also known as latent class regression, which integrates clustering and regression simultaneously; and cluster validation methods to measure stability. Using a large dataset of multifamily buildings in New York City, clusterwise regression is compared to common two-stage algorithms that use K-means and model-based clustering with linear regression. Predictive accuracy is evaluated using 20-fold cross validation, and the stability of the perturbed clusters is measured using the Jaccard coefficient. These results show that there seems to be an inherent tradeoff between prediction accuracy and cluster stability. This paper concludes by discussing which clustering methods may be appropriate for different analytical purposes.« less
Measurement error in epidemiologic studies of air pollution based on land-use regression models.
Basagaña, Xavier; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Foraster, Maria; Marrugat, Jaume; Elosua, Roberto; Künzli, Nino
2013-10-15
Land-use regression (LUR) models are increasingly used to estimate air pollution exposure in epidemiologic studies. These models use air pollution measurements taken at a small set of locations and modeling based on geographical covariates for which data are available at all study participant locations. The process of LUR model development commonly includes a variable selection procedure. When LUR model predictions are used as explanatory variables in a model for a health outcome, measurement error can lead to bias of the regression coefficients and to inflation of their variance. In previous studies dealing with spatial predictions of air pollution, bias was shown to be small while most of the effect of measurement error was on the variance. In this study, we show that in realistic cases where LUR models are applied to health data, bias in health-effect estimates can be substantial. This bias depends on the number of air pollution measurement sites, the number of available predictors for model selection, and the amount of explainable variability in the true exposure. These results should be taken into account when interpreting health effects from studies that used LUR models.
Shafizadeh-Moghadam, Hossein; Valavi, Roozbeh; Shahabi, Himan; Chapi, Kamran; Shirzadi, Ataollah
2018-07-01
In this research, eight individual machine learning and statistical models are implemented and compared, and based on their results, seven ensemble models for flood susceptibility assessment are introduced. The individual models included artificial neural networks, classification and regression trees, flexible discriminant analysis, generalized linear model, generalized additive model, boosted regression trees, multivariate adaptive regression splines, and maximum entropy, and the ensemble models were Ensemble Model committee averaging (EMca), Ensemble Model confidence interval Inferior (EMciInf), Ensemble Model confidence interval Superior (EMciSup), Ensemble Model to estimate the coefficient of variation (EMcv), Ensemble Model to estimate the mean (EMmean), Ensemble Model to estimate the median (EMmedian), and Ensemble Model based on weighted mean (EMwmean). The data set covered 201 flood events in the Haraz watershed (Mazandaran province in Iran) and 10,000 randomly selected non-occurrence points. Among the individual models, the Area Under the Receiver Operating Characteristic (AUROC), which showed the highest value, belonged to boosted regression trees (0.975) and the lowest value was recorded for generalized linear model (0.642). On the other hand, the proposed EMmedian resulted in the highest accuracy (0.976) among all models. In spite of the outstanding performance of some models, nevertheless, variability among the prediction of individual models was considerable. Therefore, to reduce uncertainty, creating more generalizable, more stable, and less sensitive models, ensemble forecasting approaches and in particular the EMmedian is recommended for flood susceptibility assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Prediction models for clustered data: comparison of a random intercept and standard regression model
2013-01-01
Background When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Methods Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. Results The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. Conclusion The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters. PMID:23414436
Bouwmeester, Walter; Twisk, Jos W R; Kappen, Teus H; van Klei, Wilton A; Moons, Karel G M; Vergouwe, Yvonne
2013-02-15
When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters.
Analysis of a Split-Plot Experimental Design Applied to a Low-Speed Wind Tunnel Investigation
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2013-01-01
A procedure to analyze a split-plot experimental design featuring two input factors, two levels of randomization, and two error structures in a low-speed wind tunnel investigation of a small-scale model of a fighter airplane configuration is described in this report. Standard commercially-available statistical software was used to analyze the test results obtained in a randomization-restricted environment often encountered in wind tunnel testing. The input factors were differential horizontal stabilizer incidence and the angle of attack. The response variables were the aerodynamic coefficients of lift, drag, and pitching moment. Using split-plot terminology, the whole plot, or difficult-to-change, factor was the differential horizontal stabilizer incidence, and the subplot, or easy-to-change, factor was the angle of attack. The whole plot and subplot factors were both tested at three levels. Degrees of freedom for the whole plot error were provided by replication in the form of three blocks, or replicates, which were intended to simulate three consecutive days of wind tunnel facility operation. The analysis was conducted in three stages, which yielded the estimated mean squares, multiple regression function coefficients, and corresponding tests of significance for all individual terms at the whole plot and subplot levels for the three aerodynamic response variables. The estimated regression functions included main effects and two-factor interaction for the lift coefficient, main effects, two-factor interaction, and quadratic effects for the drag coefficient, and only main effects for the pitching moment coefficient.
Confidence Intervals for Squared Semipartial Correlation Coefficients: The Effect of Nonnormality
ERIC Educational Resources Information Center
Algina, James; Keselman, H. J.; Penfield, Randall D.
2010-01-01
The increase in the squared multiple correlation coefficient ([delta]R[superscript 2]) associated with a variable in a regression equation is a commonly used measure of importance in regression analysis. Algina, Keselman, and Penfield found that intervals based on asymptotic principles were typically very inaccurate, even though the sample size…
Job strain and resting heart rate: a cross-sectional study in a Swedish random working sample.
Eriksson, Peter; Schiöler, Linus; Söderberg, Mia; Rosengren, Annika; Torén, Kjell
2016-03-05
Numerous studies have reported an association between stressing work conditions and cardiovascular disease. However, more evidence is needed, and the etiological mechanisms are unknown. Elevated resting heart rate has emerged as a possible risk factor for cardiovascular disease, but little is known about the relation to work-related stress. This study therefore investigated the association between job strain, job control, and job demands and resting heart rate. We conducted a cross-sectional survey of randomly selected men and women in Västra Götalandsregionen, Sweden (West county of Sweden) (n = 1552). Information about job strain, job demands, job control, heart rate and covariates was collected during the period 2001-2004 as part of the INTERGENE/ADONIX research project. Six different linear regression models were used with adjustments for gender, age, BMI, smoking, education, and physical activity in the fully adjusted model. Job strain was operationalized as the log-transformed ratio of job demands over job control in the statistical analyses. No associations were seen between resting heart rate and job demands. Job strain was associated with elevated resting heart rate in the unadjusted model (linear regression coefficient 1.26, 95 % CI 0.14 to 2.38), but not in any of the extended models. Low job control was associated with elevated resting heart rate after adjustments for gender, age, BMI, and smoking (linear regression coefficient -0.18, 95 % CI -0.30 to -0.02). However, there were no significant associations in the fully adjusted model. Low job control and job strain, but not job demands, were associated with elevated resting heart rate. However, the observed associations were modest and may be explained by confounding effects.
Estimation of octanol/water partition coefficients using LSER parameters
Luehrs, Dean C.; Hickey, James P.; Godbole, Kalpana A.; Rogers, Tony N.
1998-01-01
The logarithms of octanol/water partition coefficients, logKow, were regressed against the linear solvation energy relationship (LSER) parameters for a training set of 981 diverse organic chemicals. The standard deviation for logKow was 0.49. The regression equation was then used to estimate logKow for a test of 146 chemicals which included pesticides and other diverse polyfunctional compounds. Thus the octanol/water partition coefficient may be estimated by LSER parameters without elaborate software but only moderate accuracy should be expected.
Klaeboe, Ronny
2005-09-01
When Gardermoen replaced Fornebu as the main airport for Oslo, aircraft noise levels increased in recreational areas near Gardermoen and decreased in areas near Fornebu. Krog and Engdahl [J. Acoust. Soc. Am. 116, 323-333 (2004)] estimate that recreationists' annoyance from aircraft noise in these areas changed more than would be anticipated from the actual noise changes. However, the sizes of their estimated "situation" effects are not credible. One possible reason for the anomalous results is that standard regression assumptions become violated when motivational factors are inserted into the regression model. Standardized regression coefficients (beta values) should also not be utilized for comparisons across equations.
Height and Weight Estimation From Anthropometric Measurements Using Machine Learning Regressions
Fernandes, Bruno J. T.; Roque, Alexandre
2018-01-01
Height and weight are measurements explored to tracking nutritional diseases, energy expenditure, clinical conditions, drug dosages, and infusion rates. Many patients are not ambulant or may be unable to communicate, and a sequence of these factors may not allow accurate estimation or measurements; in those cases, it can be estimated approximately by anthropometric means. Different groups have proposed different linear or non-linear equations which coefficients are obtained by using single or multiple linear regressions. In this paper, we present a complete study of the application of different learning models to estimate height and weight from anthropometric measurements: support vector regression, Gaussian process, and artificial neural networks. The predicted values are significantly more accurate than that obtained with conventional linear regressions. In all the cases, the predictions are non-sensitive to ethnicity, and to gender, if more than two anthropometric parameters are analyzed. The learning model analysis creates new opportunities for anthropometric applications in industry, textile technology, security, and health care. PMID:29651366
Reduced Lung Cancer Mortality With Lower Atmospheric Pressure.
Merrill, Ray M; Frutos, Aaron
2018-01-01
Research has shown that higher altitude is associated with lower risk of lung cancer and improved survival among patients. The current study assessed the influence of county-level atmospheric pressure (a measure reflecting both altitude and temperature) on age-adjusted lung cancer mortality rates in the contiguous United States, with 2 forms of spatial regression. Ordinary least squares regression and geographically weighted regression models were used to evaluate the impact of climate and other selected variables on lung cancer mortality, based on 2974 counties. Atmospheric pressure was significantly positively associated with lung cancer mortality, after controlling for sunlight, precipitation, PM2.5 (µg/m 3 ), current smoker, and other selected variables. Positive county-level β coefficient estimates ( P < .05) for atmospheric pressure were observed throughout the United States, higher in the eastern half of the country. The spatial regression models showed that atmospheric pressure is positively associated with age-adjusted lung cancer mortality rates, after controlling for other selected variables.
An evaluation of bias in propensity score-adjusted non-linear regression models.
Wan, Fei; Mitra, Nandita
2018-03-01
Propensity score methods are commonly used to adjust for observed confounding when estimating the conditional treatment effect in observational studies. One popular method, covariate adjustment of the propensity score in a regression model, has been empirically shown to be biased in non-linear models. However, no compelling underlying theoretical reason has been presented. We propose a new framework to investigate bias and consistency of propensity score-adjusted treatment effects in non-linear models that uses a simple geometric approach to forge a link between the consistency of the propensity score estimator and the collapsibility of non-linear models. Under this framework, we demonstrate that adjustment of the propensity score in an outcome model results in the decomposition of observed covariates into the propensity score and a remainder term. Omission of this remainder term from a non-collapsible regression model leads to biased estimates of the conditional odds ratio and conditional hazard ratio, but not for the conditional rate ratio. We further show, via simulation studies, that the bias in these propensity score-adjusted estimators increases with larger treatment effect size, larger covariate effects, and increasing dissimilarity between the coefficients of the covariates in the treatment model versus the outcome model.
Distributed Monitoring of the R(sup 2) Statistic for Linear Regression
NASA Technical Reports Server (NTRS)
Bhaduri, Kanishka; Das, Kamalika; Giannella, Chris R.
2011-01-01
The problem of monitoring a multivariate linear regression model is relevant in studying the evolving relationship between a set of input variables (features) and one or more dependent target variables. This problem becomes challenging for large scale data in a distributed computing environment when only a subset of instances is available at individual nodes and the local data changes frequently. Data centralization and periodic model recomputation can add high overhead to tasks like anomaly detection in such dynamic settings. Therefore, the goal is to develop techniques for monitoring and updating the model over the union of all nodes data in a communication-efficient fashion. Correctness guarantees on such techniques are also often highly desirable, especially in safety-critical application scenarios. In this paper we develop DReMo a distributed algorithm with very low resource overhead, for monitoring the quality of a regression model in terms of its coefficient of determination (R2 statistic). When the nodes collectively determine that R2 has dropped below a fixed threshold, the linear regression model is recomputed via a network-wide convergecast and the updated model is broadcast back to all nodes. We show empirically, using both synthetic and real data, that our proposed method is highly communication-efficient and scalable, and also provide theoretical guarantees on correctness.
Li, Xuehua; Zhao, Wenxing; Li, Jing; Jiang, Jingqiu; Chen, Jianji; Chen, Jingwen
2013-08-01
To assess the persistence and fate of volatile organic compounds in the troposphere, the rate constants for the reaction with ozone (kO3) are needed. As kO3 values are only available for hundreds of compounds, and experimental determination of kO3 is costly and time-consuming, it is of importance to develop predictive models on kO3. In this study, a total of 379 logkO3 values at different temperatures were used to develop and validate a model for the prediction of kO3, based on quantum chemical descriptors, Dragon descriptors and structural fragments. Molecular descriptors were screened by stepwise multiple linear regression, and the model was constructed by partial least-squares regression. The cross validation coefficient QCUM(2) of the model is 0.836, and the external validation coefficient Qext(2) is 0.811, indicating that the model has high robustness and good predictive performance. The most significant descriptor explaining logkO3 is the BELm2 descriptor with connectivity information weighted atomic masses. kO3 increases with increasing BELm2, and decreases with increasing ionization potential. The applicability domain of the proposed model was visualized by the Williams plot. The developed model can be used to predict kO3 at different temperatures for a wide range of organic chemicals, including alkenes, cycloalkenes, haloalkenes, alkynes, oxygen-containing compounds, nitrogen-containing compounds (except primary amines) and aromatic compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brink, Carsten, E-mail: carsten.brink@rsyd.dk; Laboratory of Radiation Physics, Odense University Hospital; Bernchou, Uffe
2014-07-15
Purpose: Large interindividual variations in volume regression of non-small cell lung cancer (NSCLC) are observable on standard cone beam computed tomography (CBCT) during fractionated radiation therapy. Here, a method for automated assessment of tumor volume regression is presented and its potential use in response adapted personalized radiation therapy is evaluated empirically. Methods and Materials: Automated deformable registration with calculation of the Jacobian determinant was applied to serial CBCT scans in a series of 99 patients with NSCLC. Tumor volume at the end of treatment was estimated on the basis of the first one third and two thirds of the scans.more » The concordance between estimated and actual relative volume at the end of radiation therapy was quantified by Pearson's correlation coefficient. On the basis of the estimated relative volume, the patients were stratified into 2 groups having volume regressions below or above the population median value. Kaplan-Meier plots of locoregional disease-free rate and overall survival in the 2 groups were used to evaluate the predictive value of tumor regression during treatment. Cox proportional hazards model was used to adjust for other clinical characteristics. Results: Automatic measurement of the tumor regression from standard CBCT images was feasible. Pearson's correlation coefficient between manual and automatic measurement was 0.86 in a sample of 9 patients. Most patients experienced tumor volume regression, and this could be quantified early into the treatment course. Interestingly, patients with pronounced volume regression had worse locoregional tumor control and overall survival. This was significant on patient with non-adenocarcinoma histology. Conclusions: Evaluation of routinely acquired CBCT images during radiation therapy provides biological information on the specific tumor. This could potentially form the basis for personalized response adaptive therapy.« less
Area-to-point regression kriging for pan-sharpening
NASA Astrophysics Data System (ADS)
Wang, Qunming; Shi, Wenzhong; Atkinson, Peter M.
2016-04-01
Pan-sharpening is a technique to combine the fine spatial resolution panchromatic (PAN) band with the coarse spatial resolution multispectral bands of the same satellite to create a fine spatial resolution multispectral image. In this paper, area-to-point regression kriging (ATPRK) is proposed for pan-sharpening. ATPRK considers the PAN band as the covariate. Moreover, ATPRK is extended with a local approach, called adaptive ATPRK (AATPRK), which fits a regression model using a local, non-stationary scheme such that the regression coefficients change across the image. The two geostatistical approaches, ATPRK and AATPRK, were compared to the 13 state-of-the-art pan-sharpening approaches summarized in Vivone et al. (2015) in experiments on three separate datasets. ATPRK and AATPRK produced more accurate pan-sharpened images than the 13 benchmark algorithms in all three experiments. Unlike the benchmark algorithms, the two geostatistical solutions precisely preserved the spectral properties of the original coarse data. Furthermore, ATPRK can be enhanced by a local scheme in AATRPK, in cases where the residuals from a global regression model are such that their spatial character varies locally.
NASA Astrophysics Data System (ADS)
Nazeer, Majid; Bilal, Muhammad
2018-04-01
Landsat-5 Thematic Mapper (TM) dataset have been used to estimate salinity in the coastal area of Hong Kong. Four adjacent Landsat TM images were used in this study, which was atmospherically corrected using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative transfer code. The atmospherically corrected images were further used to develop models for salinity using Ordinary Least Square (OLS) regression and Geographically Weighted Regression (GWR) based on in situ data of October 2009. Results show that the coefficient of determination ( R 2) of 0.42 between the OLS estimated and in situ measured salinity is much lower than that of the GWR model, which is two times higher ( R 2 = 0.86). It indicates that the GWR model has more ability than the OLS regression model to predict salinity and show its spatial heterogeneity better. It was observed that the salinity was high in Deep Bay (north-western part of Hong Kong) which might be due to the industrial waste disposal, whereas the salinity was estimated to be constant (32 practical salinity units) towards the open sea.
Saunders, Christina T; Blume, Jeffrey D
2017-10-26
Mediation analysis explores the degree to which an exposure's effect on an outcome is diverted through a mediating variable. We describe a classical regression framework for conducting mediation analyses in which estimates of causal mediation effects and their variance are obtained from the fit of a single regression model. The vector of changes in exposure pathway coefficients, which we named the essential mediation components (EMCs), is used to estimate standard causal mediation effects. Because these effects are often simple functions of the EMCs, an analytical expression for their model-based variance follows directly. Given this formula, it is instructive to revisit the performance of routinely used variance approximations (e.g., delta method and resampling methods). Requiring the fit of only one model reduces the computation time required for complex mediation analyses and permits the use of a rich suite of regression tools that are not easily implemented on a system of three equations, as would be required in the Baron-Kenny framework. Using data from the BRAIN-ICU study, we provide examples to illustrate the advantages of this framework and compare it with the existing approaches. © The Author 2017. Published by Oxford University Press.
Functional Linear Model with Zero-value Coefficient Function at Sub-regions.
Zhou, Jianhui; Wang, Nae-Yuh; Wang, Naisyin
2013-01-01
We propose a shrinkage method to estimate the coefficient function in a functional linear regression model when the value of the coefficient function is zero within certain sub-regions. Besides identifying the null region in which the coefficient function is zero, we also aim to perform estimation and inferences for the nonparametrically estimated coefficient function without over-shrinking the values. Our proposal consists of two stages. In stage one, the Dantzig selector is employed to provide initial location of the null region. In stage two, we propose a group SCAD approach to refine the estimated location of the null region and to provide the estimation and inference procedures for the coefficient function. Our considerations have certain advantages in this functional setup. One goal is to reduce the number of parameters employed in the model. With a one-stage procedure, it is needed to use a large number of knots in order to precisely identify the zero-coefficient region; however, the variation and estimation difficulties increase with the number of parameters. Owing to the additional refinement stage, we avoid this necessity and our estimator achieves superior numerical performance in practice. We show that our estimator enjoys the Oracle property; it identifies the null region with probability tending to 1, and it achieves the same asymptotic normality for the estimated coefficient function on the non-null region as the functional linear model estimator when the non-null region is known. Numerically, our refined estimator overcomes the shortcomings of the initial Dantzig estimator which tends to under-estimate the absolute scale of non-zero coefficients. The performance of the proposed method is illustrated in simulation studies. We apply the method in an analysis of data collected by the Johns Hopkins Precursors Study, where the primary interests are in estimating the strength of association between body mass index in midlife and the quality of life in physical functioning at old age, and in identifying the effective age ranges where such associations exist.
Thermal requirements of Dermanyssus gallinae (De Geer, 1778) (Acari: Dermanyssidae).
Tucci, Edna Clara; do Prado, Angelo P; de Araújo, Raquel Pires
2008-01-01
The thermal requirements for development of Dermanyssus gallinae were studied under laboratory conditions at 15, 20, 25, 30 and 35 degrees C, a 12h photoperiod and 60-85% RH. The thermal requirements for D. gallinae were as follows. Preoviposition: base temperature 3.4 degrees C, thermal constant (k) 562.85 degree-hours, determination coefficient (R(2)) 0.59, regression equation: Y= -0.006035 + 0.001777x. Egg: base temperature 10.60 degrees C, thermal constant (k) 689.65 degree-hours, determination coefficient (R(2)) 0.94, regression equation: Y= -0.015367 + 0.001450x. Larva: base temperature 9.82 degrees C, thermal constant (k) 464.91 degree-hours, determination coefficient (R(2)) 0.87, regression equation: Y= -0.021123 + 0.002151x. Protonymph: base temperature 10.17 degrees C, thermal constant (k) 504.49 degree-hours, determination coefficient (R(2)) 0.90, regression equation: Y= -0.020152 + 0.001982x. Deutonymph: base temperature 11.80 degrees C, thermal constant (k) 501.11 degree-hours, determination coefficient (R(2)) 0.99, regression equation: Y= -0.023555 + 0.001996x. The results obtained showed that 15 to 42 generations of Dermanyssus gallinae may occur during the year in the State of São Paulo, as estimated based on isotherm charts. Dermanyssus gallinae may develop continually in the State of São Paulo, with a population decrease in the winter. There were differences between the developmental stages of D. gallinae in relation to thermal requirements.
Cox regression analysis with missing covariates via nonparametric multiple imputation.
Hsu, Chiu-Hsieh; Yu, Mandi
2018-01-01
We consider the situation of estimating Cox regression in which some covariates are subject to missing, and there exists additional information (including observed event time, censoring indicator and fully observed covariates) which may be predictive of the missing covariates. We propose to use two working regression models: one for predicting the missing covariates and the other for predicting the missing probabilities. For each missing covariate observation, these two working models are used to define a nearest neighbor imputing set. This set is then used to non-parametrically impute covariate values for the missing observation. Upon the completion of imputation, Cox regression is performed on the multiply imputed datasets to estimate the regression coefficients. In a simulation study, we compare the nonparametric multiple imputation approach with the augmented inverse probability weighted (AIPW) method, which directly incorporates the two working models into estimation of Cox regression, and the predictive mean matching imputation (PMM) method. We show that all approaches can reduce bias due to non-ignorable missing mechanism. The proposed nonparametric imputation method is robust to mis-specification of either one of the two working models and robust to mis-specification of the link function of the two working models. In contrast, the PMM method is sensitive to misspecification of the covariates included in imputation. The AIPW method is sensitive to the selection probability. We apply the approaches to a breast cancer dataset from Surveillance, Epidemiology and End Results (SEER) Program.
Biostatistics Series Module 6: Correlation and Linear Regression.
Hazra, Avijit; Gogtay, Nithya
2016-01-01
Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient ( r ). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P < 0.05. A 95% confidence interval of the correlation coefficient can also be calculated for an idea of the correlation in the population. The value r 2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation ( y = a + bx ), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous.
Biostatistics Series Module 6: Correlation and Linear Regression
Hazra, Avijit; Gogtay, Nithya
2016-01-01
Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient (r). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P < 0.05. A 95% confidence interval of the correlation coefficient can also be calculated for an idea of the correlation in the population. The value r2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation (y = a + bx), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous. PMID:27904175
NASA Astrophysics Data System (ADS)
Kargoll, Boris; Omidalizarandi, Mohammad; Loth, Ina; Paffenholz, Jens-André; Alkhatib, Hamza
2018-03-01
In this paper, we investigate a linear regression time series model of possibly outlier-afflicted observations and autocorrelated random deviations. This colored noise is represented by a covariance-stationary autoregressive (AR) process, in which the independent error components follow a scaled (Student's) t-distribution. This error model allows for the stochastic modeling of multiple outliers and for an adaptive robust maximum likelihood (ML) estimation of the unknown regression and AR coefficients, the scale parameter, and the degree of freedom of the t-distribution. This approach is meant to be an extension of known estimators, which tend to focus only on the regression model, or on the AR error model, or on normally distributed errors. For the purpose of ML estimation, we derive an expectation conditional maximization either algorithm, which leads to an easy-to-implement version of iteratively reweighted least squares. The estimation performance of the algorithm is evaluated via Monte Carlo simulations for a Fourier as well as a spline model in connection with AR colored noise models of different orders and with three different sampling distributions generating the white noise components. We apply the algorithm to a vibration dataset recorded by a high-accuracy, single-axis accelerometer, focusing on the evaluation of the estimated AR colored noise model.
García Nieto, Paulino José; González Suárez, Victor Manuel; Álvarez Antón, Juan Carlos; Mayo Bayón, Ricardo; Sirgo Blanco, José Ángel; Díaz Fernández, Ana María
2015-01-01
The aim of this study was to obtain a predictive model able to perform an early detection of central segregation severity in continuous cast steel slabs. Segregation in steel cast products is an internal defect that can be very harmful when slabs are rolled in heavy plate mills. In this research work, the central segregation was studied with success using the data mining methodology based on multivariate adaptive regression splines (MARS) technique. For this purpose, the most important physical-chemical parameters are considered. The results of the present study are two-fold. In the first place, the significance of each physical-chemical variable on the segregation is presented through the model. Second, a model for forecasting segregation is obtained. Regression with optimal hyperparameters was performed and coefficients of determination equal to 0.93 for continuity factor estimation and 0.95 for average width were obtained when the MARS technique was applied to the experimental dataset, respectively. The agreement between experimental data and the model confirmed the good performance of the latter.
Mapping diffuse photosynthetically active radiation from satellite data in Thailand
NASA Astrophysics Data System (ADS)
Choosri, P.; Janjai, S.; Nunez, M.; Buntoung, S.; Charuchittipan, D.
2017-12-01
In this paper, calculation of monthly average hourly diffuse photosynthetically active radiation (PAR) using satellite data is proposed. Diffuse PAR was analyzed at four stations in Thailand. A radiative transfer model was used for calculating the diffuse PAR for cloudless sky conditions. Differences between the diffuse PAR under all sky conditions obtained from the ground-based measurements and those from the model are representative of cloud effects. Two models are developed, one describing diffuse PAR only as a function of solar zenith angle, and the second one as a multiple linear regression with solar zenith angle and satellite reflectivity acting linearly and aerosol optical depth acting in logarithmic functions. When tested with an independent data set, the multiple regression model performed best with a higher coefficient of variance R2 (0.78 vs. 0.70), lower root mean square difference (RMSD) (12.92% vs. 13.05%) and the same mean bias difference (MBD) of -2.20%. Results from the multiple regression model are used to map diffuse PAR throughout the country as monthly averages of hourly data.
Modeling rainfall-runoff process using soft computing techniques
NASA Astrophysics Data System (ADS)
Kisi, Ozgur; Shiri, Jalal; Tombul, Mustafa
2013-02-01
Rainfall-runoff process was modeled for a small catchment in Turkey, using 4 years (1987-1991) of measurements of independent variables of rainfall and runoff values. The models used in the study were Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Gene Expression Programming (GEP) which are Artificial Intelligence (AI) approaches. The applied models were trained and tested using various combinations of the independent variables. The goodness of fit for the model was evaluated in terms of the coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), coefficient of efficiency (CE) and scatter index (SI). A comparison was also made between these models and traditional Multi Linear Regression (MLR) model. The study provides evidence that GEP (with RMSE=17.82 l/s, MAE=6.61 l/s, CE=0.72 and R2=0.978) is capable of modeling rainfall-runoff process and is a viable alternative to other applied artificial intelligence and MLR time-series methods.
Procedures for adjusting regional regression models of urban-runoff quality using local data
Hoos, A.B.; Sisolak, J.K.
1993-01-01
Statistical operations termed model-adjustment procedures (MAP?s) can be used to incorporate local data into existing regression models to improve the prediction of urban-runoff quality. Each MAP is a form of regression analysis in which the local data base is used as a calibration data set. Regression coefficients are determined from the local data base, and the resulting `adjusted? regression models can then be used to predict storm-runoff quality at unmonitored sites. The response variable in the regression analyses is the observed load or mean concentration of a constituent in storm runoff for a single storm. The set of explanatory variables used in the regression analyses is different for each MAP, but always includes the predicted value of load or mean concentration from a regional regression model. The four MAP?s examined in this study were: single-factor regression against the regional model prediction, P, (termed MAP-lF-P), regression against P,, (termed MAP-R-P), regression against P, and additional local variables (termed MAP-R-P+nV), and a weighted combination of P, and a local-regression prediction (termed MAP-W). The procedures were tested by means of split-sample analysis, using data from three cities included in the Nationwide Urban Runoff Program: Denver, Colorado; Bellevue, Washington; and Knoxville, Tennessee. The MAP that provided the greatest predictive accuracy for the verification data set differed among the three test data bases and among model types (MAP-W for Denver and Knoxville, MAP-lF-P and MAP-R-P for Bellevue load models, and MAP-R-P+nV for Bellevue concentration models) and, in many cases, was not clearly indicated by the values of standard error of estimate for the calibration data set. A scheme to guide MAP selection, based on exploratory data analysis of the calibration data set, is presented and tested. The MAP?s were tested for sensitivity to the size of a calibration data set. As expected, predictive accuracy of all MAP?s for the verification data set decreased as the calibration data-set size decreased, but predictive accuracy was not as sensitive for the MAP?s as it was for the local regression models.
Garabedian, Stephen P.
1986-01-01
A nonlinear, least-squares regression technique for the estimation of ground-water flow model parameters was applied to the regional aquifer underlying the eastern Snake River Plain, Idaho. The technique uses a computer program to simulate two-dimensional, steady-state ground-water flow. Hydrologic data for the 1980 water year were used to calculate recharge rates, boundary fluxes, and spring discharges. Ground-water use was estimated from irrigated land maps and crop consumptive-use figures. These estimates of ground-water withdrawal, recharge rates, and boundary flux, along with leakance, were used as known values in the model calibration of transmissivity. Leakance values were adjusted between regression solutions by comparing model-calculated to measured spring discharges. In other simulations, recharge and leakance also were calibrated as prior-information regression parameters, which limits the variation of these parameters using a normalized standard error of estimate. Results from a best-fit model indicate a wide areal range in transmissivity from about 0.05 to 44 feet squared per second and in leakance from about 2.2x10 -9 to 6.0 x 10 -8 feet per second per foot. Along with parameter values, model statistics also were calculated, including the coefficient of correlation between calculated and observed head (0.996), the standard error of the estimates for head (40 feet), and the parameter coefficients of variation (about 10-40 percent). Additional boundary flux was added in some areas during calibration to achieve proper fit to ground-water flow directions. Model fit improved significantly when areas that violated model assumptions were removed. It also improved slightly when y-direction (northwest-southeast) transmissivity values were larger than x-direction (northeast-southwest) transmissivity values. The model was most sensitive to changes in recharge, and in some areas, to changes in transmissivity, particularly near the spring discharge area from Milner Dam to King Hill.
Visentin, G; McDermott, A; McParland, S; Berry, D P; Kenny, O A; Brodkorb, A; Fenelon, M A; De Marchi, M
2015-09-01
Rapid, cost-effective monitoring of milk technological traits is a significant challenge for dairy industries specialized in cheese manufacturing. The objective of the present study was to investigate the ability of mid-infrared spectroscopy to predict rennet coagulation time, curd-firming time, curd firmness at 30 and 60min after rennet addition, heat coagulation time, casein micelle size, and pH in cow milk samples, and to quantify associations between these milk technological traits and conventional milk quality traits. Samples (n=713) were collected from 605 cows from multiple herds; the samples represented multiple breeds, stages of lactation, parities, and milking times. Reference analyses were undertaken in accordance with standardized methods, and mid-infrared spectra in the range of 900 to 5,000cm(-1) were available for all samples. Prediction models were developed using partial least squares regression, and prediction accuracy was based on both cross and external validation. The proportion of variance explained by the prediction models in external validation was greatest for pH (71%), followed by rennet coagulation time (55%) and milk heat coagulation time (46%). Models to predict curd firmness 60min from rennet addition and casein micelle size, however, were poor, explaining only 25 and 13%, respectively, of the total variance in each trait within external validation. On average, all prediction models tended to be unbiased. The linear regression coefficient of the reference value on the predicted value varied from 0.17 (casein micelle size regression model) to 0.83 (pH regression model) but all differed from 1. The ratio performance deviation of 1.07 (casein micelle size prediction model) to 1.79 (pH prediction model) for all prediction models in the external validation was <2, suggesting that none of the prediction models could be used for analytical purposes. With the exception of casein micelle size and curd firmness at 60min after rennet addition, the developed prediction models may be useful as a screening method, because the concordance correlation coefficient ranged from 0.63 (heat coagulation time prediction model) to 0.84 (pH prediction model) in the external validation. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tiwari, Sumit; Tiwari, G. N.
2018-06-01
In present research paper, semi-transparent photovoltaic module (SPVM) integrated greenhouse solar drying system has been used for grapes ( Vitis vinifera) drying. Based on hourly experimental information namely solar intensity, moisture evaporated, ambient air temperature, grape surface temperatures, relative humidity and greenhouse air temperature etc. heat and mass transfer coefficient for the SPVM drying system have been evaluated. It has been seen that the convective heat transfer coefficients for grapes found between 3.1-0.84 W/m2 K. Also, there is a fair agreement between theoretical and practical mass transfer (moisture evaporated) during drying of grapes with a correlation coefficient (r) and root mean square percentage deviation (e) of 0.88 and 11.56 respectively. Further, nonlinear regression procedure has been used to fit various drying models namely Henderson and Pabis model, Newton's model, and Page's model. From the analysis, it was found that Page's model is best fitted for grapes drying in SPV greenhouse as well as open sun drying. Further, net electrical energy, thermal energy and equivalent thermal energy were found to be 3.61, 17.66 and 27.15 kWh during six days of drying respectively.
Factor Scores, Structure Coefficients, and Communality Coefficients
ERIC Educational Resources Information Center
Goodwyn, Fara
2012-01-01
This paper presents heuristic explanations of factor scores, structure coefficients, and communality coefficients. Common misconceptions regarding these topics are clarified. In addition, (a) the regression (b) Bartlett, (c) Anderson-Rubin, and (d) Thompson methods for calculating factor scores are reviewed. Syntax necessary to execute all four…
Smoothing two-dimensional Malaysian mortality data using P-splines indexed by age and year
NASA Astrophysics Data System (ADS)
Kamaruddin, Halim Shukri; Ismail, Noriszura
2014-06-01
Nonparametric regression implements data to derive the best coefficient of a model from a large class of flexible functions. Eilers and Marx (1996) introduced P-splines as a method of smoothing in generalized linear models, GLMs, in which the ordinary B-splines with a difference roughness penalty on coefficients is being used in a single dimensional mortality data. Modeling and forecasting mortality rate is a problem of fundamental importance in insurance company calculation in which accuracy of models and forecasts are the main concern of the industry. The original idea of P-splines is extended to two dimensional mortality data. The data indexed by age of death and year of death, in which the large set of data will be supplied by Department of Statistics Malaysia. The extension of this idea constructs the best fitted surface and provides sensible prediction of the underlying mortality rate in Malaysia mortality case.
Extrapolating intensified forest inventory data to the surrounding landscape using landsat
Evan B. Brooks; John W. Coulston; Valerie A. Thomas; Randolph H. Wynne
2015-01-01
In 2011, a collection of spatially intensified plots was established on three of the Experimental Forests and Ranges (EFRs) sites with the intent of facilitating FIA program objectives for regional extrapolation. Characteristic coefficients from harmonic regression (HR) analysis of associated Landsat stacks are used as inputs into a conditional random forests model to...
Comparison of the Incremental Validity of the Old and New MCAT.
ERIC Educational Resources Information Center
Wolf, Fredric M.; And Others
The predictive and incremental validity of both the Old and New Medical College Admission Test (MCAT) was examined and compared with a sample of over 300 medical students. Results of zero order and incremental validity coefficients, as well as prediction models resulting from all possible subsets regression analyses using Mallow's Cp criterion,…
ERIC Educational Resources Information Center
Young, Phillip; Reimer, Don; Young, Karen Holsey
2010-01-01
Background: Studies addressing pay discrimination for females in education have relied on main effect regression models, mostly examining amount (intercept values) rather than rate of pay (slope coefficients). Purpose: The purpose is to determine if organizational characteristics and human capital endowments purported to influence pay are facially…
Lin, Feng-Chang; Zhu, Jun
2012-01-01
We develop continuous-time models for the analysis of environmental or ecological monitoring data such that subjects are observed at multiple monitoring time points across space. Of particular interest are additive hazards regression models where the baseline hazard function can take on flexible forms. We consider time-varying covariates and take into account spatial dependence via autoregression in space and time. We develop statistical inference for the regression coefficients via partial likelihood. Asymptotic properties, including consistency and asymptotic normality, are established for parameter estimates under suitable regularity conditions. Feasible algorithms utilizing existing statistical software packages are developed for computation. We also consider a simpler additive hazards model with homogeneous baseline hazard and develop hypothesis testing for homogeneity. A simulation study demonstrates that the statistical inference using partial likelihood has sound finite-sample properties and offers a viable alternative to maximum likelihood estimation. For illustration, we analyze data from an ecological study that monitors bark beetle colonization of red pines in a plantation of Wisconsin.
Quantile Regression Models for Current Status Data
Ou, Fang-Shu; Zeng, Donglin; Cai, Jianwen
2016-01-01
Current status data arise frequently in demography, epidemiology, and econometrics where the exact failure time cannot be determined but is only known to have occurred before or after a known observation time. We propose a quantile regression model to analyze current status data, because it does not require distributional assumptions and the coefficients can be interpreted as direct regression effects on the distribution of failure time in the original time scale. Our model assumes that the conditional quantile of failure time is a linear function of covariates. We assume conditional independence between the failure time and observation time. An M-estimator is developed for parameter estimation which is computed using the concave-convex procedure and its confidence intervals are constructed using a subsampling method. Asymptotic properties for the estimator are derived and proven using modern empirical process theory. The small sample performance of the proposed method is demonstrated via simulation studies. Finally, we apply the proposed method to analyze data from the Mayo Clinic Study of Aging. PMID:27994307
Essays in energy economics: The electricity industry
NASA Astrophysics Data System (ADS)
Martinez-Chombo, Eduardo
Electricity demand analysis using cointegration and error-correction models with time varying parameters: The Mexican case. In this essay we show how some flexibility can be allowed in modeling the parameters of the electricity demand function by employing the time varying coefficient (TVC) cointegrating model developed by Park and Hahn (1999). With the income elasticity of electricity demand modeled as a TVC, we perform tests to examine the adequacy of the proposed model against the cointegrating regression with fixed coefficients, as well as against the spuriousness of the regression with TVC. The results reject the specification of the model with fixed coefficients and favor the proposed model. We also show how some flexibility is gained in the specification of the error correction model based on the proposed TVC cointegrating model, by including more lags of the error correction term as predetermined variables. Finally, we present the results of some out-of-sample forecast comparison among competing models. Electricity demand and supply in Mexico. In this essay we present a simplified model of the Mexican electricity transmission network. We use the model to approximate the marginal cost of supplying electricity to consumers in different locations and at different times of the year. We examine how costs and system operations will be affected by proposed investments in generation and transmission capacity given a forecast of growth in regional electricity demands. Decomposing electricity prices with jumps. In this essay we propose a model that decomposes electricity prices into two independent stochastic processes: one that represents the "normal" pattern of electricity prices and the other that captures temporary shocks, or "jumps", with non-lasting effects in the market. Each contains specific mean reverting parameters to estimate. In order to identify such components we specify a state-space model with regime switching. Using Kim's (1994) filtering algorithm we estimate the parameters of the model, the transition probabilities and the unobservable components for the mean adjusted series of New South Wales' electricity prices. Finally, bootstrap simulations were performed to estimate the expected contribution of each of the components in the overall electricity prices.
Nitanai, Yuta; Agata, Yasuyoshi; Iwao, Yasunori; Itai, Shigeru
2012-05-30
From wax matrix dosage forms, drug and water-soluble polymer are released into the external solvent over time. As a consequence, the pore volume inside the wax matrix particles is increased and the diffusion coefficient of the drug is altered. In the present study, we attempted to derive a novel empirical mathematical model, namely, a time-dependent diffusivity (TDD) model, that assumes the change in the drug's diffusion coefficient can be used to predict the drug release from spherical wax matrix particles. Wax matrix particles were prepared by using acetaminophen (APAP), a model drug; glyceryl monostearate (GM), a wax base; and aminoalkyl methacrylate copolymer E (AMCE), a functional polymer that dissolves below pH 5.0 and swells over pH 5.0. A three-factor, three-level (3(3)) Box-Behnken design was used to evaluate the effects of several of the variables in the model formulation, and the release of APAP from wax matrix particles was evaluated by the paddle method at pH 4.0 and pH 6.5. When comparing the goodness of fit to the experimental data between the proposed TDD model and the conventional pure diffusion model, a better correspondence was observed for the TDD model in all cases. Multiple regression analysis revealed that an increase in AMCE loading enhanced the diffusion coefficient with time, and that this increase also had a significant effect on drug release behavior. Furthermore, from the results of the multiple regression analysis, a formulation with desired drug release behavior was found to satisfy the criteria of the bitter taste masking of APAP without lowering the bioavailability. That is to say, the amount of APAP released remains below 15% for 10 min at pH 6.5 and exceeds 90% within 30 min at pH 4.0. The predicted formulation was 15% APAP loading, 8.25% AMCE loading, and 400 μm mean particle diameter. When wax matrix dosage forms were prepared accordingly, the predicted drug release behavior agreed well with experimental values at each pH level. Therefore, the proposed model is feasible as a useful tool for predicting drug release behavior, as well as for designing the formulation of wax matrix dosage forms. Copyright © 2012 Elsevier B.V. All rights reserved.
Gong, Gordon; Mattevada, Sravan; O'Bryant, Sid E
2014-04-01
Exposure to arsenic causes many diseases. Most Americans in rural areas use groundwater for drinking, which may contain arsenic above the currently allowable level, 10µg/L. It is cost-effective to estimate groundwater arsenic levels based on data from wells with known arsenic concentrations. We compared the accuracy of several commonly used interpolation methods in estimating arsenic concentrations in >8000 wells in Texas by the leave-one-out-cross-validation technique. Correlation coefficient between measured and estimated arsenic levels was greater with inverse distance weighted (IDW) than kriging Gaussian, kriging spherical or cokriging interpolations when analyzing data from wells in the entire Texas (p<0.0001). Correlation coefficient was significantly lower with cokriging than any other methods (p<0.006) for wells in Texas, east Texas or the Edwards aquifer. Correlation coefficient was significantly greater for wells in southwestern Texas Panhandle than in east Texas, and was higher for wells in Ogallala aquifer than in Edwards aquifer (p<0.0001) regardless of interpolation methods. In regression analysis, the best models are when well depth and/or elevation were entered into the model as covariates regardless of area/aquifer or interpolation methods, and models with IDW are better than kriging in any area/aquifer. In conclusion, the accuracy in estimating groundwater arsenic level depends on both interpolation methods and wells' geographic distributions and characteristics in Texas. Taking well depth and elevation into regression analysis as covariates significantly increases the accuracy in estimating groundwater arsenic level in Texas with IDW in particular. Published by Elsevier Inc.
Brenn, T; Arnesen, E
1985-01-01
For comparative evaluation, discriminant analysis, logistic regression and Cox's model were used to select risk factors for total and coronary deaths among 6595 men aged 20-49 followed for 9 years. Groups with mortality between 5 and 93 per 1000 were considered. Discriminant analysis selected variable sets only marginally different from the logistic and Cox methods which always selected the same sets. A time-saving option, offered for both the logistic and Cox selection, showed no advantage compared with discriminant analysis. Analysing more than 3800 subjects, the logistic and Cox methods consumed, respectively, 80 and 10 times more computer time than discriminant analysis. When including the same set of variables in non-stepwise analyses, all methods estimated coefficients that in most cases were almost identical. In conclusion, discriminant analysis is advocated for preliminary or stepwise analysis, otherwise Cox's method should be used.
THE DISTRIBUTION OF COOK’S D STATISTIC
Muller, Keith E.; Mok, Mario Chen
2013-01-01
Cook (1977) proposed a diagnostic to quantify the impact of deleting an observation on the estimated regression coefficients of a General Linear Univariate Model (GLUM). Simulations of models with Gaussian response and predictors demonstrate that his suggestion of comparing the diagnostic to the median of the F for overall regression captures an erratically varying proportion of the values. We describe the exact distribution of Cook’s statistic for a GLUM with Gaussian predictors and response. We also present computational forms, simple approximations, and asymptotic results. A simulation supports the accuracy of the results. The methods allow accurate evaluation of a single value or the maximum value from a regression analysis. The approximations work well for a single value, but less well for the maximum. In contrast, the cut-point suggested by Cook provides widely varying tail probabilities. As with all diagnostics, the data analyst must use scientific judgment in deciding how to treat highlighted observations. PMID:24363487
Bayesian median regression for temporal gene expression data
NASA Astrophysics Data System (ADS)
Yu, Keming; Vinciotti, Veronica; Liu, Xiaohui; 't Hoen, Peter A. C.
2007-09-01
Most of the existing methods for the identification of biologically interesting genes in a temporal expression profiling dataset do not fully exploit the temporal ordering in the dataset and are based on normality assumptions for the gene expression. In this paper, we introduce a Bayesian median regression model to detect genes whose temporal profile is significantly different across a number of biological conditions. The regression model is defined by a polynomial function where both time and condition effects as well as interactions between the two are included. MCMC-based inference returns the posterior distribution of the polynomial coefficients. From this a simple Bayes factor test is proposed to test for significance. The estimation of the median rather than the mean, and within a Bayesian framework, increases the robustness of the method compared to a Hotelling T2-test previously suggested. This is shown on simulated data and on muscular dystrophy gene expression data.
Multiple linear regression analysis
NASA Technical Reports Server (NTRS)
Edwards, T. R.
1980-01-01
Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, C.; Hester, R.
Summaries are given on the technical progress on three tasks of this project. Monomer and polymer synthesis discusses the preparation of 1(7-aminoheptyloxymethyl)naphthalene and poly(maleic anhydride-alt-ethyl vinyl ether). Task 2, Characterization of molecular structure, discusses terpolymer solution preparation, UV analysis, fluorescence analysis, low angle laser light scattering, and viscometry. The paper discusses the effects of hydrophobic groups, the effect of pH, the effect of electrolyte addition, and photophysical studies. Task 3, Solution properties, describes the factorial experimental design for characterizing polymer solutions by light scattering, the light scattering test model, orthogonal factorial test design, linear regression in coded space, confidence levelmore » for coded space test mode coefficients, coefficients of the real space test model, and surface analysis of the model equations.« less
NASA Astrophysics Data System (ADS)
Chen, Long; Bian, Mingyuan; Luo, Yugong; Qin, Zhaobo; Li, Keqiang
2016-01-01
In this paper, a resonance frequency-based tire-road friction coefficient (TRFC) estimation method is proposed by considering the dynamics performance of the in-wheel motor drive system under small slip ratio conditions. A frequency response function (FRF) is deduced for the drive system that is composed of a dynamic tire model and a simplified motor model. A linear relationship between the squared system resonance frequency and the TFRC is described with the FRF. Furthermore, the resonance frequency is identified by the Auto-Regressive eXogenous model using the information of the motor torque and the wheel speed, and the TRFC is estimated thereafter by a recursive least squares filter with the identified resonance frequency. Finally, the effectiveness of the proposed approach is demonstrated through simulations and experimental tests on different road surfaces.
Qu, Yanfei; Ma, Yongwen; Wan, Jinquan; Wang, Yan
2018-06-01
The silicon oil-air partition coefficients (K SiO/A ) of hydrophobic compounds are vital parameters for applying silicone oil as non-aqueous-phase liquid in partitioning bioreactors. Due to the limited number of K SiO/A values determined by experiment for hydrophobic compounds, there is an urgent need to model the K SiO/A values for unknown chemicals. In the present study, we developed a universal quantitative structure-activity relationship (QSAR) model using a sequential approach with macro-constitutional and micromolecular descriptors for silicone oil-air partition coefficients (K SiO/A ) of hydrophobic compounds with large structural variance. The geometry optimization and vibrational frequencies of each chemical were calculated using the hybrid density functional theory at the B3LYP/6-311G** level. Several quantum chemical parameters that reflect various intermolecular interactions as well as hydrophobicity were selected to develop QSAR model. The result indicates that a regression model derived from logK SiO/A , the number of non-hydrogen atoms (#nonHatoms) and energy gap of E LUMO and E HOMO (E LUMO -E HOMO ) could explain the partitioning mechanism of hydrophobic compounds between silicone oil and air. The correlation coefficient R 2 of the model is 0.922, and the internal and external validation coefficient, Q 2 LOO and Q 2 ext , are 0.91 and 0.89 respectively, implying that the model has satisfactory goodness-of-fit, robustness, and predictive ability and thus provides a robust predictive tool to estimate the logK SiO/A values for chemicals in application domain. The applicability domain of the model was visualized by the Williams plot.
Intermediate and advanced topics in multilevel logistic regression analysis
Merlo, Juan
2017-01-01
Multilevel data occur frequently in health services, population and public health, and epidemiologic research. In such research, binary outcomes are common. Multilevel logistic regression models allow one to account for the clustering of subjects within clusters of higher‐level units when estimating the effect of subject and cluster characteristics on subject outcomes. A search of the PubMed database demonstrated that the use of multilevel or hierarchical regression models is increasing rapidly. However, our impression is that many analysts simply use multilevel regression models to account for the nuisance of within‐cluster homogeneity that is induced by clustering. In this article, we describe a suite of analyses that can complement the fitting of multilevel logistic regression models. These ancillary analyses permit analysts to estimate the marginal or population‐average effect of covariates measured at the subject and cluster level, in contrast to the within‐cluster or cluster‐specific effects arising from the original multilevel logistic regression model. We describe the interval odds ratio and the proportion of opposed odds ratios, which are summary measures of effect for cluster‐level covariates. We describe the variance partition coefficient and the median odds ratio which are measures of components of variance and heterogeneity in outcomes. These measures allow one to quantify the magnitude of the general contextual effect. We describe an R 2 measure that allows analysts to quantify the proportion of variation explained by different multilevel logistic regression models. We illustrate the application and interpretation of these measures by analyzing mortality in patients hospitalized with a diagnosis of acute myocardial infarction. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. PMID:28543517
Intermediate and advanced topics in multilevel logistic regression analysis.
Austin, Peter C; Merlo, Juan
2017-09-10
Multilevel data occur frequently in health services, population and public health, and epidemiologic research. In such research, binary outcomes are common. Multilevel logistic regression models allow one to account for the clustering of subjects within clusters of higher-level units when estimating the effect of subject and cluster characteristics on subject outcomes. A search of the PubMed database demonstrated that the use of multilevel or hierarchical regression models is increasing rapidly. However, our impression is that many analysts simply use multilevel regression models to account for the nuisance of within-cluster homogeneity that is induced by clustering. In this article, we describe a suite of analyses that can complement the fitting of multilevel logistic regression models. These ancillary analyses permit analysts to estimate the marginal or population-average effect of covariates measured at the subject and cluster level, in contrast to the within-cluster or cluster-specific effects arising from the original multilevel logistic regression model. We describe the interval odds ratio and the proportion of opposed odds ratios, which are summary measures of effect for cluster-level covariates. We describe the variance partition coefficient and the median odds ratio which are measures of components of variance and heterogeneity in outcomes. These measures allow one to quantify the magnitude of the general contextual effect. We describe an R 2 measure that allows analysts to quantify the proportion of variation explained by different multilevel logistic regression models. We illustrate the application and interpretation of these measures by analyzing mortality in patients hospitalized with a diagnosis of acute myocardial infarction. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
Daily Magnesium Intake and Serum Magnesium Concentration among Japanese People
Akizawa, Yoriko; Koizumi, Sadayuki; Itokawa, Yoshinori; Ojima, Toshiyuki; Nakamura, Yosikazu; Tamura, Tarou; Kusaka, Yukinori
2008-01-01
Background The vitamins and minerals that are deficient in the daily diet of a normal adult remain unknown. To answer this question, we conducted a population survey focusing on the relationship between dietary magnesium intake and serum magnesium level. Methods The subjects were 62 individuals from Fukui Prefecture who participated in the 1998 National Nutrition Survey. The survey investigated the physical status, nutritional status, and dietary data of the subjects. Holidays and special occasions were avoided, and a day when people are most likely to be on an ordinary diet was selected as the survey date. Results The mean (±standard deviation) daily magnesium intake was 322 (±132), 323 (±163), and 322 (±147) mg/day for men, women, and the entire group, respectively. The mean (±standard deviation) serum magnesium concentration was 20.69 (±2.83), 20.69 (±2.88), and 20.69 (±2.83) ppm for men, women, and the entire group, respectively. The distribution of serum magnesium concentration was normal. Dietary magnesium intake showed a log-normal distribution, which was then transformed by logarithmic conversion for examining the regression coefficients. The slope of the regression line between the serum magnesium concentration (Y ppm) and daily magnesium intake (X mg) was determined using the formula Y = 4.93 (log10X) + 8.49. The coefficient of correlation (r) was 0.29. A regression line (Y = 14.65X + 19.31) was observed between the daily intake of magnesium (Y mg) and serum magnesium concentration (X ppm). The coefficient of correlation was 0.28. Conclusion The daily magnesium intake correlated with serum magnesium concentration, and a linear regression model between them was proposed. PMID:18635902
Rosenblum, Michael; van der Laan, Mark J.
2010-01-01
Models, such as logistic regression and Poisson regression models, are often used to estimate treatment effects in randomized trials. These models leverage information in variables collected before randomization, in order to obtain more precise estimates of treatment effects. However, there is the danger that model misspecification will lead to bias. We show that certain easy to compute, model-based estimators are asymptotically unbiased even when the working model used is arbitrarily misspecified. Furthermore, these estimators are locally efficient. As a special case of our main result, we consider a simple Poisson working model containing only main terms; in this case, we prove the maximum likelihood estimate of the coefficient corresponding to the treatment variable is an asymptotically unbiased estimator of the marginal log rate ratio, even when the working model is arbitrarily misspecified. This is the log-linear analog of ANCOVA for linear models. Our results demonstrate one application of targeted maximum likelihood estimation. PMID:20628636
Latin hypercube approach to estimate uncertainty in ground water vulnerability
Gurdak, J.J.; McCray, J.E.; Thyne, G.; Qi, S.L.
2007-01-01
A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability. ?? 2007 National Ground Water Association.
Zhang, Yong-Hong; Xia, Zhi-Ning; Qin, Li-Tang; Liu, Shu-Shen
2010-09-01
The objective of this paper is to build a reliable model based on the molecular electronegativity distance vector (MEDV) descriptors for predicting the blood-brain barrier (BBB) permeability and to reveal the effects of the molecular structural segments on the BBB permeability. Using 70 structurally diverse compounds, the partial least squares regression (PLSR) models between the BBB permeability and the MEDV descriptors were developed and validated by the variable selection and modeling based on prediction (VSMP) technique. The estimation ability, stability, and predictive power of a model are evaluated by the estimated correlation coefficient (r), leave-one-out (LOO) cross-validation correlation coefficient (q), and predictive correlation coefficient (R(p)). It has been found that PLSR model has good quality, r=0.9202, q=0.7956, and R(p)=0.6649 for M1 model based on the training set of 57 samples. To search the most important structural factors affecting the BBB permeability of compounds, we performed the values of the variable importance in projection (VIP) analysis for MEDV descriptors. It was found that some structural fragments in compounds, such as -CH(3), -CH(2)-, =CH-, =C, triple bond C-, -CH<, =C<, =N-, -NH-, =O, and -OH, are the most important factors affecting the BBB permeability. (c) 2010. Published by Elsevier Inc.
Cheng, Dengmiao; Feng, Yao; Liu, Yuanwang; Li, Jinpeng; Xue, Jianming; Li, Zhaojun
2018-09-01
Understanding antibiotic adsorption in livestock manures is crucial to assess the fate and risk of antibiotics in the environment. In this study, three quantitative models developed with swine manure-water distribution coefficients (LgK d ) for oxytetracycline (OTC), ciprofloxacin (CIP) and sulfamerazine (SM1) in swine manures. Physicochemical parameters (n=12) of the swine manure were used as independent variables using partial least-squares (PLSs) analysis. The cumulative cross-validated regression coefficients (Q 2 cum ) values, standard deviations (SDs) and external validation coefficient (Q 2 ext ) ranged from 0.761 to 0.868, 0.027 to 0.064, and 0.743 to 0.827 for the three models; as such, internal and external predictability of the models were strong. The pH, soluble organic carbon (SOC) and nitrogen (SON), and Ca were important explanatory variables for the OTC-Model, pH, SOC, and SON for the CIP-model, and pH, total organic nitrogen (TON), and SOC for the SM1-model. The high VIPs (variable importance in the projections) of pH (1.178-1.396), SOC (0.968-1.034), and SON (0.822 and 0.865) established these physicochemical parameters as likely being dominant (associatively) in affecting transport of antibiotics in swine manures. Copyright © 2018 Elsevier B.V. All rights reserved.
Solving large test-day models by iteration on data and preconditioned conjugate gradient.
Lidauer, M; Strandén, I; Mäntysaari, E A; Pösö, J; Kettunen, A
1999-12-01
A preconditioned conjugate gradient method was implemented into an iteration on a program for data estimation of breeding values, and its convergence characteristics were studied. An algorithm was used as a reference in which one fixed effect was solved by Gauss-Seidel method, and other effects were solved by a second-order Jacobi method. Implementation of the preconditioned conjugate gradient required storing four vectors (size equal to number of unknowns in the mixed model equations) in random access memory and reading the data at each round of iteration. The preconditioner comprised diagonal blocks of the coefficient matrix. Comparison of algorithms was based on solutions of mixed model equations obtained by a single-trait animal model and a single-trait, random regression test-day model. Data sets for both models used milk yield records of primiparous Finnish dairy cows. Animal model data comprised 665,629 lactation milk yields and random regression test-day model data of 6,732,765 test-day milk yields. Both models included pedigree information of 1,099,622 animals. The animal model ¿random regression test-day model¿ required 122 ¿305¿ rounds of iteration to converge with the reference algorithm, but only 88 ¿149¿ were required with the preconditioned conjugate gradient. To solve the random regression test-day model with the preconditioned conjugate gradient required 237 megabytes of random access memory and took 14% of the computation time needed by the reference algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keser, Saniye; Duzgun, Sebnem; Department of Geodetic and Geographic Information Technologies, Middle East Technical University, 06800 Ankara
Highlights: Black-Right-Pointing-Pointer Spatial autocorrelation exists in municipal solid waste generation rates for different provinces in Turkey. Black-Right-Pointing-Pointer Traditional non-spatial regression models may not provide sufficient information for better solid waste management. Black-Right-Pointing-Pointer Unemployment rate is a global variable that significantly impacts the waste generation rates in Turkey. Black-Right-Pointing-Pointer Significances of global parameters may diminish at local scale for some provinces. Black-Right-Pointing-Pointer GWR model can be used to create clusters of cities for solid waste management. - Abstract: In studies focusing on the factors that impact solid waste generation habits and rates, the potential spatial dependency in solid waste generation datamore » is not considered in relating the waste generation rates to its determinants. In this study, spatial dependency is taken into account in determination of the significant socio-economic and climatic factors that may be of importance for the municipal solid waste (MSW) generation rates in different provinces of Turkey. Simultaneous spatial autoregression (SAR) and geographically weighted regression (GWR) models are used for the spatial data analyses. Similar to ordinary least squares regression (OLSR), regression coefficients are global in SAR model. In other words, the effect of a given independent variable on a dependent variable is valid for the whole country. Unlike OLSR or SAR, GWR reveals the local impact of a given factor (or independent variable) on the waste generation rates of different provinces. Results show that provinces within closer neighborhoods have similar MSW generation rates. On the other hand, this spatial autocorrelation is not very high for the exploratory variables considered in the study. OLSR and SAR models have similar regression coefficients. GWR is useful to indicate the local determinants of MSW generation rates. GWR model can be utilized to plan waste management activities at local scale including waste minimization, collection, treatment, and disposal. At global scale, the MSW generation rates in Turkey are significantly related to unemployment rate and asphalt-paved roads ratio. Yet, significances of these variables may diminish at local scale for some provinces. At local scale, different factors may be important in affecting MSW generation rates.« less
Optimized biogas-fermentation by neural network control.
Holubar, P; Zani, L; Hager, M; Fröschl, W; Radak, Z; Braun, R
2003-01-01
In this work several feed-forward back-propagation neural networks (FFBP) were trained in order to model, and subsequently control, methane production in anaerobic digesters. To produce data for the training of the neural nets, four anaerobic continuous stirred tank reactors (CSTR) were operated in steady-state conditions at organic loading rates (Br) of about 2 kg x m(-3) x d(-1) chemical oxygen demand (COD), and disturbed by pulse-like increase of the organic loading rate. For the pulses additional carbon sources were added to the basic feed (surplus- and primary sludge) to simulate cofermentation and to increase the COD. Measured parameters were: gas composition, methane production rate, volatile fatty acid concentration, pH, redox potential, volatile suspended solids and COD of feed and effluent. A hierarchical system of neural nets was developed and embedded in a Decision Support System (DSS). A 3-3-1 FFBP simulated the pH with a regression coefficient of 0.82. A 9-3-3 FFBP simulated the volatile fatty acid concentration in the sludge with a regression coefficient of 0.86. And a 9-3-2 FFBP simulated the gas production and gas composition with a regression coefficient of 0.90 and 0.80 respectively. A lab-scale anaerobic CSTR controlled by this tool was able to maintain a methane concentration of about 60% at a rather high gas production rate of between 5 to 5.6 m3 x m(-3) x d(-1).
Retrieval Algorithm for Broadband Albedo at the Top of the Atmosphere
NASA Astrophysics Data System (ADS)
Lee, Sang-Ho; Lee, Kyu-Tae; Kim, Bu-Yo; Zo, ll-Sung; Jung, Hyun-Seok; Rim, Se-Hun
2018-05-01
The objective of this study is to develop an algorithm that retrieves the broadband albedo at the top of the atmosphere (TOA albedo) for radiation budget and climate analysis of Earth's atmosphere using Geostationary Korea Multi-Purse Satellite/Advanced Meteorological Imager (GK-2A/AMI) data. Because the GK-2A satellite will launch in 2018, we used data from the Japanese weather satellite Himawari-8 and onboard sensor Advanced Himawari Imager (AHI), which has similar sensor properties and observation area to those of GK-2A. TOA albedo was retrieved based on reflectance and regression coefficients of shortwave channels 1 to 6 of AHI. The regression coefficient was calculated using the results of the radiative transfer model (SBDART) and ridge regression. The SBDART used simulations of the correlation between TOA albedo and reflectance of each channel according to each atmospheric conditions (solar zenith angle, viewing zenith angle, relative azimuth angle, surface type, and absence/presence of clouds). The TOA albedo from Himawari-8/AHI were compared to that from the National Aeronautics and Space Administration (NASA) satellite Terra with onboard sensor Clouds and the Earth's Radiant Energy System (CERES). The correlation coefficients between the two datasets from the week containing the first day of every month between 1st August 2015 and 1st July 2016 were high, ranging between 0.934 and 0.955, with the root mean square error in the 0.053-0.068 range.
NASA Astrophysics Data System (ADS)
Kelly, B.; Chelsky, A.; Bulygina, E.; Roberts, B. J.
2017-12-01
Remote sensing techniques have become valuable tools to researchers, providing the capability to measure and visualize important parameters without the need for time or resource intensive sampling trips. Relationships between dissolved organic carbon (DOC), colored dissolved organic matter (CDOM) and spectral data have been used to remotely sense DOC concentrations in riverine systems, however, this approach has not been applied to the northern Gulf of Mexico (GoM) and needs to be tested to determine how accurate these relationships are in riverine-dominated shelf systems. In April, July, and October 2017 we sampled surface water from 80+ sites over an area of 100,000 km2 along the Louisiana-Texas shelf in the northern GoM. DOC concentrations were measured on filtered water samples using a Shimadzu TOC-VCSH analyzer using standard techniques. Additionally, DOC concentrations were estimated from CDOM absorption coefficients of filtered water samples on a UV-Vis spectrophotometer using a modification of the methods of Fichot and Benner (2011). These values were regressed against Landsat visible band spectral data for those same locations to establish a relationship between the spectral data, CDOM absorption coefficients. This allowed us to spatially map CDOM absorption coefficients in the Gulf of Mexico using the Landsat spectral data in GIS. We then used a multiple linear regressions model to derive DOC concentrations from the CDOM absorption coefficients and applied those to our map. This study provides an evaluation of the viability of scaling up CDOM absorption coefficient and remote-sensing derived estimates of DOC concentrations to the scale of the LA-TX shelf ecosystem.
NASA Astrophysics Data System (ADS)
Wang, Lunche; Kisi, Ozgur; Zounemat-Kermani, Mohammad; Li, Hui
2017-01-01
Pan evaporation (Ep) plays important roles in agricultural water resources management. One of the basic challenges is modeling Ep using limited climatic parameters because there are a number of factors affecting the evaporation rate. This study investigated the abilities of six different soft computing methods, multi-layer perceptron (MLP), generalized regression neural network (GRNN), fuzzy genetic (FG), least square support vector machine (LSSVM), multivariate adaptive regression spline (MARS), adaptive neuro-fuzzy inference systems with grid partition (ANFIS-GP), and two regression methods, multiple linear regression (MLR) and Stephens and Stewart model (SS) in predicting monthly Ep. Long-term climatic data at various sites crossing a wide range of climates during 1961-2000 are used for model development and validation. The results showed that the models have different accuracies in different climates and the MLP model performed superior to the other models in predicting monthly Ep at most stations using local input combinations (for example, the MAE (mean absolute errors), RMSE (root mean square errors), and determination coefficient (R2) are 0.314 mm/day, 0.405 mm/day and 0.988, respectively for HEB station), while GRNN model performed better in Tibetan Plateau (MAE, RMSE and R2 are 0.459 mm/day, 0.592 mm/day and 0.932, respectively). The accuracies of above models ranked as: MLP, GRNN, LSSVM, FG, ANFIS-GP, MARS and MLR. The overall results indicated that the soft computing techniques generally performed better than the regression methods, but MLR and SS models can be more preferred at some climatic zones instead of complex nonlinear models, for example, the BJ (Beijing), CQ (Chongqing) and HK (Haikou) stations. Therefore, it can be concluded that Ep could be successfully predicted using above models in hydrological modeling studies.
Regression and multivariate models for predicting particulate matter concentration level.
Nazif, Amina; Mohammed, Nurul Izma; Malakahmad, Amirhossein; Abualqumboz, Motasem S
2018-01-01
The devastating health effects of particulate matter (PM 10 ) exposure by susceptible populace has made it necessary to evaluate PM 10 pollution. Meteorological parameters and seasonal variation increases PM 10 concentration levels, especially in areas that have multiple anthropogenic activities. Hence, stepwise regression (SR), multiple linear regression (MLR) and principal component regression (PCR) analyses were used to analyse daily average PM 10 concentration levels. The analyses were carried out using daily average PM 10 concentration, temperature, humidity, wind speed and wind direction data from 2006 to 2010. The data was from an industrial air quality monitoring station in Malaysia. The SR analysis established that meteorological parameters had less influence on PM 10 concentration levels having coefficient of determination (R 2 ) result from 23 to 29% based on seasoned and unseasoned analysis. While, the result of the prediction analysis showed that PCR models had a better R 2 result than MLR methods. The results for the analyses based on both seasoned and unseasoned data established that MLR models had R 2 result from 0.50 to 0.60. While, PCR models had R 2 result from 0.66 to 0.89. In addition, the validation analysis using 2016 data also recognised that the PCR model outperformed the MLR model, with the PCR model for the seasoned analysis having the best result. These analyses will aid in achieving sustainable air quality management strategies.
Estimating chlorophyll content of spartina alterniflora at leaf level using hyper-spectral data
NASA Astrophysics Data System (ADS)
Wang, Jiapeng; Shi, Runhe; Liu, Pudong; Zhang, Chao; Chen, Maosi
2017-09-01
Spartina alterniflora, one of most successful invasive species in the world, was firstly introduced to China in 1979 to accelerate sedimentation and land formation via so-called "ecological engineering", and it is now widely distributed in coastal saltmarshes in China. A key question is how to retrieve chlorophyll content to reflect growth status, which has important implication of potential invasiveness. In this work, an estimation model of chlorophyll content of S. alterniflora was developed based on hyper-spectral data in the Dongtan Wetland, Yangtze Estuary, China. The spectral reflectance of S. alterniflora leaves and their corresponding chlorophyll contents were measured, and then the correlation analysis and regression (i.e., linear, logarithmic, quadratic, power and exponential regression) method were established. The spectral reflectance was transformed and the feature parameters (i.e., "san bian", "lv feng" and "hong gu") were extracted to retrieve the chlorophyll content of S. alterniflora . The results showed that these parameters had a large correlation coefficient with chlorophyll content. On the basis of the correlation coefficient, mathematical models were established, and the models of power and exponential based on SDb had the least RMSE and larger R2 , which had a good performance regarding the inversion of chlorophyll content of S. alterniflora.
NASA Astrophysics Data System (ADS)
ul-Haq, Zia; Rana, Asim Daud; Tariq, Salman; Mahmood, Khalid; Ali, Muhammad; Bashir, Iqra
2018-03-01
We have applied regression analyses for the modeling of tropospheric NO2 (tropo-NO2) as the function of anthropogenic nitrogen oxides (NOx) emissions, aerosol optical depth (AOD), and some important meteorological parameters such as temperature (Temp), precipitation (Preci), relative humidity (RH), wind speed (WS), cloud fraction (CLF) and outgoing long-wave radiation (OLR) over different climatic zones and land use/land cover types in South Asia during October 2004-December 2015. Simple linear regression shows that, over South Asia, tropo-NO2 variability is significantly linked to AOD, WS, NOx, Preci and CLF. Also zone-5, consisting of tropical monsoon areas of eastern India and Myanmar, is the only study zone over which all the selected parameters show their influence on tropo-NO2 at statistical significance levels. In stepwise multiple linear modeling, tropo-NO2 column over landmass of South Asia, is significantly predicted by the combination of RH (standardized regression coefficient, β = - 49), AOD (β = 0.42) and NOx (β = 0.25). The leading predictors of tropo-NO2 columns over zones 1-5 are OLR, AOD, Temp, OLR, and RH respectively. Overall, as revealed by the higher correlation coefficients (r), the multiple regressions provide reasonable models for tropo-NO2 over South Asia (r = 0.82), zone-4 (r = 0.90) and zone-5 (r = 0.93). The lowest r (of 0.66) has been found for hot semi-arid region in northwestern Indus-Ganges Basin (zone-2). The highest value of β for urban area AOD (of 0.42) is observed for megacity Lahore, located in warm semi-arid zone-2 with large scale crop-residue burning, indicating strong influence of aerosols on the modeled tropo-NO2 column. A statistical significant correlation (r = 0.22) at the 0.05 level is found between tropo-NO2 and AOD over Lahore. Also NOx emissions appear as the highest contributor (β = 0.59) for modeled tropo-NO2 column over megacity Dhaka.
Babcock, Chad; Finley, Andrew O.; Bradford, John B.; Kolka, Randall K.; Birdsey, Richard A.; Ryan, Michael G.
2015-01-01
Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both residual spatial dependence and non-stationarity of model covariates through the introduction of spatial random effects. We explored this objective using four forest inventory datasets that are part of the North American Carbon Program, each comprising point-referenced measures of above-ground forest biomass and discrete LiDAR. For each dataset, we considered at least five regression model specifications of varying complexity. Models were assessed based on goodness of fit criteria and predictive performance using a 10-fold cross-validation procedure. Results showed that the addition of spatial random effects to the regression model intercept improved fit and predictive performance in the presence of substantial residual spatial dependence. Additionally, in some cases, allowing either some or all regression slope parameters to vary spatially, via the addition of spatial random effects, further improved model fit and predictive performance. In other instances, models showed improved fit but decreased predictive performance—indicating over-fitting and underscoring the need for cross-validation to assess predictive ability. The proposed Bayesian modeling framework provided access to pixel-level posterior predictive distributions that were useful for uncertainty mapping, diagnosing spatial extrapolation issues, revealing missing model covariates, and discovering locally significant parameters.
Yu, S; Gao, S; Gan, Y; Zhang, Y; Ruan, X; Wang, Y; Yang, L; Shi, J
2016-04-01
Quantitative structure-property relationship modelling can be a valuable alternative method to replace or reduce experimental testing. In particular, some endpoints such as octanol-water (KOW) and organic carbon-water (KOC) partition coefficients of polychlorinated biphenyls (PCBs) are easier to predict and various models have been already developed. In this paper, two different methods, which are multiple linear regression based on the descriptors generated using Dragon software and hologram quantitative structure-activity relationships, were employed to predict suspended particulate matter (SPM) derived log KOC and generator column, shake flask and slow stirring method derived log KOW values of 209 PCBs. The predictive ability of the derived models was validated using a test set. The performances of all these models were compared with EPI Suite™ software. The results indicated that the proposed models were robust and satisfactory, and could provide feasible and promising tools for the rapid assessment of the SPM derived log KOC and generator column, shake flask and slow stirring method derived log KOW values of PCBs.
NASA Astrophysics Data System (ADS)
Jing, Ran; Gong, Zhaoning; Zhao, Wenji; Pu, Ruiliang; Deng, Lei
2017-12-01
Above-bottom biomass (ABB) is considered as an important parameter for measuring the growth status of aquatic plants, and is of great significance for assessing health status of wetland ecosystems. In this study, Structure from Motion (SfM) technique was used to rebuild the study area with high overlapped images acquired by an unmanned aerial vehicle (UAV). We generated orthoimages and SfM dense point cloud data, from which vegetation indices (VIs) and SfM point cloud variables including average height (HAVG), standard deviation of height (HSD) and coefficient of variation of height (HCV) were extracted. These VIs and SfM point cloud variables could effectively characterize the growth status of aquatic plants, and thus they could be used to develop a simple linear regression model (SLR) and a stepwise linear regression model (SWL) with field measured ABB samples of aquatic plants. We also utilized a decision tree method to discriminate different types of aquatic plants. The experimental results indicated that (1) the SfM technique could effectively process high overlapped UAV images and thus be suitable for the reconstruction of fine texture feature of aquatic plant canopy structure; and (2) an SWL model based on point cloud variables: HAVG, HSD, HCV and two VIs: NGRDI, ExGR as independent variables has produced the best predictive result of ABB of aquatic plants in the study area, with a coefficient of determination of 0.84 and a relative root mean square error of 7.13%. In this analysis, a novel method for the quantitative inversion of a growth parameter (i.e., ABB) of aquatic plants in wetlands was demonstrated.
Hewitt, Angela L.; Popa, Laurentiu S.; Pasalar, Siavash; Hendrix, Claudia M.
2011-01-01
Encoding of movement kinematics in Purkinje cell simple spike discharge has important implications for hypotheses of cerebellar cortical function. Several outstanding questions remain regarding representation of these kinematic signals. It is uncertain whether kinematic encoding occurs in unpredictable, feedback-dependent tasks or kinematic signals are conserved across tasks. Additionally, there is a need to understand the signals encoded in the instantaneous discharge of single cells without averaging across trials or time. To address these questions, this study recorded Purkinje cell firing in monkeys trained to perform a manual random tracking task in addition to circular tracking and center-out reach. Random tracking provides for extensive coverage of kinematic workspaces. Direction and speed errors are significantly greater during random than circular tracking. Cross-correlation analyses comparing hand and target velocity profiles show that hand velocity lags target velocity during random tracking. Correlations between simple spike firing from 120 Purkinje cells and hand position, velocity, and speed were evaluated with linear regression models including a time constant, τ, as a measure of the firing lead/lag relative to the kinematic parameters. Across the population, velocity accounts for the majority of simple spike firing variability (63 ± 30% of Radj2), followed by position (28 ± 24% of Radj2) and speed (11 ± 19% of Radj2). Simple spike firing often leads hand kinematics. Comparison of regression models based on averaged vs. nonaveraged firing and kinematics reveals lower Radj2 values for nonaveraged data; however, regression coefficients and τ values are highly similar. Finally, for most cells, model coefficients generated from random tracking accurately estimate simple spike firing in either circular tracking or center-out reach. These findings imply that the cerebellum controls movement kinematics, consistent with a forward internal model that predicts upcoming limb kinematics. PMID:21795616
ERIC Educational Resources Information Center
Mugrage, Beverly; And Others
Three ridge regression solutions are compared with ordinary least squares regression and with principal components regression using all components. Ridge regression, particularly the Lawless-Wang solution, out-performed ordinary least squares regression and the principal components solution on the criteria of stability of coefficient and closeness…
NASA Astrophysics Data System (ADS)
Liu, Ronghua; Sun, Qiaofeng; Hu, Tian; Li, Lian; Nie, Lei; Wang, Jiayue; Zhou, Wanhui; Zang, Hengchang
2018-03-01
As a powerful process analytical technology (PAT) tool, near infrared (NIR) spectroscopy has been widely used in real-time monitoring. In this study, NIR spectroscopy was applied to monitor multi-parameters of traditional Chinese medicine (TCM) Shenzhiling oral liquid during the concentration process to guarantee the quality of products. Five lab scale batches were employed to construct quantitative models to determine five chemical ingredients and physical change (samples density) during concentration process. The paeoniflorin, albiflorin, liquiritin and samples density were modeled by partial least square regression (PLSR), while the content of the glycyrrhizic acid and cinnamic acid were modeled by support vector machine regression (SVMR). Standard normal variate (SNV) and/or Savitzkye-Golay (SG) smoothing with derivative methods were adopted for spectra pretreatment. Variable selection methods including correlation coefficient (CC), competitive adaptive reweighted sampling (CARS) and interval partial least squares regression (iPLS) were performed for optimizing the models. The results indicated that NIR spectroscopy was an effective tool to successfully monitoring the concentration process of Shenzhiling oral liquid.
[New method of mixed gas infrared spectrum analysis based on SVM].
Bai, Peng; Xie, Wen-Jun; Liu, Jun-Hua
2007-07-01
A new method of infrared spectrum analysis based on support vector machine (SVM) for mixture gas was proposed. The kernel function in SVM was used to map the seriously overlapping absorption spectrum into high-dimensional space, and after transformation, the high-dimensional data could be processed in the original space, so the regression calibration model was established, then the regression calibration model with was applied to analyze the concentration of component gas. Meanwhile it was proved that the regression calibration model with SVM also could be used for component recognition of mixture gas. The method was applied to the analysis of different data samples. Some factors such as scan interval, range of the wavelength, kernel function and penalty coefficient C that affect the model were discussed. Experimental results show that the component concentration maximal Mean AE is 0.132%, and the component recognition accuracy is higher than 94%. The problems of overlapping absorption spectrum, using the same method for qualitative and quantitative analysis, and limit number of training sample, were solved. The method could be used in other mixture gas infrared spectrum analyses, promising theoretic and application values.
NASA Astrophysics Data System (ADS)
Oh, Hyun-Joo; Lee, Saro; Chotikasathien, Wisut; Kim, Chang Hwan; Kwon, Ju Hyoung
2009-04-01
For predictive landslide susceptibility mapping, this study applied and verified probability model, the frequency ratio and statistical model, logistic regression at Pechabun, Thailand, using a geographic information system (GIS) and remote sensing. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys, and maps of the topography, geology and land cover were constructed to spatial database. The factors that influence landslide occurrence, such as slope gradient, slope aspect and curvature of topography and distance from drainage were calculated from the topographic database. Lithology and distance from fault were extracted and calculated from the geology database. Land cover was classified from Landsat TM satellite image. The frequency ratio and logistic regression coefficient were overlaid for landslide susceptibility mapping as each factor’s ratings. Then the landslide susceptibility map was verified and compared using the existing landslide location. As the verification results, the frequency ratio model showed 76.39% and logistic regression model showed 70.42% in prediction accuracy. The method can be used to reduce hazards associated with landslides and to plan land cover.
NASA Astrophysics Data System (ADS)
Liu, Yande; Ying, Yibin; Lu, Huishan; Fu, Xiaping
2004-12-01
This work evaluates the feasibility of Fourier transform near infrared (FT-NIR) spectrometry for rapid determining the total soluble solids content and acidity of apple fruit. Intact apple fruit were measured by reflectance FT-NIR in 800-2500 nm range. FT-NIR models were developed based on partial least square (PLS) regression and principal component regress (PCR) with respect to the reflectance and its first derivative, the logarithms of the reflectance reciprocal and its second derivative. The above regression models, related the FT-NIR spectra to soluble solids content (SSC), titratable acidity (TA) and available acidity (pH). The best combination, based on the prediction results, was PLS models with respect to the logarithms of the reflectance reciprocal. Predictions with PLS models resulted standard errors of prediction (SEP) of 0.455, 0.044 and 0.068, and correlation coefficients of 0.968, 0.728 and 0.831 for SSC, TA and pH, respectively. It was concluded that by using the FT-NIR spectrometry measurement system, in the appropriate spectral range, it is possible to nondestructively assess the maturity factors of apple fruit.
Li, Li; Wang, Qiang; Qiu, Xinghua; Dong, Yian; Jia, Shenglan; Hu, Jianxin
2014-07-15
Characterizing pseudo equilibrium-status soil/vegetation partition coefficient KSV, the quotient of respective concentrations in soil and vegetation of a certain substance at remote background areas, is essential in ecological risk assessment, however few previous attempts have been made for field determination and developing validated and reproducible structure-based estimates. In this study, KSV was calculated based on measurements of seventeen 2,3,7,8-substituted PCDD/F congeners in soil and moss (Dicranum angustum), and rouzi grass (Thylacospermum caespitosum) of two background sites, Ny-Ålesund of the Arctic and Zhangmu-Nyalam region of the Tibet Plateau, respectively. By both fugacity modeling and stepwise regression of field data, the air-water partition coefficient (KAW) and aqueous solubility (SW) were identified as the influential physicochemical properties. Furthermore, validated quantitative structure-property relationship (QSPR) model was developed to extrapolate the KSV prediction to all 210 PCDD/F congeners. Molecular polarizability, molecular size and molecular energy demonstrated leading effects on KSV. Copyright © 2014 Elsevier B.V. All rights reserved.
Lamm, Steven H; Ferdosi, Hamid; Dissen, Elisabeth K; Li, Ji; Ahn, Jaeil
2015-12-07
High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1-1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100-150 µg/L arsenic.
Lamm, Steven H.; Ferdosi, Hamid; Dissen, Elisabeth K.; Li, Ji; Ahn, Jaeil
2015-01-01
High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1–1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100–150 µg/L arsenic. PMID:26690190
Dong, Yingbo; Lin, Hai; He, Yinhai
2017-03-01
The physicochemical properties of the 24 modified clinoptilolite samples and their ammonia-nitrogen removal rates were measured to investigate the correlation between them. The modified clinoptilolites obtained by acid modification, alkali modification, salt modification, and thermal modification were used to adsorb ammonia-nitrogen. The surface area, average pore width, macropore volume, mecropore volume, micropore volume, cation exchange capacity (CEC), zeta potential, silicon-aluminum ratios, and ammonia-nitrogen removal rate of the 24 modified clinoptilolite samples were measured. Subsequently, the linear regression analysis method was used to research the correlation between the physicochemical property of the different modified clinoptilolite samples and the ammonia-nitrogen removal rate. Results showed that the CEC was the major physicochemical property affecting the ammonia-nitrogen removal performance. According to the impacts from strong to weak, the order was CEC > silicon-aluminum ratios > mesopore volume > micropore volume > surface area. On the contrary, the macropore volume, average pore width, and zeta potential had a negligible effect on the ammonia-nitrogen removal rate. The relational model of physicochemical property and ammonia-nitrogen removal rate of the modified clinoptilolite was established, which was ammonia-nitrogen removal rate = 1.415[CEC] + 173.533 [macropore volume] + 0.683 [surface area] + 4.789[Si/Al] - 201.248. The correlation coefficient of this model was 0.982, which passed the validation of regression equation and regression coefficients. The results of the significance test showed a good fit to the correlation model.
1990-05-01
0.759 0.744 0.768 0.753 106 (THUMBBR) THUMB BREADTH -0.652 -0.673 -0.539 -0.663 217 (LIPLGTHH) LIP LENGTH HEADBOARD 0.017 0.019 0.020 51 (FTBRHOR) FOOT...DEPENDENT VARIABLE: (106) THUMB BREADTH (THUBBR) MODEL INDEPENDENT VARIABLE 1 2 3 4 5 INTERCEPT 6.621 5.016 6.267 5.697 4.528 59 (HANDCIRC) HAND...95 (SLLSPEL) SLEEVE LENGTH: SPINE-ELBOW -0.020 -0.019 -C.018 9 (BLFTCIRC) BALL OF FOOT CIRCUMFERENCE -0.032 -0.039 106 (THUMBBR) THUMB BREADTH 0.228
NASA Astrophysics Data System (ADS)
Oliphant, Andrew J.; Stoy, Paul C.
2018-03-01
Photosynthesis is more efficient under diffuse than direct beam photosynthetically active radiation (PAR) per unit PAR, but diffuse PAR is infrequently measured at research sites. We examine four commonly used semiempirical models (Erbs et al., 1982, https://doi.org/10.1016/0038-092X(82)90302-4; Gu et al., 1999, https://doi.org/10.1029/1999JD901068; Roderick, 1999, https://doi.org/10.1016/S0168-1923(99)00028-3; Weiss & Norman, 1985, https://doi.org/10.1016/0168-1923(85)90020-6) that partition PAR into diffuse and direct beam components based on the negative relationship between atmospheric transparency and scattering of PAR. Radiation observations at 58 sites (140 site years) from the La Thuille FLUXNET data set were used for model validation and coefficient testing. All four models did a reasonable job of predicting the diffuse fraction of PAR (ϕ) at the 30 min timescale, with site median r2 values ranging between 0.85 and 0.87, model efficiency coefficients (MECs) between 0.62 and 0.69, and regression slopes within 10% of unity. Model residuals were not strongly correlated with astronomical or standard meteorological variables. We conclude that the Roderick (1999, https://doi.org/10.1016/S0168-1923(99)00028-3) and Gu et al. (1999, https://doi.org/10.1029/1999JD901068) models performed better overall than the two older models. Using the basic form of these models, the data set was used to find both individual site and universal model coefficients that optimized predictive accuracy. A new universal form of the model is presented in section 5 that increased site median MEC to 0.73. Site-specific model coefficients increased median MEC further to 0.78, indicating usefulness of local/regional training of coefficients to capture the local distributions of aerosols and cloud types.
The dynamic correlation between policy uncertainty and stock market returns in China
NASA Astrophysics Data System (ADS)
Yang, Miao; Jiang, Zhi-Qiang
2016-11-01
The dynamic correlation is examined between government's policy uncertainty and Chinese stock market returns in the period from January 1995 to December 2014. We find that the stock market is significantly correlated to policy uncertainty based on the results of the Vector Auto Regression (VAR) and Structural Vector Auto Regression (SVAR) models. In contrast, the results of the Dynamic Conditional Correlation Generalized Multivariate Autoregressive Conditional Heteroscedasticity (DCC-MGARCH) model surprisingly show a low dynamic correlation coefficient between policy uncertainty and market returns, suggesting that the fluctuations of each variable are greatly influenced by their values in the preceding period. Our analysis highlights the understanding of the dynamical relationship between stock market and fiscal and monetary policy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, M.E.; Marshall, T.L.; Rowley, R.L.
1998-07-01
Absorption rates of gaseous CO{sub 2} into aqueous blends of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) and of gaseous H{sub 2}S into aqueous MDEA were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. A numerical model for absorption, diffusion, and reaction of CO{sub 2} and H{sub 2}S in blends of MDEA, DEA, and water was developed. The model was used to regress diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} for the case of CO{sub 2} absorption and of bisulfide ion for the case of H{sub 2}S absorption from measured absorption rates. CO{sub 2} absorptionmore » rates and diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} were obtained at 298.2 K and 318.2 K in aqueous solutions containing 50 mass % total amine at DEA:MDEA mole ratios of 1:20, 1:4, 1L3, and 2:3. H{sub 2}S absorption rates and diffusion coefficients of bisulfide ion were obtained at 298.2 K and 318.2 K in aqueous solutions containing 20, 35, and 50 mass % MDEA.« less
Developing a Model for Forecasting Road Traffic Accident (RTA) Fatalities in Yemen
NASA Astrophysics Data System (ADS)
Karim, Fareed M. A.; Abdo Saleh, Ali; Taijoobux, Aref; Ševrović, Marko
2017-12-01
The aim of this paper is to develop a model for forecasting RTA fatalities in Yemen. The yearly fatalities was modeled as the dependent variable, while the number of independent variables included the population, number of vehicles, GNP, GDP and Real GDP per capita. It was determined that all these variables are highly correlated with the correlation coefficient (r ≈ 0.9); in order to avoid multicollinearity in the model, a single variable with the highest r value was selected (real GDP per capita). A simple regression model was developed; the model was very good (R2=0.916); however, the residuals were serially correlated. The Prais-Winsten procedure was used to overcome this violation of the regression assumption. The data for a 20-year period from 1991-2010 were analyzed to build the model; the model was validated by using data for the years 2011-2013; the historical fit for the period 1991 - 2011 was very good. Also, the validation for 2011-2013 proved accurate.
Sensitivity Analysis of the Integrated Medical Model for ISS Programs
NASA Technical Reports Server (NTRS)
Goodenow, D. A.; Myers, J. G.; Arellano, J.; Boley, L.; Garcia, Y.; Saile, L.; Walton, M.; Kerstman, E.; Reyes, D.; Young, M.
2016-01-01
Sensitivity analysis estimates the relative contribution of the uncertainty in input values to the uncertainty of model outputs. Partial Rank Correlation Coefficient (PRCC) and Standardized Rank Regression Coefficient (SRRC) are methods of conducting sensitivity analysis on nonlinear simulation models like the Integrated Medical Model (IMM). The PRCC method estimates the sensitivity using partial correlation of the ranks of the generated input values to each generated output value. The partial part is so named because adjustments are made for the linear effects of all the other input values in the calculation of correlation between a particular input and each output. In SRRC, standardized regression-based coefficients measure the sensitivity of each input, adjusted for all the other inputs, on each output. Because the relative ranking of each of the inputs and outputs is used, as opposed to the values themselves, both methods accommodate the nonlinear relationship of the underlying model. As part of the IMM v4.0 validation study, simulations are available that predict 33 person-missions on ISS and 111 person-missions on STS. These simulated data predictions feed the sensitivity analysis procedures. The inputs to the sensitivity procedures include the number occurrences of each of the one hundred IMM medical conditions generated over the simulations and the associated IMM outputs: total quality time lost (QTL), number of evacuations (EVAC), and number of loss of crew lives (LOCL). The IMM team will report the results of using PRCC and SRRC on IMM v4.0 predictions of the ISS and STS missions created as part of the external validation study. Tornado plots will assist in the visualization of the condition-related input sensitivities to each of the main outcomes. The outcomes of this sensitivity analysis will drive review focus by identifying conditions where changes in uncertainty could drive changes in overall model output uncertainty. These efforts are an integral part of the overall verification, validation, and credibility review of IMM v4.0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-09-14
This package contains statistical routines for extracting features from multivariate time-series data which can then be used for subsequent multivariate statistical analysis to identify patterns and anomalous behavior. It calculates local linear or quadratic regression model fits to moving windows for each series and then summarizes the model coefficients across user-defined time intervals for each series. These methods are domain agnostic-but they have been successfully applied to a variety of domains, including commercial aviation and electric power grid data.
2016-03-01
regression models that yield hedonic price indexes is closely related to standard techniques for developing cost estimating relationships ( CERs ...October 2014). iii analysis) and derives a price index from the coefficients on variables reflecting the year of purchase. In CER development, the...index. The relevant cost metric in both cases is unit recurring flyaway (URF) costs. For the current project, we develop a “Baseline” CER model, taking
Statistical Package User’s Guide.
1980-08-01
261 C. STACH Nonparametric Descriptive Statistics ... ......... ... 265 D. CHIRA Coefficient of Concordance...135 I.- -a - - W 7- Test Data: This program was tested using data from John Neter and William Wasserman, Applied Linear Statistical Models: Regression...length of data file e. new fileý name (not same as raw data file) 5. Printout as optioned for only. Comments: Ranked data are used for program CHIRA
Katherine J. Elliott; Barton D. Clinton
1993-01-01
Allometric equations were developed to predict aboveground dry weight of herbaceous and woody species on prescribe-burned sites in the Southern Appalachians. Best-fit least-square regression models were developed using diamet,er, height, or both, as the independent variables and dry weight as the dependent variable. Coefficients of determination for the selected total...
Structural features that predict real-value fluctuations of globular proteins
Jamroz, Michal; Kolinski, Andrzej; Kihara, Daisuke
2012-01-01
It is crucial to consider dynamics for understanding the biological function of proteins. We used a large number of molecular dynamics trajectories of non-homologous proteins as references and examined static structural features of proteins that are most relevant to fluctuations. We examined correlation of individual structural features with fluctuations and further investigated effective combinations of features for predicting the real-value of residue fluctuations using the support vector regression. It was found that some structural features have higher correlation than crystallographic B-factors with fluctuations observed in molecular dynamics trajectories. Moreover, support vector regression that uses combinations of static structural features showed accurate prediction of fluctuations with an average Pearson’s correlation coefficient of 0.669 and a root mean square error of 1.04 Å. This correlation coefficient is higher than the one observed for the prediction by the Gaussian network model. An advantage of the developed method over the Gaussian network models is that the former predicts the real-value of fluctuation. The results help improve our understanding of relationships between protein structure and fluctuation. Furthermore, the developed method provides a convienient practial way to predict fluctuations of proteins using easily computed static structural features of proteins. PMID:22328193
Response Error in Reporting Dental Coverage by Older Americans in the Health and Retirement Study
Manski, Richard J.; Mathiowetz, Nancy A.; Campbell, Nancy; Pepper, John V.
2014-01-01
The aim of this research was to analyze the inconsistency in responses to survey questions within the Health and Retirement Study (HRS) regarding insurance coverage of dental services. Self-reports of dental coverage in the dental services section were compared with those in the insurance section of the 2002 HRS to identify inconsistent responses. Logistic regression identified characteristics of persons reporting discrepancies and assessed the effect of measurement error on dental coverage coefficient estimates in dental utilization models. In 18% of cases, data reported in the insurance section contradicted data reported in the dental use section of the HRS by those who said insurance at least partially covered (or would have covered) their (hypothetical) dental use. Additional findings included distinct characteristics of persons with potential reporting errors and a downward bias to the regression coefficient for coverage in a dental use model without controls for inconsistent self-reports of coverage. This study offers evidence for the need to validate self-reports of dental insurance coverage among a survey population of older Americans to obtain more accurate estimates of coverage and its impact on dental utilization. PMID:25428430
Structured penalties for functional linear models-partially empirical eigenvectors for regression.
Randolph, Timothy W; Harezlak, Jaroslaw; Feng, Ziding
2012-01-01
One of the challenges with functional data is incorporating geometric structure, or local correlation, into the analysis. This structure is inherent in the output from an increasing number of biomedical technologies, and a functional linear model is often used to estimate the relationship between the predictor functions and scalar responses. Common approaches to the problem of estimating a coefficient function typically involve two stages: regularization and estimation. Regularization is usually done via dimension reduction, projecting onto a predefined span of basis functions or a reduced set of eigenvectors (principal components). In contrast, we present a unified approach that directly incorporates geometric structure into the estimation process by exploiting the joint eigenproperties of the predictors and a linear penalty operator. In this sense, the components in the regression are 'partially empirical' and the framework is provided by the generalized singular value decomposition (GSVD). The form of the penalized estimation is not new, but the GSVD clarifies the process and informs the choice of penalty by making explicit the joint influence of the penalty and predictors on the bias, variance and performance of the estimated coefficient function. Laboratory spectroscopy data and simulations are used to illustrate the concepts.
Carreon, Leah Y; Bratcher, Kelly R; Das, Nandita; Nienhuis, Jacob B; Glassman, Steven D
2014-04-15
Cross-sectional cohort. The purpose of this study is to determine whether the EuroQOL-5D (EQ-5D) can be derived from commonly available low back disease-specific health-related quality of life measures. The Oswestry Disability Index (ODI) and numeric rating scales (0-10) for back pain (BP) and leg pain (LP) are widely used disease-specific measures in patients with lumbar degenerative disorders. Increasingly, the EQ-5D is being used as a measure of utility due to ease of administration and scoring. The EQ-5D, ODI, BP, and LP were prospectively collected in 14,544 patients seen in clinic for lumbar degenerative disorders. Pearson correlation coefficients for paired observations from multiple time points between ODI, BP, LP, and EQ-5D were determined. Regression modeling was done to compute the EQ-5D score from the ODI, BP, and LP. The mean age was 53.3 ± 16.4 years and 41% were male. Correlations between the EQ-5D and the ODI, BP, and LP were statistically significant (P < 0.0001) with correlation coefficients of -0.77, -0.50, and -0.57, respectively. The regression equation: [0.97711 + (-0.00687 × ODI) + (-0.01488 × LP) + (-0.01008 × BP)] to predict EQ-5D, had an R2 of 0.61 and a root mean square error of 0.149. The model using ODI alone had an R2 of 0.57 and a root mean square error of 0.156. The model using the individual ODI items had an R2 of 0.64 and a root mean square error of 0.143. The correlation coefficient between the observed and estimated EQ-5D score was 0.78. There was no statistically significant difference between the actual EQ-5D (0.553 ± 0.238) and the estimated EQ-5D score (0.553 ± 0.186) using the ODI, BP, and LP regression model. However, rounding off the coefficients to less than 5 decimal places produced less accurate results. Unlike previous studies showing a robust relationship between low back-specific measures and the Short Form-6D, a similar relationship was not seen between the ODI, BP, LP, and the EQ-5D. Thus, the EQ-5D cannot be accurately estimated from the ODI, BP, and LP. 2.
NASA Astrophysics Data System (ADS)
Kozioł, Michał
2017-10-01
The article presents a parametric model describing the registered distributions spectrum of optical radiation emitted by electrical discharges generated in the systems: the needle- needle, the needleplate and in the system for surface discharges. Generation of electrical discharges and registration of the emitted radiation was carried out in three different electrical insulating oils: fabric new, operated (used) and operated with air bubbles. For registration of optical spectra in the range of ultraviolet, visible and near infrared a high resolution spectrophotometer was. The proposed mathematical model was developed in a regression procedure using gauss-sigmoid type function. The dependent variable was the intensity of the recorded optical signals. In order to estimate the optimal parameters of the model an evolutionary algorithm was used. The optimization procedure was performed in Matlab environment. For determination of the matching quality of theoretical parameters of the regression function to the empirical data determination coefficient R2 was applied.
Aircraft Anomaly Detection Using Performance Models Trained on Fleet Data
NASA Technical Reports Server (NTRS)
Gorinevsky, Dimitry; Matthews, Bryan L.; Martin, Rodney
2012-01-01
This paper describes an application of data mining technology called Distributed Fleet Monitoring (DFM) to Flight Operational Quality Assurance (FOQA) data collected from a fleet of commercial aircraft. DFM transforms the data into aircraft performance models, flight-to-flight trends, and individual flight anomalies by fitting a multi-level regression model to the data. The model represents aircraft flight performance and takes into account fixed effects: flight-to-flight and vehicle-to-vehicle variability. The regression parameters include aerodynamic coefficients and other aircraft performance parameters that are usually identified by aircraft manufacturers in flight tests. Using DFM, the multi-terabyte FOQA data set with half-million flights was processed in a few hours. The anomalies found include wrong values of competed variables, (e.g., aircraft weight), sensor failures and baises, failures, biases, and trends in flight actuators. These anomalies were missed by the existing airline monitoring of FOQA data exceedances.
Ranade, A K; Pandey, M; Datta, D
2013-01-01
A study was conducted to evaluate the absorbed rate coefficient of (238)U, (232)Th, (40)K and (137)Cs present in soil. A total of 31 soil samples and the corresponding terrestrial dose rates at 1 m from different locations were taken around the Anushaktinagar region, where the litho-logy is dominated by red soil. A linear regression model was developed for the estimation of these factors. The estimated coefficients (nGy h(-1) Bq(-1) kg(-1)) were 0.454, 0.586, 0.035 and 0.392, respectively. The factors calculated were in good agreement with the literature values.
Noninvasive and fast measurement of blood glucose in vivo by near infrared (NIR) spectroscopy
NASA Astrophysics Data System (ADS)
Jintao, Xue; Liming, Ye; Yufei, Liu; Chunyan, Li; Han, Chen
2017-05-01
This research was to develop a method for noninvasive and fast blood glucose assay in vivo. Near-infrared (NIR) spectroscopy, a more promising technique compared to other methods, was investigated in rats with diabetes and normal rats. Calibration models are generated by two different multivariate strategies: partial least squares (PLS) as linear regression method and artificial neural networks (ANN) as non-linear regression method. The PLS model was optimized individually by considering spectral range, spectral pretreatment methods and number of model factors, while the ANN model was studied individually by selecting spectral pretreatment methods, parameters of network topology, number of hidden neurons, and times of epoch. The results of the validation showed the two models were robust, accurate and repeatable. Compared to the ANN model, the performance of the PLS model was much better, with lower root mean square error of validation (RMSEP) of 0.419 and higher correlation coefficients (R) of 96.22%.
Park, Taeyoung; Krafty, Robert T; Sánchez, Alvaro I
2012-07-27
A Poisson regression model with an offset assumes a constant baseline rate after accounting for measured covariates, which may lead to biased estimates of coefficients in an inhomogeneous Poisson process. To correctly estimate the effect of time-dependent covariates, we propose a Poisson change-point regression model with an offset that allows a time-varying baseline rate. When the nonconstant pattern of a log baseline rate is modeled with a nonparametric step function, the resulting semi-parametric model involves a model component of varying dimension and thus requires a sophisticated varying-dimensional inference to obtain correct estimates of model parameters of fixed dimension. To fit the proposed varying-dimensional model, we devise a state-of-the-art MCMC-type algorithm based on partial collapse. The proposed model and methods are used to investigate an association between daily homicide rates in Cali, Colombia and policies that restrict the hours during which the legal sale of alcoholic beverages is permitted. While simultaneously identifying the latent changes in the baseline homicide rate which correspond to the incidence of sociopolitical events, we explore the effect of policies governing the sale of alcohol on homicide rates and seek a policy that balances the economic and cultural dependencies on alcohol sales to the health of the public.
Analysis of Blood Transfusion Data Using Bivariate Zero-Inflated Poisson Model: A Bayesian Approach.
Mohammadi, Tayeb; Kheiri, Soleiman; Sedehi, Morteza
2016-01-01
Recognizing the factors affecting the number of blood donation and blood deferral has a major impact on blood transfusion. There is a positive correlation between the variables "number of blood donation" and "number of blood deferral": as the number of return for donation increases, so does the number of blood deferral. On the other hand, due to the fact that many donors never return to donate, there is an extra zero frequency for both of the above-mentioned variables. In this study, in order to apply the correlation and to explain the frequency of the excessive zero, the bivariate zero-inflated Poisson regression model was used for joint modeling of the number of blood donation and number of blood deferral. The data was analyzed using the Bayesian approach applying noninformative priors at the presence and absence of covariates. Estimating the parameters of the model, that is, correlation, zero-inflation parameter, and regression coefficients, was done through MCMC simulation. Eventually double-Poisson model, bivariate Poisson model, and bivariate zero-inflated Poisson model were fitted on the data and were compared using the deviance information criteria (DIC). The results showed that the bivariate zero-inflated Poisson regression model fitted the data better than the other models.
Analysis of Blood Transfusion Data Using Bivariate Zero-Inflated Poisson Model: A Bayesian Approach
Mohammadi, Tayeb; Sedehi, Morteza
2016-01-01
Recognizing the factors affecting the number of blood donation and blood deferral has a major impact on blood transfusion. There is a positive correlation between the variables “number of blood donation” and “number of blood deferral”: as the number of return for donation increases, so does the number of blood deferral. On the other hand, due to the fact that many donors never return to donate, there is an extra zero frequency for both of the above-mentioned variables. In this study, in order to apply the correlation and to explain the frequency of the excessive zero, the bivariate zero-inflated Poisson regression model was used for joint modeling of the number of blood donation and number of blood deferral. The data was analyzed using the Bayesian approach applying noninformative priors at the presence and absence of covariates. Estimating the parameters of the model, that is, correlation, zero-inflation parameter, and regression coefficients, was done through MCMC simulation. Eventually double-Poisson model, bivariate Poisson model, and bivariate zero-inflated Poisson model were fitted on the data and were compared using the deviance information criteria (DIC). The results showed that the bivariate zero-inflated Poisson regression model fitted the data better than the other models. PMID:27703493
Jin, Yonghong; Zhang, Qi; Shan, Lifei; Li, Sai-Ping
2015-01-01
Financial networks have been extensively studied as examples of real world complex networks. In this paper, we establish and study the network of venture capital (VC) firms in China. We compute and analyze the statistical properties of the network, including parameters such as degrees, mean lengths of the shortest paths, clustering coefficient and robustness. We further study the topology of the network and find that it has small-world behavior. A multiple linear regression model is introduced to study the relation between network parameters and major regional economic indices in China. From the result of regression, we find that, economic aggregate (including the total GDP, investment, consumption and net export), upgrade of industrial structure, employment and remuneration of a region are all positively correlated with the degree and the clustering coefficient of the VC sub-network of the region, which suggests that the development of the VC industry has substantial effects on regional economy in China.
Jin, Yonghong; Zhang, Qi; Shan, Lifei; Li, Sai-Ping
2015-01-01
Financial networks have been extensively studied as examples of real world complex networks. In this paper, we establish and study the network of venture capital (VC) firms in China. We compute and analyze the statistical properties of the network, including parameters such as degrees, mean lengths of the shortest paths, clustering coefficient and robustness. We further study the topology of the network and find that it has small-world behavior. A multiple linear regression model is introduced to study the relation between network parameters and major regional economic indices in China. From the result of regression, we find that, economic aggregate (including the total GDP, investment, consumption and net export), upgrade of industrial structure, employment and remuneration of a region are all positively correlated with the degree and the clustering coefficient of the VC sub-network of the region, which suggests that the development of the VC industry has substantial effects on regional economy in China. PMID:26340555
Varying coefficient subdistribution regression for left-truncated semi-competing risks data.
Li, Ruosha; Peng, Limin
2014-10-01
Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the observation of which however is not precluded by the occurrence of the landmark event. In observational studies, the analysis of such data can be further complicated by left truncation. In this work, we study a varying co-efficient subdistribution regression model for left-truncated semi-competing risks data. Our method appropriately accounts for the specifical truncation and censoring features of the data, and moreover has the flexibility to accommodate potentially varying covariate effects. The proposed method can be easily implemented and the resulting estimators are shown to have nice asymptotic properties. We also present inference, such as Kolmogorov-Smirnov type and Cramér Von-Mises type hypothesis testing procedures for the covariate effects. Simulation studies and an application to the Denmark diabetes registry demonstrate good finite-sample performance and practical utility of the proposed method.
The problem of natural funnel asymmetries: a simulation analysis of meta-analysis in macroeconomics.
Callot, Laurent; Paldam, Martin
2011-06-01
Effect sizes in macroeconomic are estimated by regressions on data published by statistical agencies. Funnel plots are a representation of the distribution of the resulting regression coefficients. They are normally much wider than predicted by the t-ratio of the coefficients and often asymmetric. The standard method of meta-analysts in economics assumes that the asymmetries are because of publication bias causing censoring and adjusts the average accordingly. The paper shows that some funnel asymmetries may be 'natural' so that they occur without censoring. We investigate such asymmetries by simulating funnels by pairs of data generating processes (DGPs) and estimating models (EMs), in which the EM has the problem that it disregards a property of the DGP. The problems are data dependency, structural breaks, non-normal residuals, non-linearity, and omitted variables. We show that some of these problems generate funnel asymmetries. When they do, the standard method often fails. Copyright © 2011 John Wiley & Sons, Ltd. Copyright © 2011 John Wiley & Sons, Ltd.
Mathematical modeling of tetrahydroimidazole benzodiazepine-1-one derivatives as an anti HIV agent
NASA Astrophysics Data System (ADS)
Ojha, Lokendra Kumar
2017-07-01
The goal of the present work is the study of drug receptor interaction via QSAR (Quantitative Structure-Activity Relationship) analysis for 89 set of TIBO (Tetrahydroimidazole Benzodiazepine-1-one) derivatives. MLR (Multiple Linear Regression) method is utilized to generate predictive models of quantitative structure-activity relationships between a set of molecular descriptors and biological activity (IC50). The best QSAR model was selected having a correlation coefficient (r) of 0.9299 and Standard Error of Estimation (SEE) of 0.5022, Fisher Ratio (F) of 159.822 and Quality factor (Q) of 1.852. This model is statistically significant and strongly favours the substitution of sulphur atom, IS i.e. indicator parameter for -Z position of the TIBO derivatives. Two other parameter logP (octanol-water partition coefficient) and SAG (Surface Area Grid) also played a vital role in the generation of best QSAR model. All three descriptor shows very good stability towards data variation in leave-one-out (LOO).
Wang, S; Martinez-Lage, M; Sakai, Y; Chawla, S; Kim, S G; Alonso-Basanta, M; Lustig, R A; Brem, S; Mohan, S; Wolf, R L; Desai, A; Poptani, H
2016-01-01
Early assessment of treatment response is critical in patients with glioblastomas. A combination of DTI and DSC perfusion imaging parameters was evaluated to distinguish glioblastomas with true progression from mixed response and pseudoprogression. Forty-one patients with glioblastomas exhibiting enhancing lesions within 6 months after completion of chemoradiation therapy were retrospectively studied. All patients underwent surgery after MR imaging and were histologically classified as having true progression (>75% tumor), mixed response (25%-75% tumor), or pseudoprogression (<25% tumor). Mean diffusivity, fractional anisotropy, linear anisotropy coefficient, planar anisotropy coefficient, spheric anisotropy coefficient, and maximum relative cerebral blood volume values were measured from the enhancing tissue. A multivariate logistic regression analysis was used to determine the best model for classification of true progression from mixed response or pseudoprogression. Significantly elevated maximum relative cerebral blood volume, fractional anisotropy, linear anisotropy coefficient, and planar anisotropy coefficient and decreased spheric anisotropy coefficient were observed in true progression compared with pseudoprogression (P < .05). There were also significant differences in maximum relative cerebral blood volume, fractional anisotropy, planar anisotropy coefficient, and spheric anisotropy coefficient measurements between mixed response and true progression groups. The best model to distinguish true progression from non-true progression (pseudoprogression and mixed) consisted of fractional anisotropy, linear anisotropy coefficient, and maximum relative cerebral blood volume, resulting in an area under the curve of 0.905. This model also differentiated true progression from mixed response with an area under the curve of 0.901. A combination of fractional anisotropy and maximum relative cerebral blood volume differentiated pseudoprogression from nonpseudoprogression (true progression and mixed) with an area under the curve of 0.807. DTI and DSC perfusion imaging can improve accuracy in assessing treatment response and may aid in individualized treatment of patients with glioblastomas. © 2016 by American Journal of Neuroradiology.
Evaluation of spatial, radiometric and spectral thematic mapper performance for coastal studies
NASA Technical Reports Server (NTRS)
Klemas, V.
1985-01-01
The main emphasis of the research was to determine what effect different wetland plant canopies would have upon observed reflectance in Thematic Mapper bands. The three major vegetation canopy types (broadleaf, gramineous and leafless) produce unique spectral responses for a similar quantity of live biomass. Biomass estimates computed from spectral data were most similar to biomass estimates determined from harvest data when models developed for a specific canopy were used. In other words, the spectral biomass estimate of a broadleaf canopy was most similar to the harvest biomass estimate when a broadleaf canopy radiance model was used. Work is continuing to more precisely determine regression coefficients for each canopy type and to model the change in the coefficients with various combinations of canopy types. Researchers suspect that textural and spatial considerations can be used to identify canopy types and improve biomass estimates from Thematic Mapper data.
NASA Astrophysics Data System (ADS)
Chandramouli, Bharadwaj; Jang, Myoseon; Kamens, Richard M.
The partitioning of a diverse set of semivolatile organic compounds (SOCs) on a variety of organic aerosols was studied using smog chamber experimental data. Existing data on the partitioning of SOCs on aerosols from wood combustion, diesel combustion, and the α-pinene-O 3 reaction was augmented by carrying out smog chamber partitioning experiments on aerosols from meat cooking, and catalyzed and uncatalyzed gasoline engine exhaust. Model compositions for aerosols from meat cooking and gasoline combustion emissions were used to calculate activity coefficients for the SOCs in the organic aerosols and the Pankow absorptive gas/particle partitioning model was used to calculate the partitioning coefficient Kp and quantitate the predictive improvements of using the activity coefficient. The slope of the log K p vs. log p L0 correlation for partitioning on aerosols from meat cooking improved from -0.81 to -0.94 after incorporation of activity coefficients iγ om. A stepwise regression analysis of the partitioning model revealed that for the data set used in this study, partitioning predictions on α-pinene-O 3 secondary aerosol and wood combustion aerosol showed statistically significant improvement after incorporation of iγ om, which can be attributed to their overall polarity. The partitioning model was sensitive to changes in aerosol composition when updated compositions for α-pinene-O 3 aerosol and wood combustion aerosol were used. The octanol-air partitioning coefficient's ( KOA) effectiveness as a partitioning correlator over a variety of aerosol types was evaluated. The slope of the log K p- log K OA correlation was not constant over the aerosol types and SOCs used in the study and the use of KOA for partitioning correlations can potentially lead to significant deviations, especially for polar aerosols.
Statistical downscaling modeling with quantile regression using lasso to estimate extreme rainfall
NASA Astrophysics Data System (ADS)
Santri, Dewi; Wigena, Aji Hamim; Djuraidah, Anik
2016-02-01
Rainfall is one of the climatic elements with high diversity and has many negative impacts especially extreme rainfall. Therefore, there are several methods that required to minimize the damage that may occur. So far, Global circulation models (GCM) are the best method to forecast global climate changes include extreme rainfall. Statistical downscaling (SD) is a technique to develop the relationship between GCM output as a global-scale independent variables and rainfall as a local- scale response variable. Using GCM method will have many difficulties when assessed against observations because GCM has high dimension and multicollinearity between the variables. The common method that used to handle this problem is principal components analysis (PCA) and partial least squares regression. The new method that can be used is lasso. Lasso has advantages in simultaneuosly controlling the variance of the fitted coefficients and performing automatic variable selection. Quantile regression is a method that can be used to detect extreme rainfall in dry and wet extreme. Objective of this study is modeling SD using quantile regression with lasso to predict extreme rainfall in Indramayu. The results showed that the estimation of extreme rainfall (extreme wet in January, February and December) in Indramayu could be predicted properly by the model at quantile 90th.
NASA Astrophysics Data System (ADS)
Qu, Yonghua; Jiao, Siong; Lin, Xudong
2008-10-01
Hetao Irrigation District located in Inner Mongolia, is one of the three largest irrigated area in China. In the irrigational agriculture region, for the reasons that many efforts have been put on irrigation rather than on drainage, as a result much sedimentary salt that usually is solved in water has been deposited in surface soil. So there has arisen a problem in such irrigation district that soil salinity has become a chief fact which causes land degrading. Remote sensing technology is an efficiency way to map the salinity in regional scale. In the principle of remote sensing, soil spectrum is one of the most important indications which can be used to reflect the status of soil salinity. In the past decades, many efforts have been made to reveal the spectrum characteristics of the salinized soil, such as the traditional statistic regression method. But it also has been found that when the hyper-spectral reflectance data are considered, the traditional regression method can't be treat the large dimension data, because the hyper-spectral data usually have too higher spectral band number. In this paper, a partial least squares regression (PLSR) model was established based on the statistical analysis on the soil salinity and the reflectance of hyper-spectral. Dataset were collect through the field soil samples were collected in the region of Hetao irrigation from the end of July to the beginning of August. The independent validation using data which are not included in the calibration model reveals that the proposed model can predicate the main soil components such as the content of total ions(S%), PH with higher determination coefficients(R2) of 0.728 and 0.715 respectively. And the rate of prediction to deviation(RPD) of the above predicted value are larger than 1.6, which indicates that the calibrated PLSR model can be used as a tool to retrieve soil salinity with accurate results. When the PLSR model's regression coefficients were aggregated according to the wavelength of visual (blue, green, red) and near infrared bands of LandSat Thematic Mapper(TM) sensor, some significant response values were observed, which indicates that the proposed method in this paper can be used to analysis the remotely sensed data from the space-boarded platform.
NASA Astrophysics Data System (ADS)
Cambra-López, María; Winkel, Albert; Mosquera, Julio; Ogink, Nico W. M.; Aarnink, André J. A.
2015-06-01
The objective of this study was to compare co-located real-time light scattering devices and equivalent gravimetric samplers in poultry and pig houses for PM10 mass concentration, and to develop animal-specific calibration factors for light scattering samplers. These results will contribute to evaluate the comparability of different sampling instruments for PM10 concentrations. Paired DustTrak light scattering device (DustTrak aerosol monitor, TSI, U.S.) and PM10 gravimetric cyclone sampler were used for measuring PM10 mass concentrations during 24 h periods (from noon to noon) inside animal houses. Sampling was conducted in 32 animal houses in the Netherlands, including broilers, broiler breeders, layers in floor and in aviary system, turkeys, piglets, growing-finishing pigs in traditional and low emission housing with dry and liquid feed, and sows in individual and group housing. A total of 119 pairs of 24 h measurements (55 for poultry and 64 for pigs) were recorded and analyzed using linear regression analysis. Deviations between samplers were calculated and discussed. In poultry, cyclone sampler and DustTrak data fitted well to a linear regression, with a regression coefficient equal to 0.41, an intercept of 0.16 mg m-3 and a correlation coefficient of 0.91 (excluding turkeys). Results in turkeys showed a regression coefficient equal to 1.1 (P = 0.49), an intercept of 0.06 mg m-3 (P < 0.0001) and a correlation coefficient of 0.98. In pigs, we found a regression coefficient equal to 0.61, an intercept of 0.05 mg m-3 and a correlation coefficient of 0.84. Measured PM10 concentrations using DustTraks were clearly underestimated (approx. by a factor 2) in both poultry and pig housing systems compared with cyclone pre-separators. Absolute, relative, and random deviations increased with concentration. DustTrak light scattering devices should be self-calibrated to investigate PM10 mass concentrations accurately in animal houses. We recommend linear regression equations as animal-specific calibration factors for DustTraks instead of manufacturer calibration factors, especially in heavily dusty environments such as animal houses.
Composite marginal quantile regression analysis for longitudinal adolescent body mass index data.
Yang, Chi-Chuan; Chen, Yi-Hau; Chang, Hsing-Yi
2017-09-20
Childhood and adolescenthood overweight or obesity, which may be quantified through the body mass index (BMI), is strongly associated with adult obesity and other health problems. Motivated by the child and adolescent behaviors in long-term evolution (CABLE) study, we are interested in individual, family, and school factors associated with marginal quantiles of longitudinal adolescent BMI values. We propose a new method for composite marginal quantile regression analysis for longitudinal outcome data, which performs marginal quantile regressions at multiple quantile levels simultaneously. The proposed method extends the quantile regression coefficient modeling method introduced by Frumento and Bottai (Biometrics 2016; 72:74-84) to longitudinal data accounting suitably for the correlation structure in longitudinal observations. A goodness-of-fit test for the proposed modeling is also developed. Simulation results show that the proposed method can be much more efficient than the analysis without taking correlation into account and the analysis performing separate quantile regressions at different quantile levels. The application to the longitudinal adolescent BMI data from the CABLE study demonstrates the practical utility of our proposal. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Poor methodological quality and reporting standards of systematic reviews in burn care management.
Wasiak, Jason; Tyack, Zephanie; Ware, Robert; Goodwin, Nicholas; Faggion, Clovis M
2017-10-01
The methodological and reporting quality of burn-specific systematic reviews has not been established. The aim of this study was to evaluate the methodological quality of systematic reviews in burn care management. Computerised searches were performed in Ovid MEDLINE, Ovid EMBASE and The Cochrane Library through to February 2016 for systematic reviews relevant to burn care using medical subject and free-text terms such as 'burn', 'systematic review' or 'meta-analysis'. Additional studies were identified by hand-searching five discipline-specific journals. Two authors independently screened papers, extracted and evaluated methodological quality using the 11-item A Measurement Tool to Assess Systematic Reviews (AMSTAR) tool and reporting quality using the 27-item Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. Characteristics of systematic reviews associated with methodological and reporting quality were identified. Descriptive statistics and linear regression identified features associated with improved methodological quality. A total of 60 systematic reviews met the inclusion criteria. Six of the 11 AMSTAR items reporting on 'a priori' design, duplicate study selection, grey literature, included/excluded studies, publication bias and conflict of interest were reported in less than 50% of the systematic reviews. Of the 27 items listed for PRISMA, 13 items reporting on introduction, methods, results and the discussion were addressed in less than 50% of systematic reviews. Multivariable analyses showed that systematic reviews associated with higher methodological or reporting quality incorporated a meta-analysis (AMSTAR regression coefficient 2.1; 95% CI: 1.1, 3.1; PRISMA regression coefficient 6·3; 95% CI: 3·8, 8·7) were published in the Cochrane library (AMSTAR regression coefficient 2·9; 95% CI: 1·6, 4·2; PRISMA regression coefficient 6·1; 95% CI: 3·1, 9·2) and included a randomised control trial (AMSTAR regression coefficient 1·4; 95%CI: 0·4, 2·4; PRISMA regression coefficient 3·4; 95% CI: 0·9, 5·8). The methodological and reporting quality of systematic reviews in burn care requires further improvement with stricter adherence by authors to the PRISMA checklist and AMSTAR tool. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Wagner, Daniel M.; Krieger, Joshua D.; Veilleux, Andrea G.
2016-08-04
In 2013, the U.S. Geological Survey initiated a study to update regional skew, annual exceedance probability discharges, and regional regression equations used to estimate annual exceedance probability discharges for ungaged locations on streams in the study area with the use of recent geospatial data, new analytical methods, and available annual peak-discharge data through the 2013 water year. An analysis of regional skew using Bayesian weighted least-squares/Bayesian generalized-least squares regression was performed for Arkansas, Louisiana, and parts of Missouri and Oklahoma. The newly developed constant regional skew of -0.17 was used in the computation of annual exceedance probability discharges for 281 streamgages used in the regional regression analysis. Based on analysis of covariance, four flood regions were identified for use in the generation of regional regression models. Thirty-nine basin characteristics were considered as potential explanatory variables, and ordinary least-squares regression techniques were used to determine the optimum combinations of basin characteristics for each of the four regions. Basin characteristics in candidate models were evaluated based on multicollinearity with other basin characteristics (variance inflation factor < 2.5) and statistical significance at the 95-percent confidence level (p ≤ 0.05). Generalized least-squares regression was used to develop the final regression models for each flood region. Average standard errors of prediction of the generalized least-squares models ranged from 32.76 to 59.53 percent, with the largest range in flood region D. Pseudo coefficients of determination of the generalized least-squares models ranged from 90.29 to 97.28 percent, with the largest range also in flood region D. The regional regression equations apply only to locations on streams in Arkansas where annual peak discharges are not substantially affected by regulation, diversion, channelization, backwater, or urbanization. The applicability and accuracy of the regional regression equations depend on the basin characteristics measured for an ungaged location on a stream being within range of those used to develop the equations.
Fananapazir, Ghaneh; Benzl, Robert; Corwin, Michael T; Chen, Ling-Xin; Sageshima, Junichiro; Stewart, Susan L; Troppmann, Christoph
2018-07-01
Purpose To determine whether the predonation computed tomography (CT)-based volume of the future remnant kidney is predictive of postdonation renal function in living kidney donors. Materials and Methods This institutional review board-approved, retrospective, HIPAA-compliant study included 126 live kidney donors who had undergone predonation renal CT between January 2007 and December 2014 as well as 2-year postdonation measurement of estimated glomerular filtration rate (eGFR). The whole kidney volume and cortical volume of the future remnant kidney were measured and standardized for body surface area (BSA). Bivariate linear associations between the ratios of whole kidney volume to BSA and cortical volume to BSA were obtained. A linear regression model for 2-year postdonation eGFR that incorporated donor age, sex, and either whole kidney volume-to-BSA ratio or cortical volume-to-BSA ratio was created, and the coefficient of determination (R 2 ) for the model was calculated. Factors not statistically additive in assessing 2-year eGFR were removed by using backward elimination, and the coefficient of determination for this parsimonious model was calculated. Results Correlation was slightly better for cortical volume-to-BSA ratio than for whole kidney volume-to-BSA ratio (r = 0.48 vs r = 0.44, respectively). The linear regression model incorporating all donor factors had an R 2 of 0.66. The only factors that were significantly additive to the equation were cortical volume-to-BSA ratio and predonation eGFR (P = .01 and P < .01, respectively), and the final parsimonious linear regression model incorporating these two variables explained almost the same amount of variance (R 2 = 0.65) as did the full model. Conclusion The cortical volume of the future remnant kidney helped predict postdonation eGFR at 2 years. The cortical volume-to-BSA ratio should thus be considered for addition as an important variable to living kidney donor evaluation and selection guidelines. © RSNA, 2018.
Adler, Peter B; Kleinhesselink, Andrew; Giles, Hooker; Taylor, J Bret; Teller, Brittany; Ellner, Stephen P
2018-04-28
Stable coexistence requires intraspecific limitations to be stronger than interspecific limitations. The greater the difference between intra- and interspecific limitations, the more stable the coexistence, and the weaker the competitive release any species should experience following removal of competitors. We conducted a removal experiment to test whether a previously estimated model, showing surprisingly weak interspecific competition for four dominant species in a sagebrush steppe, accurately predicts competitive release. Our treatments were 1) removal of all perennial grasses and 2) removal of the dominant shrub, Artemisia tripartita. We regressed survival, growth and recruitment on the locations, sizes, and species identities of neighboring plants, along with an indicator variable for removal treatment. If our "baseline" regression model, which accounts for local plant-plant interactions, accurately explains the observed responses to removals, then the removal coefficient should be non-significant. For survival, the removal coefficients were never significantly different from zero, and only A. tripartita showed a (negative) response to removals at the recruitment stage. For growth, the removal treatment effect was significant and positive for two species, Poa secunda and Pseudoroegneria spicata, indicating that the baseline model underestimated interspecific competition. For all three grass species, population models based on the vital rate regressions that included removal effects projected 1.4 to 3-fold increases in equilibrium population size relative to the baseline model (no removal effects). However, we found no evidence of higher response to removal in quadrats with higher pretreatment cover of A. tripartita, or by plants experiencing higher pre-treatment crowding by A. tripartita, raising questions about the mechanisms driving the positive response to removal. While our results show the value of combining observations with a simple removal experiment, more tightly controlled experiments focused on underlying mechanisms may be required to conclusively validate or reject predictions from phenomenological models. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
TI-59 Programs for Multiple Regression.
1980-05-01
general linear hypothesis model of full rank [ Graybill , 19611 can be written as Y = x 8 + C , s-N(O,o 2I) nxl nxk kxl nxl where Y is the vector of n...a "reduced model " solution, and confidence intervals for linear functions of the coefficients can be obtained using (x’x) and a2, based on the t...O107)l UA.LLL. Library ModuIe NASTER -Puter 0NTINA Cards 1 PROGRAM DESCRIPTION (s s 2 ror the general linear hypothesis model Y - XO + C’ calculates
Ma, Teng; Lu, Deyi; Zhu, Yin-Sheng; Chu, Xue-Feng; Wang, Yong; Shi, Guo-Ping; Wang, Zheng-Dong; Yu, Li; Jiang, Xiao-Yan; Wang, Xiao-Feng
2018-05-01
To examine the associations of the actinin alpha 3 gene (ACTN3) R577X polymorphism with physical performance and frailty in an older Chinese population. Data from 1,463 individuals (57.8% female) aged 70-87 years from the Rugao Longevity and Ageing Study were used. The associations between R577X and timed 5-m walk, grip strength, timed Up and Go test, and frailty index (FI) based on deficits of 23 laboratory tests (FI-Lab) were examined. Analysis of variance and linear regression models were used to evaluate the genetic effects of ACTN3 R577X on physical performance and FI-Lab. The XX and RX genotypes of the ACTN3 R557X polymorphism accounted for 17.1 and 46.9%, respectively. Multivariate regression analysis revealed that in men aged 70-79 years, the ACTN3 577X allele was significantly associated with physical performance (5-m walk time, regression coefficient (β) = 0.258, P = 0.006; grip strength, β = -1.062, P = 0.012; Up and Go test time β = 0.368, P = 0.019). In women aged 70-79 years, a significant association between the ACTN3 577X allele and the FI-Lab score was observed, with a regression coefficient of β = 0.019 (P = 0.003). These findings suggest an age- and gender-specific X-additive model of R577X for 5-m walk time, grip strength, Up and Go Test time, and FI-Lab score. The ACTN3 577X allele is associated with an age- and sex-specific decrease in physical performance and an increase in frailty in an older population.
Solid harmonic wavelet scattering for predictions of molecule properties
NASA Astrophysics Data System (ADS)
Eickenberg, Michael; Exarchakis, Georgios; Hirn, Matthew; Mallat, Stéphane; Thiry, Louis
2018-06-01
We present a machine learning algorithm for the prediction of molecule properties inspired by ideas from density functional theory (DFT). Using Gaussian-type orbital functions, we create surrogate electronic densities of the molecule from which we compute invariant "solid harmonic scattering coefficients" that account for different types of interactions at different scales. Multilinear regressions of various physical properties of molecules are computed from these invariant coefficients. Numerical experiments show that these regressions have near state-of-the-art performance, even with relatively few training examples. Predictions over small sets of scattering coefficients can reach a DFT precision while being interpretable.
The Relationship Between Surface Curvature and Abdominal Aortic Aneurysm Wall Stress.
de Galarreta, Sergio Ruiz; Cazón, Aitor; Antón, Raúl; Finol, Ender A
2017-08-01
The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.
Xue, Dan; Yin, Jingyuan
2014-05-01
In this study, we explored the potential applications of the Ozone Monitoring Instrument (OMI) satellite sensor in air pollution research. The OMI planetary boundary layer sulfur dioxide (SO2_PBL) column density and daily average surface SO2 concentration of Shanghai from 2004 to 2012 were analyzed. After several consecutive years of increase, the surface SO2 concentration finally declined in 2007. It was higher in winter than in other seasons. The coefficient between daily average surface SO2 concentration and SO2_PBL was only 0.316. But SO2_PBL was found to be a highly significant predictor of the surface SO2 concentration using the simple regression model. Five meteorological factors were considered in this study, among them, temperature, dew point, relative humidity, and wind speed were negatively correlated with surface SO2 concentration, while pressure was positively correlated. Furthermore, it was found that dew point was a more effective predictor than temperature. When these meteorological factors were used in multiple regression, the determination coefficient reached 0.379. The relationship of the surface SO2 concentration and meteorological factors was seasonally dependent. In summer and autumn, the regression model performed better than in spring and winter. The surface SO2 concentration predicting method proposed in this study can be easily adapted for other regions, especially most useful for those having no operational air pollution forecasting services or having sparse ground monitoring networks.
Sun, Yanqing; Sun, Liuquan; Zhou, Jie
2013-07-01
This paper studies the generalized semiparametric regression model for longitudinal data where the covariate effects are constant for some and time-varying for others. Different link functions can be used to allow more flexible modelling of longitudinal data. The nonparametric components of the model are estimated using a local linear estimating equation and the parametric components are estimated through a profile estimating function. The method automatically adjusts for heterogeneity of sampling times, allowing the sampling strategy to depend on the past sampling history as well as possibly time-dependent covariates without specifically model such dependence. A [Formula: see text]-fold cross-validation bandwidth selection is proposed as a working tool for locating an appropriate bandwidth. A criteria for selecting the link function is proposed to provide better fit of the data. Large sample properties of the proposed estimators are investigated. Large sample pointwise and simultaneous confidence intervals for the regression coefficients are constructed. Formal hypothesis testing procedures are proposed to check for the covariate effects and whether the effects are time-varying. A simulation study is conducted to examine the finite sample performances of the proposed estimation and hypothesis testing procedures. The methods are illustrated with a data example.
Peng, Ying; Yu, Bin; Wang, Peng; Kong, De-Guang; Chen, Bang-Hua; Yang, Xiao-Bing
2017-12-01
Outbreaks of hand-foot-mouth disease (HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average (ARIMA) model for time series analysis was designed in this study. Eighty-four-month (from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination (R 2 ), normalized Bayesian Information Criterion (BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as (1,0,1)(0,1,1) 12 , with the largest coefficient of determination (R 2 =0.743) and lowest normalized BIC (BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations (P Box-Ljung (Q) =0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly.
Sowande, O S; Oyewale, B F; Iyasere, O S
2010-06-01
The relationships between live weight and eight body measurements of West African Dwarf (WAD) goats were studied using 211 animals under farm condition. The animals were categorized based on age and sex. Data obtained on height at withers (HW), heart girth (HG), body length (BL), head length (HL), and length of hindquarter (LHQ) were fitted into simple linear, allometric, and multiple-regression models to predict live weight from the body measurements according to age group and sex. Results showed that live weight, HG, BL, LHQ, HL, and HW increased with the age of the animals. In multiple-regression model, HG and HL best fit the model for goat kids; HG, HW, and HL for goat aged 13-24 months; while HG, LHQ, HW, and HL best fit the model for goats aged 25-36 months. Coefficients of determination (R(2)) values for linear and allometric models for predicting the live weight of WAD goat increased with age in all the body measurements, with HG being the most satisfactory single measurement in predicting the live weight of WAD goat. Sex had significant influence on the model with R(2) values consistently higher in females except the models for LHQ and HW.
Development and evaluation of a reservoir model for the Chain of Lakes in Illinois
Domanski, Marian M.
2017-01-27
Forecasts of flows entering and leaving the Chain of Lakes reservoir on the Fox River in northeastern Illinois are critical information to water-resource managers who determine the optimal operation of the dam at McHenry, Illinois, to help minimize damages to property and loss of life because of flooding on the Fox River. In 2014, the U.S. Geological Survey; the Illinois Department of Natural Resources, Office of Water Resources; and National Weather Service, North Central River Forecast Center began a cooperative study to develop a system to enable engineers and planners to simulate and communicate flows and to prepare proactively for precipitation events in near real time in the upper Fox River watershed. The purpose of this report is to document the development and evaluation of the Chain of Lakes reservoir model developed in this study.The reservoir model for the Chain of Lakes was developed using the Hydrologic Engineering Center–Reservoir System Simulation program. Because of the complex relation between the dam headwater and reservoir pool elevations, the reservoir model uses a linear regression model that relates dam headwater elevation to reservoir pool elevation. The linear regression model was developed using 17 U.S. Geological Survey streamflow measurements, along with the gage height in the reservoir pool and the gage height at the dam headwater. The Nash-Sutcliffe model efficiency coefficients for all three linear regression model variables ranged from 0.90 to 0.98.The reservoir model performance was evaluated by graphically comparing simulated and observed reservoir pool elevation time series during nine periods of high pool elevation. In addition, the peak elevations during these time periods were graphically compared to the closest-in-time observed pool elevation peak. The mean difference in the simulated and observed peak elevations was -0.03 feet, with a standard deviation of 0.19 feet. The Nash-Sutcliffe coefficient for peak prediction was calculated as 0.94. Evaluation of the model based on accuracy of peak prediction and the ability to simulate an elevation time series showed the performance of the model was satisfactory.
Maertens de Noordhout, Charline; Devleesschauwer, Brecht; Salomon, Joshua A; Turner, Heather; Cassini, Alessandro; Colzani, Edoardo; Speybroeck, Niko; Polinder, Suzanne; Kretzschmar, Mirjam E; Havelaar, Arie H; Haagsma, Juanita A
2018-01-01
Abstract Background In 2015, new disability weights (DWs) for infectious diseases were constructed based on data from four European countries. In this paper, we evaluated if country, age, sex, disease experience status, income and educational levels have an impact on these DWs. Methods We analyzed paired comparison responses of the European DW study by participants’ characteristics with separate probit regression models. To evaluate the effect of participants’ characteristics, we performed correlation analyses between countries and within country by respondent characteristics and constructed seven probit regression models, including a null model and six models containing participants’ characteristics. We compared these seven models using Akaike Information Criterion (AIC). Results According to AIC, the probit model including country as covariate was the best model. We found a lower correlation of the probit coefficients between countries and income levels (range rs: 0.97–0.99, P < 0.01) than between age groups (range rs: 0.98–0.99, P < 0.01), educational level (range rs: 0.98–0.99, P < 0.01), sex (rs = 0.99, P < 0.01) and disease status (rs = 0.99, P < 0.01). Within country the lowest correlations of the probit coefficients were between low and high income level (range rs = 0.89–0.94, P < 0.01). Conclusions We observed variations in health valuation across countries and within country between income levels. These observations should be further explored in a systematic way, also in non-European countries. We recommend future researches studying the effect of other characteristics of respondents on health assessment. PMID:29020343
Motor learning and modulation of prefrontal cortex: an fNIRS assessment
NASA Astrophysics Data System (ADS)
Ono, Yumie; Noah, Jack Adam; Zhang, Xian; Nomoto, Yasunori; Suzuki, Tatsuya; Shimada, Sotaro; Tachibana, Atsumichi; Bronner, Shaw; Hirsch, Joy
2015-12-01
Objective. Prefrontal hemodynamic responses are observed during performance of motor tasks. Using a dance video game (DVG), a complex motor task that requires temporally accurate footsteps with given visual and auditory cues, we investigated whether 20 h of DVG training modified hemodynamic responses of the prefrontal cortex in six healthy young adults. Approach. Fronto-temporal activity during actual DVG play was measured using functional near-infrared spectroscopy (fNIRS) pre- and post-training. To evaluate the training-induced changes in the time-courses of fNIRS signals, we employed a regression analysis using the task-specific template fNIRS signals that were generated from alternate well-trained and/or novice DVG players. The HRF was also separately incorporated as a template to construct an alternate regression model. Change in coefficients for template functions at pre- and post- training were determined and compared among different models. Main results. Training significantly increased the motor performance using the number of temporally accurate steps in the DVG as criteria. The mean oxygenated hemoglobin (ΔoxyHb) waveform changed from an activation above baseline pattern to that of a below baseline pattern. Participants showed significantly decreased coefficients for regressors of the ΔoxyHb response of novice players and HRF. The model using ΔoxyHb responses from both well-trained and novice players of DVG as templates showed the best fit for the ΔoxyHb responses of the participants at both pre- and post-training when analyzed with Akaike information criteria. Significance. These results suggest that the coefficients for the template ΔoxyHb responses of the novice players are sensitive indicators of motor learning during the initial stage of training and thus clinically useful to determine the improvement in motor performance when patients are engaged in a specific rehabilitation program.
NASA Astrophysics Data System (ADS)
Bitew, M. M.; Goodrich, D. C.; Demaria, E.; Heilman, P.; Kautz, M. A.
2017-12-01
Walnut Gulch is a semi-arid environment experimental watershed and Long Term Agro-ecosystem Research (LTAR) site managed by USDA-ARS Southwest Watershed Research Center for which high-resolution long-term hydro-climatic data are available across its 150 km2 drainage area. In this study, we present the analysis of 50 years of continuous hourly rainfall data to evaluate runoff control and generation processes for improving the QA-QC plans of Walnut Gulch to create high-quality data set that is critical for reducing water balance uncertainties. Multiple linear regression models were developed to relate rainfall properties, runoff characteristics and watershed properties. The rainfall properties were summarized to event based total depth, maximum intensity, duration, the location of the storm center with respect to the outlet, and storm size normalized to watershed area. We evaluated the interaction between the runoff and rainfall and runoff as antecedent moisture condition (AMC), antecedent runoff condition (ARC) and, runoff depth and duration for each rainfall events. We summarized each of the watershed properties such as contributing area, slope, shape, channel length, stream density, channel flow area, and percent of the area of retention stock ponds for each of the nested catchments in Walnut Gulch. The evaluation of the model using basic and categorical statistics showed good predictive skill throughout the watersheds. The model produced correlation coefficients ranging from 0.4-0.94, Nash efficiency coefficients up to 0.77, and Kling-Gupta coefficients ranging from 0.4 to 0.98. The model predicted 92% of all runoff generations and 98% of no-runoff across all sub-watersheds in Walnut Gulch. The regression model also indicated good potential to complement the QA-QC procedures in place for Walnut Gulch dataset publications developed over the years since the 1960s through identification of inconsistencies in rainfall and runoff relations.
Galloway, Joel M.
2014-01-01
The Red River of the North (hereafter referred to as “Red River”) Basin is an important hydrologic region where water is a valuable resource for the region’s economy. Continuous water-quality monitors have been operated by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, Minnesota Pollution Control Agency, City of Fargo, City of Moorhead, City of Grand Forks, and City of East Grand Forks at the Red River at Fargo, North Dakota, from 2003 through 2012 and at Grand Forks, N.Dak., from 2007 through 2012. The purpose of the monitoring was to provide a better understanding of the water-quality dynamics of the Red River and provide a way to track changes in water quality. Regression equations were developed that can be used to estimate concentrations and loads for dissolved solids, sulfate, chloride, nitrate plus nitrite, total phosphorus, and suspended sediment using explanatory variables such as streamflow, specific conductance, and turbidity. Specific conductance was determined to be a significant explanatory variable for estimating dissolved solids concentrations at the Red River at Fargo and Grand Forks. The regression equations provided good relations between dissolved solid concentrations and specific conductance for the Red River at Fargo and at Grand Forks, with adjusted coefficients of determination of 0.99 and 0.98, respectively. Specific conductance, log-transformed streamflow, and a seasonal component were statistically significant explanatory variables for estimating sulfate in the Red River at Fargo and Grand Forks. Regression equations provided good relations between sulfate concentrations and the explanatory variables, with adjusted coefficients of determination of 0.94 and 0.89, respectively. For the Red River at Fargo and Grand Forks, specific conductance, streamflow, and a seasonal component were statistically significant explanatory variables for estimating chloride. For the Red River at Grand Forks, a time component also was a statistically significant explanatory variable for estimating chloride. The regression equations for chloride at the Red River at Fargo provided a fair relation between chloride concentrations and the explanatory variables, with an adjusted coefficient of determination of 0.66 and the equation for the Red River at Grand Forks provided a relatively good relation between chloride concentrations and the explanatory variables, with an adjusted coefficient of determination of 0.77. Turbidity and streamflow were statistically significant explanatory variables for estimating nitrate plus nitrite concentrations at the Red River at Fargo and turbidity was the only statistically significant explanatory variable for estimating nitrate plus nitrite concentrations at Grand Forks. The regression equation for the Red River at Fargo provided a relatively poor relation between nitrate plus nitrite concentrations, turbidity, and streamflow, with an adjusted coefficient of determination of 0.46. The regression equation for the Red River at Grand Forks provided a fair relation between nitrate plus nitrite concentrations and turbidity, with an adjusted coefficient of determination of 0.73. Some of the variability that was not explained by the equations might be attributed to different sources contributing nitrates to the stream at different times. Turbidity, streamflow, and a seasonal component were statistically significant explanatory variables for estimating total phosphorus at the Red River at Fargo and Grand Forks. The regression equation for the Red River at Fargo provided a relatively fair relation between total phosphorus concentrations, turbidity, streamflow, and season, with an adjusted coefficient of determination of 0.74. The regression equation for the Red River at Grand Forks provided a good relation between total phosphorus concentrations, turbidity, streamflow, and season, with an adjusted coefficient of determination of 0.87. For the Red River at Fargo, turbidity and streamflow were statistically significant explanatory variables for estimating suspended-sediment concentrations. For the Red River at Grand Forks, turbidity was the only statistically significant explanatory variable for estimating suspended-sediment concentration. The regression equation at the Red River at Fargo provided a good relation between suspended-sediment concentration, turbidity, and streamflow, with an adjusted coefficient of determination of 0.95. The regression equation for the Red River at Grand Forks provided a good relation between suspended-sediment concentration and turbidity, with an adjusted coefficient of determination of 0.96.
Strand, Matthew; Sillau, Stefan; Grunwald, Gary K; Rabinovitch, Nathan
2014-02-10
Regression calibration provides a way to obtain unbiased estimators of fixed effects in regression models when one or more predictors are measured with error. Recent development of measurement error methods has focused on models that include interaction terms between measured-with-error predictors, and separately, methods for estimation in models that account for correlated data. In this work, we derive explicit and novel forms of regression calibration estimators and associated asymptotic variances for longitudinal models that include interaction terms, when data from instrumental and unbiased surrogate variables are available but not the actual predictors of interest. The longitudinal data are fit using linear mixed models that contain random intercepts and account for serial correlation and unequally spaced observations. The motivating application involves a longitudinal study of exposure to two pollutants (predictors) - outdoor fine particulate matter and cigarette smoke - and their association in interactive form with levels of a biomarker of inflammation, leukotriene E4 (LTE 4 , outcome) in asthmatic children. Because the exposure concentrations could not be directly observed, we used measurements from a fixed outdoor monitor and urinary cotinine concentrations as instrumental variables, and we used concentrations of fine ambient particulate matter and cigarette smoke measured with error by personal monitors as unbiased surrogate variables. We applied the derived regression calibration methods to estimate coefficients of the unobserved predictors and their interaction, allowing for direct comparison of toxicity of the different pollutants. We used simulations to verify accuracy of inferential methods based on asymptotic theory. Copyright © 2013 John Wiley & Sons, Ltd.
Smith, S. Jerrod; Lewis, Jason M.; Graves, Grant M.
2015-09-28
Generalized-least-squares multiple-linear regression analysis was used to formulate regression relations between peak-streamflow frequency statistics and basin characteristics. Contributing drainage area was the only basin characteristic determined to be statistically significant for all percentage of annual exceedance probabilities and was the only basin characteristic used in regional regression equations for estimating peak-streamflow frequency statistics on unregulated streams in and near the Oklahoma Panhandle. The regression model pseudo-coefficient of determination, converted to percent, for the Oklahoma Panhandle regional regression equations ranged from about 38 to 63 percent. The standard errors of prediction and the standard model errors for the Oklahoma Panhandle regional regression equations ranged from about 84 to 148 percent and from about 76 to 138 percent, respectively. These errors were comparable to those reported for regional peak-streamflow frequency regression equations for the High Plains areas of Texas and Colorado. The root mean square errors for the Oklahoma Panhandle regional regression equations (ranging from 3,170 to 92,000 cubic feet per second) were less than the root mean square errors for the Oklahoma statewide regression equations (ranging from 18,900 to 412,000 cubic feet per second); therefore, the Oklahoma Panhandle regional regression equations produce more accurate peak-streamflow statistic estimates for the irrigated period of record in the Oklahoma Panhandle than do the Oklahoma statewide regression equations. The regression equations developed in this report are applicable to streams that are not substantially affected by regulation, impoundment, or surface-water withdrawals. These regression equations are intended for use for stream sites with contributing drainage areas less than or equal to about 2,060 square miles, the maximum value for the independent variable used in the regression analysis.
Turpin, Anthony; Paget-Bailly, Sophie; Ploquin, Anne; Hollebecque, Antoine; Peugniez, Charlotte; El-Hajbi, Farid; Bonnetain, Franck; Hebbar, Mohamed
2018-03-01
We studied the relationship between intermediate criteria and overall survival (OS) in metastatic colorectal cancer (mCRC) patients who received first-line chemotherapy with bevacizumab. We assessed OS, progression-free survival (PFS), duration of disease control (DDC), the sum of the periods in which the disease did not progress, and the time to failure of strategy (TFS), which was defined as the entire period before the introduction of a second-line treatment. Linear correlation and regression models were used, and Prentice criteria were investigated. With a median follow-up of 57.6 months for 216 patients, the median OS was 24.5 months (95% confidence interval [CI], 21.3-29.7). The median PFS, DDC, and TFS were 8.9 (95% CI, 8.4-9.7), 11.0 (95% CI, 9.8-12.4), and 11.1 (95% CI, 10.0-13.0) months, respectively. The correlations between OS and DDC (Pearson coefficient, 0.79 [95% CI, 0.73-0.83], determination coefficient, 0.62) and OS and TFS (Pearson coefficient, 0.79 [95% CI, 0.73-0.84], determination coefficient, 0.63) were satisfactory. Linear regression analysis showed a significant association between OS and DDC, and between OS and TFS. Prentice criteria were verified for TFS as well as DDC. DDC and TFS correlated with OS and are relevant as intermediate criteria in the setting of patients with mCRC treated with a first-line bevacizumab-based regimen. Copyright © 2017 Elsevier Inc. All rights reserved.
Determinants of The Grade A Embryos in Infertile Women; Zero-Inflated Regression Model.
Almasi-Hashiani, Amir; Ghaheri, Azadeh; Omani Samani, Reza
2017-10-01
In assisted reproductive technology, it is important to choose high quality embryos for embryo transfer. The aim of the present study was to determine the grade A embryo count and factors related to it in infertile women. This historical cohort study included 996 infertile women. The main outcome was the number of grade A embryos. Zero-Inflated Poisson (ZIP) regression and Zero-Inflated Negative Binomial (ZINB) regression were used to model the count data as it contained excessive zeros. Stata software, version 13 (Stata Corp, College Station, TX, USA) was used for all statistical analyses. After adjusting for potential confounders, results from the ZINB model show that for each unit increase in the number 2 pronuclear (2PN) zygotes, we get an increase of 1.45 times as incidence rate ratio (95% confidence interval (CI): 1.23-1.69, P=0.001) in the expected grade A embryo count number, and for each increase in the cleavage day we get a decrease 0.35 times (95% CI: 0.20-0.61, P=0.001) in expected grade A embryo count. There is a significant association between both the number of 2PN zygotes and cleavage day with the number of grade A embryos in both ZINB and ZIP regression models. The estimated coefficients are more plausible than values found in earlier studies using less relevant models. Copyright© by Royan Institute. All rights reserved.
NASA Astrophysics Data System (ADS)
Yoshida, Kenichiro; Nishidate, Izumi; Ojima, Nobutoshi; Iwata, Kayoko
2014-01-01
To quantitatively evaluate skin chromophores over a wide region of curved skin surface, we propose an approach that suppresses the effect of the shading-derived error in the reflectance on the estimation of chromophore concentrations, without sacrificing the accuracy of that estimation. In our method, we use multiple regression analysis, assuming the absorbance spectrum as the response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as the predictor variables. The concentrations of melanin and total hemoglobin are determined from the multiple regression coefficients using compensation formulae (CF) based on the diffuse reflectance spectra derived from a Monte Carlo simulation. To suppress the shading-derived error, we investigated three different combinations of multiple regression coefficients for the CF. In vivo measurements with the forearm skin demonstrated that the proposed approach can reduce the estimation errors that are due to shading-derived errors in the reflectance. With the best combination of multiple regression coefficients, we estimated that the ratio of the error to the chromophore concentrations is about 10%. The proposed method does not require any measurements or assumptions about the shape of the subjects; this is an advantage over other studies related to the reduction of shading-derived errors.
NASA Astrophysics Data System (ADS)
Kiss, I.; Cioată, V. G.; Alexa, V.; Raţiu, S. A.
2017-05-01
The braking system is one of the most important and complex subsystems of railway vehicles, especially when it comes for safety. Therefore, installing efficient safe brakes on the modern railway vehicles is essential. Nowadays is devoted attention to solving problems connected with using high performance brake materials and its impact on thermal and mechanical loading of railway wheels. The main factor that influences the selection of a friction material for railway applications is the performance criterion, due to the interaction between the brake block and the wheel produce complex thermos-mechanical phenomena. In this work, the investigated subjects are the cast-iron brake shoes, which are still widely used on freight wagons. Therefore, the cast-iron brake shoes - with lamellar graphite and with a high content of phosphorus (0.8-1.1%) - need a special investigation. In order to establish the optimal condition for the cast-iron brake shoes we proposed a mathematical modelling study by using the statistical analysis and multiple regression equations. Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. Multivariate visualization comes to the fore when researchers have difficulties in comprehending many dimensions at one time. Technological data (hardness and chemical composition) obtained from cast-iron brake shoes were used for this purpose. In order to settle the multiple correlation between the hardness of the cast-iron brake shoes, and the chemical compositions elements several model of regression equation types has been proposed. Because a three-dimensional surface with variables on three axes is a common way to illustrate multivariate data, in which the maximum and minimum values are easily highlighted, we plotted graphical representation of the regression equations in order to explain interaction of the variables and locate the optimal level of each variable for maximal response. For the calculation of the regression coefficients, dispersion and correlation coefficients, the software Matlab was used.
Correlation and simple linear regression.
Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G
2003-06-01
In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.
The DPAC Compensation Model: An Introductory Handbook.
1987-04-01
introductory and advanced economics courses at the US Air Force Academy, he served for four years as an analyst and action officer in the ...introduces new users to the ACOL framework and provides some guidelines for choosing reasonable values for the four long-run parameters required to run the ...regression coefficients for ACOL and the civilian unemployment rate; for pilots, the number of " new " pilot
Nonlinear Simulation of the Tooth Enamel Spectrum for EPR Dosimetry
NASA Astrophysics Data System (ADS)
Kirillov, V. A.; Dubovsky, S. V.
2016-07-01
Software was developed where initial EPR spectra of tooth enamel were deconvoluted based on nonlinear simulation, line shapes and signal amplitudes in the model initial spectrum were calculated, the regression coefficient was evaluated, and individual spectra were summed. Software validation demonstrated that doses calculated using it agreed excellently with the applied radiation doses and the doses reconstructed by the method of additive doses.
Keshavarzi, Sareh; Ayatollahi, Seyyed Mohammad Taghi; Zare, Najaf; Pakfetrat, Maryam
2012-01-01
BACKGROUND. In many studies with longitudinal data, time-dependent covariates can only be measured intermittently (not at all observation times), and this presents difficulties for standard statistical analyses. This situation is common in medical studies, and methods that deal with this challenge would be useful. METHODS. In this study, we performed the seemingly unrelated regression (SUR) based models, with respect to each observation time in longitudinal data with intermittently observed time-dependent covariates and further compared these models with mixed-effect regression models (MRMs) under three classic imputation procedures. Simulation studies were performed to compare the sample size properties of the estimated coefficients for different modeling choices. RESULTS. In general, the proposed models in the presence of intermittently observed time-dependent covariates showed a good performance. However, when we considered only the observed values of the covariate without any imputations, the resulted biases were greater. The performances of the proposed SUR-based models in comparison with MRM using classic imputation methods were nearly similar with approximately equal amounts of bias and MSE. CONCLUSION. The simulation study suggests that the SUR-based models work as efficiently as MRM in the case of intermittently observed time-dependent covariates. Thus, it can be used as an alternative to MRM.
Hybrid ABC Optimized MARS-Based Modeling of the Milling Tool Wear from Milling Run Experimental Data
García Nieto, Paulino José; García-Gonzalo, Esperanza; Ordóñez Galán, Celestino; Bernardo Sánchez, Antonio
2016-01-01
Milling cutters are important cutting tools used in milling machines to perform milling operations, which are prone to wear and subsequent failure. In this paper, a practical new hybrid model to predict the milling tool wear in a regular cut, as well as entry cut and exit cut, of a milling tool is proposed. The model was based on the optimization tool termed artificial bee colony (ABC) in combination with multivariate adaptive regression splines (MARS) technique. This optimization mechanism involved the parameter setting in the MARS training procedure, which significantly influences the regression accuracy. Therefore, an ABC–MARS-based model was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc. Regression with optimal hyperparameters was performed and a determination coefficient of 0.94 was obtained. The ABC–MARS-based model's goodness of fit to experimental data confirmed the good performance of this model. This new model also allowed us to ascertain the most influential parameters on the milling tool flank wear with a view to proposing milling machine's improvements. Finally, conclusions of this study are exposed. PMID:28787882
García Nieto, Paulino José; García-Gonzalo, Esperanza; Ordóñez Galán, Celestino; Bernardo Sánchez, Antonio
2016-01-28
Milling cutters are important cutting tools used in milling machines to perform milling operations, which are prone to wear and subsequent failure. In this paper, a practical new hybrid model to predict the milling tool wear in a regular cut, as well as entry cut and exit cut, of a milling tool is proposed. The model was based on the optimization tool termed artificial bee colony (ABC) in combination with multivariate adaptive regression splines (MARS) technique. This optimization mechanism involved the parameter setting in the MARS training procedure, which significantly influences the regression accuracy. Therefore, an ABC-MARS-based model was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc . Regression with optimal hyperparameters was performed and a determination coefficient of 0.94 was obtained. The ABC-MARS-based model's goodness of fit to experimental data confirmed the good performance of this model. This new model also allowed us to ascertain the most influential parameters on the milling tool flank wear with a view to proposing milling machine's improvements. Finally, conclusions of this study are exposed.
Wang, Wei; Griswold, Michael E
2016-11-30
The random effect Tobit model is a regression model that accommodates both left- and/or right-censoring and within-cluster dependence of the outcome variable. Regression coefficients of random effect Tobit models have conditional interpretations on a constructed latent dependent variable and do not provide inference of overall exposure effects on the original outcome scale. Marginalized random effects model (MREM) permits likelihood-based estimation of marginal mean parameters for the clustered data. For random effect Tobit models, we extend the MREM to marginalize over both the random effects and the normal space and boundary components of the censored response to estimate overall exposure effects at population level. We also extend the 'Average Predicted Value' method to estimate the model-predicted marginal means for each person under different exposure status in a designated reference group by integrating over the random effects and then use the calculated difference to assess the overall exposure effect. The maximum likelihood estimation is proposed utilizing a quasi-Newton optimization algorithm with Gauss-Hermite quadrature to approximate the integration of the random effects. We use these methods to carefully analyze two real datasets. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Terziotti, Silvia; Capel, Paul D.; Tesoriero, Anthony J.; Hopple, Jessica A.; Kronholm, Scott C.
2018-03-07
The water quality of the Chesapeake Bay may be adversely affected by dissolved nitrate carried in groundwater discharge to streams. To estimate the concentrations, loads, and yields of nitrate from groundwater to streams for the Chesapeake Bay watershed, a regression model was developed based on measured nitrate concentrations from 156 small streams with watersheds less than 500 square miles (mi2 ) at baseflow. The regression model has three predictive variables: geologic unit, percent developed land, and percent agricultural land. Comparisons of estimated and actual values within geologic units were closely matched. The coefficient of determination (R2 ) for the model was 0.6906. The model was used to calculate baseflow nitrate concentrations at over 83,000 National Hydrography Dataset Plus Version 2 catchments and aggregated to 1,966 total 12-digit hydrologic units in the Chesapeake Bay watershed. The modeled output geospatial data layers provided estimated annual loads and yields of nitrate from groundwater into streams. The spatial distribution of annual nitrate yields from groundwater estimated by this method was compared to the total watershed yields of all sources estimated from a Chesapeake Bay SPAtially Referenced Regressions On Watershed attributes (SPARROW) water-quality model. The comparison showed similar spatial patterns. The regression model for groundwater contribution had similar but lower yields, suggesting that groundwater is an important source of nitrogen for streams in the Chesapeake Bay watershed.
Suzuki, Hideaki; Tabata, Takahisa; Koizumi, Hiroki; Hohchi, Nobusuke; Takeuchi, Shoko; Kitamura, Takuro; Fujino, Yoshihisa; Ohbuchi, Toyoaki
2014-12-01
This study aimed to create a multiple regression model for predicting hearing outcomes of idiopathic sudden sensorineural hearing loss (ISSNHL). The participants were 205 consecutive patients (205 ears) with ISSNHL (hearing level ≥ 40 dB, interval between onset and treatment ≤ 30 days). They received systemic steroid administration combined with intratympanic steroid injection. Data were examined by simple and multiple regression analyses. Three hearing indices (percentage hearing improvement, hearing gain, and posttreatment hearing level [HLpost]) and 7 prognostic factors (age, days from onset to treatment, initial hearing level, initial hearing level at low frequencies, initial hearing level at high frequencies, presence of vertigo, and contralateral hearing level) were included in the multiple regression analysis as dependent and explanatory variables, respectively. In the simple regression analysis, the percentage hearing improvement, hearing gain, and HLpost showed significant correlation with 2, 5, and 6 of the 7 prognostic factors, respectively. The multiple correlation coefficients were 0.396, 0.503, and 0.714 for the percentage hearing improvement, hearing gain, and HLpost, respectively. Predicted values of HLpost calculated by the multiple regression equation were reliable with 70% probability with a 40-dB-width prediction interval. Prediction of HLpost by the multiple regression model may be useful to estimate the hearing prognosis of ISSNHL. © The Author(s) 2014.
Knol, Mirjam J; van der Tweel, Ingeborg; Grobbee, Diederick E; Numans, Mattijs E; Geerlings, Mirjam I
2007-10-01
To determine the presence of interaction in epidemiologic research, typically a product term is added to the regression model. In linear regression, the regression coefficient of the product term reflects interaction as departure from additivity. However, in logistic regression it refers to interaction as departure from multiplicativity. Rothman has argued that interaction estimated as departure from additivity better reflects biologic interaction. So far, literature on estimating interaction on an additive scale using logistic regression only focused on dichotomous determinants. The objective of the present study was to provide the methods to estimate interaction between continuous determinants and to illustrate these methods with a clinical example. and results From the existing literature we derived the formulas to quantify interaction as departure from additivity between one continuous and one dichotomous determinant and between two continuous determinants using logistic regression. Bootstrapping was used to calculate the corresponding confidence intervals. To illustrate the theory with an empirical example, data from the Utrecht Health Project were used, with age and body mass index as risk factors for elevated diastolic blood pressure. The methods and formulas presented in this article are intended to assist epidemiologists to calculate interaction on an additive scale between two variables on a certain outcome. The proposed methods are included in a spreadsheet which is freely available at: http://www.juliuscenter.nl/additive-interaction.xls.
NASA Astrophysics Data System (ADS)
Abunama, Taher; Othman, Faridah
2017-06-01
Analysing the fluctuations of wastewater inflow rates in sewage treatment plants (STPs) is essential to guarantee a sufficient treatment of wastewater before discharging it to the environment. The main objectives of this study are to statistically analyze and forecast the wastewater inflow rates into the Bandar Tun Razak STP in Kuala Lumpur, Malaysia. A time series analysis of three years’ weekly influent data (156weeks) has been conducted using the Auto-Regressive Integrated Moving Average (ARIMA) model. Various combinations of ARIMA orders (p, d, q) have been tried to select the most fitted model, which was utilized to forecast the wastewater inflow rates. The linear regression analysis was applied to testify the correlation between the observed and predicted influents. ARIMA (3, 1, 3) model was selected with the highest significance R-square and lowest normalized Bayesian Information Criterion (BIC) value, and accordingly the wastewater inflow rates were forecasted to additional 52weeks. The linear regression analysis between the observed and predicted values of the wastewater inflow rates showed a positive linear correlation with a coefficient of 0.831.
Yuan, Jintao; Yu, Shuling; Zhang, Ting; Yuan, Xuejie; Cao, Yunyuan; Yu, Xingchen; Yang, Xuan; Yao, Wu
2016-06-01
Octanol/water (K(OW)) and octanol/air (K(OA)) partition coefficients are two important physicochemical properties of organic substances. In current practice, K(OW) and K(OA) values of some polychlorinated biphenyls (PCBs) are measured using generator column method. Quantitative structure-property relationship (QSPR) models can serve as a valuable alternative method of replacing or reducing experimental steps in the determination of K(OW) and K(OA). In this paper, two different methods, i.e., multiple linear regression based on dragon descriptors and hologram quantitative structure-activity relationship, were used to predict generator-column-derived log K(OW) and log K(OA) values of PCBs. The predictive ability of the developed models was validated using a test set, and the performances of all generated models were compared with those of three previously reported models. All results indicated that the proposed models were robust and satisfactory and can thus be used as alternative models for the rapid assessment of the K(OW) and K(OA) of PCBs. Copyright © 2016 Elsevier Inc. All rights reserved.
Lapolla, Annunziata; Piarulli, Francesco; Sartore, Giovanni; Ceriello, Antonio; Ragazzi, Eugenio; Reitano, Rachele; Baccarin, Lorenzo; Laverda, Barbara; Fedele, Domenico
2007-03-01
Advanced glycation end products (AGEs), pentosidine and malondialdehyde (MDA), are elevated in type 2 diabetic subjects with coronary and carotid angiopathy. We investigated the relationship of AGEs, MDA, total reactive antioxidant potentials (TRAPs), and vitamin E in type 2 diabetic patients with and without peripheral artery disease (PAD). AGEs, pentosidine, MDA, TRAP, vitamin E, and ankle-brachial index (ABI) were measured in 99 consecutive type 2 diabetic subjects and 20 control subjects. AGEs, pentosidine, and MDA were higher and vitamin E and TRAP were lower in patients with PAD (ABI <0.9) than in patients without PAD (ABI >0.9) (P < 0.001). After multiple regression analysis, a correlation between AGEs and pentosidine, as independent variables, and ABI, as the dependent variable, was found in both patients with and without PAD (r = 0.9198, P < 0.001 and r = 0.5764, P < 0.001, respectively) but not in control subjects. When individual regression coefficients were evaluated, only that due to pentosidine was confirmed as significant. For patients with PAD, considering TRAP, vitamin E, and MDA as independent variables and ABI as the dependent variable produced an overall significant regression (r = 0.6913, P < 0.001). The regression coefficients for TRAP and vitamin E were not significant, indicating that the model is best explained by a single linear regression between MDA and ABI. These findings were also confirmed by principal component analysis. Results show that pentosidine and MDA are strongly associated with PAD in type 2 diabetic patients.
van Wesenbeeck, Ian; Driver, Jeffrey; Ross, John
2008-04-01
Volatilization of chemicals can be an important form of dissipation in the environment. Rates of evaporative losses from plant and soil surfaces are useful for estimating the potential for food-related dietary residues and operator and bystander exposure, and can be used as source functions for screening models that predict off-site movement of volatile materials. A regression of evaporation on vapor pressure from three datasets containing 82 pesticidal active ingredients and co-formulants, ranging in vapor pressure from 0.0001 to >30,000 Pa was developed for this purpose with a regression correlation coefficient of 0.98.
Meili, Marc; Kutz, Alexander; Briel, Matthias; Christ-Crain, Mirjam; Bucher, Heiner C; Mueller, Beat; Schuetz, Philipp
2016-03-24
There is a lack of studies comparing the utility of C-reactive protein (CRP) with Procalcitonin (PCT) for the management of patients with acute respiratory tract infections (ARI) in primary care. Our aim was to study the correlation between these markers and to compare their predictive accuracy in regard to clinical outcome prediction. This is a secondary analysis using clinical and biomarker data of 458 primary care patients with pneumonic and non-pneumonic ARI. We used correlation statistics (spearman's rank test) and multivariable regression models to assess association of markers with adverse outcome, namely days with restricted activities and persistence of discomfort from infection at day 14. At baseline, CRP and PCT did not correlate well in the overall population (r(2) = 0.16) and particularly in the subgroup of patients with non-pneumonic ARI (r(2) = 0.08). Low correlation of biomarkers were also found when comparing cut-off ranges, day seven levels or changes from baseline to day seven. High baseline levels of CRP (>100 mg/dL, regression coefficient 1.6, 95 % CI 0.5 to 2.6, sociodemographic-adjusted model) as well as PCT (>0.5ug/L regression coefficient 2.0, 95 % CI 0.0 to 4.0, sociodemographic-adjusted model) were significantly associated with larger number of days with restricted activities. There were no associations of either biomarker with persistence of discomfort at day 14. CRP and PCT levels do not well correlate, but both have moderate prognostic accuracy in primary care patients with ARI to predict clinical outcomes. The low correlation between the two biomarkers calls for interventional research comparing these markers head to head in regard to their ability to guide antibiotic decisions. Current Controlled Trials, ISRCTN73182671.
Retinal nerve fibre layer thinning is associated with drug resistance in epilepsy
Balestrini, Simona; Clayton, Lisa M S; Bartmann, Ana P; Chinthapalli, Krishna; Novy, Jan; Coppola, Antonietta; Wandschneider, Britta; Stern, William M; Acheson, James; Bell, Gail S; Sander, Josemir W; Sisodiya, Sanjay M
2016-01-01
Objective Retinal nerve fibre layer (RNFL) thickness is related to the axonal anterior visual pathway and is considered a marker of overall white matter ‘integrity’. We hypothesised that RNFL changes would occur in people with epilepsy, independently of vigabatrin exposure, and be related to clinical characteristics of epilepsy. Methods Three hundred people with epilepsy attending specialist clinics and 90 healthy controls were included in this cross-sectional cohort study. RNFL imaging was performed using spectral-domain optical coherence tomography (OCT). Drug resistance was defined as failure of adequate trials of two antiepileptic drugs to achieve sustained seizure freedom. Results The average RNFL thickness and the thickness of each of the 90° quadrants were significantly thinner in people with epilepsy than healthy controls (p<0.001, t test). In a multivariate logistic regression model, drug resistance was the only significant predictor of abnormal RNFL thinning (OR=2.09, 95% CI 1.09 to 4.01, p=0.03). Duration of epilepsy (coefficient −0.16, p=0.004) and presence of intellectual disability (coefficient −4.0, p=0.044) also showed a significant relationship with RNFL thinning in a multivariate linear regression model. Conclusions Our results suggest that people with epilepsy with no previous exposure to vigabatrin have a significantly thinner RNFL than healthy participants. Drug resistance emerged as a significant independent predictor of RNFL borderline attenuation or abnormal thinning in a logistic regression model. As this is easily assessed by OCT, RNFL thickness might be used to better understand the mechanisms underlying drug resistance, and possibly severity. Longitudinal studies are needed to confirm our findings. PMID:25886782
Normal reference values for bladder wall thickness on CT in a healthy population.
Fananapazir, Ghaneh; Kitich, Aleksandar; Lamba, Ramit; Stewart, Susan L; Corwin, Michael T
2018-02-01
To determine normal bladder wall thickness on CT in patients without bladder disease. Four hundred and nineteen patients presenting for trauma with normal CTs of the abdomen and pelvis were included in our retrospective study. Bladder wall thickness was assessed, and bladder volume was measured using both the ellipsoid formula and an automated technique. Patient age, gender, and body mass index were recorded. Linear regression models were created to account for bladder volume, age, gender, and body mass index, and the multiple correlation coefficient with bladder wall thickness was computed. Bladder volume and bladder wall thickness were log-transformed to achieve approximate normality and homogeneity of variance. Variables that did not contribute substantively to the model were excluded, and a parsimonious model was created and the multiple correlation coefficient was calculated. Expected bladder wall thickness was estimated for different bladder volumes, and 1.96 standard deviation above expected provided the upper limit of normal on the log scale. Age, gender, and bladder volume were associated with bladder wall thickness (p = 0.049, 0.024, and < 0.001, respectively). The linear regression model had an R 2 of 0.52. Age and gender were negligible in contribution to the model, and a parsimonious model using only volume was created for both the ellipsoid and automated volumes (R 2 = 0.52 and 0.51, respectively). Bladder wall thickness correlates with bladder wall volume. The study provides reference bladder wall thicknesses on CT utilizing both the ellipsoid formula and automated bladder volumes.
Sampson, Maureen L; Gounden, Verena; van Deventer, Hendrik E; Remaley, Alan T
2016-02-01
The main drawback of the periodic analysis of quality control (QC) material is that test performance is not monitored in time periods between QC analyses, potentially leading to the reporting of faulty test results. The objective of this study was to develop a patient based QC procedure for the more timely detection of test errors. Results from a Chem-14 panel measured on the Beckman LX20 analyzer were used to develop the model. Each test result was predicted from the other 13 members of the panel by multiple regression, which resulted in correlation coefficients between the predicted and measured result of >0.7 for 8 of the 14 tests. A logistic regression model, which utilized the measured test result, the predicted test result, the day of the week and time of day, was then developed for predicting test errors. The output of the logistic regression was tallied by a daily CUSUM approach and used to predict test errors, with a fixed specificity of 90%. The mean average run length (ARL) before error detection by CUSUM-Logistic Regression (CSLR) was 20 with a mean sensitivity of 97%, which was considerably shorter than the mean ARL of 53 (sensitivity 87.5%) for a simple prediction model that only used the measured result for error detection. A CUSUM-Logistic Regression analysis of patient laboratory data can be an effective approach for the rapid and sensitive detection of clinical laboratory errors. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Cai, Jun; Wang, Kuaishe; Shi, Jiamin; Wang, Wen; Liu, Yingying
2018-01-01
Constitutive analysis for hot working of BFe10-1-2 alloy was carried out by using experimental stress-strain data from isothermal hot compression tests, in a wide range of temperature of 1,023 1,273 K, and strain rate range of 0.001 10 s-1. A constitutive equation based on modified double multiple nonlinear regression was proposed considering the independent effects of strain, strain rate, temperature and their interrelation. The predicted flow stress data calculated from the developed equation was compared with the experimental data. Correlation coefficient (R), average absolute relative error (AARE) and relative errors were introduced to verify the validity of the developed constitutive equation. Subsequently, a comparative study was made on the capability of strain-compensated Arrhenius-type constitutive model. The results showed that the developed constitutive equation based on modified double multiple nonlinear regression could predict flow stress of BFe10-1-2 alloy with good correlation and generalization.
Carreon, Leah Y; Glassman, Steven D; McDonough, Christine M; Rampersaud, Raja; Berven, Sigurd; Shainline, Michael
2009-09-01
Cross-sectional cohort. The purpose of this study is to provide a model to allow estimation of utility from the Short Form (SF)-6D using data from the Oswestry Disability Index (ODI), Back Pain Numeric Rating Scale (BPNRS), and the Leg Pain Numeric Rating Scale (LPNRS). Cost-utility analysis provides important information about the relative value of interventions and requires a measure of utility not often available from clinical trial data. The ODI and numeric rating scales for back (BPNRS) and leg pain (LPNRS), are widely used disease-specific measures for health-related quality of life in patients with lumbar degenerative disorders. The purpose of this study is to provide a model to allow estimation of utility from the SF-6D using data from the ODI, BPNRS, and the LPNRS. SF-36, ODI, BPNRS, and LPNRS were prospectively collected before surgery, at 12 and 24 months after surgery in 2640 patients undergoing lumbar fusion for degenerative disorders. Spearman correlation coefficients for paired observations from multiple time points between ODI, BPNRS, and LPNRS, and SF-6D utility scores were determined. Regression modeling was done to compute the SF-6D score from the ODI, BPNRS, and LPNRS. Using a separate, independent dataset of 2174 patients in which actual SF-6D and ODI scores were available, the SF-6D was estimated for each subject and compared to their actual SF-6D. In the development sample, the mean age was 52.5 +/- 15 years and 34% were male. In the validation sample, the mean age was 52.9 +/- 14.2 years and 44% were male. Correlations between the SF-6D and the ODI, BPNRS, and LPNRS were statistically significant (P < 0.0001) with correlation coefficients of 0.82, 0.78, and 0.72, respectively. The regression equation using ODI, BPNRS,and LPNRS to predict SF-6D had an R of 0.69 and a root mean square error of 0.076. The model using ODI alone had an R of 0.67 and a root mean square error of 0.078. The correlation coefficient between the observed and estimated SF-6D score was 0.80. In the validation analysis, there was no statistically significant difference (P = 0.11) between actual mean SF-6D (0.55 +/- 0.12) and the estimated mean SF-6D score (0.55 +/- 0.10) using the ODI regression model. This regression-based algorithm may be used to predict SF-6D scores in studies of lumbar degenerative disease that have collected ODI but not utility scores.
Carreon, Leah Y.; Glassman, Steven D.; McDonough, Christine M.; Rampersaud, Raja; Berven, Sigurd; Shainline, Michael
2012-01-01
Study Design Cross-sectional cohort Objective The purpose of this study is to provide a model to allow estimation of utility from the SF-6D using data from the ODI, BPNRS, and the LPNRS. Summary of Background Data Cost-utility analysis provides important information about the relative value of interventions and requires a measure of utility not often available from clinical trial data. The Oswestry Disability Index (ODI) and numeric rating scales for back (BPNRS) and leg pain (LPNRS), are widely used disease-specific measures for health-related quality of life in patients with lumbar degenerative disorders. The purpose of this study is to provide a model to allow estimation of utility from the SF-6D using data from the ODI, BPNRS, and the LPNRS. Methods SF-36, ODI, BPNRS and LPNRS were prospectively collected pre-operatively, at 12 and 24 months post-operatively in 2640 patients undergoing lumbar fusion for degenerative disorders. Spearman correlation coefficients for paired observations from multiple time points between ODI, BPNRS and LPNRS and SF-6D utility scores were determined. Regression modeling was done to compute the SF-6D score from the ODI, BPNRS and LPNRS. Using a separate, independent dataset of 2174 patients in which actual SF-6D and ODI scores were available, the SF-6D was estimated for each subject and compared to their actual SF-6D. Results In the development sample, the mean age was 52.5 ± 15 years and 34% were male. In the validation sample the mean age was 52.9 ± 14.2 years and 44% were male. Correlations between the SF-6D and the ODI, BPNRS and LPNRS were statistically significant (p<0.0001) with correlation coefficients of 0.82, 0.78, and 0.72 respectively. The regression equation using ODI, BPNRS and LPNRS to predict SF-6D had an R2 of 0.69 and a root mean square error (RMSE) of 0.076. The model using ODI alone had an R2 of 0.67 and a RMSE of 0.078. The correlation coefficient between the observed and estimated SF-6D score was 0.80. In the validation analysis, there was no statistically significant difference (p=0.11) between actual mean SF-6D (0.55 ± 0.12) and the estimated mean SF-6D score (0.55 ± 0.10) using the ODI regression model. Conclusion This regression-based algorithm may be used to predict SF-6D scores in studies of lumbar degenerative disease that have collected ODI but not utility scores. PMID:19730215
Lamadrid-Figueroa, Héctor; Téllez-Rojo, Martha M; Angeles, Gustavo; Hernández-Ávila, Mauricio; Hu, Howard
2011-01-01
In-vivo measurement of bone lead by means of K-X-ray fluorescence (KXRF) is the preferred biological marker of chronic exposure to lead. Unfortunately, considerable measurement error associated with KXRF estimations can introduce bias in estimates of the effect of bone lead when this variable is included as the exposure in a regression model. Estimates of uncertainty reported by the KXRF instrument reflect the variance of the measurement error and, although they can be used to correct the measurement error bias, they are seldom used in epidemiological statistical analyzes. Errors-in-variables regression (EIV) allows for correction of bias caused by measurement error in predictor variables, based on the knowledge of the reliability of such variables. The authors propose a way to obtain reliability coefficients for bone lead measurements from uncertainty data reported by the KXRF instrument and compare, by the use of Monte Carlo simulations, results obtained using EIV regression models vs. those obtained by the standard procedures. Results of the simulations show that Ordinary Least Square (OLS) regression models provide severely biased estimates of effect, and that EIV provides nearly unbiased estimates. Although EIV effect estimates are more imprecise, their mean squared error is much smaller than that of OLS estimates. In conclusion, EIV is a better alternative than OLS to estimate the effect of bone lead when measured by KXRF. Copyright © 2010 Elsevier Inc. All rights reserved.
Kupek, Emil
2006-03-15
Structural equation modelling (SEM) has been increasingly used in medical statistics for solving a system of related regression equations. However, a great obstacle for its wider use has been its difficulty in handling categorical variables within the framework of generalised linear models. A large data set with a known structure among two related outcomes and three independent variables was generated to investigate the use of Yule's transformation of odds ratio (OR) into Q-metric by (OR-1)/(OR+1) to approximate Pearson's correlation coefficients between binary variables whose covariance structure can be further analysed by SEM. Percent of correctly classified events and non-events was compared with the classification obtained by logistic regression. The performance of SEM based on Q-metric was also checked on a small (N = 100) random sample of the data generated and on a real data set. SEM successfully recovered the generated model structure. SEM of real data suggested a significant influence of a latent confounding variable which would have not been detectable by standard logistic regression. SEM classification performance was broadly similar to that of the logistic regression. The analysis of binary data can be greatly enhanced by Yule's transformation of odds ratios into estimated correlation matrix that can be further analysed by SEM. The interpretation of results is aided by expressing them as odds ratios which are the most frequently used measure of effect in medical statistics.
Structure-activity relationships between sterols and their thermal stability in oil matrix.
Hu, Yinzhou; Xu, Junli; Huang, Weisu; Zhao, Yajing; Li, Maiquan; Wang, Mengmeng; Zheng, Lufei; Lu, Baiyi
2018-08-30
Structure-activity relationships between 20 sterols and their thermal stabilities were studied in a model oil system. All sterol degradations were found to be consistent with a first-order kinetic model with determination of coefficient (R 2 ) higher than 0.9444. The number of double bonds in the sterol structure was negatively correlated with the thermal stability of sterol, whereas the length of the branch chain was positively correlated with the thermal stability of sterol. A quantitative structure-activity relationship (QSAR) model to predict thermal stability of sterol was developed by using partial least squares regression (PLSR) combined with genetic algorithm (GA). A regression model was built with R 2 of 0.806. Almost all sterol degradation constants can be predicted accurately with R 2 of cross-validation equals to 0.680. Four important variables were selected in optimal QSAR model and the selected variables were observed to be related with information indices, RDF descriptors, and 3D-MoRSE descriptors. Copyright © 2018 Elsevier Ltd. All rights reserved.
Model development for MODIS thermal band electronic cross-talk
NASA Astrophysics Data System (ADS)
Chang, Tiejun; Wu, Aisheng; Geng, Xu; Li, Yonghong; Brinkmann, Jake; Keller, Graziela; Xiong, Xiaoxiong (Jack)
2016-10-01
MODerate-resolution Imaging Spectroradiometer (MODIS) has 36 bands. Among them, 16 thermal emissive bands covering a wavelength range from 3.8 to 14.4 μm. After 16 years on-orbit operation, the electronic crosstalk of a few Terra MODIS thermal emissive bands develop substantial issues which cause biases in the EV brightness temperature measurements and surface feature contamination. The crosstalk effects on band 27 with center wavelength at 6.7 μm and band 29 at 8.5 μm increased significantly in recent years, affecting downstream products such as water vapor and cloud mask. The crosstalk issue can be observed from nearly monthly scheduled lunar measurements, from which the crosstalk coefficients can be derived. Most of MODIS thermal bands are saturated at moon surface temperatures and the development of an alternative approach is very helpful for verification. In this work, a physical model was developed to assess the crosstalk impact on calibration as well as in Earth view brightness temperature retrieval. This model was applied to Terra MODIS band 29 empirically for correction of Earth brightness temperature measurements. In the model development, the detector nonlinear response is considered. The impacts of the electronic crosstalk are assessed in two steps. The first step consists of determining the impact on calibration using the on-board blackbody (BB). Due to the detector nonlinear response and large background signal, both linear and nonlinear coefficients are affected by the crosstalk from sending bands. The crosstalk impact on calibration coefficients was calculated. The second step is to calculate the effects on the Earth view brightness temperature retrieval. The effects include those from affected calibration coefficients and the contamination of Earth view measurements. This model links the measurement bias with crosstalk coefficients, detector nonlinearity, and the ratio of Earth measurements between the sending and receiving bands. The correction of the electronic crosstalk can be implemented empirically from the processed bias at different brightness temperature. The implementation can be done through two approaches. As routine calibration assessment for thermal infrared bands, the trending over select Earth scenes is processed for all the detectors in a band and the band averaged bias is derived for certain time. In this case, the correction of an affected band can be made using the regression of the model with band averaged bias and then corrections of detector differences are applied. The second approach requires the trending for individual detectors and the bias for each detector is used for regression with the model. A test using the first approach was made for Terra MODIS band 29 with the biases derived from long-term trending of sea surface temperature and Dome-C surface temperature.
Determination of drying kinetics and convective heat transfer coefficients of ginger slices
NASA Astrophysics Data System (ADS)
Akpinar, Ebru Kavak; Toraman, Seda
2016-10-01
In the present work, the effects of some parametric values on convective heat transfer coefficients and the thin layer drying process of ginger slices were investigated. Drying was done in the laboratory by using cyclone type convective dryer. The drying air temperature was varied as 40, 50, 60 and 70 °C and the air velocity is 0.8, 1.5 and 3 m/s. All drying experiments had only falling rate period. The drying data were fitted to the twelve mathematical models and performance of these models was investigated by comparing the determination of coefficient ( R 2), reduced Chi-square ( χ 2) and root mean square error between the observed and predicted moisture ratios. The effective moisture diffusivity and activation energy were calculated using an infinite series solution of Fick's diffusion equation. The average effective moisture diffusivity values and activation energy values varied from 2.807 × 10-10 to 6.977 × 10-10 m2/s and 19.313-22.722 kJ/mol over the drying air temperature and velocity range, respectively. Experimental data was used to evaluate the values of constants in Nusselt number expression by using linear regression analysis and consequently, convective heat transfer coefficients were determined in forced convection mode. Convective heat transfer coefficient of ginger slices showed changes in ranges 0.33-2.11 W/m2 °C.